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Abstract

Cryogenic optomechanical cavities fabricated from silicon are promising

candidates for quantum information applications and platforms to study mesoscale

quantum physics. However, the low temperature behaviour of these devices

remains shrouded in mystery. To elucidate this, we have designed and built

an optomechanical coupling apparatus inside of a dilution refrigerator, which we

use to study on-chip silicon optical microdisks coupled to nanomechanical beams.

Using an optomechanically mediated thermal ringdown technique, we measure the

dissipation in a half-ring resonator between 10 mK to 10 K, and attribute it to two-

level system defects embedded within the one-dimensional geometry of the device.

Modifying the standard tunneling model to describe this damping mechanism,

we determine the density of states and deformation potentials of these two-level

system ensembles, postulating that they originate from surface defects. We also

study a low temperature photothermal backaction force observed in our devices

that acts to suppress conventional radiation-pressure effects. Using a photothermal

optomechanical model, we find that this interaction can, in principle, be exploited

to cool our resonator’s motion into its ground state. Finally, we use a master

equation approach to assess the feasibility of using our device geometry to perform

nonlinear optomechanical measurements of quantized mechanical energy. In doing

so, we set an upper limit on the allowable linear coupling strength of the system,

which is significantly less stringent than the single-photon strong coupling regime

required in previously studied optomechanical cavities.
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Preface

Much of the work detailed in this thesis was a collaborative effort involving

a number of members of the Davis group, including (but not limited to) Allison
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was performed by myself. The pulsed homodyne detection scheme was developed

by CD and myself. Signal processing (described in Section 6.4.2 of this thesis) was

performed by CD.

Chapter 7 and Appendix H are based on the publication B. D. Hauer, T. J. Clark,

P. H. Kim, C. Doolin, and J. P. Davis, “Dueling dynamical backaction in a

cryogenic optomechanical cavity,” Phys. Rev. A 99, 053803 (2019). In this work,

all simulations, data taking, and analysis was performed by myself. All theoretical

calculations were performed by myself, with the exception of the calculations for

the attractor diagrams, for which I had assistance from TC.

Finally, Chapter 8 and Appendix C are based on the theoretical work B. D. Hauer,

A. Metelmann, and J. P. Davis, “Phonon quantum nondemolition measurements

in nonlinearly coupled optomechanical cavities,” Phys. Rev. A 98, 043804 (2018)

written in collaboration with Dr. Anja Metelmann from the Freie Universität

Berlin. In this work, all theoretical calculations were carried out by myself, save

for the master equation calculations in Section 8.4, which were performed by

Dr. Metelmann.

We conclude this preface with a brief comment on notation. In this thesis,

we have chosen to express vectors in bold and tensors with an overhead double

arrow, with the components of each expressed with subscripted indices. Meanwhile,

scalars are represented in standard or italicized font, with an overheard tilde to

distinguish between similarly labelled quantities. Though there is some overlap

between the components of tensors/vectors and scalars, the presence of subscripts

on the components removes ambiguity in this case.

iv



To my parents

For always believing in me.

And to Allison

For always being there for me.

v



Whatever doesn’t kill you simply makes you...stranger.

– The Joker, The Dark Knight, 2008.

vi



Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. John Davis,

for his mentorship throughout my last eight years at the University of Alberta.

John’s charismatic demeanor and self-described “cautious optimism” has been a

driving force in helping me to stay motivated through the rough patches of my

degree. No matter what the situation, John has always been there to give me

advice and support my endeavours, and has truly always wanted what is best for

me. I would also like to thank the two other members of my advisory committee,

Prof. Mark Freeman and Prof. Frank Hegmann for their guidance and insightful

comments on my work, as well making time in their schedules on short notice to

attend “emergency” committee meetings.

I want to give a huge thank you to all of the members of the Davis Lab who

helped me get through my degree in one way or another, whether by directly

contributing to my experiments or simply just chatting over a lunch break. I

also want to give a special thanks to the “original” members of the Davis Lab

optomechanics crew. Thank you to Paul Kim for your stalwart determination and

for your keen attention to detail in both your experiments and device fabrication.

My PhD work would literally have been impossible without you. Thank you to

Callum Doolin for always being so accommodating in helping develop software

and measurement techniques in the lab. I was honestly terrified that you were

going to graduate before I finished my experiments and the whole system would

collapse without you. Thank you to Hugh Ramp who always seemed to have a

MacGyver-like solution to any technical problems that I had and has done an

amazing job at continuing the pulsed low temperature optomechanics work that I

started on the fridge. Thank you to my two “Frenchmen” office mates (there must

always be one), Xavier Rojas and Fabien Souris, who taught me the ropes of low

vii



temperature physics and how to properly pronounce the word “marmot”. And also

thank you to David Purschke (and Hugh Ramp) for making sure that I got out of

the lab from time to time to play and watch basketball (Go Raptors!).

Outside of the lab, I want to thank all of my friends and family that supported

me throughout my PhD. First of all thank you to my parents, Colleen and Gerald,

who memorized the phrase “Low Temperature Optomechanics” so that they could

tell their friends what it was that I worked on and put up with me always being

“2-3 years” from graduating. Thank you to my two sisters, Amanda and Michelle,

who also put an effort into understanding what exactly it was that I worked on

and would always lend an ear if I needed to discuss difficult topics with them.

Thank you to my cousin Adam, who has always been there for be and is always

available to chat no matter what the topic or hour. Thank you to the MacDonald

Clan, Anne, Gord, and Kim, who adopted me into their family during my PhD

and continually show interest in my work. And a special thanks to Paul and Jo for

letting me be their third wheel roommate so that I wasn’t homeless when I came

back to Edmonton during the last two years of my degree.

And last, but most certainly not the least, I owe an enormous debt of gratitude

to my motivational coach, personal caretaker, editor, and better half, Allison

MacDonald, without whom I never would have completed my PhD. Allison, you are

my rock and I will never take for granted the patience and support that I received

from you throughout my graduate degree. I love you Allison, and I look forward to

our many PhD-less years together in the future.

viii



Contents

Abstract ii

Preface iii

Acknowledgements vii

List of Tables xv

List of Figures xvi

List of Abbreviations xviii

List of Symbols xx

1 Introduction 1

2 Mechanical Resonators 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Mechanical Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Displacement Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Effective Motional Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Damped Harmonic Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Quality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Quantization of Mechanical Motion . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Linear Elastic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Elastic Modulus Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Elastic Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Flexural Modes of Narrow Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.5 Strain Energy Fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.6 Effective Strain Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



2.4 Thermal Phonon Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Bath Occupancies and Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Thermal Properties of the Bath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.4 Thermal Phonon Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.5 Thermalization of the Mechanical Mode . . . . . . . . . . . . . . . . . . . . . 35

2.5 Mechanical Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Generalized Relaxation Damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.2 Phonon-Phonon Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.3 Thermoelastic Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 Two-Level System Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.5 Scattering from Point Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.6 Gas Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.7 Support Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Optical Cavities 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Cavity Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Electromagnetic Wave Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.2 Optical Mode Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Quantization of the Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Optical Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Optical Microdisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Optical Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.1 Bulk Material Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.2 Surface Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.3 Surface Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.4 Radiation Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Cavity Optomechanics 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Optomechanical Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Quantum Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

x



4.3.1 Optomechanical Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Quantum Langevin Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 Linearized Optomechanical Equations of Motion. . . . . . . . . . . . . 79

4.3.4 Optomechanical Damping and Spring Effect . . . . . . . . . . . . . . . . . 81

4.3.5 Optomechanical Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Optomechanical Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Detection Inefficiencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Direct Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.3 Balanced Homodyne Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.4 The Standard Quantum Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Classical Nonlinear Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Experimental Methods 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Optomechanical Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Whispering-Gallery-Mode Optomechanical Cavities . . . . . . . . . . 103

5.2.2 Device Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.3 Device Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Tapered Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Tapered Fiber Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Single-Mode Tapered Optical Fibers . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.3 Tapered Fiber Puller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.4 Transmission Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.5 Tapering Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.6 Dimpling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3.7 Gluing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Cryogenic Optomechanical Coupling System. . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.1 Low Temperature Imaging System . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4.2 Tapered Fiber Coupling System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4.3 Optical Detection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.4 Optical Detection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.5 Thermometry and Temperature Control . . . . . . . . . . . . . . . . . . . . . 127

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Two-Level System Damping in a Quasi-One-Dimensional Op-
tomechanical Resonator 130

xi



6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Two-Level System Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Double-Well Potential Model for Tunneling Systems . . . . . . . . . 132

6.2.2 Resonant Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2.3 Relaxation Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.4 Determination of γj : εq(rj) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2.5 Coupling to Ensembles of Amorphous TLS Defects . . . . . . . . . . 140

6.3 Half-Ring Optomechanical Resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.1 Device Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3.2 Mechanical Strain Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4 Cryogenic Optomechanical Ringdown Measurements . . . . . . . . . . . . . . . . 147

6.4.1 Pulsed Optical Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.2 Data Collection and Signal Processing . . . . . . . . . . . . . . . . . . . . . . 150

6.4.3 Mechanical Mode Temperature Calibration . . . . . . . . . . . . . . . . . . 152

6.4.4 Chip Heating Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4.5 Thermal Ringdown Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 Quantitative Agreement with the One-Dimensional Standard Tun-
neling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Dueling Dynamical Backaction in a Cryogenic Optomechanical
Cavity 164

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Cavity Optomechanics with both Radiation-Pressure and Photother-
mal Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.1 Inclusion of Photothermal Interactions . . . . . . . . . . . . . . . . . . . . . . 167

7.2.2 Linearized Photothermal Equations of Motion . . . . . . . . . . . . . . . 168

7.2.3 Photothermal Damping and Spring Effect . . . . . . . . . . . . . . . . . . . 169

7.2.4 Nonlinear Photothermal Optomechanics . . . . . . . . . . . . . . . . . . . . . 172

7.2.5 Photothermal Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3 Optomechanical Claw Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.1 Device Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3.2 Thermal Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.4.1 Optomechanical Measurement Scheme . . . . . . . . . . . . . . . . . . . . . . 181

7.4.2 Low Power Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.4.3 High Power Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.4.4 Power Dependence of Photothermal Properties . . . . . . . . . . . . . . 188

xii



7.5 Prospects for Photothermal Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8 Phonon Quantum Nondemolition Measurements in Nonlinearly
Coupled Optomechanical Cavities 198

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 Optomechanical Quantum Nondemolition Measurements . . . . . . . . . . . . 200

8.3 Quadratically Coupled Optomechanical Systems . . . . . . . . . . . . . . . . . . . . 202

8.3.1 Two-Mode Optomechanical Hamiltonian . . . . . . . . . . . . . . . . . . . . 203

8.3.2 Membrane-in-the-Middle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3.3 Whispering-Gallery-Mode System . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.3.4 Mapping to a Single Optical Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.4 Mechanical Fock State Decoherence Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.5 Quantum Nondemolition Measurement Conditions . . . . . . . . . . . . . . . . . . 215

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9 Summary and Outlook 220

References 224

Appendix A Mathematical Definitions and Relations 256

A.1 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A.2 Delta Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

A.3 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

A.4 Power Spectral Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Appendix B Electromagnetic Fields in Cylindrical Coordinates 260

B.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

B.2 Infinitely Long Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

B.3 Optical Microdisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Appendix C Determination of the Optomechanical Coupling Co-
efficients using Non-Degenerate Perturbation Theory 277

Appendix D Derivation of the Optomechanical Quantum Langevin
Equations 281

D.1 Creation and Annihilation Operator Representation . . . . . . . . . . . . . . . . 281

D.2 Position and Momentum Operator Representation . . . . . . . . . . . . . . . . . . 285

Appendix E Markovian Noise Commutators and Correlators 288

xiii



Appendix F Mechanical Resonator Heating Model 291

Appendix G Coupling to Ensembles of Crystalline TLS Defects 295

G.1 Mechanical Damping Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

G.2 Fits to Amorphous and Crystalline TLS Damping Models . . . . . . . . . . 296

Appendix H Integral Approximations of Nonlinear Photothermal
Optomechanical Properties 298

xiv



List of Tables

2.1 Values of qn and Un/Wn for beam resonators . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Isotopic abundances and masses of silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Low temperature dissipation mechanisms in a silicon nanobeam . . . . . 56

3.1 Resonant wavelengths for n = 1 TE disk modes. . . . . . . . . . . . . . . . . . . . . 67

3.2 Summary of optical loss mechanisms in microdisk cavities . . . . . . . . . . 71

5.1 Properties of our single-crystal-silicon optomechanical devices . . . . . . . 105

6.1 Optomechanical properties of the half-ring resonator . . . . . . . . . . . . . . . . 145

6.2 Strain parameters for the first four modes of a half-ring resonator . . . 146

6.3 Fraction of strain energy at the surface of the resonator . . . . . . . . . . . . . 147

6.4 TLS parameters from fits to a 1D amorphous relaxation model. . . . . . 161

7.1 Measured dimensions of the optomechanical claw resonator . . . . . . . . . 177

B.1 Single-mode fiber cut-off diameter at a number of wavelengths . . . . . . 270

G.1 TLS parameters from fits to a 1D crystalline relaxation model . . . . . . 297

xv



List of Figures

1.1 Diagram of Halley’s Comet’s tail facing away from the sun . . . . . . . . . . 2

2.1 Schematic of a beam with rectangular cross-section . . . . . . . . . . . . . . . . . 22

2.2 Mechanical modeshapes of doubly-clamped beams and cantilevers . . . 23

3.1 Electromagnetic fields of a optical microdisk cavity . . . . . . . . . . . . . . . . . 64

3.2 Low temperature indices of refraction in silicon . . . . . . . . . . . . . . . . . . . . . 66

4.1 Spring effect and damping in the non-SBR regime . . . . . . . . . . . . . . . . . . 83

4.2 Optical power flow through the optomechanical cavity . . . . . . . . . . . . . . 88

4.3 Standard quantum limit of continuous linear measurement . . . . . . . . . . 96

5.1 Device fabrication schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Crystal orientation of the optomechanical devices . . . . . . . . . . . . . . . . . . . 104

5.3 Diagram of a tapered fiber’s shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Tapered fiber pulling apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Transmission profile of a tapered fiber pull . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Tapered fiber waist diameter as a function of pull time . . . . . . . . . . . . . 115

5.7 Schematic of the fiber dimpling procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Dimpled tapered fiber glued to its fiber holder . . . . . . . . . . . . . . . . . . . . . . 119

5.9 Low temperature optical imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.10 Images used to locate the fiber dimple at low temperatures . . . . . . . . . 122

5.11 Low temperature optomechanical coupling apparatus . . . . . . . . . . . . . . . 123

5.12 Schematic of the cryogenic optical detection circuit . . . . . . . . . . . . . . . . . 125

5.13 Histogram of fridge base temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Schematic of a double-well potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 SEM image and schematic of the half-ring resonator . . . . . . . . . . . . . . . . 143

6.3 Modeshapes and measured spectra of half-ring mechanical modes . . . 144

6.4 Schematic of the gated optical detection circuit . . . . . . . . . . . . . . . . . . . . . 148

6.5 Pump-probe pulsed measurement schematic . . . . . . . . . . . . . . . . . . . . . . . . 149

xvi



6.6 Calibration of the mechanical mode temperature . . . . . . . . . . . . . . . . . . . 153

6.7 Thermal bath temperature versus fridge temperature . . . . . . . . . . . . . . . 155

6.8 Optical heating of the mechanical resonator . . . . . . . . . . . . . . . . . . . . . . . . 156

6.9 Varying delay times between pump and probe pulses . . . . . . . . . . . . . . . 157

6.10 Ringdown measurements of thermally excited mechanical motion . . . 158

6.11 Intrinsic mechanical damping rate at low temperatures . . . . . . . . . . . . . 160

7.1 Different regimes of optomechanical spring effect and damping . . . . . . 172

7.2 SEM image and FEM simulations of the claw resonator . . . . . . . . . . . . . 176

7.3 Schematic of the mechanical claw resonator . . . . . . . . . . . . . . . . . . . . . . . . 177

7.4 FEM modelling of the photothermal time constant . . . . . . . . . . . . . . . . . 179

7.5 Low power measurements of the claw resonator . . . . . . . . . . . . . . . . . . . . . 182

7.6 Power dependence of the optomechanical backaction effects . . . . . . . . . 183

7.7 High power measurements of the claw resonator . . . . . . . . . . . . . . . . . . . . 184

7.8 Optomechanical attractor diagram for the claw resonator . . . . . . . . . . . 185

7.9 Static mechanical displacement versus cavity sweep direction. . . . . . . . 186

7.10 Attractor diagram with photothermal effects removed. . . . . . . . . . . . . . . 187

7.11 Photothermal effects on cavity transmission at high power . . . . . . . . . . 189

7.12 Optical hysteresis spacing versus input power . . . . . . . . . . . . . . . . . . . . . . . 191

7.13 Minimum attainable phonon number versus cavity drive detuning . . . 193

7.14 Minimum attainable phonon number versus β and τpt . . . . . . . . . . . . . . 194

7.15 Optimal cavity drive detuning versus β and τpt . . . . . . . . . . . . . . . . . . . . . 195

7.16 Minimum attainable phonon number for optimized parameters . . . . . . 196

8.1 Schematic of MIM and WGM optomechanical systems . . . . . . . . . . . . . . 202

8.2 QND measurement and mechanical decoherence rates . . . . . . . . . . . . . . . 214

8.3 Monte Carlo simulations of phonon number versus time . . . . . . . . . . . . . 216

B.1 Definition of our cylindrical coordinate system . . . . . . . . . . . . . . . . . . . . . . 260

B.2 Guided modes of an infinite cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.3 Guided power for the HE11 mode versus cylinder radius . . . . . . . . . . . . . 272

B.4 Analytically computed and FEM simulated optical disk modes . . . . . . 275

F.1 Schematic illustrating the mechanical resonator heating model . . . . . . 292

G.1 Fits to amorphous and crystalline TLS damping models . . . . . . . . . . . . 297

H.1 Attractor diagrams performed using integral approximations . . . . . . . . 301

xvii



List of Abbreviations

ACF autocorrelation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

ADC analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

AOM acousto-optic modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

BPD balanced photodetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

BS beamsplitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

DAQ data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

DOS density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

FEM finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

FMF free molecular flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

FPC fiber polarization controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

FS fiber stretcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

HF hydrofluoric acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

IVC inner vacuum can . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

LO local oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

MIM membrane-in-the-middle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

NO nuclear orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

PD photodetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

PID proportional-integral-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

PM power meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

PSD power spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

QLE quantum Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

QND quantum nondemolition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

SBR sideband-resolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

SCA strongly-confined approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

SEM scanning electron microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

SNR signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xviii



SOI silicon-on-insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

SQL standard quantum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

STM standard tunneling model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

SW optical switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

TED thermoelastic damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

TE transverse electric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

TLS two-level system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

TM transverse magnetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

VC variable coupler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

VOA variable optical attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

WGA weakly-guiding approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

WGM whispering-gallery mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

WKB Wentzel-Kramers-Brillouin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

WLM wavelength meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xix



List of Symbols
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Chapter 1

Introduction

In its most general form, optomechanics is the study of the interaction between

the mechanical motion of an object and an electromagnetic field. In this situation,

one finds that the electromagnetic field can manipulate the motion of the object by

via a radiation pressure or photothermal force. Conversely, the mechanical object

will imprint a phase on the interacting light, which when detected, can be used

to read out the object’s displacement. In this way, the motion of the mechanical

object and the outgoing electromagnetic radiation are intimately related to each

other.

The initial observation of optomechanical effects can be dated back to nearly

500 years ago, when Peter Apian discovered Halley’s Comet in 1531 [1] and noted

that its tail always pointed away from the sun (see Fig. 1.1). When Halley’s

Comet returned 76 years later in 1607, it was observed by Johannes Kepler [2] who

theorized that solar radiation acted to push the comet’s tail away from the sun,

stating that [3]:

“The direct rays of the sun strike upon it [the comet], penetrate its

substance, draw away with them a portion of this matter, and issue

thence to form the track of light we call the tail of the comet.”

(Johannes Kepler, 1607)

While this statement was essentially correct1, it would be over 250 years before

James Clerk Maxwell explained this phenomenon in 1873 [4] as being due to

1More precisely, a comet has two tails: a dust tail, which as theorized by Kepler is caused
by solar radiation pressure, along with a gas or ion tail that is generated by charged particles
emitted from the sun known as solar wind [3].
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Figure 1.1: Diagram by Peter Apian from his book Astronicum Caesareum [1],
indicating that when Halley’s Comet entered the solar system in 1531, its tail
always faced away from the sun. This effect is in part due to radiation pressure
exerted on the comet’s tail by photons originating from the sun.

radiation pressure, whereby an electromagnetic field imparts momentum to an

object by being absorbed or reflected by its surface, thus applying a force to it.

In fact, Maxwell went as far as to propose the first laboratory optomechanical

experiment, commenting that

“It is probable that a much greater energy of radiation might be obtained

by means of the concentrated rays from an electric lamp. Such rays

falling on a thin metallic disc, delicately suspended in a vacuum, might

perhaps produce an observable mechanical effect.”

(James Clerk Maxwell, 1873)

The radiation pressure force would later be verified in the early 1900s through

experiments performed independently by Lebedew [5] and Nichols and Hull [6–8].
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With the advent of the laser in 1960 [9], Gertsenshtein and Pustovoit [10, 11]

and Braginsky et al . [12–15] began to explore the idea of using an optical cavity

to enhance the radiation pressure interaction between a confined electromagnetic

field and a mechanical test mass in the context of gravitational wave observatories.

These theoretical proposals were realized by Braginsky et al . in 1970 [16] for a

microwave cavity coupled to an aluminium pendulum, though it would be another

decade before the first cavity optomechanical experiment would be performed in the

optical domain by Dorsel et al . in 1983 [17] using a suspended mirror Fabry-Perot

cavity. These pioneering experiments set the groundwork for future generations of

gravitational wave detectors, the most famous of which is the Laser Interferometer

Gravitational-Wave Observatory (LIGO) collaboration [18], which won the 2017

Nobel Prize in Physics for its observation of gravitational waves from a binary black

hole merger [19].

Owing to its extreme sensitivity, a trend emerged at the turn of the millennium

geared towards using the cavity optomechanical interaction to measure and

manipulate the motion of miniaturized mechanical objects. This began in 1999

when Tittonen et al . [20] used a Fabry-Perot etalon to observe the thermal motion

of a cm-sized silicon torsional resonator at temperatures down to 4.5 K. As

nanofabrication techniques continued to improve through the early 2000s, this

seminal work was followed by a number of optomechanical geometries at visible

and infrared wavelengths, including Fabry-Perot cavities integrated with metallized

µm-scale cantilevers [21–25], suspended micromirrors [26–32], micropillars [33, 34],

membranes [35–39], nanorods [40–42], micro/nanoparticles [43–45], and cold atom

clouds [46–50], whispering gallery mode optical cavities comprised of toroidal [51–53],

spherical [54–57], bottle [58, 59], and disk [60–63] geometries, and photonic crystal

structures [64–71]. In addition to the experiments operating in the optical domain,

a number of microwave optomechanical cavities consisting of electromagnetic LC

circuits coupled to the displacement of thin mechanically compliant metallic plates

[72–74] and beams [75–77], as well as the motion of confined superfluid helium [78,

79], have also been developed. In fact, new optomechanical geometries continue to

emerge, resulting in novel implementations such as optomechanical cavities coupled

to exotic superfluids [80–84], magnetic systems [85, 86], and THz radiation [87].
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Using these state-of-the-art optomechanical geometries, a number of interesting

experiments have been performed on mechanical systems over the past decade. On

the more practical side, the precise detection scheme offered by cavity optomechanics

has allowed for a drastic reduction in the size, and therefore increase in sensitivity,

of nanomechanical sensors, providing exquisite measurements of displacement [88–

90], acceleration [91], force [92–96], torque [70, 97–99], mass [100], temperature

[101], electron spin [102], magnetic fields [85, 103, 104], and biomolecules [105].

Beyond these metrological applications, cavity optomechanics can also be used

to manipulate and control the states of mesoscopic mechanical resonators at or

near their quantum level, which has been exhibited by experiments demonstrating

motional ground state cooling [106, 107], Raman sideband asymmetry [108, 109],

preparation of the system into squeezed [110–112] and entangled [113] states,

quantum nondemolition [114, 115] and back-action evading [116–118] measurements

of a single mechanical quadrature and measurement-based quantum manipulation

of the mechanical element [119–122]. This level of quantum control has generated

significant interest for the use of optomechanical resonators for applications in

the burgeoning quantum information sector, such as coherent interfacing between

two nonclassical degrees of freedom [123–125] and storage of quantum information

[126, 127]. Along with these quantum applications, optomechanical cavities have

also demonstrated potential in providing experimental testbeds to help answer a

number of fundamental questions in quantum mechanics [128–131] and gravity [19,

132–134].

In order to observe the abovementioned quantum effects in an optomechanical

cavity, it is crucial that the mechanical resonator be cooled near to its ground state.

One must also minimize the dissipation of the nanomechanical resonator at these

temperatures, such that it can maintain its quantum coherence over the duration

of the intended operation. Therefore, in order for these systems to be used as a

viable quantum resource, we must understand their behaviour at low temperatures.

This is especially true for silicon optomechanical cavities, whose long lifetimes [135]

and ability to nonclassically interface between the photonic and phononic modes

[136–138] have already allowed them to be used as quantum memories [139] and

transducers [140], as well as perform Hanbury, Brown, and Twiss interferometry
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[141], remote entanglement [142], and Bell tests [143] on mesoscopic mechanical

systems. To this end, we have designed and built a cryogenic optomechanical

coupling apparatus operating on the base plate of a dilution refrigerator [58].

Using a dimpled tapered fiber coupling technique, we perform measurements of on-

chip single-crystal silicon nanobeam resonators side-coupled to whispering gallery

mode optical microdisks, characterizing the low temperature dependence of their

mechanical dissipation and revealing a counterintuitive photothermal effect that

emerges in cryogenic environments. The information gleaned from these experiments

will inform future generations of silicon quantum optomechanical devices by offering

guidance on how to improve their quantum coherence, as well as providing further

tools to manipulate the mechanical motion at low temperatures.

The rest of the thesis is structured as follows. In Chapter 2, we introduce our

formalism for describing the classical and quantum motion of our nanomechanical

resonators, detailing a number of different dissipation mechanisms that exist in

these structures. In Chapter 3, we discuss the general theory of optical cavities,

while applying this treatment to the specific cylindrical geometries associated with

our microdisk resonators. In Chapter 4, we review the general theory of dispersively

coupled, radiation-pressure-driven optomechanical cavities, as is applicable to the

systems studied in this thesis. In Chapter 5, we provide details of the fabrication

and material properties of our devices, as well as the experimental apparatus used

to address them. In Chapter 6, we present measurements of the low-temperature

damping in a nanomechanical silicon resonator using a novel optomechanically

mediated thermal ringdown technique. Analyzing these data quantitatively, we

identify the resonator’s dissipation as being limited by interactions with two level

system defects confined to its one-dimensional geometry. In Chapter 7, we analyze

the seemingly anomalous photothermal behaviour observed in a similar geometry

at low-temperatures. Quantifying this effect, we assess the device’s ability to

amplify the mechanical motion by nearly three orders of magnitude, as well as

cool the system into its motional ground state. In Chapter 8, we theoretically

evaluate a nonlinear quantum nondemolition measurement protocol for our WGM

optomechanical architecture, providing clear limits on the requirements for this

technique to be used to measure the quantized mechanical Fock states of the system.
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Finally, in Chapter 9, we offer concluding thoughts and future directions for the

optomechanical systems studied in this thesis.
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Chapter 2

Mechanical Resonators

2.1 Introduction

Here we consider an isolated mechanical resonator, providing a theoretical

framework to characterize its displacement, as well as its energy dissipation due

to interactions with its surrounding environment. We begin in Section 2.2 by

first establishing a mathematical formalism to describe the mechanical resonator’s

motion according to a classical damped harmonic oscillator model, which we use

to define its effective mass and quality factor. We then demonstrate how this

treatment can be extended into the quantum realm, providing a fully nonclassical

description of the mechanical resonator’s motion. In Section 2.3, we use the theory

of linear elasticity to derive an equation of motion for the resonator’s displacement,

allowing us to determine its spatially varying modeshape, as well as characterize the

distribution of its strain profile. Continuing in Section 2.4, we describe the properties

of the mechanical resonator’s environmental bath, where we use the Debye model to

specify its energy, density of states, and thermal properties. Furthermore, we show

how this reservoir acts to thermalize the mechanical resonator, effectively driving

its motion according to the equipartition theorem. Finally, in Section 2.5, we

discuss a number of specific mechanical dissipation mechanisms that are caused by

interactions with this bath, focusing on those that are prevalent in nanomechanical

systems.
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2.2 Mechanical Motion

2.2.1 Displacement Function

In order to completely describe the motion of an extended mechanical structure,

we must determine its total displacement utot(r, t) at each point in time and space1,

as denoted by the variable t and the position vector

r = x̃1i1 + x̃2i2 + x̃3i3. (2.1)

Here x̃j are the position coordinates2 associated with each of the arbitrary, but

mutually perpendicular, unit vectors ij that form the basis for our chosen coordinate

system [144]. In its most general form, this displacement function can be expressed

as3 [145, 146]

utot(r, t) =
∑
k

uk(r, t) =
∑
k

xk(t)uk(r), (2.2)

such that the resonator’s total displacement is decomposed into a superposition

of the individual contributions uk(r, t) = xk(t)uk(r) from each of its k mechanical

modes. In this way, xk(t) characterizes the amplitude of motion for the kth

mechanical mode, with its spatial distribution specified by the modeshape function

uk(r). While this representation provides the full description of the resonator’s total

displacement, we generally wish to consider a single mechanical mode independently.

Such a treatment, known as the quasi-mode approach [147], is appropriate when

the separation between mechanical modes in frequency space is much larger than

their linewidths, allowing one to individually access a given mode. Therefore, in

what follows we drop the subscripts in Eq. (2.2), such that we consider a single

mechanical mode with resonant angular frequency ωm and displacement

u(r, t) = x(t)u(r). (2.3)

1Note that while we have chosen to characterize the resonator’s motion in terms of its
displacement profile, we could have alternatively used its momentum.

2We have included a tilde over each of these coordinates to differentiate them from the
time-dependent mechanical amplitude x(t) introduced below.

3In this notation, we differentiate the temporally and spatially varying mechanical displacement
uk(r, t) from the modeshape function uk(r) by explicitly stating each vector’s arguments. In the
case that no arguments are provided, it is assumed that we are talking about the former quantity.
We use this convention throughout the thesis for similarly defined vectors and tensors.
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In this representation, we have expressed the total displacement of the resonator as

a product of two independent functions, such that we have the freedom to choose the

normalization and units of one function, which then constrains the other. Here we

choose the normalization convention max|u(r)| = 1 (i.e. the maximum magnitude

of the modeshape function is unity), such that u(r) is a unitless representation of

the spatial distribution of the resonator’s motion [145, 146]. Note that in practice,

this normalization can be obtained simply by dividing any arbitrary mechanical

modeshape by its maximal value. In this situation, x(t) then carries units of m

and represents the resonator’s true physical displacement at its point of maximum

deflection, while being appropriately scaled throughout the rest of the geometry by

u(r).

2.2.2 Effective Motional Mass

In order to fully characterize the extended nature of a mechanical resonator’s

displacement, we introduce a quantity known as its effective motional mass, which

accounts for the fact that not all mass participates equally in the oscillatory motion

of each of its vibrational modes. We determine this effective mass by considering

the potential energy of a differential element of the mechanical resonator, located

at the position denoted by r, with differential volume dV = dx̃1dx̃2dx̃3 and mass

dm = ρ(r)dV , where ρ(r) is the mass density profile of the resonator. In this case,

the time-dependent potential energy density Up(r, t) of the mechanical mode will

be given by [145]

Up(r, t) =
1

2
ρ(r)ω2

m|u(r, t)|2 =
1

2
ρ(r)ω2

mx
2(t)|u(r)|2. (2.4)

The total potential energy of the mode is then found by integrating this quantity

over the entire volume of the resonator, resulting in

Ep(t) =
1

2
mω2

mx
2(t), (2.5)

where we define the effective motional mass of the mechanical mode as [145, 146,

148]

m =

∫
ρ(r)|u(r)|2dV. (2.6)
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Therefore, the effective mass of a given mode is entirely determined by its modeshape

function and the density profile of the resonator. Note that since the modeshape

function varies from mode to mode, so does the effective mass. Furthermore, since

max|u(r)| = 1, it follows that m ≤ m0, where m0 =
∫
ρ(r)dV is the geometric

mass of the resonator.

2.2.3 Damped Harmonic Oscillator Model

With the spatial character of the mechanical displacement specified, we now

look to determine its time dependence. This is done by modelling the resonator as

a classical damped harmonic oscillator, such that x(t) obeys the equation of motion

[145, 149–151]

ẍ(t) + Γmẋ(t) + ω2
mx(t) =

F (t)

m
, (2.7)

where Γm is the mechanical (energy) damping rate and F (t) represents the forces

exerted on the system. For an undriven mechanical oscillator (i.e . F (t) = 0) in the

underdamped regime (Γm < 2ωm), the solution to Eq. (2.7) has the form [151, 152]

x(t) = Ae−Γmt/2 cos (ω′mt+ θ0) , (2.8)

where A and θ0 are the amplitude and phase offset of the resonator’s motion set by

its initial conditions. Here we have also introduced the new mechanical resonance

frequency ω′m = ωm

√
1− Γ2

m/4ω
2
m which is shifted due to the system’s damping.

However, as the vast majority of mechanical resonators exist in the low-damping

limit, where Γm � ωm, we ignore this damping-induced frequency shift and simply

take ω′m ≈ ωm.

2.2.4 Quality Factor

In the previous subsection, the dissipation of the mechanical mode’s energy is

characterized by its damping rate Γm. However, this parameter is intimately tied

to the frequency at which the resonator oscillates, and must be compared to this

resonant frequency in order to assess the damping of the system. We therefore

look to define a dimensionless damping parameter that can be used to gauge the

oscillator’s damping strength without the knowledge of its resonant frequency.
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While a number of such parameters exist [152], here we choose to use the quality

factor of the system, which is defined for a general damped harmonic oscillator as

[151, 153]

Q = 2π
E

∆E
, (2.9)

where E is the energy stored within the resonator, while ∆E is the energy dissipated

per oscillation cycle. Therefore, the quality factor gives a measure of the ability of

a resonator to store energy.

Using Eq. (2.8), the total (time-dependent) energy of the mechanical resonator

is determined as [151]

Em(t) =
1

2
m
[
ẋ2(t) + ω2

mx
2(t)
]

=
1

2
mω2

mA
2e−Γmt, (2.10)

where in the spirit of the low-damping limit, we have neglected a term proportional

to Γm in the time-derivative of x(t). As expected, the total mechanical energy of

the system decays in time at a rate determined by Γm. The energy dissipated after

one mechanical oscillation period τm is then given by [151]

∆Em(t) =
1

2
mω2

mA
2e−Γmt − 1

2
mω2

mA
2e−Γm(t+τm),

=
1

2
mω2

mA
2e−Γmt

(
1− e−Γmτm

)
.

(2.11)

Inputting Eqs. (2.10) and (2.11) into Eq. (2.9), we find that the quality factor for

our mechanical resonator can be expressed as [149–151]

Qm = 2π
Em(t)

∆Em(t)
=

2π

1− e−Γmτm
≈ 2π

1− (1− Γmτm)
=
ωm

Γm

, (2.12)

where we have again made use of the low-damping limit, as well as the fact that

we can relate the mechanical period to the resonant mechanical frequency via

τm = 2π/ωm. Therefore, in the low-damping limit (which we now see is synonymous

with the high-Q limit), the quality factor is simply given by the ratio of the

oscillator’s resonator frequency to its damping rate. Finally, we note that in this

limit, the mechanical motion will be relatively unchanged on timescales t� Γ−1
m ,

such that we can approximate Eq. (2.7) as

ẍ(t) + ω2
mx(t) = 0, (2.13)

which has the undamped harmonic solution

x(t) = A cos (ωmt+ θ0) . (2.14)
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2.2.5 Quantization of Mechanical Motion

Up to this point, we have treated the displacement of the mechanical resonator

completely classically. However, by introducing the (time-dependent) phonon

creation and annihilation (ladder) operators4, b̂†(t) and b̂(t), it is possible to

quantize the classical field given in Eq. (2.3), resulting in the quantum mechanical

displacement operator [154]

û(r, t) = xzpf

[
b̂†(t)u(r) + b̂(t)u∗(r)

]
. (2.15)

Here xzpf =
√

~/2mωm is the zero-point fluctuation amplitude of the mechanical

mode’s motional ground state, which is typically on the order of tens of fm for

the mechanical resonances studied in this thesis. We note that the creation and

annihilation operators introduced in Eq. (2.15) obey the standard commutation

relation [b̂, b̂†] = 1. Choosing the phase of the mechanical modeshape to ensure

that it is real (as it describes a physical displacement in space), we have that

u(r) = u∗(r), allowing us to recast Eq. (2.15) into a form reminiscent of Eq. (2.3)

as

û(r, t) = x̂(t)u(r), (2.16)

where we have introduced the quantized position operator

x̂(t) = xzpf

[
b̂†(t) + b̂(t)

]
. (2.17)

From this equation, we can also use the properties of the creation and annihilation

operators to calculate the root-mean-square amplitude of the mechanical motion as

[151]

xrms =
√
〈x̂2〉 = xzpf

√
2 〈n〉+ 1, (2.18)

where 〈n〉 is the average phonon occupancy of the resonator, such that when the

system is in its motional ground state (〈n〉 = 0), xrms = xzpf as expected.

We also introduce the conjugate momentum of the mechanical position operator

as

p̂(t) = ipzpf

[
b̂†(t)− b̂(t)

]
, (2.19)

4For a freely evolving harmonic oscillator b̂(t) = b̂e−iωmt, however, here we allow for a more
general time dependence in order to include effects due to the interaction with the optical cavity,
surrounding environmental bath, etc.
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where pzpf =
√

~mωm/2 represents the zero-point fluctuations of the resonator’s

momentum. Using the commutation relation for b̂ and b̂†, it is straightforward to

show that these two operators obey the canonical commutation relation [x̂, p̂] = i~.

Furthermore, one finds that xzpfpzpf = ~/2, which asserts that when the resonator

is in its quantum ground state, the Heisenberg uncertainty principle is minimized

such that equality is reached.

2.3 Linear Elastic Theory

2.3.1 Stress and Strain

As a number of dissipation channels in nanomechanical systems are coupled

to their strain, it is important that we carefully consider the stress and strain

distributions generated within a resonator due to its motion. To do this, we turn to

the theory of linear elasticity [144, 153, 155–157], which allows us to determine the

stress and strain profiles of the system, along with an equation of motion for the

displacement of each mechanical mode. Using a linear elastic approach5, we assume

that the motion of the resonator is caused by a deformation from its original shape

(i.e. the resonator is anchored such that it cannot be entirely rotated or displaced as

a rigid body) and that this deflection is small enough that the mechanical resonator

does not yield to plastic deformation. Under these constraints, the strain induced

by the motion of the considered mechanical mode will be characterized by the

tensor
↔
ε(r, t) whose components are given by6 [144, 153, 155]

εab(r, t) =
1

2

(
∂ua(r, t)

∂x̃b
+
∂ub(r, t)

∂x̃a

)
. (2.20)

Since the derivatives in Eq. (2.20) act only on the spatial component of u(r, t), we

can use Eq. (2.3) to write the strain in tensorial form as [162, 163]

↔
ε(r, t) = x(t)

↔
ε(r), (2.21)

5The more general, and more involved, theory of nonlinear elasticity (also known as finite strain
theory or large deformation theory) will not be considered here, though we refer the interested
reader to numerous texts on the subject [158–161].

6Some references use the so-called “engineering strains” γab, which define the shear strains
as γab = 2εab for a 6= b. However, in this thesis we opt to use the tensorial strains given by
Eq. (2.20).
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where
↔
ε(r) is a spatially-varying profile tensor whose elements are given in terms

of the mechanical modeshape function as

εab(r) =
1

2

(
∂ua(r)

∂x̃b
+
∂ub(r)

∂x̃a

)
, (2.22)

with uj(r) being the components of u(r) aligned along ij. Note that we have

chosen to normalize the time-varying amplitude of our strain tensor to match

the definition of the mechanical displacement vector given in Eq. (2.3), such that
↔
ε(r) has units of m−1, while

↔
ε(r, t) remains unitless as expected. Due to the

symmetries found in Eqs. (2.20) and (2.22), it follows that εab(r, t) = εba(r, t) and

εab(r) = εba(r). Therefore,
↔
ε(r, t) is a symmetric, second-rank tensor that in general

has 6 independent components [149, 153, 155]: ε11, ε22, ε33, ε12 = ε21, ε13 = ε31,

and ε23 = ε32. If we consider a differential element of the mechanical resonator’s

material, located at the position denoted by r with volume dV = dx̃1dx̃2dx̃3, the

diagonal components of the strain tensor (ε11, ε22, and ε33) represent the relative

elongation of this element along each of its coordinate axes. To first order, the

trace of the strain tensor (i.e . Tr{↔ε} =
∑
εaa = ε11 + ε22 + ε33) then characterizes

the relative change in volume of this differential element such that this quantity

is invariant under change of coordinate basis [144]. Meanwhile, the off-diagonal

elements of the strain tensor (ε12, ε13, and ε23) characterize the angular distortion

of the differential element.

Along with these induced mechanical strains, the motion of the resonator will

also create stresses within its material, as characterized by the stress tensor

↔
σ(r, t) = x(t)

↔
σ(r). (2.23)

As was the case with the strain tensor, the stress tensor is also a symmetric,

second-rank tensor obeying σab(r, t) = σba(r, t) (and therefore, σab(r) = σba(r)).

Furthermore, we have also chosen to normalize
↔
σ(r, t) similar to

↔
ε(r, t), such that

↔
σ(r) has units of N/m3, while

↔
σ(r, t) has the standard units of Pa = N/m2. The

diagonal components of the stress tensor (σ11, σ22, and σ33) indicate the normal

force per unit area acting on a differential element of the resonators material, while

the off-diagonal components (σ12, σ13, and σ23) represent the shear forces per unit

area. Therefore, the components Fa(r, t) of the internal forces acting on this volume
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element are given in terms of the stress tensor as [144, 155]

Fa(r, t) =
∂σab(r, t)

∂x̃b
dV. (2.24)

where unless explicit sums are used, we have adopted the standard Einstein

summation notation (i.e. sum over repeated indices).

2.3.2 Elastic Modulus Tensor

In the linear elastic model, the stresses within a deformed body can be written

in terms of its strains via a generalized form of Hooke’s law given by [144, 153, 155,

164]

σab(r, t) = Cabcdεcd(r, t), (2.25)

where Cabcd are the components of the fourth-rank elastic modulus tensor
↔

C of the

resonator’s material (also known as the elasticity tensor or the stiffness modulus

tensor)7. By virtue of our choice of normalization for
↔
σ and

↔
ε, their profile tensors

also obey Hooke’s law, such that

σab(r) = Cabcdεcd(r). (2.26)

The components Cabcd of the elastic modulus tensor are a unique property of the

material being considered and, in the case of an anisotropic crystal, are specified

along its crystallographic axes. Therefore, if one chooses a set of coordinates x̃i

that does not match the crystallographic axes defined by the coordinate system x̃′i

(as is the case for our devices, which are aligned along the [011] direction of silicon),

the components of the elastic modulus tensor must be transformed according to

Cabcd =
∂x̃a
∂x̃′α

∂x̃b
∂x̃′β

∂x̃c
∂x̃′γ

∂x̃d
∂x̃′δ

C ′αβγδ. (2.27)

Furthermore, as a result of the symmetries of the stress and strain tensors, we find

that the elastic modulus tensor obeys the relations [144, 164]

Cabcd = Cbacd = Cabdc = Ccdab. (2.28)

7Note that while we have chosen to write the stress in terms of the strain here, we could have
alternatively related the strain to the stress via the compliance tensor, which is simply the inverse
of the elastic modulus tensor [155].
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With these symmetries, one can show that the maximum number of independent

components for the elastic modulus tensor is 21, which occurs for a triclinic crystal

structure [144, 155]. However, here we consider the much simpler isotropic and

simple cubic systems, for which the elastic modulus tensor has two and three

independent components, respectively [153, 155].

To gain a firm understanding of linear elasticity, it is easiest to first consider the

simplest case of an isotropic system, where the nonzero components of the elastic

modulus tensor are given by [149, 155]

C1111 = C2222 = C3333 =
Y (1− ν)

(1 + ν)(1− 2ν)
, (2.29)

C1122 = C1133 = C2211 = C2233 = C3311 = C3322 =
Y ν

(1 + ν)(1− 2ν)
, (2.30)

C1212 = C1221 = C1313 = C1331 = C2112 = C2121 = C2323 = C2332

= C3113 = C3131 = C3223 = C3232 =
Y

2(1 + ν)
= µ.

(2.31)

Here, we have introduced the Young’s modulus Y and Poisson ratio ν of the solid,

defined respectively as the ratio of the longitudinal stress to the longitudinal strain

and the negative ratio of the transverse compression to the longitudinal extension

when the solid is under uniaxial (or simple) extension [144, 155]. We have also

introduced the shear modulus (also known as the second Lamé constant) µ, which

is defined as the ratio of the shear stress to the shear strain and, for an isotropic

medium, is dependent on Y and ν according to µ = Y/2(1 + ν). It is therefore

clear that for isotropic media, the elasticity tensor is completely determined by two

parameters, which in this case we have chosen to be the Young’s modulus and the

Poisson ratio8.

More important for our experiments, however, is the cubic crystal structure,

which is the next step up in complexity from an isotropic material and represents

the simplest anisotropic system. In this case, the elastic modulus tensor is specified

8We could have alternatively chosen to use any combination of two of the five elastic constants,
i.e. the Young’s modulus, the Poisson ratio, the bulk modulus, the shear modulus, and the second
Lamé constant.
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as

C1111 = C2222 = C3333 = C11, (2.32)

C1122 = C1133 = C2211 = C2233 = C3311 = C3322 = C12, (2.33)

C1212 = C1221 = C1313 = C1331 = C2112 = C2121 = C2323 = C2332

= C3113 = C3131 = C3223 = C3232 = C44,
(2.34)

where C11, C12, and C44 are three independent elastic moduli that are specified for

the considered material [153, 155, 164]. Note that each of these moduli obey the

symmetries given in Eq. (2.28). By comparing these moduli to those in Eqs. (2.29)–

(2.31), we can also define an effective Young’s modulus Ỹ , Poisson ratio ν̃, and

shear modulus µ̃ for the cubic crystalline system as

Ỹ =
(C11 + 2C12)(C11 − C12)

C11 + C12

, (2.35)

ν̃ =
C12

C11 + C12

, (2.36)

µ̃ = C44. (2.37)

Unlike the isotropic case, these three effective elastic parameters are independent of

each other, such that µ̃ cannot be written in terms of Ỹ and ν̃ (i.e. µ̃ 6= Ỹ /2(1 + ν̃)

in general). We reiterate that these parameters, as well as the elastic moduli

given in Eqs. (2.32)–(2.34), are defined only for the coordinate system aligned

with the crystallographic axes of the material and any deviation from this choice

of coordinates will act to change these constants in accordance with Eq. (2.27)9.

For instance, in a Cartesian coordinate system aligned with the [011] direction in

silicon, as is relevant for our devices, the effective Young’s modulus associated with

in-plane flexural motion is Ỹ = 169 GPa [166–168].

2.3.3 Elastic Equations of Motion

With Hooke’s law allowing us to write the the stresses of the mechanical system

in terms of its strains, we are now prepared to determine the equation of motion

for the displacement of the resonator. This is done by using Newton’s second

law of motion to equate the internal forces acting on each differential element of

9For the effective Young’s modulus, Poisson ratio, and shear modulus for arbitrary crystal
directions, the curious reader is directed to Refs. [165–168].
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the resonator given by Eq. (2.24)10, to the mass dm = ρ(r)dV of that element

multiplied by the corresponding component of its acceleration vector üa. The

general equations of motion for an anisotropic elastic medium can then be written

in component form as [144, 155, 164]

ρ(r)üa(r, t) =
∂σab(r, t)

∂x̃b
= Cabcd

∂2ud(r, t)

∂x̃b∂x̃c
, (2.38)

where we have used Eqs. (2.20) and (2.25) to write
↔
σ(r, t) in terms of the

displacement vector u(r, t), as well as capitalized on the symmetries of
↔

C to

equate Cabcd∂
2uc/∂x̃b∂x̃d and Cabcd∂

2ud/∂x̃b∂x̃c.

In order to firmly establish the concept of breaking a displacement field into

its longitudinal and transverse components, we first consider the simplest case

of propagating waves in an infinite isotropic medium with uniform mass density

ρ(r) = ρ. We begin by using Eqs. (2.29)–(2.31) to rewrite the elastic equations of

motion in component form as

üa(r, t) =
Y

2ρ(1 + ν)

∂2ua
∂x̃2

b

+
Y

2ρ(1 + ν)(1− 2ν)

∂2ub
∂x̃a∂x̃b

, (2.39)

or alternatively, in vector (or Navier-Cauchy) form as

ü =
Y

2ρ(1 + ν)
∇2u +

Y

2ρ(1 + ν)(1− 2ν)
∇(∇ · u), (2.40)

where∇ = i1∂/∂x̃1+i2∂/∂x̃2+i3∂/∂x̃3, allowing us to define the Laplacian operator

∇2 = ∇ · ∇ = ∂2/∂x̃2
1 + ∂2/∂x̃2

2 + ∂2/∂x̃2
3 [144, 164]. At this point, we rewrite the

displacement vector u(r, t) in terms of its longitudinal or curl-free portion ul(r, t)

(∇× ul = 0) and its transverse or divergence-free part ut(r, t) (∇ · ut = 0) as11

u(r, t) = ul(r, t) + ut(r, t). (2.41)

By virtue of the fact that ∇ · ut = Tr{↔ε} = 0, the transverse motion characterized

by ut(r, t) does not involve changes in the structure’s volume, while the longitudinal

10Here we assume there are no external forces acting on the resonator and neglect any
gravitational forces/accelerations due to the fact that the resonator is rigidly held in place
by its supports.

11We can choose to write the displacement vector in this way because one can always express
any arbitrary vector as the sum of the gradient of a scalar and the curl of a divergence-less vector
(known as the Helmholtz decomposition) [144, 169].
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motion described by ul(r, t) allows for compression and extension of the solid.

Inputting Eq. (2.41) into Eq. (2.40), we then find that the vector equation of

motion becomes

ül + üt =
Y

2ρ(1 + ν)
∇2(ul + ut) +

Y

2(1 + ν)(1− 2ν)
∇(∇ · ul). (2.42)

Taking the divergence of Eq. (2.42), while using the fact that if the divergence and

curl of a vector are both zero, then the vector is identically zero [144], we find the

equation of motion for ul(r, t) obeys the wave equation

ül = c2
l∇2ul, (2.43)

where cl is the longitudinal speed of sound given by

cl =

√
Y (1− ν)

ρ(1 + ν)(1− 2ν)
. (2.44)

Likewise, if we take the curl of Eq. (2.42), we instead find that ut(r, t) is governed

by the wave equation

üt = c2
t∇2ut, (2.45)

where ct is the transverse speed of sound

ct =

√
Y

2ρ(1 + ν)
=

√
µ

ρ
. (2.46)

Hence, we have found that for an infinite isotropic material, the displacement of a

propagating sound wave can be broken into two waves: a longitudinal wave and

a transverse wave characterized by the displacement vectors ul and ut, with each

travelling at the speed of sound cl and ct, respectively.

While the situation becomes considerably more complicated in the case of

an anisotropic material, one can always use Eq. (2.38) to find three orthogonal

components of the displacement vector u corresponding to three independent speeds

of sound [157, 170]. However, these displacement vector components are generally

not purely longitudinal or purely transverse waves [144, 164]. Fortunately, for

systems exhibiting cubic symmetry, there exist special propagation directions where

the displacement can be broken into pure longitudinal and pure transverse motion
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[155, 164]. One such direction, which is the most relevant for the mechanical modes

studied in this thesis, is where the propagation of the elastic wave is parallel to the

unit vector

n110 =
1√
2
i1 +

1√
2
i2, (2.47)

such that the longitudinal portion of the elastic wave is polarized in the [110] crystal

direction, with two orthogonal transverse components polarized in the [001] and

[11̄0] crystal directions. In this case, we can write the displacement vector as [155,

164]

u(r, t) = ul(r, t) + ut1(r, t) + ut2(r, t), (2.48)

where

ul(r, t) = ūl(r, t)

{
1√
2
i1 +

1√
2
i2

}
, (2.49)

ut1(r, t) = ūt1(r, t) {i3} , (2.50)

ut2(r, t) = ūt1(r, t)

{
1√
2
i1 −

1√
2
i2

}
, (2.51)

are the displacement vectors associated with the [110], [001], and [11̄0] polarizations,

respectively, with corresponding amplitudes ūi(r, t) and speeds of sound [155, 164,

171]

cl =

√
C11 + C12 + 2C44

2ρ
=

√√√√ 1

2ρ

(
Ỹ

(1 + ν̃)(1− 2ν̃)
+ µ̃

)
, (2.52)

ct1 =

√
C11 − C12

2ρ
=

√
Ỹ

2ρ(1 + ν̃)
, (2.53)

ct2 =

√
C44

ρ
=

√
µ̃

ρ
. (2.54)

When written in terms of the effective elastic moduli Ỹ , ν̃, and µ̃ (defined with

respect to the crystal axes), the transverse sounds speeds are similar to those for

an isotropic medium, with ct1 (ct2) resembling the middle (last) term in Eq. (2.46).

However, we reiterate that since µ̃ 6= Ỹ /2(1 + ν̃), ct1 6= ct2 in general. Indeed, we

find that with this choice of propagation direction and polarization, n110 × ul = 0,

such that ul describes purely longitudinal displacements (parallel to the direction
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of propagation), while ut1 and ut2 are purely transverse (perpendicular to the

direction of propagation) in the sense that n110 · ut1 = n110 · ut2 = 0 [164].

Up to this point, we have largely focused on the propagation of elastic waves in

infinite media. However, for the devices studied in this thesis, we are interested in

the bound elastic modes of mechanical resonators. Therefore, we will spend the

remainder of this section discussing how to adapt the linear elastic theory described

above to these finite resonant structures. We begin by using Eq. (2.3) to rewrite the

elastic equation of motion given by Eq. (2.38) in terms of x(t) and the components

of u(r) as

ρ(r)ẍ(t)ua(r) = Cabcdx(t)
∂2ud(r)

∂x̃b∂x̃c
. (2.55)

We then make a high-Q approximation, allowing us to input Eq. (2.13) into

Eq. (2.55) to generate a self-contained equation of motion for the mechanical

modeshape of our systems as

ua(r) +
Cabcd
ρ(r)ω2

m

∂2ud(r)

∂x̃b∂x̃c
= 0. (2.56)

One noteworthy consequence of this equation of motion is that the resulting

modeshape function solutions will be orthogonal in the sense that∫
ρ(r)uk(r) · uk′(r)dV = mkδkk′ , (2.57)

where uk(r) and mk are the modeshape vector and effective mass of the kth

mechanical mode, while δkk′ is the Kronecker delta function (see Appendix A), such

that when k = k′ the orthogonality condition is simply the definition of the effective

motional mass given by Eq. (2.6). Aside from a very small subset of simple systems

[145] (see the next subsection on the flexural modes of narrow beams for example),

it is very difficult to determine analytical mechanical modeshapes using Eq. (2.56),

especially for complex geometries embedded in three dimensions. Fortunately, this

equation can be solved numerically for nearly any arbitrary geometry using finite

element method (FEM) solvers such as COMSOL Multiphysics R© [172].

2.3.4 Flexural Modes of Narrow Beams

As the majority of the mechanical modes considered in this thesis are the flexural

(bending) modes of curved nanomechanical beam resonators, we find it informative
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Figure 2.1: Schematic of the long, thin rectangular beam geometry considered in
this section, indicating its length l, width w, and thickness t, as well as its Cartesian
coordinate axes.

to briefly discuss an approximate analytical method, known as Euler-Bernoulli

beam theory [149, 156], that can be used to calculate the resonant frequencies and

modeshapes of this type of motion in one-dimensional beams. Here we consider the

rectangular beam12 shown in Fig. 2.1, with length l, width w, and thickness t, in

both the doubly-clamped and clamped-free (cantilevered) situations. For the case

of a long, narrow beam (i.e. l � w, t), an equation of motion for the modeshape

function un(z) of the beam’s nth flexural mode, with a resonant angular frequency

of ωn, can be found by balancing its net forces and torques, resulting in [145, 149,

153]
∂4un
∂z4

+
ρA
Ỹ I

ω2
nun = 0. (2.58)

Here ρ, A = wt, and I = tw3/12 (I = wt3/12) are the uniform density, cross-

sectional area, and bending moment of inertia for the in-plane (out-of-plane) motion

of the beam, while Ỹ is the effective Young’s modulus of the system. Note that

while similar to Eq. (2.56), Eq. (2.58) contains derivatives to fourth order in the

position z, such that the solution of the nth flexural mode of the beam is given by

[145, 149, 153]

un(z) = Un
[
cosh

(qnz
l

)
− cos

(qnz
l

)]
−Wn

[
sinh

(qnz
l

)
− sin

(qnz
l

)]
. (2.59)

Here, Un = On [sinh(qn)± sin(qn)] and Wn = On [cosh(qn)± cos(qn)], where On is

a normalization constant defined on a per-mode basis to ensure max|un(z)| = 1,

12We assume a rectangular cross-section for simplicity, though this formalism can be used for
any arbitrary cross-section, provided it is uniform and the bending moment of inertia is known.
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while the factor qn is determined as the nth solution of13

cos(qn) cosh(qn)± 1 = 0, (2.60)

with the positive (minus) sign corresponding to cantilevered (doubly-clamped)

beams. The values of qn and Un/Wn for both of these clamping conditions are given

in Table 2.1, with the first six modeshapes calculated by inserting these values into

Eq. (2.59) shown in Fig. 2.2.

Mode Cantilever Doubly Clamped Beam
Number (n) qn Un/Wn qn Un/Wn

1 1.8751 1.3622 4.7300 1.0178
2 4.6941 0.9819 7.8532 0.9992
3 7.8548 1.0001 10.9955 1.0000

n > 3 (n− 1)π + π/2 1 nπ + π/2 1

Table 2.1: Values of qn and the ratio Un/Wn for cantilevers and doubly clamped
beams. The last row provides an approximation of these quantities for n > 3 [153],
which can be obtained from the fact that for large n, cosh(qn) and sinh(qn) are
so large that we require cos(qn) to be very close to zero to satisfy Eq. (2.60) and
Un/Wn ≈ sinh(qn)/ cosh(qn) ≈ 1.
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Figure 2.2: Modeshape functions for the first six flexural modes of (a)–(f) a
cantilever and (g)–(l) a doubly-clamped beam. The solid black and dashed green
lines represent the positive and negative maximum displacement (i.e. 180◦ out of
phase in time with respect to each other), with each mode normalized such that its
maximum displacement is equal to one.

13Since n = 0 results in the trivial solution qn = 0, we are only concerned with n ≥ 1 here.
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By inputting the modeshape solution given by Eq. (2.59) into Eq. (2.58), we

can determine a dispersion relation for the resonant frequency of the nth flexural

mode in terms of the beam’s properties and qn as

ωn =
q2
n

l2

√
Ỹ I

ρA
. (2.61)

Finally, we can directly input the cross-sectional area and moment of inertia of a

rectangular beam into Eq. (2.61) to determine the resonant frequency for in-plane

flexural modes as

ωn =
q2
nw

l2

√
Ỹ

12ρ
. (2.62)

While the results from this section do not directly apply to the in-plane flexural

modes of the curved beam geometry studied in this thesis, they provide an intuition

of their qualitative nature. Furthermore, we use this prismatic beam treatment

when discussing the individual dissipation mechanisms of nanomechanical resonators

in Section 2.5, as this simplified geometry can be used to calculate analytical results

that provide order of magnitude estimates for the mechanical quality factors of our

devices.

2.3.5 Strain Energy Fractions

Once the modeshape of the mechanical resonator is solved for, it is possible to

ascertain the degree to which the mode behaves like a longitudinal elastic wave,

and likewise for a transverse elastic wave. This distinction turns out to be very

important when considering the damping due to two-level systems in nanobeam

resonators, as is discussed in Section 2.5.4 and Chapter 6 below. To calculate these

fractions, we begin with the total mechanical energy Em for a given mode, which

can be found in terms of its time-dependent kinetic energy density

Uk(r, t) =
1

2
ρ(r)|u̇(r, t)|2, (2.63)

and its time-dependent elastic potential energy density (written in terms of a

contraction over the stress and strain tensors)

Ue(r, t) =
1

2
εab(r, t)σab(r, t) =

1

2
Cabcdεab(r, t)εcd(r, t), (2.64)
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as14 [162, 163]

Em =

∫
[Uk(r, t) + Ue(r, t)] dV

=
1

2

∫ [
ρ(r)|u̇(r, t)|2 + Cabcdεab(r, t)εcd(r, t)

]
dV.

(2.65)

Note that in Eq. (2.64), we have used the generalized form of Hooke’s law given by

Eq. (2.25) to eliminate the stress tensor from the elastic potential energy density,

allowing us to express the mechanical energy density of the mode solely in terms of

its strain tensor and elastic modulus constants [173, 174].

For the case of a cubic crystal, we can integrate the potential energy by parts,

while using Eqs. (2.21), (2.22), and (2.56) to express the total mechanical energy

of the mode in terms of x(t) and the components of
↔
ε(r) as15 [163]

Em =
1

2
m
[
ẋ2(t) + ω2

mx
2(t)
]{ 1

mω2
m

∫
ρ(r)

[
c2
l

∑
a,b

εaa(r)εbb(r)

+ c2
t1

(∑
a

[εaa(r)]2 −
∑
a6=b

εaa(r)εbb(r)

)

+ c2
t2

(
2
∑
a6=b

[εab(r)]2 −
∑
a,b

εaa(r)εbb(r)

)]
dV

}
.

(2.66)

Upon inspection of Eq. (2.66), we immediately find that the expression to the left

of the curly brackets is identical to the total energy of the mechanical mode given

in Eq. (2.10). Therefore, the term that follows must be equal to one. This allows

us to interpret the mechanical energy of the system, and therefore the mode itself,

as being partitioned into the fractions

el =
c2
l

mω2
m

∫
ρ(r)

∑
a,b

εaa(r)εbb(r)dV, (2.67)

et1 =
c2
t1

mω2
m

∫
ρ(r)

(∑
a

[εaa(r)]2 −
∑
a6=b

εaa(r)εbb(r)

)
dV, (2.68)

et2 =
c2
t2

mω2
m

∫
ρ(r)

(
2
∑
a6=b

[εab(r)]2 −
∑
a,b

εaa(r)εbb(r)

)
dV, (2.69)

14The total mechanical energy of the system is time-independent due to the conservation of
energy.

15Here we must also use the fact that the total kinetic and potential energy of the resonator
(i.e. considering all mechanical modes) will each be equal to half of the total mechanical energy
of the entire resonator [162].
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corresponding to the longitudinal and transverse polarizations associated with the

speeds of sound given in Eqs. (2.52)–(2.54). These fractions allow us to determine

the extent to which we can consider a given mechanical mode as quasi-longitudinal or

quasi-transverse. Note that since
∑
εaa(r)εbb(r) = [Tr{↔ε(r)}]2, el is invariant with

respect to changes of coordinates (i.e . crystal orientations) for a given mechanical

mode, however, this is not the case for et1 and et2 . Finally, we point out that similar

fractions can be determined for the case of an isotropic system [162].

2.3.6 Effective Strain Volume

Another useful parameter to characterize the strain energy distributions in our

resonator is its effective strain volume, which quantifies the spatial extent of the

strain profiles of a given mechanical mode similar to the way that the effective

mass accounts for the the fraction of the resonator that participates in its motion.

To calculate this quantity, we again use the elastic strain energy density given

by Eq. (2.64), which can be integrated over the entire volume of the mechanical

resonator to obtain the total (time-dependent) elastic potential energy of the mode

as16

Ep(t) =

∫
Ue(r, t)dV. (2.70)

Focusing on a system that exhibits cubic crystal symmetry, we write out the tensor

product in Eq. (2.64) explicitly in terms of the elastic moduli and strain profile

components as

Cabcdεab(r)εcd(r) =
1

4

{
C11

[
ε2

11(r) + ε2
22(r) + ε2

33(r)
]

+ 2C12 [ε11(r)ε22(r) + ε11(r)ε33(r) + ε22(r)ε33(r)]

+ 4C44

[
ε2

12(r) + ε2
13(r) + ε2

23(r)
] }
.

(2.71)

The effective strain volume of the mode is then defined as [135, 163, 175]

Vstr =

∫
Ue(r, t)

max[Ue(r, t)]
dV =

∫
Cabcdεab(r)εcd(r)

max[Cabcdεab(r)εcd(r)]
dV, (2.72)

where max[Ue(r, t)] = x2(t)
2

max[Cabcdεab(r)εcd(r)] is the maximum value of the

elastic potential energy density for the studied mechanical mode. Provided the

16This potential energy is identical to that given by Eq. (2.5).
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strain profile of a mechanical mode is known (this is generally determined using

FEM simulation), one can use Eq. (2.72) to calculate its effective strain volume,

quantifying the extent through which mechanical strains permeate the resonator.

2.4 Thermal Phonon Bath

The dissipation introduced in Section 2.2.3 arises from the fact that any realistic

mechanical resonator will be coupled to its surroundings, causing it to lose energy

to its external bath at its mechanical damping rate. Therefore, before we begin

to investigate specific mechanical damping mechanisms, it is imperative that we

have a thorough understanding of this external bath. Here, we consider this bath

for a semiconductor (or insulator) at low temperatures (as is appropriate for the

silicon devices studied in this thesis), which is comprised of thermal excitations of

low-lying vibrational modes in the material’s lattice (i.e . phonons), characterizing

its thermal properties, as well as its density of states.

2.4.1 Bath Occupancies and Energies

As was initially proposed by Feynman and Vernon [176] and later developed

further by Caldiera and Leggett [177–179] (into the so-called Caldiera-Leggett

model), in the linear dissipation regime a phononic bath can be modelled as an

infinite set of harmonic oscillators. Due to the bosonic nature of phonons, each of

these bath modes obey Bose-Einstein statistics, such that their average occupancy

is given by

n̄b(ωq) =
1

e~ωq/kBT − 1
, (2.73)

where T is the temperature of the bath and ωq is the angular frequency of the qth

bath mode [149, 171]. The average energy of the entire bath is then given by

Eb =
∑
q

[
n̄b(ωq) +

1

2

]
~ωq, (2.74)

where the addition of one-half is due to the ground state energy of each bath

mode. Note that while this sum is formally performed over the infinite number

of considered harmonic modes, for any realistic D-dimensional bath, this sum is

limited to the system’s DNb degrees of freedom, where Nb is the number of atoms
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in the bath. In practice, any realistic bath will contain a large number of atoms,

such that the approximation of an infinite number of modes is a good one.

Here we consider the bath temperature T to be constant in time (see Appendix

F for the treatment of a transient bath temperature), such that the DNb modes

of the bath are not equally populated due to their varying frequencies. For high

frequency modes (kBT � ~ωq) we find

n̄b(ωq) ≈ e−~ωq/kBT ≈ 0, (2.75)

such that bath modes with energy spacings larger than the available thermal energy

are effectively frozen out and have no thermal occupation. For the extreme case of

absolute zero (T = 0 K), all bath modes are completely frozen out, regardless of

their frequency. In this situation, the total bath energy is expressed as a sum of

the ground state energies of each mode as

Eb =
1

2

∑
q

~ωq. (2.76)

Conversely, in the low frequency regime (kBT � ~ωq), the bath mode occupation

becomes

n̄b(ωq) ≈
kBT

~ωq
. (2.77)

This limit can be interpreted as the thermal energy budget of a given high

temperature bath mode17 being divided amongst n̄b phonons on average, each

with an energy of ~ωq. For a bath at a high enough temperature (i.e . greater than

the Debye temperature that will be introduced in the next subsection), all of its

modes will be thermally populated according to Eq. (2.77) and the total energy of

the bath will be given by [149]

Eb = DNbkBT. (2.78)

This result is the classical law of Dulong and Petit [181], whereby the DNb modes

of the bath are thermally populated such that they each contribute kBT to the

total energy of the bath.

17According to the equipartition theorem, the total thermal energy of each bath mode is given
by kBT , half of which comes from its potential energy, with the other half from its kinetic energy
[180].
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2.4.2 Density of States

In the previous subsection, we discussed the thermal occupancies of a given

mode at a frequency ωq. However, in order to have a true understanding of the

total number of phonons in this reservoir, we must determine its density of normal

modes or density of states (DOS). In general, the D-dimensional DOS of a phononic

system is given by [182]

%D(ω) =
1

(2π)D

∑
η

∫
δ (ω − ωη(k)) dk, (2.79)

where the sum is performed over the D polarizations of the system labelled by

η, with each having a dispersion relation ωη(k), while the integral is performed

over the first Brillouin zone. With this definition18, %D(ω)dω gives the number

of phonon modes (per unit volume) contained within the infinitesimal frequency

interval from ω to ω + dω. Assuming the continuum limit for a large number of

states, one can also use the DOS of the system to replace any sum over the bath

modes (see Eqs. (2.74) and (2.76) for instance) with an integral according to [162,

182] ∑
q

→ VD

∫
%D(ω)dω, (2.80)

where VD is the D-dimensional volume of the considered bath (i.e . V1 is a length,

V2 is an area, and V3 is a conventional volume). Finally, we note that the DOS

obeys the relation

VD

∫
%D(ω)dω = DNb, (2.81)

that is to say, by integrating the DOS over all frequencies and multiplying by the

system’s D-dimensional volume, we retrieve the total number of bath modes as

expected. As we will see below, the choice of DOS will have drastic effects on many

of the bath’s properties, such as its energy, heat capacity, and thermal conductivity,

which in turn will affect the dissipation mechanisms of the nanomechanical resonator.

We therefore spend considerable effort in this and the proceeding subsection detailing

the DOS of the bath, as well as the effect they have on its properties.

18Here we have chosen to use the density of states per unit volume, from which we can find the
true density of states by simply multiplying by the D-dimensional volume of the system [149,
182].
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Typically, the dispersion relation ωη(k) given in Eq. (2.79) is a complex function

of the phononic wavevector k and varies from material to material, making the

exact form of the DOS very difficult to determine [182]. However, Debye [183]

introduced a very simple, yet effective, approximation that can be used in the

situation where only long-wavelength, low-frequency phonon modes are considered

[149, 171, 182]. In this case, only the low-lying portions of the acoustic phonon

branches are excited, such that the dispersion relation of each polarization will be

given by ωη(k) = cηk, where k = |k| is the phononic wavenumber. Furthermore, in

the Debye approximation, we replace the k-space integral over the Brillouin zone

in Eq. (2.79) with an integral over a sphere of radius19 [149, 171]

kD = D

√
(2π)DD

SD−1

Nb

VD
, (2.82)

where SD is the surface area of the D-dimensional unit hypersphere. From this

wavevector radius, we can also define the D-dimensional Debye frequency as

$D = c̄DkD, where c̄D is the average Debye speed of sound given by

c̄D =

(
1

D

∑
η

1

cDη

)−1/D

, (2.83)

We note that is it often the case that even if a system is dimensionally reduced, it

is embedded in three-dimensional space such that it still accesses all three phonon

polarizations (e.g . a narrow beam with transverse and longitudinal modes). In this

situation, we simply replace c̄D with c̄3 = c̄ [149, 171], where we have dropped the

subscript 3 for brevity. Finally, we also define a Debye temperature ΘD = ~$D/kB,

above which all phononic modes of the bath are classically occupied according

to Eq. (2.77), and below which these modes begin to freeze out [149, 171, 182].

For the three dimensional case in silicon, the sum in Eq. (2.83) is taken over the

single longitudinal (l) and two transverse (t1, t2) phonon polarizations, such that

c̄ =
(

1
3

∑
1
c3η

)−1/3

= 5718 m/s [184, 185], where we have taken cl = 9148 m/s, ct1 =

4679 m/s, and ct2 = 5857 m/s (see Table 5.1). Furthermore, we find that Θ = 645

19Throughout this thesis, subscript D labels the dimensionality of the system. The same
applies to a superscript D in parentheses, while a superscript D without parentheses indicates a
parameter taken to the power of the system’s dimensionality.
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K [154, 186, 187], resulting in $/2π = 13.4 THz, where we have again dropped the

subscript for the 3D case.

Inputting the Debye dispersion relation into Eq. (2.79), and integrating over

the k-sphere of radius kD, we find the Debye density of states (for a D-dimensional

system) to be [162]

%D(ω) =
1

(2π)D

∑
η

SD−1
ωD−1

cDη
=
DSD−1

(2π)D
ωD−1

c̄DD
, (2.84)

for ω < $D and %D(ω) = 0 for ω > $D. Note that S0 = 2, S1 = 2π, and S2 = 4π,

such that each of the one-, two-, and three-dimensional Debye density of states

(corresponding to D = 1, 2, and 3) are given by [171]

%1(ω) =
1

πcη
=

1

πc̄1

, (2.85)

%2(ω) =
1

2π

∑
η

ω

c2
η

=
1

π

ω

c̄2
2

, (2.86)

%3(ω) =
1

2π2

∑
η

ω2

c3
η

=
3

2π2

ω2

c̄3
3

. (2.87)

Using these density of states, we can replace the sum over q in Eq. (2.74) with an

integral according to Eq. (2.80) to find the total energy of the bath in the Debye

model as

E
(D)
b =

∫ $D

0

[
n̄b(ω) +

1

2

]
~ω = E

(D)
b (T ) + E

(D)
b (T = 0). (2.88)

Here we have broken the bath energy into its temperature-dependent portion

E
(D)
b (T ) = D2NbkBT

(
T

ΘD

)D ∫ zD

0

zD

ez − 1
dz, (2.89)

due to thermal phonons in the bath, where we have introduced the variables

z = ~ω/kBT and zD = ΘD/T , as well as its temperature-independent component

E
(D)
b (T = 0) =

D2

D + 1
Nb

~$D

2
, (2.90)

resulting from the the ground state contributions of each mode that remain present

at T = 0. Focussing on E
(D)
b (T ), we find at high temperatures (T � ΘD), z � 1

and ez − 1 ≈ z, such that the integral in Eq. (2.89) can easily be solved, resulting
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in the expected high-temperature limit given by Eq. (2.78). On the other hand, at

low temperatures (T � ΘD), zD � 1 such that we extend the upper limit of the

integral in Eq. (2.89) to infinity, allowing us to calculate bath energy in this regime

as

E
(D)
b (T ) = D2NbkBT

(
T

ΘD

)D
ζ(D + 1)Γ(D + 1), (2.91)

where Γ(z) and ζ(z) are the Gamma and Riemann zeta functions, respectively [171].

We point out that in the three-dimensional case, ζ(4)Γ(4) = π4/15, such that the

low temperature bath energy has the closed form solution [149, 171, 182, 188]

E
(3)
b (T ) =

3π4

5
NbkBT

(
T

Θ

)3

. (2.92)

2.4.3 Thermal Properties of the Bath

We are also interested in calculating the specific heat capacity and thermal

conductivity of the bath, as these two parameters are required in order to

calculate the relevant thermal time scales associated with a number of temperature-

dependent nanomechanical damping mechanisms, as well as the time constant of

the photothermal force considered in Chapter 7. We begin by first determining the

specific heat capacity (per unit volume), which gives a measure of the amount of

energy that is required to increase the temperature of the bath. Here, we focus

on the specific heat capacity at constant volume20, defined for a conventional

three-dimensional solid as [149, 171, 182, 189]

CV =
1

V

∂Eb

∂T
. (2.93)

Inputting Eq. (2.88) into Eq. (2.93), we then find the D-dimensional heat capacity

of the bath in the Debye model as

C(D)
V =

1

V

∂E
(D)
b

∂T
=
D2NbkB

V

(
T

ΘD

)D ∫ zD

0

zD+1ez

(ez − 1)2
dz. (2.94)

Taking the high-temperature limit of Eq. (2.94), we find

C(D)
V =

DNbkB

V
, (2.95)

20As opposed to the specific heat capacity at constant pressure, which is given in terms of CV
as CP = CV + α̃2

VBT , where α̃V and B are the volumetric thermal expansion coefficient and the

bulk modulus of the considered solid [171]. Therefore, at low temperatures (T � CV /β̃2B) these
two heat capacities are nearly identical and any distinction between them is unnecessary [188].
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which matches with what one would expect from the Dulong-Petit law given in

Eq. (2.78).

In the opposite limit, the low temperature specific heat capacity can be

determined by taking the limit of the integral in Eq. (2.94) to infinity as we

did for E
(D)
b (T ) in the previous subsection (or by simply taking the derivative of

Eq. (2.91) with respect to temperature and dividing by V ) to obtain

C(D)
V =

D2(D + 1)NbkB

V
ζ(D + 1)Γ(D + 1)

(
T

ΘD

)D
= D(D + 1)SD−1ζ(D + 1)Γ(D + 1)

VD
V
kB

(
kBT

2π~c̄D

)D
,

(2.96)

where in the second line, we have input ΘD in terms of VD by rearranging Eq. (2.82).

Note that the factor of VD/V ensures that the D-dimensional heat capacity will

have the proper units of J/kg·m3. Therefore, we find that at temperatures far

below the Debye temperature, the specific heat capacity obeys a D dependence that

strongly depends on the dimensionality of the considered system. Focussing again

on the D = 3 case, we determine the three-dimensional specific heat capacity to

be21

CV =
2π2k4

B

5~3c̄3
T 3, (2.97)

exhibiting the expected T 3 temperature dependence observed in bulk silicon at low

temperatures [190, 191].

Treating the phonons in the bath as a diffuse, noninteracting gas, we can also

determine its thermal conductivity as22 [149, 188]

K =
1

3
CV Λc̄. (2.98)

where Λ is the phonon mean free path, which is in general temperature-dependent

[192]. However, as pointed out by Peierls [193, 194] and Casimir [195], below a

certain temperature this mean free path will become comparable to the dimensions

21Here we have dropped the superscript (3) for notational simplicity, as we use this expression
frequently later in the thesis.

22In general, all three phonon polarizations carry heat, such that we use the three-dimensional
average Debye speed of sound c̄ in Eq. (2.98) regardless of the dimensionality of the system.
However, if one knows exactly which polarizations are involved in heat transfer for a reduced
dimensionality system, c̄ can be replaced by the appropriate speed of sound according to Eq. (2.83).
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of the system, such that it will be limited by the device’s finite size23. This

phenomenon is particularly important for the nanoscale devices studied in this

thesis. Considering a beam with a rectangular cross section, this boundary-limited

mean free path is given by

ΛC =

√
wt

2

[
3 ln

(
1 +
√

2
)
−
√

2 + 1
]
≈ 1.12

√
wt, (2.99)

where w and t are the width and thickness of the beam [184, 185, 195–199]. Inputting

Eq. (2.99), as well as Eq. (2.96), into Eq. (2.98), we determine the low-temperature

Casimir-limited thermal conductivity of a rectangular beam in the Debye model as

K(D) =
1

3
D(D + 1)SD−1ζ(D + 1)Γ(D + 1)kBΛCc̄D

(
kBT

2π~c̄D

)D
. (2.100)

Here we see that in the Casimir regime associated with nanoscale systems at low

temperatures, the thermal conductivity obeys the same TD power law dependence

observed for the specific heat capacity in Eq. (2.96). Therefore, in three dimensions

we have

K =
2π2ΛCk

4
B

15~3c̄2
T 3, (2.101)

which again agrees with the cubic temperature dependence observed for the thermal

conductivity of silicon nanobeams at low temperatures [197, 198].

Finally, we can calculate the thermal diffusivity J of the system, which is

defined as the ratio of the bath’s thermal conductivity to its heat capacity, such

that it can be found from Eq. (2.98) as [149, 200]

J =
K
CV

=
ΛCc̄

3
. (2.102)

This quantity describes the rate at which heat is transferred across thermal

gradients and is therefore useful for calculating the mechanical resonator’s thermal

time constants. Note that in the Casimir-limited Debye model considered here,

the diffusivity given in Eq. (2.102) is independent of both the temperature and

dimensionality of the system.

23For the typical dimensions of the silicon resonator studied in this work, this transition
temperature is approximately 100 K [192].
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2.4.4 Thermal Phonon Wavelength

In order to determine the bath dimensionality introduced in the previous

subsection, we assign to each of its η-polarized modes an average thermal wavelength

[162]

λth =
2π~cη
kBT

, (2.103)

where cη is the speed of sound associated with the given mode. Generally, we

are interested in the shortest thermal wavelength of the system, corresponding

to the polarization with the slowest speed of sound. If this wavelength is longer

than any of the device’s characteristic dimensions, the system will be considered

to be dimensionally-reduced in that direction [162, 201]. For silicon, the shortest

thermal phonon wavelength is given by λth = 2π~ct1/kBT ≈ 225 nm ·K/T , where

ct1 = 4679 m/s is the slowest speed of sound in the system associated with the t1

transverse polarization (see Table 5.1). Therefore, the resonators considered in this

thesis, which have cross-sectional dimensions on the order of 200 nm, will behave

one dimensionally for temperatures T . 1 K.

2.4.5 Thermalization of the Mechanical Mode

In the experiments considered in this thesis, we do not externally drive the motion

of our nanomechanical resonators. Instead, we observe the thermomechanically

driven motion of our resonators, whereby noise from the thermal bath will enter the

device via its dissipation channels according to the fluctuation-dissipation theorem

[202, 203], actively thermalizing the resonator to the bath’s temperature. If the

resonator is initially out of thermal equilibrium with the bath at time t = t0, this

thermalization process will occur according to the differential equation [150, 163,

204]

˙〈n〉 = −Γm 〈n〉+ Γmn̄th, (2.104)

which has the solution

〈n〉 (t) = 〈n〉 (t0)e−Γm(t−t0) + n̄th

(
1− e−Γm(t−t0)

)
. (2.105)

The resonator therefore thermalizes on a timescale set by the damping rate of the

mechanical system, reaching a thermal equilibrium value of n̄th = n̄b(ωm) for times
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t � Γ−1
m . Note that if the resonator is initially in its ground state (〈n〉 (t0) = 0),

it will begin to heat towards thermal equilibrium at a rate given by Γ0
th = n̄thΓm.

Once steady state has been achieved, thermal noise continues to be input from

(and subsequently lost to) the external bath, which according to Eq. (2.18) actively

drives the amplitude of the mechanical resonator’s motion to a root-mean-square

value of [151]

xth = xzpf

√
2n̄th + 1. (2.106)

Furthermore, if we assume that the mechanical oscillations are sinusoidal on short

timescales (t� Γ−1
m ), we can define an average thermal peak-to-peak amplitude of

motion as

Ath =
√

2xth = xzpf

√
2(2n̄th + 1). (2.107)

In the classical high-temperature limit, where the thermal bath energy kBT is much

larger than the energy of a single mechanical phonon ~ωm (see Section 2.2.5 for the

low-temperature limit of Eq. (2.106)), we then find that the thermal noise of the

bath drives the resonator’s motion to a root-mean-square position fluctuation of

xth =

√
kBT

mω2
m

, (2.108)

or equivalently, to an average peak-to-peak amplitude of

Ath =

√
2kBT

mω2
m

. (2.109)

2.5 Mechanical Dissipation

Up until this point, we have treated the dissipation of energy from our

mechanical resonator in a very secular manner, quantifying these losses with

the phenomenological damping rate Γm and quality factor Qm. However, as

nanomechanical resonators encounter a number of temperature-dependent damping

mechanisms at low temperatures, we spend considerable effort in this section

providing estimates for specific dissipation sources that threaten to cause energy

loss in our devices. Here we will study six different physical manifestations of

mechanical dissipation: phonon-phonon interactions, thermoelastic damping (TED),
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two-level system (TLS) damping, scattering from point defects, gas damping, and

clamping losses. Assuming each of these dissipation processes are independent,

we can sum the contributions Γi from each, allowing us to determine the total

mechanical damping rate of the system as

Γm =
∑
i

Γi. (2.110)

Generally, one or two specific mechanisms will dominate this total damping rate,

such that only they need to be considered.

We further introduce the mechanical dissipation (also called the loss tangent or

internal friction), which is defined as the inverse of the mechanical quality factor

and characterizes the the fraction of energy lost per radian of oscillation in time

[200]. This quantity sums similar to the damping rate, such that it is given by the

expression

Q−1
m =

∑
i

Q−1
i , (2.111)

where Q−1
i = Γi/ωm is the inverse of the quality factor associated with each damping

mechanism. In what follows, we will focus on this damping metric, as it provides a

frequency-agnostic measure of the mechanical resonator’s dissipation.

For the calculations performed in this section, we will consider the fundamental

in-plane flexural mode of the rectangular doubly-clamped nanobeam detailed in

Section 2.3.4, as this mode emulates the studied mechanical modes of our resonator.

This beam is taken to be fabricated from single-crystal silicon and is aligned

lengthwise along the [011] crystal direction, with an effective Young’s modulus

of Ỹ = 169 GPa [166–168] and dimensions of length l = 10 µm, width w = 200

nm, and thickness t = 250 nm. Using the density of silicon (ρ = 2330 kg/m3),

we find the resonant frequency of this mode to be ωm/2π = 17.5 MHz according

to Eq. (2.62), with the corresponding modeshape given by inserting n = 1 into

Eq. (2.59). All other material parameters are taken from Table 5.1. For each of

the temperature-dependent damping mechanisms below (i.e. everything except

clamping losses), we evaluate the dissipation at T = 10 K and T = 10 mK, as these

are the limiting temperature values for our experiment, save for gas damping, as it

is difficult to accurately determine the pressure of the system at 10 mK. Note at
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10 K we evaluate the beam as a three-dimensional structure, while at 10 mK we

use the one-dimensional treatment as necessary (see Section 2.4). This relatively

simple prototypical device geometry, and its associated parameters, provides an

excellent approximation of the flexural modes of the curved resonator geometries

studied in this thesis, while simultaneously allowing us to analytically calculate

estimates of the damping rates/quality factors for each of the mechanical dissipation

mechanisms discussed above.

2.5.1 Generalized Relaxation Damping

A number of the damping mechanisms we consider in this section (specifically

TLS damping, phonon-phonon interactions, and TED damping) are due to the

mechanical resonator being perturbed by some process, which causes the system to

radiate energy as it relaxes back to equilibrium. Therefore, we will briefly consider

the general mathematical framework originally introduced by Zener [205–208] for

dealing with this type of relaxation dissipation mechanism in an anelastic solid

before continuing on to specific processes. To describe this general relaxation

damping mechanism for the flexural modes of a thin beam, Zener modified Hooke’s

law given in Eq. (2.25) by allowing the perturbed stresses and strains of the beam

to relax back to equilibrium via their first-order time derivatives according to [149,

200, 208]

σ + τσσ̇ = ỸR(ε+ τεε̇). (2.112)

Here τσ (τε) sets the timescale over which the the stress (stain) exponentially relaxes

back to equilibrium at constant strain (stress) after it has been perturbed, while

ỸR = Ỹ is the Young’s modulus of the relaxed system. Assuming harmonic solutions

for the stress and strain (i.e . σ(r, t) = eiωtσ(r) and ε(r, t) = eiωtε(r), Eq. (2.112)

becomes σ(r) = Ỹ (ω)ε(r), where we have introduced the frequency-dependent

Young’s modulus as [149, 200]

Ỹ (ω) =

(
1 + ω2τ 2

1 + ω2τ 2
σ

+
iωτ

1 + ω2τ 2
σ

∆Ỹ

)
ỸR. (2.113)

Here ∆Ỹ = (ỸU − ỸR)/ỸR is the relaxation strength of the Young’s modulus,

ỸU = (τε/τσ)ỸR is the unrelaxed Young’s modulus, and τ =
√
τστε is the mean
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relaxation time of the system. With this definition of Ỹ (ω), it is easy to see that

for low frequencies (ω � 1/τε, 1/τσ), Ỹ (ω) ≈ ỸR and the system behaves according

to the standard, relaxed version of Hooke’s law. Meanwhile, at high frequencies

(ω � 1/τε, 1/τσ), the system still obeys Hooke’s law, albeit with a new Young’s

modulus Ỹ (ω) ≈ ỸU.

For small ∆Ỹ (and therefore small damping), the dissipation of such a system

can be determined as the ratio of the imaginary portion of the frequency-dependent

Young’s modulus given in Eq. (2.112) to its real part, for which we find [149, 200,

209]

Q−1
rel = ∆Ỹ

ωτ

1 + ω2τ 2
. (2.114)

In this Lorentzian form, we can classify the relaxation damping into one of three

regimes, corresponding to ωτ � 1, ωτ � 1, and ωτ ∼ 1. In the first regime, the

frequency at which the mechanical resonator oscillates is much slower than the

effective relaxation rate 1/τ of the system, such that the motion evolves adiabatically

and little energy is dissipation. In the opposite limit, the motion of the beam

occurs so fast that the system is unable to properly equilibrate, and again, damping

is minimal. However, when ω ∼ 1/τ , the conditions for relaxation damping are

optimal, resulting in a maximum dissipation of Q−1
max = ∆Ỹ /2 at ωτ = 1.

This general relaxation damping model is very useful for describing the damping

resulting from TLS, phonon-phonon interactions, and TED discussed below, as we

need only calculate the relaxation strength ∆Ỹ and time constant τ associated

with each process and put them into Eq. (2.114) to determine its corresponding

dissipation.

2.5.2 Phonon-Phonon Interactions

As an initial example of relaxation damping, we consider the dissipation in our

mechanical system due to scattering of its coherent phonons off of those present

within its thermally excited bath. In a perfectly harmonic crystal, phonon-phonon

interactions would not be able to occur, however, anharmonic deviations from this

ideal situation allow such scattering to exist. This damping mechanism can broadly

be categorized into two regimes by comparing the mechanical frequency of the
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system to the timescale on which the thermal phonon distribution of the bath

equilibrates, given by [149]

τph =
3J
c̄2

=
1.12
√
wt

c̄
, (2.115)

where we have used the thermal diffusivity in the Casimir-limited Debye model

given by Eq. (2.102). Note that since J is independent of both the temperature and

dimensionality of the system in this regime, so is τph. For the case of ωmτph � 1,

known as the Akhiezer limit [210–212], the thermal phonons are able to adiabatically

follow the instantaneous strain profile of the mechanical mode, which periodically

modulates local temperature variations in the resonator. Dissipation then occurs

when heat flows across these gradients, increasing the entropy of the system. In the

opposite limit of ωmτph � 1, known as the Landau-Rumer regime [213], a quantum

mechanical approach must be used to determine the phonon scattering rate by

employing higher-order perturbation theory [135, 149, 171, 214]. For the beam

considered in this section, we calculate τph = 43 ps, such that ωmτph = 4.8×10−3 � 1

and we are deeply in the Akhiezer limit. Therefore, the thermodynamic relaxation

description given in Section 2.5.1 suffices to describe the dissipation in our device

due to phonon-phonon interactions with the thermal bath.

Mason [215] found that for the Akhiezer effect, the relaxation strength in

Eq. (2.114) can be approximated as

∆ỸAk =
γ̃2CV T
Ỹ

, (2.116)

where γ̃ is the Grüneisen parameter, which characterizes the effect that changing

the volume of the crystal has on its vibrational properties and is defined as [216]

γ̃ =
3α̃B

CV
, (2.117)

with α̃ and B being the linear coefficient of thermal expansion24 and the (isothermal)

bulk modulus of the solid. Inputting Eqs. (2.115) and (2.116) into Eq. (2.114),

we determine the dissipation in our nanobeam due to Akhiezer phonon-phonon

24This parameter characterizes changes in the length of the structure with respect to temperature,
as opposed to volumetric thermal expansion coefficient α̃V = 3α̃, which is associated with changes
in its volume.
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interactions as

Q−1
Ak =

γ̃2CV T
Ỹ

ωτph

1 + ω2τ 2
ph

. (2.118)

Note that as the Grüneisen parameter is relatively constant in silicon for

temperatures below 10 K [216], we find that this dissipation mechanism scales

with temperature as Q−1
Ak ∼ T 4 (Q−1

Ak ∼ T 2) due to the cubic (linear) dependence

of CV on temperature (see Eq. (2.96)) between 1 K and 10 K (below 1 K) where

the beam behaves as a 3D (1D) system. Using the low temperature values of the

Grüneisen parameter in silicon (γ̃ = 0.410 at T = 10 K and γ̃ = 0.437 at T = 10

mK [216]), along with the typical beam parameters given at the beginning of this

section, we find that QAk = 3.2 × 1010 at T = 10 K, with an increase in quality

factor to QAk = 8.7× 1020 at T = 10 mK.

2.5.3 Thermoelastic Damping

Elastic modes that cause local changes in the resonator’s volume25, can also

generate temperature gradients within the resonator due to its non-zero coefficient

of thermal expansion. Similar to the Akhiezer effect26, heat will then irreversibly

flow across these gradients, causing energy to be lost as the system relaxes towards

equilibrium. This process, known as thermoelastic damping, was first studied

by Zener [205–208], who used the relaxation damping formalism introduced in

Section 2.5.1 to calculate the TED dissipation for the flexural modes of a thin

doubly-clamped beam. This was done by approximating the thermal relaxation of

the resonator as occurring solely through its fundamental mode27, resulting in a

relaxation time constant set by the average time required for a thermal phonon to

diffuse across the width of the beam given by [149, 200]

τz =
w2

π2J
=

3

1.12π2c̄

√
w3

t
. (2.119)

25Therefore, this process is important for longitudinal and flexural modes, while it is negligible
in torsional modes [200].

26While there are many similarities between the Akhiezer effect and TED, their fundamental
difference arises from the fact that in the former case, the resonator interacts with a pre-existing
thermal bath, while in the latter, heat is generated by the mechanical motion itself [149].

27This approximation proves to be quite effective as 98.6 % of the beam’s thermal relaxation
occurs through this fundamental mode [205–208].
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As was the case for the time constant τph associated with Akhiezer damping, τz is

independent of the temperature and dimensionality of the system. Furthermore,

the relaxation strength in this model is given by28

∆Ỹz = Ỹ α̃2T/CV . (2.120)

Inputting the quantities given in Eqs. (2.119) and (2.120) into Eq. (2.114), we find

the mechanical dissipation for Zener TED as [149, 200, 209]

Q−1
z =

Ỹ α̃2T

CV
ωmτz

1 + ω2
mτ

2
z

. (2.121)

In order to gain a better understanding of the temperature dependence of this

damping mechanism, we also find it useful to express this dissipation in terms of

the Grüneisen parameter given in Eq. (2.117), which results in

Q−1
z =

Ỹ γ̃2CV T
9B2

ωmτz

1 + ω2
mτ

2
z

. (2.122)

In this form, the temperature dependence of Q−1
z is given by the factor CV T

in its numerator, and such that similar to Q−1
Ak, it has a quartic dependence on

temperature for 1 K < T < 10 K and a quadratic temperature dependence for

T < 1 K. For our considered prototypical beam resonator, we calculate τz = 8.5

ps and ωmτz ≈ 10−3, such that our system resides deeply within the adiabatic

regime described in Section 2.5.1. Inputting this time constant, as well as the low

temperature thermal expansion coefficient of silicon (α̃ = 8.8× 10−10 K−1 at T =

10 K and α̃ = 9.4× 10−19 K−1 at T = 10 mK29 [216]), into Eq. (2.121) we calculate

estimates for the limiting TED quality factor of our beam’s the fundamental mode.

Here we find that at 10 K, Qz = 5.4 × 1011, while at T = 10 mK, this value

drastically increases to Qz = 1.5 × 1025 due to the rapidly diminishing values of

the thermal expansion coefficient [216–219] and heat capacity (see Eq. (2.96)) in

silicon at low temperatures.

While the dissipation found using Zener’s relaxation formalism given by the

expression in Eq. (2.121) provides an excellent approximation for thin beams

28In its original form, Zener used CP instead of CV , but at low temperatures we can use these
two quantities interchangeably with minimal added error [200] (see also footnote 20).

29The value of α̃ at T = 10 mK is calculated using Eqs. (2.97) and (2.117), as well as the fact
that B is relatively temperature-independent below 40 K [216].
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with large thermal diffusivity, Lifshitz and Roukes [200] showed that by using

Euler-Bernoulli beam theory (see Section 2.3.4), an exact expression for the TED

dissipation in flexural modes of doubly-clamped beams can be found as

Q−1
TED =

Ỹ α̃2T

CV
6

ξ̃

(
1− 1

ξ̃

sinh ξ̃ + sin ξ̃

cosh ξ̃ + cos ξ̃

)
, (2.123)

where ξ̃ is the dimensionless parameter

ξ̃ = w

√
ωm

2J
= π

√
τzωm

2
. (2.124)

Using this exact equation, we calculate the TED-limited quality factor of our system

to be QTED = 5.4 × 1011 at T = 10 K and QTED = 1.5 × 1025 at T = 10 mK.

Therefore, for the thin beam geometry considered here, the relaxation method

(Eq. (2.121)) very accurately describes the TED dissipation of the system, with

only a few percent error relative to the exact expression given in Eq. (2.123).

2.5.4 Two-Level System Damping

The final relaxation damping process that we consider in this section is that due

to interaction between the mechanical motion and TLS defects located within the

resonator’s material. In this situation, strain variations throughout the resonator

perturb the local environment of the TLS, forcing them out of thermal equilibrium.

Via their subsequent relaxation process, the TLS interact with the low frequency

modes of the mechanical resonator, causing it to dissipate energy.

As our devices are expected to behave one-dimensionally for T . 1 K, here we

consider TLS damping in a 1D system30. In this situation, TLS with an asymmetry

energy E∆ and a tunneling energy E0 relax at a rate (see Eq. (6.40) in Section

6.2.5)

τ−1
TLS =

γ2

Aρc3
e~2

E2
0

E
coth

(
E

2kBT

)
, (2.125)

where E =
√
E2

∆ + E0, A = wt is the cross-sectional area of the beam, γ is the

TLS-phonon coupling constant (or deformation potential), and ce = c̄/ 3
√

3 (ce =

30As mentioned in Section 6.2, this assumption is justified for T & 1 K by the fact that at high
temperatures the dissipation plateaus to a dimensionally-independent constant [162].
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3965 m/s in silicon). Furthermore, we find in Section 6.2 that the relaxation

strength for a given TLS can be determined as

∆ỸTLS =
γ2

ρc2
kkBT

(
E∆

E

)2

sech2

(
E

2kBT

)
, (2.126)

where ck =

(
3
∑
η

ekη
c2
η

)−1/2

is a mode-dependent effective speed of sound. In order

to determine the dissipation due to an entire ensemble of TLS, which will in general

have varying E∆ and E0, we integrate over the TLS density of states P(E∆, E0) to

find

Q−1
TLS =

γ2

ρc2
kkBT

∫ ∞
0

∫ ∞
0

(
E∆

E

)2

sech2

(
E

2kBT

)
ωmτTLS

1 + ω2
mτ

2
TLS

P(E∆, E0)dE∆dE0.

(2.127)

Therefore, the TLS DOS P(E∆, E0) has a significant influence on the behaviour

of the TLS damping. Here we focus on amorphous TLS ensembles31, whereby

the TLS DOS is modelled as Pa(E∆, E0) = P0/E0, where P0 is a constant that

characterizes the amorphous nature of the TLS ensemble [220–223]. To estimate

the dissipation in our prototypical beam resonator resulting from coupling to an

ensemble of amorphous TLS, we input this DOS into Eq. (2.127), while using the

average values of P0 = 3.8 × 1044 J−1m−3 and γ = 1.25 eV for the two middle

frequency mechanical modes of our device found in Table 6.4. Furthermore, we use

the strain energy fractions of el = 0.397, et1 = 0.238, and et2 = 0.365 calculated

using Eqs. (2.67)–(2.69) to determine ck = 10689 m/s for the fundamental in-plane

flexural mode of the beam. In doing so we find that QTLS = 2.4 × 104 at 10 K,

while QTLS = 1.7× 107 at 10 mK, in good agreement with our findings in Chapter

6.

2.5.5 Scattering from Point Defects

Along with the TLS dissipation discussed in the previous subsection, resonant

mechanical phonons can also scatter off of point defects located within the device’s

material. For a monatomic crystal, the leading candidates for point defects are

generally caused by isotopic variation of the considered element, substitutional

31See Appendix G for treatment of TLS defects in a crystalline matrix.
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impurity (or dopant) atoms, or vacancies (also known as Schottky defects [189]).

Here we will use the theory of phonon scattering to determine the damping rate and

quality factors associated with general point defects, and then apply this theory to

our silicon beam for each of these three specific cases.

To treat phonon scattering from an ensemble of point defects, we use a

perturbation approach similar to what was initially developed by Pomeranchuk

[224] and Klemens [225, 226] to model the effect of mass fluctuations on the thermal

conductivity of solids. Here, we consider the situation where the atoms at a number

of lattice sites within the crystal are replaced by some substance (or vacancy) that

will in general cause mass variations throughout the solid. Acoustic loss will then

occur when phonons scatter elastically off these sites, transitioning from an initial

momentum state coherent with the mechanical oscillations to an equal energy state

located within the resonator’s incoherent thermal phonon bath. Assuming that

these phonons have wavelengths that are much larger than the atomic spacing, they

will sample multiple lattice points within the solid, leading to an average mass of

M̄ =
∑
j

f̃jMj, (2.128)

where Mj are the masses of the atom (or lack thereof) at each lattice point, with the

associated fractional abundances of f̃j [227, 228]. In most solids, this expression is

dominated by isotopic variance, such that M̄ is simply the average atomic mass of

the considered element. We further assume that these mass variations are randomly

distributed and affect only the kinetic energy of the crystal, leaving its potential

energy unperturbed. These assumptions prove to be an excellent approximation

for isotopic variation and vacancies in the crystal (provided we use a simple trick

for the latter case which will be detailed below), however, they are less effective

for substitutional impurities where chemical changes in the crystal’s structure

have a larger effect on its interaction potential [149]. Nonetheless, we proceed by

applying these mass variations as a perturbation to the crystal Hamiltonian, using

Fermi’s Golden Rule to determine the phonon scattering rate, or equivalently, the

mechanical damping rate as [149, 227, 228]

Γpd =
πVaΩ

6

ω2
m%D(ωm)

1− e−~ωm/kBT
, (2.129)
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where Va is the atomic volume of the solid (i.e. the reciprocal of its atomic density).

Furthermore, we have introduced the mass fluctuation factor

Ω =
∑
j

f̃j

(
∆Mj

M̄

)2

, (2.130)

which accounts for the concentrations and mass variations of the impurities, where

∆Mj = M̄ −Mj is the mass difference between each scatterer and the average mass

of the solid M̄ [227, 228]. Note that the temperature dependence of the damping

rate given in Eq. (2.129) is due to the Bose-Einstein distribution of the phonon bath

[149]. From this damping rate, we can also determine the mechanical dissipation as

Q−1
pd =

Γpd

ωm

=
πVaΩ

6

ωm%D(ωm)

1− e−~ωm/kBT
. (2.131)

Inputting the three-dimensional Debye density of states of the resonator’s bath

given by Eq. (2.87) into Eq. (2.131), we determine the three-dimensional mechanical

dissipation due to point defect scattering as

Q−1
pd,3 =

VaΩ

4πc̄3

ω3
m

1− e−~ωm/kBT
. (2.132)

We also find it informative to calculate the low- and high-temperature limits of this

dissipation, which are given by

Q−1
pd,3 =

VaΩ

4πc̄3
ω3

m (kBT � ~ωm), (2.133)

Q−1
pd,3 =

VaΩ

4πc̄3

kBT

~
ω2

m (kBT � ~ωm). (2.134)

Therefore, Q−1
pd,3 (Γpd,3) exhibits a temperature-independent plateau at low

temperatures that is cubic (quartic) in mechanical frequency, while at high-

temperatures a linear temperature dependence and a quadratic (cubic) frequency

dependence is observed in the mechanical dissipation (damping rate).

As we are considering narrow mechanical resonator beams at cryogenic

temperatures, we are interested in how the behaviour of this damping mechanism

changes once the average thermal wavelength of the phonon bath becomes large

enough that we deem the system one-dimensional. In this case, we must instead

use the one-dimensional Debye density of states given by Eq. (2.85) to determine

the dissipation due to point defect scattering as

Q−1
pd,1 =

laΩ

6c̄

ωm

1− e−~ωm/kBT
, (2.135)
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where we have replaced the atomic volume with the atomic length la = Va/A

(i.e. the inverse of the linear atomic density of the beam). As we did in the

three-dimensional case, we also present the low- and high-temperature limits of

Eq. (2.135) as

Q−1
pd,1 =

laΩ

6c̄
ωm (kBT � ~ωm), (2.136)

Q−1
pd,1 =

laΩ

6c̄

kBT

~
(kBT � ~ωm). (2.137)

Similar to the three-dimensional case, Q−1
pd,1 (Γpd,1D) plateaus to a temperature-

independent value at low temperature, while demonstrating a linear temperature

dependence for high T . However, this one-dimensional mechanical dissipation

(damping rate) exhibits a much weaker frequency dependence than its three-

dimensional counterpart, being linear (quadratic) in frequency for low temperatures

and completely frequency independent at high temperatures. Note that for the

mechanical frequencies considered in this work (ωm/2π ∼ 10 MHz), the high-

temperature limits given by Eqs. (2.134) and (2.137) are the relevant expressions

for point defect scattering, as the low-temperature regime (T . 1 mK) is inaccessible

with our current experimental setup.

It is also interesting to compare the ratio between the quality factors for point

defect scattering in the three- and one-dimensional cases, for which we find

Qpd,3

Qpd,1

=
4πc̄2

6Aω2
m

. (2.138)

Here both the mass fluctuation factor and the Boltzmann factor cancel, such that

this relation is independent of temperature and the specific point defect being

considered. Inputting the values for our silicon beam, we find Qpd,3/Qpd,1 ∼ 105,

indicating that at a given temperature, the quality factor for the 3D case will

be approximately five orders magnitude larger than in the 1D case due to their

differing density of states. As we shall see below, this will cause the counterintuitive

result that point defect scattering losses will be weaker at 10 K compared to those

at 10 mK, as we cross the boundary from a 3D system to a 1D system between

these two temperatures, such that we must use Eq. (2.134) in the former case, while

we use Eq. (2.137) in the latter.

47



With this general theory describing mechanical dissipation due to phonon

scattering off of point defects, we can now investigate how this damping effect

manifests in mechanical resonators for different species of defects. Note that aside

from the cross-sectional area required to determine la in the one-dimensional case,

the dissipation of this kind is not directly dependent on the geometry of the

structure being considered. Therefore, Eqs. (2.129)–(2.138) hold for any geometry

with a uniform cross-section, provided one knows the resonant frequency of the

mechanical resonator and the speeds of sound in its material. However, in what

follows, we continue to consider our prototypical silicon beam in order to allow for

comparison with the other dissipation mechanisms considered in this section.

Isotopic Variations

We begin by considering phonon scattering from mass deviations due to the

naturally occurring isotopes of silicon. Using the fractional abundances and the

atomic masses of natural silicon given in Table 2.2, we calculate an average

atomic mass of M̄Si = 28.086 amu and a fluctuation factor of Ωnat = 2 × 10−4

[229, 230] according to Eqs. (2.128) and (2.130), respectively. Using the lattice

constant of silicon (ã0 = 5.43 Å [186]), we determine its atomic volume as

Va = ã3
0/8 = 2.0×10−29 m3, where the division by a factor of 8 occurs because silicon

has a diamond crystal structure, and therefore, 8 atoms per unit cell. Inputting

these values, as well as c̄ = 5718 m/s (see Section 2.4.2) into Eqs. (2.132) and

(2.135), we then find Qnat = 4.0× 1016 at T = 10 K and Qnat = 3.4× 1014 for T =

10 mK in naturally occurring silicon. While the quality factor at T = 10 mK is

lower than that at 10 K, it will improve as we move to lower temperatures, until it

reaches the temperature independent limit of Qnat = 4.2× 1015 ∼ 1015 at T � 1

mK for the beam considered here.

We note that the calculations performed here are for the isotopic abundances

in naturally occurring silicon and could be improved by using isotopically purified

silicon. Using the isotopic abundances for the state-of-the-art isotopically enriched

silicon [231] from the Avogadro project [232, 233] (see Table 2.2), we find that the

mass fluctuation parameter can be improved by nearly four orders of magnitude to

Ωiso = 1× 10−8 [231], resulting in a commensurate increase in the quality factors
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to Qiso = 7.2× 1020 at T = 10 K and Qiso = 6.1× 1018 at T = 10 mK.

Isotope
Natural Purified Isotopic Mass

f̃j (%) f̃j (%) Mj (amu)
28Si 92.223 99.9993 27.9769
29Si 4.686 6.583× 10−6 28.9764
30Si 3.092 0.378× 10−6 29.9738

Table 2.2: Fractional abundances f̃j and isotopic masses Mj of 28Si, 29Si, and
30Si for both naturally occurring and state-of-the-art isotopically purified silicon.
Values for naturally occurring silicon (first column) are from Ref. [186], while the
isotopically purified values (second column) are from Ref. [231].

Substitutional Impurities

Point defects in solids can also manifest as substitutional impurities, whereby

atoms in the crystal lattice are replaced by a completely different species. This

is especially true for n- and p-doped silicon samples, as these dopant atoms enter

the system as substitutional impurities. We would, however, like to point out a

few caveats to treating substitutional impurities as point defects using this simple

scattering model. First off, this model does not consider the effects that these

impurities would have on the interaction potential of the crystal [149]. Nor does

it include potential electron-phonon interactions resulting from the free charges

introduced by these dopants [149, 234], though for insulators and semiconductors at

low temperatures, this effect would be very small as very few electrons are promoted

to the conduction band. Finally, this simple treatment does not consider the fact

that these impurities may exist in multiple configurational states, allowing them

to act as tunneling systems, resulting in damping mechanisms similar to the TLS

damping outlined in Section 2.5.4 and Section 6.232. Nonetheless, if we assume

these other effects are small or accounted for elsewhere, the simple mass variation

model used here can be used to provide an estimate of the mechanical damping

caused by substitutional impurities [234].

Here, we focus on p-type, boron-doped silicon with a dopant density of ∼ 1021

m−3 as this is the material used to fabricate the devices studied in Chapters 6 and

32In fact, we cannot definitively rule out the possibility of boron dopants being the cause of the
TLS damping observed in Chapter 6.
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7. From this dopant density, we can find the fractional abundance of boron dopants

in the silicon as f̃B ∼ 1021 m−3 × Va = 2 × 10−8, which along with the average

atomic mass of boron (M̄B = 10.81 amu [186]), can be used to determine the mass

deviation factor of these dopants as ΩB = 8× 10−9. Using these values we calculate

QB = 9.8× 1020 at 10 K and QB = 8.3× 1018 at 10 mK for scattering off of boron

dopants in our prototypical beam resonator. Therefore, phonon scattering from

these dopants is approximately five orders of magnitude smaller than that from

isotopic variations, and is negligible in comparison.

Vacancies

The last point defect that we consider in this subsection are vacancies (or

Schottky defects) where an atom has been completely removed from the crystal

lattice, leaving behind a hole in its absence. A naive treatment of this point

defect might lead one to think that by removing the mass of the atom, we arrive

at the incorrect assumption that ∆Mvac = M̄ . However, one must realize that

in order to remove the atom completely, bonds with neighbouring atoms must

also be broken, leading to perturbations in the potential energy portion of the

Hamiltonian. Fortunately, using the virial theorem (which states that the total

kinetic and potential energies of the crystal are equal), as well as the fact that

every linkage is shared by two atoms, we find that the lost potential energy due to

the creation of a vacancy is equivalent to a change in the mass of ∆M = 2M̄ [235].

Therefore, including the perturbations to both the kinetic (due to the lost mass)

and potential energies, we take ∆Mvac/M̄ = 3 for vacancies.

As for the concentrations of vacancies in a solid, the fractional abundances are

determined by the Arrhenius equation

f̃vac = e−Evac/kBT , (2.139)

where Evac is the enthalpy of formation for a vacancy [236]. This Arrhenius law

therefore adds additional temperature dependence to the mechanical dissipation.

In silicon, however, Evac = 3.15 eV [236, 237], such that even at T = 10 K,

f̃vac is vanishingly small. However, a finite number of vacancies still exist at low

temperatures due to the limited mobility of these defects. Therefore, we make
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a very conservative estimate of the number of vacancies at low temperature by

taking the highest possible concentration (i.e . the concentration at the melting

point of silicon) of ∼ 1021 m3 [238]. Using this value, along with ∆Mvac/M̄ = 3,

we calculate a mass fluctuation factor of Ωvac = 2× 10−7, leading to quality factors

of Qvac = 4.1× 1019 at T = 10 K and Qvac = 3.5× 1017 at 10 mK. Therefore, as

with the boron dopants, we find that phonon scattering from vacancies produces

limiting quality factors that are far larger than those for isotopic variation. This

is especially true considering that our calculations use very conservative vacancy

concentrations, which would likely result in actual limiting quality factors that

are much higher at low temperatures where the vacancy concentration would be

smaller.

2.5.6 Gas Damping

Another source of damping in mechanical resonators is energy loss to the

surrounding medium, often a fluid or a rarefied gas, which becomes increasingly

important for nanoscale devices with large surface area to volume ratios [153]. Such

an interaction is characterized by the Knudsen number, which for in-plane flexural

modes is given by [239–242]

Kn =
Λg

t
, (2.140)

where Λg is the mean free path of the surrounding gas calculated using the kinetic

theory as [239, 242]

Λg =
kBT√
2πdgP

, (2.141)

with dg being the effective hard sphere diameter (also known as the kinetic diameter)

of the gas molecules that exert a pressure P on the system. The value of the

Knudsen number demarcates three separate regimes of gas behaviour [239–243].

For Kn < 0.01 (known as the continuum flow regime), the interactions of the

gas molecules amongst themselves are non-negligible, such that the gas must be

considered as a viscous fluid. When Kn > 10, however, the characteristic dimensions

of the mechanical resonator are much smaller than the mean free path of the gas

molecules and we enter into the free molecular flow (FMF) or Knudsen regime where

the gas molecules can be treated as non-interacting particles. For intermediate

51



values of Kn, the system exists in either the slip flow (0.01 < Kn < 0.1) or transition

flow (0.1 < Kn < 10) regime, where neither the continuum nor FMF treatment

provide an accurate description of the gas behaviour.

At liquid helium temperatures, any residual air molecules will be frozen to the

surfaces of the fridge with a vanishingly small vapour pressure and will therefore

not contribute to gas damping at low temperatures. However, we often introduce a

small amount of helium exchange gas to help thermalize our devices to the liquid

helium bath of the fridge. In Section 5.4.5 below, we estimate the pressure of this

helium exchange gas added to the vacuum can of the fridge to be on the order of

P ∼ 10−1 Pa at 10 K. Using this pressure, along with dg = 0.26 nm for helium

[244], we calculate Λg = 3.0 cm and Kn = 1.2× 104 for the exchange gas molecules

surrounding the device, indicating that this system resides deeply within the FMF

regime. We can therefore safely ignored viscous gas damping [240, 245], in favour

of energy loss to the surrounding gas due to collisions between individual molecules

and the resonator. This leads to gas-damping dissipation given by [153, 240, 242,

245–247]

Q−1
fmf =

4P

ρwωm

√
2Mg

πRT
, (2.142)

where R is the ideal gas constant and Mg is the molar mas of the gas (taken

to be Mg = 4.003 g/mol for the helium molecules considered here [186]). From

Eq. (2.142), we see that Qfmf is inversely proportional to P , as decreasing the

pressure of the gas results in a decrease in the its collision rate with the resonator,

and hence, a reduction in mechanical energy loss. Note that it also seems like Qfmf

decreases with decreasing temperature, as this reduces the average speed of the

gas molecules, and therefore, their collision rate with the resonator. However, in

the regime where the ideal gas law still holds, P ∼ T such that Qfmf ∼ 1/
√
T ,

although this trend cannot continue indefinitely, and will indeed break down once

the temperature is low enough that the gas begin to condense into a liquid or solid.

Using Eq. (2.142), we find that Qfmf = 1.5× 107 at 10 K and Qfmf = 4.7× 108 at

10 mK for the fundamental in-plane flexural mode of the prototypical silicon beam

considered here.

It was pointed out by Bao et al . [153, 246], however, that Eq. (2.142) considers an
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isolated mechanical resonator and does not include effects caused by the proximity

of another object such as a substrate, or in our case, an optical disk resonator.

Here an additional damping process known as squeeze-film damping [241, 243]

emerges, which in the FMF regime manifests as gas molecules becoming trapped

within the gap region, thus colliding with the resonator multiple times. Note that

if the thickness of the device t is smaller than the gap separation dsq, the Knudsen

number is redefined as Kn = Λg/dsq [153, 243, 246]. For the situation where the

length of this “squeezed” region lsq is much larger dsq, Bao showed that the quality

factor given by Eq. (2.142) is reduced by a factor of 16π(dsq/lsq) leading to [153,

242, 246]

Q−1
sq =

1

16π

(
lsq
dsq

)
Q−1

fmf =
P

(2π)3/2ρwωm

(
lsq
dsq

)√
2Mg

πRT
. (2.143)

To match the experimental conditions of our system33, we take dsq = 80 nm

and lsq = l = 10 µm (i.e. the squeezed region is over the entire length of our

prototypical beam resonator), resulting in gas-damping-limited quality factors that

are approximately halved to Qsq = 6.0× 106 at 10 K and Qsq = 1.9× 108 at 10 mK.

2.5.7 Support Losses

The final mechanical dissipation mechanism that we consider in this section

are losses that originate from the forces and torques exerted on the resonator’s

supports as it oscillates, which can act to excite phononic modes that radiate into

the substrate, carrying energy away from the system. This dissipation mechanism,

known as support or clamping losses, strongly depends on both the geometry of

the considered device, as well as the dimensionality of the support structure. Here,

we consider the support structures consisting of either a two-dimensional infinite

thin plate or a three-dimensional infinite half-space, as both of these geometries

are relevant to our devices.

For the case of a rectangular beam attached to a two-dimensional thin plate

support, it was determined that the dissipation of the resonator’s flexural modes

scales as (w/l)3 [248–250]. This dimensional scaling can be interpreted as follows:

33Here we dsq is given by the gap distance between the optical microdisk and mechanical
resonator described in Section 6.3.1.
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as the beam’s length increases, so does it’s stored energy [250–252], while a decrease

in the beams width causes a larger acoustic impedance mismatch between the

beam and the substrate [249]. Therefore, the longer and narrower a beam is, the

smaller (larger) its dissipation (limited quality factor) associated with clamping

losses. Surprisingly, the prefactor to this scaling depends only on the Poisson ratio

of the support structure (and weakly at that), and was calculated by Hao et al .

[250] for silicon supports (ν = 0.28), resulting in a clamping loss dissipation of the

form

Q−1
s,2D = 1.57

(w
l

)3

. (2.144)

For the beam parameters considered in this section (w = 200 nm, t = 250 nm, l =

10 µm), we find that Qs,2D = 8.0× 104.

If we instead consider an support comprised of a three-dimensional half-space,

the impedance mismatch between the beam and its surrounds becomes even larger,

resulting in a dissipation that scales as tw4/l5 [251–253]. As with the 2D case, the

prefactor depends weakly on the support’s Poisson ratio, which Judge et al . [252]

calculated for silicon-like supports (ν ≈ 0.25− 0.30), allowing them to determine

the dissipation due to three-dimensional support losses as

Q−1
s,3D = 0.3

t

l

(w
l

)4

. (2.145)

Note that this scaling indicates that for a long, thin beam, support losses will

always be smaller in 3D than in 2D, with the ratio between the quality factors in

these two cases scaling as
Qs,3D

Qs,2D

∼ l2

wt
, (2.146)

where the proportionality of this ratio is on the order of unity. For our prototypical

nanobeam parameters, we calculate l2/wt = 2000, which is consistent with the

calculated 3D support loss quality factor Qs,3D = 8.3 × 108 being approximated

four orders of magnitude larger than Qs,2D.

For the devices studied in this theses, we expect support losses to be somewhere

in between these two limiting quality factors (likely closer to the 2D case), as their

support structure consists of a suspended device layer connected to a monolithic

oxide/silicon handle. We further point out that since the dissipation in each case

54



depends strongly on the dimensions of the considered resonator, this damping

mechanism can vary substantially from device to device. Finally, we note that this

damping mechanism can be mitigated by employing phononic crystal radiation

shields [67, 135, 254, 255] or soft-clamping techniques [256, 257] to prevent

phonon radiation from a mechanical resonator, though these structures prove

to be prohibitively large for our considered mechanical resonators.

2.5.8 Summary

In this section, we have considered a number of different mechanical dissipation

mechanism for the in-plane flexural mode of a rectangular nanobeam resonator.

In Table 2.3, we summarize these results, indicating the limiting quality factors

calculated for each of the considered processes. Upon inspection of this table, some

trends immediately become obvious. First, the limiting quality factors increase

as we go to lower temperature (or stay constant in the case of the temperature-

independent support losses), except in the case of scattering from point defects,

where there is a decrease in Q from 10 K to 10 mK. This is due to the enhancement of

this dissipation mechanism for T < 1 K where the beam behaves one-dimensionally.

Furthermore, by comparing each of these results with one another, we find that

at the low temperatures and pressures associated with our cryogenic environment,

mechanical dissipation due to TED, scattering from point defects, gas damping,

and phonon-phonon interactions are all negligible. The damping in our resonators

is therefore limited by TLS interactions at 10 K and clamping losses at 10 mK,

which as we shall see below, is consistent with the conclusion reached in Chapter 6.

We conclude this section by noting that while our devices are currently limited

by TLS interactions and clamping losses, if we could mitigate these sources of

dissipation34, it may be possible to approach the regime where scattering from

point defects becomes a limiting factor. In fact, recent measurements of breathing

modes in one-dimensional silicon nanobeams have reported quality factors as

high as Qm = 5 × 1010 [135] and are therefore rapidly approaching this limit,

especially considering these resonators operate at GHz frequencies where point

34See Chapter 9 below for a discussion of potential methods that could be used to reduce these
damping mechanisms.
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Damping Mechanism T = 10 K T = 10 mK

Phonon-Phonon Interactions QAk 1010 1021

Thermoelastic Damping
Qz 1011 1025

QTED 1011 1025

Two-Level System Damping QTLS 104 107

Scattering from Point Defects
Qiso 1016 1014

QB 1021 1019

Qvac 1019 1017

Gas Damping
Qfmf 107 108

Qsq 106 107

Support Losses
Qs,2D 105 105

Qs,3D 109 109

Table 2.3: Summary of the order of magnitude estimates for the limits on the
mechanical quality factors calculated throughout this section for the in-plane flexural
mode of a nanomechanical silicon beam. The considered dissipation mechanisms
and their associated quality factors are: Akhiezer phonon-phonon interactions QAk,
TED in the Zener approximation Qz and the exact result QTED, TLS damping
QTLS, scattering from point defects due to isotopic variations Qiso, boron dopants
QB, and lattice vacancies Qvac, gas damping in the FMF Qfmf and squeeze film Qsq

regimes, and losses to two-dimensional Qs,2D and three-dimensional supports Qs,3D.

defect scattering is more pronounced. In this regime, one would then need to

consider using isotopically purified and/or high-resistivity (low-dopant) silicon in

order to reduce this emerging dissipation mechanism.

2.6 Conclusion

In this chapter, we have presented a thorough discussion of the behaviour of our

mechanical resonator. Using a simple separation of variables approach, we described

the motion of our mechanical in terms of a time-varying amplitude and spatially

varying modeshape, allowing us to characterize the degree to which the resonator

participates in the motion via its effective mass. Treating the time-dependence of

the mechanical resonator as a damping harmonic oscillator, we then introduced the

device’s damping rate and quality factor, providing a metric that could be used

to describe its dissipation. We then moved on from a classical description of our

resonator’s motion, demonstrating how the motion can be quantized into individual

phonons. Continuing on, we introduced the theory of elasticity, which allowed us
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to characterize the stress and strain profiles of the mechanical motion through

the effective strain volume and strain energy fractions, while also determining

a differential equation for the mechanical modeshape. We then described the

properties of the thermal bath to which the mechanical resonator couples, showing

how this interaction acts to thermalize the mechanical motion to a steady state

amplitude by injecting incoherent noise into the system. With the description

of our bath laid out, we tackled the various damping mechanism that occur in

nanomechanical resonators at low temperatures. After providing a brief introduction

to relaxation damping, we discussed damping due to phonon-phonon interactions,

thermoelastic damping, two-level system damping, scattering from points defects,

gas damping, and support losses. Reflecting back upon the estimates calculated

for each of these damping mechanisms, we concluded that most were negligible

for the considered cryogenic conditions, with dissipation being dominated by TLS

damping at relatively high temperatures (T ∼ 10 K), while at low temperatures

(T ∼ 10 mK) dissipation in our system should stem from losses into the resonators

support structure, in agreement with our measurements in Chapter 6 below.
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Chapter 3

Optical Cavities

3.1 Introduction

In this chapter, we introduce the general theoretical framework used to describe

optical cavities and apply it to our own microdisk resonators. We begin in Section

3.2, where we use Maxwell’s equations to determine a separable solution and wave

equation for the electromagnetic modes of a source-free dielectric cavity, which

we use to define the optical mode volume of the system. We then quantize these

electromagnetic fields as we did for the mechanical motion in the previous chapter,

expressing them in terms of the photon ladder operators of the optical cavity, whose

classical time-evolution we model using a damped harmonic oscillator approach.

In Section 3.3, we apply this formalism to the specific case of optical microdisk

cavities, allowing us to calculate the effective index of refraction and resonant

wavelengths for the electromagnetic modes of this system. Finally, in Section 3.4

we quantify the optical losses for a number of prevalent damping processes present

in our microdisk cavities, identifying surface absorption as the limiting dissipation

mechanism.

3.2 Cavity Electromagnetic Field

3.2.1 Electromagnetic Wave Equation

In order to fully understand how an optical cavity couples to the mechanical

element of an optomechanical device, we must first characterize its electric E(r, t)

and magnetic B(r, t) fields. This is done using Maxwell’s equations for a source-free
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dielectric (i.e. no free charges or currents), which are given by [258]

∇ · E = 0, (3.1)

∇ ·B = 0, (3.2)

∇× E = −∂B

∂t
, (3.3)

∇×B =
ñ2(r)

c2

∂E

∂t
, (3.4)

where ñ(r) is the spatially varying index of refraction1 that defines the geometry of

the cavity and c =
√

1/µ0ε0 is the speed of light in vacuum, with µ0 and ε0 being

the permeability and permittivity of free space, respectively. Here we assume a non-

magnetic system with permeability µ(r) = µ0, such that we can express the cavity’s

index of refraction in terms of its dielectric profile ε(r) as ñ(r) =
√
ε(r)/ε0. As the

electric and magnetic fields of a the system are intimately related by Maxwell’s

equations, it suffices to determine one of these two fields to fully characterize the

electromagnetic field of the optical cavity. Here, we choose to focus on the electric

field, from which we can determine the magnetic field using Eqs. (3.3) and (3.4),

subject to the condition given by Eq. (3.2).

We proceed in this venture by taking the curl of Eq. (3.3), while making use

of the identity ∇× (∇×A) = ∇(∇ ·A)−∇2A (where A is an arbitrary vector

quantity), along with Eq. (3.1), to arrive at the following wave equation for the

cavity’s electric field2

∇2E(r, t) =
ñ2

c2

∂2E(r, t)

∂t2
. (3.5)

To solve this equation, we express the total electric field of the optical cavity in the

separable form

Etot(r, t) =
∑
j

Ej(r, t) =
∑
j

Ej(t)Ej(r), (3.6)

where we have performed a summation over the contributions of the electric fields

Ej(r, t) = Ej(t)Ej(r) from each of the cavity’s j optical modes. Here we have

broken each of these electric fields into their time-varying amplitudes Ej(t) and their

1We have included a tilde over the symbol for index of refraction to differentiate it from the
phonon number symbol introduced in Chapter 2.

2An identical equation can be found for B(r, t) by taking the curl of Eq. (3.4) while using
Eq. (3.2).
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spatially-varying modeshape functions Ej(r). Again, we are typically interested in

a single electromagnetic mode of the cavity, such that we drop the subscripts and

ignore the sum, resulting in an electric field profile given by

E(r, t) = E(t)E(r). (3.7)

Similar to the mechanical displacement, we choose to normalize the electric field’s

modeshape according to max|E(r)| = 1, such that E(t) traces out the true amplitude

of the electric field at its spatial maximum and carries the appropriate units of

N/C.

Continuing with this separation of variables approach, we assume the electric

(and magnetic) fields to be harmonic in time such that3

dE
dt

= −iωcE(t), (3.8)

where ωc is the resonance frequency of the optical cavity mode. Inputting this

relation for the time derivative of E(t) into the wave equation for E(r, t) given by

Eq. (3.5), we find

∇2E(r) = − ñ
2(r)ω2

c

c2
E(r) = −k̃2(r)E(r), (3.9)

where we have introduced the spatially-varying wavenumber of the optical mode

k̃(r) = ñ(r)k̃0, with k̃0 = ωc/c being its vacuum wavenumber. This equation, known

as the Helmholtz equation, can be used to determine the modeshape of the electric

field for a given cavity geometry specified by the spatial dependence of its refractive

index. Though the Helmholtz equation has analytical solutions for a number of very

simple, highly symmetric geometries (see Appendix B for the solutions in cylindrical

geometries), for more complex systems one generally resorts to a numerical solver

such as FEM simulation [172]. Finally, we note that while here we have focussed

on a bound mode in an optical cavity, the Helmholtz equation given in Eq. (3.9)

can be used to describe any monochromatic field contained within a non-magnetic

dielectric.

3This relation is justified provided we are considering a high-Q optical cavity.
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3.2.2 Optical Mode Volume

In order to quantify the spatial extent of each of the cavity’s optical mode

profiles, we define a quantity known as the effective optical mode volume. In direct

analogy to the effective strain volume introduced in Section 2.3.6, we define this

effective volume in terms of the electric field of the mode as [146, 259]

Vopt =

∫
Uem(r)

max[Uem(r)]
dV =

∫
ε(r)|E(r)|2

max[ε(r)|E(r)|2]
dV, (3.10)

where

Uem(r, t) = ε(r)|E(r, t)|2, (3.11)

is the energy density of the mode’s electromagnetic field [258]. Note that the

integral in Eq. (3.10) is performed over the entire volume of the optical mode

(including its surroundings). In practice, however, this optical mode volume is

generally determined using FEM-simulated modeshapes of the electric field, with

an integration volume large enough that the electric field of the mode is negligible

at its boundaries. As we shall see in Section 4.2, this optical mode volume is a

crucial parameter that effects the coupling between the optical and mechanical

elements of our optomechanical system.

3.2.3 Quantization of the Electric Field

Up until this point, we have concerned ourselves with a classical electromagnetic

description in the framework laid out by Maxwell’s equations. However, in order to

describe the quantum mechanical behaviour of an optomechanical system, we must

quantize these fields as we did with the displacement of the mechanical resonator

in Section 2.2.5. This quantization is performed by introducing the time-dependent

photon creation and annihilation operators4 â†(t) and â(t), such that the classical

electric field given in Eq. (3.7) becomes [260–262]

Ê(r, t) = Ezpf

[
â†(t)E(r) + â(t)E∗(r)

]
, (3.12)

where Ezpf =
√

~ωc/2Voptεmax is the zero-point fluctuation amplitude of the optical

cavity’s vacuum field. Here εmax is the dielectric constant at the position where

4Similar to b̂ and b̂†, these photonic ladder operators obey the commutator [â, â†] = 1.
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the energy density of the optical cavity is maximized, such that Ezpf represents the

electric field at this maximal point corresponding to a single photon in the cavity

[262]. Choosing the phase of the electric field such that its modeshape is real, we

can rewrite Eq. (3.12) as

Ê(r, t) = Ê(t)E(r), (3.13)

where Ê(t) is the quantized electric field operator represented in terms of the

photonic ladder operators as

Ê(t) = Ezpf

[
â†(t) + â(t)

]
. (3.14)

For completeness, we also introduce the quantized magnetic field operator, which

is given by

B̂(t) = Bzpf

[
â†(t) + â(t)

]
, (3.15)

where Bzpf =
√

~/2ωcVoptεmax, such that EzpfBzpf = ~/2Voptεmax and E(t) = ωcB(t).

With this definition, the modeshape of the magnetic field is found using Eq. (3.3)

as B(r) = −i∇× E(r). Note that unlike x̂ and p̂ for the mechanical mode, Ê and

B̂ are not conjugates of each other, and therefore do not satisfy a commutation

relation, nor the Heisenberg uncertainty principle.

3.2.4 Optical Equation of Motion

In order to understand the dynamics of our cavity’s electric field, we employ a

damped harmonic oscillator model to describe the time evolution of its electric field.

Here, we choose to parametrize the time-dependence of the electric field via its

classical complex amplitude a, defined as the expectation value of the annihilation

operator â (i.e. a = 〈â〉), which for an undriven optical cavity obeys the equation

of motion [150]

ȧ(t) = −κ
2
a(t)− iωca(t). (3.16)

Here κ is the total decay rate of the electric field amplitude, such that τc = 1/κ is

the lifetime of the photons confined within the optical cavity. For an underdamped

cavity, we can also introduce the optical quality factor, which is defined in the same

way as the mechanical quality factor in Eq. (2.9) as

Qc =
ωc

κ
= ωcτc. (3.17)
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In Section 3.4, we will investigate the specific damping processes that act to limit

this quality factor in our optical microdisk cavities.

3.3 Optical Microdisks

Before investigating the optical loss mechanisms of our system, we briefly

discuss the resonant optical whispering gallery modes (WGMs) that form within

our microdisk structures as a result of total internal reflection at their boundaries.

Due to the complexity of our device geometry, we generally use an FEM solver such

as COMSOL Multiphysics R© [172] to determine the optical modes of these devices.

However, as the wavelengths of the optical modes of interest (λc = 2πc/ωc ∼ 1500–

1640 nm) are much smaller than the disk diameter (10 µm), these calculations

can be computationally intensive and time consuming. Therefore, we also use the

approximate analytical form of the electromagnetic fields given in Appendix B to

describe some basic properties of the WGMs of our isolated microdisk cavities,

before describing how these modes couple to the mechanical motion of our resonator

in Chapter 4.

Here we consider the thin disk geometry associated with our optical cavities,

with radius R, thickness t (t � R), and index of refraction ñd, immersed in a

surrounding medium with index of refraction ñs. Within such a geometry, two

types of optical modes can exist: transverse electric (TE) modes where Ez = 0

and transverse magnetic (TM) modes where Bz = 05. Example electromagnetic

field profiles for each of these mode families, calculated using parameters from

the optical disks studied in this thesis, are shown in Fig. 3.1. Here we see that

the evanescent field of the TM mode primarily leaks out of the top and bottom

the disk, while for the TE mode, the electric field extends outwards in the radial

direction. This results in a larger overlap between the optical field of the disk and

our sidecoupled mechanical resonators for TE modes. Therefore, in the remainder

of the thesis, we primarily focus on the TE modes of the microdisk, as these are

the modes that we use to address our devices in the experiment.

5In reality, there exists a small, non-zero electric (magnetic) field in the z-direction for the TE
(TM) modes of the disk, however, we neglect this contribution in our approximation and retain
the nomenclature of TE (TM) modes.
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(a)

(e) (f)

(c)

(b)

(d)

Figure 3.1: The FEM-simulated electromagnetic fields in the (r, z)-plane for the
single-crystal silicon optical microdisks studied in this thesis (R = 5 µm, t = 250
nm). The index of refraction of the disk is taken from Fig. 3.2a. Here we display
the magnitude of the electric field for the (a) the n = 1, m = 1 TE mode at λc =
1555.821 nm and (b) the n = 1, m = 34 TM mode at λc = 1552.436 nm. In the
middle panel, we show the magnitude of (c) Bz for the TE mode and (d) Ez for
the TM mode. Each field is normalized to its maximum value such that red (blue)
indicates the field maximum (minimum), with the geometry of the disk highlighted
via the white solid lines. Finally, in the bottom row we plot the field profiles along
the dashed white lines in (c) and (d), displaying the r-dependence of the (e) Bz

field of the TE mode and (f) Ez field of the TM mode along the center (z = 0) of
the disk.

From the analytical approximations for the disk’s electromagnetic fields given

in Appendix B, we can determine the effective index of refraction and resonant

wavelengths of these TE modes. This is done by using the two dispersion relations
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for the mth-order azimuthal TE modes given by

tan

(
k̃0t

2

√
ñ2

d − ñ2
TE

)
=

√
ñ2

TE − ñ2
s√

ñ2
d − ñ2

TE

, (3.18)

J ′m(qdR)

ñ2
dqdJm(qdR)

+
K ′m(qsR)

ñ2
sqsJm(qsR)

= 0, (3.19)

where Jm(x) (Km(x)) is the mth-order (modified) Bessel function of the first (second)

kind, with its derivative with respect to its argument x defined as dJm/dx = J ′m(x)

(dKm/dx = K ′m(x)). Here, we have also introduced the quantities q2
d = k2

d− k̃2
z and

q2
s = k̃2

z − k2
s , expressed in terms of the wavenumbers kd = ñdk̃0 inside the disk and

ks = ñsk̃0 in its surroundings, where k̃0 = 2π/λmn is the vacuum wavenumber for

the nth-order radial, mth-order azimuthal TE mode with a resonant wavelength of

λmn. Therefore, qd describes the transverse component of the wavenumber inside

the disk, while qs represents an imaginary transverse wavenumber characterizing

how the mode evanescently decays into its surroundings. Finally, ñTE = qd/k̃0 is

the effective index of refraction for the TE mode, such that this quantity describes

the index of refraction as viewed by the transverse wavevector with the disk. Note

that ñTE depends on the considered wavelength, as well as the thickness and the

refractive index of the disk, according to Eq. (3.18). In Fig. 3.2b, we display

ñTE calculated for our silicon microdisks at low temperature using the procedure

outlined in Section B.3 of Appendix B over the experimentally relevant wavelength

range of 1500 – 1640 nm, for which we find ñTE ∼ 2.82 – 2.92. Furthermore, by

inputting these effective indices into Eq. (3.19), we calculate the fundamental radial

(n = 1) resonant wavelengths of the disk’s TE modes within this range, which show

good agreement with the FEM-simulated values as summarized in Table 3.1.

As the procedure used in Section B.3 to calculate the resonance wavelengths the

TE disk modes is rather tedious, we look to determine an approximate analytical

method to calculate these wavelengths (similar to the weakly guiding approximation

used to determine the single-mode cut-off radii in infinite cylinders – see Appendix

B). Here we use a method we name the strongly confined approximation (SCA) to

estimate the resonance frequencies of the TE modes by requiring its Bz field to be

radially confined to the disk (see Fig. 3.1e). This can be done by setting Bz equal
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(a)

(b)

Figure 3.2: (a) The low temperature refractive index of single-crystal silicon ñSi

(solid blue line) given over the wavelength range from 1500 to 1640 nm calculated for
T = 20 K using the Sellmeier coefficients found in Ref. [263]. Due to the diminishing
thermo-optic coefficients in silicon at low temperatures [264], these values can be
used as a good approximation for the indices of refraction below 20 K, incurring an
error of at most 10−4. The dashed yellow line is a quadratic interpolation fit to
ñSi = aλ2 + bλ+ c, where a = 7.566× 10−8 nm−2, b = −3.137× 10−4 nm−1, and
c = 3.753, with λ in units of nm. In (b), we use these values for ñSi, to determine
the low temperature effective refractive index for the TE modes of our 250-nm-thick
silicon microdisks according to Eq. (3.18).

to zero at the r = R boundary6, which in order to be true for all z and φ requires

Jm(q1R) = 0 (see Appendix B). Using this condition the resonant frequencies of

the disk’s TE modes can be found according to

λmn ≈
2πñTER

Zmn
, (3.20)

where Zmn is the nth zero of the mth-order Bessel function of the first kind. The

values for λmn calculated using the SCA are given in Table 3.1, where we see that

the resonant wavelengths using this approximate method more closely match the

FEM-simulated values than those determined using Eq. (3.19).

Finally, we note that the effective index can also be used to define an effective

6Unfortunately, the SCA does not provide good estimates of the resonant wavelengths for TM
modes, as Ez � 0 at the r = R boundary (see Fig. 3.1f).
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m ñTE
λc (nm)

Eq. (3.19) SCA FEM
48 2.843 1622.502 1623.123 1623.575
49 2.856 1599.254 1599.838 1600.287
50 2.868 1576.718 1577.271 1577.714
51 2.879 1554.861 1555.384 1555.821
52 2.891 1533.652 1534.147 1534.579
53 2.902 1513.060 1513.526 1513.957

Table 3.1: The resonant wavelengths of the n = 1 TE modes of a disk with radius
R = 5 µm and thickness t = 250 nm, calculated using Eq. (3.19), the SCA given by
Eq. (3.20), and FEM simulation. The wavelength dependence of the disk’s refractive
index is taken from Fig. 3.2. Here we see that the analytical results provide excellent
estimates of the FEM-simulated resonant wavelengths, undershooting this value by
approximately 1 nm and 0.5 nm for the approach using Eq. (3.19) and the SCA,
respectively. Finally, we find that each of these methods predict the free spectral
range of these fundamental radial TE modes to be approximately 20 nm.

radius of the mth-order azimuthal WGM as [265, 266]

mλmn = lopt = 2πñTERopt, (3.21)

which roughly states that m wavelengths fit inside the effective optical path length

(i.e. circumference) of the disk lopt = 2πñjRopt with effective radius Ropt. Note

that in the SCA, this effective radius will be given by

Ropt =
m

Zmn
R. (3.22)

Therefore, Ropt will always be less than the physical radius of the disk R due to

the fact that the maximum of the electromagnetic field intensity is confined within

the disk as opposed to existing at its edge (see Fig. 3.1). Using the values in Table

3.1, we calculate the ratio between these two radii to be Ropt/R ≈ 0.88 for the

fundamental radial TE modes of our microdisk.

3.4 Optical Losses

We conclude this section by investigating the mechanisms that contribute to

the total loss rate κ of our microdisk cavities. We begin by first expressing this

loss rate as

κ = κe + κi, (3.23)
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where κe is the rate at which the optical field within the disk couples to the external

waveguide used to address it, while κi characterizes the internal loss mechanisms of

the microdisk. In this sense, κe is associated with the “useful” losses that allow us

to assess the optical cavity. Using coupled mode theory [267], one can show that

for tapered fiber coupling, this external coupling rate is proportional to the overlap

between the electric fields of the cavity Ec(r) and fiber Ef(r) modes according to

[266, 268, 269]

κe ∝
ωcε0

4

∫ [
ñ2(r)− ñ2

2

]
E∗c(r) · Ef(r). (3.24)

Therefore, in practice κe can be determined by varying the fiber-cavity separation,

and thus the overlap of their fields, and observing the dependence κ has on this

separation distance [58, 266, 270]. Meanwhile, κi corresponds to cavity dissipation

mechanisms that act to reduce our optical signal and contaminate our measurement.

We therefore wish to mitigate these losses as much as possible in our system.

Here we consider four separate loss mechanisms that contribute to κi in optical

microdisks, namely bulk material absorption, radiation losses, Rayleigh surface

scattering, and surface absorption. As with the mechanical dissipation mechanisms

studied in Section 2.5, we assume that these processes are independent of one

another, such that we can sum their corresponding loss rates κj as

κi =
∑
j

κj. (3.25)

The optical quality factors then add in parallel according to

Q−1
i =

∑
j

Q−1
j , (3.26)

where Q−1
j = κj/ωc is the inverse of the quality factor associated with the jth

damping mechanism. In what follows, we estimate the optical dissipation in our

microdisk cavities (with radius R = 5 µm and thickness t = 250 nm) by considering

the losses associated with the prototypical TE mode shown in Fig. 3.1. That is,

the n = 1, m = 51 TE mode at a simulated resonant wavelength of λc = 1555.821

nm, with corresponding effective index of refraction ñTE = 2.88 (see Table 3.1).

We will use these representative limiting quality factors calculated for this mode

to quantify the dissipation for all of the fundamental radial TE modes within our

relatively narrow experimental wavelength range of 1500–1640 nm.
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3.4.1 Bulk Material Absorption

The first loss mechanism we consider for our microdisks is that due to bulk

material absorption, for which the limiting optical quality factor can be found as

[271]

Qba =
2πñj
αλc

, (3.27)

where α is the bulk optical absorption coefficient. In silicon, this parameter is

relatively constant with respect to temperature [272], but depends strongly on its

dopant concentration [273]. For the p-type single-crystal silicon used to fabricate

our devices, with a resistivity of 13.5 Ω·cm (boron dopants with a density of ∼ 1021

m3), we calculate7 an optical absorption coefficient of α = 0.336 m−1. Inputting

this value into Eq. (3.27), we calculate the bulk-absorption-limited quality factor

for the considered TE mode to be Qba = 3.5× 107.

3.4.2 Surface Absorption

Accompanying the optical absorption within the bulk of the resonator, there also

exists the possibility of enhanced absorption at the surfaces due to imperfections

such as surface adsorbates, improperly terminated silicon bonds, and lattice defects

[266]. Borselli et al . [274] found that this effect can be accounted for by replacing

α in Eq. (3.27) with the modified surface absorption coefficient

αs = 2f ′sΞ, (3.28)

where f ′s is the fraction of losses that occur in the surface, while Ξ is a parameter

that quantifies the overlap of the mode’s optical field with the surface region. Here

the factor of two accounts for the fact that we consider both the top and bottom

surfaces of the disk8, where Ξ = 3.5 × 106 m−1 for TE modes [274]. For silicon

disks with oxide-terminated surfaces, as is relevant for our devices9, Borselli et

7Here we use the relation α = 4.45
ρ̃ m−1, where ρ̃ is the resistivity of the silicon in units of

Ω·cm [272].
8Ξ = 2.3 × 104 m−1 for the side of the disk [274], such that absorption at these surfaces is

negligible.
9In our fabrication process, we perform a hydrofluoric acid etch of the silicon surfaces (see

Section 5.2.2), however, as we do not immediately transport the device to an inert environment,
this oxide layer likely reforms before we perform our measurements.
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al . further found that f ′s ∼ 10−5 [274]. Inputting these values for Ξ and f ′s into

Eq. (3.28), we find αs = 24 m−1 for the considered TE mode, corresponding to a

surface-absorption-limited quality factor of Qsa = 4.9× 105.

3.4.3 Surface Scattering

Another mechanism by which optical losses can occur within our microdisks is

Rayleigh scattering due to surface irregularities generated during their fabrication.

Using the volume current method [275], Borselli et al . [276, 277] showed that the

limiting quality factor due to this surface scattering process can be calculated as10

Qss =
3ñ2

1(ñ2
TE − ñ2

2)λ3
c

8π7/2ñ2ñ2
TE(ñ2

1 − ñ2
2)2

(
Vd

V 2
s

)
. (3.29)

Here, Vd is the geometric volume of the disk (Vd = πR2t = 19.6 µm3 for our optical

microdisks) and Vs =
√
RlctδR is the effective volume of the typical scatterer,

with lc and δR being the correlation length and standard deviation of the surface

roughness. In Ref. [277], Borselli et al . found that
√
lcδR ≈ 8.5× 10−14 m3/2 for a

fabrication procedure similar to what is used for our devices (see Section 5.2.2).

Inputting this value into Eq. (3.29), we calculate a Rayleigh surface scattering

quality factor of Qss = 1.7× 107 for our microdisk.

3.4.4 Radiation Losses

The final optical loss mechanism that we consider in this section is WGM

radiative losses that occur due to imperfect total internal reflection that occurs at

the curved boundaries of the microdisk. To describe this effect, Frateschi and Levi

[278] used a ray optics model to calculate the radiation-limited quality factor for

the mth azimuthal TE mode as [271]

Qr =
πñTElm
mλc

exp

(
2

3
Zm,1 cos3 θc

)
. (3.30)

Here, θc is the critical angle of incidence at the disk’s surface, which is expressed in

terms of the effective index as sin θc = ñ2/ñTE, while lm = 2πR sinc(π/2m) is the

10This equation was developed for TM modes, however, using this equation for TE modes incurs
an error on the order of 50 % [277], such that it suffices for the order of magnitude estimates
presented in this section.
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polygon round trip of path of the WGM. For large m (& 20), this polygon round

trip path is essentially a circle, such that sinc(π/2m) ≈ 1 and lm = 2πR is the

circumference of the disk [278]. Using Eq. (3.30), we find Qr = 2.8× 1014 for the

considered m = 51 TE mode of the microdisk.

3.4.5 Summary

In this section we have considered optical losses from our microdisk resonators

due to absorption both within its bulk material and at its surfaces, Rayleigh

scattering from surface irregularities and radiation loss for the n = 1 TE WGMs of

our optical microdisks. The estimated order of magnitude for the limiting quality

factor resulting from each of these process is summarized in Table 3.2. Here we see

that optical losses are dominated in our devices by absorption at the surfaces of the

microdisk, which limit our optical quality factors to ∼ 105 in good agreement with

what we measure in our experiments11. We conclude this section by noting that as

the geometry and optical parameters of the microdisk are relatively independent

with respect temperature, we expect the disk’s optical loss mechanisms to be as well.

This hypothesis has been confirmed by independent measurements of the optical

quality factors at room and cryogenic temperatures between similar microdisks.

Loss Mechanism TE Mode

Bulk Absorption Qba 107

Surface Absorption Qsa 105

Surface Scattering Qss 107

Radiation Losses Qr 1014

Table 3.2: Summary of the order of magnitude estimates for the limits on the optical
quality factors calculated throughout this section for the n = 1, m = 51 TE WGM
shown in Fig. 3.1. The considered dissipation mechanisms are: bulk absorption
Qba, surface absorption Qsa, Rayleigh surface scattering Qss, and radiation losses
Qr.

11The exact measured quality factor varies slightly depending on the position of our tapered
fiber (see Section 7.4), indicating that the fiber itself may induce a small amount of scattering as
well.
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3.5 Conclusion

In this chapter, we have discussed the optical WGMs of our microdisk resonators.

Employing a similar separation of variables approach similar to that we used

to describe the displacement of our mechanical resonator, we showed that the

electric field of each mode can be expressed in terms of a time-varying amplitude

and a spatially varying modeshape. Using Maxwell’s equations, we determined

the wave equation that governs this modeshape function, as well as utilized the

electromagnetic energy density of the system to define an effective volume for each

optical mode. We then proceeded to quantize the amplitude of the electric by

expressing it in terms of photon annihilation and creation operators of the cavity,

whose classical expectation values oscillate in time according to a damped harmonic

oscillator description. With this general theoretical framework laid out, we applied

it to our optical microdisk resonators, using a combination of FEM simulation and

analytical approximations to determine the electromagnetic fields, effective indices,

and resonant wavelengths in this geometry. Finally, we provided an estimate of

the different electromagnetic dissipation mechanisms present in our microdisks,

ascertaining that optical losses are dominated by absorption at their surfaces.
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Chapter 4

Cavity Optomechanics

4.1 Introduction

In the previous two chapters, we studied how the mechanical resonator and

optical cavity of an optomechanical system behave when kept in isolation from one

another. We now look at a number of interesting quantum and classical phenomena

that emerge when we couple these two elements together. We begin in Section 4.2,

where we introduce the dispersive optomechanical coupling mechanism realized in

our devices, providing an equation that can be used to quantify the strength of this

coupling. In Section 4.3, we use a Hamiltonian approach to develop a linearized

quantum mechanical description of our optomechanical system, which we use to

model the backaction-mediated phenomena of optomechanical damping, spring

effect, and cooling observed in our devices. Continuing in Section 4.4, we use this

linearized treatment to theoretically describe the optical measurement techniques

of direct and homodyne detection that we employ in later chapters to address our

optomechanical devices. Here we unveil the standard quantum limit of continuous

optomechanical detection, which can be overcome using the quantum nondemolition

measurement protocol detailed in Chapter 8. Finally, in Section 4.5, we discuss

the model used to describe the classical dynamics of optomechanical cavities in the

nonlinear regime, which lays the framework for the photothermal nonlinearities

discussed in Chapter 7.
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4.2 Optomechanical Coupling

The interaction between the optical and mechanical modes of an optomechanical

system can occur in a number of different ways, including dispersive coupling

due to moving boundary conditions [53, 146, 279] or the photoelastic effect [67,

280–282], as well as dissipative coupling [70, 283–286]. In our optomechanical

cavities, we realize the first of these coupling mechanisms, whereby the motion of a

nanomechanical resonator perturbs the boundaries of an optical microdisk cavity.

In this configuration, introducing the mechanical resonator into the evanescent field

of the microdisk cavity acts to shift the optical resonance frequencies of its WGMs

to longer wavelengths (lower frequencies). This is due to the fact that the presence

of the resonator will displace low refractive index air/vacuum (ñ0 = 1) in favour of

the relatively high refractive index silicon (ñSi ≈ 3.45 at 1550 nm – see Fig. 3.2a),

increasing each optical mode’s effective index of refraction, and therefore, its optical

path length and resonant wavelength according to Eq. (3.21). For this reason, it is

difficult to analytically determine the exact modeshape and resonance frequency of

the optical mode in the presence of the mechanical resonator, such that we resort

to numerical FEM simulations.

In addition to this static shift, the motion of the resonator about its equilibrium

position will modulate the WGM mode’s effective index of refraction (and hence

its optical path length and resonance frequency) in time according to

δωc(t) = − 2πc

ñ2
TEλc

δñTE(t) = − c

ñ2
TEλcRopt

δlopt(t) = −Gx̂(t), (4.1)

where we have introduced G = −dωc/dx̂ as the first-order dispersive optomechanical

coupling coefficient1. It is this mechanically induced shift in the optical cavity

frequency that produces a dispersive optomechanical coupling in this geometry,

perturbing the resonance frequency of the microdisk cavity to first order in position

as2

ωc(x) ≈ ωc −Gx̂. (4.2)

1In general, the optomechanical coupling is described by a matrix, with components Gjk
relating the first order shift in the jth optical cavity frequency ωj to the displacement of the kth
mechanical mode xk. However, here we focus on the interaction between a single optical and
mechanical mode, such that we only consider one component of this matrix.

2For second order expansion, see Appendix C.

74



We note that the exact quantitative shift of the effective index of refraction, and

therefore the optomechanical coupling strength, will vary for different mechanical

modes, though the qualitative nature of this coupling principle is valid for both of

the resonator geometries studied in this thesis. We can, however, use a perturbative

approach (see Appendix C) to determine this optomechanical coupling coefficient

in terms of the mechanical and optical modeshapes of the system as [146]

G = − ωc

2Vopt

∫
S

u(r) · n(r)
[
∆ε|E‖(r)|2 −∆ε−1ε2(r)|E⊥(r)|2

]
dA. (4.3)

Here the integral is performed over the cavity’s surface, as defined by the position-

dependent unit normal vector n(r), with E‖(r) and E⊥(r) being the components

of the optical mode’s electric field parallel and perpendicular to this surface.

Furthermore, we have ∆ε = εd − εs and ∆ε−1 = ε−1
d − ε−1

s , where εd and εs

are the relative permittivities of the optomechanical device’s material and the

surrounding medium, respectively. Therefore, we see from Eq. (4.3) that the greater

the overlap between the optical and mechanical modes of the system, and the

smaller the cavity mode volume Vopt, the larger their optomechanical coupling will

be. Throughout the rest of this chapter, we assume an optomechanical coupling of

this form, as this matches what we expect for our experimental devices.

4.3 Quantum Optomechanics

4.3.1 Optomechanical Hamiltonian

In order to develop a fully quantum mechanical model of the optomechanical

system, we begin by treating each of the optical cavity and mechanical resonator

as independent quantum harmonic oscillators. In this case, we can write the

Hamiltonian of the system as

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂, (4.4)

where the first term (Ĥc = ~ωcâ
†â) describes the free energy of the optical cavity

mode, while the second term (Ĥm = ~ωmb̂
†b̂) accounts for the free energy of the

mechanical resonance3.
3Here we have neglected to include the ground state energies of each oscillator, as this simply

introduces an inconsequential phase into the equations of motion for the ladder operators.
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To introduce a dispersive optomechanical coupling between these two modes,

we replace the static optical cavity frequency with the position-dependent one given

in Eq. (4.2) (i.e. take ωc → ωc(x̂)). Using this expansion, along with Eq. (2.17),

we can then write the optomechanical Hamiltonian as

Ĥ = ~ωcâ
†â+ ~ωmb̂

†b̂− ~g0

(
b̂† + b̂

)
â†â, (4.5)

where we have introduced the single-photon, single-phonon optomechanical coupling

rate g0 = Gxzpf . The last term in Eq. (4.5) is the optomechanical interaction

Hamiltonian Ĥom = −~Gx̂â†â = −~g0(b̂† + b̂)â†â, which can be used to determine

the radiation pressure force exerted by the photons within the optical cavity onto

the mechanical resonator as

F̂rp = −dĤom

dx̂
= ~Gâ†â. (4.6)

Up to this point, we have only considered the interaction between the optical

and mechanical modes of interest. However, in practice we deal with open quantum

systems, such that each mode also interacts with its surrounding environment. To

model this behaviour, we assume that the mechanical resonator is coupled to an

environmental bath comprised of bosonic phonon modes, and is described by the

Hamiltonian

ĤΓ =
∑
q

~ωq b̂†q b̂q + i~
∑
q

(
fq b̂
†b̂q − f ∗q b̂†q b̂

)
. (4.7)

Here b̂q (b̂†q) is the annihilation (creation) operator for each of the q phononic

bath modes coupled to the mechanical resonator, with the ladder operators for a

given mode obeying the standard commutation relation for the harmonic oscillator

such that [b̂q, b̂q′ ] = δqq′ , where δqq′ is the Kronecker delta symbol. The first

term in Eq. (4.7) gives the free energy for each of the q bath modes, while the

second term describes the linear interaction between the mechanical resonator and

these bath modes, as characterized by the mode-dependent coupling coefficient

fq . This interaction, which amounts to a phonon in the mechanical resonator

being annihilated and recreated within the bath for the f ∗q b̂
†
q b̂ term (and vice versa

for the fq b̂
†b̂q term), accounts for energy lost from the mechanical mode to its

environment, as well as an intrinsic drive that results from noise (both quantum
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and thermal) creeping into the system via these input/output channels. Due to the

large density of states generated by the resonant structure of the mechanical mode,

even frequency-independent white noise that enters the mode in this way can act

to effectively drive the mechanical mode to significant amplitudes.

An analogous process occurs for the optical cavity as described by the

Hamiltonian

Ĥκ =
∑
p

~ωpâ†pâp + i~
∑
p

(
fp â

†âp − f ∗p â†pâ
)
, (4.8)

where âp (â†p) are the annihilation (creation) operators for each of the p photonic

bath modes, which obey the commutator [âp, âp′ ] = δpp′ . As was the case for

the mechanical bath, the first term in Eq. (4.8) accounts for the free energy of

the p optical bath modes, while the second describes their interaction with the

resonant optical cavity mode, annihilating (creating) photons in the cavity, with the

accompanying creation (annihilation) of a photon in the bath at a rate determined

by the coupling coefficient fp (f ∗p ).

For the experiments considered in this thesis, the optical bath differs from its

phononic counterpart in that the optical cavity is excited by an external drive at

frequency ωd (such as a laser) to introduce a population of coherent photons into

the cavity. It is this drive that breaks the symmetry between the optical cavity and

mechanical resonator, as the optical mode is externally driven by a coherent source,

while the mechanical mode is simply driven by input noise. Therefore, we single out

a given bath mode as this input drive4, with the annihilation (creation) operator

âdr (â†dr) corresponding to the cavity photon, drive photon coupling coefficient fdr

(f ∗dr), allowing us to introduce the Hamiltonian for this drive as

Ĥdr = ~ωdâ
†
drâdr + i~

(
fdrâ

†âdr − f
∗
drâ
†
drâ
)
. (4.9)

The total Hamiltonian for the driven, damped optomechanical system is then given

4Note that we redefine the sum over âp in Eq. (4.8) to exclude this drive mode.
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by the sum of these individual Hamiltonians as

Ĥ = Ĥc + Ĥm + Ĥom + Ĥdr + Ĥκ + ĤΓ

= ~ωcâ
†â+ ~ωmb̂

†b̂− ~g0

(
b̂† + b̂

)
â†â+ ~ωdâ

†
drâdr

+ i~
(
fdrâ

†âdr − f
∗
drâ
†
drâ
)

+
∑
p

~ωpâ†pâp + i~
∑
p

(
fp â

†âp − f ∗p â†pâ
)

+
∑
q

~ωq b̂†q b̂q + i~
∑
q

(
fq b̂
†b̂q − f ∗q b̂†q b̂

)
.

(4.10)

4.3.2 Quantum Langevin Equations

Using the Hamiltonian given in Eq. (4.10), we can determine differential

equations describing the optomechanical cavity by transforming the system into the

Heisenberg picture. In this case, the equation of motion for an arbitrary quantum

mechanical operator ô will be given by the Heisenberg equation [287, 288]

˙̂o =
i

~
[Ĥ, ô]. (4.11)

In Appendix D, we use this formalism to determine the equations of motion for the

photonic and phononic annihilation operators of the optomechanical cavity in the

frame that rotates at the optical drive frequency ωd as

˙̂a = −κ
2
â+ i∆0â+ ig0

(
b̂† + b̂

)
â+
√
κeâin +

√
κiâi , (4.12)

˙̂
b = −Γm

2
b̂− iωmb̂+ ig0â

†â+
√

Γmb̂i , (4.13)

where âi and b̂i are the operators associated with the noise, both quantum and

thermal, that enters into the optical and mechanical modes of our system (see

Eqs. (D.18) and (D.19)). We have also introduced the detuning of the cavity drive

frequency from resonance as ∆0 = ωd−ωc, with âin being the electric field amplitude

that characterizes the number of photons arriving to the cavity per second due to

this optical drive as â†inâin (i.e. âin has units of 1/
√

s), such that the average optical

power input by the external coupler is given by [150]

Pin = ~ωd 〈â†inâin〉 . (4.14)

As the optical microcavity in our system couples directly to the position of

our mechanical resonator, we also find it convenient to use Eq. (2.17) to rewrite
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Eqs. (4.12) and (4.13) in terms of x̂(t). We do this in Appendix D, where we find

˙̂a = −κ
2
â+ i∆0â+ iGx̂â+

√
κeâin +

√
κiâi , (4.15)

¨̂x+ Γm
˙̂x+ ω2

mx̂ =
1

m

[
F̂th + F̂rp

]
, (4.16)

with F̂th being the thermal Langevin force acting upon the mechanical resonator

given by Eq. (D.39). Upon inspection of Eq. (4.16), we find that we have arrived

at a quantized version of the equation of motion for the classical damped harmonic

oscillator (see Eq. (2.7)), with the forcing function identified as F̂ (t) = F̂th(t)+F̂rp(t).

That is to say, the mechanical motion is driven by an intrinsic thermal force due to its

environment, as well as a radiation pressure force exerted by photons in the cavity.

Meanwhile, Eq. (4.15) represents the quantization of Eq. (3.16), including the

external optical drives given by
√
κeâin and

√
κiâi , as well as the optomechanical

interaction term iGx̂â. Equations (4.12), (4.13), (4.15), and (4.16) are known

collectively as the quantum Langevin equations (QLEs) of the optomechanical

system and provide the basis for the quantum mechanical description given below.

4.3.3 Linearized Optomechanical Equations of Motion

Though Eqs. (4.15) and (4.16) give a full quantum description of a dispersively

coupled optomechanical system, the nonlinear nature of these equations makes them

difficult to solve analytically5. Fortunately, the optomechanical systems studied in

this thesis can be treated by linearizing these equations of motion. This is performed

by expressing each quantity of the system as a combination of a classical, steady

state amplitude (denoted by an overhead bar) and its temporal fluctuations about

this mean value (denoted by a δ in front of the quantity). Mathematically, this

amounts to â(t) = ā+ δâ(t), âin(t) = āin + δâin(t), âi (t) = δâi (t), x̂(t) = x̄+ δx̂(t),

and F̂th(t) = δF̂th(t). In the case of the optical fields, breaking down the operators in

this way amounts to accounting for the quantum fluctuations δâin(t) about a strong

classical input drive amplitude āin, leading to a steady state cavity amplitude6 ā

with fluctuations δâ(t). Meanwhile, the radiation pressure force of this steady state

5See Section 4.5 for the treatment of a nonlinear classical optomechanical system.
6Note that while these steady state optical amplitudes are time-independent in our chosen

rotating frame, they oscillate at the optical drive frequency in the lab frame.
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cavity occupation acts to displace the mechanical resonator to a new equilibrium

position x̄, with δx̂(t) being the mechanical fluctuations about this point. Finally,

we note that each of the noise quantities (i.e . âi (t) and F̂th(t)) are comprised solely

of a fluctuating term, which in general includes both thermal and quantum noise.

Inputting each of these relations into Eqs. (4.15) and (4.16), while keeping only

terms to first order in the fluctuations, we linearize these equations of motion,

resulting in

δ ˙̂a = −κ
2
δâ+ i∆δâ+ iGāδx̂+

√
κeδâin +

√
κiδâi , (4.17)

δ ¨̂x+ Γmδ ˙̂x+ ω2
mδx̂ =

~G
m

[
ā∗δâ+ āδâ†

]
+
δF̂th

m
, (4.18)

with the steady-state values of â(t) and x̂(t) being

ā =

√
κeāin

κ/2− i∆
, (4.19)

x̄ =
~G|ā|2

mω2
m

. (4.20)

Note that we have also introduced a new optical drive detuning ∆ = ∆0 +Gx̄ to

account for the static shift in cavity frequency due to the steady-state displacement

of the mechanical equilibrium position.

In this linearized form, Eqs. (4.17) and (4.18) can now be Fourier transformed,

resulting in the frequency representation of the cavity field and mechanical

displacement fluctuations as

δâ(ω) = χc(ω)
[
iGāδx̂(ω) +

√
κeδâin(ω) +

√
κiδâi (ω)

]
, (4.21)

δx̂(ω) = χm(ω)
[
~G
{
ā∗δâ(ω) + āδâ†(ω)

}
+ δF̂th(ω)

]
. (4.22)

Here we have implicitly used the fact that for a given operator ô, we have ô†(ω) =

[ô(−ω)]† [150], as well as introduced the frequency-dependent susceptibilities of the

optical cavity χc(ω) and mechanical resonator χm(ω) as

χc(ω) =
1

κ/2− i(∆ + ω)
, (4.23)

χm(ω) =
1

m (ω2
m − ω2 − iωΓm)

. (4.24)
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Furthermore, we determine the frequency representation of the fluctuations in the

cavity photon creation operator as

δâ†(ω) = [δâ(−ω)]† = χ∗c(−ω)
[
−iGā∗δx̂(ω) +

√
κeδâ

†
in(ω) +

√
κiδâ

†
in(ω)

]
. (4.25)

Note that [δx̂(−ω)]† = δx̂(ω) due to the fact that x̄ is real and x̂ is a Hermitian

operator.

By investigating these frequency-domain representations of δâ(ω) and δx̂(ω),

we can immediately recognize a number of optomechanical hallmarks. First, from

Eq. (4.21), we see that the fluctuations in the cavity field are driven by the

mechanical fluctuations (first term on the right-hand side), as well as the vacuum

noise inputs
√
κeδâin(ω) and

√
κiδâi (ω). On the other hand, the mechanical

fluctuations are driven by the thermal noise force δF̂th(ω), while being manipulated

by the fluctuations in the cavity amplitude due to their exerted radiation-pressure

force. This latter phenomenon, known as dynamical optomechanical backaction,

leads to the optomechanical damping and spring effects, whereby the delayed

nature of the radiation pressure force exerted on the mechanical element (due to

the finite lifetime of photons in the cavity) can manipulate both its damping rate

and resonance frequency. Furthermore, this radiation-pressure-driven backaction

effect can also act to actively cool (or amplify) the device’s mechanical motion.

These optomechanical effects will be the subject of the following two subsections.

4.3.4 Optomechanical Damping and Spring Effect

Using the linearized mathematical framework introduced in the previous

subsection, we first look to characterize the optomechanical damping and spring

effect of the system. This is done by inputting Eq. (4.21) into Eq. (4.22), resulting

in

δx̂(ω) = χeff(ω)

[
δF̂th(ω) + ~G

{
ā∗χc(ω)

[√
κeδâin(ω) +

√
κiδâi (ω)

]
+ χ∗c(−ω)ā

[√
κeδâ

†
in(ω) +

√
κiδâ

†
i (ω)

]}]
,

(4.26)
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with χeff(ω) being the effective mechanical susceptibility defined as [80, 150, 289–

291]

χ−1
eff (ω) = χ−1

m (ω)− i~G2|ā|2 [χc(ω)− χ∗c(−ω)]

≡ m
[
(ωm + δωm)2 − ω − iω (Γm + δΓm)

]
≈ m

[
ω2

m + 2ωmδωm − ω2 − iωΓm − iωδΓm

]
,

(4.27)

where in the last line we have assumed that δωm � ωm. From this effective

susceptibility, we can then extract the optomechanically induced shift in the

mechanical resonance frequency, or optomechanical spring effect, as

δωm = −~G2|ā|2

2mωm

Re {i [χc(ωm)− χ∗c(−ωm)]}

= 2ḡ2∆

(
κ2

4
+ ∆2 − ω2

m

)
|χc(ωm)|2|χc(−ωm)|2

= ḡ2

[
∆ + ωm

(∆ + ωm)2 + κ2/4
+

∆− ωm

(∆− ωm)2 + κ2/4

]
,

(4.28)

as well as the shift in the mechanical damping rate, or optomechanical damping, as

δΓm =
~G2|ā|2

mωm

Im {i [χc(ωm)− χ∗c(−ωm)]}

= −4ḡ2∆ωmκ|χc(ωm)|2|χc(−ωm)|2

= ḡ2

[
κ

(∆ + ωm)2 + κ2/4
− κ

(∆− ωm)2 + κ2/4

]
.

(4.29)

Here we have introduced ḡ = g0

√
N̄ as the cavity-enhanced optomechanical coupling

rate, with N̄ = |ā|2 being the average number of coherent photons (originating

from the drive field) that are confined to the optical cavity. Note that we have also

taken ω ≈ ωm in Eqs. (4.28) and (4.29), as we are only concerned with effects near

mechanical resonance.

As the devices we study in this thesis exist in the non-sideband-resolved (non-

SBR) regime, where the linewidth of the optical cavity is much larger than the

mechanical frequency of the system, we are interested in determining how the

optomechanical spring effect and damping are simplified in this limit. Inputting the

condition κ� ωm into Eqs. (4.28) and (4.29), we find the optomechanical spring

82



effect and damping of a non-SBR cavity as [150]

δωm =
2ḡ2∆

∆2 + κ2/4
, (4.30)

δΓm = − 4ḡ2∆ωmκ

(∆2 + κ2/4)2
. (4.31)

Note the implicit detuning dependence of ḡ = g0

√
N̄ due to the fact that N̄ is

a function of detuning. From Eqs. (4.30) and (4.31), we can also determine

the extrema for the optomechanical spring effect (damping) in the non-SBR

regime, which are located at ∆ex = ±κ/2
√

3 (∆ex = ±κ/2
√

5), with the

extremal values corresponding to these detunings given by δωex
m = ±

√
3ḡ2/κ

(δΓex
m = ∓200ωmḡ

2/9
√

5κ2).
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Figure 4.1: Plot of the optomechanical (a) spring effect and (b) damping as a
function of normalized cavity drive detuning ∆/κ for κ/ωm = 100, which is on the
order of the SBR ratio found in our devices. The solid blue line indicates each
quantity calculated using the exact representations given in Eqs. (4.28) and (4.29),
while the dashed yellow lines show the approximations in the non-SBR regime
according to Eqs. (4.30) and (4.31). Here we have normalized these effects by their
maximal values, δωmax

m and δΓmax
m , which are taken as the positive values of δωex

m

and δΓex
m , respectively.

In Fig. 4.1, we plot the optomechanical spring effect and damping versus detuning

in the non-SBR regime using both the exact expression given by Eqs. (4.28) and

(4.29), as well as the approximate ones given in Eqs. (4.30) and (4.31), demonstrating

excellent agreement between these two cases for κ/ωm = 100. Here we see that

there is an increase in the mechanical damping rate for a red-detuned optical
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pump, while for a blue-detuned pump, the damping rate decreases. This damping

process is mirrored by the optomechanical spring effect, which results in a decrease

(increase) in the resonance frequency of the mechanical oscillator for a red (blue)

detuned pump, such that these two dynamical backaction effects obey the Kramers-

Kronig relations [292]. Finally, for a resonantly driven optical cavity, each of these

dynamical backaction effects vanish (as can be seen mathematically by setting

∆ = 0 in Eqs. (4.28) and (4.29)).

4.3.5 Optomechanical Cooling

As one can see from Fig. 4.1, by detuning an optical pump to the lower frequency

(red) side of the optical cavity, the radiation-pressure force of the optomechanical

interaction can be used to increase the damping rate of the mechanical resonator. In

a quantum mechanical picture, this effect can be viewed as energy being extracted

from the resonator via anti-Stokes scattering, whereby mechanical phonons are

annihilated in order to promote detuned drive photons into the higher energy states

of the optical cavity. This process can therefore be used to effectively cool the

motion of the mechanical resonator.

To investigate this optomechanical cooling mechanism, we begin by determining

the symmetrized two-sided power spectral density or PSD (see Appendix A) of the

mechanical displacement Sxx(ω) in the presence of optomechanical effects, which

quantifies the mechanical fluctuations of the system and can be found using the

relation [151]

Sxx(ω) =
1

2π

∫ ∞
−∞
〈δx̂(ω)δx̂(ω′)〉 dω′. (4.32)

This PSD is determined by first solving for the position fluctuation correlator under

the integral in Eq. (4.32), which is found using Eq. (4.26) as

〈δx̂(ω)δx̂(ω′)〉 = χeff(ω)χeff(ω′)
[
〈δF̂th(ω)δF̂th(ω′)〉

+ ~2G2N̄χc(ω)χ∗c(−ω′)
{
κe 〈δâin(ω)δâ†in(ω′)〉+ κi 〈δâi (ω)δâ†i (ω

′)〉
}]

= χeff(ω)χeff(ω′)2π

[
~ωmΓm coth

(
~ω

2kBT

)
+ ~2G2N̄κχc(ω)χ∗c(−ω′)

]
δ(ω + ω′),

(4.33)

where we have input the Markovian noise correlators given by Eqs. (E.13) and

(E.16) of Appendix E. Putting Eq. (4.33) into Eq. (4.32), while using the fact that
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χeff(−ω) = χ∗eff(ω), we then find

Sxx(ω) = |χeff(ω)|2
[
Sth
FF (ω) + Srp

FF (ω)
]
, (4.34)

where

Sth
FF (ω) = ~ωmΓm coth

(
~ω

2kBT

)
, (4.35)

is the spectral density of the thermal force given in Eq. (4.35) (see Appendix E) and

Srp
FF (ω) = ~2G2SNN(ω) is the radiation-pressure force spectral density, expressed

in terms of the cavity photon number PSD [203, 293]

SNN(ω) = N̄κ|χc(ω)|2 =
N̄κ

(∆ + ω)2 + κ2/4
. (4.36)

Using the spectral density function given in Eq. (4.34), we can determine the

mean-squared value of the mechanical displacement fluctuations from the relation

[151]

〈δx̂2〉 =
1

2π

∫ ∞
−∞

Sxx(ω)dω. (4.37)

To perform this integral, we use the approximation

|χeff(ω)|2 ≈ π

2m2ω2
mΓtot

[δ(ω − ωm) + δ(ω + ωm)] , (4.38)

where Γtot = Γm + δΓm is the total mechanical damping rate, including both

the intrinsic mechanical damping and optomechanical effects, and we have again

assumed δωm � ωm. The approximation given by Eq. (4.38) is valid for a high-Q

mechanical resonator (i.e . Qm = ωm/Γm � 1), since the majority of the mechanical

displacement spectrum is located near ω ≈ ±ωm. Inputting this approximation

into Eq. (4.37) and evaluating the integral we find

〈δx̂2〉 =
x2

zpf

Γtot

{
(2n̄th + 1)Γm + g2

0 [SNN(ωm) + SNN(−ωm)]
}
, (4.39)

where we have used the relation coth (~ωm/2kBT ) = 2n̄th +1. Comparing Eq. (4.39)

to the expected expression for the mean-squared displacement obtained by taking

the square of Eq. (2.106), we determine the average phonon occupancy 〈n〉 of a

mechanical resonator subject to a radiation-pressure optomechanical force to be

〈n〉 =
(2n̄th + 1)Γm + g2

0 [SNN(ωm) + SNN(−ωm)]

2Γtot

− 1

2
. (4.40)
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We note that using the identity [203, 290, 293]

δΓm =
x2

zpf

~2
[Srp
FF (ωm)− Srp

FF (−ωm)]

= g2
0 [SNN(ωm)− SNN(−ωm)] ,

(4.41)

we can recast Eq. (4.40) into the familiar rate equation form [150, 293, 294]

〈n〉 =
n̄thΓm + n̄rp

minδΓm

Γtot

. (4.42)

This allows us to identify the minimum attainable average phonon occupancy set

by the shot noise generated via photons impinging upon the mechanical resonator

as [150, 290, 293]

n̄rp
min = [Srp

FF (ωm)/Srp
FF (−ωm)− 1]−1

= [SNN(ωm)/SNN(−ωm)− 1]−1

= −κ
2/4 + (∆ + ωm)2

4∆ωm

.

(4.43)

As expected, if we sever the connection to the optomechanical bath (i.e., set

G = g0 = 0, which results in δΓm = 0 in Eq. (4.42)), the mechanical resonator

thermalizes to its environmental bath such that 〈n〉 = n̄th. Finally, we note that in

the high-temperature (classical) limit, we can approximate 〈n〉 and n̄th according

to Eq. (2.77), allowing us to determine the effective mechanical mode temperature

in this regime as [150]

Tm = Tb
Γm

Γtot

, (4.44)

where we have assumed a bath temperature Tb � ~ωmn̄
rp
minδΓm/kBΓm.

The quantity in Eq. (4.43) describes the minimum attainable phonon occupation

of the mechanical resonator using this optomechanical cooling mechanism, which

can be reached if δΓm is large enough that Γtot ≈ δΓm and n̄thΓm � n̄rp
minδΓm for a

given drive detuning ∆. In this sense, Eqs. (4.40) and (4.42) do not include effects

that would arise when experimentally performing optomechanical cooling of the

mechanical resonator, such as the inevitable heating due to photon absorption

[290, 294]. We further point out that since Eq. (4.43) is a function of ∆, it will be

minimized for the optimal drive detuning ∆min = −
√
κ2/4 + ω2

m that minimizes

Eq. (7.28). In the non-SBR regime (κ � ωm), we find ∆min ≈ −κ/2, leading to
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n̄rp
min ≈ κ/4ωm � 1. Therefore, it is not possible to cool the mechanical resonator

into its ground state (i.e . to an average occupancy of less than a single phonon) in

this case [150]. It is important to note that this result only holds true for standard,

dispersively coupled cavities, as it has been shown that ground state cooling can in

theory be achieved using non-SBR, dissipatively coupled optomechanical systems

[283–285]. Furthermore, in the opposite limit of a SBR cavity (κ� ωm), we find

that n̄rp
min ≈ (κ/4ωm)2 < 1 at ∆min ≈ −ωm, such that dispersive ground state

cooling is possible in this regime [150, 293].

4.4 Optomechanical Detection

In this section, we consider the optical detection protocols that we use to measure

the optical signal recollected by the tapered fiber of our measurement system.

Specifically, we consider the direct detection and homodyne measurement schemes

whose experimental implementations are discussed in Section 5.4.3, including all

inefficiencies and amplifications associated with each technique.

4.4.1 Detection Inefficiencies

In any realistic detection scheme, inefficiencies will arise due to the imperfect

implementation of the intended setup, acting to contaminate the performed

measurement. To determine how such inefficiencies propagate through our optical

detection system, we begin by considering the optical field output directly from

the cavity into an external coupler. Using the input-output relation determined in

Appendix D, we find this output field amplitude in terms of the input field as

âout(t) = âin(t)−
√
κeâ(t). (4.45)

Continuing with our treatment of a linearized optomechanical system, we break

this output optical field into its steady state amplitude and fluctuating parts

as âout(t) = āout + δâout(t). This relation can easily be Fourier transformed to

âout(ω) = āout + δâout(ω) where we find

āout = āin −
√
κeā = āin

(
1− κe

κ/2− i∆

)
, (4.46)
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Figure 4.2: Schematic illustrating the flow of the optical field through an
optomechanical cavity. Figure reproduced from Ref. [295]. c© 2019 American
Physical Society.

and

δâout(ω) = δâin(ω)−
√
κeδâ(ω)

= [1− κeχc(ω)] δâi (ω)−
√
κeκiδâin(ω)− i

√
κeχc(ω)Gāδx̂(ω),

(4.47)

using the input-output relation given in Eq. (4.45). Here we encounter the first

inefficiency associated with the detection system as optical losses occurring within

the cavity at a rate κi = κa + κo, where κa and κo are the optical damping rates

associated with photon absorption in the mechanical resonator and all other loss

mechanisms.

To trace these optical losses, we consider the classical flow of electromagnetic

power through the cavity as illustrated in Fig. 4.2. Using Eq. (4.45), we first

determine the power recollected by the external waveguide (and subsequently sent

to the detection apparatus) in terms of the power Pin input to the system (see

Eq. (4.14)) as

Pout = ~ωd|āout|2 = Pin

[
1− κeκi

∆2 + (κ/2)2

]
. (4.48)

Here we immediately see that a fraction of the power input to the cavity is dissipated

as either power absorbed by the mechanical resonator according to

Pabs = ~ωd|āabs|2 = Pin
κeκa

∆2 + (κ/2)2
, (4.49)
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or lost via other cavity dissipation channels (see Section 3.4) as

Po = ~ωd|āo|2 = Pin
κeκo

∆2 + (κ/2)2
, (4.50)

where āabs =
√
κaā and āo =

√
κoā are the steady-state field amplitudes

corresponding to these loss mechanisms. Note that Eqs. (4.48)–(4.50) obey the

conservation of energy in the sense that Pin = Pout + Pabs + Po.

As per the fluctuation dissipation theorem [202, 203], we also find that this loss

of classical signal amplitude will be accompanied by an influx of vacuum noise in

the quantum fluctuations of the signal (i.e . the first and second terms in the second

line of Eq. (4.47)), which acts to contaminate the measurement. In fact, all of the

inefficiencies of the optical detection system will behave this way, simultaneously

reducing the classical amplitude of the transmitted signal, while adding quantum

vacuum noise at each junction. For the detection schemes considered here, these

signal losses will accumulate in such a way that we can treat all inefficiencies as a

single effective beamsplitter (BS) with amplitude transmissivity
√
η and an effective

input vacuum noise of δâvac that obeys the correlators given by Eqs. (E.7), (E.8)

and (E.13) of Appendix E [110]. Here η is the power transmission efficiency of the

entire detection system (see Section 5.4.4) including all inefficiencies due to losses

in the optical cavity and throughout the detection circuit, as well as the quantum

efficiency of the photodetector (PD). With this approach, the signal transmitted

through the detection circuit will then be given by

ât(t) =
√
ηâout(t) +

√
1− ηδâvac(t), (4.51)

with the classical power fluence through the circuit given by

Pt = ~ωd 〈â†t ât〉 = η~ωd 〈â†outâout〉 = ηPout. (4.52)

4.4.2 Direct Detection

Direct detection is the simplest technique that can be used to measure the

output field from an optomechanical cavity. For this scheme, one simply directs the

output field to a PD, which will in turn convert the optical field into a measurable
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voltage7 given by

vd(t) = Hdâ
†
d(t)âd(t), (4.53)

where âd(t) =
√
ηdâout(t) +

√
1− ηdδâvac(t) is the optical field detected by the

photodiode according to Eq. (4.51), including all inefficiencies throughout the

detection system via the total power transmission coefficient ηd, while Hd is the

gain of the direct detection system (which includes the internal gain of the PD, as

well as any subsequent electronic gain). Continuing with our linearized approach,

we break down the detected optical field into âd(t) = ād + δâd(t), where

ād =
√
ηdāout, (4.54)

δâd(t) =
√
ηdδâout(t) +

√
1− ηdδâvac(t). (4.55)

Using this notation, we can similarly express the measured direct detection voltage

as a combination of its steady state and time varying parts as vd(t) = v̄d + δv̂d(t),

which can in practice be separated using a bias tee with a cutoff frequency ωco � ωm.

We first look at the steady state portion of this detected voltage, which is given

by

v̄d = HDC
d ηd|āout|2 = HDC

d ηd|āin|2T (∆), (4.56)

where

T (∆) = 1− κeκi|χc(0)| = 1− κeκi

∆2 + κ2/4
(4.57)

is the transmission coefficient of the optical cavity. Therefore, we can extract

information about the properties of the optical cavity by observing the low frequency

portion of the measured voltage. Note that we have introduced the new gain factor

HDC
d to account for the fact that once split, the low frequency and high frequency

portions of the voltage signal may be subject to different amplification chains,

though generally the ratio HDC
d /Hd is known. Furthermore, we note that the

measurement-dependent prefactor HDC
d ηd|āin|2 in Eq. (4.56) can be removed by

normalizing the measured voltage by a far off-resonant value, where ∆� κ such

that T (∆� κ) ≈ 1 and v̄d ≈ HDC
d ηd|āin|2.

7The measurable could also be an electrical current depending on the PD, but this could be
converted to a voltage by introducing a resistor.
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The high-frequency portion of the detected signal is then given by

δv̂d(t) = Hd

[
ā∗dδâd(t) + ādδâ

†
d(t)
]
, (4.58)

where we have neglected the small δâ†d(t)δâd(t) term. This fluctuating portion of

the direct detection voltage measures the amplitude quadrature of the fluctuations

in the field âd(t) reaching the PD, and therefore, δâout(t) via Eq. (4.55). In this

linearized form, we can Fourier transform the signal, resulting in

δv̂d(ω) = Hd

[
ā∗dδâd(ω) + ādδâ

†
d(ω)

]
. (4.59)

In order to quantify the fluctuations of this Fourier-transformed voltage signal, we

look to calculate its PSD (see Appendix A) using

Sd
vv(ω) =

1

2π

∫ ∞
−∞
〈δv̂d(ω)δv̂d(ω′)〉 dω′. (4.60)

Inputting Eq. (4.59) into Eq. (4.60), one finds [145]

Sd
vv(ω) = αd(ω)Stot

xx (ω) + Sd,imp
vv (ω), (4.61)

where Sd,imp
vv (ω) is the technical noise floor associated with our detection electronics

(detector dark noise, electronic noise, etc.), while αd(ω) is the transduction coefficient

that relates the total optically measured displacement PSD

Stot
xx (ω) = Sint

xx (ω) + Sadd
xx (ω) (4.62)

to the direct detection voltage PSD. As the transduction coefficient αd(ω) contains

contributions from the optical cavity, the detection circuit, and the measurement

electronics, it is a complicated function of frequency and cavity detuning8, such

that it is difficult to determine a priori. Therefore, this parameter is generally

determined for a given set of experimental conditions using a calibration technique,

such as thermomechanical calibration [145] (see Section 6.4.3) or phase calibration

[59, 296].

In Eq. (4.62), we have expressed the total measured displacement Stot
xx (ω) as

a combination of its contributions due to the intrinsic motion of the mechanical

8For direct detection, αd is maximized versus cavity detuning for ∆ ∼ κ/2, where the slope in
the cavity resonance is largest [63].
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resonator Sint
xx (x) = |χeff(ω)|2Sth

FF (ω), which is driven by the thermal and quantum

noise of the bath, and the added noise PSD due to the optical measurement

Sadd
xx (ω) [150, 203]. This added noise is further broken into two parts: a broadband

imprecision noise floor Simp
xx (ω) and a back-action force spectrum Sba

FF (ω), which is

transduced into excess mechanical motion via Sba
xx(ω) = |χeff(ω)|2Sba

FF (ω) [150,

203]. We note here that while Sba
xx(ω) corresponds to noise due to a true

physical displacement of the resonator, Simp
xx (ω) enters the system as an apparent

displacement arising from an increase to the noise floor of the measurement. These

added noise terms are caused by a variety of sources, including photon shot noise,

laser noise, optical heating of the mechanics, etc., and obey the modified Heisenberg

uncertainty relation

Simp
xx (ω)Sba

FF (ω) ≥ ~2/4, (4.63)

with equality corresponding to the limit set by the fundamental quantum noise

associated with photon number fluctuations in the measurement signal [150, 202,

203]. Considering only these quantum noise processes, the imprecision and back-

action noise spectra are given by [297]

Simp
xx (ω) =

~ωd

8ηdG2Pin

(
∆2 + κ2/4

κ

)2 [
1 + ω2 ω2 + κ2/4− 2∆2

(∆2 + κ2/4)2 + ω2κ2/4

]
, (4.64)

Sba
FF (ω) =

~G2Pin

2ωd

(
κ2

κ2/4 + ∆2

)[
1

κ2/4 + (∆− ω)2
+

1

κ2/4 + (∆ + ω)2

]
. (4.65)

Here we see that the fundamental imprecision noise (associated with photon shot

noise) scales inversely with power input to the cavity, as well as the detection

efficiency ηd. Unfortunately, any attempt to reduce this imprecision shot noise

by increasing the optical power input to the cavity is met with a commensurate

increase in the backaction noise as the number of photons in the cavity grows.

Hence, there is an optimal power where the total added optical measurement noise

Sadd
xx (ω) is minimized, which we will we discuss in more detail in Section 4.4.4.

4.4.3 Balanced Homodyne Detection

A slightly more complicated, yet more versatile optical detection method is

optical homodyne detection. Here we consider the balanced homodyne detection

scheme discussed in Section 5.4.3, where the output signal from the optical cavity
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is mixed with a local oscillator (LO) on a 50/50 BS before being sent to a balanced

photodetector (BPD). In this situation, the voltage measurement by the BPD will

be given by

vh(t) = Hh

[
â†1(t)â1(t)− â†2(t)â2(t)

]
, (4.66)

where Hh is the electronic gain factor of the homodyne detection system. Here we

have also introduced the field operators â1(t) and â2(t) impinging upon each of the

two PDs of the BPD, which can be written in terms of the field operators arriving

at the BS from the LO âLO(t) and signal âs(t) arms as

â1(t) =
ηh√

2
(âLO(t) + iâs(t)) +

√
1− ηhδâvac(t), (4.67)

â2(t) =
ηh√

2
(iâLO(t) + âs(t)) +

√
1− ηhδâvac(t), (4.68)

where ηh is the detection efficiency of the entire homodyne setup. Here we have

assumed that the efficiency of the two paths after the BS, leading the the each

of the BPD’s photodiodes have identical efficiencies (i.e. η1 = η2). The field âs(t)

exiting the signal arm can be expressed in a form similar to âd(t) given in Eq. (4.55)

as

ās =
√
ηsāout, (4.69)

δâs(t) =
√
ηsδâout(t) +

√
1− ηsδâvac(t), (4.70)

where we have replaced ηd with the efficiency ηs of the signal arm between the

optical cavity and the BS.

At this point, we assume that the high power optical field in the LO behaves

classically, such that we can replace its field operator with a classical amplitude9

as âLO(t) = āLO, which is related to the power in the LO as PLO = ~ωd|āLO|2.

Inputting this relation, as well as Eqs. (4.67)–(4.70) into Eq. (4.66), we find that

the low frequency homodyne voltage is given by

v̄h =
2HDC

h η1
√
ηs

~ωd

√
PLOPin

(
1− κeκi

∆2 + κ2/4

)
sin(∆θ), (4.71)

where ∆θ is the difference in phase between the LO and signal arms and HDC
h is

defined similar to HDC
d in the direct detection case. Therefore, we can set the phase

9With this assumption âLO(t) is time-independent, as we are working in the frame rotating at
the optical drive frequency.
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difference between these two paths by using v̄h as an error signal. In what follows,

we assume that ∆θ = 0 (corresponding to v̄h = 0), as this is the condition that

is generally used in our experiments. In this case, the high frequency fluctuating

portion of the homodyne voltage signal is given by

δv̂h(t) = iHh

[
ā∗LOδâs(t)− āLOδâ

†
s(t)
]
, (4.72)

which can be Fourier-transformed to produce

δv̂h(ω) = iHh

[
ā∗LOδâs(ω)− āLOδâ

†
s(ω)

]
. (4.73)

Here we can see that a homodyne measurement at ∆θ = 0 probes the phase

quadrature of the signal arm field fluctuations10. This fluctuating voltage can also

be used to determine the homodyne detection PSD according to

Sh
vv(ω) =

1

2π

∫ ∞
−∞
〈δv̂h(ω)δv̂h(ω′)〉 dω′. (4.74)

Inputting δv̂h(ω) into this equation, we find that the homodyne voltage PSD takes

on a form similar to Sd
vv(ω) as

Sh
vv(ω) = αh(ω)Stot

xx (ω) + Sh,imp
vv (ω), (4.75)

where αh(ω) and Sh,imp
vv (ω) are the homodyne transduction coefficient and electronic

noise floor defined similar to αd(ω) and Sd,imp
vv (ω) in Eq. (4.61). Note that while

Eq. (4.61) and (4.75) look nearly identical, they differ significantly due to the

varying functional forms of αd(ω) and αh(ω). For instance, in the ∆θ = 0 case

considered here, αh(ω) is maximized for a resonantly probed cavity (∆ = 0), such

the the homodyne signal is largest at this detuning.

4.4.4 The Standard Quantum Limit

For the ∆ = 0 case mentioned above, we find that the expressions for the optical

imprecision and backaction noise given in Eqs. (4.64) and (4.65) are simplified

10Homodyne detection can also be used to detect the amplitude quadrature of δâs(ω) if we
instead choose to set ∆θ = ±π/2.
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considerably to

Simp
xx (ω) =

~ωcκ
2

64ηG2Pin

(
1 + 4

ω2

κ2

)
=

κ

16ηN̄G2

(
1 + 4

ω2

κ2

)
, (4.76)

Sba
FF (ω) =

16~G2Pin

ωcκ2

(
1 + 4

ω2

κ2

)−1

=
4~2N̄G2

κ

(
1 + 4

ω2

κ2

)−1

, (4.77)

where we have used that fact that ωd = ωc and N̄ = 4Pin/κ~ωc for a resonantly

probed cavity. In this form, we immediately see that Simp
xx (ω) and Sba

FF (ω) achieve

equality in Eq. (4.63) for the case of an ideal, lossless detection system (i.e. η = 1).

In Fig. 4.3, we plot Stot
xx (ω) found by inputting the noise PSDs given by Eqs. (4.35),

(4.76), and (4.77) into Eq. (4.62) versus both optical power input to the cavity

and measured frequency. Note that since ω ≈ ωm over the narrow band of interest

surrounding our mechanical resonance, Simp
xx (ω) and Sba

FF (ω) are relatively flat over

this frequency range, such the Simp
xx (ω) appears as an increase in the measurement

noise floor, while Sba
FF (ω) acts as an additional white-noise force acting on the

resonator. Furthermore, we see that the total noise added to the system on

mechanical resonance will be minimized to Sadd
xx (ωm) = Szpf

xx (ωm) = 2x2
zpf/Γm at an

input optical power of

PSQL =
~ωcκ

16ηC

(
1 + 4

ω2

κ2

)
, (4.78)

where C = 4g2
0/κΓm is the single-photon cooperativity of the optomechanical system

and Szpf
xx (ω) is the zero-point fluctuation PSD of the mechanical displacement. This

point is known as the standard quantum limit (SQL) of the system, and corresponds

to the smallest amount of noise that can possibly be introduced into our mechanical

system using this linearized homodyne detection scheme. From Eq. (4.78), one can

see that the larger the single photon cooperativity and detection efficiency of a

given system, the smaller PSQL will be, making the SQL more accessible.

We conclude this section by noting that it is often the case in the literature that

the noise in an optomechanical system is expressed in terms of effective quanta that

are added to the measurement of the mechanical motion [106, 119, 298]. To find

these effective quanta, we divide Eq. (4.62) on resonance by 2Szpf
xx (ωm) to determine

the total inferred quanta in the system from the measurement as

n̄meas =
Stot
xx (ωm)

2Szpf
xx (ωm)

= n̄th + n̄imp + n̄ba +
1

2
, (4.79)
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Figure 4.3: (a) The total mechanical mode occupancy, including thermal and ground
state (dashed black) contributions, as well as those added by imprecision (Eq. (4.80)
– purple dashed) and back-action (Eq. (4.81) – green dashed) noise due to a quantum-
limited optomechanical homodyne measurement (i.e. η = 1 in Eq. (4.79)) versus
input optical power normalized by PSQL. Both the zero temperature (n̄th = 0 –
blue solid) and finite temperature (n̄th = 100 – red solid) traces exhibit a minimum
at the SQL. (b) Total spectral density for a quantum-limited optomechanical
homodyne measurement at the SQL for zero temperature (solid blue), comprised
of the ground state motion (black dashed) as well as the associated imprecision
(purple dashed) and back-action (green dashed) measurement noises. The spectrum
is normalized such that on resonance, the peak values correspond to the effective
quanta associated with each contribution.

with the effective noise quanta of the system defined as

n̄imp =
Simp
xx (ωm)

2Szpf
xx (ωm)

=
1

16ηC̄

(
1 + 4

ω2
m

κ2

)
, (4.80)

n̄ba =
Sba
xx(ωm)

2Szpf
xx (ωm)

= C̄

(
1 + 4

ω2
m

κ2

)−1

, (4.81)
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where C̄ = N̄C is the cavity-enhanced cooperativity. In Fig. 4.3, we have scaled

the y-axis in both plots according to this convention. Here the noise processes are

reinterpreted as additional quanta n̄add = n̄imp+n̄ba on top of the thermal occupancy

of the resonator, with n̄imp representing an apparent added phonon occupancy to the

measurement and n̄ba producing an actual addition to the mechanical oscillator’s

occupation via the associated radiation back-action force (see Fig. 4.3b). Note

that in order to experimentally observe the radiation-pressure backaction noise,

one requires that n̄ba & n̄th, which occurs for C̃ & 1, where C̃ = C̄/n̄th is the

cavity-enhanced quantum cooperativity of the system [150, 299]. Once again, in

the limit of perfect detection, the Heisenberg uncertainty principle restricts the

product of these added noise quanta to n̄impn̄ba = 1/16. Therefore, at the SQL

where n̄imp = n̄ba = 1/4, the total added quanta due to measurement noise is

n̄add = n̄imp + n̄ba = 1/2, equal to the effective occupancy associated with the

ground state motion, in direct agreement with what was found earlier for the

unnormalized spectra. Though the SQL enforces a limit on the precision at which

one can probe the motion of a mechanical resonator using the linear detection

schemes described in the previous two subsections, as we shall see in Chapter 8,

this limit can be overcome for specifically tailored nonlinear measurements.

4.5 Classical Nonlinear Optomechanics

In the previous section, we implicitly assumed an optomechanical system whose

mechanical fluctuations are small enough to allow for a linearized treatment of

the equations of motion. However, when the amplitude of oscillation A of the

mechanical resonator becomes large enough (GA� ωm), it is possible to enter a

regime where keeping terms to first order in their fluctuations no longer suffices.

One such situation where this occurs is optomechanical self-amplification [300–308],

which onsets when δΓm = −Γm, such that Γtot drops to zero and a parametric

instability emerges, driving the mechanical motion into large amplitude oscillations

in order to counteract the optical drive forces. In this situation, the large amplitude

mechanical oscillations associated with this nonlinear regime act to overwhelm

any quantum noise (i.e. terms containing δâin(t) or δâi (t)). We therefore restrict

97



ourselves to a classical treatment of the optomechanical system, which can by done

by taking the expectation values of Eqs. (4.15) and (4.16) such that they become

ȧ = −κ
2
a+ i∆0a+ iGxa+

√
κeāin, (4.82)

ẍ+ Γmẋ+ ω2
mx =

1

m
[Fth + Frp] . (4.83)

Here we have introduced a(t) = 〈â(t)〉 and x(t) = 〈x̂(t)〉 as the classical expectation

values of the optical field amplitude and mechanical resonator displacement, along

with the classical radiation-pressure force Frp(t) = ~G|a(t)|2 and thermal force

Fth(t) = 〈F̂th(t)〉.

We continue by assuming a high-Q mechanical system, such that we can use

the ansatz [150, 301, 302]

x(t) = x̄+ A cos(ωmt), (4.84)

as the solution to Eq. (4.83) for the resonator’s displacement, where again x̄ is the

resonator’s static displacement from equilibrium. Inputting this expression into

Eq. (4.82), we solve for the optical field amplitude as [150, 309]

a(t) =
√
κeāine

iθ(t)

∞∑
l=−∞

ãle
ilωmt, (4.85)

where θ(t) = ξ sin(ωmt) is the time-dependent global phase of the optical field and

ãl =
Jl(−ξ)

κ/2− i (∆0 +Gx̄− lωm)
, (4.86)

with Jl(z) being the lth Bessel function of the first kind and ξ = GA/ωm is the

dimensionless mechanical modulation strength [150, 301, 302, 304, 310]. We point

out that in this expression for ãl, we have explicitly written out the optical drive

detuning ∆ = ∆0 + Gx̄, as we wish to be more transparent with the x̄ term

throughout this section for completeness. Note, however, that it is often the case

that the effect of adding this Gx̄ term to the bare drive detuning is negligible,

such that ∆ ≈ ∆0. In this form, we interpret the optical field amplitude as being

comprised of infinitely many sidebands at integer multiples of the mechanical

frequency generated by multiphonon optomechanical interactions, with each having

a strength set by the coefficient ãl. The linearized regime is then simply the case
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where ξ � 1, such that only the first order sidebands at l = ±1 due to single-phonon

optomechanical interactions are considered.

Here, we are interested in determining the optomechanical quantities x̄, δωm,

and δΓm, as well as the steady state transmission through the optical cavity T , in

terms of the mechanical amplitude A using this nonlinear optomechanical treatment.

In doing so, we neglect the thermal forces acting upon the resonator, as they will be

dwarfed by the optically induced radiation-pressure force. Starting by taking the

time average of Eq. (4.83) (i.e. balancing the time-averaged forces of the system)

we find [150, 301–303]

x̄(A) =
~Gκe|āin|2

mω2
m

∞∑
l=−∞

|ãl|2, (4.87)

where we have used the fact that 〈ẍ(t)〉 = 〈ẋ(t)〉 = 0 and 〈x(t)〉 = x̄, as well as

〈|a(t)|2〉 = κe|āin|2
∞∑

l=−∞

|ãl|2. (4.88)

Note that since ãl is implicitly dependent on x̄, Eq. (4.87) represents a transcendental

equation for x̄ in terms of A and ∆0, which in general must be solved numerically.

Next, we multiply Eq. (4.83) by ẋ(t) and again take the time average,

balancing the time-averaged power of the system. This leads to the condition

that Γtot = Γm + δΓm(A) = 0 [150, 301–303], where we identify the amplitude-

dependent optomechanical damping of the system as

δΓm(A) =
2~Gκe|āin|2

Amωm

∞∑
l=−∞

Im
{
ãlã
∗
l+1

}
. (4.89)

In order to obtain this result, we have used the relations 〈ẍ(t)ẋ(t)〉 = 〈x(t)ẋ(t)〉 = 0

and 〈ẋ2(t)〉 = ω2
mA

2/2, along with

〈|a(t)|2ẋ(t)〉 = −Aωmκe|āin|2
∞∑

l=−∞

Im
{
ãlã
∗
l+1

}
. (4.90)

Finally, it can be shown (see Ref. [311] for example) that the spring effect in the

nonlinear optomechanical regime will be given by

δωm(A) = −~Gκe|āin|2

Amωm

∞∑
l=−∞

Re
{
ãlã
∗
l+1

}
. (4.91)
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Interestingly, one can use the time-averaged energy balance equation (by multiplying

Eq. (4.83) by x(t) and time-averaging), along with the relations 〈ẋ(t)x(t)〉 = 0,

〈ẍ(t)x(t)〉 = −ω2
mA

2/2, and 〈x2(t)〉 = x̄2 + A2/2, to show that δωm(A) = 0 while

A is large enough that the system remains in the nonlinear regime. This frequency

locking effect, coupled with the reduction of the resonance linewidth, is indicative

of phonon lasing in the mechanical resonator [150].

We are also interested in determining how mechanical self-oscillations affect the

optical transmission through the cavity. To do this, we consider the optical field

output from the cavity, which can be found using

aout(t) = ain(t)−
√
κea(t), (4.92)

which is simply the classical version of the input-output relation given in Eq. (4.45),

where aout(t) = 〈âout(t)〉 and ain(t) = 〈âin(t)〉 are the expectation values of the field

output from and input to the cavity [150]. Inserting Eq. (4.85) into this expression,

while only considering the time-independent terms, we find the amplitude-dependent

steady state transmission through the cavity as [150, 310]

T (A) =
|āout|2

|āin|2
= 1− 2κeRe

{
∞∑

l=−∞

J−l(ξ)ãl

}
+ κ2

e

∞∑
l=−∞

|ãl|2, (4.93)

where we have made use of the Jacobi-Anger expansion [81]

e±iφ(t) =
∞∑

l=−∞

J−l(ξ)e
±ilωmt. (4.94)

Finally we note that in the regime of small mechanical oscillations (i.e. ξ � 1),

each of the amplitude-dependent quantities given above approach their linearized

counterpart. That is, Eq. (4.87) → Eq. (4.20), Eq. (4.89) → Eq. (4.29), Eq. (4.91)

→ Eq. (4.28), and Eq. (4.93) → Eq. (4.57).

4.6 Conclusion

In this chapter, we introduced the theoretical framework used to describe the

coupling between the optical cavity and mechanical resonator of our system, in

both the linearized quantum and nonlinear classical regimes. First, we described
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the physical basis of our coupling technique, whereby the motion of the mechanical

resonator shifts the boundary conditions, and thus the resonant frequency, of

our WGM cavity. Using this description, we were then able to determine the

full Hamiltonian of our system, including the optomechanical interaction between

these elements, as well as the coupling with their baths and an external optical

drive. From this Hamiltonian, we derived the QLEs of the system, which we

then linearized and used to study the backaction phenomena of optomechanical

damping, spring effect, and cooling. Furthermore, we used this linearized treatment

to investigate how direct and homodyne detection methods could be used to

address our optomechanical cavities, where we determined the SQL associated with

the minimum possible noise that can be introduced into the system using such

measurement techniques. Finally, we took the expectation values of the QLEs to

determine the nonlinear behaviour of our system in the classical regime, where

we explored the concepts of optomechanical parametric amplification and phonon

lasing, as well as the effects each of these phenomena have on the optomechanical

properties of the system.
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Chapter 5

Experimental Methods

Large portions of this chapter, specifically Section 5.3 discussing the tapered

optical fibers used to couple light into our optical cavities, are based on the

publication B. D. Hauer, P. H. Kim, C. Doolin, A. J. R. MacDonald, H. Ramp,

and J. P. Davis, “On-chip cavity optomechanical coupling,” EPJ Tech. Intrum. 1,

4 (2014) (Ref. [312]) and draws heavily on the content therein. Note that in order

to be consistent with the rest of the thesis, a number of minor notational changes

have been made with respect to the original publication.

5.1 Introduction

In this chapter, we discuss the optomechanical cavities studied in this thesis,

along with the experimental methods used to address them. We begin in Section

5.2 by introducing our optomechanical device architecture and providing details

of their fabrication. Next, we discuss the dimpled tapered optical fibers used to

address these on-chip optomechanical cavities in Section 5.3, providing both a

theoretical background and fabrication methodology, as well as details on how

to adapt this technology to cryogenic environments. Finally, in Section 5.4, we

describe the cryogenic optomechanical detection system used to house and measure

our devices during our low temperature experiments.
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5.2 Optomechanical Devices

5.2.1 Whispering-Gallery-Mode Optomechanical Cavities

The optomechanical architecture studied in this work consists of a mechanical

element – in the form of either a half-ring (see Fig. 6.2 in Section 6.3) or claw-like

(see Fig. 7.2 in Section 7.3) resonator – sidecoupled to an optical microdisk, with

both elements fabricated from the same single-crystal-silicon device layer of a silicon-

on-insulator (SOI) chip. In this geometry, the microdisk cavity supports numerous

optical WGMs (see Section 3.3) in the near-infrared frequency band, which are

dispersively coupled to the motion of each mechanical resonator as described in

Section 4.2. More details on the individual geometries studied in this thesis can be

found in Sections 6.3 and 7.3.

5.2.2 Device Fabrication1

HF Etch and Critical Point Drying

Ultrasonic Liftoff and Piranha CleaningCr and Au SputteringUV Exposure and Development

Deposit HPR-504 Resist Piranha Cleaning Reactive Ion Etch

E-beam Exposure and DevelopmentDeposit ZEP-520a ResistInitial SOI Chip

Final Dimensions

Legend

Si SiO2

Au

Cr

ZEP-520a

HPR-504

2 μm

250 nm

7 nm

210 nm

~75 nm

Figure 5.1: Schematic of the device fabrication procedure outlined in Section 5.2.2.
The final thicknesses of the gold, chromium, silicon, and oxide layers are 210 nm, 10
nm, 250 nm, and 2 µm, respectively, while the separation gap between the optical
microdisk and mechanical resonator is on the order of 80 nm.

1The process used to fabricate the optomechanical devices described in this section was
developed and performed by Paul Kim. Here we provide a brief overview of this process, with
further details found in Ref. [313].
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[011]

Figure 5.2: Scanning electron microscope image indicating the orientation of our
optomechanical devices with respect to the [011] crystal direction in the silicon
device layer. Scale bar is 3 µm. Figure reproduced from Ref. [163]. c© 2018
American Physical Society.

To fabricate the optomechanical geometries described in the previous subsection,

we start with a 〈100〉 p-doped (boron, 22.5 Ω·cm) SOI wafer, consisting of a 250-

nm-thick device layer of monocrystalline silicon (see Table 5.1 for the properties of

our single-crystal silicon devices) on top of a 3-µm-thick sacrificial layer of silicon

dioxide supported by a 0.5-mm-thick silicon handle. The wafer is initially diced into

10 mm × 5 mm chips and cleaned using a hot piranha solution (75% H2SO4, 25%

H2O2) for 20 min. A masking layer (positive resist, ZEP-520a) is deposited onto the

clean silicon device layer to pattern the mechanical resonator/optical disk structure

(oriented along the [011] crystal direction as indicated in Fig. 5.2) using a 30 kV

e-beam lithography system (RAITH150 Two), followed by a cold development at

–15 ◦C (ZED-N50). The chip is then reactive-ion etched (C4F8 and SF6) to transfer

the pattern to the silicon, and subsequently cleaned with piranha so that it can be

spun with a new mask (positive photoresist, HPR-504). After optical lithography,

Cr and Au layers (7 nm and 210 nm, respectively) are sputtered on both sides of

the chip with equal thickness, surrounding the devices with a gold thermalization

layer. Ultrasonic lift-off in acetone and room-temperature piranha cleaning are

then used to ensure the cleanliness of the processed chips. Finally, the chips are

immersed in a hydrofluoric acid (HF) solution (49% HF) for 1 minute to etch the

sacrificial oxide layer, as well as attempt to passivate the exposed silicon surfaces
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of our devices [274, 314–316], which is followed by critical point drying to avoid

stiction.

5.2.3 Device Properties

In Table 5.1, we provide a table detailing the crystalline, mechanical, thermal,

and optical properties of our optomechanical devices. Unless otherwise specified,

we assume a temperature of 10 K and an optical wavelength of 1550 nm.

Property Symbol Value Source
Crystalline
Atomic mass M̄ 28.086 amu [186]
Mass density ρ 2330 kg/m3 [186]
Lattice spacing ã0 5.43 Å [186]
Atomic volume Va 20 Å3 ã3

0/8
Mechanical
Elastic coefficients C11 165.6 GPa [155]

C12 63.9 GPa [155]
C44 79.5 GPa [155]

Speeds of sound cl 9148 m/s Eq. (2.52)
ct1 4679 m/s Eq. (2.53)
ct2 5857 m/s Eq. (2.54)

Young’s modulus Ỹ ′ 169 GPa [167]
Bulk modulus B 101.5 GPa Eq. (2.117)
Thermal
Debye temperature Θ 645 K [154]
Debye frequency $/2π 13.4 THz kBΘD/~
Debye sound speed c̄ 5718 m/s Eq. (2.83)
Phonon mean free path ΛC 250 nm Eq. (2.99)
Heat capacity CV 654 J/kg·K Eq. (2.97)
Thermal conductivity K 0.312 W/m·K Eq. (2.101)
Thermal diffusivity J 4.77× 10−4 m2/s Eq. (2.102)
Thermal expansion coefficient α̃ 8.8× 10−8 K−1 [216]
Grüneisen parameter γ̃ 0.410 [216]
Optical
Refractive index ñ 3.45 [263]
Absorption coefficient α 0.336 m−1 [272]

Table 5.1: Summary of the crystalline, mechanical, thermal, and optical properties
of our single-crystal silicon devices, with their sources given. Here we assume T =
10 K for the thermal properties and λ = 1550 nm for the optical properties. Where
necessary, the beam cross-sectional dimensions are taken to be w = 200 nm and t
= 250 nm.
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5.3 Tapered Optical Fibers

A crucial element in any optomechanical device is the method by which light

is injected into, and subsequently collected from, the optical cavity of the system.

While a number of different options exist, including free space optical coupling

[55, 57, 317], grating couplers [318–320] and fiber-to-waveguide coupling [321–323],

we have chosen to use direct coupling from tapered optical fibers [270, 324–326].

Tapered fibers are more efficient, and require less on-chip space, than grating

couplers, while free-space coupling is inconsistent with on-chip devices. It may

prove that fiber-to-waveguide coupling [321–323] is more efficient and stable than

tapered fibers, but the versatility and maneuverability of tapered fibers remains a

significant advantage. Here we introduce the basic theory of tapered optical fibers,

allowing us to described their shape and supported optical modes, as well as discuss

the fiber pulling and dimpling procedure used to produce the cryogenic dimpled

tapered fibers detailed in this thesis.

5.3.1 Tapered Fiber Shape

A tapered fiber is a standard optical fiber (high index core surrounded by a lower

index cladding) that has had its diameter adiabatically reduced over a small length

known as the tapered region. This can be performed either through hydrofluoric

acid etching of an optical fiber [327, 328], or by a heat-and-pull procedure [329–334].

For our purposes, we chose to use the latter method, as the associated reflow of

the waveguide material during this process provides a much smoother surface, and

therefore lower losses, compared to tapered fibers produced through etching [327,

328].

In the heat-and-pull method, a small region of the initial optical fiber, known

as the hot-zone, is heated using a flame [324, 329, 330] or a CO2 laser [331–333].

We assume this hot-zone to be uniform across the diameter of the fiber, such that

it is contained within a cylinder of length lh (as will be the case for a stationary

flame2). Therefore, any fiber material within the hot-zone is melted and can be

stretched, while outside the hot-zone, material is frozen and immobile. To begin

2See Ref. [335] for the treatment of an arbitrary hot-zone.
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the stretching process, we pull on both sides of the fiber at a constant speed of vp,

causing its total length to increase by an amount lp = 2vpt, where t is the amount

of time the fiber has been pulled for and the factor of 2 arises because we are

pulling on both sides of the fiber. The final tapered fiber will then consist of three

regions, the initial unstreched fiber, the taper transition, and the taper waist, all of

which are detailed in Fig. 5.3. Note that as a result of our assumptions, the fiber

in this melted region is comprised of a cylinder of constantly reducing diameter

as material is pulled out into the frozen taper transition, such that the length of

the taper waist is always equal to the length of the hot-zone throughout the entire

pulling process.

A BCB A
Figure 5.3: Diagram illustrating the shape of a tapered fiber. Region A is the
unstreched fiber, where the fiber remains the original unperturbed diameter d0.
Region B is the taper transition over which the unstreched diameter is adiabatically
reduced to the waist diameter dw maintained over the length of the hot-zone lh
throughout Region C, which known as the taper waist. The total taper length
lt = lh + lp then spans the taper waist (Region C) and both taper transitions
(Region B). A constant hot-zone length lh is assumed such that the taper transition
has an exponential profile. Figure adapted from Ref. [312] under the Creative
Commons Attribution License.

In order to determine the diameter of the taper waist dw as a function of pull

time, and therefore, as a function of the pull length, we use a simple conservation

of volume argument. That is, at a time t, the instantaneous volume of the taper

waist (which is completely contained within the hot-zone) will be given by [335]

Vf =
π

4
d2

wlh. (5.1)

At a moment t + δt later, however, the fiber residing in the hot-zone will be

stretched by an amount δlp = 2vpδt, resulting in a commensurate decrease in the
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waist diameter δdw to conserve the volume of the fiber according to [335]

Vf =
π

4
(dw + δdw)2(lh + 2vpδt) ≈

π

4
(d2

wlh + 2dwlhδdw + 2d2
wvpδt), (5.2)

where we have only kept terms to first order in the small quantities δlh and δdw.

Equating Eqs. (5.1) and (5.2), we arrive at a differential equation for the taper

waist diameter as [335]

ḋw = −vp

lh
dw. (5.3)

The solution to this differential equation is a simple exponential decay, which when

subject to the initial condition dw(0) = d0 results in [335]

dw(t) = d0e
−vpt/lh . (5.4)

Therefore, the diameter of the taper waist is set by three parameters: the pull

speed vp, the pull time t, and the size of the hot-zone characterized by its length lh.

This exponential time dependence of dw(t) given in Eq. (5.4) can also be used to

determine the shape of the tapered fiber along its axial coordinate z. This is because

as the fiber is lengthened, the material that is pulled out of the hot-zone freezes in

place at the instantaneous waist diameter dw(t), resulting in an exponential profile

in the taper transition. The resulting shape of the entire tapered fiber (including

the unstretched, taper transition, and waist regions) can then be found as [335]

df(z) =



d0, z ≤ − lh+lp
2

d0e
−
(
z+

lh+lp
2

)
/lh , − lh+lp

2
≤ z ≤ − lh

2

d0e
−lp/2lh , − lh

2
≤ z ≤ lh

2

d0e

(
z− lh+lp

2

)
/lh , lh

2
≤ z ≤ lh+lp

2

d0,
lh+lp

2
≤ z

, (5.5)

with the total length of the tapered region given by

lt = lh + lp = lh + 2vpt. (5.6)

This taper profile is shown schematically in Fig. 5.3. Finally, we can confirm

that the taper profile given in Eq. (5.5) satisfies the conservation of volume by

integrating the volume element dV = π
4
d2

f (z)dz over the tapered region to find its

volume as

Vt =
π

4

∫ lh+lp
2

− lh+lp
2

d2
f (z)dz =

π

4
d2

0lh, (5.7)
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which is simply the initial unstretched volume of the hot-zone as expected.

Upon inspection of the taper profile given in Eq. (5.5), we can immediately

make the observation that for a given hot-zone length lh and taper waist diameter

(set by the total pull length lp and the initial fiber diameter d0), the final taper

shape is independent of the pulling speed vp and pull time t. Therefore, for a given

desired taper waist diameter, the steepness of the taper transition, and hence the

fiber transmission efficiency, is entirely set by the length of the hot-zone lh. Any

change in pull speed therefore simply amounts to reaching this desired taper waist

in a shorter amount of time and does not affect the taper profile3. This means

that a larger hot-zone generates a more adiabatic transition from the unstretched

diameter to the taper waist, and therefore a more efficient fiber.

5.3.2 Single-Mode Tapered Optical Fibers

Following the heat-and-pull process, a new air-clad core exists in the taper

waist, comprised of a composite material with an effective index determined by

the indices and relative sizes of the initial core and cladding. As it is this tapered

waist region that we use to couple light into and out of our optomechanical devices,

we are mainly concerned with the electromagnetic profile in this portion of the

fiber. For the tapered fibers considered in this work, we have lh ∼ 1 mm and

dw ∼ 1 µm, such that the taper waist has an aspect ratio of lh/dw ∼ 1000, and

can be modelled as a long, dielectric cylinder. As discussed in Appendix B, such a

structure will in general support many modes, with their optical fields described

by Eqs. (B.23)–(B.34) (inputting ñ1 = ñf and rc = dw/2 as appropriate), and will

therefore act as a multimode waveguide. However, once the fiber’s diameter drops

below the single mode cut-off diameter d∗ given by Eq. (B.50), only the HE11 mode

remains [336], as all other spatial modes decay evanescently. For the index of

refraction of our optical fiber (ñ1 = ñf = 1.47) clad in air/vacuum (ñ2 = 1), we

find d∗ = 1.1 µm at λ0 = 1550 nm (see Table B.1). Extending this treatment to

determine the critical diameter over the entire optical bandwidth of interest for

our experiment (1500 - 1630 nm) by assuming that the index of the fiber remains

3This is assumes a reasonably slow pulling speed such that the fiber is drawn out smoothly.
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relatively constant over this wavelength range [337], we find

d∗ ≈ 0.71λ0 ≈ λf , (5.8)

where λf = λ0/ñf is the wavelength of the guided light within the fiber. Therefore,

for the fiber used in our experiment, the critical diameter is approximately equal to

the wavelength of the guided light. Any fiber diameter on the order of or smaller

than, this critical diameter will then result in a large portion of the guided optical

field existing as an evanescent wave surrounding the core in the air/vacuum cladding

of the fiber. This condition allows for substantial overlap between the microdisk’s

optical WGMs and the single guided HE11 mode of the fiber when it is approached

to the cavity, providing efficient and stable coupling between these two optical

components.

5.3.3 Tapered Fiber Puller

To fabricate the tapered fibers used in our experiment, we adopt the heat-and-

pull procedure described theoretically in Section 5.3.1. In our pulling apparatus,

the hot-zone is produced using a flame from a custom-built mountable hydrogen

torch (see Fig. 5.4a), which is fed by a needle-valve-controlled line to allow for a

very small and stable flame. The torch itself is threaded using a 7/16”-24 die to

produce standard threads that allow for interchangeability of a number of different

torch tips. The tips that we use are shown in Fig. 5.4b, which provide a wide

variety of flames that are able to generate varying hot-zone sizes, and therefore,

different tapered fiber shapes (see Eq. (5.5)).

The hydrogen torch is mounted on a three-axis positioning system, consisting

of an automated xy-translation gantry system in the plane of the optical table

on which the apparatus is mounted, along with perpendicularly oriented manual

z-adjustment. Each orthogonal in-plane axis in the gantry system is driven by

a linear motorized stage, allowing for a total travel range of 200 mm in either

dimension with a minimum step size of 50 nm. Manual z-adjustment is provided

by a “gothic-arch” translation stage mounted using an angle bracket. The stage

is manipulated by a micrometer, providing a 25 mm travel range with 10 µm

resolution. This system is used for precise and reproducible placement of the
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Figure 5.4: (a) Picture of the tapered fiber pulling apparatus with the hydrogen
torch attached. (b) Close-up view of the hydrogen torch along with the HT and
OX series torch tips. (c) Picture of the microscope imaging system mounted on
the positioning gantry. (d) Labelled schematic detailing the fiber gluing process.
Once the tapering/dimpling process is complete, two droplets of epoxy located
on the fiber holder are approached to the newly created dimpled fiber using the
manually adjustable stage behind the fiber mounts, the end result of which can
be seen in Fig. 5.7e. This entire process is observed in real time to ensure proper
gluing using the microscope imaging system shown in (c). Inset is a top-down view
of this schematic, depicting the fiber, fiber holder and fiber clamps. Figure adapted
from Ref. [312] under the Creative Commons Attribution License.

hydrogen torch flame as it heats the fiber, which is an important element required

to consistently produce high quality tapered fibers. The fiber itself is held using

two dual-arm V-groove fiber holders, each of which is connected to an adjustable

optical post mounted on a linear motorized stage. Each stage has a travel range

of 100 mm with a resolution of 50 nm and can pull the melted fiber at speeds up

to 7 mm/s. All of the motorized stages are automated in software, allowing for

precise, reproducible xy-positioning of the torch gantry, as well as the ability to set

a consistent pull speed. The adjustable optical posts help to ensure that the fiber

is level, as proper alignment is crucial for producing a low-loss taper. This entire
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setup is surrounded by a protective box, built from optical rails and acrylic sheets,

which helps reduce flame instability due to air currents, and prevents contaminants

from entering the system.

It is also possible to attach a microscope imaging system directly to our torch

positioning gantry, as shown in Fig. 5.4c. The microscope is comprised of a 10×

long-working-distance infinity-corrected objective attached to a zoom lens system,

allowing for up to 70× magnification of the setup. This image is recorded using

a USB webcam, providing a video feed to a nearby computer. To ensure proper

lighting and image quality, light from an external microscope LED illuminator is

coupled into the lens system’s coaxial illumination port using a fiber optic waveguide.

This system is very useful, as it allows for real time imaging of our completed

tapered fibers when dimpling or gluing it to its holder, with full three-axis control.

As tapered fibers are quite fragile, it is difficult to move them without breaking.

For this reason, we first attach the tapered fiber to a holder (see Fig. 5.4d), creating

a more robust system which can easily be relocated. To this end, we have included

a manually adjustable three-dimensional linear positioning stage into our system,

which is located opposite the positioning gantry and allows for 1 µm sensitivity

over a travel range of 14 mm in each of x and y and 5 mm in z. This stage permits

us to properly position and align the fiber holder, as well as gradually approach it

to the fiber for gluing. In addition, it is used to position the fiber mold used in the

dimpling process, which must be approached and raised precisely at the thinnest

point of the tapered fiber (see Section 5.3.6).

5.3.4 Transmission Monitoring

Another important aspect of the tapered fiber puller is the fiber transmission

monitoring system, which allows us to determine the point at which the taper

becomes single mode (and therefore an upper bound of d∗ on its diameter), as well

as assess fiber losses both during and after tapering. To perform this measurement

1550 nm laser light from a tunable diode laser is injected into the fiber, with its

input power controlled via a variable optical attenuator (VOA) and its output

power measured using a PD. The low frequency electrical signal from this PD is

then recorded for the duration of the fiber pull using a data acquisition (DAQ)
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card, providing a record of transmission versus pull time, an example of which can

be seen in Fig. 5.5.
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Figure 5.5: Plot of transmission (normalized to the maximum transmission through
the fiber before the pull) versus pull time for a tapered fiber pull. This pull was
performed using a hydrogen flame generated by the OX-00 torch tip seen in Fig. 5.4b
(producing a hot-zone of ∼1.3 mm) at a pull speed of 40 µm/s, which resulted in
a final transmission efficiency of 78%. The important regions of the transmission
profile are labelled accordingly. Inset is a finite element method simulation of the
time averaged energy density for the fundamental HE11 mode at 1550 nm of an
air-clad tapered fiber with a diameter of 1 µm and index of refraction 1.4677. The
white circle indicates the limits of the fiber geometry, separating the internal guided
mode from the evanescent field located outside the fiber. Figure reproduced from
Ref. [312] under the Creative Commons Attribution License.

5.3.5 Tapering Procedure

To create tapered fibers, we begin with a standard optical fiber (Corning SMF-

28e) that has silica core and cladding diameters of 8.2 µm and 125 µm, respectively,

all of which is protected by an acrylate coating that extends out to a diameter of

245 µm. The indices of refraction and dimensions of the core and cladding are

chosen such that this original fiber is single mode for wavelengths exceeding 1260

nm, which includes both the dispersionless and minimum loss wavelengths in silica

of 1310 nm and 1550 nm.

To begin the tapering process, the acrylate coating is removed using a stripping

tool over a region approximately 1 cm long in the center of an SMF-28e fiber

around one meter in total length. This section of stripped fiber is subsequently
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cleaned using acetone to remove any remaining acrylate. The tapering occurs in

this stripped region, where the flammable acrylate has been removed. In addition,

the two ends of the fiber are stripped of acrylate, cleaved flat using a fiber cleaver,

and fusion-spliced onto the ends of two severed FC/APC patch cables, one of which

leads to the photodiode, the other to the diode laser. Optical losses through the

fiber vary depending on the quality of the splices, but we are only concerned with

providing enough power to observe variations in fiber transmission. Once we have

ensured that the splices provide sufficient power to the photodiode, the fiber is

placed in the V-groove fiber holders, with the stripped region centered between

them.

At this point, the hydrogen torch is lit using a butane lighter and gas flow is

adjusted to ensure a steady flame about 1 cm high. After it has been lit, the flame

is approached towards the fiber until a small portion of the stripped region (a few

mm in length) begins to glow, indicating that the fiber is in a molten state. The

position of the flame is then adjusted to maximize the size of this molten region

(i.e. the hot-zone), thus maximizing the completed tapered fiber’s transmission

efficiency. Once this point has been reached, the two pulling stages move in opposite

directions, each at a constant speed generally chosen to be 40 µm/s.

During each pull, the transmission of 1550 nm light through the fiber versus pull

time is measured as described in Section 5.3.4. By monitoring fiber transmission,

we are able to simultaneously assess fiber losses induced by the tapering procedure,

as well as determine the point at which the fiber waist has become single mode. The

emergence of this single guided fundamental mode is indicated as a stabilization

of the fiber transmission (which is evident in Fig. 5.5) due to the fact that the

diameter-dependent higher-order modes of the fiber have all died out. Using

scanning electron microscope (SEM) images of complete tapered fibers from our

pulling apparatus (see inset of Fig. 5.6), we have experimentally measured the

diameters of our fibers at the single mode transition to be ∼1.1 µm, consistent with

the theoretically predicted diameter for an air-clad fiber with an index of 1.47 at

1550 nm. By measuring the time required to reach this transition from a single pull,

it is possible to determine a value for the hot-zone length lh by inverting Eq. (5.4),

provided that the pull speed and initial fiber diameter are known a priori. Once
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Figure 5.6: Plot of fiber waist diameter versus pull time for fibers pulled using the
same parameters as described in Fig. 5.5. The red stars represent experimentally
measured fiber waist diameters using an SEM, while the blue line is a fit to Eq. (5.4)
with lh as the only free parameter. This fit produces a value of lh = 1.29 mm,
in excellent agreement with the predetermined value of 1.30 mm using the single
mode cut-off point. Inset is an SEM image of the tapered fiber waist at the single
mode transition. The waist diameter is measured to be 1.12 µm. Scale bar is 1
µm. Figure reproduced from Ref. [312] under the Creative Commons Attribution
License.

we have determine this hot-zone length for a given set of pulling conditions, we

are then able to predict the fiber waist diameter for a given pull time. Note that

in order for this prediction to be accurate, care must be taken to ensure that all

subsequent pulls have conditions matching the original one to provide a consistent

hot-zone length, which is readily accomplished by the repeatability of our system.

A plot of fiber waist diameter (measured using SEM images) versus pull time

using the apparatus described in this section is presented in Fig. 5.6, indicating

excellent agreement between the hot-zone length of 1.30 mm determined using the

single mode cutoff point and the fit value of 1.29 mm. The ability to predict the

fiber waist diameter is useful, as it allows for fabrication of fibers with varying

diameters. This process could then, for instance, be used to engineer tapered fibers

supporting a fundamental propagating mode that is phase-matched with a given

115



optical resonance of interest, enhancing coupling of light from the tapered fiber to

the cavity mode [324].

At the point of single mode transition, the fiber waist diameter is small enough

to produce the evanescent field required for coupling to an optical cavity, which

can be seen in the inset of Fig. 5.5. However, it is often advantageous to continue

pulling fibers to smaller diameters, further increasing the extent of the evanescent

field outside the fiber geometry, allowing for a larger range of coupling before the

fiber contacts the optical resonator. It is possible to create these sub-µm diameter

fibers by continuing to pull for a small amount of time (∼10 s) after the single

mode transition has been reached. Using the OX-00 torch tip (see Fig. 5.4b), we

have produced fibers with diameters as small as 850 nm before they break due

to the pressure of the flowing hydrogen gas from the torch. By using the HT-3,

our largest torch tip, the flame size increases, nearly doubling the hot-zone to 2.4

mm, allowing for the fabrication of tapered fibers with diameters down to 500

nm and slowly varying taper transitions, leading to transmission efficiencies in

excess of 99%, which is on par with state-of-the-art, ultralow loss fiber pullers

[334]. However, these narrow tapered fibers are extremely delicate, as well as very

long (lt ≈ 30 mm), making them difficult to mount within the limited space of our

experimental apparatus. For this reason, we use the OX-1 torch tip to fabricate

our cryogenic tapered fibers, as this tip creates a hot-zone with length lh ≈ 1.5

mm (corresponding to a single-mode cutoff time of ∼180 s), resulting in the ideal

tradeoff of compact (lt = 16 mm), yet highly efficient (transmission efficiency >

90%) tapered fibers.

5.3.6 Dimpling Procedure

While this straight tapered fiber is useful for coupling to a single off-chip device,

such as a microsphere [55, 57, 317, 324] or a bottle resonator [58, 59, 338], it is

difficult to use as a probe of on-chip devices, although it can be done if the device is

cleaved to hang over the edge of the chip [53] or isolated using a mesa [339]. Instead,

we find it useful to introduce a small dimple into the tapered region of the fiber,

which when approached towards the sample chip produces a portion of the taper

waist that can be used as a probe of an individual on-chip optomechanical device
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[312, 326]. By combining this probe with a precise positioning system, numerous

devices can be sampled using the localized coupling region at the tip of the same

dimple of the tapered fiber.
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Figure 5.7: Schematics and microscope images illustrating the tapered fiber dimpling
procedure. All scale bars are 125 µm. (a) The fiber is detensioned slightly (by
about 10 µm) by moving the fiber mounts inward, producing a small protrusion at
the fiber’s thinnest point. The fiber mold is then adjusted such that it is aligned
with this section of the fiber. (b) The fiber mold is raised upwards approximately 5
mm allowing the tapered fiber to wrap around it. During this process, the fiber
mounts are gradually moved inwards to prevent the fiber from breaking, while still
maintaining tension on the fiber mold. (c) An inverted hydrogen torch with a large
flame (using an HT series torch tip) is approached by hand, annealing the tapered
fiber into a dimpled shape. (d) The fiber mold is lowered while the fiber mounts
are moved outwards to restore tension to the newly formed dimple. The dimple
is gently removed from the fiber mold by flowing low pressure hydrogen gas from
below. (e) Optical microscope image of the resulting dimpled tapered fiber using
this procedure. (f) Plot indicating transmission (normalized to the pre-dimpled
value) through the tapered fiber before and after dimpling. Losses induced by
introducing the dimple to the fiber are ∼8%. Figure reproduced from Ref. [312]
under the Creative Commons Attribution License.
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Once a tapered fiber has been pulled, we proceed with the dimpling procedure.

To begin this process, we tape an optical fiber to the xyz-positioning stage located

opposite the hydrogen torch, mounting it perpendicular to the tapered fiber so

that it can be used as a mold in the dimpling process (see Fig. 5.7). The fiber

mold is prepared by stripping off its acrylic coating and cleaning it with acetone,

producing a mold of 125 µm in diameter. Alternatively, this fiber can be pre-tapered

to a smaller diameter using the process described in Section 5.3.5, allowing for

dimples with a smaller radius of curvature, which are generally more stable and

maneuverable. A small amount of graphite powder is also applied to this fiber mold

to prevent it from sticking to the tapered fiber, with excess removed using a fiber

wipe or compressed air to avoid contaminating the dimple.

Continuing with the dimpling procedure, the torch is replaced by the microscope

imaging system on the positioning gantry to allow the dimpling process to be

observed in real time. We also monitor the transmission through the tapered fiber

to quantify any losses induced by the dimpling procedure (see Fig. 5.7f). While

watching with the microscope, the tapered fiber is detensioned by approximately 10

µm to reveal its thinnest point, which appears as a small bend upwards in the fiber

(see Fig. 5.7a). The fiber mold is centered on this point and manually raised to

touch the tapered fiber using the z-positioning stage. Once the mold fiber touches

the waist of the tapered fiber, it’s transmission immediately drops to zero due to

scattering of the guided light off of the mold fiber. The mold fiber is then raised

approximately 5 mm, while simultaneously detensioning the tapered fiber, allowing

the fiber to wrap itself around the mold producing the desired dimpled shape,

as shown in Fig. 5.7b. During this process, the tapered fiber remains tensioned

tightly around the mold at all times to prevent it from twisting. A hydrogen flame

produced by the tapering torch is then introduced to anneal the fiber into a dimpled

shape. For this process, one of the HT series torch tips is used, producing a wide

flame that allows for the increase in heat distribution required for annealing. This

flame is approached to the dimple by hand, touching the mold and tapered fiber

lightly (for about one second) until it glows red (see Fig. 5.7c). At this point, any

graphite remaining on the mold will be burned away. The mold fiber is then slowly

lowered in the same manner it was raised, this time tensioning the tapered fiber,
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until the mold is returned to its initial position. The dimple is then extracted from

the mold by using the unlit torch to flow hydrogen from below, applying a gentle

pressure that releases the dimpled fiber. Typically, this process returns a dimple

with minimal losses (we observed ∼8% losses in Fig. 5.7f). A microscope image of

a dimpled fiber produced using this procedure is shown in Fig. 5.7e.

5.3.7 Gluing Procedure

Once a dimpled tapered fiber is produced, we carefully attach it to the custom-

built fiber holder seen in Fig 5.8 using the gluing apparatus, while monitoring

the entire process in real time with the microscope imaging system mounted on

the positioning gantry. By imaging the tapered region, as well as monitoring

transmission down the fiber, we can determine whether or not the tapered fiber

has survived the gluing process.

30 μm

(a)

(b)

Figure 5.8: (a) A photograph of a dimpled tapered fiber glued onto its fiber holder
using the procedure outlined in Section 5.3.7. (b) An optical microscope image of
this fiber showing its dimpled region. This image is produced using the optical
imaging system shown in Fig. 5.4c.

To begin this process, a low-temperature-compatible epoxy (Trabond 2151) is

deposited into the heads of two 4-40 screws inserted into either side of the fiber
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holder, as can be seen in Fig. 5.8a. Inserting the glue into the screws helps to

ensure that both droplets of epoxy are approximately the same height, such that

they will contact the unstretched portion of the fiber on both sides of the tapered

region at the same time. Furthermore, with this modular design we can dispose

of the screws once we are finished with the fiber, allowing us to reuse the fiber

holder in the future. Once the epoxy is applied to the fiber holder, it is placed

on its holding plate located on the gluing apparatus. The fiber holder is then

carefully aligned beneath the fiber, ensuring that the dimple is centered between

the two gluing points. Next, the fiber holder is slowly raised using the z-axis of the

positioning stages until the fiber has been enveloped in epoxy on both sides of the

taper. The initial epoxy is then left to dry (for about 30 minutes) allowing the fiber

to be held rigidly in place, drastically increasing its durability. Once the initial

epoxy dries, a second round of gluing is typically applied to the fiber, ensuring

that the epoxy overlaps with the unstretched region of the fiber still coated in

acrylate, which allows for the flexibility required to mount the dimpled fiber inside

of the cryostat. The system is then left for at least 12 hours to permit the epoxy

to properly set. After this curing process is complete, the fiber holder is removed

from the tapering setup and is transferred directly to the optomechanical coupling

system located inside the fridge (see Section 5.4.2) where it is fusion spliced into

the existing optical circuit.

5.4 Cryogenic Optomechanical Coupling System

All measurements of our optomechanical cavities are performed using a low-

temperature optical coupling apparatus located within the cryogenic environment

of a dilution refrigerator. In this section, we describe this coupling apparatus,

including its low-temperature imaging system, optical detection circuit, and

temperature/thermometry control.
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Figure 5.9: (a) Photograph of the of the optical imaging components located
at room temperature on top of the fridge, highlighting the CMOS camera chip,
adjustment thimble, and fiber bundle. (b) A schematic of the optical imaging
system. Included are the illumination source (LED) and camera chip (CMOS), as
well as the strong condenser lens (L1), plano-convex lenses (L2, L3), and achromatic
doublets (AD1, AD2, AD3) used to collimate and focus the imaging beam. (c)
Photograph of the cage-mount system housed within the dilution refrigerator used
to ensure consistent alignment of all the optical components of the imaging system.
Figure reproduced from Ref. [58]. Copyright 2015, AIP Publishing LLC.

5.4.1 Low Temperature Imaging System4

In order to ensure proper alignment between our dimpled tapered fiber and

optomechanical cavities, we require the ability to view both components in real

time. This is accomplished using a custom-built low temperature optical imaging

system [58], as can be seen in Fig. 5.9, which allows for 1 µm resolution over a

∼250 µm diameter field of view. To observe our chip and tapered fiber at low

temperatures, we illuminate them with low power light from a green LED (530

nm). This green light is coupled into our imaging system via a multimode fiber,

where it is emitted into free space and collimated using a combination of a strong

condenser (L1) and weak plano-convex (L2) lenses. The light is then sent to a 90/10

4The low temperature imaging system discussed in this section was designed and built by
Allison MacDonald, and is described in further detail in Refs. [58, 309].
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beam splitter, such that 90% of the initial beam’s power is dumped onto a black

metal velvet sheet located on the interior of the fridge’s radiation shield, while the

remaining 10% is sent to an achromatic doublet to focus light onto our device chip.

Achromatic doublets are then used to focus light onto the sample (AD1), as well as

recollect this light and inject it into bundle of 37,000 coherent optical fibers (AD2).

The collected light is subsequently guided to room temperature through this bundle,

where it is collimated by a third achromatic doublet (AD3) and focused onto a

CMOS camera chip from a commercially available webcam using a plano-convex

lens (L3). All lenses are housed in one-inch diameter aluminum lens tubes and are

connected through a cage-mount alignment system that can be translated along

the optical imaging axis via a thimble (50 µm positioning resolution over a full

range of 50 mm) operated at room temperature, allowing for precise focus of the

illumination beam on its intended target.

(a) (b)

dimple

scattered 
laser

scattered 
laser

dimple

Figure 5.10: Images taken using the low temperature imaging system described in
Section 5.4.1 highlighting red laser light from the handheld laser source scattering
from the dimpled region of the fiber. In (a), the laser is sent in from the left side of
the image, while in (b) light enters from the right. Scattering always occurs before
the dimple, such that it is located in between the two bright spots in (a) and (b),
as labelled in the figure.

Unfortunately, due to its 1 µm resolution, it is difficult to find the ∼1 µm

diameter tapered fiber using this optical imaging system. However, by coupling red

light (635 nm) from a handheld laser source into our optical circuit, we can ascertain

the location of the fiber by observing enhanced scattering near the dimpled region.
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Images demonstrating this fiber location techniques can be seen in Fig. 5.10.

5.4.2 Tapered Fiber Coupling System

(b)(a) (d)

(c)

Adjustment 

Screw
Fiber Holder

Positioning 

Stages
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Fiber Holder

Positioning 

Stages

Copper 
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Chip 
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Figure 5.11: (a) The low-temperature coupling apparatus located on the mixing
chamber plate of the dilution refrigerator. Red dashed line shows the optical
imaging system lens tube used to produce the photograph in (b) of an array of
on-chip optomechanical devices housed within the fridge at low temperature. Scale
bar in (b) is 50 µm. The blue dashed line highlights the gold-plated copper chip
holder shown in (c). Here the chip holder contains two silicon chips, where we can
see the gold layer deposited on the chips to improve their thermal conductivity at
low temperatures. The optomechanical device arrays are located in the small patch
on each chip where the gold appears to be missing. (d) A profile view of the optical
coupling system, allowing one to see the manual adjustment screw used to slide
the fiber holder into position before cooldown.

All experiments presented in this thesis are performed using a cryogenic

optomechanical coupling system located on the base plate of a dilution refrigerator

as shown in Fig. 5.11. In this system, a gold-plated chip holder (see Fig. 5.11c) is

placed on top of a stack of three low-temperature xyz linear position stages, each of

which are anchored on a gold-plated copper mount (with dimensions of 31.6 mm x

24 mm × 3 mm). These stages are driven by a slip-stick piezo positioner allowing for

coarse positioning with a step size of 50 nm over a full travel range of 5 mm, as well

as fine positioning over 0.8 µm (at 4.2 K) with sub-nm resolution. The fiber holder

is fastened to a separate positioning stack, consisting of another linear translation

stage (same step sizes as the chip positioning stages, except with a full range of
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motion of 6 mm and 1.2 µm for coarse and fine tuning, respectively) sandwiched

between two gold-plated Invar blocks. Once mounted, the fiber is translated at

room temperature using a manually adjusted 4-40 screw inserted into the back of

its holder (see Fig. 5.11d). To account for thermal contractions of the coupling

system as the fridge cools down, we translate the fiber to a known position (3/8 of

a turn of the adjustment screw, corresponding to approximately 240 µm, outside

of the optical imaging region) before tightening it down to ensure that the fiber

will come back into view at low temperatures. The fiber can then be translated

along its long axis using the linear positioning stage within its mount to locate

its dimpled region while the fridge is operating. Finally, both the chip and fiber

positioning apparatuses are fastened to an Invar plate, which is in turn attached to

the base plate of the fridge, in order to minimize any relative displacement between

these two stacks.

When operating the chip positioning stack, the motion of its translation stages

leads to a heat load generated by their piezos calculated to be Q̇p = 2.3 mW for

standard operating parameters5. We experimentally observe this positioner-induced

heating as an increase in the base temperature of our fridge of up to 200 mK. It

is therefore very important that we establish good thermal contact between these

stages and the mixing chamber of the fridge to ensure that they quickly thermalize

back to the base temperature of the fridge after operation. This thermal link is

provided by a copper braid affixed to each stage’s gold-plated copper mount, as

seen in Fig. 5.11a.

5.4.3 Optical Detection Circuit

In order to address the optomechanical devices studied in this work, we have

implemented a cryogenic optical detection system, shown schematically in Fig. 5.12,

that allows for both direct detection and homodyne measurements of the collected

optical signal. Light from a tunable external cavity diode laser (1550–1630 nm)

is fiber coupled into the optical circuit, where its wavelength is monitored by

5This heat load is calculated using the equation Q̇p = 2πfCV 2 tan(δ), where f = 50 Hz and
V = 50 V are the standard frequency and voltage of the positioner drive signal, while C ≈ 170
nF and δ = 1◦ are the capacitance and loss angle of the piezo at low temperatures [340].
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Figure 5.12: Schematic of the optical detection system used to probe the optical
and mechanical properties of the device under study. WLM = wavelength meter,
VC = variable coupler, VOA = variable optical attenuator, PM = power meter,
OMC = optomechanical cavity, FS = fiber stretcher, PID = proportional-integral-
derivative controller, V = voltmeter, LO = local oscillator, SW = optical switch,
BS = beam splitter, BPD = balanced photodetector, PD = photodetector, ADC
= analog-to-digital converter, DAQ = data acquisition. Figure reproduced from
Ref. [295]. c© 2019 American Physical Society.

sending 2% of its power to a wavelength meter (WLM), with this reading fed

back into the laser controller to ensure long-term (several hour) frequency stability.

The remainder of this signal is then sent through a variable coupler (VC), where

it is split into two separate paths: the signal and the LO, with the power in

each arm set by a VOA. For the measurements detailed in this work, the LO is

kept at a constant power of ∼2.6 mW. The power in the signal arm, however, is

varied depending on the experiment, all while being monitored by a 10% pickoff

to a power meter (PM). Following the VOA, the signal arm continues through a

fiber polarization controller (FPC), ensuring that the laser light headed towards

the optical cavity is polarization-matched to the optical mode of interest. This

polarization-controlled light is then coupled into (and subsequently out of) the

dilution unit using vacuum-compatible optical fiber feedthroughs. Once inside the

fridge, a dimpled tapered fiber [163, 312, 326] residing within the cryogenic optical

coupling apparatus (see Fig. 5.11a) is used to inject light into the optomechanical
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device, while also collecting the optical signal exiting the cavity. After coupling

out of the fridge, the collected optical signal is sent to an optical switch (SW)

that toggles between a standard, single-channel PD for direct detection and a

BPD for homodyne measurements. In the latter case, light from the signal arm is

recombined with the LO via a 50/50 fiber BS, with both outputs sent to the BPD.

To ensure phase coherence between the two beams incident on the BS, the optical

path length between the LO and signal arm are balanced to within a few mm using

the procedure outlined in [309]. The remaining path length difference between

these two arms of the circuit is maintained by feeding the low-frequency (< 15 kHz)

voltage difference signal of the BPD (see Eq. (4.71)), which is monitored in real

time using a voltmeter, through a proportional-integral-derivative (PID) controller

and into a fiber stretcher (FS) located in the LO arm, such that deviations from

the optical path length setpoint are compensated for. This process locks the phase

of the homodyne measurement and allows for phase-sensitive probing of a specific

quadrature of the optical field, with the mechanical motion extracted as fluctuations

in the high-frequency portion (> 40 kHz) of the BPD’s voltage difference signal,

which is recorded in the time domain using a 500 MS/s analog-to-digital converter

(ADC). The two low-frequency voltage readouts from each of the BPD’s individual

photodetectors are also collected, with one output sent to a low-frequency DAQ

card to monitor slow drifts, while the other is sent to the ADC to observe rapid

transients in this signal. Finally, the transmission through the optical cavity is

obtained by monitoring the low frequency (<25 kHz) channel of the direct detection

PD using the DAQ card.

5.4.4 Optical Detection Efficiency

To determine the overall efficiency of our optomechanical detection, we analyze

the losses at each junction of our optical circuit. While coupling to the device, light

from the tapered optical fiber is scattered off the substrate, as well as lost as photons

travel through the fiber and out of the fridge, with corresponding transmission

efficiencies of ηs = 62.6% and ηf = 72.0%, respectively. Further losses in the fiber

at room temperature result in a fraction ηRT = 81.6% of the light that exits the

fridge reaching the BPD. Including the quantum efficiency of the BPD itself, ηBPD
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= 78.1%, the total efficiency of the optical detection circuit (i.e. the fraction of

photons coupled out of the device that are converted into measured photoelectrons)

is given by ηdet = ηsηfηRTηBPD = 28.7%. Note that in order to determine the total

optomechanical detection efficiency η introduced in Section 4.4.1, which includes

cavity losses, we need to multiply ηdet by the cavity coupling efficiency ηc = κe/κ

associated with the considered experiment.

5.4.5 Thermometry and Temperature Control

To measure the temperature of the base plate of the dilution refrigerator, two

complementary thermometers are used. The counts of gamma ray emission from a

60Co nuclear orientation (NO) thermometer over a 570 s time window, referenced

to a high temperature count rate at 4.2 K, provides accurate temperature readings

below 50 mK, while the resistance curve of a RuO thermometer is used for T ≥ 50

mK. Uncertainty in the temperature readings of the NO thermometer are obtained

as the standard deviation in the spread of reported temperatures over the course of

a measurement, while the RuO error is taken as the uncertainty in the accuracy

of the sensor as specified by the supplier. Using measurements from the NO

thermometer displayed in Fig. 5.13, we determine the base temperature of the

fridge to be Tb = 9.3± 0.2 mK.

In order to heat the mixing chamber plate above its base temperature while the

fridge is operating, current is applied to a resistive heater mounted on the mixing

chamber plate, with temperature stability for the duration of a given measurement

ensured by a PID-controlled feedback loop referenced to the RuO thermometer. In

the range of 10 mK to 800 mK, the cooling power is provided by operating the

dilution unit, while for temperatures up to 4.2 K, fridge circulation is ceased and

cooling is supplied by the 1K pot. Above 4.2 K, the 1K pot is stopped, such that

connection to the liquid helium bath surrounding the fridge is the source of cooling

for the base plate.

We also perform experiments where exchange gas is added to the inner vacuum

can (IVC) of the fridge while the dilution unit is not in operation to enhance

the thermalization the system to the helium bath temperature of 4.2 K. This is

done by adding ∼1 cm3 of helium gas (at room temperature and atmospheric
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Figure 5.13: Histogram of the base temperatures of the fridge obtained using the
NO thermometer for 1500 individual measurements taken over 13 days between May
3, 2017 and May 16, 2017. The black dashed line is a fit of the data to a normal
distribution, from which we extract an average base temperature of Tb = 9.3± 0.2
mK, where the uncertainty is the standard deviation of the distribution.

pressure) to the volume of the IVC (VIVC = 2.2× 10−2 m3). Using the ideal gas law,

this results in an exchange gas pressure within the IVC of PIVC = 6.5× 10−2 Pa

∼ 10−1 Pa at 4.2 K. Note that at our highest operating temperature of 10 K, this

pressure rises slightly to PIVC = 1.6× 10−1 Pa, while dropping by a factor of 1000

to PIVC = 1.6× 10−4 Pa at 10 mK. In reality, these pressures will certainly be lower

due to condensation of helium on the fridge’s surfaces, as well as residual volumes

from pumping lines, inputs, etc., however, we use these values as an upper bound

when calculating the effects of gas-induced damping on our mechanical resonator

in Section 2.5.6.

5.5 Conclusion

In this chapter, we detailed the optomechanical devices considered in this thesis

and the methods used to study them. We began by providing a brief overview

of these devices and their material properties, as well as the procedure used to
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fabricated them. We then gave a theoretical introduction to the tapered fiber

optical waveguides used to couple light into our devices, modelling their shape,

electromagnetic fields, and single-mode cut-off diameter. With this description in

place, we detailed the heat-and-pull rig used to create and mount our cryogenic

dimpled tapered fibers. Finally, we discussed the low temperature coupling

apparatus that uses this fiber to address our optomechanical devices.

129



Chapter 6

Two-Level System Damping in a
Quasi-One-Dimensional
Optomechanical Resonator

This chapter is based on the publication B. D. Hauer, P. H. Kim, C. Doolin,

F. Souris, and J. P. Davis, “Two-level system damping in a quasi-one-dimensional

optomechanical resonator,” Phys. Rev. B 98, 214303 (2018) (Ref. [163]) and draws

heavily on the content therein. Note that in order to be consistent with the rest of

the thesis, a number of minor notational changes have been made with respect to

the original publication.

6.1 Introduction

The TLS relaxation damping model introduced in Section 6.2 has been

very successful in describing the absorption of sound waves in bulk amorphous

solids, where a T 3-dependence in acoustic attenuation has been observed at

low temperatures for a number of glassy materials in accordance with their

three-dimensional nature [341]. However, the situation becomes significantly

more complicated when considering the reduced geometries associated with

nano/micromechanical resonators. Although a linear temperature dependence

in mechanical dissipation was first observed for early cryogenic measurements of

cm-scale single-crystal silicon torsional oscillators [342, 343], this behaviour was

rationalized as being due to the crystalline nature of the resonator material [344]

or electronic defects [345], as opposed to reduced dimensionality effects. While
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a similar linear trend was later reported in polycrystalline aluminum nanobeams

[346], the vast majority of cryogenic dissipation measurements performed on

driven micro/nanomechanical resonators have demonstrated a considerably weaker

temperature dependence of Γ ∼ T 1/3 [347–350]. Attempts to explain this sublinear

temperature dependence have associated it with the large strain induced by the

external drive fields applied to these resonators [351] or possibly their beamlike

geometries [201, 352], however, a full quantitative description has yet to be found.

In light of this disconnect between theory and experiment, a clear and careful

analysis of TLS damping in reduced-dimensionality nanomechanical resonators is

required in order to comprehend this dissipation mechanism [162].

In this chapter, we present measurements of the low temperature dissipation

in a silicon nanobeam due to coupling with TLS defects confined within its one-

dimensional geometry. In Section 6.2, we begin by modifying the standard tunneling

model, which has been used to successfully describe acoustic attenuation due

to TLS defects in bulk amorphous materials, to properly account for the one-

dimensional geometry of our crystalline nanobeam. We continue in Section 6.3

by briefly discussing the geometry of our half-ring resonator, providing FEM

simulations of its optical and mechanical modes, which allow us to calculate its

optomechanical properties and strain distributions. We follow in Section 6.4 by

detailing the optomechanically-mediated ringdown technique used to measure the

nanomechanical resonator’s damping rate. Here we describe the pulsed homodyne

detection system and the mechanical mode temperature calibration technique used

to characterize our optomechanical system, as well as assess the possibility of

measurement-induced heating of the device chip. Using this measurement scheme,

we determine the mechanical damping rate for four of the device’s mechanical

modes over three orders of magnitude in fridge temperature ranging from 10 mK

to 10 K. In Section 6.5, we fit these data, demonstrating quantitative agreement

with the tunneling model for relaxation damping due to TLS defects embedded in

a one-dimensional geometry. Extracting information about the density of states

and deformation potentials of the TLS ensembles that couple to the resonator’s

motion, we speculate that they are caused by glassy surface defects created during

fabrication of the device. Finally, we show that at 10 mK each mechanical mode
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couples on average to less than a single thermally-active defect, entering the regime

where quantum-coherent interactions between phonons and an individual defect

may be possible.

6.2 Two-Level System Damping

At cryogenic temperatures phononic energy loss is often caused by coupling

between the motion of the resonator and defects within its material [353]. This was

first discovered in the early 1970s by Zeller and Pohl [354] who noticed that the

cryogenic thermal properties of a number of glassy solids deviated significantly from

what was expected according to the Debye model (see Section 2.4.3). To account for

this anomalous behaviour, Anderson et al. [220] and Phillips [221] simultaneously

developed what is now known as the standard tunneling model (STM), whereby

phonons in a solid exchange energy with the medium by driving configurational

changes of intrinsic defect states. Further extensions to this model were made by

Jäckle et al. [355, 356], who used it to correctly describe the anomalous acoustic

absorption observed in fused quartz [357].

While early incarnations of the STM were used with great success to describe

the cryogenic properties of bulk amorphous solids, modifications to this model

are necessary in order to account for the behaviour of defect-phonon coupling

in reduced dimensionality systems fabricated from crystalline solids [162]. Here,

we introduce the standard tunneling model in the original form used to model

defects in amorphous solids and extend it to describe the mechanical dissipation in

crystalline nanomechanical resonators.

6.2.1 Double-Well Potential Model for Tunneling Systems

In the STM, the configurational states of each defect in the solid are modelled as

a particle of mass m0 confined to an asymmetric double-well potential [220, 221], as

seen in Fig. 6.1. We assume this potential to be comprised of two identical harmonic

wells, each with a ground state energy Eg = ~ωg/2, offset by an asymmetry energy

E∆, and separated by a barrier of height EB and the configurational coordinate q.

We consider the system to be at low enough temperatures (kBT � ~ωg) such that
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Figure 6.1: Schematic of a particle of mass m0 tunneling between the two ground
states of a double-well potential, separated by a barrier of height EB and a
generalized configurational coordinate q, with an asymmetry E∆ between their two
minima. The particle can tunnel through the barrier, allowing it to be localized in
the ground state of either the left or right well (each with a ground state energy of
Eg = ~ωg/2), as described by the wavefunctions ΨL and ΨR, respectively. Figure
adapted from Ref. [163]. c© 2018 American Physical Society.

only the ground state of each well will be populated with any significant probability.

This allows for a TLS description of these two lowest lying configurational states,

with wavefunctions ΨL(~r) (ΨR(~r)) corresponding to the particle occupying the

higher (lower) energy state in the left (right) well. In this set of localized basis

states, the Hamiltonian will be given by [222, 223]

ĤTLS =
1

2
E∆σ̂z −

1

2
E0σ̂x, (6.1)

where we have chosen zero energy to be the midway point between the minimum of

each well and σ̂x (σ̂z) is the x (z) Pauli spin matrix. In this Hamiltonian, quantum

tunneling between the two states of the TLS is characterized by the tunnel splitting

or tunneling energy E0, which can be determined using the Wentzel-Kramers-

Brillouin (WKB) approximation to be E0 ≈ ~ωge
−ζ , where ζ =

√
2m0EBq2/~2 is

known as the tunneling or Gamow parameter and characterizes the penetration of

the wavefunctions into the barrier [222].

The Hamiltonian in Eq. (6.1) can be diagonalized by rotating the basis by an
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angle ϕ defined by tan(2ϕ) = E0/E∆, resulting in the new Hamiltonian [222, 223]

ĤTLS =
1

2
Eσ̂z, (6.2)

in the energy eigenstate basis

Ψ+(~r) = ΨL(~r) cos(ϕ)−ΨR(~r) sin(ϕ), (6.3)

Ψ−(~r) = ΨL(~r) sin(ϕ) + ΨR(~r) cos(ϕ). (6.4)

Here, E =
√
E2

∆ + E2
0 is the energy separation between the two states of the TLS,

with the wavefunctions Ψ±(~r) corresponding to the ±E/2 eigenvalues. If the TLS is

in thermal equilibrium with a bath at temperature T , we can use the diagonalized

Hamiltonian of Eq. (6.2) to determine the probability that the TLS is in either of

its two states as

p0
± =

e∓E/2kBT

eE/2kBT + e−E/2kBT
=

1

e±E/kBT + 1
, (6.5)

with p0
+ (p0

−) corresponding to the excited (ground) state. From these probabilities,

we also define a population inversion probability as

s0 = p0
+ − p0

− = − tanh

(
E

2kBT

)
. (6.6)

6.2.2 Resonant Interaction

Tunneling systems that are embedded in a solid are able to exchange energy with

the various excitations of the surrounding medium. Here, we focus on insulating

solids, such that the dominant excitation at low temperatures will be phonons.

If the interacting phonon has energy on the order of, or greater than, the TLS

separation energy, it can be directly absorbed, promoting a TLS in its ground state

to its excited state. Therefore, the mechanical dissipation rate Γres due to this

resonant interaction is proportional to the population inversion probabilities of the

interacting TLSs, such that [162, 187, 222, 223]

Γres ∝ tanh

(
E

2kBT

)
. (6.7)

However, for the temperatures (10 mK to 10 K) and frequencies (< 20 MHz)

considered in this thesis, TLS with energies relevant for this resonant interaction
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will be thermally saturated (E ∼ ~ωm << kBT ), such that absorption or emission

of a phonon is equally likely [162]. Therefore, this dissipation mechanism does not

need to be considered.

6.2.3 Relaxation Interaction

For non-resonant defect-phonon interactions at low frequencies (i.e. where the

phonon energy is less than the separation between these two defect states), we

instead focus on the relaxation interaction [187, 222, 223]. In this situation, local

strain variations due to the motion of the resonator distort the environment of the

TLS defects, driving the system out of thermal equilibrium by shifting the energy

separation between their two levels. This allows the TLS to interact with the lower

frequency vibrational modes of the solid, absorbing and emitting phonons until it

can relax to this new thermal equilibrium.

To model this relaxation effect, we consider the full Hamiltonian for the

interaction between the modes of a mechanical resonator and an ensemble of

TLS defects, given by the so-called “spin-boson” Hamiltonian [162, 201, 358]

Ĥ =
∑
k

~ωkb̂†kb̂k +
1

2

∑
j

Ejσ̂z +
∑
j

(
E∆j

Ej
σ̂x +

E0j

Ej
σ̂z

)
↔
γj :

↔
ε + ĤΓi

. (6.8)

In this Hamiltonian, the first two terms correspond to the energies of the resonator’s

mechanical modes, each with angular frequency ωk and annihilation (creation)

operator b̂k (b̂†k), and the TLS ensemble, with asymmetry, tunneling, and separation

energies of E∆j, E0j, and Ej =
√
E2

∆j + E2
0j for each TLS. The third term then

describes the coupling between the TLS ensemble and the mechanical motion of the

resonator, characterized by the dyadic (tensor) product
↔
γj :

↔
ε = γj,abεab between

the deformation potential tensor (i.e. the strain-TLS coupling tensor)
↔
γj of the jth

TLS and the total strain tensor
↔
ε induced by the resonator motion [162, 223, 359].

Using Eq. (2.21), along with the fact that the (quantized) displacement amplitude

of each mechanical mode can be expressed as x̂k = xzpf(b̂
†
k + b̂k) (see Eq. (2.17)),

we can write the system Hamiltonian in the more succinct form

Ĥ =
∑
k

~ωkb̂†kb̂k +
1

2

∑
j

Ejσ̂z +
∑
j

∑
k

(µkjσ̂x + νkjσ̂z) (b̂†k + b̂k) + ĤΓi
, (6.9)
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where we have introduced the TLS-phonon coupling coefficients

µkj =
E0j

Ej

√
~

2ωk

↔
γj :

↔
εk(rj), (6.10)

νkj =
E∆j

Ej

√
~

2ωk

↔
γj :

↔
εk(rj), (6.11)

with
↔
εk(rj) being the strain profile of the kth mechanical mode evaluated at the

position of the jth TLS denoted by the vector rj . Finally, similar to Eq. (4.7), ĤΓi

is given by

ĤΓi
=
∑
q

~ωq b̂†q b̂q + i~
∑
q

∑
k

(
fqkb̂

†
kb̂q − f

∗
qkb̂
†
q b̂k

)
, (6.12)

such that this Hamiltonian describes the interaction of the resonator with its

environmental bath, accounting for dissipation mechanisms aside from those due to

TLS-phonon interactions, as well as the thermal drive of the mechanical motion.

Coupling between the mechanical modes of the resonator and the TLS ensemble

as described by the the Hamiltonian in Eq. (6.9) will act to shift the energy

separation of each TLS in time according to

E ′j(t) = Ej + δEj(t), (6.13)

with

δEj(t) = 2
∑
q

νqj
[
bk(t) + b∗k(t)

]
, (6.14)

where we have introduced the expectation value of the kth mechanical mode’s

annihilation operator as bk(t) = 〈b̂k(t)〉. This shift in the separation energy will

additionally act to perturb the difference in population between the excited and

ground state of each TLS away from equilibrium, leading to a time-dependent

inversion probability

sj(t) = 〈σz〉 = pj,+(t)− pj,−(t) = s0
j + δsj(t), (6.15)

where δsj(t) is the instantaneous deviation of the inversion probability away from

its equilibrium value s0
j in the absence of the phonon-induced strain, while pj,+(t)

and pj,−(t) are the instantaneous probabilities of the jth TLS being in its excited

and ground state, respectively.
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In order to determine δsj(t), we must first realize that the perturbed system

will strive towards a new, time-dependent equilibrium inversion probability

s̄j(t) = p̄j,+(t) − p̄j,−(t), which can be found by inputting Eq. (6.13) into the

expression for s0
j in Eq. (6.6) and expanding to first order to obtain

s̄j(t) = s0
j +

ds0
j

dEj
δEj(t) = s0

j − sech2

(
Ej

2kBT

)
δEj(t)

2kBT
. (6.16)

This “instantaneous” equilibrium probability can be interpreted as the inversion

probability that the system would reach if the TLS energy separation stayed at

E ′j(t) for a sufficiently long time. However, a given TLS cannot immediately achieve

this new equilibrium, as it must do so by exchanging energy with the surrounding

phonon bath, such that the probabilities of the excited and ground states evolve

according to [222]

ṗj,+ = −pj,+υj,− + pj,−υj,+, (6.17)

ṗj,− = pj,+υj,− − pj,−υj,+, (6.18)

where υj,− (υj,+) is the phonon-induced transition rate associated with the excitation

(de-excitation) of the TLS. By examining the steady state of Eqs. (6.17) and (6.18),

we can see that these transition rates obey the condition of detailed balance,

such that υj,+/υj,− = p0
j,+/p

0
j,− = p̄j,+(t)/p̄j,−(t) = e−Ej/kBT [223, 356]. Using this

relation, along with the conservation of probability, pj,+(t) + pj,−(t) = 1, we find

ṡj = −(pj,+ − pj,−)(υj,+ + υj,−) + υj,+ − υj,− = −sj − s̄j
τj

, (6.19)

where we have introduced the relaxation rate of the TLS populations as

τ−1
j = υj,+ + υj,− = υj,−(e−Ej/kBT + 1). (6.20)

This rate can be interpreted as the inverse of the relaxation time τj required for the

inversion probability of a given TLS to relax back to its steady-state value after it

has been perturbed away from equilibrium. By inputting Eq. (6.16) into Eq. (6.19),

while using the fact that ṡj(t) = δṡj(t), we then find

τjδṡj = −δsj −
1

2kBT
sech2

(
Ej

2kBT

)
δEj(t), (6.21)
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which can be Fourier transformed to obtain

δsj(ω) = − 1

2kBT
sech2

(
Ej

2kBT

)
δEj(ω)

1− iωτj
, (6.22)

resulting in the frequency domain solution for the deviation of the inversion

probability from equilibrium.

We now look to determine an expression for the TLS relaxation rate given by

Eq. (6.20). This can be done by applying a Fermi’s Golden Rule calculation using the

interaction Hamiltonian (i.e . the third term in Eq. (6.9)) to determine the transition

rate from the initial state |Ψi〉 = |Ψj,+, ni〉 to the final state |Ψf〉 = |Ψj,−, nf〉, where

ni (nf) is the initial (final) occupancy of the phonon state and Ψj,+ (Ψj,−) is the

wavefunction corresponding to the TLS in its excited (ground) state. Enforcing

nf = ni+1, as well as Ej = ~ωk (when the TLS de-excites, it creates a single phonon

of frequency ωk), while averaging over the initial phonon states and summing over

the final phonon states, gives the total TLS de-excitation rate [187, 222]

υj,− =

(
E0j

Ej

)2∑
k

π

ωk
(〈nk〉+ 1) |↔γj :

↔
εk(rj)|2δ(Ej − ~ωk), (6.23)

where 〈nk〉 = (e~ωk/kBT−1)−1 is the average phonon occupation of the kth mechanical

mode according to Bose-Einstein statistics. Inputting this expression into Eq. (6.20),

the TLS relaxation rate is then be found to be [162]

τ−1
j =

(
E0j

Ej

)2∑
k

π

ωk
coth

(
Ej

2kBT

)
|↔γj :

↔
εk(rj)|2δ(Ej − ~ωk). (6.24)

To analyze how the delay in equilibration due this finite relaxation rate affects

the dissipation of acoustic energy in each of the mechanical modes, we again look

to the Hamiltonian in Eq. (6.9) to determine the Heisenberg equation of motion

for b̂k as

˙̂
bk =

i

~
[Ĥ, b̂k] = −

(
iωk +

Γk,i
2

)
b̂q −

i

~
∑
j

(µqjσ̂x + νqjσ̂z)−
√

Γk,ib̂k,i, (6.25)

where we have used the fact that (see Section 4.3.2)

i

~
[ĤΓi

, b̂k] = −Γk,i
2
b̂k −

√
Γk,ib̂k,i. (6.26)
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Here we have introduced Γk,i as the damping rate for the kth mechanical mode

due to sources other than the TLS ensemble, while b̂k,i is a drive term due to noise

(both thermal and quantum) leaking in from the environment [151, 203]. Taking

the expectation value of Eq. (6.25), we find an analogous equation of motion for bk

as

ḃk = −
(
iωk +

Γk,i
2

)
bk −

i

~
∑
j

νkjsj −
√

Γk,ibk,i, (6.27)

where we have neglected the term proportional to µkj. Fourier transforming

Eq. (6.27) and grouping terms proportional to bk, while using the fact that only

the dynamical part of sj (i.e. δsj(ω) given by Eq. (6.22)) will contribute to the

mechanical damping, we find the expression for the total dissipation rate of the

kth mechanical mode as

Γk = Γk,i + Γk,TLS, (6.28)

where

Γk,TLS =
∑
j

(
E∆j

Ej

)2 |↔γj :
↔
εk(rj)|2

kBT
sech2

(
Ej

2kBT

)
τj

1 + ω2
kτ

2
j

, (6.29)

is the mechanical damping rate due to the TLS-phonon relaxation interaction. We

note that in the situation where TLS damping dominates (i.e . Γk,TLS � Γk,i) for a

given mode, we can take Γk ≈ Γk,TLS, as is done for the fits in Section 6.5 below.

6.2.4 Determination of γj : εq(rj)

In general, the product
↔
γj :

↔
εk(rj) found in Eq. (6.29) is a complicated,

spatially varying sum over a number of tensor components. However, by using

the local symmetries of the simple cubic lattice of crystalline silicon, as well as

making some assumptions about our TLS ensemble, we can simplify this quantity

considerably. We begin by expressing the deformation potential tensor of the jth

TLS as
↔
γj =

↔

R :
↔

Wj = RabcdWj,ab [359], where
↔

R is a fourth rank tensor that

describes the TLS environment and

↔

Wj =

 W 2
j,x Wj,xWj,y Wj,xWj,z

Wj,xWj,y W 2
j,y Wj,yWj,z

Wj,xWj,z Wj,yWj,z W 2
j,z

 (6.30)

is a second rank tensor that characterizes the orientation of each TLS. Here,

Wj,x = sin(θj) cos(φj), Wj,y = sin(θj) sin(φj) and Wj,z = cos(θj) are the components
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of the unit vector parallel to the defect’s elastic dipole moment, with θj and φj

specifying its orientation [162, 359]. Using this formalism, the tensor product found

in µkj, νkj, and Γk,TLS can then be written as
↔
γj :

↔
εk(rj) = RabcdWj,abεk,cd(~rj).

Due to the simple cubic symmetry of the silicon lattice,
↔

R will have only three

independent parameters [359], namely

Rxxxx = Ryyyy = Rzzzz = R11, (6.31)

Rxxyy = Rxxzz = Ryyxx = Ryyzz = Rzzxx = Rzzyy = R12, (6.32)

Rxyxy = Rxyyx = Rxzxz = Rxzzx = Ryxxy = Ryxyx = Ryzyz = Ryzzy

= Rzxxz = Rzxzx = Rzyyz = Rzyzy = R44,
(6.33)

directly analogous to the elasticity tensor of the system given in Eqs. (2.32)–(2.34).

Furthermore, assuming the TLS ensemble is uniformly distributed (both in spatial

density and orientation), we can average |↔γj :
↔
εk(rj)|2 over the total volume V of

the resonator and the solid angle of TLS orientations, resulting in [162]

〈|↔γj :
↔
εk(rj)|2〉V =

3ω2
k

V ρ

∑
η

γ2
η

c2
η

ekη. (6.34)

Here, the sum is over the three different phonon polarizations (one longitudinal and

two transverse), where γη, cη, and ekη are the deformation potential, speed of sound,

and fraction of the resonance mode’s energy associated with each polarization.

In terms of the components of
↔

R, the deformation potentials for each phonon

polarization are given by

γl =

√
2R2

11 + 7R2
12 + 6R11R12 + 4R2

44

45
, (6.35)

γt1 =

√
(R11 −R12)2

45
, (6.36)

γt2 =
2R44√

45
, (6.37)

while explicit forms of cη and ekη are given by Eqs. (2.52)–(2.54) and Eqs. (2.67)–

(2.69) in Section 2.3, respectively.

6.2.5 Coupling to Ensembles of Amorphous TLS Defects

Using the previous results of this section, we are now equipped to determine the

mechanical dissipation due to coupling to a given ensemble of TLS defects. Starting
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with the relaxation rate, we input the result for 〈|↔γj :
↔
εk(rj)|2〉V from Eq. (6.34)

into Eq. (6.24) to obtain

τ−1
j =

3π

V ρ~
∑
k,η

E2
0j

Ej

γ2
η

c2
η

ekη coth

(
Ej

2kBT

)
δ(Ej − ~ωk). (6.38)

To evaluate the sum over k, we must carefully consider the density of states

%η(ω) associated with η-polarized phonons. For the system at hand, a discrete

density of states associated with the mechanical modes of the resonator would

seem to be an obvious choice. However, because a large number of these modes

are thermally populated for the temperature range considered (at T = 10 mK,

modes with frequencies up to ωk/2π = 144 MHz are occupied by at least one

thermal phonon on average), we can instead use the simpler continuum (Debye)

density of states given by Eq. (2.84) [162]. That said, we still need to determine the

dimensionality of this density of states. This was done in Section 2.4.4, where we

compared the characteristic dimensions of the device to its shortest thermal phonon

wavelength and found that the devices considered in this thesis can be treated

as one-dimensional for T . 1 K. In the temperature range T > 1 K, we assume

the resonator to be quasi-one-dimensional, such that for all relevant temperatures

we can use the one-dimensional phononic density of states given by Eq. (2.85).

With this choice of density of states, we can replace the sum in Eq. (6.38) using

Eq. (2.80), which upon performing the integral, results in

τ−1
j =

1

Aρ~2

∑
η

E2
0j

Ej

γ2
η

c3
η

coth

(
Ej

2kBT

)
. (6.39)

Here, A = wt is the cross-sectional area of the device (A = 5.0 × 10−14 m2 for

our half-ring resonator) and we have assumed ekl = ekt1 = ekt2 ≈ 1/3, as this is

the average value for each fraction when a large number of mechanical modes are

considered. We further note that each phonon polarization will in general have

a unique deformation potential γη, however, determining exact values for these

parameters is beyond the scope of this work. Therefore, we further simplify this

expression for the relaxation rate by assuming γl = γt1 = γt2 = γ, allowing us to
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introduce an effective speed of sound ce = 3

√∑
η

1

c3
η

= c̄/ 3
√

3 = 3965 m/s, such that

τ−1
TLS =

γ2

Aρc3
e~2

E2
0

E
coth

(
E

2kBT

)
. (6.40)

Finally, inputting this relaxation rate, as well as the spatially averaged value

of |↔γj :
↔
εk(rj)|2 from Eq. (6.34) into Eq. (6.29), while replacing the sum over

the TLS ensemble with an integral over the TLS density of states
∑
j

→∫ ∞
0

∫ ∞
0

V P(E∆, E0)dE∆dE0 [360], we get the ensemble-averaged TLS-induced

damping rate

ΓTLS =
γ2

ρc2
kkBT

∫ ∞
0

∫ ∞
0

(
E∆

E

)2

sech2

(
E

2kBT

)
ω2

mτTLS

1 + ω2
mτ

2
TLS

P(E∆, E0)dE∆dE0,

(6.41)

where we have introduced a mode-dependent effective speed of sound ck =√
3
∑
η

ekη
c2
η

. Note that in Eqs. (6.40) and (6.41) we have taken ωk → ωm, as

well as dropped the explicit subscripts j and k, with the assumption that we are

considering the coupling between a TLS ensemble and a single mechanical mode.

The functional form of P(E∆, E0) is chosen to reflect the energy distribution of

the TLS ensemble in question and, depending on the dimensionality of the system,

can have a drastic effect on the temperature dependence of the TLS-induced

mechanical damping rate [162, 222]. In the STM, this energy density function has

the form

Pa(E∆, E0) =
P0

E0

, (6.42)

where P0 is a constant that characterizes the density of states of the TLS ensemble

[220–223], and is typically on the order of 1044 J−1 m−3 for glassy solids [162, 201].

An energy density function of this form reflects the broad distribution in E∆ and E0

exhibited for amorphous TLS distributions1, and for the one-dimensional resonator

geometry considered here, results in the damping rate

ΓTLS =
γ2P0

ρc2
kkBT

∫ ∞
0

∫ ∞
0

E2
∆

E0E2
sech2

(
E

2kBT

)
ω2

mτTLS

1 + ω2
mτ

2
TLS

dE∆dE0. (6.43)

1See Appendix G for treatment of crystalline TLS distributions.
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At low temperatures (ωmτmin � 1, where τmin = τTLS(E = E0)), this mechanical

damping rate can be approximated as

ΓTLS ≈
π2γ4P0kBT

6Aρ2~2c2
kc

3
e

, (6.44)

which is linear in T as expected [162]. Meanwhile, at high-temperatures (ωmτmin �

1) we find

ΓTLS ≈
πγ2P0ωm

2ρc2
k

. (6.45)

We note that while the temperature-dependence of ΓTLS in Eq. (6.44) differs

significantly from the T 3-dependence observed in bulk amorphous solids [341], at

high temperatures the mechanical damping rate approaches the same constant

value regardless of the dimensionality of the system [162], minimizing the effect of

our choice of a one-dimensional phonon density of states for T > 1 K.

6.3 Half-Ring Optomechanical Resonator

6.3.1 Device Description

(a) (b)

Figure 6.2: (a) A SEM image of the optomechanical half-ring resonator studied
in this chapter. Overlaid in red is a FEM simulation showing the magnitude of
the electric field for the n = 1, m = 49 TE WGM of the disk with a measured
resonance frequency of ωc/2π = 188.8 THz (λc = 1587.9 nm). Scale bar is 3 µm.
(b) Schematic of the half-ring resonator indicating its critical dimensions. The
numerical values for the device studied in this chapter are: l1 = 2.20 µm, w1 = 200
nm, w2 = 150 nm, and Rc = 5.08 µm. Device thickness was taken to be t = 250
nm as specified by the manufacturer.
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(a)

Frequency (MHz)

(b)

(c) (d)S v
(V

2 /H
z)

Figure 6.3: The voltage spectral density Svv(ω) obtained by continuously monitoring
the resonator’s mechanical motion in exchange gas at 4.2 K. Measurements were
performed with 10 µW of optical power input to the fridge (corresponding to an
input power of Pin = 7.5 µW at the microdisk) and 2.6 mW in the LO. Inset are
FEM simulations of the displacement profiles for (a) the fundamental out-of-plane
torsional mode (ωm/2π = 3.53 MHz), along with the (b) “side-to-side” (ωm/2π
= 6.28 MHz), (c) antisymmetric “breathing-like” (ωm/2π = 15.44 MHz), and
(d) symmetric “breathing-like” (ωm/2π = 18.31 MHz) in-plane flexural modes.
Red (green) indicates out-of-plane (in-plane) motion, while blue denotes zero
displacement. Figure adapted from Ref. [163]. c© 2018 American Physical Society.

The optomechanical device studied in this chapter is that of a “half-ring”

resonator (see Fig. 6.2) consisting of a doubly supported narrow ring that surrounds

half of a 10 µm diameter optical microdisk cavity, both of which are fabricated

from the same 250-nm-thick single-crystal-silicon device layer of a standard SOI

chip (see Section 5.2.2 for details). The idea behind this device geometry is simple;

the large coverage of the optical cavity by the mechanical resonator, in combination

with the small vacuum gap (∼80 nm) between these two elements, maximizes the
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device’s optomechanical coupling (see Eq. (4.3)), while simultaneously leaving half

of the microdisk easily accessible for dimpled fiber optical coupling. A schematic

of the mechanical resonator geometry can be seen in Fig. 6.2b, with each of its

critical dimensions labelled and the numerical values given in the caption.

The optical modes of this microcavity are the disk WGMs discussed in Section

3.3, albeit slightly perturbed by the presence of the mechanical resonator. Here

we concern ourselves with the first-order radial TE mode shown in the overlay of

Fig. 6.2a (radial and azimuthal mode numbers of n = 1 and m = 49), which has a

measured resonant frequency ωc/2π = 188.8 THz (λc = 1587.9 nm) and linewidth

κ/2π = 1.0 GHz (Qc = 1.9×105), as this is the optical mode used to transduce

the motion of the half-ring resonator. The mechanical modes of the resonator on

the other hand, are significantly more complicated, requiring us to turn to FEM

simulation to determine their displacement profiles. Fig. 6.3 shows these simulated

modeshape functions for the four lowest lying mechanical modes of the half-ring

resonator, along with their optomechanically measured spectra.

ωm/2π m xzpf G/2π g0/2π
(MHz) (fg) (fm) (GHz/nm) (kHz)

3.53 610 62.4 – –
6.28 836 40.0 – –
15.44 743 27.0 2.34 63.4
18.31 772 24.4 5.13 125

Table 6.1: Summary of the optomechanical properties for the four lowest frequency
mechanical modes of the half-ring resonator coupled to the n = 1, m = 49 TE
optical WGM shown in Fig. 6.2a. The effective mass m and optomechanical
coupling coefficient G are determined by inputting the simulated electric fields
and displacement profiles of the optomechanical device into Eqs. (2.6) and
(4.3), respectively. From these values, the zero-point fluctuation amplitude
xzpf =

√
~/2mωm and the single-photon optomechanical coupling rate g0 = Gxzpf

are also calculated. Note that due to the symmetry of the simulated system, the
values of G given here represent a lower bound for the considered geometry and
are only nonzero for the two higher frequency mechanical modes.

Due to optical heating of the mechanical modes, it is difficult to obtain an

experimentally-determined value of their optomechanical coupling coefficient G.

However, by using the aforementioned FEM simulations of the optical cavity’s

electric field and the resonator’s displacement, we calculate G for each mechanical

145



mode according to Eq. (4.3). Furthermore, we use these simulated mechanical

modeshapes to determine the effective mass m for each mechanical mode, from

which we also find xzpf , and subsequently, g0. The results of these calculations are

summarized in Table 6.1. We note that due to the symmetry of the displacement

with respect to the optical field, we simulate G ≈ 0 for the two lower frequency

mechanical modes, even though this symmetry is broken in the experiment, such

that significant optomechanical coupling exists.

6.3.2 Mechanical Strain Distributions

We can also use the FEM simulations presented in the previous subsection

to determine the spatially varying strain profiles induced within the resonator

by the displacement of each mechanical mode (see the insets of Fig. 6.11 below),

allowing us to calculate their strain energy fractions and effective strain volumes

using Eqs. (2.67)–(2.69) and (2.72), respectively. The numerical values for each of

these parameters are given in Table 6.2. Here we see that the longitudinal energy

fraction el for the lowest frequency torsional mode is much smaller than the other

three flexural modes, which is unsurprising as one would expect a torsional mode

to exhibit much more of a transverse nature than the in-plane flexural modes.

Moreover, we see that this torsional mode and the highest frequency flexural mode

have considerably smaller effective strain volumes than the two middle frequency

modes.

ωm/2π el et1 et2 Vstr (×10−21 m3)

3.53 MHz 0.15 0.42 0.43 3.6 (0.44%)
6.28 MHz 0.34 0.54 0.12 6.3 (0.77%)
15.44 MHz 0.34 0.52 0.14 11 (1.4%)
18.31 MHz 0.39 0.32 0.29 1.7 (0.21%)

Table 6.2: Mechanical energy fractions and effective strain volumes calculated for
each of the four modes studied in this work using the smallest mesh allowable (set
by computing constraints). The values are determined using FEM simulations
of the strain energy density profile for each mode (see insets of Fig. 6.11), with
the orientation of the silicon crystal axes chosen to match the device used in the
experiment (see Fig. 5.2). The percentage of the total geometric volume V0 = 8.1
× 10−19 m3 occupied by each effective strain volume is given in parentheses.

We are further interested in determining the fraction of the strain energy that
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is localized to the surface of the resonator. To do this, we use FEM simulations

to compare the strain energy (calculated using Eq. (2.64)) located within the

first 5, 10, 20, and 40 nm of each of the resonator’s four surfaces2 to the strain

energy of the entire structure for each mechanical mode. The results of these

calculations are given in Table 6.3. Here we see that over half of the strain energy

is localized to the small volume contained within the first 20 nm of the resonator’s

surfaces (corresponding to roughly 37% of the resonator’s geometric volume) for

each mechanical mode, with nearly all of the strain energy residing within 40 nm

of these surfaces. We also point out that there is slightly less strain at the surface

for the two lower effective strain volume modes (3.53 MHz, 18.31 MHz) than there

is for the two high effective strain volume modes (6.28 MHz, 15.44 MHz).

ωm/2π 5 nm 10 nm 20 nm 40 nm

3.53 MHz 0.17 0.31 0.55 0.83
6.28 MHz 0.21 0.38 0.64 0.91
15.44 MHz 0.21 0.39 0.65 0.92
18.31 MHz 0.19 0.35 0.60 0.87

Table 6.3: Fraction of the strain energy localized to within 5, 10, 20, and 40 nm of
each of the resonator’s surfaces for the four studied mechanical modes.

6.4 Cryogenic Optomechanical Ringdown Mea-

surements

6.4.1 Pulsed Optical Detection

In this section, we detail the pump-probe measurement scheme used to determine

the dissipation of the thermally-driven silicon half-ring resonator described in

the previous section. Our method – which is itself a modified version of the

optomechanically-mediated thermal ringdown technique developed by Meenehan et

al. [204] – is capable of simultaneously transducing the motion of several mechanical

modes of the half-ring resonator with sub-microsecond resolution in the time domain,

while circumventing the need for single photon detectors, as well as the requirement

that the device exist in the SBR regime. Furthermore, by measuring the Brownian

2This corresponds to roughly the first 10, 20, 40, and 80 atomic monolayers at each surface, as
silicon has a lattice constant of 5.43 Å [186].
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Figure 6.4: Detailed schematic of the gated optical detection system used to perform
the pulsed homodyne measurements of the cryogenic optomechanical device studied
in this chapter. This detection scheme differs from the one shown in Fig. 5.12
in that we have inserted an AOM into the system before the VC, allowing us to
toggle the input optical signal on and off with a switching time of ∼5 ns. WLM
= wavelength meter, AOM = acousto-optic modulator, VC = variable coupler,
VOA = variable optical attenuator, PM = power meter, OMC = optomechanical
cavity, FS = fiber stretcher, PID = proportional-integral-derivative controller, V =
voltmeter, LO = local oscillator, SW = optical switch, BS = beam splitter, BPD =
balanced photodetector, PD = photodetector, ADC = analog-to-digital converter,
DAQ = data acquisition. Figure reproduced from Ref. [163]. c© 2018 American
Physical Society.

motion of the device, our detection scheme avoids any effects that may arise from

large strains due to an external drive [351].

In order to generate the pulses required to implement our optomechanical

ringdown technique, we modify the detection circuit detailed in Section 5.4.3 to

allow for gated optical homodyne measurements (see Fig. 6.4). This is done by

inserting an acousto-optic modulator (AOM) into the optical circuit before the VC,

as well as introducing the appropriate triggering electronics, allowing for gating of
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the optical signal with a rise/fall time of ∼5 ns. In this gated measurement setup,

the low frequency voltage readouts from each of the BPD’s individual photodetectors

are also collected, with one output sent to a DAQ card to monitor slow drifts, while

the other is sent to an ADC to observe rapid transients in this signal.

To perform pulsed homodyne measurements with this gated optical circuit, the

optomechanical detection system is initially set up by sending a continuous-wave

laser signal through the optical circuit. The dimpled tapered fiber is then carefully

aligned to couple with the microdisk, after which the laser wavelength is tuned onto

resonance with the optical WGM discussed in Section 6.3.1 and the transduction of

the mechanical signal is optimized. We note that due to the relatively high optical

powers (10 – 100 µW) continuously input to the fridge during this initial set up, the

base plate, along with the optomechanical device, heats up significantly. Therefore,

once we have ensured that the fiber is in place, the optical circuit is toggled into

the “off” state by closing the AOM (extinction ratio of 50 dB), preventing optical

power from reaching the dimple. After approximately 1 – 2 hours in this state, the

fridge returns to its set-point temperature and is ready for pulsing measurements.

Pump 
Pulse

Probe
Pulse

Figure 6.5: Schematic of the double pulse sequence used to perform pump-probe
measurements. The grey line indicates the state of the laser (high = on, low =
off), with t1 and t2 being the durations of the pump and probe pulses, respectively,
while toff is the delay between these two pulses.

Once the fridge temperature stabilizes, we implement the double pulse pump-

probe measurement scheme outlined in Fig. 6.5. We begin by sending a trigger

signal from the DAQ card to a 200 MHz frequency source, activating voltage output
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that is amplified to 10 VRMS and sent to the AOM. This electrical signal opens the

AOM, generating the initial pump pulse that is used to thermally excite the motion

of the mechanical resonator. The AOM is left open until the predetermined pulse

time t1 has passed, at which point it is closed by turning the frequency source off

with a second signal from the DAQ card. The mechanical resonator is then left in

the dark to decay towards thermal equilibrium for a set wait time toff , after which a

probe pulse, created in an identical manner to the pump pulse, is sent to access the

device. To ensure the data from the probe pulse is recorded, the ADC is activated

using another trigger signal generated by the DAQ card at a time chosen to be 10

or 100 µs before the probe pulse is created (depending on the length of toff , which

varies from 100 µs to 1 s). Finally, the AOM is closed after a time t2 has elapsed

following the generation of the probe pulse, returning the optical circuit back to its

“off” state. Note that for the double pulse measurements detailed in this chapter,

we always take t1 = t2 = 2 ms, such that the phonon occupation of the mechanical

mode at the end of the pump pulse can be inferred from observation of the probe

pulse (see Section 6.4.5 below), minimizing the amount of data that needs to be

collected. After a 200 ms wait to reinitialize the ADC, this procedure is repeated

until the desired number of pulses is acquired. Single pulse measurements can

also be performed identically to the double pulse measurements, with the omission

of the pump pulse. We note that the gating of the optical circuit is completely

controlled by outputs from the DAQ card, ensuring consistent timing referenced to

its 1 MHz internal clock.

6.4.2 Data Collection and Signal Processing3

The displacement of the half-ring resonator is dispersively coupled to the

monitored optical mode, such that the mechanical motion is transduced into the

fluctuating phase of the optical signal that is transmitted through the cavity.

Therefore, once this signal beam is recombined with the LO and sent to the BPD,

the mechanical motion is encoded into a time-varying voltage signal v(t) acquired

using the ADC. To reduce the noise of this collected signal, we average each 50

3The signal processing and Fourier transform discussed in this subsection was performed by
Callum Doolin and is described in greater detail in Ref. [361].
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point interval of data into a single datum, leading to an effective data sampling rate

of 10 MS/s (effective sampling time of 100 ns). Following this averaging process,

the data is digitally demodulated, as well as band-pass filtered (–3 dB bandwidth

of ∼1.2 MHz, time constant τf ≈ 0.8 µs) around the frequency of interest ω via

convolution with a Blackman window Π(t) [362]. Mathematically, this is interpreted

as the “band-passed” Fourier transform of the signal voltage

V(ω, t) =

∫ ∞
−∞

v(t− t′)e−iω(t−t′)Π(t′)dt′, (6.46)

performed at each time step t of the ADC signal. Note that the ∼1.2 MHz

bandwidth of the filter function is much larger than the linewidth of any of the

studied mechanical modes, ensuring that the entire area of each considered resonance

peak will be encapsulated. Furthermore, while the data is taken with an effective

time step of 100 ns, this filter will smooth over any features that evolve faster than

its 0.8 µs time constant. We note that this relatively large integration bandwidth

prevents us from monitoring frequency shifts in our mechanical resonances, as

have previously been observed due to TLS in other mechanical systems [342, 343,

347–350], as well as superconducting microwave circuits [363–365]. However, if we

were to reduce this bandwidth, at the expense of time resolution, it may be possible

to track the mechanical resonance frequency of the device throughout the duration

of the pulse.

From the Fourier transform in Eq. (6.46), we can determine the time-resolved,

band-passed PSD of v(t) as

Svv(ω, t) =
|V(ω, t)|2

τ0

=
∑
k

αk(ω, t)Skxx(ω, t) + S imp
vv (ω), (6.47)

where αk(ω, t) is the transduction coefficient for the band-passed displacement

spectral density Skxx(ω, t) corresponding to the kth mechanical mode of the resonator

and S imp
vv (ω) is the band-passed frequency-dependent imprecision noise floor of the

measurement. If we consider a finite frequency band ∆ω surrounding the resonance

frequency of a single mechanical mode, the sum in Eq. (6.47) collapses and we

can approximate the transduction coefficient and noise floor as constant over this

frequency range. Furthermore, the time-dependence in αk(ω, t) is due to the ring-up

of the optical cavity, which occurs on a timescale of 1/κ ≈ 1 ns, much faster than
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any other component in our detection system. We can therefore treat αk(ω, t)

as a step function in time, such that it takes on a constant value once the laser

populates the optical cavity. We then have
∑
k

αk(ω, t)Skxx(ω, t) ≈ αSxx(ω, t) and

S imp
vv (ω) ≈ S imp

vv resulting in

Svv(ω, t) ≈ αSxx(ω, t) + S imp
vv , (6.48)

where Sxx(ω, t) is the displacement spectral density of the mechanical mode of

interest, with resonant frequency ωk = ωm.

6.4.3 Mechanical Mode Temperature Calibration

In general, the coefficient α in Eq. (6.48) is a combination of experimental

device parameters and specifications from the measurement instrumentation (see

Eq. (4.75)), such that it is difficult to determine a priori. We therefore look for a

simple way to relate the spectral density of our measurement to the temperature of

the mode in question. This is done by integrating the spectrum of the mechanical

mode to obtain its time-dependent temperature Tm(t) using the expression [151]∫
Sxx(ω, t)dω ≈

4πx2
zpfkB

~ωm

Tm(t), (6.49)

where the integration is performed over the frequency band ∆ω � Γm centered on

ωm and we have assumed the experimentally-relevant high-temperature regime (i.e .

kBTm(t)� ~ωm)4 for all t. Combining Eq. (6.49) with Eq. (6.48), we find that∫
Svv(ω, t)dω = FTm(t) + I, (6.50)

indicating that the area under the curve of the measured voltage spectral density

is linearly related to the mechanical mode temperature, with proportionality

F = 4πx2
zpfkBα/~ωm and a constant offset I = Simp

vv ∆ω set by the noise floor

and frequency band of the measurement. Fitting Eq. (6.50) to the area under

the voltage spectral density at the beginning of the pulse, when the mechanical

mode is thermalized to the fridge temperature Tfr at t = t0, allows us to infer the

4At the largest considered mechanical frequency of ωm/2π = 18.31 MHz, this corresponds to
temperatures of T & 1 mK, such that even at the base temperature of our fridge (Tfr ≈ 10 mK)
our device is still in the high-temperature regime.
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Figure 6.6: Area under the peak (including contributions from both the mechanical
signal and imprecision noise) at the beginning of the measurement pulse for the
18.31 MHz mode plotted versus fridge temperature. The uncertainty in each point
is smaller than the marker size. For the high input power used here (Pin = 75
µW), the shot-noise of the optomechanical measurement is sufficiently suppressed
to resolve the mode’s initial phonon occupation. Fitting this linear trend (dashed
line), we calibrate the peak area in terms of the mechanical mode temperature,
with the y-intercept indicating an imprecision noise floor equivalent to 29.5 fm2/Hz
(see Eq.(6.50)). The inset highlights the rapid increase in the peak area during the
first 5 µs of the measurement for each temperature (color-coded to match the main
figure), taken by averaging data from 5000 individual optical pulses 4 ms in length
and scaled by discarding the initial 20 µs of transient signal due to the applied
numerical bandpass filter. Each data point in the main figure is extracted from a
fit of Eq. (6.52) over the full pulse duration of this data. The rapid settling of the
signal for t < 0 is set by the 10 MS/s effective sampling rate of our data acquisition.
Figure adapted from Ref. [163]. c© 2018 American Physical Society.

initial mode temperature as Tm(t0) = Tfr and extract values for F and I. Provided

the conditions stay the same throughout a single set of pulsing measurements

(performed on the time-scale of hours), we can use these parameters to determine

the mechanical mode temperatures at all times during the pulse as the device

rapidly heats due to interaction with the photon-induced bath. Finally, as this

experiment operates in the high temperature limit, we can then use this calibrated

mode temperature to infer the time-dependent phonon occupation of the mechanical

mode through the relation 〈n〉 (t) ≈ kBTm(t)/~ωm (see Eq. (2.77)). An example of
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this type of calibration is seen in Fig. 6.6.

6.4.4 Chip Heating Effects

In the previous subsection, we assumed that the device and its surrounding

bath are initially thermalized to the base plate of the dilution unit such that at

t = t0 their temperatures are identical to that of the fridge. However, due to

diminishing thermal conductivities at low temperatures, this may not be the case.

To investigate this, we use a simple model to estimate the chip temperature in the

vicinity of the device for varying average input powers to the chip.

The chip containing the half-ring optomechanical resonator is housed within

our custom-built cryogenic optical coupling system, with a thermal link between

it and the the mixing chamber established via a copper braid that connects to

its gold-plated copper chip holder (see Fig. 5.11). We therefore assume that the

chip holder is well thermalized to the fridge such that its temperature is equal

to that of the base plate. Furthermore, we assume that the cooling power of the

mixing chamber is large enough that this temperature remains constant over the

course of the measurement (as we observe that the temperature of the base plate

remains unchanged for the duration of the experiment). The temperature Tb of the

thermal bath surrounding our device is then limited by the thermal conductivity of

the 210-nm-thick gold layer applied to the top of our silicon device layer. Taking

the thermal conductivity of the gold layer to vary linearly at low temperatures as

Kg = K0T , where K0 ≈ 30 W/m·K2 [366], the temperature of the thermal bath

surrounding the device will be given by [188]

Tb =

√
2lgQ̇d

AgK0

+ T 2
fr. (6.51)

Here, Q̇d is the heat load applied to the device, with lg and Ag being the length

and cross-sectional area of the thermalizing gold layer.

For a double pulse measurement at a power of Pf = 10 µW input to the fridge,

as is done during the measurement, the fraction of power absorbed at the chip

can be approximated as Pabs ≈ ηf(1 − ηs)Pf = 2.7 µW, where ηf and ηs are the

efficiencies associated with losses in the fiber and scattering off of the substrate
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Figure 6.7: Plot of the thermal bath temperature Tb versus fridge/chip-holder
temperature Tfr according to Eq. (6.51) for the largest (54 nW) and smallest (9 nW)
estimated average heat loads Q̇d applied to the device during pulsed measurements.
The black dashed line is that of a perfectly thermalized device, i.e. Tb = Tfr. Figure
reproduced from Ref. [163]. c© 2018 American Physical Society.

introduced in Section 5.4.4. Including the duty cycle of the measurement, which

for pulse delay times much less than the 200 ms wait time per measurement can

be approximated as 2 × 2 ms/200 ms ≈ 0.02, we get an average power applied to

the device during measurement of Q̇d ≈ 54 nW. Conversely, for our longest wait

time of 1 s, the duty cycle decreases to 2 × 2 ms/1200 ms ≈ 0.003, leading a lower

average measurement power of Q̇d ≈ 9 nW.

Fig. 6.7 shows the values of Tb according to Eq. (6.51) versus fridge/chip holder

temperature Tfr for both of these heat loads input to the device, where we have

taken lg = 3.5 mm and Ag = 5 mm × 210 nm = 1.05×10−9 m2 according to the

experiment. Here we can see that for these applied heat loads, the device is no

longer thermalized to the fridge at temperatures T . 100 mK. We note that this

treatment neglects a number of effects, such as a Kapitza boundary resistance

[188] between each interface of the apparatus, as well as the relevant time scales

associated with the measurements and heating/cooling processes. Nonetheless, this

simple model provides evidence that for low fridge temperatures (T . 100 mK),

the thermal bath of the chip may be elevated due to the absorbed power of the
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optical measurement.

6.4.5 Thermal Ringdown Measurement
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Figure 6.8: A typical heating curve corresponding to the orange point in Fig. 6.6
with a fridge temperature of 200 mK. The data (orange) is calibrated in terms of
both temperature and average phonon occupancy, showing that the mechanical
mode heats to T ≈ 80 K (〈n〉 ≈ 105) within the first millisecond of the measurement
pulse. The solid black line is a fit to Eq. (6.52), and is used to extract the initial
and final phonon occupancy of the mode. Inset shows the continuously-monitored
spectral density of the mechanical resonance over the ∼1.2 MHz window used for
these measurements. Orange illustrates the area under the peak due to mechanical
motion, while grey indicates the imprecision noise floor. Figure adapted from
Ref. [163]. c© 2018 American Physical Society.

Due to the large disparity between the energy of the optical mode of the cavity

(hundreds of THz) and the probed mechanical modes (tens of MHz), coupled with

the diminishing thermal conductivity of silicon at low temperatures [192, 197, 198,

367] (see also Section 2.4.3), we find that even small input powers to the optical

cavity act to rapidly heat the mechanical element as well. This heating effect can be

modelled by considering a mechanical mode simultaneously coupled at its intrinsic

damping rate Γm to the thermal phonon bath surrounding the device, and at a rate

Γp to an additional hot phonon bath generated by either the absorption of cavity

photons or radiation pressure backaction (or a combination of the two), with the
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total (hot) mechanical damping rate of the system given by Γh = Γm + Γp. If light

is coupled into the optical cavity at time t = t0, the average phonon occupancy of

the mechanical mode as a function of time is then given by [163, 204]

〈n〉 (t) = 〈n〉 (t0)e−Γh(t−t0) + n̄eq

(
1− e−Γh(t−t0)

)
. (6.52)

Here, n̄eq = (n̄thΓm + n̄pΓp) /Γh is the equilibrium phonon occupation of the mode,

with n̄p being the average phonon occupancy of the hot photon-induced bath (see

Appendix F). We note that for the temperatures considered here, n̄p � n̄th and

Γh ≈ Γp, such that n̄eq ≈ n̄p.
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Figure 6.9: The first millisecond of pulsed data for the 18.31 MHz mechanical
mode, obtained by averaging 500 individual probe pulses with the fridge at its base
temperature of 10 mK. Measurements are performed by varying the delay time
between pump and probe pulses (each with Pin = 7.5 µW and a full duration of 2
ms) as indicated by the color bar. These traces are fit with Eq. (6.52) to extract
their initial and final occupations. Inset is a schematic of the pump-probe sequence.
The grey line indicates the state of the laser (high = on, low = off), with the solid
(dashed) red line being the average occupancy of the mechanical mode with the
laser on (off). Figure adapted from Ref. [163]. c© 2018 American Physical Society.

This rapid heating prevents one from continuously monitoring the device’s
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motion at low temperatures. However, by performing time-resolved measurements

of the mechanical resonator’s motion as described in Section 6.4.1 and looking at

its phonon occupancy within the first µs of the pulse, we show that the device is

initially thermalized to the fridge, allowing for complete calibration of the device

temperature at all times during the measurement (see Fig. 6.8). We note that

for our highest mechanical frequency mode (ωm/2π = 18.31 MHz) at our lowest

calibrated fridge temperature (T = 25 mK – see Fig. 6.6), this results in an average

initial phonon occupancy of 〈n〉 ≈ 28.
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Figure 6.10: Thermally excited ringdown measurements at a number of fridge
temperatures. The solid lines are fits to the data using Eq. (6.53), allowing for
extraction of the intrinsic damping rate Γm at each temperature. The disparity in
the noise floor between the low temperature (0.1 K, 0.5 K) and high temperature
(1.2 K, 4.3 K) data results from varying levels of optomechanical transduction (i.e .
small variations in input power, optical coupling to the device, etc.) between data
runs and does not have an effect on the extracted intrinsic mechanical damping
rate. Figure adapted from Ref. [163]. c© 2018 American Physical Society.

We capitalize on this optically-induced heating to implement a pump-probe

measurement technique [135, 163, 204], as illustrated in the inset of Fig. 6.9.

This detection scheme allows us to observe the thermalization of the laser-heated

mechanical mode back to the fridge temperature at its intrinsic damping rate
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according to
〈n〉i
〈n〉f

=
(n̄eq − n̄th) e−Γmtoff + n̄th + n̄imp

n̄eq + n̄imp

. (6.53)

Here, 〈n〉i and 〈n〉f are the measured phonon occupancies of the mechanical mode

(including the apparent contribution n̄imp due to imprecision noise) at the beginning

of the probe pulse and at the end of the pump pulse, respectively, while toff is the

time delay between turning off the pump pulse and turning on the probe pulse

(see Appendix F). In Eq. (6.53), as well as the experiment, we have chosen the

lengths of the pump pulse t1 and probe pulse t2 to be equal, as well as satisfy

t1 = t2 � Γ−1
h such that 〈n〉f = n̄eq + n̄imp at the end of each pulse. By varying

the delay between pulses and fitting the data to Eq. (6.53), as seen in Fig. 6.10,

we can extract the intrinsic mechanical damping rate of the device, allowing us to

map out its low-temperature dependence.

6.5 Quantitative Agreement with the One-

Dimensional Standard Tunneling Model

Measurements of the damping rate for each of the four studied mechanical modes

are performed with fridge temperatures varying from 10 mK to 10 K. In Fig. 6.11,

we see that each mode exhibits qualitatively similar behaviour, with a plateau at

low temperature (T . 100 mK), a linear temperature dependence for intermediate

temperatures (100 mK . T . 10 K), and finally, a high-temperature shoulder that

begins to emerge around 10 K. We note that while a linear temperature dependence

arises in a number of possible mechanical dissipation mechanisms, such as TLS

relaxation damping and point defect scattering (see Section 2.5 for details), the

roll-off to a constant at high temperature is distinctly unique to TLS damping.

Moreover, in Section 2.5 we show that these other sources of mechanical loss (i.e.

point defect scattering) are negligible for the silicon beams considered in this work.

Therefore, for T > 100 mK, we attribute the mechanical losses in these beams to

be due to relaxation damping caused by interactions with TLSs.

In order to quantitatively analyze the data in the context of this TLS damping

model, we must first determine the dimensionality of the resonator. As detailed in

Section 2.4.4, this is done by comparing the transverse dimensions of our device
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Figure 6.11: The intrinsic damping rate Γm measured for each of the four studied
mechanical modes plotted versus fridge temperature, with the right axis displaying
their intrinsic dissipation Q−1

m = Γm/ωm. Markers in each plot represent the
experimentally-determined damping rate extracted from fits of Eq. (6.53) to data
similar to that seen in Fig. 6.10, with error bars representing a single standard
deviation in the uncertainty of the fit. Solid lines are fits to Eq. (6.43), demonstrating
the temperature dependence of the mechanical damping rate according to a one-
dimensional TLS relaxation interaction model. From these fits, we obtain the
parameters P0 and γ for the TLS ensemble coupled to each mechanical mode, which
are given in Table 6.4. For T . 100 mK, the damping rate plateaus to a relatively
constant value, which could be due to a number of effects, including temperature
independent radiation of acoustic energy into the substrate [249, 253] or heating of
the chip due to measurement (see Section 6.4.4). Inset are the logarithm of the
normalized strain energy density simulated using FEM analysis for each mechanical
mode. These simulations highlight the fact that the 3.53 MHz and 18.31 MHz
modes have smaller spatial strain profiles that are localized to the supports of the
half-ring (as characterized by their effective strain volumes – see Table 6.4), whereas
the strain energy density profiles of the 6.28 MHz and 15.44 MHz modes extend into
the rounded portion of the resonator. Figure reproduced from Ref. [163]. c© 2018
American Physical Society.

(w = 200 nm, t = 250 nm) to the shortest thermal phonon wavelength present in the

system, which according to Eq. (2.103) is given by λth = 2π~ct1/kBT ≈ 225 nm·K/T ,

where ct1 = 4679 m/s is the slowest speed of sound in single-crystal silicon (see Table
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5.1). Our resonator therefore behaves one-dimensionally for T . 1 K, however, to

simplify the analysis we consider our device to be quasi-one-dimensional for all

temperatures considered here. This approximation is justified by the fact that at

high temperatures, the TLS-induced damping rate plateaus to a constant value that

is independent of the dimensionality of the system [162]. With this approximation,

we fit the data in Fig. 6.11 using the one-dimensional TLS relaxation damping

model found by numerically integrating Eq. (6.43). Parameters extracted from

these fits are summarized in Table 6.4.

ωm/2π Vstr P0 γ Nth

(MHz) (×10−21 m3) (J−1 m−3) (eV) at 10 mK

3.53 3.6 (9.7 ± 3.4)×1043 1.3 ± 0.1 0.05
6.28 6.3 (4.0 ± 2.7)×1044 1.2 ± 0.2 0.35
15.44 11 (3.6 ± 1.9)×1044 1.3 ± 0.2 0.55
18.31 1.7 (7.0 ± 4.3)×1043 2.2 ± 0.4 0.02

Table 6.4: Summary of the density of states parameter P0 and deformation potential
γ extracted from fits of the data in Fig. 6.11 to the one-dimensional TLS relaxation
damping model given by Eq. (6.43). Also included is the number of thermally-active
defects Nth ∼ P0VstrkBT , calculated using the fridge base temperature of 10 mK
for the TLS ensembles contained within the effective strain volume Vstr of a given
mechanical mode. As one can see, the two modes with a larger effective strain
volume (6.28 MHz, 15.44 MHz) couple to TLS ensembles with a defect density of
states approximately four times larger than that observed for the two modes with
a smaller effective strain volume (3.53 MHz, 18.31 MHz).

Upon inspection of these fit parameters, one can immediately see that the 6.28

MHz and 15.44 MHz mechanical modes couple to a defect density (P0 ∼ 4 × 1044

J−1 m−3) that is approximately four times larger than that sampled by the 3.53

MHz and 18.31 MHz modes (P0 ∼ 1 × 1044 J−1 m−3). We attribute this disparity

in TLS ensemble densities to the fact that the two modes at 6.28 MHz and 15.44

MHz have a larger extent to their strain energy distribution than the other two

modes – as quantified by their effective strain volumes Vstr (see Table 6.2) – along

with a significant portion of their strain energy density localized to the rounded

portion of the ring (see Fig. 6.11 inset), where multiple crystal axis orientations

are sampled. We also point out that the extracted TLS density parameters are on

the order of those observed in bulk amorphous silica [368–370], much larger than
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what would be expected for crystalline silicon resonators, where the TLS density

of states has been found to be at least an order of magnitude smaller [342, 344].

This is likely due to the significantly larger surface-to-volume ratio of our nanoscale

devices, which results in defects at the surface of the resonator [201, 274, 363, 371]

providing a larger contribution to the overall defect density, as has been previously

reported in optomechanically-measured gallium arsenide microdisks [372]. We note

that this hypothesis is further supported by the fact that over half of the strain

energy for each mechanical mode exists within the first 20 nm of the resonator’s

surface (see Table 6.3).

From P0, we can also infer the total number of thermally-active defects located

within the effective strain volume of the resonator as Nth ∼ P0VstrkBT [162, 201].

As can be seen from Table 6.4, at the lowest achievable temperature of our fridge

(10 mK), the resonator is already at the point of coupling to less than a single

defect on average. In this situation, known as the small mode volume limit, the

TLS no longer act as a bath and a fully quantum mechanical description must be

applied, resulting in the defect-phonon system undergoing Rabi oscillation [162]. It

is possible that this is the cause of the mechanical damping rate flattening out to a

constant value for T . 100 mK, as in this regime other temperature-independent

loss mechanisms, such as radiation of acoustic energy at the resonator’s clamping

points [249, 253], would begin to dominate. An alternative explanation is that this

plateau is due to measurement-induced heating of the chip at low temperatures

(see Section 6.4.4).

Finally, the extracted deformation potentials are on the order of γ ∼ 1−2

eV, comparable to the those found in bulk amorphous silica [368, 369, 373]. We

point out that these values are notably less than the 3 eV that has been previously

reported for TLS defects caused by boron dopants in crystalline silicon [374], further

supporting the hypothesis that these TLS are instead caused by glassy defects at

the surface of the resonator [201].
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6.6 Conclusion

In this chapter, we have detailed an optomechanical ringdown technique that can

be used to simultaneously measure the thermally-driven motion of four mechanical

modes (with resonant frequencies ranging from 3 to 19 MHz) in a single-crystal

silicon nanomechanical resonator. From these low-strain measurements, we extract

the damping rate for each mechanical mode over a fridge temperatures ranging

from 10 mK to 10 K. Fitting these data to a one-dimensional TLS damping

model, we demonstrate that dimensionality has a strong effect on the defect-phonon

interaction, which is especially important for the reduced geometries associated

with nanoscale resonators. Extracting information about the density of states and

deformation potentials of the TLS ensembles, we find that they are consistent

with glassy surface defects created during fabrication of the nanoresonator, with a

concentration similar to that observed in bulk amorphous silica. Comparing the

density of states for the TLS ensembles coupled to each mechanical mode, we find

that the two modes exhibiting a larger spatial extent to their strain profiles couple

to TLS ensembles roughly four times more dense than those coupling to modes

with smaller effective strain volumes. Finally, at the fridge base temperature of 10

mK we find that the small effective mode volumes of our device should allow us to

achieve coupling to less than one thermally-active defect on average for each of the

four studied mechanical modes.
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Chapter 7

Dueling Dynamical Backaction in
a Cryogenic Optomechanical
Cavity

This chapter is based on the publication B. D. Hauer, T. J. Clark, P. H. Kim,

C. Doolin, and J. P. Davis, “Dueling dynamical backaction in a cryogenic

optomechanical cavity,” Phys. Rev. A 99, 053803 (2019) (Ref. [295]) and draws

heavily on the content therein. Note that in order to be consistent with the rest of

the thesis, a number of minor notational changes have been made with respect to

the original publication.

7.1 Introduction

In Chapter 4, we showed that the radiation-pressure force of photons confined

within the optical cavity of an optomechanical system can act back upon the

mechanical element by actively driving or damping its motion. This ability to

manipulate the mechanical resonator’s motion via the radiation-pressure force has

proven to be one of the most powerful phenomena observed in optomechanical

systems to date. In fact, by employing these radiation-pressure-driven effects, a

number of groundbreaking experiments have been performed using optomechanical

cavities, including motional ground state cooling of micro/nanomechanical

resonators [106, 107], entanglement of photonic and phononic modes [113, 142, 375]

and preparation of other nonclassical states of mechanical motion [111, 112, 137].

Though efforts have largely focussed on this radiation-pressure-driven interaction,
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optomechanical coupling can also be mediated by other means, such as the

photothermal (or bolometric) force, whereby photon absorption in the mechanical

element introduces a temperature gradient across the device, causing it to deflect due

to differential thermal contractions [289–291, 294, 376]. Photothermal effects have

historically been studied in optical cavities comprised of metal-coated cantilevers

[21–25, 303, 377, 378], but have also been observed in buckled microcavities

[379, 380], multilayered Bragg-mirror beams [26, 381], membranes [382–384], thin

metallic mirrors [385], nanowires [379, 386, 387], split-ring resonators [87], and

superfluid helium [80–82]. As in the case of radiation-pressure-driven optomechanics,

photothermal forces can also be used to manipulate the motion of mechanical

resonators. In fact, in a somewhat paradoxical sense, photothermal coupling can in

principle be used to cool a resonator’s motion to occupancies of less than a single

phonon on average [289–291, 294, 376]. Furthermore, photothermal dynamical

backaction is peculiar in that it is able to invert the detuning dependence of

the optomechanical damping (and spring effect) with respect to that found in

conventional radiation-pressure-driven systems, where such a reversal is only possible

for cavities that are externally-driven to large mechanical amplitudes in the SBR

regime [301, 302, 304, 305]. In the non-SBR regime, however, this inversion effect

results in amplification of the resonator’s motion (accompanied by an increase in

the mechanical resonance frequency) for red-detuned pumps, while cooling (along

with a decrease in the mechanical resonance frequency) occurs for blue-detuned

pumps [22, 25, 303, 378, 380–382], seemingly violating the conservation of energy.

While there have been brief mentions of a radiation-pressure-dominated spring effect

observed in photothermally-driven optomechanical devices [22, 25, 378, 381], to date

there has not been a thorough experimental investigation of how the photothermal

and radiation-pressure forces interact with each other. Therefore, a comprehensive

study of this interaction is warranted, especially in the case of cryogenic silicon

optomechanical cavities, as these devices are integral to a number of recent quantum

optomechanical experiments [135–139, 141–143].

In this chapter, we present and quantitatively analyze measurements of a

silicon WGM optomechanical cavity that exists in a parameter regime where

both radiation-pressure and photothermal effects are relevant. We begin in

165



Section 7.2 by demonstrating how the introduction of the photothermal force

into the standard optomechanical model modifies the radiation-pressure interaction

described in Chapter 4. In Section 7.3, we then introduce the studied optomechanical

claw resonator, as well as calculate the thermal relaxation time associated with

this geometry. Continuing in Section 7.4, we briefly detail our optomechanical

measurement setup, as well as apply the theory developed in Section 7.2 to

measurements taken with this system, observing that radiation pressure dominates

the optical spring effect, while the photothermal force governs the system’s

optomechanical damping. Moreover, the photothermal force acts to oppose its

radiation-pressure counterpart, such that the optomechanical damping has the

opposite detuning-dependence from what one would expect for a conventional

radiation-pressure-driven system, resulting in an oddly similar detuning-dependence

between the optomechanical damping and spring effect. With this photothermal

enhancement to the optomechanical damping, we find that for high enough optical

input powers we are able to drive the mechanical resonator into self-oscillations using

a red-detuned pump. We show that in this self-oscillating regime, the transmission

through the optical cavity, as well as the optomechanical damping and spring effect,

become highly nonlinear, while demonstrating hysteretic behaviour depending on

the sweep direction of the optical drive. Using our fully nonlinear treatment of

the system, we fit these data, extracting the optomechanical properties of this

photothermally driven system. Finally, in Section 7.5, we use these experimentally-

determined system parameters to assess the optical cavity’s ability to cool the motion

of the resonator using the photothermal effect for a blue-detuned optical pump. In

doing so, we find that the mechanical occupancy can in principle be reduced to less

than a single phonon on average, despite the fact that the optomechanical cavity

resides deeply in the non-SBR regime.

7.2 Cavity Optomechanics with both Radiation-

Pressure and Photothermal Interactions

In this section, we look to theoretically model the behaviour of an optomechanical

cavity that is subject to both radiation-pressure and photothermal effects.
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Specifically, we determine in which parameter regimes these individual forces

will dominate each of the optomechanical damping and spring effect, as well as

investigate how the inclusion of the photothermal force modifies the radiation-

pressure-driven optomechanical phenomena of cooling and nonlinear parametric

amplification.

7.2.1 Inclusion of Photothermal Interactions

In order to include photothermal interactions into our optomechanical model,

we make two simple modifications to the equations of motion for a purely radiation-

pressure-driven optomechanical system given by Eqs. (4.15) and (4.16). First, we

separate cavity loss due to absorption in the mechanical resonator, quantified by

the loss rate κa and the vacuum noise input operator âa, from internal losses due to

all other sources, which occur at a rate κo with an associated vacuum noise input

operator âo. Note that both κa and κo contribute to the total intrinsic damping

rate of the optical cavity, such that κi = κa + κo. Mathematically, this amounts

to replacing the internal vacuum noise input term
√
κiâi (t) on the right side of

Eq. (4.15) with
√
κaâa(t) +

√
κoâo(t), producing a new equation of motion for the

cavity photon annihilation operator as

˙̂a = −κ
2
â+ i∆0â+ iGx̂â+

√
κeâin +

√
κaâa +

√
κoâo. (7.1)

This modification allows us to track the proportion of internal cavity losses that are

caused by photon absorption in the mechanical element, which as we shall see below

is an important consideration when determining the efficacy of the photothermal

force in cooling the mechanical resonator.

The second modification we make to our optomechanical model is the inclusion of

an optically mediated photothermal force F̂pt acting upon the mechanical resonator,

which we add to the right-hand side of Eq. (4.16), resulting in

¨̂x+ Γm
˙̂x+ ωmx̂ =

1

m

[
F̂th + F̂rp + F̂pt

]
. (7.2)

As mentioned in the introduction, this photothermal force arises as a result of

photon-absorption-induced heating in the mechanical resonator which causes it to

deform due to differential thermal contractions. Mathematically, this photothermal
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force is given in terms of the field operator characterizing these absorbed photons

âabs(t) =
√
κaâ(t)− âa(t) as [80, 289–291, 294, 376]

F̂pt(t) =
~Gβ
κaτpt

∫ t

−∞
e
− t−t

′
τpt â†abs(t

′)âabs(t
′)dt′. (7.3)

Here we see that adiabatic elimination of the phononic bath [383] gives rise to an

integral of an exponential that decays on a time scale set by the thermal relaxation

time of the mechanical resonator τpt (see Section 7.3.2 for an indepth discussion of

this time constant). Also included in Eq. (7.3) is the dimensionless parameter β

that determines the relative strength and direction of the photothermal force with

respect to the radiation-pressure force. This parameter is heavily dependent on the

optical and mechanical modeshapes being considered [25, 80], as well as the thermal

properties of the resonator [291, 376]. It is important to note that it is possible for

β to be negative [22, 25, 303, 378, 380–382], such that the photothermal force acts

to directly oppose radiation-pressure effects, which has significant consequences

for the detuning-dependence of the optomechanical damping and spring effects.

Furthermore, setting β = 0 eliminates this photothermal interaction, reverting

our treatment back to that of a purely radiation-pressure-driven system. Finally,

while we have chosen to explicitly identify the force in Eq. (7.3) as photothermal

in nature, with the appropriate choice of τpt, β, and κa, the analysis that follows is

valid for any optomechanical force that has a delayed response with respect to the

occupation of the optical cavity.

7.2.2 Linearized Photothermal Equations of Motion

To determine how the inclusion of a photothermal force modifies the properties of

the optomechanical system, we linearize the equations of motion given in Eqs. (7.1)

and (7.2), as we did with their radiation-pressure counterparts in Section 4.3.3,
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while taking âa(t) = δâa(t) and âo(t) = δâo(t) to arrive at

δ ˙̂a = −κ
2
δâ+ i∆δâ+ iGāδx̂+

√
κeδâin +

√
κaδâa +

√
κoδâo, (7.4)

δ ¨̂x+ Γmδ ˙̂x+ ω2
mδx̂ =

1

m

[
F̂th + ~G

[
ā∗δâ+ āδâ†

]
+
~Gβ
τpt

∫ t

−∞
e
− t−t

′
τpt

([
ā∗δâ(t′) + āδâ†(t′)

]
− 1
√
κa

[
ā∗δâa(t′) + āδâ†a(t′)

])
dt′
]
,

(7.5)

with the associated steady-state values of â and x̂ given by Eq. (4.19) and

x̄ =
~G|ā|2(1 + β)

mω2
m

, (7.6)

respectively. Note the additional photothermal terms proportional to β in Eqs. (7.5)

and (7.6) with respect to Eqs. (4.18) and (4.20).

Fourier transforming Eqs. (7.4) and (7.5), we find the frequency representations

of the fluctuations in â and x̂ as

δâ(ω) = χc(ω)
[
iGāδx̂(ω) +

√
κeδâin(ω) +

√
κaδâa(ω) +

√
κoδâo(ω)

]
, (7.7)

δx̂(ω) = χm(ω)

[
δF̂th(ω) + ~G

{(
1 +

β

1− iωτpt

)[
ā∗δâ(ω) + āδâ†(ω)

]
− β
√
κa(1− iωτpt)

[
ā∗δâa(ω) + āδâ†a(ω)

]}]
.

(7.8)

where again χc(ω) and χm(ω) are the optical and mechanical susceptibilities of the

optomechanical system given by Eqs. (4.23) and (4.24) in Section 4.3.3.

7.2.3 Photothermal Damping and Spring Effect

Proceeding as we did in Section 4.3.4, we determine the optomechanical damping

and spring effect in the presence of a photothermal force by inputting Eq. (7.7)

into Eq. (7.8), resulting in

δx̂(ω) = χeff(ω)

[
F̂th(ω) + ~G

{(
1 +

β

1− iωτpt

)
×
(
χc(ω)ā∗

[√
κeδâin(ω) +

√
κaδâa(ω) +

√
κoδâo(ω)

]
+ χ∗c(−ω)ā

[√
κeδâ

†
in(ω) +

√
κaδâ

†
a(ω) +

√
κoδâ

†
o(ω)

])
− β
√
κa(1− iωτpt)

[
ā∗δâa(ω) + āδâ†a(ω)

]}]
.

(7.9)
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Here we have introduced the photothermal effective mechanical susceptibility given

by [80, 150, 289–291]

χ−1
eff (ω) = χ−1

m (ω)− i~G2|ā|2
(

1 +
β

1− iωτpt

)[
χc(ω)− χ∗c(−ω)

]
, (7.10)

where we have again assumed that δωm � ωm. From this effective susceptibility, we

can extract the optomechanical spring effect in a photothermally driven cavity as

δωm = −~G2|ā|2

2mωm

Re

{
i

(
1 +

β

1− iωmτpt

)[
χc(ωm)− χ∗c(−ωm)

]}
= 2ḡ2∆|χc(ωm)|2|χc(−ωm)|2

×
[
κ2

4
+ ∆2 − ω2

m +
β

1 + ω2
mτ

2
pt

(
κ2

4
+ ∆2 − ω2

m − ω2
mκτpt

)]
,

(7.11)

while the photothermal optomechanical damping is given by

δΓm =
~G2|ā|2

mωm

Im

{
i

(
1 +

β

1− iωmτpt

)[
χc(ωm)− χ∗c(−ωm)

]}
= −4ḡ2∆ωm|χc(ωm)|2|χc(−ωm)|2

×
{
κ+

β

1 + ω2
mτ

2
pt

[
κ+ τpt

(
κ2

4
+ ∆2 − ω2

m

)]}
.

(7.12)

The two expressions given in Eqs. (7.11) and (7.12) resemble what we found

for the optomechanical spring effect and damping for a radiation-pressure-driven

optomechanical system in Eqs. (4.28) and (4.29), with the addition of the terms

proportional to β to account for photothermal effects [301]. Photothermal forces

will therefore govern these dynamical backaction effects when these additional terms

overwhelm their radiation-pressure counterparts. By inspection of Eqs. (7.11) and

(7.12), we find that this will occur for the spring effect when∣∣∣∣κ2

4
+ ∆2 − ω2

m

∣∣∣∣ < ∣∣∣∣ β

1 + ω2
mτ

2
pt

(
κ2

4
+ ∆2 − ω2

m − ω2
mκτpt

)∣∣∣∣ , (7.13)

while the photothermal force will dominate the optomechanical damping if

κ <

∣∣∣∣ β

1 + ω2
mτ

2
pt

[
κ+ τpt

(
κ2

4
+ ∆2 − ω2

m

)]∣∣∣∣ . (7.14)

These inequalities are simplified considerably if we restrict ourselves to the

experimentally relevant parameter space of κ� ωm (i.e. the non-SBR regime) and
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ωmτpt ∼ 1, which together imply κτpt � 1. Using these conditions, Eq. (7.13) will

be satisfied if

1 + ω2
mτ

2
pt . |β|, (7.15)

while Eq. (7.14) becomes

κ <
|β| τpt

1 + ω2
mτ

2
pt

(
κ2

4
+ ∆2

)
. (7.16)

Finally, Eq. (7.16) can be further simplified if we assume ∆ ∼ ±κ/2 (i.e. only

consider the region where optomechanical damping is maximized) which results in

1 + ω2
mτ

2
pt .

|β|κτpt

2
. (7.17)

Note that for the above inequalities we have taken the absolute value of β as it

can be positive or negative depending on the orientation of the photothermal force

with respect to the radiation-pressure force. We further point out the difference

of κτpt/2 between Eqs. (7.15) and (7.17), as this factor quantifies the ratio of

the photothermal time constant τpt to the cavity photon lifetime τc = 1/κ (i.e.

the relevant time scales associated with each optical force) and is significant in

determining which force dominates each of these dynamical back-action effects [378,

381]. This is especially true for non-SBR optomechanical cavities, where κτpt tends

to be large and photothermal damping effects are generally stronger than those

found in SBR systems [289–291, 376].

In Fig. 7.1, we investigate three different optomechanical regimes according

to Eqs. (7.15) and (7.17). Interestingly, we find that there exists a parameter

space where |β| < 1 + ω2
mτ

2
pt, such that the spring effect is dominated by the

radiation-pressure force, but κτpt is large enough that Eq. (7.17) is satisfied and

optomechanical damping is governed by the photothermal force. This regime is

particularly intriguing in the case where β is negative, resulting in the bizarre

effect of a qualitatively similar detuning dependencies between the optomechanical

damping and spring effect, as seen in Figs. 7.1c/f. It is this regime, which we refer

to as the “dueling regime,” that we investigate experimentally in this chapter.
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Figure 7.1: Plots of the optomechanical (a)–(c) spring effect and (d)–(f) damping,
normalized to their respective maximum values, δωmax

m and δΓmax
m . Here we

consider the small mechanical amplitude regime, with both radiation-pressure
and photothermal effects included (i.e . Eqs. (7.11) and (7.12)), where we have
taken (a)/(d) β = −0.1, ωmτpt = 0.01, (b)/(e) β = −10, ωmτpt = 0.01, and (c)/(f)
β = −0.1, ωmτpt = 1; with κ/ωm = 100 in all plots. Therefore, according to
Eqs. (7.15) and (7.17), in (a)/(d) radiation pressure dominates both the spring
effect and damping, while in (b)/(e) dynamical backaction is driven by photothermal
forces. Finally, in (c)/(f) we enter into the dueling regime studied in this chapter,
where the spring effect is dominated by the radiation-pressure force, while the
optomechanical damping is governed by photothermal effects. Figure reproduced
from Ref. [295]. c© 2019 American Physical Society.

7.2.4 Nonlinear Photothermal Optomechanics

We are also interested in determining how the inclusion of the photothermal

interaction affects the properties of an optomechanical cavity in the nonlinear regime

that coincides with the mechanical resonator being driven to a large amplitude of

oscillation. Following the same procedure we used in Section 4.5 for a radiation-

pressure-driven system, we begin with the classical photothermal equations of

motion. These can be found by taking the expectation values of Eqs. (7.1) and
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(7.2), resulting in

ȧ = −κ
2
a+ i∆0a+ iGxa+

√
κeāin, (7.18)

ẍ+ Γmẋ+ ω2
mx =

1

m
[Fth + Frp + Fpt] , (7.19)

where we have introduced the classical photothermal force by taking the expectation

value of Eq. (7.3) to obtain

Fpt(t) =
~Gβ
τpt

∫ t

−∞
e
− t−t

′
τpt |a(t′)|2dt′. (7.20)

Note that since the photothermal force is only introduced into the mechanical

equation of motion1, the optical amplitude is not directly perturbed by the

introduction of the photothermal interaction. Therefore, the mathematical form

of the transmission through the cavity remains the same as it was for the case of

a radiation-pressure-driven system (i.e . Eq. (4.93)), provided any photothermal

effects that modify the mechanical amplitude A are accounted for.

Continuing as we did in Section 4.5, we assume solutions for x(t) and a(t) of the

form given by Eqs. (4.84) and (4.85). We then balance the cavity’s time-averaged

forces, energy, and power2 to determine the steady-state mechanical amplitude,

along with the optomechanical spring effect and damping of the photothermal

system, as a function of mechanical amplitude A according to [150, 301–303, 311]

x̄(A) =
~Gκe|āin|2

mω2
m

(1 + β)
∞∑

l=−∞

|ãl|2, (7.21)

δωm(A) = −~Gκe|āin|2

Amωm

∞∑
l=−∞

Re

{
ãl ã

∗
l+1

(
1 +

β

1− iωmτpt

)}
, (7.22)

δΓm(A) =
2~Gκe|āin|2

Amωm

∞∑
l=−∞

Im

{
ãl ã

∗
l+1

(
1 +

β

1− iωmτpt

)}
, (7.23)

where ãl is given by Eq. (4.86). Note that in order to obtain the optomechanical

quantities given in Eqs. (7.21)–(7.23), we have used the time-average identities

1In modifying the optical equation of motion from Eq. (4.82) to Eq. (7.18), we have simply
broken up the internal cavity losses to account for optical absorption in the mechanical element,
such that both of these equations describe identical physical systems.

2We determine the time-averaged forces by simply taking the time-average of Eq. (7.19), while
for the time-averaged energy and power, we first multiply Eq. (7.19) by x(t) and ẋ(t), respectively,
before time-averaging.
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interspersed throughout Section 4.5, as well as

〈 β
τpt

∫ t

−∞
e
− t−t

′
τpt |a(t′)|2dt′〉 = βκe|āin|2

∞∑
l=−∞

|ãl|2, (7.24)

〈 β
τpt

∫ t

−∞
e
− t−t

′
τpt |a(t′)|2ẋ(t)dt′〉 = −Aωmκe|āin|2

∞∑
l=−∞

Im

{
βãl ã

∗
l+1

1− iωmτpt

}
. (7.25)

Upon inspection of Eqs. (7.21)–(7.23), we therefore find that the addition of

photothermal effects into the system amounts to multiplying the steady-state

mechanical amplitude of a purely radiation-pressure-driven system given in

Eq. (4.87) by a factor of (1 + β) (as was also the case in the linearized regime

– see Eq. (4.20) and (7.6)). Meanwhile the optomechanical damping and spring

effect are each modified by multiplying the ãl ã
∗
l+1 term located within the curly

brackets of Eq. (4.89) and (4.91) by 1 + β/(1 − iωmτpt). Finally, as was the

case for the radiation-pressure-driven system, the mechanical-amplitude-dependent

optomechanical quantities determined in this section, i.e. Eqs. (7.21), (7.22), and

(7.23), are restored to their linearized forms given by Eqs. (7.6), (7.11), and (7.12)

in the small mechanical amplitude regime of ξ = GA/ωm � 1.

7.2.5 Photothermal Cooling

The inclusion of the photothermal interaction also significantly modifies the

conventional radiation-pressure-driven backaction cooling process. To quantify the

extent of this effect, we calculate the two-sided PSD of the mechanical displacement

Sxx(ω) in the presence of a photothermal force, which can be found by inserting

Eq. (7.9) into Eq. (4.32) to find

Sxx(ω) = |χeff(ω)|2
[
Sth
FF (ω) + Sopt

FF (ω)
]
, (7.26)

where we have used the fact that the correlators for the vacuum noise inputs

δâa(ω) and δâo(ω) obey Eq. (E.13) in Appendix E. Here we have introduced

Sopt
FF (ω) = Srp

FF (ω) + Spt
FF (ω) as the optical force spectral density, which in addition

to the radiation-pressure force spectral density Srp
FF (ω), includes the spectral density
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of the photothermal force Spt
FF (ω) = ~2G2Spt

NN(ω) where

Spt
NN(ω) =

N̄

(∆ + ω)2 + (κ/2)2

β

1 + ω2τ 2
pt

×
[
κ

(
βκ

4κa

+ 1

)
+ (∆ + ω)

(
β(∆ + ω)

κa

− 2ωτpt

)]
,

(7.27)

is the effective cavity photon number spectral density associated with the

photothermal force [203, 293].

Inputting the PSD given in Eq. (7.26) into Eq. (4.37) to determine the phonon

occupancy of the mechanical mode, we find an expression for 〈n〉 similar to

Eq. (4.40), where we replace δΓm with the result found in Eq. (7.12) and have a

new minimum achievable phonon average phonon occupancy of

n̄min =
[
Sopt
FF (ωm)/Sopt

FF (−ωm)− 1
]−1

=
[
Sopt
NN(ωm)/Sopt

NN(−ωm)− 1
]−1

= −
κ2

4
+ (∆ + ωm)2

4∆ωm

{
κ+ β

1+ω2
mτ

2
pt

[
κ+ τpt

(
κ2

4
+ ∆2 − ω2

m

)]}
×
{
κ+

β

1 + ω2
mτ

2
pt

[
κ

(
βκ

4κa

+ 1

)
+ (∆− ωm)

(
β(∆− ωm)

κa

+ 2ωmτpt

)]}
.

(7.28)

Therefore, the inclusion of the photothermal interaction has a substantial influence

on this minimal phonon occupation when compared to the result determined using

solely radiation pressure given by Eq. (4.43)3, especially in the non-SBR regime

[289–291, 294, 376]. In fact, due to interference between the radiation-pressure

and photothermal forces [290], it is possible to cool the mechanical resonator to an

average phonon occupancy below one while operating in the non-SBR regime [289–

291, 294, 376], a feat which is not possible for a dispersively coupled optomechanical

cavity driven solely by radiation pressure [150, 293].

In order to determine the absolute minimum phonon occupancy that can be

reached for a given optomechanical cavity, the expression given in Eq. (7.28) must

be optimized with respect to the optical drive detuning ∆. Unfortunately, we are

unable to determine a closed-form solution for the detuning ∆min due to the added

complexity introduced by photothermal effects. However, ∆min can be determined

numerically for a given set of conditions (see Section 7.5 below).

3This result can be obtained by simply setting β = 0 to remove the photothermal effects from
Eq. (7.28).
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7.3 Optomechanical Claw Resonator

7.3.1 Device Description

The optomechanical device studied in this work is comprised of a “claw-like”

mechanical resonator that surrounds roughly one quarter of the circumference of a

10-µm-diameter microdisk as seen in Fig. 7.2. Both elements are fabricated from

the same 250-nm-thick single-crystal-silicon device layer of a standard SOI chip

(see Section 5.2.2 for details). A schematic of the mechanical resonator, along with

critical dimensions can be seen in Fig. 7.3, with the numerical values used in the

experiment summarized in Table 7.1.

1

-1
1

0

(a) (b)

Figure 7.2: (a) A scanning electron microscope image of the device studied in this
work. Scale bar is 3 µm (see Table 7.1 for detailed device dimensions). (b) FEM
simulations of the normalized electric field magnitude for the optical WGM of the
disk with radial mode number n = 1 and azimuthal mode number m = 49. Colours
indicate the direction of the normalized in-plane electric field, with blue/negative
(red/positive) corresponding to an inward (outward) facing field with respect to
the center of the disk. Also included is a finite element method simulation of
the in-plane flexural crab mode of the mechanical resonator with the normalized
displacement expressed in rainbow scale. Both mechanical and optical simulations
are for the device in (a). Figure reproduced from Ref. [295]. c© 2019 American
Physical Society.

The optical microdisk supports WGM resonances in the telecom band (see

Section 3.3), while the mechanical element exhibits a number of MHz-frequency

flexural and torsional modes4 . In this work, we focus on the in-plane flexural “crab”

4In fact, this resonator design was initially conceptualized as a low moment of inertia
optomechanical torque sensor [98, 104, 388].
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Figure 7.3: Schematic of the studied mechanical claw resonator, indicating each of
its critical dimensions. Numerical values for each dimension are given in Table 7.1.
Figure reproduced from Ref. [295]. c© 2019 American Physical Society.

Measured Dimensions

l1 = 143 nm w1 = 177 nm Rd = 595 nm
l2 = 1.53 µm w2 = 177 nm Rc = 5.26 µm
l3 = 4.20 µm w3 = 151 nm θ = 92.7 deg

Table 7.1: Numerical values for the dimensions of the device studied in this chapter
(see Fig. 7.3). Measurements were performed using the scanning electron microscope
image shown in Fig. 7.2a. Device thickness was taken to be t = 250 nm as specified
by the manufacturer.

mode of the mechanical resonator depicted in Fig. 7.2b, with a measured resonant

frequency of ωm/2π = 11.2 MHz, as this mode traverses the steepest gradient of

the optical field profile, resulting in a large optomechanical coupling of G/2π =

0.817 GHz/nm. Using the measured dimensions of the mechanical resonator (see

Table 7.1), along with its simulated modeshape, we find the effective motional mass

of this mode to be m = 183 fg, allowing us to determine its zero-point fluctuation

amplitude as xzpf =
√

~/2mωm = 64 fm.

7.3.2 Thermal Relaxation Time

The thermal relaxation time τpt introduced in Eq. (7.3) is a very important

quantity that sets the time scale, and in some instances the strength, of
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photothermally driven optomechanical effects. For a thin beam of rectangular

cross section, Zener showed that this time constant is dominated by thermal

relaxation of the fundamental mode of the beam, resulting in

τpt =
l2CV
π2K

, (7.29)

where l, CV , and K are the length, volumetric specific heat capacity at constant

volume (with units of J/m3·K), and thermal conductivity of the beam, respectively

[200, 208, 389]. For the claw resonator studied in this chapter (w ∼ t ∼ 100 nm),

we are deep within the Casimir regime (i.e . the regime where the phonon mean free

path in the beam is limited by its cross-sectional dimensions) for the experimental

operating temperature of T = 4.2 K [192]. Therefore, we can input the Debye

heat capacity and thermal conductivity found in Section 2.4.2 (i.e. Eqs. (2.97) and

(2.101)), as well as the Casimir-limited phonon mean free path given by Eq. (2.99),

into Eq. (7.29) to find an expression for the thermal relaxation time of the beam as

τpt =
3l2

1.12π2c̄
√
wt
, (7.30)

where c̄ = 5718 m/s [184] is the average Debye speed of sound given by Eq. (2.83).

Note that in this regime (T . 100 K for dimensions on the order of 100 nm

[192]), the thermal relaxation time in silicon depends only on the geometry and

speed of sound of the system, which are to first order temperature-independent.

Furthermore, due to the factor CV /K in Eq. (7.29), the dimensional dependences

of the specific heat capacity and thermal conductivity cancel, such that the result

given by Eq. (7.30) is independent of the dimensionality of the system.

While the above description works well for determining the thermal time constant

for the geometry of a simple beam with a uniform rectangular cross section, it is

unclear if such an analysis applies to the complex device structure studied in this

chapter. We have therefore performed FEM simulations to accurately determine

the thermal relaxation time for this device [381]. Here, the phonon mean free

path is limited by the smallest dimension of our resonator (i.e . w3 = 151 nm in

Fig. 7.3), leading to a Casimir-limited mean free path of ΛC ≈ 1.12
√
w3t = 218

nm (see Eq. (2.99)), where we have taken t = 250 nm as the thickness of the

silicon device. Using this value for the mean free path, along with the temperature-

dependent expressions for the specific heat capacity and thermal conductivity
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Figure 7.4: Plot of the normalized temperature T/Tf versus time for the FEM
heating simulation used to determine the thermal relaxation time of the resonator.
Inset is a schematic illustrating the simulation procedure, whereby a uniform heat
load of 6 µW is applied to the surface of the resonator indicated by the red arrows,
while its temperature profile is probed in time at the positions denoted by the
coloured crosses. By normalizing each of these extracted data sets (color-coded to
match the corresponding probe point) to its final temperature, a universal heating
trend along the curved portion of the resonator is demonstrated. From these
normalized profiles, we determine the thermal relaxation time of the device (τpt =
9.5 ns) as the time required for the temperature to increase from its initial value
by an amount ∆T (1− e−1) (see Eq. (7.31)). Figure reproduced from Ref. [295].
c© 2019 American Physical Society.

found in Eqs. (2.97) and (2.101), we simulate the heating of the device due to

absorption of laser power. To do this, the laser-driven heating is approximated as

a uniform heat load applied to the inner surface of the resonator facing the disk

(see inset of Fig. 7.4). The magnitude of this heat load is chosen to be Pabs = 6

µW to approximately match the expected absorbed power for the experimental

conditions associated with Fig. 7.7 below (i.e. κ = 2.04 GHz, κe = 0.38 GHz, and

Pin = 10.1 µW), while also assuming κa = κi and ∆ = 0 (see Eq. (4.49)). The

simulated temperature increase of the resonator as a function of time was then

monitored at seven equally spaced points along its rounded portion, as shown
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in Fig. 7.4. Continuing with the Zener approximation (i.e. the majority of this

thermal relaxation occurs through the fundamental mode of the beam), we expect

the temperature at each of these points to increase according to [376, 389, 390]

T (t) = T0 + ∆T
(
1− e−t/τpt

)
. (7.31)

Here ∆T = Tf−T0 is the difference between the resonator’s temperature T0 at t = 0

when the heat load is initially applied and its final equilibrium temperature Tf that

is reached for t� τpt. We note that while each point on the resonator heats from

an initial temperature of T0 = 4.2 K to varying equilibrium temperatures ranging

from Tf = 43 K to Tf = 49 K, when normalized by these final temperatures, each

simulated data set collapses onto a single universal trace (see Fig. 7.4). Therefore,

we can use Eq. (7.31) to extract the thermal relaxation time as the average time

required for the resonator to heat from T0 to T0 + ∆T (1− e−1). Performing this

calculation for each of these data sets, we find τpt = 9.5 ± 0.2 ns, where the

uncertainty is given by the standard deviation of this distribution.

We can also use this simulated value of τpt to evaluate how well our irregular

resonator geometry is approximated as a uniform rectangular beam (with width w3

and thickness t). This is done by rearranging Eq. (7.30) to obtain the an effective

thermal length of

leff =

√
1.12π2c̄τpt

√
w3t

3
. (7.32)

Using the simulated time constant and the parameters for our device, we find this

effective length to be leff = 6.24 µm. Comparing this value to the total length of

our device, ltot = l1 + l2 + l3 + 2Rd = 7.06 µm, as measured from the tip of one end

of the rounded portion of the resonator to its anchor point, we find that these two

lengths agree very well with each other. Thus, our device is well-approximated as a

uniform beam provided we introduce a small reduction in its length by a numerical

factor of leff/ltot = 0.88.
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7.4 Experimental Results

7.4.1 Optomechanical Measurement Scheme

All measurements of the device studied in this chapter are performed inside

a cryostat using the custom-built cryogenic optomechanical coupling apparatus

described in Section 5.4, with exchange gas added to the vacuum can to promote

thermalization of the device to the helium bath temperature of 4.2 K. Using the

optical detection circuit described in Section 5.4.3, laser light is injected directly

into, and collected from, the optical cavity via a cryogenic dimpled-tapered fiber

[163, 312, 326]. The transmission through the optical cavity is then monitored by

observing the laser fluence through the fiber using the single-channel photodetector

of the detection circuit, while high-frequency fluctuations in the optical signal are

either transduced directly using this photodetector, or by switching out to the

homodyne detection system. This allows the advantage of being able to measure the

mechanical signal using both direct and homodyne detection, as these two schemes

are complimentary in a sense that one’s response will be maximized for detunings at

which the other is minimized (see Section 4.4), allowing for optimal signal-to-noise

in the transduced signal over the entire sweep of the optical resonance.

7.4.2 Low Power Measurements

In Fig. 7.5, we show measurements of the studied optomechanical system

from two separate optical resonances with center wavelengths located at 1582

nm (Fig. 7.5a) and 1608 nm (Fig. 7.5b). Here the optical resonance at 1582

nm exhibits the behaviour one would expect for a standard radiation-pressure-

driven optomechanical system (see Figs. 7.1a/d), where we observe optomechanical

damping on the red side of the optical cavity and amplification on the blue side, with

the mechanical spring effect exhibiting the opposite detuning dependence. However,

this is not the case for the optical resonance at 1608 nm. Instead, the optomechanical

damping behaves quite differently, with amplification on the red side of the optical

cavity and damping on the blue side. Furthermore, the spring effect seems to

qualitatively follow the same detuning dependence as the optomechanical damping,

such that these two dynamical backaction effects appear to violate the Kramers-

181



Normalized Voltage Spectrum (V2 / Hz)

Tr
an

sm
is

si
on

Drive Detuning, (GHz)

(k
H

z)
(k

H
z)

(k
H

z)

Fr
eq

ue
nc

y 
(M

H
z)

(c) (d)

(e) (f)

(a) (b)

(k
H

z)

1582 nm 1608 nm

Figure 7.5: Mechanical spectra (normalized to their maximum values) versus
detuning for the 11.2 MHz crab mode depicted in Fig. 7.2b for optical resonances
at (a) λc = 1582 nm and (b) λc = 1608 nm, with the mechanical frequency on
the left axis. Overlaid in white is the transmission through the cavity (right axis)
for each optical mode. Note that while in (a) mechanical damping (amplification)
occurs on the red (blue) side of the optical resonance, this effect is reversed in (b).
Also included are (c)/(d) the optomechanical spring effect δωm and (e)/(f) the total
mechanical damping rate Γtot = Γm + δΓm, with (c) and (e) corresponding to the
mechanical data in (a), while (d) and (f) are extracted from the data in (b). We
attribute the lack of spring effect on the red side of the optical resonance in (d) to
an optical-heating-induced mechanical frequency shift that offsets the dynamical
backaction effects [382]. Measurements are taken at input optical powers to the
cavity of (a)/(c)/(e) Pin = 10.9 µW and (b)/(d)/(f) Pin = 1.9 µW, chosen such that
self-oscillation of the mechanical motion has just begun to onset for each optical
mode. Figure reproduced from Ref. [295]. c© 2019 American Physical Society.
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Kronig relations [292]. We note that this reversal in the detuning dependence of the

optomechanical damping is observed over nearly three orders of magnitude in input

optical power from approximately 50 nW to 10 µW (see Fig. 7.6), indicating that

this seemingly anomalous effect does not onset at a given power threshold within

this range. Such a power-dependence is in agreement with an optomechanical

damping caused by dueling radiation-pressure and photothermal forces, as both of

these effects scale with an identical power-dependence (see Eqs. (7.12) and (7.23)).

Therefore, we attribute this behaviour to an additional photothermal force that

is present for the 1608 nm optical mode, with β and τpt satisfying β < 0 and

Eq. (7.17), but not Eq. (7.15), such that this force acts to overwhelm the device’s

radiation-pressure-driven optomechanical damping, but not its spring effect. We

postulate that photothermal effects arise in this optomechanical device for optical

modes that heat the inner surface of the mechanical resonator (facing the disk) via

optical absorption. This in turn generates a thermal gradient across the width of

the curved portion of the resonator, inducing thermoelastic forces that cause it to

curl [382, 383], thus actuating the crab mode.
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Figure 7.6: Optomechanical (a) spring effect and (b) damping over nearly three
orders of magnitude in input optical power, ranging from approximately 50 nW
to 10 µW, for the λc = 1608 nm optical mode shown in Fig. 7.5b. Even at
very low powers, optomechanical damping occurs for a blue-detuned optical drive,
qualitatively matching the detuning dependence of the optomechanical spring effect.
Figure reproduced from Ref. [295]. c© 2019 American Physical Society.
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7.4.3 High Power Measurements

As demonstrated in Fig. 7.7, the inverted detuning dependence associated with

this effect becomes more pronounced at higher optical input powers, where we
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Figure 7.7: At an input power of Pin = 10.1 µW, we find that the photothermal
force drives the mechanical resonator into self-oscillation, causing a drastic increase
in its amplitude of motion. This results in a highly nonlinear response for (a)
the transmission through the optical cavity and (b) the SNR of the homodyne
mechanical spectra, as well as the optomechanical (c) spring effect and (d) damping
over the detuning range from ∆ ∼ 0 to −4 GHz. In each of these plots, red (blue)
data points denote an optical drive that was swept starting from the red (blue) side
of the optical cavity, i.e. from negative to positive (positive to negative) detunings,
as indicated by the arrows in (a). The data in (c) and (d) are extracted from
mechanical spectra obtained using both direct (squares) and homodyne (circles)
detection of the high-frequency portion of the optical signal at each drive detuning,
while the SNR in (b) is determined by dividing the maximum value of the homodyne
spectra by its off-resonant imprecision noise floor. The data for each detuning takes
approximately 5 s to acquire, such that the sweep over the entire ∼160 detunings
occurs on the timescale of ∼800 s. The dashed green (solid black) lines in (a),
(c), and (d) are fits to the red (blue) data using Eqs. (4.93), (7.22), and (7.23),
respectively, allowing for extraction of the optomechanical parameters quoted in
the main text. Figure adapted from Ref. [295]. c© 2019 American Physical Society.
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Figure 7.8: The attractor diagram for the data in Fig. 7.7, which is produced
by using Eq. (7.23) to calculate δΓm(A) for a number of mechanical amplitudes
and optical drive detunings. The white dashed line indicates the condition of
δΓm(A)/Γm = −1 (i.e. Γtot = 0), such that the red (blue) solid line traces out
the physical values of the mechanical amplitude for a detuning sweep originating
on the red (blue) side of the optical cavity. Coloured arrows indicate the sweep
direction of the optical drive frequency as depicted in Fig. 7.7a. Figure adapted
from Ref. [295]. c© 2019 American Physical Society.

further find that the observed photothermal amplification is strong enough to

reduce the total mechanical damping of the system to zero, inducing a parametric

instability [301, 302]. This causes the device to self-oscillate for a near-resonant

red-detuned optical pump, driving the mechanical resonator’s motion to amplitudes

as large as Amax = 5.2 nm (= 382 ωm/G – see Fig. 7.8), nearly three orders of

magnitude greater than its thermally-driven amplitude of Ath =
√

2kBT/mω2
m =

11.3 pm at T = 4.2 K. Accompanying this increase in mechanical amplitude (and

thus the signal-to-noise (SNR) of the mechanical measurements), we observe highly

nonlinear behaviour in each of the optomechanical spring effect/damping, along

with the transmission through the optical cavity, as well as a hysteresis in each

of these quantities with respect to the sweep direction of the optical drive. We
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Figure 7.9: A color plot of x̄ versus mechanical amplitude and optical drive
detuning for the conditions given in Fig. 7.7. The solid lines are the mechanical
amplitudes that are traced out for detuning sweeps performed in the direction of
the corresponding coloured arrows (see Fig. 7.7). Thus, these contours denote the
physical values of x̄ that are realized in the experiment. Figure reproduced from
Ref. [295]. c© 2019 American Physical Society.

note that while the optomechanical interaction causing the device to enter into

self-oscillations is nonlinear, the mechanical motion itself still remains within the

linear regime, avoiding complications such as Duffing nonlinearities [391].

This peculiar behaviour can be understood by examining the combined

photothermal and radiation-pressure attractor diagram of the system displayed

in Fig. 7.8, which is generated by evaluating Eq. (7.23) at various mechanical

amplitudes A and optical drive detunings ∆ = ∆0 +Gx̄ [301–305]. Note that with

this definition of ∆, we include the shift in the cavity resonance due to the static,

optomechanically induced displacement of the mechanical resonator as is seen in

Fig. 7.9. In principle, this static shift5 can act to displace the detuning dependence

of the attractor diagram [301, 303], however, for the device considered here this

5Even at the largest optical power input to the device (Pin = 139 µW), we find the maximum
static displacement of the resonator to be x̄max = 46 pm, causing a shift in the detuning that is
at most Gx̄max = 38 MHz = 0.024κ.
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Figure 7.10: Attractor diagram of δΓm(A)/Γm for the device parameters given in
Fig. 7.7, except with β = 0 such that only radiation-pressure effects are present. We
note that not only does the sign of the optomechanical damping reverse, restoring
what one would expect for a radiation-pressure-driven system, but the damping
force is no longer strong enough to induce mechanical self-oscillations at this power
(Pin = 10.1 µW), as demonstrated by the fact that δΓm(A)/Γm > −1 for all optical
drive detunings. Figure reproduced from Ref. [295]. c© 2019 American Physical
Society.

shift is negligible, such that ∆ ≈ ∆0.

The physical values for the mechanical amplitude are found to traverse the

contours of the attractor diagram that obey the condition Γtot = 0⇒ δΓm = −Γm

(see white dashed line in Fig. 7.8), corresponding to an increase in mechanical

amplitude in order to dissipate the optical power input to the system [301, 302].

As can be seen in Fig. 7.8, for the non-SBR system considered here, there are

two possible mechanical amplitude solutions for optical drive detunings ranging

from ∆ ≈ −2.5 to −4.0 GHz. This leads to dynamical bistability, and therefore, a

hysteresis in the mechanical amplitude, as well as the optomechanical properties of

the system [303]. We point out that these nonlinear effects, which are photothermal

in origin, would not be present for this system if only the radiation-pressure force

were considered (i.e. by setting β = 0 – see Fig. 7.10).
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Fixing the mechanical resonance frequency and damping rate to their low power

values of ωm/2π = 11.2 MHz and Γm/2π = 374 Hz, while using τpt = 9.5 ns

determined from the FEM simulations in Section 7.3.2, we fit the data in Fig. 7.7

to Eqs. (4.93), (7.22), and (7.23) by varying G, β, κ, and κe. We note that while

driven to self-oscillation, the mechanical frequency locks to a position slightly

larger than its off-resonant value (see Fig. 7.7c), which we attribute to a small

thermal shift in the mechanical resonance due to optically induced heating of

the resonator [382], leading to an additional, inconsequential fit parameter. To

perform this fitting procedure, we first determine the mechanical amplitude of

the resonator as a function of optical drive detuning according to an attractor

diagram similar to that seen in Fig. 7.8 for each iteration of trial parameters. These

amplitudes are then fed into Eqs. (4.93), (7.22), and (7.23), the results of which

are compared to the data in Figs. 7.7a, c, and d, respectively. This process is

repeated until the minimization condition of the fitting algorithm is met. Using

this procedure, we extract the optomechanical coupling parameters G/2π = 0.817

GHz/nm (g0/2π = Gxzpf/2π = 52.2 kHz) and β = −0.316, as well as a total optical

loss rate of κ/2π = 2.04 GHz and an external coupling rate of κe/2π = 0.38 GHz, for

the studied device. This results in a single-photon cooperativity of C = 4g2
0/κΓm =

1.4 × 10−2 and a maximal cavity-enhanced cooperativity of C̄ = N̄maxC = 68, where

N̄max = 4κePin/~ωcκ
2 = 4.7 × 103 is the average number of photons circulating

within the cavity for a resonant pump with an input power of Pin = 10.1 µW.

Furthermore, using these extracted parameters, along with ωmτpt = 0.67, we find

1 + ω2
mτ

2
pt = 1.45 and |β|κτpt = 38. This ensures that Eq. (7.17) is satisfied, while

Eq. (7.15) is not, confirming that we are indeed in the dueling regime associated

with a radiation-pressure-dominated spring effect, but a photothermal-dominated

optomechanical damping.

7.4.4 Power Dependence of Photothermal Properties

We continue to observe nonlinear effects in the optical transmission through

the cavity for input powers up to ∼140 µW, the data for which can be seen in

Fig. 7.11. These measurements were performed under coupling conditions that

differed slightly from those used to collect the data in Fig. 7.7, causing a shift in

188



0 25 50 75 100 125 150
0.30

0.25

0.20

0.15

0.10

0.05

0 25 50 75 100 125 150
0.0

0.2

0.4

0.6

0.8

In
pu

t P
ow

er
 ( 

  W
)

(c)(b) (d)

Simulation SimulationDataData

Transm
ission

(a)

(e)

Drive Detuning,                      (GHz)

Input Power (   W)

(f)

(G
H

z)

Input Power (   W)

Figure 7.11: (a)–(d) Transmission through the optical cavity as a function of
detuning and input power. Here we show (a)/(c) data and (b)/(d) simulation for
red and blue detuning sweeps (sweep direction indicated by the white arrow), with
each detuning scaled to the cavity’s resonance frequency at the lowest measured
power of Pin = 1.9 µW. Fixing κ/2π = 1.59 GHz and κe/2π = 0.29 GHz, we fit
the data in (a)/(c) to Eq. (4.93), allowing us to determine β and ωc versus input
optical power to the cavity. In (e), we display these values for β (green circles),
which are fit to Eq. (7.33) (orange line) resulting in β0 = −0.399, β∗ = 0.063,
and P∗ = 0.68 µW. The simulations in (b)/(d) are calculated by inputting the
values of β from this fit, along with ωc extracted from the fits to (a)/(c) and the
aforementioned fixed values of κ and κe, into Eq. (4.93). Finally, (f) displays the
optical cavity resonance frequency shift ∆ωc (relative to its value at the lowest
optical power), with the red/blue data points corresponding to fits of the detuning
sweeps originating from the red/blue side of the cavity found in (a)/(c), both of
which indicate a blue shift in the cavity resonance with increasing optical power.
Figure reproduced from Ref. [295]. c© 2019 American Physical Society.

the loss rates of the optical cavity to κ/2π = 1.59 GHz and κe/2π = 0.29 GHz.

Fixing these values for κ and κe, while assuming that the thermal relaxation time

remains constant in power/temperature (which should be the case up to roughly
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100 K – see Section 7.3.2), we fit the optical scans in Figs. 7.11a/c to Eq. (4.93),

extracting β and ωc versus input optical power to the cavity (see Figs. 7.11e/f).

Upon inspection of Fig. 7.11e, we find that β exhibits a logarithmic dependence on

input power, which can be fit with the phenomenological equation

β(P ) = β0 + β∗ ln

(
1 +

P

P∗

)
, (7.33)

where β0 = −0.399 is the value of β at zero input power, while β∗ = 0.063 and P∗

= 0.68 µW are scaling parameters. Rearranging Eq. (7.33), we can also determine

the power at which β = 0 as P0 = P∗(e
−β0/β∗ − 1) = 384 µW. Inputting β from

this fit, along with the extracted values of ωc versus power, into Eq. (4.93), we

show that we are able to reproduce the power-dependent behaviour of the optical

transmission data, as can be seen in Figs. 7.11b/d.

The observed power-dependence in β and ωc is likely a result of the fact that

increasing the power input to the optomechanical system causes it to heat up,

changing its thermal and optical properties. Due to the complicated nature of

optically induced heating, it is difficult to quantitatively ascertain the temperature

of the device in this regime, however, we find the qualitative trend that β decreases

in magnitude as we move to higher power/temperature. We postulate that it is

this decrease in the magnitude of β with increasing temperature that has prevented

previous studies of the dueling radiation-pressure and photothermal effects discussed

in this chapter, as the majority of optomechanical experiments on nanophotonic

silicon devices have been performed at room temperature. Furthermore, in Fig. 7.11f

it can be seen that ωc increases with power/temperature. This observation is

consistent with the negative thermal expansion coefficient of silicon between

approximately 18 K and 120 K [216–219], as an increase in temperature reduces

the diameter of the microdisk cavity, resulting in a blue-shift of its optical resonant

frequency [59, 392].

Finally, due to the bistable nature of the attractor diagram shown in Fig. 7.8,

amplification of the mechanical resonator’s motion results in hysteretic behaviour of

the transmission through the cavity depending on whether the pump beam is swept

from its red or blue side. As the optical power input to the cavity is increased,

optomechanical amplification occurs over a larger range of drive detunings, causing
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this hysteresis spacing to expand. In Fig. 7.12, we showcase this effect for the data

in Figs. 7.11a/c, where we demonstrate that at high input powers (Pin & 25 µW),

the hysteresis spacing roughly obeys a square-root dependence.
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Figure 7.12: Hysteresis spacing of the transmission through the cavity versus optical
input power (green circles) extracted from the data in Figs. 7.11a/c. The orange
line is a fit to a power law, from which we find an exponent of 0.52, indicating
a near square-root dependence of the hysteresis spacing on input optical power.
Figure reproduced from Ref. [295]. c© 2019 American Physical Society.

We conclude this section by noting that β = −0.232 at Pin = 10.2 µW for the

data in Fig. 7.11, which is considerably smaller in magnitude than the value of

β = −0.316 extracted from Fig. 7.7, where Pin = 10.1 µW. This discrepancy likely

results from the disparity in the optical linewidths between the two measurements

due to their differing coupling conditions, which leads to varying amounts of power

absorbed by the resonator for identical input powers (see Eq. (4.49)), causing it to

heat to a different temperature in each case. For instance, inputting the values of κ

and κe from the two different coupling conditions used to obtain the data found in

Figs. 7.7 and 7.11 (while assuming κa remains the same in each case), we find the

power absorbed by the resonator (on cavity resonance) to be approximately 25%

larger for the data in Fig. 7.11 compared to Fig. 7.7. It is this effect, coupled with

the rapid increase in β at low optical input powers, that we attribute as the cause

for the differing value of β between these two data sets for similar input powers.
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7.5 Prospects for Photothermal Cooling

Up to this point we have largely focussed on the photothermally driven

amplification of mechanical motion that occurs for a pump beam detuned to

the red side of the optical resonance. However, photothermal backaction can also be

used to perform considerable cooling of the mechanical mode on the opposite (blue)

side of the resonance [22, 25, 378, 381–383]. For instance, in Fig. 7.7d we find that

the photothermal force increases the total damping rate of the mechanical resonator

to as high as Γtot/2π = 2.5 kHz at ∆ = 2π × 0.97 GHz (= 0.48 κ), resulting in a

factor of 6.7 increase from its intrinsic value of Γm/2π = 374 Hz. Assuming that

the resonator is initially thermalized to the helium bath temperature of Tb = 4.2

K, this damping effect actively cools the mechanical mode to a temperature of

Tm = Tb(Γm/Γtot) = 631 mK (see Eq. (4.44)), equivalent to a reduction in the

phonon occupation of the mechanical resonator from 〈n〉 ≈ 7800 to 〈n〉 ≈ 1170

[150]. This cooling effect is especially intriguing considering that it occurs for a

blue-detuned optical pump, such that the photothermal force must overwhelm any

radiation-pressure-driven amplification effects.

More interesting, however, is the fundamental limit on minimum reachable

phonon number using this cooling method, which is set by the shot noise generated

by photons impinging upon the mechanical resonator. For a purely radiation-

pressure-driven system, this limit is given by Eq. (4.43), which when minimized

with respect to detuning in the non-SBR regime (κ� ωm) results in n̄rp
min ≈ κ/4ωm

[150, 293]. For the device studied here we find that n̄rp
min ≈ 45, such that it

would be impossible to cool it to an average phonon occupation less than one

using radiation pressure alone. However, the situation is far more complex when

one adds photothermal effects into the picture, as this force interferes with the

radiation pressure [290], resulting in the modified expression for the minimum

achievable phonon number given by Eq. (7.28). Here we find it useful to define

the optical loss rate due to absorption of photons in the mechanical element as

a fraction ς of the cavity’s total intrinsic loss rate κi according to κa = ςκi. For

the experimental measurements given in Fig. 7.7, we determine this total intrinsic

loss rate to be κi = κ − κe = 2π × 1.66 GHz. It is difficult to experimentally
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Figure 7.13: Plot of the minimum reachable phonon number according to Eq. (7.28)
versus normalized drive detuning using the parameters extracted from the fits in
Fig. 7.7, while setting κa = κi = 2π× 1.66 GHz. The black dashed line corresponds
to n̄min = 1, indicating that the resonator can in principle be cooled below single
phonon occupancy over a detuning band from ∆ ∼ κ to 9κ, reaching its minimum
value of n̄min = 0.39 at ∆min = 3.1 κ. Inset is a plot of n̄min as a function of the
ratio ς = κa/κi, indicating that ground state cooling is still possible for ς & 0.4.
Figure adapted from Ref. [295]. c© 2019 American Physical Society.

determine what fraction of this intrinsic loss rate contributes to κa. However, we

initially assume that optical losses are dominated by absorption in the mechanical

element (i.e. set ς = 1), allowing us to set a lower limit on the minimum achievable

phonon occupation for the device studied here. Using this condition, along with the

extracted experimental values from Fig. 7.7, we plot n̄min as a function of detuning

in Fig. 7.13. As one can see, the minimum achievable phonon number drops below

one over a detuning range from ∆ ∼ κ to 9κ, reaching its optimal value of n̄min =

0.39 at ∆min = 3.1 κ, which corresponds to a mechanical resonator that is in its

ground state 71% of the time. We note that ground state cooling remains possible

when relaxing the condition that κa = κi, with n̄min < 1 for ς & 0.4 (see inset of

Fig. 7.13). While it has long been known theoretically that the photothermal force

can be used to cool a non-SBR optomechanical resonator into its motional ground

state [289–291, 294, 376], this is the first time that a device has been experimentally

demonstrated to exist within the required regime.

To further investigate the parameter space over which ground state photothermal
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Figure 7.14: A colour plot depicting the base-ten logarithm of n̄min, minimized
with respect to detuning, as a function of β and τpt, with the rest of the parameters
the same as in Fig. 7.13. Therefore, while we have expressed the x-axis in terms
of the unitless quantity ωmτpt, the mechanical resonance frequency is fixed to
ωm = 2π × 11.2 MHz such that only τpt is varied along this axis. Here we have
ensured finite (i.e. nonzero) β to allow us to focus on photothermal effects, as
opposed to the narrow feature that emerges due to the radiation-pressure force
for very small β (. 0.001). The solid (dashed) white lines demarcate the contour
of n̄min = 1 (n̄min = 0.1), while the yellow star indicates the parameters for the
device studied in this chapter. As one can see, there is a region where n̄min < 1
centered near β = 0, with deviations from a symmetric distribution in β being
due to interference between the radiation-pressure and photothermal forces [290].
We further note that while n̄min decreases for larger values of τpt, the detuning
for which n̄min is minimized increases with τpt (see Fig. 7.15), moving away from
∆ ≈ κ/2 where the photothermal force is maximal [289], such that it becomes
increasingly difficult to reach n̄min experimentally. Figure adapted from Ref. [295].
c© 2019 American Physical Society.

cooling can occur, we have plotted the logarithm of the minimum achievable phonon

number versus β and τpt in Fig. 7.14. Each point on this plot is obtained by varying

β and τpt in Eq. (7.28) (while again setting all other physical parameters equal to

those extracted from the fits to Fig. 7.7) and taking the minimum value of n̄min

with respect to detuning. The result is a large region of photothermal parameter

space that allows for cooling below the single phonon level, with a slight asymmetry

194



Figure 7.15: Colour plot of log10(|∆min/κ|), i.e. the base-ten logarithm of the
absolute value of the detuning ∆min for which n̄min is globally minimized (normalized
by κ). Here we have used the same optomechanical parameters as those in
Fig. 7.14, with the solid (dashed) white line indicating the contour of |∆min| = κ
(|∆min| = κ/2). Note that the sign of ∆min is opposite of β, such that ∆min < 0
(∆min > 0) for β > 0 (β < 0). As one can see, |∆min| is maximized near β = 0 and
increases for larger values of τpt. We point out, however, that for small β and large
τpt, local minima emerge near ∆ ≈ −κ/2 [not shown here as this figure depicts the
global minimum of n̄min], corresponding to the region over which radiation-pressure
effects begin to dominate. Furthermore, as is seen with n̄min in Fig. 7.14, |∆min| is
asymmetric with respect to β, which is again due to interference between radiation-
pressure and photothermal effects. Finally, we note that the dashed contour of
∆min = κ/2 passes very near β = −2.0 for ωmτpt = 1 (see red star), such that these
parameters optimize photothermal cooling versus both optical drive detuning and
thermal relaxation time (see Fig. 7.16). Figure adapted from Ref. [295]. c© 2019
American Physical Society.

between positive and negative β due to interference between the radiation-pressure

and photothermal forces [290]. As indicated by the yellow star in Fig. 7.14, the

parameters for the device considered in this work lie well within this regime.

One must be careful, however, when interpreting these results, as n̄min describes

the fundamental limit on the minimum reachable phonon number using this cooling

mechanism. Furthermore, as τpt increases, so does the detuning at which n̄min

195



is minimized, reducing the effectiveness of the photothermal cooling. This effect

can be seen in Fig. 7.15 for the same parameter space that is mapped out in

Fig. 7.14. Here |∆min| grows for decreasing β and increasing τpt, moving away

from the optimal value of |∆min| ≈ κ/2 denoted by the white dashed line, while

exhibiting a similar asymmetry about β as was seen for n̄min. Therefore, one

generally wishes to maximize the strength of the photothermal damping force,

which occurs for ωmτpt ≈ 1 [22, 289, 294, 378] and ∆ ≈ κ/2 (see Fig. 7.7d), in order

to decrease the optical power required to reach n̄min. Of particular interest are

the photothermal cooling parameters of β = −2.0 and ωmτpt = 1 (corresponding

to τpt = 1/ωm = 14.2 ns for the device considered here), which when combined

with the other device parameters used in this chapter, results in n̄min = 0.11 at

∆min ≈ κ/2 as seen in Fig. 7.16. These conditions therefore maximize photothermal

cooling with respect to both thermal relaxation time and optical drive detuning

[289], while still allowing for ground state cooling of the mechanical resonator, thus

presenting a set of parameters to strive for in future iterations of the device.
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Figure 7.16: Plot of n̄min versus normalized drive detuning for the photothermal
parameters indicated by the red star in Fig. 7.15 (β = −2.0 and ωmτpt = 1). Here
we see that the lowest achievable phonon number is indeed minimized to n̄min = 0.11
at ∆min ≈ κ/2. Figure adapted from Ref. [295]. c© 2019 American Physical Society.
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7.6 Conclusion

In this chapter, we have presented measurements of a silicon WGM optomechani-

cal cavity that exhibits dynamical backaction effects due to competing photothermal

and radiation-pressure forces. We find that the radiation-pressure force governs

the optomechanical spring effect, while the photothermal force dictates the op-

tomechanical damping. Furthermore, due to the fact that this photothermal force

acts to directly oppose its radiation-pressure counterpart, we find that at high

enough power we can reduce the mechanical damping to zero on the red side of

the cavity resonance, inducing a parametric instability in the mechanical resonator

that drives its motion into large-amplitude self-oscillation. At the onset of this

self-oscillating behaviour, we observe highly nonlinear effects, as well as a hysteresis

depending on the sweep direction of the optical drive, in each of the optomechanical

damping, spring effect, and transmission through the optical cavity. Fitting these

data with a nonlinear optomechanical model that includes both radiation-pressure

and photothermal forces, we extract the optomechanical properties of the system

associated with each of these effects. Finally, using these extracted parameters,

we infer that this non-SBR optomechanical system can in principle be cooled to

an average phonon occupancy less than one. This comprehension of exactly how

the radiation-pressure and photothermal forces interact with each other at low

temperatures will be crucial as silicon optomechanical cavities continue to be used

to perform quantum experiments [135–139, 141–143].
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Chapter 8

Phonon Quantum Nondemolition
Measurements in Nonlinearly
Coupled Optomechanical Cavities

In this chapter, we examine the feasibility of using a quadratically coupled WGM

optomechanical cavity to perform quantum nondemolition (QND) measurements

of a mechanical resonator’s Fock states. This work is based on the publication

B. D. Hauer, A. Metelmann, and J. P. Davis, “Phonon quantum nondemolition

measurements in nonlinearly coupled optomechanical cavities,” Phys. Rev. A 98,

043804 (2018) (Ref. [393]) and draws heavily on the content therein. In order to

be consistent with the rest of the thesis, here we have made a number of minor

notational changes, along with the following changes in sign convention with respect

to the original publication: G1 → −G1 (g1 → −g1), G2 → −G2 (g2 → −g2),

∆→ −∆, and χc(ω,∆)→ χc(−ω,−∆).

8.1 Introduction

The theory of quantum mechanics has excelled in describing a multitude of

phenomena associated with microscopic systems. However, as a system scales

to larger sizes, interaction with the surrounding environment causes its quantum

mechanical state to decohere into the classical realm [394, 395]. Although there are

a number of theories proposing mechanisms by which such decoherence could occur

[396–399], this quantum-to-classical transition remains poorly understood, largely

due to a lack of experimental systems that can be used to study these processes. To
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this end, a number of proposals have been put forward to use cavity optomechanics

as an experimental platform to fill this void [128–131].

While experimental progress in quantum cavity optomechanics has been

astounding (see Chapter 1 for a brief overview), a crucial experiment still remains:

the QND measurement of a mechanical resonator’s phonon number [35, 400].

While QND measurements have been demonstrated for single particles [401, 402],

photons [403, 404], spins [405], and superconducting qubits [406], as well as for

a single quadrature of a micromechanical resonator [114, 115], measurements of

the mechanical Fock states of a cavity optomechanical system would provide an

engineerable platform to directly probe the decoherence of a mesoscopic quantum

state. In this chapter, we theoretically investigate the possibility of performing such

a QND measurement using a quadratically coupled WGM optomechanical cavity.

The chapter begins with Section 8.2 where we provide a brief overview of QND

measurements, showing that in quadratically coupled optomechanical systems it

is possible to monitor the quantized Fock states of a mechanical resonator. In

Section 8.3, we then introduce two possible physical realizations of optomechanical

quadratic coupling: the traditional membrane-in-the-middle (MIM) system and

a WGM geometry similar to that studied in Chapters 6 and 7. Modelling the

second-order coupling in each of these optomechanical cavities, we find significant

differences in their physical implementations, the most important of which is that

the WGM geometry is not subject to the strict single-photon strong-coupling regime

imposed for QND measurements using a MIM system. In Section 8.4, we then use

a master equation approach to determine the rates at which optomechanically and

thermally induced transitions act to contaminate a QND measurement performed

using this WGM system. Finally, in Section 8.5 we compare these transition rates

to the phonon number measurement rate, allowing us to determine the parameter

space for which a QND measurement of thermal jumps in phonon number can be

made.
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8.2 Optomechanical Quantum Nondemolition

Measurements

Quantum nondemolition measurements are a special class of measurements

that are specifically designed to probe a quantum mechanical system while

leaving the considered quantum state unperturbed. To perform a QND

measurement of an observable associated with the operator Ô, we require that the

Hamiltonian Ĥ describing the measurement commutes with this operator [202, 407].

Mathematically, this corresponds to

[Ĥ, Ô] = 0. (8.1)

Therefore, in order to perform an optomechanical QND measurement of a mechanical

resonator’s quantized energy, we require a measurement with a Hamiltonian Ĥ that

commutes with the phonon number operator n̂ = b̂†b̂, that is

[Ĥ, n̂] = [Ĥ, b̂†b̂] = 0. (8.2)

Unfortunately, experimentally realizing an optomechanical Hamiltonian of

this nature proves to be difficult, largely due to the fact that the majority of

optomechanical cavities couple linearly to the mechanical resonator’s position [150].

For instance, the Hamiltonian given in Eq. (4.10) corresponds to a standard linear

optomechanical system and does not commute with b̂†b̂. Therefore, such a scheme

is unsuitable for QND measurements of the resonator’s quantized energy, as it is

subject to the Heisenberg uncertainty principle [202, 203, 407, 408], which results

in a limit on how precisely one can continuously measure the resonator’s quantum

state (i.e. the standard quantum limit discussed in Section 4.4.4).

One must then turn to an optomechanical system where the optical mode is

nonlinearly coupled to the resonator’s position, providing a method by which QND

measurements of its phonon number can be performed [35, 400]. We can arrive at

a Hamiltonian that describes such a nonlinear measurement of x̂ by expanding the

optical cavity frequency to second order in mechanical position (similar to how we

introduced first-order dispersive optomechanical coupling in Eq. (4.2)), resulting in

ωc(x̂) = ωc −G1x̂−
G2

2
x̂2, (8.3)
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where again ωc is the unperturbed cavity frequency, and we have introduced the

first- and second-order optomechanical coupling coefficients G1 = −dωc/dx̂ and

G2 = −d2ωc/dx̂
2. Note that we have added subscripts to these coupling coefficients

with respect to the definition of G in Chapter 2 to allow ourselves to differentiate

between their order. Inputting this expanded cavity frequency, as well as the

expression for x̂ given by Eq. (2.17), into Eq. (4.4), we determine a new, second-

order optomechanical interaction Hamiltonian

Ĥ = Ĥ0 + Ĥ ′, (8.4)

Ĥ0 = ~
[
ωc − g2

(
b̂†b̂+

1

2

)]
â†â+ ~ωmb̂

†b̂, (8.5)

Ĥ ′ = −~g1

(
b̂+ b̂†

)
â†â− ~g2

2

(
b̂b̂+ b̂†b̂†

)
â†â, (8.6)

where g1 = G1xzpf (g2 = G2x
2
zpf) is the single photon, single (two) phonon coupling

rate.

In Eq. (8.4), we have chosen to separate Ĥ into two sub-Hamiltonians, Ĥ0

and Ĥ ′, such that Ĥ0 commutes with the phonon number operator n̂ = b̂†b̂, while

Ĥ ′ does not. In this way, Ĥ0 represents a QND measurement of the mechanical

resonator’s quantized energy [202, 407], collapsing the system into a phononic

number state at a rate given by [400]

Γmeas = C̄2Γm, (8.7)

where we have introduced the second-order, cavity-enhanced cooperativity of the

system C̄2 = N̄C2, given in terms of the second-order, single-photon cooperativity

C2 = 4g2
2/κΓm [150]. The phonon number of the system can then be read out as a

per phonon shift of g2 in the optical cavity’s resonant frequency.

On the other hand, [Ĥ ′, n̂] 6= 0 such that Ĥ ′, which contains the interaction

terms that evolve rapidly in time1, acts to contaminate the QND measurement. This

is a well-known fact for the first term in Ĥ ′, whereby linear coupling simultaneously

probes the phase and energy of the mechanical resonator, preventing a QND Fock

state measurement [36, 408]. In principle, one could completely eliminate this linear

coupling by properly tuning the optical and mechanical symmetries of the system

1To first order (i.e. for a freely evolving mechanical system) b̂(t) = b̂e−iωmt.
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(see Appendix C). However, for any realistic quadratically coupled optomechanical

cavity, a non-zero amount of linear coupling will always creep into the system due

to experimental inaccuracies [35, 63, 409]. We therefore seek to set a limit on

the maximum allowable linear coupling that can exist in a quadratically coupled

optomechanical device that one wishes to use for a QND measurement of phonon

number, as well as determine the regime for which the second term in Ĥ ′ can be

safely ignored.

8.3 Quadratically Coupled Optomechanical Sys-

tems

(a) (b)

Figure 8.1: Schematic of (a) a membrane-in-the-middle optomechanical system
and (b) a mechanical element side-coupled to a whispering gallery mode optical
cavity. In (a), quadratic coupling arises due to an avoided crossing between the two
optical modes (see Section 8.3.2), labelled by their creation operators â1 and â2.
Meanwhile, in (b), the single optical mode denoted by â is coupled to the square of
the mechanical motion via shared symmetries between the optics and mechanics
(see Appendix C). The direction of the mechanical displacement x̂ is indicated
by black arrows. Figure reproduced from Ref. [393]. c© 2018 American Physical
Society.

Before continuing with our analysis, we first briefly compare and contrast two

different physical realizations of quadratic optomechanical coupling. The first

realization is that of a MIM system (see Fig. 8.1a), whereby a mechanical element –

which is typically a thin dielectric membrane [35, 36, 410], but can also be a cloud

of cold atoms [48] or a photonic crystal nanobeam [411, 412] – is placed within

an optical cavity. Inserting the “membrane” into the cavity causes its degenerate
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optical modes to hybridize into two new supermodes that exhibit an avoided level

crossing [36, 411]. By moving the membrane to an antinode of the optical mode,

linear coupling to the membrane’s motion is suppressed and quadratic coupling

becomes dominant [35, 36, 411]. However, when optically driving one of these

supermodes, parasitic linear coupling to the membrane’s position emerges in the

opposite mode, leading to an accelerated decoherence of the membrane’s Fock state

that can only be overcome in the single-photon strong-coupling regime [413–415].

This stringent constraint has proven to be the most difficult obstacle to overcome

when performing QND measurements of phonon number in a MIM optomechanical

system [411].

The second optomechanical system that we consider in this section is one

exhibits second-order coupling due to the shared symmetries between a mechanical

resonance and a single optical mode [409]. Such a system could be physically

realized as an out-of-plane flexural (or torsional) mode of a mechanical resonator

side-coupled to the WGM of a microdisk [63] (see Fig. 8.1b) or the in-plane motion

of a paddle located within a photonic crystal nanobeam [409]. As we shall see

below, this type of quadratically coupled optomechanical system can be described

using a single optical mode, and is therefore not subject to the strict constraints

imposed upon MIM optomechanical cavities in the context of performing QND

measurements.

8.3.1 Two-Mode Optomechanical Hamiltonian

In order to describe a MIM system, we require an optomechanical model that

considers a mechanical resonator simultaneously coupled to two optical modes: one

to the left of the membrane and one to its right. It is these two optical modes that

hybridize and generate quadratic coupling in such an optomechanical system. We

can also use this two-mode model to describe the clockwise and counterclockwise

propagating modes in a WGM optomechanical system, however as we shall see

below, this treatment is not necessary to generate quadratic coupling in this system.

In this two-mode optomechanical model, each optical resonance is characterized

by the annihilation (creation) operators â1 (â†1) and â2 (â†2), as well as the position-

dependent resonant angular frequencies ω1(x̂) and ω2(x̂). We also allow these two
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optical modes to be coupled to each other at a rate ν. The Hamiltonian for such a

two-mode optomechanical system (ignoring the ground state energies, drive terms,

and interaction with the environment) will then be given by

ĤTM = ~ω1(x̂)â†1â1 + ~ω2(x̂)â†2â2 + ~ωmb̂
†b̂+ ~ν

(
â†1â2 + â†2â1

)
, (8.8)

where the first three terms describe the self energies of the two optical modes and the

single mechanical mode, while the last term characterizes the interaction between

the two optical modes, with a photon being annihilated in one while simultaneously

created in the other. This interaction between the two optical modes physically

manifests itself as photons tunneling between the optical modes to the left and right

of the membrane in a MIM system [36, 411, 414], or a backscattering of photons

between the clockwise and counterclockwise propagating modes of a WGM cavity

[416]. As was done in Eq. (8.3), we expand each ith optical frequency to second

order in mechanical position as

ωi(x̂) = ωi −G(ai)
1 x̂− G

(ai)
2

2
x̂2. (8.9)

Here we again have the unperturbed optical frequency ωi, as well as the first-

and second-order optomechanical coupling coefficients, G
(ai)
1 = −dωi/dx̂ and

G
(ai)
2 = −d2ωi/dx̂

2, with the superscript (ai) allowing for one to identify the

coupling coefficient associated with each optical mode. Inputting these expressions

into Eq. (8.8), we obtain the interaction Hamiltonian for the system

ĤTM = ~ω1â
†
1â1 + ~ω2â

†
2â2 + ~ωmb̂

†b̂+ ~ν
(
â†1â2 + â†2â1

)
− ~

(
G

(a1)
1 â†1â1 +G

(a2)
1 â†2â2

)
x̂− ~

2

(
G

(a1)
2 â†1â1 +G

(a2)
2 â†2â2

)
x̂2.

(8.10)

Choosing the optical modes to be degenerate (in the absence of coupling between

them) such that ω1 = ω2 = ω0, we introduce the new basis with annihilation

operators â± = (â1 ± â2) /
√

2, which describe the two hybridized supermodes that
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emerge. The new Hamiltonian in this supermode basis can then be written as

ĤTM = ~ω+â
†
+â+ + ~ω−â†−â− + ~ωmb̂

†b̂

− ~

(
G

(a1)
1 +G

(a2)
1

2

)(
â†+â+ + â†−â−

)
x̂

− ~

(
G

(a1)
1 −G(a2)

1

2

)(
â†+â− + â†−â+

)
x̂

− ~

(
G

(a1)
2 +G

(a2)
2

4

)(
â†+â+ + â†−â−

)
x̂2

− ~

(
G

(a1)
2 −G(a2)

2

4

)(
â†+â− + â†−â+

)
x̂2,

(8.11)

where we now have the new supermode frequencies ω± = ω0 ± ν. The splitting

between these two new supermodes is ω+ − ω− = 2ν, such that each can be

individually accessed if κ± < 2ν, with κ± being the linewidth of the mode

corresponding to â±. Up to this point, we have not made any assumptions about

the nature of the couplings in this system. In what follows, we will investigate

how the Hamiltonian given by Eq. (8.11) can be used to effectively describe an

optomechanical MIM system, as well as a mechanical element quadratically coupled

to an optical mode via shared symmetries in a WGM optomechanical cavity.

8.3.2 Membrane-in-the-Middle System

As mentioned above, in a conventional MIM optomechanical system, quadratic

coupling arises due to the avoided crossing between the two hybridized optical

supermodes mentioned above. Therefore, it is unnecessary to expand our optical

frequencies to second order and we take G
(ai)
2 = 0 here. Furthermore, due

to the geometry of MIM systems, as the mechanical element is displaced the

frequency of one optical mode will increase, while the other mode’s frequency will

correspondingly decrease, leading to G
(a1)
1 = −G(a2)

1 = G1 [36, 411]. As we shall

see, this difference in sign between the linear coupling of the two optical modes

is crucial for generating quadratic coupling in these systems, as well as enforcing

the single-photon strong-coupling condition associated with using them for QND

measurements of mechanical Fock states [413–415]. Applying these conditions to

the general two-mode optomechanical Hamiltonian in Eq. (8.11), we obtain the
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Hamiltonian for a MIM system as [411–415]

ĤMIM = ~ω+â
†
+â+ + ~ω−â†−â− + ~ωmb̂

†b̂− ~G1

(
â†+â− + â†−â+

)
x̂. (8.12)

Upon inspection of ĤMIM, it is not obvious that quadratic coupling exists. However,

by diagonalizing this Hamiltonian we find

ĤMIM = ~ω′+â
′†
+â
′
+ + ~ω′−â

′†
−â
′
− + ~ωmb̂

†b̂, (8.13)

with corresponding eigenfrequencies

ω′± = ω0 ±
√
ν2 +G2

1x̂
2. (8.14)

In the limit where ν � ωm, x̂ can be treated as a quasistatic variable [411, 413–

415], allowing us to take G1x̂ � ν. In this regime, the lowering operators of the

diagonalized modes can be approximated as [414]

â′+ ≈ a+ −
G1x̂

2ν
â−, (8.15)

â′− ≈ −
G1x̂

2ν
a+ − a−, (8.16)

with the approximate eigenfrequencies

ω′± ≈ ω0 ±
(
ν +

G2
1

2ν
x̂2

)
= ω± ±G′2x̂2. (8.17)

In this form, it is clear that these diagonalized mode frequencies exhibit a quadratic

dependence on the position, with a coupling coefficient G′2 = G2
1/2ν. Furthermore,

the operators â′± are expressed in terms of â±, where one of these supermode

operators is always linearly coupled to the position variable x̂. In this situation,

even if we solely drive one of the supermodes, photons will tunnel to its counterpart

and couple linearly to the mechanical resonator, causing its phononic Fock state

to decohere. It is this process that leads to the condition of the single-photon

strong-coupling regime (g1 � κ) required to perform QND measurements of phonon

states in MIM optomechanical systems [413–415].

8.3.3 Whispering-Gallery-Mode System

We now consider an optomechanical system where the motion of the mechanical

element shifts the frequencies of both optical modes in the same direction. Such a
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system could, for example, be realized by sidecoupling the out-of-plane motion of a

nanomechanical resonator to an optical WGM cavity [63], with the two degenerate

optical modes being the clockwise and counterclockwise propagating modes [416]. In

this case, each set of optomechanical coupling coefficients will be equal in both sign

and magnitude, leading to G
(a1)
1 = G

(a2)
1 = G1 and G

(a1)
2 = G

(a2)
2 = G2. Inserting

these coefficients into the interaction Hamiltonian in Eq. (8.11), we find

ĤWGM = ~ω+â
†
+â+ + ~ω−â†−â− + ~ωmb̂

†b̂

− ~G1

(
â†+â+ + â†−â−

)
x̂− ~G2

2

(
â†+â+ + â†−â−

)
x̂2.

(8.18)

For this system, we are thus left with a Hamiltonian that is already diagonalized,

which leads to two very important consequences. First, the quadratic coupling that

arose due to the avoided level crossing in the MIM system has vanished. However,

there still exists quadratic coupling terms in our Hamiltonian as we have expanded

the optical cavity resonance frequency to second order in mechanical position.

In contrast to the MIM system, where the quadratic coupling is proportional to

the square of the linear coupling, this second-order coupling coefficient can be

modified independently of the linear coupling by tuning the relative symmetry of

the optical and mechanical modeshapes (see Appendix C). This leads us to the

second important consequence of this system: since there is no linear mechanically-

mediated coupling between the optical modes resulting from diagonalizing the

Hamiltonian, QND measurements using this system are not constrained by the

stringent single-photon strong-coupling regime. In place of this condition, we

instead find a relaxed limit on the linear coupling strength G1 with respect to

the quadratic coupling G2, which is determined below in Section 8.5 and given in

Eq. (8.56).

8.3.4 Mapping to a Single Optical Mode

We conclude this section by noting that since it is unnecessary to introduce an

avoided level crossing to generate quadratic coupling in the WGM optomechanical

cavity considered above, a single mode treatment will suffice to evaluate this

system for QND measurements of phonons. Mathematically this amounts to setting

G
(a2)
1 = G

(a2)
2 = 0, such that ĤWGM is identical to Ĥ in Eq. (8.4). This simplification
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is justified by the fact that the effect of adding a second, undriven optical mode to

the system can be included by noting that the total number of photons in both

cavity modes will be given by N̄ = N̄+ + N̄− = N̄1 + N̄2, where N̄i = 〈â†i âi〉 is

simply the average photon occupancy of the mode corresponding to âi. For such a

system, if one drives the â1 mode (call it the clockwise mode) to a photon occupancy

N̂1, then backscattering will cause the â2 mode (counterclockwise mode) to be

populated to an occupancy [119]

N̄2 =
ν2

∆2 + (κ/2)2 N̄1. (8.19)

For the ∆ = 0 condition associated with the phase sensitive measurements discussed

in Section 8.5, we then have N̄2 = (2ν/κ)2 N̄1. For 2ν � κ, N̄2 � N̄1, such that

the counterclockwise mode is essentially unpopulated and we can take N̄ ≈ N̄1.

Therefore, in this regime, we need only consider one mode (in this case the clockwise

mode). We note that in this situation a small, but finite leakage of photons into

the counterclockwise mode will not lead to the accelerated decoherence associated

with the MIM system [413] due to the fact that counterclockwise photons interact

with the mechanics in the same way clockwise photons do.

For the case where 2ν � κ, the situation is complicated by the fact that

the clockwise and counterclockwise modes hybridize into the two individually

accessible symmetric and antisymmetric modes corresponding to â±. Under

these circumstances, the resonant probing condition required for phase sensitive

measurements results in ∆ = ±ν. In either case this leads to N̄2 ≈ N̄1, meaning

that even though we are only driving the clockwise mode, strong backscattering

ensures that in equilibrium both modes are equally populated. Again, this photon

redistribution does nothing to affect the optically induced transition rates of

the system. However, as half of the photons now reside in the unmonitored

counterclockwise mode, the measurement rate is halved. Therefore, a single mode

treatment is still valid in this regime, provided we account for this factor of two

decrease in the measurement rate of the mechanical phonon number given by

Eq. (8.7).
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8.4 Mechanical Fock State Decoherence Rates2

For the remainder of this chapter, we determine the conditions imposed upon

using a single-mode quadratically coupled optomechanical cavity (e.g . the WGM

system described in Section 8.3.3) to perform QND measurements of quantized

mechanical energy. To do this, we use a master equation approach to calculate

the relevant measurement-induced and thermal decoherence rates associated with

this system and compare them to the optomechanical QND measurement rate

Γmeas given by Eq. (8.7). We begin by assuming the cavity is driven via a strong

external drive, such that we can immediately linearize the optical cavity annihilation

operator as we did in Section 4.3.3. Furthermore, we switch to a frame that rotates

at the optical drive frequency by performing the transformation associated with the

unitary operator Û = eiωdâ
†â. Applying these two modifications to the quadratic

Hamiltonian given in Eq. (8.4), while also including terms associated with the

optical drive and the coupling of each mode to their Markovian baths, we construct

the full Hamiltonian of the system as

Ĥ = Ĥ(lin)
c + Ĥm + Ĥquad + Ĥdr + Ĥκ + ĤΓ. (8.20)

This Hamiltonian is very similar to the total optomechanical Hamiltonian introduced

in Eq. (4.10), save for the fact that we have substituted Ĥom for the linearized

quadratic optomechanical interaction Hamiltonian

Ĥquad = −~ā
[
g1

(
b̂† + b̂

)
+
g2

2

(
2b̂†b̂+ b̂†b̂† + b̂b̂

)] (
δâ† + δâ

)
, (8.21)

as well as replaced the optical cavity Hamiltonian Ĥc with its linearized counterpart

Ĥ(lin)
c = −~∆δâ†δâ. (8.22)

Note that Ĥquad is linearized in the sense that we have neglected terms proportional

to δâ†δâ and we have taken ā to be real by choosing the appropriate phase for āin.

Furthermore, we remind the reader that ∆ = ωd − ωc is the optical cavity drive

detuning, where we have ignored the small shift in the cavity frequency due to the

2The master equation calculations used to determine the decoherence rates in this section were
performed by Dr. Anja Metelmann from the Freie Universität Berlin and are included here to
preserve the continuity of the original publication.
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static optomechanical displacement of the mechanical resonator. The rest of the

terms in Eq. (8.20), namely Ĥm, Ĥdr, Ĥκ, and ĤΓ, are all defined in Section 4.3.1.

The dynamics of the system is then captured by the master equation, which

can be written in superoperator notation as [417]

∂

∂t
ρ̂ = (Lc + Lm + Lom) ρ̂, (8.23)

with ρ̂ being the total density matrix of the system (including both optical and

mechanical components). Here, we have defined the superoperators

Lc = − i
~

[Ĥ(lin)
c , •] +

κ

2
D[δâ]•, (8.24)

Lm = − i
~

[Ĥm, •] +
Γm

2

{
(n̄th + 1)D[b̂] + n̄thD[b̂†]

}
•, (8.25)

Lom = − i
~

[Ĥquad, •], (8.26)

D[ô]• = 2ô • ô† − ô†ô • − • ô†ô = [ô, •ô†] + [ô•, ô†], (8.27)

where ô is a generic ladder operator and the • acts as a placeholder for a arbitrary

quantum mechanical operator.

We can now move into a new interaction picture with density matrix ρ̂′ =

e−(Lc+Lm)tρ̂ that evolves in time according to

∂ρ̂′

∂t
= e−(Lc+Lm)tLome

(Lc+Lm)tρ̂′ ≡ L′om(t)ρ̂′, (8.28)

where we have simply used the product rule and Eq. (8.23). This master equation

can be formally integrated to obtain the solution

ρ̂′(t) = ρ̂′(0) +

∫ t

0

L′om(τ)ρ̂′(τ)dτ. (8.29)

Substituting this integral back into Eq. (8.28), while performing the trace over the

cavity space (denoted by Trc{}), we then arrive at the new master equation

∂ρ̂′m
∂t
≡ ∂

∂t
Trc {ρ̂′(t)}

= Trc {L′om(t)ρ̂′(0)}+

∫ t

0

Trc {L′om(t)L′om(τ)ρ̂′(τ)} dτ,
(8.30)

where ρ̂′m is the density matrix of the mechanical resonator in the new interaction

frame. Thus we have to calculate

L′om = −iā
[
Â(t)B̂(t)− Â†(t)B̂†(t)

]
, (8.31)
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with

Â(t) = e−Lct
(
δâ† + δâ

)
• eLct, (8.32)

B̂(t) = e−LmtB̂ • eLmt, (8.33)

where we have introduced the new mechanical operator B̂ = −g1

(
b̂† + b̂

)
−

g2

2

(
2b̂†b̂+ b̂†b̂† + b̂b̂

)
. Note that while B̂ and

(
δâ† + δâ

)
are Hermitian, we have

(ô•)† = •ô†, hence the appearance of Â†(t) and B̂†(t) in Eq. (8.31). Finally, to

evaluate the superoperator L′om, we also need the dynamics of the cavity operator

in this interaction picture:

Â(t) = δâ • e(i∆−
κ
2 )t + δâ† • e−(i∆−κ2 )t − •δâ†e−i∆t

(
e
κ
2
t − e−

κ
2
t
)
. (8.34)

So far we have not made any approximations; the above treatment resembles

the standard derivation for a master equation. In what follows, we adiabatically

eliminate the cavity to obtain a reduced density matrix for the mechanics. This

implies the assumption that the cavity photons adiabatically follow the phonon

occupation, i.e. that κ� Γth is fulfilled [400], where Γth is the thermal decoherence

rate of the phonon state in question (see Eq. (8.49) below). Within this limit, we

assume that the optical cavity and mechanical resonator are effectively uncorrelated

at all times, so that the density matrix factorizes as ρ̂ ≡ ρ̂m ⊗ ρ̂c [418], where ρ̂c

denotes the density matrix of the cavity mode. We also make a Born approximation

and assume that the cavity mode fluctuations δâ and δâ† are not affected by the

dynamics of the mechanics, that is we set ρ̂c(t) ≈ ρ̂c(0). This means that the

total density matrix remains a product of the initial cavity density matrix and the

mechanical density matrix, i.e. ρ̂′(t) ≈ ρ̂′m(t)⊗ ρ̂c(0) ≡ ρ̂′m(t)⊗|0〉〈0| (for the cavity

being in the vacuum state in this displaced frame). Under this assumption the first

term in Eq. (8.30) vanishes and with

Trc

{
Â(t)Â(τ) |0〉〈0|

}
= Trc

{
Â†(t)Â(τ) |0〉〈0|

}
= e(i∆−

κ
2 )(t−τ), (8.35)

Trc

{
Â†(t)Â†(τ) |0〉〈0|

}
= Trc

{
Â(t)Â†(τ) |0〉〈0|

}
= e−(i∆+κ

2 )(t−τ), (8.36)

we can evaluate the second term as

Trc {L′om(t)L′om(τ)ρ̂′(τ)} =

− N̄
[{
B̂(t)B̂(τ)− B̂†(t)B̂(τ)

}
e(i∆−

κ
2 )(t−τ) + h.c.

]
ρ̂′m(τ).

(8.37)
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Using the expression in Eq. (8.37), the master equation yields (with change of

variables t′ = t− τ)

∂ρ̂′m
∂t

= −N̄
∫ t

0

ρ̂′m(t− t′)
[{
B̂(t)B̂(t− t′)

− B̂†(t)B̂(t− t′)
}
e(i∆−

κ
2 )t′ + h.c.

]
dt′,

(8.38)

which we can transform back to the initial frame knowing that ρ̂m(t) = eLmtρ̂′m(t)

and move into an interaction picture with respect to the free mechanical Hamiltonian.

This gives us

∂ρ̂m

∂t
= −N̄

∫ t

0

ρ̂m(t− t′)
({

g2
1

[{
b̂b̂† • −b̂† • b̂

}
e−iωmt′

+
{
b̂†b̂ • −b̂ • b̂†

}
e+iωmt′

]
+ g2

2

[
b̂†b̂b̂†b̂ • −b̂†b̂ • b̂†b̂

]
+
g2

2

4

[{
b̂b̂b̂†b̂† • −b̂†b̂† • b̂b̂

}
e−i2ωmt′

+
{
b̂†b̂†b̂b̂ • −b̂b̂ • b̂†b̂†

}
e+i2ωmt′

]}
e−(i∆+κ

2 )t′ + h.c.

)
dt′

+
Γm

2

{
(n̄th + 1)D[b̂] + n̄thD[b̂†]

}
ρ̂m(t),

(8.39)

where we have also used the rotating wave approximation [150]. In the next step

we apply a Markov approximation and solve the integrals for t→∞, obtaining

∂ρ̂m

∂t
= − iN̄

~
[Ĥr, ρ̂m(t)] + N̄

(
g2

1Re {χc(−ωm)}D[b̂†]

+ g2
1Re {χc(ωm)}D[b̂] + g2

2Re {χc(0)}D[b̂†b̂]

+
g2

2

4
Re {χc(−2ωm)}D[b̂†b̂†] +

g2
2

4
Re {χc(2ωm)}D[b̂b̂]

)
ρ̂m(t)

+
Γm

2

{
(n̄th + 1)D[b̂] + n̄thD[b̂†]

}
ρ̂m(t),

(8.40)

where the coherent dynamics of the system are described by the Hamiltonian

Ĥr = ~g2
1 (Im {χc(−ωm)}+ Im {χc(ωm)}) b̂†b̂

+ ~g2
2Im {χc(0)} b̂†b̂b̂†b̂+

~g2
2

4

(
Im {χc(−2ωm)} b̂b̂b̂†b̂†

+ Im {χc(2ωm)} b̂†b̂†b̂b̂
)
,

(8.41)

and we have introduced the real and imaginary parts of the optical cavity’s
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susceptibility as

Re {χc(ω)} =
κ/2

(ω + ∆)2 + (κ/2)2
, (8.42)

Im {χc(ω)} =
(ω + ∆)

(ω + ∆)2 + (κ/2)2
. (8.43)

Note that Re {χc(ω)} = SNN(−ω)/2N̄ , where SNN(−ω) is the photon number

spectral density given in Eq. (4.36). Eq. (8.40) governs the dynamics of the

mechanical mode under influence of the QND measurement, as well as its

contamination due to the linear coupling, counter-rotating second-order terms,

and the influence of the thermal environment. Meanwhile, the first term in Ĥr

describes a shift induced by the linear coupling, while the second and third terms

are of the Kerr-type (Lamb shifts). Furthermore, for zero detuning (∆ = 0) the

above Hamiltonian simplifies to Ĥr = ~g2
2Im {χc(−2ωm)}

(
b̂†b̂+ 1

2

)
, resulting in a

static shift of the mechanical frequency. As expected, the mechanical occupation

is not affected by the pure QND measurement (i.e. terms associated with the

susceptibility on resonance χc(0) in Eq. (8.40)), nor the photon-induced coherent

interaction characterized by Ĥr ([Ĥr, b̂
†b̂] = 0).

We now use the fact that we can determine the probability pn of being in the

nth Fock state by taking the inner product of the density matrix using the number

state basis vectors, that is pn(t) = 〈n| ρ̂m(t) |n〉. If we assume that the system is

initially in the nth mechanical Fock state, such that pn(0) = 1, then the total rate

at which this pure state decoheres can be found using Eq. (8.40). This results in∣∣∣∣dpndt
∣∣∣∣ =

∣∣∣∣〈n| ∂ρ̂m

∂t
|n〉
∣∣∣∣ = Γn+1 + Γn−1 + Γn+2 + Γn−2 + Γth, (8.44)

where

Γn+1 = (n+ 1)g2
1SNN(−ωm), (8.45)

Γn−1 = ng2
1SNN(ωm), (8.46)

Γn+2 = (n+ 1)(n+ 2)
g2

2

4
SNN(−2ωm), (8.47)

Γn−2 = n(n− 1)
g2

2

4
SNN(2ωm), (8.48)

are the rates at which the phonon state of the mechanical resonator decoheres due
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to measurement-induced jumps from n→ n± 1 and n→ n± 2, while

Γth = Γm [(n̄th + 1)n+ n̄th (n+ 1)] , (8.49)

is the rate associated the thermal decoherence of the mechanical resonator’s nth

Fock state due to coupling with its dissipative bath [287, 419]. As can be seen

in Fig. 8.2, each of the decoherence rates given by Eqs. (8.45)–(8.49) decrease as

we move to lower Fock states, taking on their minimum values for a mechanical

resonator in its ground state.
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Figure 8.2: Plot of the measurement rate Γmeas and thermal decoherence rate
Γth, as well as the first- and second-order measurement-induced transition rates,
Γn+1 and Γn+2, normalized to the thermal decoherence rate of the ground state
Γ0

th = n̄thΓm, for the first ten Fock states of an optomechanical system. The system
parameters are: ωm/2π = 2 GHz, Γm/2π = 1 kHz (Qm = 2 ×106), n̄th = 0.25
(T ≈ 60 mK), ∆ = 0, κ/2π = 500 MHz, N̄ = 100, g1/2π = 50 kHz, g2/2π =
100 kHz, corresponding to the cooperativities C1 = 0.02, C̄1 = 2, C̃1 = 8 and
C2 = 0.08, C̄1 = 8, C̃1 = 32. Here, nmax ≈ 5 such that the first six mechanical Fock
states (including the ground state) can be monitored continuously using the QND
measurement discussed in this chapter. The black crosses indicate the measurement
rate values used for the trajectory simulations in Fig. 8.3. Figure reproduced from
Ref. [393]. c© 2018 American Physical Society.
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8.5 Quantum Nondemolition Measurement Con-

ditions

With the decoherence rates of the system’s mechanical Fock states calculated in

the previous subsection, we now look to determine the necessary conditions required

to use the optomechanical QND measurement of phonon number considered in

this chapter to study the thermal decoherence of a mechanical resonator. In order

to perform such measurements, one must temporally resolve jumps between the

mechanical resonator’s phonon number states by measuring the system faster than

it decoheres. Comparing the measurement rate given in Eq. (8.7) to the decoherence

rates found in Eqs. (8.45)–(8.49) of the previous section, we find that this condition

is satisfied for the following hierarchy of rates:

Γmeas � Γth � Γn±1,Γn±2. (8.50)

The right-hand side of Eq. (8.50) ensures that thermal transitions dominate

over optically induced phonon jumps, leading to the “linear-coupling condition”

Γth � Γn±1 and the “quadratic-coupling condition” Γth � Γn±2. In this situation,

one would expect a phonon distribution exhibiting Bose-Einstein statistics, with

an average phonon occupation of 〈n〉 = n̄th [400]. However, if one were to enter

a regime where Γth . Γn±1,Γn±2, phonon trajectories would be dominated by

optomechanically induced jumps, leading to far more complex phonon statistics.

Also included in Eq. (8.50) is the “fast-measurement condition” Γmeas � Γth

[400], which tells us that one must be able to measure the phonon state of the

resonator before it thermally decoheres in order to resolve quantized mechanical

energy jumps [35, 36, 415, 418]. To confirm this condition, we have performed

Monte Carlo simulations of mechanical phonon trajectories according to the master

equation in Eq. (8.40) [420]. As can be seen in Fig. 8.3, one can enter into a

regime where the optomechanical measurement rate is fast enough to allow for

observation of quantum jumps in mechanical phonon number. We note that the

fast-measurement condition can also be used determine the largest Fock state

number that can be continuously monitored using this QND scheme as

nmax =
C̄2 − n̄th

2n̄th + 1
. (8.51)
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Figure 8.3: Monte Carlo simulations of the mechanical occupation dynamics using
the master equation given in Eq. (8.40) for three measurement rates: Γmeas/Γth =
(a) 0.32, (b) 3.2, and (c) 32. The remaining parameters are those found in the
caption of Fig. 8.2. In each plot we have included (a) a single trajectory, (b) two
trajectories, and (c) four trajectories. Graph (a) depicts the case where thermally-
induced jumps dominate. Here, a QND measurement is not possible and the final
detected signal would only give information about the average phonon number. In
contrast, if the inverse measurement rate is the smallest time scale in the system,
as seen in (c), the QND read-out of the occupation can occur fast enough to resolve
quantum jumps in phonon number. We note that in an actual experiment, the
phonon trajectory would be inferred from a physical observable, such as the current
from a homodyne detector [400]. Figure reproduced from Ref. [393]. c© 2018
American Physical Society.

The above analysis is valid for any arbitrary Fock state of the mechanical

resonator. However, the minimum requirement necessary to perform a QND

measurement of the mechanical oscillator’s energy will occur when the system is in

its ground state, as Γth, Γn±1, and Γn±2 are all indeed minimized for n = 0 (see

Fig. 8.2). In this situation, we are no longer concerned with rates corresponding to

a reduction in phonon number (i.e. Γn−1 and Γn−2), as the mechanical ground state

is unable to emit phononic energy. Furthermore, in order to experimentally resolve

shifts in the optical cavity resonance frequency due to the creation/annihilation of

a single phonon, one often turns to a phase sensitive transduction scheme, such as
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optical homodyne detection, which has maximal signal at ∆ = 0 (see Section 4.4.3).

Finally, we wish to operate in the sideband-resolved regime (ωm � κ), which as we

shall see below is necessary for the QND measurements of the mechanical ground

state. Under these circumstances, the rate hierarchy of Eq. (8.50) becomes

Γmeas � Γ0
th � Γ1,Γ2, (8.52)

where Γ0
th = n̄thΓm is the rate at which the ground state of the mechanical resonator

thermally decoheres (found by setting n = 0 in Eq. (8.49)). Furthermore, Γ1 and

Γ2 are the measurement-induced rates associated with transitions to the first and

second excited states from this ground state at ∆ = 0 and are given by

Γ1 =
N̄g2

1κ

ω2
m

=
C̄1Γmκ

2

4ω2
m

, (8.53)

Γ2 =
N̄g2

2κ

8ω2
m

=
C̄2Γmκ

2

32ω2
m

, (8.54)

where similar to before we have introduced the first-order, cavity-enhanced

cooperativity C̄1 = N̄C1 in terms of the corresponding first-order, single-photon

cooperativity C1 = 4g2
1/κΓm. Using these two expressions for Γ1 and Γ2, the

limits in Eq. (8.52) can be recast in terms of the first- and second-order quantum

cooperativities, C̃1 = C̄1/n̄th and C̃2 = C̄2/n̄th [150], as

C̃2 � 1� C̃1

(
κ2

4ω2
m

)
, C̃2

(
κ2

32ω2
m

)
. (8.55)

We now look to interpret the fundamental limits associated with this type of

QND measurement. First, by ensuring Γmeas � Γ2 – that is to say we can measure

the phononic state of the system before an optically induced transition to the

second excited state occurs – we arrive at the condition 32ω2
m � κ2, which will

certainly be satisfied for a sideband-resolved optomechanical system. Physically,

this limit can be interpreted as the lifetime of the cavity photons being longer than

the mechanical period, such that each photon samples the mechanical motion over

many cycles. This effectively averages out rapidly oscillating, transition-inducing

second-order terms in the Hamiltonian in favour of terms that are constant in time.

Furthermore, the requirement that Γmeas � Γ1 allows us to set the following

limit on the linear coupling rate with respect to the quadratic coupling rate

|g2| � |g1|
κ

2ωm

, (8.56)
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where we have taken the magnitude of both g1 and g2, as it is possible that they

are different in sign. By satisfying this inequality, quadratic coupling is strong

enough to overcome any contamination from linear coupling that would prevent

optomechanical QND measurements of phonon number from being performed.

Upon further inspection of Eq. (8.56), we see that the sideband resolution condition

discussed in the previous paragraph aids in suppressing the detrimental effect of

linear coupling. A slightly more subtle observation is that since g2 is proportional to

x2
zpf while g1 is linear in xzpf , larger zero-point fluctuation amplitudes (corresponding

to smaller effective masses and mechanical resonance frequencies) act to further

relax the condition of small linear coupling. We note that in order to satisfy

this limit, the relative strengths of g1 and g2 (or equivalently G1 and G2) must

be independently tunable. For the system considered here, this can be done by

exploiting the symmetry between the optical and mechanical modes (see Appendix

C). However, this is not the case for MIM systems, where quadratic coupling

resulting from the hybridization of two nearly degenerate optical modes leads to

g2 = g2
1/2ν (see Section 8.3.2). In fact, one can put this relation into Eq. (8.56)

to recover the single-photon strong-coupling requirement g1 � κ, where we have

assumed 2ν � ωm as is often done with MIM systems [411, 413–415]. Therefore,

Eq. (8.56) provides a more general, less stringent condition for QND measurements

of phonon number using a quadratically coupled optomechanical cavity.

As a final note, we point out that even if the above conditions are met, one

must still satisfy the ground state linear- and quadratic-coupling conditions, i.e.

Γ0
th � Γ1,Γ2. Therefore, systems that are more sideband resolved and have stronger

linear coupling suppression will exhibit a larger difference between Γmeas and both

measurement-induced transition rates, Γ1 and Γ2, such that a wider range of ground

state thermal decoherence rates that will satisfy Eq. (8.52). Furthermore, we

emphasize the importance of low thermal bath occupation. Even if one can cool

the mechanical mode to near its ground state using back-action cooling techniques

[26, 52, 76, 106, 107, 421], it is not possible to reduce the thermal decoherence

rate of a given Fock state below Γ0
th = n̄thΓm. Therefore, passive cooling of an

optomechanical system using a refrigeration system [55, 58, 59, 422–424] will likely

be necessary to facilitate these types of continuous QND measurements.
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8.6 Conclusion

In this chapter, we have investigated the limits involved with performing QND

measurements of the quantized mechanical Fock states in an optomechanical cavity

where quadratic coupling arises due to shared symmetries between a single optical

and mechanical mode. By imposing the requirement that the measurement occurs

faster than Fock state thermally decoheres or transitions to another state via

the optomechanical interaction itself, it was shown that the single-photon strong-

coupling condition associated with MIM systems can be circumvented. Instead a

new, less stringent limit on the strength of the linear coupling was imposed, along

with optomechanical sideband resolution.
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Chapter 9

Summary and Outlook

As was the case in during the transistor revolution of the late 1950s and early

1960s, silicon devices have remained at the forefront of the burgeoning quantum

technology sector. More specifically, silicon optomechanical cavities have flourished,

with implementations in near quantum-limited sensing [98], transduction [140], and

storage [137, 139], as well as probing the boundaries of quantum physics [141–143].

In each of these applications there is one very important common denominator:

the device must be cold. It is therefore imperative that we develop a thorough

understanding of the cryogenic nature of silicon optomechanical cavities in order to

continue improving existing silicon technologies, as well as develop new ones.

In this thesis, we have studied the low temperature behaviour of single-crystal-

silicon nanomechanical beam resonators sidecoupled to WGM optical microdisks

using a custom-built optomechanical coupling apparatus housed on the base plate of

a dilution refrigerator. In Chapters 2 and 3, we reviewed the theoretical treatment

used to model the isolated mechanical and optical modes of our system, while in

Chapter 4 we investigated the optomechanical phenomena that emerge once we

allow these two systems to dispersively couple to one another. With this theoretical

framework laid out, in Chapter 5 we went on to discuss the optomechanical devices

studied in this work, along with the cryogenic optical measurement system used to

measure their properties. Using this experimental apparatus, we performed two

separate experiments on our silicon devices at low temperatures.

The first experiment was detailed in Chapter 6, where we used a novel

optomechanically mediated ringdown technique to ascertain the dissipation in
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four individual modes of a single half-ring mechanical resonator, with frequencies

between 3 and 19 MHz, for fridge temperatures ranging from 10 mK to 10 K. Here we

found that the mechanical dissipation dropped off linearly between approximately

100 mK and 10 K, while plateauing to a constant value at low temperatures.

Refurbishing the standard tunneling model to include crystalline nanoresonators,

we showed that such a temperature dependence is consistent with mechanical

damping associated with parasitic coupling to TLS defects confined to the one-

dimensional geometry of our nanobeam. Quantitatively fitting our data with this

theory, we extracted a TLS density of states parameter of P0 ∼ 1− 4× 1044 J−1

m−3 and a deformation potential of γ ∼ 1 - 2 eV, which we attribute to TLS defects

existing on the surface of our resonators.

To identify and eliminate these sources of TLS dissipation, one could apply

more sophisticated silicon surface treatments, such as the addition and subsequent

removal of an oxide layer [250] or surface passivation and reconstruction in a

hydrogen atmosphere [425–427], to reduce defects at the device’s surface. Higher

resistivity silicon could also be used to remove any effects dopants may have [374].

In fact, in a recent publication studying the effects of TLS damping in 1D photonic

crystal nanobeams [135], it was shown that the dissipation could be decreased by a

factor of roughly 2-3 by moving to high-resistivity silicon. Furthermore, one could

determine whether the plateau at low temperatures is a result of phonons tunneling

into the substrate by implementing phononic crystal radiation shields [67, 135, 254,

255] or soft-clamping [256, 257] into the system and observing their effects. Finally,

the thermally mediated ringdown technique developed here can also be applied

to other device geometries and materials, as has already been demonstrated in

GHz-frequency GaAs photonic crystal nanobeams [428].

Furthermore, at our lowest fridge temperature of 10 mK, each studied mechanical

mode couples to less than a single thermally excited TLS on average. Defect-phonon

coupling on this level opens the door to proposed cavity-QED-like experiments

between an individual defect and phonons within the resonator, providing a

nonlinear quantum interaction which could be used for the storage of quantum

information [429], quantum control of a single defect center [430, 431] or nonclassical

state preparation of the mechanical element [175]. By tailoring the phononic
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structure and mode frequencies of a nanoresonator, it may also be possible to

engineer a Purcell-like defect-phonon interaction, leading to enhancement or

suppression of TLS radiation into a specific mechanical mode [162]. Conversely,

one could imagine using the mechanical resonator as a probe of the dynamics of

a single quantum defect, furthering our incomplete knowledge of the microscopic

nature of TLS defects, as well as their interactions with each other [358, 432, 433].

In Chapter 7, we investigated the seemingly anomalous backaction effects

associated with photothermal forces in our devices originating from photon

absorption at low temperatures. Here we observed that the photothermal force

acts to directly oppose conventional radiation-pressure backaction effects in our

device, resulting in optomechanical amplification for a red-detuned optical cavity

drive, while optomechanical damping occurs on the blue side of the cavity. Fitting

the nonlinear optical transmission, damping, and spring effects of our device using

a photothermal coupling model, we determine the optomechanical properties of the

system. Using these extracted parameters, we further showed that this photothermal

damping mechanism can, in principle, be used to cool the mechanical resonator

into its quantum ground state, a feat which would not be possible for our device if

it were purely radiation-pressure driven.

While the ability to photothermally cool a non-SBR optomechanical cavity

below single phonon occupancy is promising, reaching this regime in practice

presents a significant challenge, largely due to residual heating from inevitable

photon absorption processes [290, 294]. However, as this device was not purposefully

designed for photothermal coupling, it may be possible to engineer this effect to

achieve the photothermal parameters detailed at the end of Section 7.5, perhaps

by adding a metallic layer to the resonator to enhance its differential thermal

contractions and optical absorption [21–25, 303, 377, 378, 387]. One could also

imagine modifying the thermal time constant by changing the dimensions of the

resonator, which would also affect the strength of the photothermal damping.

Increasing the photothermal coupling in this way may provide a path to cool a

photothermally-driven optomechanical device into its motional ground state, as well

as allow for future investigation of other photothermally enhanced optomechanical

effects, such as entanglement [291, 376] or induced chaos [434, 435] between the
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optical and mechanical modes of the system.

To complement these two experimental studies, in Chapter 8 we theoretically

investigated using the WGM geometry associated with our device to perform

optomechanical QND measurements of the Fock states of our resonator. Here

we showed that linear optomechanical coupling can be suppressed in favour of

quadratic coupling by tuning symmetries between the optical and mechanical modes

inherent to this geometry, which is a prerequisite for this type of measurement.

Using a master equation approach, we determine the mechanical decoherence rates

associated with each of these couplings, as well as interactions with the thermal

bath. Comparing these decoherence rates to the rate at which the quadratic

optomechanical measurement collapses the mechanical system into a Fock state, we

determined that such a QND measurement is feasible if the second order quantum

cooperativity of the system is much greater than one. Furthermore, we imposed a

limit on the maximum allowable linear coupling strength relative to its quadratic

counterpart, which itself is a more general, less stringent version of the strong

coupling regime required to perform Fock state QND measurements using MIM

systems.

With these conditions satisfied, such a WGM optomechanical system could

be used to perform quantum jump spectroscopy [402] on the thermally-induced

transitions between mechanical quanta. One could also consider using this type

of QND measurement to freeze the resonator into a given Fock state, prolonging

its coherence time via the quantum Zeno effect [436], as has been demonstrated

for trapped ions [437] and cold atoms [438, 439]. Such an effect could be useful

for a number of optomechanical quantum information protocols [440, 441], where

long coherence times are beneficial for applications such as quantum memories [127,

137, 139] and transducers [123–126, 140]. Furthermore, the ability to observe and

manipulate the decoherence of these mesoscopic quantum mechanical states would

provide a long sought-after experimental platform to aid in the understanding of

the elusive quantum-to-classical transition.
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L. Lanco, I. Sagnes, A. Lemâıtre, N. D. Lanzillotti-Kimura, P. Senellart, and
A. Fainstein, “Micropillar resonators for optomechanics in the extremely
high 19–95-GHz frequency range,” Phys. Rev. Lett. 118, 263901 (2017).

[35] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin,
and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a
micromechanical membrane,” Nature 452, 72–75 (2008).

[36] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson,
S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, “Dispersive
optomechanics: a membrane inside a cavity,” New J. Phys. 10, 095008
(2008).

[37] D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity
optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103, 207204
(2009).

[38] J. Liu, K. Usami, A. Naesby, T. Bagci, E. S. Polzik, P. Lodahl, and S.
Stobbe, “High-Q optomechanical GaAs nanomembranes,” Appl. Phys. Lett.
99, 243102 (2011).

[39] U. Kemiktarak, M. Metcalfe, M. Durand, and J. Lawall, “Mechanically
compliant grating reflectors for optomechanics,” Appl. Phys. Lett. 100,
061124 (2012).

[40] I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz,
E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high
finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).

226

https://doi.org/10.1038/nphys1301
https://doi.org/10.1038/nphys1301
https://doi.org/10.1063/1.3455104
https://doi.org/10.1063/1.3455104
https://doi.org/10.1364/OE.19.019708
https://doi.org/10.1364/OE.19.019708
https://doi.org/10.1103/PhysRevA.86.051801
https://doi.org/10.1063/1.3641871
https://doi.org/10.1103/PhysRevLett.118.263901
https://doi.org/10.1038/nature06715
https://doi.org/10.1088/1367-2630/10/9/095008
https://doi.org/10.1088/1367-2630/10/9/095008
https://doi.org/10.1103/PhysRevLett.103.207204
https://doi.org/10.1103/PhysRevLett.103.207204
https://doi.org/10.1063/1.3668092
https://doi.org/10.1063/1.3668092
https://doi.org/10.1063/1.3684248
https://doi.org/10.1063/1.3684248
https://doi.org/10.1364/OE.17.012813


[41] S. Kuhn, P. Asenbaum, A. Kosloff, M. Sclafani, B. A. Stickler, S. Nimmrichter,
K. Hornberger, O. Cheshnovsky, F. Patolsky, and M. Arndt, “Cavity-assisted
manipulation of freely rotating silicon nanorods in high vacuum,” Nano Lett.
15, 5604–5608 (2015).

[42] F. Fogliano, B. Besga, A. Reigue, P. Heringlake, L. Mercier de Lépinay, C.
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“Squeezing of quantum noise of motion in a micromechanical resonator,”
Phys. Rev. Lett. 115, 243601 (2015).

[113] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad,
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quantum memory at telecom wavelengths,” arXiv:1910.07409 (2019).

[140] J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical
wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196
(2012).
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[338] M. Pöllinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-
Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103,
053901 (2009).

[339] K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter, “An optical-
fiber-based probe for photonic crystal microcavities,” IEEE J. Sel. Areas
Commun. 23, 1321–1329 (2005).

[340] Attocube Systems, Power dissipation of a piezo, White Paper.

[341] R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conduc-
tivity and acoustic attenuation in amorphous solids,” Rev. Mod. Phys. 74,
991–1013 (2002).

247

https://doi.org/10.1109/68.803068
https://doi.org/10.1109/68.803068
https://doi.org/10.1364/OE.18.022593
https://doi.org/10.1364/OE.18.022593
https://doi.org/10.1038/nature02193
https://doi.org/10.1364/OPEX.12.002258
https://doi.org/10.1364/AO.38.006845
https://doi.org/10.1364/AO.38.006845
https://doi.org/10.1364/OL.26.001137
https://doi.org/10.1063/1.2239033
https://doi.org/10.1063/1.2239033
https://doi.org/10.1364/AO.49.002441
https://doi.org/10.1364/AO.49.002441
https://doi.org/10.1109/50.134196
https://doi.org/10.1109/50.134196
http://dx.doi.org/10.1016/B978-0-12-525096-2.X5000-4
https://doi.org/10.1364/JOSA.55.001205
https://doi.org/10.1103/PhysRevLett.103.053901
https://doi.org/10.1103/PhysRevLett.103.053901
https://doi.org/10.1109/JSAC.2005.851212
https://doi.org/10.1109/JSAC.2005.851212
https://doi.org/10.1103/RevModPhys.74.991
https://doi.org/10.1103/RevModPhys.74.991


[342] R. N. Kleiman, G. Agnolet, and D. J. Bishop, “Two-level systems observed
in the mechanical properties of single-crystal silicon at low temperatures,”
Phys. Rev. Lett. 59, 2079–2082 (1987).

[343] R. E. Mihailovich and J. M. Parpia, “Anomalous low temperature mechanical
properties of single-crystal silicon,” Physica B 165/166, 125–126 (1990).

[344] W. A. Phillips, “Comment on Two-level systems observed in the mechanical
properties of single-crystal silicon at low temperatures,” Phys. Rev. Lett. 61,
2632 (1988).

[345] R. W. Keyes, “Two-level systems in the mechanical properties of silicon at
low temperatures,” Phys. Rev. Lett. 62, 1324 (1989).

[346] F. Hoehne, Y. A. Pashkin, O. Astafiev, L. Faoro, L. B. Ioffe, Y. Nakamura, and
J. S. Tsai, “Damping in high-frequency metallic nanomechanical resonators,”
Phys. Rev. B 81, 184112 (2010).

[347] G. Zolfagharkhani, A. Gaidarzhy, S.-B. Shim, R. L. Badzey, and P. Mohanty,
“Quantum friction in nanomechanical oscillators at millikelvin temperatures,”
Phys. Rev. B 72, 224101 (2005).

[348] S. B. Shim, J. S. Chun, S. W. Kang, S. W. Cho, S. W. Cho, and Y. D.
Park, “Micromechanical resonators fabricated from lattice-matched and etch-
selective GaAs/InGaP/GaAs heterostructures,” Appl. Phys. Lett. 91, 133505
(2007).

[349] M. Imboden and P. Mohanty, “Evidence of universality in the dynamical re-
sponse of micromechanical diamond resonators at millikelvin temperatures,”
Phys. Rev. B 79, 125424 (2009).
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Appendix A

Mathematical Definitions and
Relations

In this appendix, we provide a number of mathematical definitions and relations

that are useful for the calculations performed throughout this thesis.

A.1 Fourier Transform

Throughout this thesis, we choose to use the nonunitary, angular frequency

representation of the Fourier transform, which for an arbitrary function f(t)1, is

defined as

f(ω) =

∫ ∞
−∞

f(t)eiωtdt. (A.1)

With this definition, the inverse Fourier transform is then given by

f(t) =

∫ ∞
−∞

f(ω)e−iωtdω. (A.2)

Using these two relations, we can translate any time-domain function into the

frequency domain and vice versa.

A.2 Delta Functions

The Dirac delta function δ(x) is a distribution that is defined as [149]∫ ∞
−∞

δ(x− x0)dx =

{
1, x = x0

0, x 6= x0

. (A.3)

1This function acts as an arbitrary placeholder for either a quantum mechanical operator or a
classical variable.
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Note that if the upper limit only goes to x0, we have [203]∫ x0

−∞
δ(x− x0)dx =

1

2
. (A.4)

Alternatively, the Dirac delta function can be defined in integral form as

δ(x− x′) =
1

2π

∫ ∞
−∞

eik(x−x′)dk. (A.5)

When integrated with an arbitrary function f(x), the Dirac delta function has the

useful property ∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0). (A.6)

Finally, we also define the Kronecker delta function as

δij =

{
1, i = j

0, i 6= j
. (A.7)

This function is the discrete version of the Dirac delta function, and is very useful

as it can collapse a sum over an arbitrary quantity aj as∑
j

ajδij = ai. (A.8)

A.3 Bessel Functions

The νth-order Bessel functions of the first Jν(z) and second Yν(z) kinds are the

solutions to the differential equation [442]

z2d
2Z

dz2
+ z

dZ

dz
+ (z2 − ν2)Z = 0. (A.9)

Meanwhile, the modified νth-order Bessel functions of the first Kν(z) and second

Iν(z) kinds are the solutions to [442]

z2d
2Z

dz2
+ z

dZ

dz
− (z2 + ν2)Z = 0. (A.10)

Equations (A.9) and (A.10) arise when solving the wave equation in cylindrical

coordinates (see Appendix B below).
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The Bessel function Jν(z) has the useful properties [336, 442]

J−ν(z) = (−1)νJν(z), (A.11)

ν

z
Jν(z) =

1

2
[Jν−1(z) + Jν+1(z)] , (A.12)

J ′ν(z) =
1

2
[Jν−1(z)− Jν+1(z)] , (A.13)

J ′0(z) = −J1(z), (A.14)

while the modified Bessel function Kν(z) obeys

K−ν(z) = Kν(z), (A.15)

ν

z
Kν(z) = −1

2
[Kν−1(z)−Kν+1(z)] , (A.16)

K ′ν(z) = −1

2
[Kν−1(z)−Kν+1(z)] , (A.17)

K ′0(z) = −K1(z), (A.18)

where J ′ν(z) = dJν/dz and K ′ν(z) = dKν/dz.

A.4 Power Spectral Densities

The PSD is a frequency-domain function that quantifies the power of a signal

over a given interval in frequency space, and thus, provides a useful description for

signals that fluctuate in time. For an arbitrary time-dependent quantum fluctuation

operator δŷ(t), the two-sided2 PSD is defined as

Syy(ω) =

∫ ∞
−∞
〈δŷ(t)δŷ(0)〉 eiωtdt. (A.19)

That is, the PSD is the Fourier transform of the operator’s autocorrelation function

(ACF) 〈δŷ(t)δŷ(0)〉, which gives a measure of the correlation of the operator δŷ(0)

with itself at a later time t and for finite temperature T is given by3

〈δŷ(t)δŷ(0)〉 =
Tr
{
e−Ĥ/kBT eiĤt/~δŷ(0)e−iĤt/~δŷ(0)

}
Tr
{
e−Ĥ/kBT

} , (A.20)

2Two-sided refers to the fact that the PSD is defined for both positive and negative frequencies.
3In general, the ACF would have the form 〈δŷ(t)δŷ(t′)〉, however, the ACF depends only on

the interval t− t′ between these two instances in time. Therefore, we can take t′ = 0 to simplify
our calculations without loss of generality.
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where Ĥ is the Hamiltonian of the considered system. Note that by inverting

Eq. (A.19), the ACF for a signal can also be determined from the inverse Fourier

transform of its PSD as

〈δŷ(t)δŷ(0)〉 =
1

2π

∫ ∞
−∞

Syy(ω)e−iωtdω. (A.21)

Furthermore, by setting t = 0 in Eq. (A.21), we are able to relate the expectation

value of δŷ2(t) to the PSD via the relation

〈δŷ2〉 =
1

2π

∫ ∞
−∞

Syy(ω)dω. (A.22)

Physically, this relation tells us that the energy of the signal will be given by

integrating the power of the signal over all frequencies.

Finally, often one finds that it is much easier to determine the Fourier transform

of a signal as opposed to its time-domain representation. It is therefore useful to

derive an alternate expression for the PSD in terms of the Fourier transform of the

signal. This is done by inputting the definition of the inverse Fourier transform

given by Eq. (A.2) into Eq. (A.19), while using the integral definition of the Dirac

delta function given in Eq. (A.5) to obtain

Syy(ω) =
1

2π

∫ ∞
−∞
〈δŷ(ω)δŷ(ω′)〉 dω′. (A.23)

This relation proves to be very useful for calculating the PSDs used in this thesis.
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Appendix B

Electromagnetic Fields in
Cylindrical Coordinates

B.1 Maxwell’s Equations

Figure B.1: Schematic illustrating the coordinate system associated with our
cylindrical geometry.

As the two most prevalent optical components discussed in this thesis are

microdisk cavities and cylindrical optical fibers, it is useful to solve the for the

modeshape of the electromagnetic fields using a cylindrical coordinate system. In
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this case, the modeshapes of the electric and magnetic fields can be represented as

E(r, φ, z) = Er(r, φ, z)ir + Eφ(r, φ, z)iφ + Ez(r, φ, z)iz, (B.1)

B(r, φ, z) = Br(r, φ, z)ir +Bφ(r, φ, z)iφ +Bz(r, φ, z)iz, (B.2)

where ir, iφ, and iz are units vectors along the r, φ, and z coordinate directions

as defined in Fig. B.1. It was shown by Wang and Dumitrescu [443] that for a

non-magnetic source-free dielectric in cylindrical coordinates, the electromagnetic

gauge potentials can be used to express these electric field components as

Er = iω

(
1

k̃2(r)

∂2ψTM

∂r∂z
+

1

r

∂ψTE

∂φ

)
, (B.3)

Eφ = iω

(
1

k̃2(r)

∂2ψTM

∂r∂φ
− ∂ψTE

∂r

)
, (B.4)

Ez = iω

(
ψTM +

1

k̃2(r)

∂2ψTM

∂z2

)
, (B.5)

while the magnetic fields are given by

Br =
∂2ψTE

∂r∂z
+

1

r

∂ψTM

∂φ
, (B.6)

Bφ =
1

r

∂2ψTE

∂φ∂z
− ∂ψTM

∂φ
, (B.7)

Bz = k̃2(r)ψTE +
∂2ψTE

∂z2
, (B.8)

where ψTE(r, φ, z) and ψTM(r, φ, z) are two scalar functions that each obey

Helmholtz equations similar to that given in Eq. (3.9). In cylindrical coordinates,

this corresponds to

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂φ2
+
∂2ψ

∂z2
+ k̃2(r)ψ = 0, (B.9)

where we have used ψ as a placeholder for one of either ψTE or ψTM. Note that

since both ψTE and ψTM satisfy Eq. (B.9), they will have an identical functional

form, though with differing proportionality constants. With the fields defined in

this way, setting ψTM = 0 is associated with TE modes, where the electric field

has no component along the z-axis of the considered cylinder, while for ψTE = 0,

there is no magnetic field in the z-direction and TM modes emerge. Finally, in the

situation where ψTE 6= 0 and ψTM 6= 0, both Ez and Bz are non-zero corresponding
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to hybrid modes, which are further classified as being either Ez-dominated (EH)

or Bz-dominated (HE). With this formalism for treating electromagnetic field in

cylindrical coordinates in place, we now look to determine ψTE and ψTE (and thus

the electromagnetic fields for each mode through Eqs. (B.3)–(B.8)) for the two

geometries of an infinite cylinder and a disk of finite height.

B.2 Infinitely Long Cylinders

To begin with, we consider an infinitely long cylinder of radius rc and uniform

index of refraction ñ1. Using a cylindrical coordinate system where the z-axis

runs down the center of the cylinder, as shown in Fig. B.1, the refractive index of

the structure will then depend only on the radial coordinate r according to the

piecewise function

ñ(r) =

{
ñ1, r ≤ rc

ñ2, r > rc

, (B.10)

where ñ2 is the index of refraction of the surrounding medium. With the refractive

index defined in this way, the piecewise wavenumber of the system will then be

given

k̃(r) =

{
k̃1 = ñ1k̃0, r ≤ rc

k̃2 = ñ2k̃0, r > rc

, (B.11)

where k̃0 = 2π/λ0 is the vacuum wavenumber of the system, expressed in terms of

the optical field’s vacuum wavelength λ0. Here we look to determine the modeshapes

for the electromagnetic waves travelling down the axis of the cylinder for a given

vacuum wavelength λ0, as these are the modes associated with the fiber optic

waveguides we use to couple light into our optical cavity. This is done by solving

Eq. (B.9) using a separation of variables approach by writing ψ as a product of

three separate functions according to

ψ(r, φ, z) =Mψr(r)ψφ(φ)ψz(z), (B.12)

where M is an appropriately chosen normalization constant, with the relative

strengths of MTE and MTM set by the boundary conditions of the considered

system. Inputting this ansatz into Eq. (B.9), we then obtain a separate differential
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equation for each variable as

d2ψz
dz2

+ k̃2
zψz = 0, (B.13)

d2ψφ
dφ2

+m2ψφ = 0, (B.14)

r2d
2ψr
dr2

+ r
dψr
dr

+
[
r2k̃t(r)−m2

]
ψr(r) = 0. (B.15)

Here k̃z and m are two constants corresponding to the z-component of the mode’s

wavenumber and azimuthal mode label, such that ψz(z) and ψφ(φ) have the trivial

harmonic plane wave solutions

ψz(z) = e±ik̃zz, (B.16)

and

ψφ(φ) = e±imφ. (B.17)

Note that due to the cylindrical symmetry of the system, we require ψφ(φ) =

ψφ(φ + 2π), which constrains m to be an integer. For any non-zero m, this

functional form of ψφ(φ) allows for two degenerate solutions, corresponding to the

real and imaginary parts of ψφ(φ), Re{ψφ(φ)} = cosmφ and Im{ψφ(φ)} = sinmφ,

respectively. Meanwhile, k̃t(r) =
√
k̃2(r)− k̃2

z is the wavenumber of the wavevector

transverse to the cylinder’s z-axis. Therefore, k̃2
t (r < rc) = k̃2

1 − k̃2
z ≡ q2

1 > 0 inside

the cylinder and Eq. (B.15) is the Bessel equation, such that its solutions are the

mth-order Bessel functions of the first and second kinds, Jm(q1r) and Ym(q1r) (see

Appendix A). Outside the cylinder we then have that k̃2
t (r > rc) = k̃2

2− k̃2
z ≡ −q2

2 <

0, which transforms Eq. (B.15) into the modified Bessel function with its solutions

becoming the mth-order modified Bessel functions of the first and second kind,

Im(q2r) and Km(q2r). Since Ym(q1r) diverges as r → 0 and Im(q2r) diverges as

r →∞, we discard these two terms to ensure our fields represent bound, physical

solutions to the Helmholtz equation, resulting in the piecewise representation for

ψr(r) as

ψr(r) =

{
Jm(q1r), r ≤ rc

Km(q2r), r > rc

. (B.18)

We can now insert the solutions for ψz(z), ψφ(φ), and ψr(r) given by Eqs. (B.16),

(B.17), and (B.18) into Eq. (B.12) to determine the functional forms of ψTE and ψTM.
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Assuming a guided plane wave propagating through the cylinder in the positive

z-direction by taking the negative sign solution in Eq. (B.16), while choosing the

appropriate phase for φ, we find

ψTE(r, φ, z) =

{
MTE,1Jm(q1r) cos(mφ)e−ik̃zz, r ≤ rc

MTE,2Km(q2r) cos(mφ)e−ik̃zz, r > rc

, (B.19)

ψTM(r, φ, z) =

{
MTM,1Jm(q1r) sin(mφ)e−ik̃zz, r ≤ rc

MTM,2Km(q2r) sin(mφ)e−ik̃zz, r > rc

, (B.20)

where

MTE,2 = − q
2
1Jm(q1rc)

q2
2Km(q2rc)

MTE,1, (B.21)

MTM,2 = − q
2
1Jm(q1rc)

q2
2Km(q2rc)

MTM,1. (B.22)

The electromagnetic fields of the mode can then be found by inputting these

solutions for ψTE and ψTM into Eqs. (B.3)–(B.8) to find the fields inside the

cylinder (r < rc) as [336]

Er = −iU1
k̃z
q1

[
1−Υ

2
Jm−1(q1r)−

1 + Υ

2
Jm+1(q1r)

]
cos(mφ), (B.23)

Eφ = iU1
k̃z
q1

[
(1−Υ)

2
Jm−1(q1r) +

(1 + Υ)

2
Jm+1(q1r)

]
sin(mφ), (B.24)

Ez = U1Jm(q1r) cos(mφ), (B.25)

Br = −iU1
k̃2

1

ωcq1

[
(1−Υ1)

2
Jm−1(q1r) +

(1 + Υ1)

2
Jm+1(q1r)

]
sin(mφ), (B.26)

Bφ = −iU1
k̃2

1

ωcq1

[
(1−Υ1)

2
Jm−1(q1r)−

(1 + Υ1)

2
Jm+1(q1r)

]
cos(mφ), (B.27)

Bz = −U1
k̃z
ωc

ΥJm(q1r) sin(mφ), (B.28)
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while the fields outside the cylinder (r > rc) are given by

Er = −iU2
k̃z
q2

[
(1−Υ)

2
Km−1(q2r) +

(1 + Υ)

2
Km+1(q2r)

]
cos(mφ), (B.29)

Eφ = iU2
k̃z
q2

[
(1−Υ)

2
Km−1(q2r)−

(1 + Υ)

2
Km+1(q2r)

]
sin(mφ), (B.30)

Ez = U2Km(q2r) cos(mφ), (B.31)

Br = −iU2
k̃2

2

ωcq2

[
(1−Υ2)

2
Km−1(q2r) +

(1 + Υ2)

2
Km+1(q2r)

]
sin(mφ), (B.32)

Bφ = −iU2
k̃2

2

ωcq2

[
(1−Υ2)

2
Km−1(q2r)−

(1 + Υ2)

2
Km+1(q2r)

]
cos(mφ), (B.33)

Bz = −U2
k̃z
ωc

ΥKm(q2r) sin(mφ). (B.34)

Here we have introduced the factors

Υ =

m

rc

(
1

q2
1

+
1

q2
2

)
J ′m(q1rc)

q1Jm(q1rc)
+

K ′m(q2rc)

q2Km(q2rc)

, (B.35)

Υ1 =
k̃2
z

k̃2
1

Υ, (B.36)

Υ2 =
k̃2
z

k̃2
2

Υ, (B.37)

which along with the dispersion relation[
J ′m(q1rc)

q1Jm(q1rc)
+

K ′m(q2rc)

q2Km(q2rc)

] [
ñ1J

′
m(q1rc)

q1Jm(q1rc)
+
ñ2K

′
m(q2rc)

q2Km(q2rc)

]
=
m2

r2
c

(
1

q2
1

+
1

q2
2

)(
ñ2

1

q2
1

+
ñ2

2

q2
2

)
,

(B.38)

ensures the appropriate boundary conditions of the fields. Note that in determining

the dispersion relation given in Eq. (B.38), we have implicitly used the identity

k̃2
z

k̃2
0

(
1

q2
1

+
1

q2
2

)
=
ñ2

1

q2
1

+
ñ2

2

q2
2

, (B.39)

as well as introduced the notation J ′m(x) = dJm/dx and K ′m(x) = dKm/dx. Finally,

we note that in Eqs. (B.23)–(B.34) we have introduced the new appropriately

rescaled normalization constants Ui, which satisfy the relation [336]

U1 =
Km(q2rc)

Jm(q1rc)
U2. (B.40)
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Figure B.2: The first 24 guided modes of an infinite cylinder, increasing in order
from left to right. Here we show the in-plane profile of the Ez field for the HEmn

(first two rows), EHmn (third row), and TM0n (last row) modes, while for the TE0n

modes we plot the Bz field (as the Ez = 0 in this case). Each mode is calculated
using FEM simulation for a silica cylinder (ñ1 = 1.47) of radius rc = 2.5 µm
surrounded by vacuum/air (ñ2 = 1.00) at a wavelength of λ = 1550 nm.

For the hybrid modes of the system, k̃z, and therefore q1 and q2, can be

determined for a vacuum wavelength λ0 and azimuthal mode number m ≥ 1 from

the solutions of Eq. (B.38). For a given family of azimuthal modes, Eq. (B.38) will

in general have n solutions, corresponding to the n radial modes supported by the

cylinder, which we label HEmn and EHmn. In this notation, 2m counts the number

of nodes in the azimuthal direction, while n (n+ 1) counts the number of nodes in

the radial direction of the Ez and Bz fields for each of the HEmn (EHmn) modes.

For example, the Ez field of the HE42 mode has 8 nodes in the φ-direction and 2

nodes in the r-direction, as seen in Fig. B.2.

266



With our generalized approach, we can also determine dispersion relations for

the TEmn and TMmn modes of the cylinder by taking m = 0 in Eq. (B.38). This

condition is satisfied for the TE modes by setting the first term in brackets on the

left-hand side to zero resulting in

J ′0(q1rc)

q1J0(q1rc)
+

K ′0(q2rc)

q2K0(q2rc)
= 0, (B.41)

whereas the dispersion relation for TM modes is found by setting the second term

in brackets to zero to find

ñ1J
′
0(q1rc)

q1J0(q1rc)
+
ñ2K

′
0(q2rc)

q2K0(q2rc)
= 0. (B.42)

According to Eq. (B.35), this m = 0 condition sets Υ = Υ1 = Υ2 = 0 in this

situation. The fields associated with the TE (TM) modes can then be found

by inputting the solution for ψTE (ψTM) into Eqs. (B.3)–(B.8), while also taking

ψTM = 0 (ψTE = 0). Note that since m = 0 for these modes, they have no nodes in

the azimuthal direction, while n counts their nodes in the radial direction, as can

be seen in Fig. B.2.

Using Poynting’s theorem [258], we can also also determine the time-averaged

power carried by these propagating modes in the positive z-direction as

Pz =
1

2µ0

∫ 2π

0

∫ ∞
0

(E×B∗) · izrdrdφ =
1

2µ0

∫ 2π

0

∫ ∞
0

(
ErB

∗
φ − EφB∗r

)
rdrdφ,

(B.43)

Inputting the radial and azimuthal components of the electric and magnetic fields

of the cylinder into this equation, we find the power propagating within the confines

of the cylinder to be

P1 =
π

4

|U1|2k̃zk̃2
1r

2
c

µ0ωcq2
1

{
(1−Υ)(1−Υ1)

[
J2
m−1(q1rc)− Jm(q1rc)Jm−2(q1rc)

]
+ (1 + Υ)(1 + Υ1)

[
J2
m+1(q1rc)− Jm(q1rc)Jm+2(q1rc)

]
}
,

(B.44)

whereas the power contained within the evanescent field of the mode is given by

P2 =
π

4

|U2|2k̃zk̃2
2r

2
c

µ0ωcq2
2

{
(1−Υ)(1−Υ2)

[
K2
m−1(q2rc)−Km(q2rc)Km−2(q2rc)

]
+ (1 + Υ)(1 + Υ2)

[
K2
m+1(q2rc)−Km(q2rc)Km+2(q2rc)

]
}
.

(B.45)

The total power carried by each guided mode is then simply given by the sum of

these two powers as Ptot = P1 + P2.
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The above results provide exact solutions for the electromagnetic fields of an

infinite cylinder, with their propagation constant k̃z determined using the dispersion

relation of Eq. (B.38). Unfortunately, this dispersion relation is a complicated

implicit transcendental function of the waveguide’s parameters, such that it gives

little intuition into the behaviour of the system. However, the situation is simplified

considerably if we implement the weakly-guiding approximation (WGA) [444, 445],

for which ñ1 ≈ ñ2. Note that for standard fiber optics, ñ1 ≈ 1.5 such that the WGA

approximation holds reasonably well even for fiber cores surrounded by air/vacuum

where ñ2 ≈ 1. In this case, the dispersion relation given in Eq. (B.38) becomes

J ′m(q1rc)

q1Jm(q1rc)
+

K ′m(q2rc)

q2Km(q2rc)
= ±m

rc

(
1

q2
1

+
1

q2
2

)
, (B.46)

where the plus (minus) sign corresponds to the EHmn (HEmn) modes. Comparing

Eq. (B.46) to Eq. (B.38), we see that this new dispersion relation is equivalent to

setting Υ = Υ1 = Υ2 = 1 for EHmn modes and Υ = Υ1 = Υ2 = −1 for HEmn

modes. Inputting these relations into Eqs. (B.23)–(B.34), as well as Eqs. (B.44)

and (B.45), we can determine the electromagnetic fields of, and the power carried

by, these simplified EH and HE hybrid modes. Note that in the WGA, the TE0n

and TM0n modes become degenerate, with their new shared dispersion relation

given by setting m = 0 in Eq. (B.46). Using the recursion relations of the Bessel

functions found in Appendix A, we can therefore write the WGA dispersion relation

in the unified form
q1Jν−1(q1rc)

Jν(q1rc)
= −q2Kν−1(q2rc)

Kν(q2rc)
, (B.47)

where ν = m + 1 for EHmn modes, ν = m − 1 for HEmn modes, and ν = 1 for

TE0n/TM0n modes. The lowest order mode (corresponding to the smallest value of

ν) is given by the HE11 mode, which obeys the dispersion relation

q1J1(q1rc)

J0(q1rc)
=
q2K1(q2rc)

K0(q2rc)
, (B.48)

where we have used the identities J−1(q1rc) = −J1(q1rc) and K−1(q2rc) = K1(q2rc)

(see Appendix A). Note that since lim
q2rc→0

q2rcK1(q2rc)/K0(q2rc) = 0, there will

always be a choice of q1rc that satisfies this dispersion relation. Therefore, this

fundamental HE11 mode will always exist regardless of how small rc becomes.
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In general, an infinitely long cylinder will support a multitude of optical TE0n,

TM0n, EHmn, and HEmn modes, lending to the description of a multimode fiber.

As we reduce the radius of the cylinder, however, the higher order modes of the

system will begin to die out, until finally, the penultimate TE01 and TM01 are cut

off. Below this critical radius, known as the single-mode cut-off radius r∗, the fiber

becomes single mode, supporting only the single HE11. As this is the mode that

exists in the single-mode tapered fiber waveguide we use to couple to the modes of

our optical cavities, we spend the rest of this subsection determining this cut-off

radius, as well as detailing the properties of the HE11 mode.

Continuing with the WGA1, we determine r∗ as the cylinder radius at which

k̃z = k̃2 for the TE01 and TM01 modes, such that they evanescently decay into

their surroundings, preventing these modes from being guided down the cylinder.

Mathematically, this is equivalent to setting ν = 1 (m = 0) and q2 = 0 in Eq. (B.47).

Using the fact that lim
q2rc→0

q2rcK0(q2rc)/K1(q2rc) = 0, Eq. (B.47) will then have

solutions when q1rcJ0(q1rc) = 0. Therefore, one solution will always exist for for

q1rc = 0, which corresponds to the HE11 mode (see Eq. (B.48)). The penultimate

degenerate TE01 and TM01 modes then come into existence when J0(q1rc) ≥ 0,

which occurs for

q1rc ≥ Z0,0 ≈ 2.4048, (B.49)

where Zm,n is the nth zero of Jm(z) (i.e. the mth-order Bessel function of the first

kind). Using the fact that k̃z = k̃2 for rc = r∗, we can take equality in Eq. (B.49)

and rearrange to solve for the single mode cut-off diameter of the cylinder as

d∗ = 2r∗ =
Z0,0λ0

π
√
ñ2

1 − ñ2
2

≈ 2.4048λ0

π
√
ñ2

1 − ñ2
2

. (B.50)

Table B.1 gives this cut-off diameter for a number of commonly used experimental

wavelengths in both vacuum and aqueous environments.

For cylinder radii rc < r∗, all light travelling through the cylinder will reside in

the fundamental HE11 mode, whose electric fields within the cylinder can be found

1One could also determine the exact radius at which the fiber becomes single mode by taking
m = 0 and solving Eq. (B.38) numerically by iteratively increasing r until a solution emerges.
However, this procedure is cumbersome and is ultimately unnecessary for the fiber waveguides
considered in Section 5.3.
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λ0 (nm) ñ1 ñ1
d∗ (nm)

WGA Numerical

637
1.47 1.00 452.6 452.6
1.47 1.33 778.8 778.9

780
1.47 1.00 554.1 554.2
1.47 1.33 953.6 953.7

1310
1.47 1.00 930.7 930.7
1.47 1.33 1601.6 1601.7

1550
1.47 1.00 1101.2 1101.2
1.47 1.33 1895.0 1895.1

Table B.1: Single mode cutoff diameter calculated using both the WGA
approximation and numerical calculations for green light (637 nm) observed in
nitrogen vacancy photoluminescence [446] and near-infrared light (780 nm) used in
aqueous biosensing [447], as well as the dispersionless and low attenuation telecom
wavelengths of 1310 nm and 1550 nm. All calculations are performed for a standard
telecom optical silica fiber (ñ1 = 1.47) in both vacuum/air (ñ2 = 1.0) and aqueous
(ñ2 = 1.33) environments. Here we assume the indices of refraction are constant
over the considered wavelength range, as is observed for these media [337, 448].
The appropriate number of digits are retained to show the difference in WGA and
numerical calculations.

by inputting m = 1 and Υ = −1 into Eqs. (B.23)–(B.25) to find

Er = −iU1
k̃z
q1

J0(q1r) cos(φ), (B.51)

Eφ = iU1
k̃z
q1

J0(q1r) sin(φ), (B.52)

Ez = U1J1(q1r) cos(φ), (B.53)

with similar expressions outside the cylinder found by taking J0(q1r)→ K0(q2rc),

J0(q1r) → K0(q2rc), and U1 → U2. Note that since k̃z > q1 and J0(q1r) > J1(q1r)

for r < r∗, Er, Eφ > Ez such that the transverse electric fields dominate the mode.

Furthermore, by rotating to a Cartesian representation of these transverse fields,

we find

Ex = Er cosφ− Eφ sinφ = −iU1
k̃z
q1

J0(q1r), (B.54)

Ey = Er sinφ+ Eφ cosφ = 0. (B.55)

Therefore, in the WGA the HE11 mode behaves like a TE mode, with its electric

field polarized along the x-axis of the fiber. It is this linearly polarized mode, which
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is often labelled the LP01 mode, that is used to guide light through all standard

single-mode optical fibers2.

Finally, by inputting m = 1 and Υ = Υ1 = Υ2 = −1 into Eqs. (B.44) and

(B.45), we determine the power carried both within the cylinder and through its

surroundings as

P1 =
π|U1|2k̃zk̃2

1r
2
cJ

2
0 (q1rc)

µ0ωcq2
1

[
1 +

q2
2

q2
1

K2
1(q2rc)

K2
0(q2rc)

]
, (B.56)

P2 =
π|U1|2k̃zk̃2

2r
2
cJ

2
0 (q1rc)

µ0ωcq2
2

[
K2

1(q2rc)

K2
0(q2rc)

− 1

]
, (B.57)

respectively. Here we have used the WGA recursion relation for the HE11 mode

given by Eq. (B.48), as well as the relation between U1 and U2 given by Eq. (B.40).

The total power guided by the HE11 mode of the cylinder is then found as

Ptot =
π|U1|2k̃zk̃2

1r
2
cJ

2
0 (q1rc) (q2

1 + q2
2)

µ0ωcq4
1

K2
1(q2rc)

K2
0(q2rc)

=
π|U1|2k̃zk̃2

1r
2
cJ

2
1 (q1rc)

µ0ωc

q2
1 + q2

2

q2
1q

2
2

,

(B.58)

where we have again invoked the WGA to make the approximation k̃1 ≈ k̃2 and

used the dispersion relation in Eq. (B.48) to get from the first line to the second line.

Assuming that U1 is real-valued, we can also invert Eq. (B.58) to determine this

field amplitude coefficient in terms of the total power injected into the fundamental

mode as

U1 =
q1q2

k̃1rcJ1(q1rc)

√
µ0ω0Ptot

πk̃z (q2
1 + q2

2)
, (B.59)

where ω0 = ck̃0 is the frequency of the guided light. Finally, dividing each of P1 and

P2 by this total power, we find the ratio of guided power both inside and outside

the cylinder

P1

Ptot

= 1− q2
1

q2
1 + q2

2

[
1− K2

0(q2rc)

K2
1(q2rc

]
, (B.60)

P2

Ptot

=
q2

1

q2
1 + q2

2

[
1− K2

0(q2rc)

K2
1(q2rc)

]
. (B.61)

2Note that the choice of orientation along the x-axis was set by the arbitrarily chosen phase for
the φ-axis. In practice, the polarization direction of the guided light will be set by the polarization
of the incoming wave and may also rotate due to strain-induced birefringence.
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In Fig. B.3, we plot each of these ratios as a function of the cylinder radius

normalized to the single-mode cut-off radius, demonstrating how the power in the

guided mode leaks into its surroundings as the cylinder radius is reduced.
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Figure B.3: Fraction of the total power guided both within the cylinder (blue)
and in the surrounding medium (orange) versus cylinder radius (normalized to
the single-mode cut-off radius r∗) for the HE11 mode according to Eqs. (B.60) and
(B.61), respectively. Here we have taken the index of refraction of the cylinder to
be ñ1 = 1.47, matching the index for our tapered fiber waveguides discussed in
Section 5.3. The black dashed line indicates the single-mode cut-off diameter, at
which approximately three-quarters of the guided optical power exists within the
cylinder, with the remaining one-quarter found outside its confines. Below this
point, we find that the power inside (outside) the cylinder continues to decrease
(increase) with decreasing radius, with equal power in both regions at approximately
one-quarter the single-mode cut-off radius.

B.3 Optical Microdisks

The general formalism used to calculate the electromagnetic fields in cylindrically

symmetric geometries introduced in Section B.1 can also be used to determine the

electromagnetic fields in thin microdisk cavities. Here we consider a thin disk of

thickness t and radius R with a refractive index of ñd, immersed in a surrounding

medium with refractive index ñs. Placing the origin of the cylindrical coordinate
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system at the center of the disk, with the z-axis aligned as seen in Fig. B.1, the

refractive index profile of the disk will then be given by

ñ(r, z) =

{
ñd, r ≤ R; − t

2
≤ z ≤ t

2

ñs, otherwise
. (B.62)

Unfortunately, due to the sharp corners of the disk at r = R and z = ±t/2,

combined with the diffraction of any light that exits the disk radially [265], it is

difficult, if not impossible to determine exact analytical solutions for the optical

modes of such a geometry. However, here we introduce a simple effective index

method that allows us to very accurately approximate the optical fields within the

disk, while also predicting their resonance conditions.

Unlike an infinite cylinder, the thin optical microdisk considered here is unable

to support hybrid modes, such that we need only consider the case of TE and

TM modes. Here we will focus on the TE modes of the disk, as they are the

relevant modes for our experiments (see Section 3.3). As before, to calculate the

electromagnetic fields of these modes we first determine the scalar function ψTE,

which we then input into Eqs. (B.3)–(B.8), while setting ψTM = 0. Fortunately,

the geometry of our disk is very similar to the infinite cylinder discussed in the

previous subsection, save for the truncation in the z-direction. Therefore, we can

recycle the functional form for ψ given by Eq. (B.12), where we use Eqs. (B.17)

and (B.18) as the solutions for ψφ(φ) and ψr(r), respectively, while we introduce a

new piecewise function for ψz(z) as [443]

ψz(z) =


e−qt(z−t/2) cos(k̃zt/2), z > t

2

cos(k̃zz), − t
2
≤ z ≤ t

2

eqt(z+t/2) cos(k̃zt/2) z < − t
2

(B.63)

where qd and qs are defined similar to q1 and q2 in the previous section (i.e.

q2
d = k2

d − k̃2
z and q2

s = k̃2
z − k2

s ), while q2
t = k̃2

0(ñ2
d − ñ2

s ) − k̃2
z . Note that in this

new ψz(z) function we have implicitly assumed that the disk is thin enough that it

can only support one mode in the z-direction [265]. Furthermore, with this ψz(z)

function the evanescent fields of the disk will decay exponentially as we move away

from its top and bottom, representing a bound optical mode as opposed to the

travelling electromagnetic wave of an infinite cylinder described in the previous
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subsection. Using this representation for ψz(z), the scalar function for the TE

modes is then determined as

ψTE(r)

MTE

=



Jm(qdr)e
−qt(z−t/2) cos(k̃zt/2)eimφ, r ≤ R; z > t

2

Jm(qdR)

Km(qsR)
Km(qsr)e

−qt(z−t/2) cos(k̃zt/2)eimφ, r ≥ R; z > t
2

Jm(qdr) cos(k̃zz)eimφ, r ≤ R; − t
2
≤ z ≤ t

2

− q
2
dJm(qdR)

q2
sKm(qsR)

Km(qsr) cos(k̃zz)eimφ, r ≥ R; − t
2
≤ z ≤ t

2

Jm(qdr)e
qt(z+t/2) cos(k̃zt/2)eimφ, r ≤ R; z < − t

2

Jm(qdR)

Km(qsR)
Km(qsr)e

qt(z+t/2) cos(k̃zt/2)eimφ, r ≥ R; z < − t
2

.

(B.64)

Here we have chosen to normalize the scalar function in each region to ensure that

the Bz field satisfy their corresponding electromagnetic boundary conditions [258].

In this way, we can then simply input these scalar functions into Eqs. (B.3)–(B.8)

to determine the electromagnetic fields for the microdisk. For example, Bz will be

given by

Bz(r, φ, z) =
[
k2(r, z) + ζ̃2(z)

]
ψTE(r, φ, z), (B.65)

where again k̃(r, z) = k̃0ñ(r, z) is the position-dependent wavenumber of the cavity

mode and ζ̃(z) is defined as

ζ̃(z) =


−qt, z > t

2

ik̃z, − t
2
≤ z ≤ t

2

qt, z < − t
2

. (B.66)

Note that as with the infinite cylinder, the modes with m 6= 0 are doubly-

degenerate, such that there are two solutions for each mode given by the real

and imaginary parts of their calculated fields. In Fig. B.4, we plot the normalized

spatial distribution of the Bz field given in Eq. (B.65) and compare its to its

FEM-simulated counterpart. Here we see that our result provides an excellent

approximation to the electromagnetic fields of the disk, with a discrepancy of

∼5% between the analytically calculated and simulated fields. Unsurprisingly, this

maximal discrepancy occurs at the sharp corners of the disk located at r = R and

z = ±t/2, which introduce a singular boundary condition such that the fields are

poorly-defined in this region. Using the approximation of Bz given by Eq. (B.65), we
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Figure B.4: Comparison of Bz for the n = 1, m = 51 TE mode simulated at
λc = 1555.384 nm for the microdisk cavities studied in this thesis (R = 5 µm,
t = 250 nm, ñd ≈ 3.45) computed using (a) FEM simulation (BF

z ) and (b) the
analytical approximation calculated using Eqs. (B.64) and (B.65) (Ba

z ). Each of
these fields are normalized to their maximum values, with the residual between
the two (BF

z − Ba
z ) given in (c). Here we see that the analytical calculation always

undershoots the value of Bz compared to the FEM simulation, with a maximum
percent difference between these two methods of ∼5% occurring at the corners of
the disk.

can analytically calculate a number of properties for the TE modes of our microdisk

resonators, such as their effective refractive indices and resonant wavelengths.

With the functional form of the electromagnetic modes of the disks determined,

we now look to calculate their dispersion relations. This is done by matching the

electromagnetic fields at each interface according to the appropriate boundary

condition [258]. Here we have two independent boundaries, with one at r = R
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and one at z = ±t/2, such that we obtain two dispersion relations for each mode.

Matching the fields for the TE modes, we find the two dispersion relations for the

mth-order azimuthal mode3 as

tan

(
k̃0t

2

√
ñ2

d − ñ2
TE

)
=

√
ñ2

TE − ñ2
s√

ñ2
d − ñ2

TE

, (B.67)

J ′m(qdR)

qdJm(qdR)
+

K ′m(qsR)

qsJm(qsR)
= 0, (B.68)

where we have introduced the effective refraction index of the TE mode as

ñTE = qd/k̃0.

The dispersion relations given by Eqs. (B.67) and (B.68) are complicated

transcendental functions that must be solved numerically in order to determine the

resonance frequencies of the disk’s optical modes. This is done by first inputting an

initial guess wavelength λ1 into Eq. (B.67) and solving this transcendental equation

to extract ñTE at λ1. Once solved for, this value of ñTE is used to determine qd,

as well as k̃z and qs, at the considered wavelength. All of these wavevectors are

then fed into Eq. (B.68), which is solved to determine the resonance wavelength

of the disk λmn,1 at the considered effective index. Generally, after a single run

through of this procedure, λmn,1 6= λ1. Therefore, we repeat this recipe by taking

our new initial guess wavelength to be λ2 = λmn,1, and continue iteratively until

λmn,i = λi to within the desired tolerance4. Note that this procedure can be used

to determine each of the n radial modes of the disk, which correspond to the nth

solution of Eq. (B.68). Using this numerical method, we calculate the resonant

wavelengths of the fundamental radial (n = 1) TE modes of our microdisks over

the wavelength range of 1500 - 1640 nm, as summarized by Table 3.1 in Section

3.3, where we see good agreement between our analytically calculated results and

the corresponding FEM-simulated values.

3The azimuthal mode number m counts the 2m nodes of the WGM in the φ-direction.
4Alternatively, one could interpolate the effective index over the range of interest (see Fig. 3.2),

extracting ñTE as a function of wavelength, which can then be put into Eq. (B.68) to determine
λmn directly.
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Appendix C

Determination of the
Optomechanical Coupling
Coefficients using
Non-Degenerate Perturbation
Theory

Here we use the perturbative approach developed by Johnson et al. [279] to

determine the first- and second-order optomechanical coupling coefficients for

mechanical systems coupled to non-degenerate optical modes. In doing so, we show

that it is possible, in principle, to completely eliminate linear coupling in favour of

quadratic coupling by exploiting the symmetry of an optomechanical system.

We begin by considering a high-Q optical mode with resonant angular frequency

ωi and a corresponding electric field profile Ei(r, t) = Ei(t)Ei(r). As is detailed in

Section 3.2, we can then use Maxwell’s equations for a source-free, non-magnetic

dielectric to obtain the Helmholtz equation for the electric field modeshape Ei(r)

(see Eq. (3.9)) as

∇2 |Ei〉 = −ω
2
i εi(r)

c2
|Ei〉 , (C.1)

where the cavity’s geometry is specified by its spatially-varying relative permittivity

profile εi(r) = ñ2
i (r). Here we have also chosen to follow the notation of Johnson et

al. by representing the electric field of the cavity mode using the Dirac braket state

vector notation, where |Ei〉 = Ei(r) and 〈Ei| = E∗i (r). The inner product between
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two optical modes characterized by the state vectors |Ei〉 and |Ej〉 is then defined as

〈Ei|Ej〉 ≡
∫
V

E∗i (r) · Ej(r)dV, (C.2)

where the integral is performed over the entire volume of the optomechanical system

[279]. With this definition, the optical modes of the cavity are orthogonal in the

sense that 〈Ei| εi |Ej〉 = 〈Ei| εi |Ei〉 δij.

We now imagine introducing a small shift in the cavity’s permittivity profile,

resulting in εi(r)→ εi(r)+δεi(r). Treating the problem perturbatively, we determine

the new electric field vector |E ′i〉, along with the corresponding cavity resonance

frequency ω′i, in this shifted geometry by expanding to second order as

|E ′i〉 = |E (0)
i 〉+ |E (1)

i 〉+ |E (2)
i 〉 , (C.3)

ω′i = ω
(0)
i + ω

(1)
i + ω

(2)
i . (C.4)

Here the superscript (0) denotes the original unperturbed quantity, while the (1)

and (2) indicate the first- and second-order corrections, proportional to δεi and

(δεi)
2, respectively. We note that these higher order corrections to the electric field

are chosen to be orthogonal to the unperturbed field in the same sense as before

such that 〈E (0)
i | εi |E

(n>0)
i 〉 = 0.

For perturbations that are optomechanical in nature, the shift of the dielectric

profile will be induced due to the motion of a mechanical element. In this case, we

can also expand the optical mode frequency to second order in a similar fashion to

Eq. (8.9) as

ω′i = ωi −G1δx−
G2

2
(δx)2, (C.5)

where G1 andG2 are defined in Section 8.3.1, while δx is the resonator’s displacement

from equilibrium. Matching these terms with the ones found in Eq. (C.4), Eq. (C.1)

can be solved order-by-order to find [146, 279, 409, 449, 450]

ωi = ω
(0)
i , (C.6)

G1 =
ω

(1)
i

δx
= −ωi

2

〈E (0)
i | dεidx |E

(0)
i 〉

〈E (0)
i | εi |E

(0)
i 〉

, (C.7)

G2 =
ω

(2)
i

(δx)2
=

3G2
1

ωi
+
∑
ωj 6=ωi

Gij, (C.8)
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where the sum is performed over all other optical cavity modes and

Gij =
ω3
i

ω2
i − ω2

j

| 〈E (0)
j | dεidx |E

(0)
i 〉 |2

〈E (0)
i | εi |E

(0)
i 〉 〈E

(0)
j | εi |E

(0)
j 〉

. (C.9)

Upon inspection of Eq. (C.7), we see that linear coupling is proportional to the

self-overlap of the optical mode, mediated by the change in relative permittivity

with respect to the mechanical displacement. Meanwhile, in Eq. (C.8) the quadratic

coupling exhibits both a self-overlap term, as well as a term depending on the cross-

coupling between the original unperturbed modes and the other non-degenerate

cavity modes (the case of quadratic coupling in degenerate cavity modes was

discussed in Section 8.3). Therefore, linear optomechanical coupling will in principle

be zero if the field self-overlap term vanishes, that is 〈E (0)
i | dεidx |E

(0)
i 〉 = 0 [409].

Furthermore, in this situation the quadratic coupling is given by

G2 =
∑
ωj 6=ωi

Gij, (C.10)

with only the cross-coupling terms surviving. Therefore, provided these terms do

not sum to zero, a non-zero quadratic coupling can be achieved in the absence of

linear coupling [409].

To better understand the physical conditions that lead to vanishing linear

optomechanical coupling, we investigate the case where the optomechanical coupling

is due to shifting the boundary conditions of the optical mode (as opposed to the

photoelastic effect [67, 280–282]), pertinent to the majority of optomechanical

systems. For this situation, we find that [146, 279]

〈Ei|
dεi
dx
|Ej〉 =

∫
S

u(r) · n(r)
[
∆εE

‖∗
i · E

‖
j −∆ε−1D⊥∗i ·D⊥j

]
dA, (C.11)

where u(r) is the mechanical modeshape function and Di(r) = ε0εi(r)Ei(r) is the

electric displacement field, with ε0 being the permittivity of free space. The integral

is performed over the surface of the unperturbed optical resonator as defined by

its unit normal vector n(r). We have also introduced the superscripts ‖ and ⊥ to

denote the components of the associated fields parallel and perpendicular to the

cavity surface. Finally, ∆ε = εd − εs and ∆ε−1 = ε−1
d − ε−1

s , where εd and εs are the

relative permittivities of the optomechanical device’s material and the surrounding

medium, respectively.
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The expression in Eq. (C.11) will be zero if the integrand is an odd function with

respect to the symmetry axes of the optical cavity. In practice, this can be realized

by implementing an optical intensity profile that exhibits even symmetry, along

with a mechanical modeshape (after dot product with the unit surface normal)

that demonstrates odd symmetry [409]. This amounts to having an optical field

that is unable to distinguish the direction of motion of the mechanics, leading to

an optical frequency shift that is even with respect to mechanical displacement.

Therefore, the first term in the cavity expansion (ignoring the zeroth-order term

corresponding to the unperturbed cavity frequency) must be proportional to (δx)2,

leading to quadratic optomechanical coupling.
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Appendix D

Derivation of the Optomechanical
Quantum Langevin Equations

D.1 Creation and Annihilation Operator Repre-

sentation

In this appendix, we use the Heisenberg equation given by Eq. (4.11) to determine

the QLEs of a dispersively coupled optomechanical system interacting with its

surrounding bath. Starting with the creation and annihilation operators of the

system, we begin by inputting the Hamiltonian given by Eq. (4.10) into Eq. (4.11),

which results in the equations of motion for â(t) and b̂(t) as [150]

˙̂a = −iωcâ+ ig0

(
b̂† + b̂

)
â+ fdrâdr +

∑
p

fp âp, (D.1)

˙̂
b = −iωmb̂+ ig0â

†â+
∑
q

fq b̂q, (D.2)

along with those corresponding to the drive and bath modes given by

˙̂adr = −iωdâdr − f
∗
drâ, (D.3)

˙̂ap = −iωpâp − f ∗p â, (D.4)

˙̂
bq = −iωq b̂q − f ∗q b̂. (D.5)

To proceed, we solve Eqs. (D.3)–(D.5) for the annihilation operators of the drive

and bath modes and input these solutions into Eqs. (D.1) and (D.2).

Beginning with the drive mode, we formally integrate Eq. (D.3), resulting in

âdr(t) = e−iωd(t−ti)âdr(ti)− f
∗
dr

∫ t

ti

e−iωd(t−t′)â(t′)dt′, (D.6)
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where ti is a time in the distant past long before the drive field has had an

opportunity to interact with the cavity [203]. Using this representation for âdr(t),

we can then express the third term on the right-hand side of Eq. (D.1) as

fdrâdr(t) = fdre
−iωd(t−ti)âdr(ti)− |fdr|2

∫ t

ti

e−iωd(t−t′)â(t′)dt′. (D.7)

We now look to determine the coefficient fdr in terms of the coupling rate κe

between the optical cavity and its external coupler (i.e . the rate at which photons

are coupled into/out of the cavity). This is done using a Fermi’s Golden Rule

calculation to find [203]

κe = 2π|fdr|2δ(ωd − ωc), (D.8)

where the Dirac delta function δ(ωd − ωc) accounts for the density of states of the

drive mode. Note that here we have implicitly made the first Markov approximation,

which assumes that the drive field has a short enough memory that it can be

considered uncorrelated in time, allowing us to approximate κe as constant over the

narrow frequency bandwidth of the cavity mode. Furthermore, this approximation

allows us to determine a time domain expression for κe by multiplying each side of

Eq. (D.8) by e−ωc(t−t′) and integrating over all ωc to obtain

κeδ(t− t′) = |fdr|2e−ωd(t−t′), (D.9)

where we have used the integral definition of the Dirac delta function given by

Eq. (A.5) of Appendix A. Inputting this time domain expression for |fdr|2e−ωd(t−t′)

into the second term on the right-hand side of Eq. (D.6), we then find the “past

time” representation of fdrâdr(t) as

fdrâdr(t) =
√
κeâin(t)− κe

2
â(t), (D.10)

where we have used the property of the Dirac delta function given by Eq. (A.4) of

Appendix A, as well as defined the optical field input operator as1

âin(t) =
fdr√
κe

e−iωd(t−ti)âdr(ti). (D.11)

1The justification for this definition comes from the fact that this representation resembles the
field travelling in an optical transmission line [203, 262].
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We note that the choice of integration limits in Eq. (D.6) running from ti to t

is completely arbitrary. Alternatively, we could have instead chosen to write the

drive field as

âdr(t) = e−iωd(t−tf )âdr(tf ) + f ∗dr

∫ tf

t

e−iωd(t−t′)â(t′)dt′, (D.12)

where tf is now a time in the distant future long after the drive field has interacted

with the cavity [203]. Note that in Eq. (D.12), the sign in front of the integral has

changed relative to that in Eq. (D.6), as the integration limits have been inverted.

Again, using the relation for |fdr|2e−ωd(t−t′) given by Eq. (D.9), we can rewrite a

“future time” expression for fdrâdr(t) as

fdrâdr(t) =
√
κeâout(t) +

κe

2
â(t), (D.13)

where we have now defined the optical field output operator as

âout(t) =
fdr√
κe

e−iωd(t−tf )âdr(tf ). (D.14)

Equating Eqs. (D.10) and (D.13) allows us to express this output field operator in

terms of the input field âin(t) and the intracavity field â(t) as

âout(t) = âin(t)−
√
κeâ(t). (D.15)

This expression, known as the “input-output relation” [150], will prove useful when

examining the field exiting the cavity, as well as its subsequent detection.

Using a similar procedure to solve Eqs. (D.4) and (D.5) (see Ref. [203] for

details), we find ∑
p

fp âp(t) =
√
κiâi (t)−

κi

2
â(t), (D.16)

∑
q

fq b̂q(t) =
√

Γmb̂i (t)−
Γm

2
b̂(t), (D.17)

where κi is the internal loss rate of the optical cavity, with âi (t) and b̂i (t) being the

optical and mechanical vacuum noise input operators, defined similarly to âin(t) as

âi (t) =
1
√
κi

∑
p

fp e
−iωp(t−ti)âp(ti), (D.18)

b̂i (t) =
1√
Γm

∑
q

fq e
−iωq(t−ti)b̂q(ti). (D.19)
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At this point, we now have everything we need to construct the equations

of motion for the field operators of the optomechanical cavity. This is done by

inputting Eqs. (D.10) and (D.16) into Eq. (D.1), as well as Eq. (D.17) into Eq. (D.2)

to obtain

˙̂a = −κ
2
â− iωcâ+ ig0

(
b̂† + b̂

)
â+
√
κeâin +

√
κiâi , (D.20)

˙̂
b = −Γm

2
b̂− iωmb̂+ ig0â

†â+
√

Γmb̂i . (D.21)

Together, these two expressions form the nonlinear QLEs for the photonic and

phononic annihilation operators of the optomechanical system.

As our optomechanical cavity operates in the dispersive regime, we find it useful

to transform the QLE’s given by Eqs. (D.20) and (D.21) into the frame that rotates

at the optical drive frequency ωd. This is done by multiplying each of the optical

fields by e−iωdt [451], resulting in the following transformations for each operator:2

â(t)→ â(t)e−iωdt, (D.22)

âin(t)→ âin(t)e−iωdt, (D.23)

âi (t)→ âi (t)e
−iωdt. (D.24)

Note that since we are working in a frame rotating at the optical drive frequency,

the drive terms will now be time-independent (aside from temporal quantum

fluctuations). In this new rotating frame, the equation of motion for the cavity

field operator then becomes

˙̂a = −κ
2
â+ i∆0â+ ig0

(
b̂† + b̂

)
â+
√
κeâin +

√
κiâi , (D.25)

where we have introduced the bare detuning of the optical drive frequency from

cavity resonance as ∆0 = ωd − ωc. Note that with this definition of cavity drive

detuning, negative (positive) values indicate a red-detuned (blue-detuned) cavity

drive. We further point out that the equation of motion for b̂ given in Eq. (D.21)

remains unperturbed by this rotation, as the radiation pressure force exerted on

the resonator depends only on the number of photons in the cavity (i.e . â†â), which

remains constant under this rotation.

2 This rotation is equivalent to applying the unitary transformation ÛĤÛ − i~Û ∂Û†

∂t to the

Hamiltonian in Eq. (4.10), where Û = eiωdâ
†â [150].
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Finally, we note that we can take the adjoint of each of the QLE’s given in

Eqs. (D.21) and (D.25), which results in the corresponding expressions for each of

the photonic and phononic creation operators as3

˙̂a† = −κ
2
â† − i∆0â

† − ig0

(
b̂† + b̂

)
â† +

√
κeâ

†
in +
√
κiâ
†
i , (D.26)

˙̂
b† = −Γm

2
b̂† + iωmb̂

† − ig0â
†â+

√
Γmb̂

†
i , (D.27)

where

â†in(t) =
[
âin(t)

]†
=

f ∗dr√
κe

eiωd(t−ti)â†d(ti), (D.28)

â†i (t) =
[
âi (t)

]†
=

1
√
κi

∑
p

f ∗p e
iωp(t−ti)â†p(ti), (D.29)

b̂†i (t) =
[
b̂i (t)

]†
=

1√
Γm

∑
q

f ∗q e
iωq(t−ti)b̂†q(ti), (D.30)

are simply the adjoints of the input operators given in Eqs. (D.11), (D.18), and

(D.19), respectively.

D.2 Position and Momentum Operator Repre-

sentation

In the previous section, the motion of the mechanical resonator was quantified

in terms of its phononic creation and annihilation operators. However, as the

dispersive optomechanical systems considered in this work couple directly to the

displacement of the resonator, a more natural choice would be to describe the

mechanical motion in terms of the position and momentum operators defined

in Eqs. (2.17) and (2.19), respectively. In this representation, the Hamiltonian

describing the free evolution of the mechanical resonator is then given by

Ĥm =
1

2
mω2

mx̂
2 +

p̂2

2m
. (D.31)

In principle, one could insert this Hamiltonian into Eq. (4.10) and then use Eq. (4.11)

to determine the equations of motion for both x̂ and p̂. However, it is much easier

3This equations of motion could also have been obtained by inputting â† and b̂† in the
Heisenberg equation given in Eq. (4.11).
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to simply take the time derivatives of Eqs. (2.17) and (2.19) while inputting

Eqs. (D.20)–(D.27) for the time derivatives of the creation/annihilation operators

of photons and phonons in the system to find

˙̂x = −Γm

2
x̂+

√
Γmx̂i +

p̂

m
, (D.32)

˙̂p = −Γm

2
p̂−mω2

mx̂+
√

Γmp̂i + 2g0pzpf â
†â, (D.33)

where we have defined the input noise position x̂i and momentum p̂i operators as

x̂i(t) = xzpf

[
b̂†i (t) + b̂i (t)

]
, (D.34)

p̂i(t) = ipzpf

[
b̂†i (t)− b̂i (t)

]
. (D.35)

We now look to combine Eqs. (D.32) and (D.33) in order to eliminate p̂, resulting

in an equation of motion for the mechanical position operator x̂. This is done by

first taking another time derivative of Eq. (D.32), and using Eq. (D.33) to obtain

¨̂x = −Γm

2
˙̂x+

√
Γm

˙̂xi +
1

m

[
−Γm

2
p̂−mω2

mx̂+
√

Γmp̂i + 2g0pzpf â
†â

]
. (D.36)

Next, we rearrange Eq. (D.32) to solve for p̂ and input the result into Eq. (D.36),

while using the relations g0 = Gxzpf and xzpfpzpf = ~/2 to find

¨̂x = −Γm
˙̂x− ω2

mx̂+
√

Γm
˙̂xi +

√
Γm

m
p̂i +

~Gâ†â
m

− Γ2
m

4
x̂+

Γm

√
Γm

2
x̂i. (D.37)

We then invoke the high-Q approximation (Qm = ωm/Γm � 1), allowing us to

neglect the last two terms on the right-hand side of Eq. (D.37), resulting in

¨̂x+ Γm
˙̂x+ ω2

mx̂ =
1

m

[
F̂th + F̂rp

]
, (D.38)

where we have interpreted F̂th as a thermal Langevin force acting upon the

mechanical resonator given by

F̂th = 2
√

Γmp̂i = i
√

2~ωmΓmm
[
b̂†i (t)− b̂i (t)

]
. (D.39)

Note that in this definition we have made use of the relation p̂i = m ˙̂xi.

Upon inspection of Eq. (D.38), we find that we have arrived at a quantized

version of the equation of motion for the classical damped harmonic oscillator given

by Eq. (2.7), with the forcing function identified as F̂ (t) = F̂th(t) + F̂rp(t). That
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is to say, the mechanical motion is driven by an intrinsic thermal force due to its

environment, as well as a radiation pressure force exerted by photons in the cavity.

Finally, we wish to express the equation of motion for the cavity photon

annihilation operator in terms of the mechanical position. This is done by using

Eq. (2.17) to replace the phonon creation and annihilation operators in the third

term on the right-hand side of Eq. (D.25) with the position operator x̂, resulting in

˙̂a = −κ
2
â+ i∆0â+ iGx̂â+

√
κeâin +

√
κiâi . (D.40)

287



Appendix E

Markovian Noise Commutators
and Correlators

In order to calculate the PSDs of the optomechanical system discussed in Chapter

4, we need to determine its noise correlators similar to those seen under the integrals

in Eqs. (A.19) and (A.23). Here we will show that the first Markov approximation

invoked in Appendix D (i.e. the loss rates of the system are frequency-independent)

leads to Markovian, or delta-correlated noise, which is the quantum equivalent of

classical white noise.

We start by looking at the canonical commutation relations of each of the

noise operators introduced in the previous sections. As we did in Appendix D, we

will focus on the optical input operator âin(t) and apply the results to the other

noise operators. Using Eq. (D.11) for âin(t) and Eq. (D.28) for â†in(t), we find the

canonical correlator of this input optical field as [203]

[âin(t), â†in(t′)] = [δâin(t), δâ†in(t′)] =
|fdr|2

κe

e−iωd(t−t′) = δ(t− t′), (E.1)

where we have also used Eq. (D.9), as well as the fact that [âdr(ti), â
†
dr(ti)] = 1.

Performing similar calculations for âi (t) and b̂i (t), we find [203, 452]

[âi (t), â
†
i (t
′)] = [δâi (t), δâ

†
i (t
′)] = δ(t− t′), (E.2)

[b̂i (t), b̂
†
i (t
′)] = [δb̂i (t), δb̂

†
i (t
′)] = δ(t− t′), (E.3)

where δb̂i (t) and δb̂†i (t
′) for the phonon modes are defined similarly to their optical

counterparts. The commutators in Eqs. (E.1)–(E.3) are the first hallmark of

Markovian noise [203, 452].
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We also look to determine the correlators for each of the fluctuation terms of

these noise quantities in the Markovian regime. In a fashion similar to how we

calculated the commutator for âin(t), we determine the correlators for its fluctuations

as

〈δâin(t)δâ†in(t′)〉 = (N̄in + 1)δ(t− t′), (E.4)

〈δâ†in(t)δâin(t′)〉 = N̄inδ(t− t′), (E.5)

〈δâin(t)δâin(t′)〉 = 〈δâ†in(t)δâ†in(t′)〉 = 0, (E.6)

where we have used the relations 〈âdr(ti)â
†
dr(ti)〉 = (N̄in + 1), 〈â†dr(ti)âdr(ti)〉 = N̄in,

and 〈âdr(ti)âdr(ti)〉 = 〈â†dr(ti)â
†
dr(ti)〉 = 0, with N̄in being the average number of

photons due to fluctuations in the optical input channel1. Applying this treatment

to the other noise quantities of the system, we find [150, 203, 289]

〈δâj(t)δâ†j(t′)〉 = δ(t− t′), (E.7)

〈δâ†j(t)δâj(t′)〉 = 〈δâj(t)δâj(t′)〉 = 〈δâ†j(t)δâ
†
j(t
′)〉 = 0, (E.8)

〈δb̂i (t)δb̂
†
i (t
′)〉 = [n̄b(ω) + 1]δ(t− t′), (E.9)

〈δb̂†i (t)δb̂i (t
′)〉 = n̄b(ω)δ(t− t′), (E.10)

〈δb̂i (t)δb̂i (t
′)〉 = 〈δb̂†i (t)δb̂

†
i (t
′)〉 = 0, (E.11)

where n̄b(ω) is the thermal occupation of the phonon bath given by Eq. (2.73). In

Eqs. (E.7) and (E.8) we have used δâj as a placeholder for either of the optical

fluctuation amplitudes δâin and δâi , as well as assumed a zero temperature bath

for each optical mode due to the fact that ~ωj � kBT for the optical frequencies

(ωj/2π ∼ 200 THz) and temperatures (T < 100 K) considered in this thesis. We

can also input the correlators for the mechanical bath operators given in Eqs. (E.9)

and (E.10) into Eq. (D.39) to find a correlator for δF̂th(t) as

〈δF̂th(t)δF̂th(t′)〉 = ~ωmΓm coth

(
~ω

2kBT

)
δ(t− t′), (E.12)

where we have used the relation 2n̄b(ω) + 1 = coth(~ω/2kBT ). Note that any

cross-correlations between the noise terms given in Eqs. (E.4)–(E.12) will equate

to zero.
1Because we are considering the fluctuations in the input field here, N̄in includes contributions

due to both vacuum and thermal noise, however, it does not include the coherent input proportional
to |āin|2.
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We also find it useful to calculate the correlators for each of these noise operators

in the frequency domain. This can be done using the definition of the Fourier

transform (see Appendix A), which results in the non-zero correlators

〈âj(ω)â†j(ω
′)〉 = 2πδ(ω + ω′), (E.13)

〈δb̂i (ω)δb̂†i (ω
′)〉 = 2π[n̄b(ω) + 1]δ(ω + ω′), (E.14)

〈δb̂†i (ω)δb̂i (ω
′)〉 = 2πn̄b(ω)δ(ω + ω′), (E.15)

〈δF̂th(ω)δF̂th(ω′)〉 = 2π~ωmΓm coth

(
~ω

2kBT

)
δ(ω + ω′). (E.16)

In Chapter 4, we use these correlators to calculate the PSDs for the various

properties of our system using Eq. (A.23) from Appendix A.

In the form given by Eqs. (E.7)–(E.16), it is not intuitive how exactly these

delta-correlated quantum correlators are equivalent to classical white noise. The

situation becomes much clearer, however, when we consider the PSDs associated

with these noise quantities. For example, the PSD of the fluctuating thermal force

acting on the resonator is given by [151, 203, 289, 296]

Sth
FF (ω) =

1

2π

∫ ∞
−∞
〈δF̂th(ω)δF̂th(ω′)〉 dω′ = ~ωmΓm coth

(
~ω

2kBT

)
. (E.17)

In the classical regime, kBT � ~ω, such that2 [145]

Sth
FF (ω) ≈ 2mΓmkBT, (E.18)

which is simply the classical fluctuation-dissipation theorem [149, 203]. Here we see

that the spectrum in Eq. (E.18) is indeed flat, such that the thermal force noise in

our system constitutes a white noise bath in the classical regime, provided Γm is

frequency-independent, as is guaranteed by our initial Markov approximation.

2Here we consider the two-sided thermal force spectral density, though often the one-sided
spectral density is considered, which is larger by a factor of two to account for the reduction of
the defined integration space by one-half.
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Appendix F

Mechanical Resonator Heating
Model

As was the case for the silicon optomechanical devices studied in Refs. [135,

204, 423], we attribute the heating in our mechanical resonators as being due to

the excitation of sub-bandgap electronic defect states found at the surfaces of

silicon devices [274], which undergo nonradiative phonon-assisted decay, generating

a local bath of hot phonons that heat up our mechanical resonator. We model

this thermalization process for a given mode of our mechanical resonator as a

harmonic oscillator at frequency ωm, coupled at its intrinsic damping rate Γm to

the device’s cold environmental bath at temperature Tb as well as at a rate Γp to

this hot phonon bath1 at temperature Tp, as depicted schematically in Fig. F.1a.

Due to the high quality factors of the mechanical modes considered in this paper,

we can treat both of these environmental and photon-induced baths as harmonic

oscillators at the mechanical frequency, each with an average occupancy of n̄th and

n̄p, respectively. In this situation, the rate equation for the average occupation of

the mechanical mode will be given by [204]

˙〈n〉 = −Γh 〈n〉+ Γmn̄th + Γpn̄p, (F.1)

with Γh = Γm + Γp being the total rate at which the mode equilibrates to the two

baths. We note that our treatment of the mechanical mode occupation dynamics

differs from that of Ref. [204], in that we have not included a time-dependent

term proportional to n̄p, which accounts for the finite equilibration time of the

1Its also possible that this hot phonon bath could be partially due to the quantum radiation
backaction process described in Section 4.4.4.
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(a)

(b)

Figure F.1: (a) Block diagram of the heating model for the experimentally relevant
case where the mechanical mode is coupled to a cold environmental bath at its
intrinsic damping rate Γm and a hot photon-induced bath at a rate Γp, each with
phonon occupancies of n̄th and n̄p, respectively. (b) Diagram of the double pulse
measurement scheme used in this work. The solid grey line indicates the duty cycle
of the laser, while the solid (dashed) red line expresses the phonon occupation of
the mechanical mode with the laser on (off). Figure reproduced from Ref. [163].
c© 2018 American Physical Society.

hot photon-induced bath. This is justified by the fact that the thermal relaxation

time for our device (see Section 7.3.2), found by approximating each half of our

resonator as a simple rectangular beam [200, 208, 389] 10 µm in length with a

cross-section-limited thermal conductivity [184, 185, 197–199], is at most 20 ns.

Therefore, our measurement scheme, with a temporal resolution on the order of 1

µs, is unable to resolve this thermalization process.

Solving the rate equation given in Eq. (F.1), we find the time-dependent

mechanical mode occupancy to be

〈n〉 (t) = 〈n〉 (t0)e−Γh(t−t0) + n̄eq

(
1− e−Γh(t−t0)

)
, (F.2)

where 〈n〉 (t0) is the phonon occupancy at the initial time t0 and n̄eq = (Γmn̄th +

Γpn̄p)/Γh is the occupancy of the mechanical mode at times t� Γ−1
h , long enough

292



that the mode is able to equilibrate to an average of the bath occupations, weighted

by their coupling rates. Furthermore, if the connection to the hot photon-induced

bath is severed (i.e. by turning the laser off), we take Γp = 0 such that the

mechanical mode occupation will tend towards equilibrium with the environmental

bath at its intrinsic damping rate according to (see Section 2.4.5)

〈n〉 (t) = 〈n〉 (t0)e−Γm(t−t0) + n̄th

(
1− e−Γm(t−t0)

)
. (F.3)

For the experiment considered in Chapter 6, we measure the low temperature

damping rate of our mechanical device, using the pump/probe measurement outlined

in Section 6.4.5. This procedure can be described by the general two pulse scheme

depicted in Fig. F.1b, where a pump pulse that turns on at t = ta and off at t = tb

(pulse length t1 = tb − ta), is followed by a probe pulse that turns on at t = tc and

off at t = td (pulse length t2 = td − tc), with a delay between the two pulses of

toff = tc − tb. For this situation, the occupation of the mechanical mode during the

pump pulse will evolve in time according to Eq. (F.2) as

〈n〉1 (t) = 〈n〉 (ta)e−Γh(t−ta) + n̄eq

(
1− e−Γh(t−ta)

)
. (F.4)

Once the pump pulse has been turned off, the resonator’s occupancy will cool

towards that of the environmental bath, as governed by Eq. (F.3), giving

〈n〉off (t) = 〈n〉 (tb)e−Γm(t−tb) + n̄th

(
1− e−Γm(t−tb)

)
. (F.5)

Finally, the occupation of the mechanical mode during the probe pulse will obey

〈n〉2 (t) = 〈n〉 (tc)e−Γh(t−tc) + n̄eq

(
1− e−Γh(t−tc)

)
. (F.6)

Assuming the experimentally relevant case of t1 = t2 � Γ−1
h , the final occupancy at

the end of either the pump or probe pulse will be given by 〈n〉 (tb) = 〈n〉 (td) = n̄eq,

while the initial occupancy of the mode at the beginning of the probe pulse can be

found to be 〈n〉 (tc) = n̄eqe
−Γmtoff + n̄th

(
1− e−Γmtoff

)
. Using these two expressions,

we can determine the ratio of the measured occupancy at the beginning of the probe

pulse 〈n〉i to the final measured occupancy of either the probe or the pump pulse
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〈n〉f as

〈n〉i
〈n〉f

=
〈n〉 (tc) + n̄imp

〈n〉 (tb) + n̄imp

=
〈n〉 (tc) + n̄imp

〈n〉 (td) + n̄imp

=
(n̄eq − n̄th) e−Γmtoff + n̄th + n̄imp

n̄eq + n̄imp

,

(F.7)

where we have included the noise due to the imprecision of the measurement as an

apparent phonon occupancy n̄imp (see Section 4.4.4). Using this equation, thermal

ringdown data for the mechanical mode can be fit to extract its intrinsic damping

rate, as is done in Fig. 6.10.

We conclude on the note that it is often the case that n̄eq ≈ n̄p � n̄th, n̄imp,

such that Eq. (F.7) simplifies to

〈n〉i
〈n〉f

≈ e−Γmtoff +
n̄th + n̄imp

n̄eq

, (F.8)

as can be seen by the fact that 〈n〉i / 〈n〉f ≈ 1 for toff � Γ−1
m in Fig. 6.10.
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Appendix G

Coupling to Ensembles of
Crystalline TLS Defects

In this appendix, we calculate the relaxation damping rate of a mechanical

resonator coupled to a crystalline ensemble of TLS defects, and compare it to the

results for the amorphous TLS distributions studied in Chapter 6.

G.1 Mechanical Damping Rate

For TLS ensembles that exhibit crystalline behaviour, a narrow distribution in

TLS energies exists. To account for this, Phillips [344] suggested a density of states

function of the form

P(∆,∆0) = D0

√
2

π

1

δE∆

e
− 1

2

(
E∆
δE∆

)2

δ(E0 − Ē0), (G.1)

that is, the crystalline nature of the TLS ensemble results in a well-defined tunneling

energy of Ē0 and a Gaussian spread in the asymmetry energy, with a standard

deviation of δE∆ centered around E∆ = 0, with a density specified by D0. We note

that with this choice of distribution function, we need only consider the relevant

case of ωmτTLS � 1, due to the fact that the experimentally measured dissipation

increases monotonically with temperature for each of the mechanical modes studied

in this paper (see Fig. 6.11) [344]. This allows us to approximate the mechanical

damping rate in Eq. (6.41) as

Γc =
γ2D0

ρc2
qkBTδE∆

√
2

π

∫ ∞
0

(
E∆

Ē

)2

sech2

(
Ē

2kBT

)
e
− 1

2

(
E∆
δE∆

)2

τ−1
TLS(E∆, Ē0)dE∆,

(G.2)
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where Ē2 = E2
∆ + Ē2

0 and we have expressed τTLS as an explicit function of E∆ and

E0. To examine the low temperature limit of the damping due to this crystalline

TLS distribution, we take T � (E2
∆ + Ē2

0)1/2/kB, allowing for the approximations

sech2
(
Ē/2kBT

)
≈ 4e−Ē/kBT and coth

(
Ē/2kBT

)
≈ 1 over the regions of integration

in Eq. (G.2) that provide the majority of the contribution to Γc, resulting in a

low-temperature dependence according to

Γc ≈
4γ4D0Ē

2
0

Aρ2~2c2
qc

3
ekBTδE∆

√
2

π

∫ ∞
0

E2
∆

Ē3
e
− Ē
kBT e

− 1
2

(
E∆
δE∆

)2

dE∆. (G.3)

In the opposite limit of T � (δE2
∆ + Ē2

0)1/2/kB, we have sech2
(
Ē/2kBT

)
≈ 1 and

coth
(
Ē/2kBT

)
≈ 2kBT/Ē, such that the high temperature limit for Γc is given by

Γc ≈
2γ4D0Ē

2
0

Aρ2~2c2
qc

3
eδE∆

√
2

π

∫ ∞
0

E2
∆

Ē4
e
− 1

2

(
E∆
δE∆

)2

dE∆. (G.4)

Here, the factor of kBT from the approximation of coth
(
Ē/2kBT

)
cancels that in

the denominator of Eq. (G.2), such that at high temperatures, Γc is temperature

independent, similar to the high-temperature limit of the damping rate due to the

amorphous TLS distribution, albeit at a different value.

G.2 Fits to Amorphous and Crystalline TLS

Damping Models

Here, we present fits of the one-dimensional TLS dissipation models, with both

amorphous and crystalline distributions, to the mechanical damping rate data

for the four mechanical modes studied in Chapter 6. These fits are displayed

in Fig. G.1, with the parameters extracted from the crystalline fits displayed in

Table G.1. As one can see in Fig. G.1, the crystalline model exhibits a rapid

decline in dissipation versus temperature as compared to the amorphous model,

far undershooting the measured damping rates for T . 500 mK. Furthermore, this

crystalline model plateaus to a constant value at high temperature that is slightly

smaller than the amorphous model predicts. The amorphous TLS damping model

is therefore a better fit to our data, implying that the low-temperature dissipation

in our mechanical modes is caused by coupling to a glassy distribution of defects.
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Figure G.1: The intrinsic damping rate Γm for each of the four mechanical modes
studied in Chapter 6 versus temperature, with the right axis displaying their
intrinsic dissipation Q−1

m = Γm/ωm. Each mode is fit to both the amorphous (solid
line) and crystalline (dashed line) TLS damping models given by Eqs. (6.43) and
(G.2), respectively. From the fits to the crystalline TLS damping model we extract
Ē0, δE∆, and γ4D0 for each mechanical mode. The parameters from this fit are
displayed in Table G.1. Figure reproduced from Ref. [163]. c© 2018 American
Physical Society.

ωm/2π Ē0 δE∆ γ4D0

(MHz) (µeV) (meV) (eV4 m−3)

3.53 74 ± 6 24.6 ± 0.7 (3.6 ± 0.1) ×1024

6.28 133 ± 19 37.3 ± 1.1 (1.7 ± 0.2) ×1025

15.44 165 ± 12 19.3 ± 397 (2 ± 30) ×1025

18.31 129 ± 8 3.5 ± 2.0 (3.0 ± 1.7) ×1024

Table G.1: Summary of the tunneling energy Ē0 and spread in asymmetry energy
δE∆, as well as γ4D0, for the fits to the mechanical damping rate using the
crystalline TLS damping model (i.e. Eq. (G.2)) in Fig. G.1 (dashed line). The
uncertainty in each parameter is given by their standard deviations from the fit.
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Appendix H

Integral Approximations of
Nonlinear Photothermal
Optomechanical Properties

Though Eqs. (7.21)–(7.23) in Section 7.2.4 provide an exact representation

for the optomechanically induced shift in mechanical equilibrium position, spring

effect, and damping for a photothermally driven cavity, computing these quantities

numerically can be cumbersome. This is due to the fact that in order to accurately

model the nonlinear behaviour of the system, the number of terms that one must

keep for each of the sums found in Eqs. (7.21)–(7.25) is on the order of ξ, which

can be as large as 1500 for the conditions studied in Chapter 7. Fortunately, it

was shown by Metzger et al . [303] that in the non-SBR regime, the integral in

Eq. (7.20) can be performed directly by assuming the optical intensity inside the

cavity adiabatically follows the quasistatic motion of the mechanical resonator.

This allows for a simpler, more computationally efficient treatment of the nonlinear

optomechanical system considered in this work, with minimal error introduced into

the final results when compared to those given in Eqs. (7.21)–(7.23) (see Fig. H.1

below). Here we provide a brief overview of this method, resulting in approximate

expressions for each of the nonlinear optomechanical properties given in the previous

section.

As mentioned above, for this integral approach we immediately assume the non-

SBR regime, such that the optical field in the cavity reacts nearly instantaneously to

the resonator’s mechanical motion [303]. In this case, we treat x(t) as a quasistatic

298



variable, inserting the ansatz given by Eq. (4.84) into Eq. (4.19) (i.e. by taking

∆ = ∆0 +Gx̄+GA cos(ωmt)), allowing us to directly solve for the quasistatic cavity

field amplitude as

a(t) =

√
κeāin

κ/2− i [∆0 +Gx̄+GA cos(ωmt)]
. (H.1)

Using this approximate expression for the cavity field amplitude, we can again take

the time average of Eq. (7.2) to find an integral form for x̄ as

x̄(A) =
~Gκe|āin|2(1 + β)

2πmω2
m

∫ 2π

0

dϑ

(κ/2)2 + (∆0 +Gx̄+GA cosϑ)2
. (H.2)

In comparing this expression with what was found for x̄ in Section 7.2.4, we find

that this approximation is equivalent to replacing the sum in Eq. (7.21) with an

integral according to
∞∑

l=−∞

|ãl|2 ≈
1

2π

∫ 2π

0

dϑ

(κ/2)2 + (∆0 +Gx̄+GA cosϑ)2
. (H.3)

Furthermore, this integral can be solved analytically, resulting in∫ 2π

0

dϑ

(κ/2)2 + (∆0 +Gx̄+GA cosϑ)2
=

2π
√

2

κ
√
X

√√
X + Y , (H.4)

where X = Y2 + κ2(∆0 +Gx̄)2 and Y = G2A2 + κ2/4− (∆0 +Gx̄)2. Therefore, we

can write x̄ in the purely analytical form

x̄(A) =

√
2~Gκe|āin|2(1 + β)

mω2
mκ

√√
X + Y√
X

. (H.5)

Performing a similar analysis to determine the integral form for δΓm(A), we

multiply Eq. (7.2) by ẋ(t) and take the time average, while using the approximation

for a(t) given by Eq. (H.1) to obtain

δΓm(A) =
~Gκe|āin|2β
πAmωm

ωmτpt

1 + ω2
mτ

2
pt

∫ 2π

0

cosϑdϑ

(κ/2)2 + (∆0 +Gx̄+GA cosϑ)2
. (H.6)

We note that this integral expression is only valid in the regime where photothermal

forces dominate the optomechanical damping (see Eq. (7.14)), as δΓm(A) = 0

for β = 0 here. Similar to the integral expression for x̄, we find that Eq. (H.6)

approximates Eq. (7.23) by replacing its sum with the integral
∞∑

l=−∞

Im

{
ãlã
∗
l+1

(
1 +

β

1− iωmτ

)}
≈ β

2π

ωmτ

1 + ω2
mτ

2

∫ 2π

0

cosϑdϑ

(κ/2)2 + (∆0 +Gx̄+GA cosϑ)2
.

(H.7)
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This integral also has an analytical expression given by∫ 2π

0

cosϑdϑ

(κ/2)2 + (∆0 +Gx̄+GA cosϑ)2

= −sgn(∆0 +Gx̄)
2π
√

2

GAκ
√
X

(
|∆0 +Gx̄|

√√
X − Y − κ

2

√√
X − Y

)
,

(H.8)

where sgn(z) is the signum function. Using this relation, we can then express

δΓm(A) in the analytical form

δΓm(A) =
−2
√

2~κe|āin|2β
A2mωmκ

ωmτpt

1 + ω2
mτ

2
pt

sgn(∆0 +Gx̄)√
X

×
(
|∆0 +Gx̄|

√√
X − Y − κ

2

√√
X − Y

)
.

(H.9)

It is also possible to arrive at an integral expression for δωm, which looks similar to

Eq. (H.6) except the factor of cos(ϑ) in the numerator of the integrand is replaced

with sin(ϑ). This, however, results in an integral that evaluates to zero, as one

would expect in the self-oscillating regime (see Section 4.5), and therefore offers no

new insight into Eq. (7.22).

In Fig. H.1, we compare the attractor diagrams of δΓm(A) for the optomechanical

device studied in this work generated using both the exact sums given in Eqs. (7.21)

and (7.23), as well as the integral approximations of Eqs. (H.2) and (H.6). As the

device studied in Chapter 7 exists deeply in the non-SBR regime (κ/ωm ≈ 180),

the integral approximations presented in this section accurately model its nonlinear

optomechanical behaviour. This is demonstrated by the fact the percent difference

in δΓm(A) between these two methods is at most 13.4% for the conditions given in

Fig. 7.7 (see Fig. H.1c). Furthermore, we note that while the integral approach

slightly overshoots the value of δΓm(A), it still provides an excellent approximation

of the mechanical amplitude, as can be seen by the nearly matching contour lines

in Figs. H.1a/b.

We conclude this section by noting that while we have used Eqs. (H.2)–(H.9) for

preliminary assessment of our optomechanical device, as well as the computationally

intensive calculations associated with the varying power measurements shown in

Fig. 7.11, the fits and attractor diagram in Figs. 7.7 and 7.8 were determined using

the exact expressions given by Eqs. (7.21)–(7.23).
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Figure H.1: Attractor diagrams of δΓm(A)/Γm (color scale) for the device parameters
given in Fig. 7.7 using (a) the exact sum formalism of Eqs. (7.21) and (7.23), and
(b) the integral approximations given by Eqs. (H.2) and (H.6). The white dashed
line indicates the contour of δΓm(A)/Γm = −1, demarcating the region of self-
oscillations. For the sums in (a), terms up to l = ±1000 were used, while the
integrals in (b) were performed using a numerical solver (trapezoidal method). In
(c), we show the percent difference between the attractor diagrams given in (a) and
(b). Here, we highlight the fact that over the displayed detuning and amplitude
range, there is at most a 13.4% difference between the sum and integral methods
for calculating δΓm(A), which is located near zero detuning for small mechanical
amplitudes. Figure adapted from Ref. [295]. c© 2019 American Physical Society.
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