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Abstract - This paper presents an eye gaze and brain controlled interface, where eye gaze is used to select a target, 
and motor imagery is used to drive a mobile robot towards the target. Vibrotactile haptic feedback about where eye 
gaze is being tracked by the system and kinesthetic haptic feedback about the brain activity associated with 
movement intention was provided. The system was tested with five non-disabled adults and one individual with 
physical impairments. A robotic task to knock down a pile of blocks was performed with and without the haptic 
feedback, and the completion times of the task were compared. All six participants accomplished the robotic task 
with the haptic feedback faster than without it, and five participants thought that the task with the haptic feedback 
required less workload than the task without it. Haptic feedback can be a feasible component for eye gaze and 
brain controlled interfaces. 
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1. Introduction 

The human-technology interface plays a fundamental role 
when controlling assistive technologies to perform functional 
activities [1]. Robots can be used as a means for children with 
physical impairments to perform functional play activities, and 
“human-robot interfaces” are used to access them. A common 
human-robot interface for people with impairments is a single 
button switch. This is the simplest type of interface and is 
essentially considered as a binary (on or off) device. Switches 
can be placed at different anatomical locations and made in 
different configurations depending on the user’s abilities. In 
Rios-Rincon, et al. [2] four children with severe cerebral palsy 
activated three single button switches for “forward”, “left 
turn”, and “right turn” of a mobile Lego robot. 

Another common human-robot interface for people with 
disabilities is a joystick. Joysticks are often used in the field of 
assistive technology, for example, to control power 
wheelchairs [3].  In Song and Kim [4] a self-feeding robot 
for people with physical disabilities could be controlled by 
switches or a joystick, but the results of a usability evaluation 
indicated that the joystick was the preferred access method. 
The JACO arm (Kinova Rehab, Montreal, QC, Canada), 
which is designed specifically for people with limited or no 
upper limb mobility to achieve activities of their daily living, 
is sold with a joystick controller [5]. However, joysticks 
require a certain degree of physical ability to access and 
operate. To address this limitation, access pathways that do not 
require abilities to control body movement can be used.  

As eye tracking has become more affordable and 

accessible it has been utilized for robot control applications. 
Eye tracking detects the user’s eye movement and determines 
the location on which the user is focusing [6]. Arai and Yajima 
[7] developed a feeding aid system consisting of a robot arm 
controlled with an eye gaze interface. A small camera was 
mounted on the tip of the robot end-effector, the view from 
which was displayed on a computer screen. The user gazed at 
the desired food on the screen and the robot brought the food 
close to their mouth so the users could eat it.  In Encarnação, 
et al. [8], children controlled a mobile, car-like Lego robot 
with an eye gaze interface to participate in academic activities. 
Robot commands were displayed on a computer screen and 
children moved the robot by fixating their gaze on the desired 
movement command.  

Brain-controlled access pathways, often referred to as a 
brain-computer interfaces (BCI), have been emerging as a new 
way to control devices in recent years [9]. 
Electroencephalography (EEG) is a non-invasive method to 
record the brain's activity with electrodes placed on the 
surface of the scalp [10].  EEG can be used to detect the 
brain activity associated with real or imagined movement, 
which produces changes in the sensorimotor rhythms. Real or 
imagined motor behaviour leads to a decrease of spectral 
amplitudes of alpha rhythm in the range from 8 to 13 Hz, 
known as Event-Related Desynchronization (ERD), and an 
increase of spectral amplitudes of beta rhythm in the range 
from 13 to 26 Hz, known as Event-Related Synchronization 
(ERS) [11]. The signals can be detected and classified as rest, 
physical movement, or motor imagery using machine learning 
methods, and then used to control technology.  Huang, et al. 
[12] tested BCIs for 2-dimensional cursor control based on 
ERD and ERS during motor execution and motor 
imagery with five participants without impairments. In 
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Cincotti, et al. [13], 14 participants without impairments and 
14 participants with spinal muscular atrophy or Duchenne 
muscular dystrophy successfully performed 2-dimensional 
cursor control and mobile robot control with their ERD 
response.  

Eye gaze and BCI have been integrated to control robots. 
For example, Frisoli, et al. [14] developed a gaze and 
ERD-based BCI controller for an exoskeleton for stroke 
rehabilitation to assist the movement of the upper limb in 
reaching. The eyes looked in the direction to go, and the ERD 
made the exoskeleton move to reach a target. An integrated 
system such as this could be a solution for children with 
severe physical impairments to control assistive robots for 
play: they can select a desired toy or robot destination by 
looking at it, and move the robot towards it using the BCI. 

In order to use such a system to control a robot in a 
physical environment, the mode of feedback needs to be 
addressed. With eye tracking, it is important for the user to 
receive feedback about where the tracker is interpreting the 
gaze in order to support successful gaze interaction. If used for 
robot control, users typically are required to look at a screen to 
select a robot command and then look at the robot to check the 
effect of the command. However, this forces the user to keep 
changing their visual attention during the robot control and 
adds a layer of complexity [8].  An alternative to visual 
feedback is needed, for instance, vibrotactile haptic feedback, 
which has been used to enhance the performance of on-screen 
gaze interaction [15] and off-screen interaction [16]. 

BCI using ERD/ERS has the advantage of not needing a 
stimulus as in other BCI applications do (e.g., an array of 
options on a screen for the P300 or indicators flashing at 
frequencies for Steady-State Visual Evoked Potentials); 
however, the classification accuracy of ERD/ERS is usually 
lower than those stimulus protocols. Increasing the 
classification accuracy of the user’s movement intention when 
using BCI is a crucial challenge for reliable device control. 
Sakamaki [17] investigated the effect on classification 
accuracy of an ERD/ERS-based BCI system with feedback in 
the form of passive movement of the hand provided by a 
haptic robot interface.  The classification accuracy using the 
system with this kinesthetic haptic feedback was significantly 
higher than that using only motor imagery. Thus, kinesthetic 
haptic feedback may be effective in helping move a robot 
towards a target more effectively. 

The main objective of this study was to develop and test 
an integrated eye gaze and BCI-based human-robot interface 
providing vibrotactile haptic feedback for eye gaze to select 
targets and kinesthetic haptic feedback for motor imagery for 
robot control.  The research questions were:   

• Can haptic feedback (vibrotactile haptic feedback 
for eye gaze and kinesthetic haptic feedback for 
motor imagery) from the integrated eye gaze and 
BCI-based human-robot interface make a functional 
robot task faster?  

• Can haptic feedback lead to a lower workload in the 
functional robot task compared to without it? 

2. Methods 

2.1 Participants 
The sample included five male adults without a disability 

(P1 – P5), aged from 22 to 38 years (mean 28 ±7.8 years).  
The system was also tested by a 52-year-old female with 
quadriplegic cerebral palsy (AD1) who has been classified as 
Level IV in the Gross Motor Function Classification System 
Expanded and Revised (GMFCS-E&R) [18], and Level III 
according to the Manual Ability Classification System 
(MACS) [19], meaning she uses power mobility and has 
difficulty handling objects. Participant AD1 is also affected 
by strabismus and has difficulty focusing on objects with both 
eyes simultaneously. All the participants had prior eye tracking 
and BCI experience from previous studies. Ethical approval 
was received from the local Health Research Ethics Board at 
the University of Alberta. 

2.2 Experimental Setup 
The experimental setup of this study consisted of four 

components, a mobile robot, an eye tracking system, a BCI 
system, and a haptic feedback system as shown in Figure 1. A 
picture of the whole system is shown in Figure 2.  Details of 
each component are described below. 

 
Fig. 1 Schematic diagram of the system in interaction with the 

user and the task environment. 
 



 
Fig. 2 Picture of the system with the human-robot interface 

and the task environment. 

2.2.1 Mobile Robot 
The mobile robot used in the study was a Lego Mindstorms 

NXT (LEGO System A/S, Billund, Denmark), which 
connected with a PC wirelessly via Bluetooth. The Lego robot 
was placed between two piles of wooden blocks (see Figure 1 
and Figure 2), and the task was to select the pile of blocks to 
knock over using eye gaze and then move the Lego robot 
towards it using motor imagery until it knocked down the pile.   

2.2.2 Eye Tracking System 
A licensed Tobii eye tracker 4C (Tobii Technology, 

Danderyd, Sweden) was used as an eye tracking interface to 
detect the location of the participant’s eye gaze in the task 
environment. Additionally, a USB camera (Dynex, Richfield, 
MN, USA) was mounted over the task environment to acquire 
the image data of the task environment. Since the eye tracker 
is designed to be used on a two-dimensional screen, the 
participant’s gaze was mapped into the two-dimensional plane 
of the task environment by using a projective homogeneous 
transformation, called a homography as shown in Figure 3. 
The 3 x 3 homogeneous transformation matrix was obtained 
by solving the following linear equation [20]: 

  (1) 

where  represents the gaze position data when 

the participant is looking at a calibration point and 
 represents the location of the calibration point 

captured by the USB camera. 
To calibrate the system, a template on which four 

calibration points were printed was placed in the task 
environment, and the USB camera captured the template 
image and detected the position of the calibration points. The 
participant then fixated their gaze at each calibration point in 
turn, and the homogeneous transformation matrix was 
calculated using equation (1). 

The piles of blocks in the task environment were detected 
by an object recognition program coded in LabVIEW 
(National Instruments, Austin, TX, USA), and the locations 
were obtained. When the participants wanted to select a target 
in the task environment, they needed to fixate their gaze on the 
target for a dwell time that was set to 1.5 seconds in all the 
conditions. A typical dwell time for the gaze fixation is 0.5 to 
1 seconds [21], but 1.5 seconds was selected in this study 
based on pilot testing of the system. If the participant’s gaze 
came off the target before 1.5 seconds and then back on the 
target, counting of the dwell time started over again.  

 

Fig. 3 Points in the eye tracker space and environment frames, 

which were related by a transformation. 

2.2.3 Brain-Computer Interface (BCI) System 
The BCI system included OpenBCI hardware (OpenBCI, 

Inc., Brooklyn, NY, USA) and OpenViBE software [22]. 
OpenBCI was used to detect the participant’s EEG signals. 
OpenViBE is an open source graphical programming software, 
which is suited to numerous BCI applications, such as a P300 
speller or SSVEP-based BCI control, but for this study, it was 
employed with motor imagery. Eight EEG channels over the 
pre-motor cortex of the brain, which is responsible for 
motor-related activities, were recorded at a sampling 
frequency of 250 Hz (i.e., Cz, Cp, F3, C3, P3, F4, C4 and P4 
of the international 10-20 system). The reference and bias 
channels were, respectively, T7 and T8.  After performing a 
60 Hz notch filter for noise removal and a 7 to 30 Hz FIR 
band-pass filter to acquire the sensorimotor components of the 
EEG signals, a Common Spatial Pattern (CSP) filter was 
applied to the signals to extract the feature vector of the 
movement intentions. CSP is a mathematical procedure used 
in signal processing for separating a multivariate signal into 
additive subcomponents, which have maximum differences in 
variance across two windows [23]. The logarithmic power of 
the feature vectors extracted by the CSP filter was then 
employed as the input of a Linear Discriminant Analysis 



(LDA) classifier to discriminate between the participant’s 
movement intentions of MOVE or REST. LDA was selected 
as the BCI classifier for this study as preliminary experiments 
demonstrated that it could offer better BCI classification 
accuracy in comparison to other classification methods such as 
linear Support Vector Machine and Multilayer Perceptron 
[24]. 

2.2.4 Haptic Feedback System 
There were two types of haptic feedback provided through 

the interface to the participants as biofeedback during the 
experiment. Vibrotactile haptic feedback was used to inform 
the participants about their gaze location and to help them 
sustain their gaze on the target. A 100 Hz sine wave was 
generated using a USB stereo sound adapter, which was then 
sent to an amplifier to drive a vibration motor (Bit Trade One, 
Kanagawa, Japan). The motor was attached to the user 
interface of a Novint Falcon haptic robot (Novint 
Technologies, Inc., Albuquerque, NM, USA), which allowed 
the motor to be in contact with the participant’s hand when 
they were holding the interface. When the participant’s gaze 
was within a radius of 4.5 cm from the center point of the 
target, the vibrotactile haptic feedback began. This radius was 
chosen based on a pre-test to minimize the error of target 
selection. The intensity of the feedback increased 
proportionately with the length of time the participant's gaze 
was fixed on the object, to notify them of how the dwell time 
was progressing.  

The Novint Falcon haptic robot interface was used to 
provide kinesthetic haptic feedback about the EEG signals by 
moving the participant’s hand, which was placed on top of the 
user interface. The movement of the robot was based on the 
confidence values of the BCI classification of the movement 
intentions. The confidence of the classification results for the 
movement intention was calculated in a range from 0 to 1. 
When the confidence values were closer to 0 these matched 
the classification of REST, and when the confidence values 
were closer to 1 these matched to the classification of MOVE. 
If the confidence value of the BCI classifier was in excess of 
0.6, the haptic robot interface started to move the participant’s 
hand, which was placed lightly on top of the interface. The 
force exerted on the haptic robot interface by the participants' 
hand was measured to ensure that they were moving it by their 
EEG motor imagery, not physically pushing the interface. If an 
interaction force over 4 N was detected on the interface, the 
EEG data during that period was excluded. In this study, only 
1.8 % of the data needed to be excluded. 

2.3 Procedures 
The participant sat approximately 60 cm away from the eye 

tracker, which was placed in front of the task environment. 
The haptic robot interface was located beside the participant 
so that it could easily be reached with whichever hand was 
dominant, and the EEG electrode cap was placed on the 
participant's head.   

First, BCI classifier training was performed in order to 
design the classifier to discriminate the movement intention of 
the participant. A modified version of the Graz BCI training 
protocol was used [25]. As BCI training based on motor 
imagery is regarded as tedious and time-consuming, in order 
to make the training more motivating and sustain participants' 
attention, the protocol was modified to a game-like scenario, 
as in a paper by Sakamaki [17]. 

During the BCI training, a car displayed on the computer 
screen moved or stopped according to the traffic light on the 
screen (see Figure 4). The task cues for the traffic light were 
STOP, READY, and MOVE. The training was performed with 
two different task conditions: without and with the kinesthetic 
haptic feedback. For the task without the haptic feedback, the 
participant’s hands rested in their lap during the training. 
When the traffic light indicated MOVE, the car began to drive 
from the right to the left. During this period, the participants 
were instructed to imagine their arm moving from right to left.  
When the traffic light indicated STOP the car did not move, 
and the participants were instructed to imagine no movement. 
For the task with the kinesthetic haptic feedback condition, the 
participants held the end effector of the Novint Falcon haptic 
robot interface during the training. The task was the same as 
the without the haptic feedback condition, however, the haptic 
robot interface facilitated the participant’s hand movement 
from right to left simultaneously with the movement of the car.  

 

 

Fig. 4 Graphical user interface for the BCI training 

After the training, the participant’s eye gaze was mapped to 
the task environment using the calibration procedure described 
above. The task steps were as follows: 1) The researcher gave 
verbal instructions to the participant about which pile of the 
blocks to knock down (a random order was calculated prior to 
the experiment); 2) The participant fixated their gaze at the 



target block and when the system determined that the 
participant's gaze was on a target for more than the 1.5 second 
dwell time, a computerized voice confirmation was given to 
the participant (i.e., "left target was selected" or "right target 
was selected"); 3) The participant then imagined moving their 
dominant hand to drive the Lego robot until the target block 
was knocked down.   

The task was done with and without vibrotactile and 
kinesthetic haptic feedback. For the task without the haptic 
feedback, the participant’s hands rested in their lap, and no 
feedback was provided selecting the target or moving the 
robot. For the task with the haptic feedback, the participant 
held the haptic robot interface with the dominant hand, so that 
the participant could receive the vibrotactile haptic feedback 
during target selection and the kinesthetic haptic feedback 
during motor imagery. Ten trials were performed by each 
participant in each task condition.  To avoid bias from a 
learning effect, the order of the task condition was 
counterbalanced across the participants. The task timed out 
when the participant could not select a target and knock down 
the blocks within 20 seconds.  This occurred in 19% of the 
trials.  

2.4 Measurements and Analysis 
The following were measured in with and without 

the haptic feedback conditions:  
• BCI classification accuracy during training: The 

classification accuracy of the LDA classifier for 
MOVE and REST based on EEG signals acquired in 
the BCI training was calculated using 5-fold 
cross-validation.  

• Overall task and subtask completion times 
(measured in milliseconds): Overall time was 
measured from the task cue until the robot knocked 
down the blocks.  Target selection time was the 
time to select the target using eye gaze (from the 
task cue until the target selection was made) and 
Robot driving time was the time from the robot 
started to move until the blocks were knocked down 
with it. 

• NASA-TLX score: The NASA Task Load Index 
(NASA-TLX) was used to analyze subjective mental 
workload in six different aspects: Mental Demand, 
Physical Demand, Temporal Demand, Own 
Performance, Effort, and Frustration Level. The 
participants were asked to rate the workload of the 
system using scales of 0 to 20 on each workload 
aspect, and the total score of the workload was also 
obtained. 

For the overall task and subtask completion times within 
subject paired comparisons with a 95% confidence level were 
made to analyze the effect of the haptic feedback on the robot 
control task by using a paired-samples t-test when the 
normality assumption was met and the Wilcoxon signed-rank 
test when it was not. Descriptive statistics were used for BCI 
classification accuracy and NASA-TLX. Participant's related 
comments were transcribed.  

3. Results 

3.1 BCI Classification Accuracy during Training 
Table 1 shows the BCI classification accuracy of the LDA 

classifier for each participant during the BCI training. Four 
participants, P1, P2, P5, and AD1 showed higher classification 
accuracy with the kinesthetic haptic feedback while two 
participants, P3 and P4, showed higher classification accuracy 
without it. The average classification accuracy with the 
kinesthetic haptic feedback for participants without 
impairments (70.18%) was similar to the average accuracy 
without the haptic feedback (69.37%). For AD1, the 
classification accuracy without the haptic feedback was lower 
than the average for the participants without impairments, and 
her accuracy with the kinesthetic haptic feedback was the 
second highest among all the participants. 

TABLE I 

BCI CLASSIFICATION ACCURACY FOR ALL THE PARTICIPANTS 
Subject Accuracy without 

haptic feedback (%) 
Accuracy with kinesthetic 

haptic feedback (%) 
P1 58.46 72.04 

P2 70.62 78.95 

P3 75.30 57.79 

P4 80.20 65.49 

P5 66.36 72.56 

AD1 60.34 78.14 

 

3.2 Overall Task and Subtask Completion Times 
Figure 5 shows the overall task completion time of all the 

six participants. All the participants achieved the task with the 
haptic feedback (i.e., vibrotactile for eye gaze and kinesthetic 
for motor imagery) faster than without it. Two participants, P2 
and P5, completed the task with the haptic feedback 
significantly faster than without it (p=0.01 for P2 and p=0.01 
for P5). The overall task completion time for the adult 
participant with physical impairments, AD1 was the longest 
time among all the participants for both of the task conditions.   



 
Fig. 5 Overall Task completion time with the different task 

conditions for all the participants 

 

Fig. 6 Target selection time (left) and the robot driving time 

(right) with the different conditions for all the participants 

For the target selection time, no significant difference 
between the two conditions was found for any participant. 
Four participants, P1, P2, P4, and P5, selected the target faster 
when the vibrotactile haptic feedback was provided, while two 
participants, P3 and AD1, selected the target faster without the 
haptic feedback as shown in Figure 6 (left), but the differences 
were small, and none of them were significant. The average 
target selection time for the participants without impairments 
was 6.87 ± (2.63) seconds for the task without the haptic 
feedback and 6.64 ± (0.94) seconds for the task with the 
vibrotactile haptic feedback.  

Regarding the robot driving time, all the participants had a 
faster time reaching the target when the kinesthetic haptic 
feedback was on. Participants P2 and P5 had a significantly 
shorter time for the robot to reach the target when the 
kinesthetic haptic feedback was provided (p=0.01 for P2 and 
p=0.01 for P5). AD1 had the longest time to drive the robot 
among all the participants (see Figure 6 (right)) but achieved 
the task faster with the kinesthetic haptic feedback than 
without it.  The average robot driving time for the 
participants without impairments was 9.07 ± (4.38) seconds 
for the task without the haptic feedback and 7.09 ± (3.64) 
seconds for the task with the kinesthetic haptic feedback. 

3.3 NASA-TLX 
Each participant’s total score on all the six aspects of the 

NASA-TLX (120 points maximum) is summarized in Figure 7. 
The average score for the task without the haptic feedback was 
57.67 points and for the task with the haptic feedback, it was 

48.67 points. The workload of the task with the haptic 
feedback was rated lower by all participants except P3. 
Participants commented that it was easier with the haptic 
feedback because the vibrotactile feedback helped them know 
when their gaze was located on the target and the kinesthetic 
haptic feedback helped them know how well they were 
performing motor imagery. On the other hand, some 
participants commented that the haptic feedback was stressful 
when it did not behave exactly as they intended. P3 
commented that it was hard to concentrate on driving the robot 
when his hand and the haptic robotic interface came into his 
field of vision.  

 
Fig. 7 Total score of the NASA-TLX ask with the different 

task conditions for all the participants 

4. Discussion 

The overall task times using the proposed human-robot 
interface was faster with the haptic feedback than without it by 
all the adult participants without impairments, with two of 
them showing significance. More participants demonstrated a 
faster target selection time using eye gaze with the vibrotactile 
haptic feedback than without it; thus, the feedback could have 
played a role in helping the participants to fixate their gaze. 
However, the difference in the target selection time between 
the two conditions was not significant, likely because there 
were only two targets and the radius of 4.5 cm for the gaze 
target acceptance size was relatively large, making it easy to 
select. If there were more targets in the task environment, the 
acceptance size would have to be smaller to avoid selecting 
the wrong target, and in that case, vibrotactile haptic feedback 
might have been more helpful to attain the smaller targets.  
This was the case in Sakamaki, et al. [16] where targets of 
3cm led to significant differences between without and with 
vibrotactile feedback.  For the adult participant with physical 
impairments, AD1, her strabismus may have caused the 
inaccuracy in her gaze interaction. However, her results 
indicated that the 4.5 cm target acceptance size allowed her to 
perform the target selection using the gaze fixation in a 
comparable way to the participants without impairments with 



or without feedback.    
Regarding driving the robot with motor imagery, all the 

participants were able to drive the robot and knock down the 
target blocks faster in the task with the kinesthetic haptic 
feedback than without it, although the difference was only 
statistically significant for two participants.  A difference was 
expected based on the study by Gomez-Rodriguez, et al. [26] 
who found the sensorimotor rhythm could be induced by 
passive movement.  In their study participants performed a 
motor imagery-based BCI task with significantly higher 
classification accuracy than visual feedback. It is to be noted 
that some confounding brain activation may have been elicited 
when participants supported their arm against gravity while 
holding the user interface of the Novint Falcon. Therefore, the 
brain activities collected in the kinesthetic haptic feedback 
condition may not be purely brain activities associated with 
imagined arm movement and sensory motor patterns induced 
by the kinesthetic motion of the Novint user interface.  

Almost all of the participants reported that the task with the 
haptic feedback required a lesser workload than the task 
without the haptic feedback. The larger score differences in 
the NASA-TLX for P2, P5, and AD1 between the two task 
conditions compared to the difference for P1, P3, and P4 could 
be related to task completion time: P2 and P5 were 
significantly faster, and AD1 was somewhat faster, with the 
feedback. Only P3 rated the task with the haptic feedback as 
requiring a greater workload than that without feedback. His 
difficulty concentrating when he could see his hand move 
could be addressed by blocking the view of his hand during 
the task or locating the haptic feedback robot interface out of 
his sightline.      

5. Conclusion 

In this study, two natural physiological functions were 
used to accomplish a simple mobile robot control task; eye 
gaze for target selection was integrated with motor 
imagery-based BCI for robot control and the effectiveness of 
feedback was evaluated. Vibrotactile feedback for eye gaze 
and kinesthetic feedback for motor imagery improved 
participants' performance. The difference in time between with 
and without feedback for target selection with eye gaze was 
small, however, the difference in time for driving the robot 
using motor imagery was larger, with results for two 
participants showing a significant difference. It is a technical 
challenge to overcome the low accuracy of gaze interaction in 
a physical environment or BCI classification accuracy to 
achieve reliable robot operation (compensating for movement 
artifact and signal noise). However, haptic-based biofeedback 
could improve the control over the participant’s physiological 

activity, and thus enhance their performance in robot control 
tasks. It is also worth mentioning that the positive effect of our 
proposed human-robot interface with feedback was useful not 
only for most participants without impairments but also for the 
adult participant with physical impairments, but the results 
might be different with other participants.  
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