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Abstract 

The task of entity resolution, also known as record linkage, is to find out which records refer to the 

same entity across several datasets and link them together. In real applications, record linkage is 

widely used in multiple fields, such as business, healthcare, criminal investigation, among others. 

Up to now, many techniques have been developed to accomplish this task. Accuracy and 

efficiency are the two most important factors when quantifying the quality of a record linkage 

approach. However, finding the exactly matched records is still a big challenge since several types 

of noise/errors are always present in real-world data. These errors (noise) could be phonetical, 

typographical, and may be the result of optical character recognition (OCR). For years, a 

significant number of comparison methods have been proposed to describe the level of similarity 

(similarity score) between identity fields among pairs of records. Nevertheless, a proper selection 

of comparison methods, appropriate identity fields, suitable classifiers, and the determination of 

the thresholds’ values remains a challenging problem. The objective of this dissertation is to 

design and analyze a probabilistic graphical model (PGM) to realize a proper record linkage task. 

In this study, a Bayesian network, which is an example of PGM, is used to calculate the 

probabilities of being matched among record pairs to decide if these can be linked or not. 

Furthermore, several comparison methods and fields are considered for this model. For each 

combination of a comparison method and a field, a similarity score is obtained. With these scores, 

along with two predefined thresholds, a decision can be made to determine whether a record pair is 

a match, not a match, or a probable match which would need a closer inspection (clerical review). 

Not every comparison method or field is equally relevant in practice. Therefore, to describe the 

roles of the selected comparison methods and fields, weights are added to the Bayesian network. 

These weights are previously optimized by a modified supervised gradient descent learning 
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scheme. Synthetic datasets with different levels of noise are used to perform the experiments. The 

experimental studies show that the proposed record linkage model can calculate the matching 

probabilities of records (that could hypothetically be matched) in an accurate and efficient manner. 

Furthermore, the proposed model can offer an insight on which comparison methods and fields are 

more significant for a correct record linkage.  
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1. Introduction 

Entity Resolution (also known as Record Linkage or Object Matching) is to identify which records 

represent the same real-world entity across several data sources and merge the matching record 

pairs. The entities can be a set of publications, consumer goods, incidents, or people (customers, 

patients, employers, or convicts). Record linkage is of great use in various situations, for example, 

retailers who want to analyze and merge the shopping predispositions of customers, hospitals who 

want to gather the medical records of a patient across hospitals that he or she has visited, 

policemen who want to check a suspect’s background from records related to him or her.  

 Up to now, a diversity of approaches have been developed to try to resolve the entity 

resolution problem where, in essence, records containing personal information are indexed, and 

then the identifiers are compared to obtain a similarity score which is used to classify the records 

pairs. The identifiers (also known as ‘fields’) can be date of birth, social security ID, given name, 

surname, address, suburb or phone number. The well-developed entity resolution approaches 

include pair-wise classification, clustering methods, rule-based approaches, probabilistic inference, 

and others. However, it is still a challenging task to find an exact match for a given entity as 

records may contain phonetical errors, typographical errors, missing fields, or fields that change 

over time (e.g. phone numbers, address, etc.). On the other hand, some individuals may have the 

same given name/surname (father/junior); some may be born on the same date (twins); some may 

live in the same suburb. Hence, even when the records referring to the same entity are compared, it 

is very likely that the result does not show a full agreement, or in contrast, the similarity score can 

be very high for two different identities. Thus, it is better to select as many fields as possible to 

have matching record pairs separated from the non-matching pairs. And if the model allows it, 

obtain significant information about the importance of each field.  

 Also, many comparison methods (functions) have been developed to determine a similarity 

score which indicates how significantly two fields agree with each other. Different selections of 

comparison functions may lead to different similarity scores (for the same record pairs) since some 

methods outperform others on specific types of strings. For example, some methods perform better 

on long strings; some are good at comparing the strings that include swapping of adjacent 

characters; some are working better when comparing alphanumerical strings; some are more 

efficient at comparing name strings. Besides, names that are same phonetically may have different 

spellings, and some certain comparison methods do a good job for this situation. Therefore, the 
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second challenge is to select proper comparison methods. Moreover, eliminating the comparison 

methods that contribute little to an accurate record linkage will perhaps help to augment the 

accuracy of the linkage of records. 

 After the similarity scores are obtained from the selected fields and comparison methods, a 

third challenge still remains, to classify record pairs in terms of the similarity scores. The objective 

is to classify the record pairs into three classes: match, non-match, and potential match. Therefore, 

two thresholds are defined to complete the classification task. These are commonly known as the 

clerical review and autolink thresholds. The record pairs whose similarity scores are falling above 

autolink are classified as matching pairs. If a similarity level is found below clerical review, the 

corresponding record pair will be classified as a non-matching pair. When a score falls between 

these two thresholds, the record pair is classified as a potential match. These records should be 

reviewed manually by a clerk (hence the name) to decide whether it is a true match or a non-match. 

Thus, it is critically important to adjust the values of these two thresholds not only to minimize the 

number of potential matches, but also to reduce the number of misclassified pairs. 

The objective of this dissertation is to design and analyze a probabilistic graphical model 

(PGM) to accomplish the record linkage task. Many data fields and comparison methods are 

aggregated by the constructed PGM. Aside from the classification of record pairs, the other 

objective of this study is to select the most relevant data fields and the most significant comparison 

methods. An Artificial Neural Network (ANN) is constructed beforehand to determine the weights 

which are used to describe the significance of the selected fields and comparison methods. With 

the supervised gradient descent learning scheme, the ANN can adjust the weights to approximate 

the desired output. The structure of ANN is quite similar to the PGM. Therefore, the optimized 

weights coming from the ANN can be inserted into the PGM. In addition, the structure of the ANN 

is also flexible to aggregate the similarity scores from different fields and comparison methods. 

Among various types of PGMs, the Bayesian Network is selected to implement record matching 

because it contains directed edges between the nodes, which can clearly show causal relationships 

between the nodes (variables) [1][2]. In this study, we consider a matching score as the probability 

of being a match for each record pair. The Bayesian network is used to compute the probabilities, 

which indicate how likely the record pairs are a true match or not a match. Generally, in the 

proposed Bayesian network, the similarity scores coming from each field and each comparison 

method are multiplied by the optimized weight and aggregated to achieve the final matching score. 
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With the final matching score, along with two predefined thresholds, a decision can be made to 

determine whether a record pair is a match, not a match, or a potential match. Furthermore, these 

matching scores can be imported into Neo4j, a highly scalable graph database, to visualize the 

results as graphs with directed edges and nodes. Queries can be done quickly and accurately with 

the graph inside the Neo4j environment.  

 The motivation of this dissertation is to build an efficient model to complete the record linkage 

task. PGM is widely used in the area of knowledge representation, and it has excellent 

performance on inferences under uncertainty [1]. Given the similarity scores for all selected fields 

and comparison methods, an inference system (PGM) is constructed to estimate the probability of 

being a match for each record pair. In the proposed model, an exact inference, which is based on 

variable elimination algorithm, is performed to calculate the probabilities. With the optimized 

weights calculated by the learning scheme, along with the proposed inference system (PGM), the 

number of misclassified record pairs is able to be minimized significantly. Moreover, the 

optimized weights can give us an insight on which fields and comparison methods contribute more 

to the linkage of records. This will help us select the most significant comparison methods and the 

most relevant data fields. The structure of the constructed PGM is very simple, and it is flexible 

enough to allow the aggregation of the scores coming from different data fields and comparison 

methods. Also, the structure can be modified easily when some data fields or comparison methods 

need to be deleted/added.  

 This study is structured as follows. In Chapter 2, an overview of entity resolution methods is 

offered. In Chapter 3, we generally describe the background of the record linkage model to be 

constructed. We primarily focus on the ANN model and the PGM. Moreover, the records indexing 

method and the selected comparison methods are described in this chapter. In Chapter 4, the 

modeling of the record linkage is described, including the optimization of weights, the 

determination of the conditional probability distributions, and performance assessment. The 

experimental studies are shown in Chapter 5, where four synthetic datasets are used to perform the 

experiments. Furthermore, a revised record linkage model which eliminates some less significant 

comparison methods is tested with the four datasets. The experiment with given name indexing is 

also shown in this chapter. Conclusions and future studies are offered in Chapter 6.  
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2. Overview of Entity Resolution Methods 

The entity resolution (as known as record linkage) problem was defined by Newcombe et al. [3] in 

1959, and later, in 1969, it was formalized by Fellegi and Sunter [4]. Their work lay the 

mathematic foundation of most entity resolution approaches developed until now. In their work, 

two agreement probabilities were defined, one for being matching and one for being non-matching 

for record pairs. After adding a weight denoting the agreement or disagreement, the matching 

score could be determined based on the agreement probability. Here, they used a single threshold 

for classification. Furthermore, two indexes, precision and recall, were used to measure the 

accuracy of record linkage. However, there is a limitation of their work that the method was 

developed based on the assumption that each field for the data was independent of each other.  

 Later, naïve Bayes classifier [5][6] came up by some researchers as a probability record 

linkage method. It is similar to the approach that Fellegi and Sunter worked on, which is to 

compute the probability of being a match or a non-match. A decision was made according to the 

relationship between the probability of being a match and a single threshold determined by a 

trade-off between precision and recall. [7] compared the naïve Bayes classifier and a 

distance-based algorithm, and found that the naïve Bayes classifier outperformed the other one by 

measuring precision, recall, and f-measure. Up to now, these three indexes are still used for 

quantifying the quality of record linkage problems. Precision is also known as Positive Predictive 

Value (PPV). Recall is the True Positive Rate (TPR) which is also named as Sensitivity [8]. 

F-measure combines precision and recall together as it is the harmonic mean of these two indexes. 

Nevertheless, in [3] two thresholds were used to classify the record pairs in record linkage. The 

record pairs whose scores were above the higher threshold were labeled as linked. On the contrary, 

when the scores were below the lower threshold, the corresponding record pairs were labeled as 

unlinked. Then the record pairs whose scores were within these two thresholds were labeled as 

possible links and needed to be reviewed manually. In [9], these two thresholds were known as 

clerical review and autolink, and these two names still serve today. In record linkage process, as 

two thresholds are employed to classify the record pairs into three classes: match, non-match, and 

potential match, how to select the values of them plays a really important role. To obtain a high 

accuracy record linkage result, the optimized values of these two thresholds should be determined 

by minimizing the number of misclassified records. These misclassified record pairs always 

contain false negatives, false positives, and the number of record pairs that need to be reviewed. 
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Nowadays, the idea known as three-way decision rules [10][11] is widely used, which is an 

advanced version of the above ideas. In this idea, two thresholds generate three regions: positive 

(P), boundary (B), and negative (N). There are three decisions (rules, or actions) associated with 

them, respectively acceptance, abstaining, and rejection. The work in [10][11] indicates that this 

probabilistic three-way decision rules method performs better than the two-way decisions method 

in certain conditions. The costs of different decisions can be defined by a 3×2 matrix with two 

states, positive (P) and negative (N). The costs (risks) of taking actions P, B, and N in the P region 

are denoted by λPP, λPB, and λPN. Similarly, when taking actions P, B, and N in the N region, the 

costs (risks) are denoted by λNP, λNB, and λNN. The values of these risks are usually provided by 

experts under specific study. However, it is evident that λPP and λNN are both zeros since they 

refer to two correct actions, accepting successfully and rejecting successfully. Therefore, the target 

is to minimize the remaining costs, where λNP means false positives, λPN means false negatives, 

λPB and λNB mean abstaining.  

 Another optimal decision model, which depended on a cost-based Bayesian method, was 

found in [12]. This approach preferred to minimize the cost of making a decision rather than the 

probability of error like the other existing models. The efficiency of this cost-based approach was 

compared with that of an error-based approach on the mean cost and the error probability. In the 

end, they found that the cost-based Bayesian approach took less computation time and mean cost, 

which indicated that this approach was more efficient than other error-based approaches. 

Moreover, a general model came up as a Bayesian idealization of entity resolution in [13].  

 Except for the probabilistic record linkage method which was adopted by the above literature, 

the machine learning techniques, like Artificial Neural Networks (ANNs), are also commonly used 

in the area of record linkage. In [14], an ANN was used to discover the relationships between 

variables, and to translate the information from one file to another by a supervised 

back-propagation technique. Furthermore, different forms of ANNs were applied for linking 

records in [15][16]. The results showed that ANNs performed better than the naïve Bayesian 

classifier. In probabilistic record linkage methods, the probabilistic formulas can produce weights. 

However, the errors generated by assuming the independence cannot be overcame since this 

method fails to adjust the weights. On the contrary, ANNs are able to adjust the weights to make 

the defined performance index satisfy a specific value. This shows that it is a good choice to select 

an ANN to determine the optimized weights and match records. Particularly, a structured neural 
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network (SNN) was proposed in [16] to test multi-source sensing data. There were several separate 

multi-input single-output ANNs with one hidden layer in this structure, and the outputs of these 

separate ANNs were connected to another single output neuron. Since there was only one sensor in 

this structure, all individual ANNs’ results were aggregated to one output. Similarly, in our study, 

an augmented structure is used to emphasize the impact of each data field and each comparison 

method. It is obvious that the ANN’s architecture is determined by the numbers of selected data 

fields and comparison methods.  

 For the algorithm to be used in ANNs, several researchers’ work contributes a lot to develop 

our understanding. [17] presented a novel unsupervised two-step approach to automate the record 

linkage process. In this paper, four methods, viz. iterative Support Vector Machine (SVM), fully 

supervised SVM, nearest-neighbor approach and hybrid approach, were compared with each other 

by measuring completeness, reduction ration, and f-measure. Finally, it was found that the fully 

supervised SVM method performed best on all experimental datasets. For the supervised learning 

algorithms applied in record linkage, the principal ones are the gradient decent algorithm, SVM, 

and neural network. In [18], a comparison between the gradient descent based heuristic algorithm 

and Choquet integral optimization algorithm was proposed. The Choquet integral optimization 

algorithm guaranteed the convergence to the optimized solution, but it required much time. For the 

heuristic algorithm, it needed low and stable time, even though the error rate might be a little 

higher. Since computational time and resources are always limited in practice, the gradient descent 

based heuristic algorithm is the better choice given that it is able to provide a good approximation 

of the optimized solution. Hence, the supervised gradient descent based algorithm is applicable to 

be used in ANNs for record linkage.  

 However, the phenomenon of overtraining is always seen in ANNs, which indicates that 

ANNs may become so trained towards the measurement methods employed during the training 

process. Therefore, the ANN is not applicable in general cases. The Probabilistic Graphical Model 

(PGM) is a generic model that represents the probability-based relationships among random 

variables, and it is widely used for knowledge representation and inferences under uncertainty [1]. 

This concept was first proposed by J. Whittarke in 1990 [19]. In the following period, PGMs were 

applied in objective segmentation [20][21], document image matching [22], video fusion 

technique [23], and native language identification [24]. Furthermore, it can also be used for 

classification and retrieval of multimedia documents as it can learn the statistical structure of 
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various kinds of media, such as video, audio, and text [25]. In addition, [26][27] presented that 

graphical models are usually employed to analyze sequence, which indicates that PGMs do a lot of 

contribution to the research in bioinformatics. In [28], a PGM used for breast cancer diagnosis and 

prognosis was proposed. From these researchers’ work, it can be seen that the PGM is a powerful 

tool for making decisions under uncertainties across big data sources with poor quality. It is 

appropriate for building predictive models or inference models in multiple areas.  

 From [29][30][31], we can see that among various types of PGMs, the Bayesian network is 

one of the most widely used models for decision-making involving uncertainty and modeling 

causality. In [30], a distributed data fusion architecture, which was based on distributed relational 

Bayesian networks, was designed for data fusion. This paper indicates that an effective data fusion 

could be completed by variable-resolution Bayesian modeling. [31] proposed a new idea that 

Bayesian networks could be applied to intelligent environments (IEs) to complete information 

validation or information adaptation to the user. IEs are spaces that integrate information 

technologies, and they can combine the information technologies with user’s requests to make the 

best decision [31]. Therefore, IEs need intelligent agents that are able to reason under uncertainties 

to complete the goals of the system. Opportunely, PGMs allow the intelligent agents. Moreover, 

they can make the decision-making process completed in an efficient and effective way. Hence, 

PGMs are applicable to intelligent environments. However, when dealing with massive 

hierarchical data across large datasets, Bayesian networks do not work very well. Thus, a scalable 

PGM was given in [29] as a solution for this kind of problem. Regardless, PGM still means a lot 

for mining and discovering insights of the data with various sizes, or even noisy data. Regarding 

record linkage, [32] combined the first-order logic with a PGM to solve the entity resolution 

problem. In this study, the Bayesian network (PGM) is used to construct an inference system for 

record linkage as it is able to automatically take the information available and make reasonable 

decisions under uncertainty. Furthermore, by using the Bayesian network, queries about variable 

distributions could be answered by several existing inference algorithms [33]. For entity resolution 

problem, the Bayesian network can look at all the information available, and decide which class 

does each record pair belong to, match, potential match or non-match. A typical Bayesian network 

consists of nodes and directed edges, where nodes denote variables and edges denote the 

relationships between variables. Like the ANN, the architecture of the Bayesian network is also 

decided by the numbers of selected data fields and comparison methods.  
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 Typically, edges in Bayesian networks have no weights, so we are not able to tell the role of 

each selected field or each comparison method. In other words, it is not reasonable to assume that 

each field and each comparison method has the same weight or contributes to the final decision 

equally. Hence, we consider combining an ANN, where a gradient descent based algorithm is used, 

with a Bayesian network to construct a new record linkage model to solve the entity resolution 

problem. The ANN is used to determine the weights for the selected data fields and comparison 

methods since it is able to adjust the weights until a specific value of performance index is 

achieved. Next, the weights are imported into the Bayesian network to do inferences based on all 

the information available. In this study, the available information is the similarity scores for the 

selected data fields calculated by the selected comparison methods. We consider similarity 

scores/matching scores as probabilities of being matched for record pairs. Then the final matching 

scores are able to be determined by the Bayesian network in the form of probabilities. Afterward, 

the three-way decision rules are employed to quantify the quality of record linkage with the 

proposed model. To visualize the matching results directly, Neo4j [34], a powerful graph database, 

is used to construct a graph set to display the matching results. With Neo4j, queries about the 

matching results can be done quickly and easily.  

 During the literature review process, some similarities regarding the techniques prior to the 

classification step are found. From [12][35][36][37], the most common encoding method is 

Soundex, which is one of the phonetic encoding methods. With respect to indexing methods, the 

Standard Blocking is most widely used [17][36][38]. Moreover, Edit-distance, Jaro, and Winkler 

comparison methods are commonly used to link records [35][36][38][39][40].  
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3. Background Knowledge 

In this chapter, we present the methods and models used to accomplish the record linkage task. We 

start by presenting the records indexing method. Also, we describe the comparison methods used 

to quantify the level of similarity among record pairs in the proposed model. Moreover, the ANN 

used to determine the weights is presented. In the end of this chapter, we describe the PGM used 

for calculating the matching probabilities among record pairs to decide if these can be linked or 

not.  

The record linkage process mainly contains seven steps, as shown in Figure 3.1. The first step 

is to generate synthetic data with noise by a modified script in the Freely Extensible Biomedical 

Record Linkage (FEBRL) tool [41][42]. With the FEBRL tool, the noise can be added by selecting 

the maximum number of duplicates per record, the maximum number of modifications per field, 

and the maximum number of modifications per record. Furthermore, four types of errors are 

included in noise, typographical errors, phonetical errors, errors from Optical Character 

Recognition (OCR), and deletion of fields. After synthetic data is generated, the step of selecting 

identify fields starts. The identify fields can be date of birth (DOB), gender, social security ID 

(SSI), given name, surname, address, suburb, state, or phone number, and they will be compared in 

the following steps. The third step is records indexing. In this step, the number of record pairs that 

need to be compared is reduced. With records indexing, we can avoid comparing all the records 

from one database with all the records coming from another one. After indexing, the remaining 

record pairs (also known as ‘candidate record pairs’) may refer to the same entities. 

 In the fourth step, each identity field for the candidate record pairs is compared by the selected 

comparison methods with the FEBRL tool. In the fifth step, the comparison results (similarity 

scores) are imported into the ANN to optimize the weights of selected identify fields and 

comparison methods. In this step, the candidate record pairs are split into a training set and a 

testing set. The training set is used to train the ANN, and the testing set is used to evaluate the 

performance of the ANN, viz. the quality of the optimized weights.  

Next, in the sixth step, a Bayesian network, which is an example of PGM [2][43][44], is used 

to determine the matching score for each candidate record pair. The weights obtained from the 

ANN are normalized beforehand. Then the normalized weights are imported into the Bayesian 

network to indicate which fields or comparison methods are more relevant. Besides, the similarity 

scores coming from the fourth step are regarded as the input for the Bayesian network to determine 
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the final matching scores based on the Bayesian probability theory [2][44]. As the synthetic data 

was generated with marking IDs, we have known which record pairs are matching or 

non-matching at the beginning of the record linkage process. After the comparisons of the 

candidate record pairs are completed, the performance of the proposed record linkage model can 

be well assessed in the seventh step. We classify the candidate record pairs into three classes: 

match, potential match, and non-match, and count the numbers of these three groups separately. 

The records in each matching record pair can be linked together. Moreover, the numbers of false 

positives, false negatives, and potential matches are also counted. At last, a deep analysis for the 

misclassified record pairs is provided. 

 

 

Figure 3.1. Process of Entity Resolution 

 

Additionally, a powerful graph database named Neo4j [34] is employed to visualize the 

matching results. The information of records and the matching scores are imported into this tool. 

Nodes and directed edges can be added by the artificial control to represent the relationships 

among the records. Furthermore, queries regarding the constructed graph set can be done in a 

convenient and fast manner, and the query results can be shown in the form of tables or graphs.  

 

3.1. Records Indexing 

A detailed comparison of records, viz. comparing all records from one dataset with all records 

coming from another one, is a computationally expensive task. It also makes the comparison step 
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become the most expensive one during the process of record linkage. If two datasets contain n and 

m records, respectively, there will be n × m record pair comparisons at most. It is not practical to 

give so many comparisons, especially for large datasets. Hence, the records indexing step is an 

indispensable part of record linkage.  

 Indexing the records will reduce the number of record pairs to be compared in the following 

step by removing the record pairs that are not likely to refer to the same entity. In this way, the 

record pairs that are likely to refer to the same entity are retained for the comparison step. Two 

indexing techniques are commonly used in record linkage, viz. sorting data by gathering similar 

records and inserting each record into one or several blocks by some criteria [9]. The criteria are 

also known as blocking keys, whose values are determined by one field or several fields’ content. 

For example, the blocking keys can be generated by sorting field name or by sorting the 

combination of fields name and DOB. The more specific a blocking key’ definition is, the smaller 

number of blocks will be obtained. As a result, fewer record pair comparisons will be attained. 

Thus, concatenating two or more fields when generating blocking keys can reduce the number of 

candidate record pairs, viz. record pair comparisons. In this study, three indexes are defined for 

generating indexing keys (blocking keys): the first index key is generated by concatenating the 

values from fields DOB, SSI, and phone number; the second index key is created by concatenating 

the values from fields given name and surname; the third index key is generated by the combining 

the values from fields address 1, suburb and state. Given name and surname are combined 

together since they both refer to personal names and have similar characteristics. For address 1, 

suburb and state, these three fields are all used to identify where a person lives. DOB, SSI and 

phone number are the fields that only contain numbers. Hence, they are combined to generate the 

third block key.  

In this study, the encoding method used for defining blocking keys is known as Soundex [9], 

which is one of the most widely used phonetic encoding algorithms. This method aims to find out 

the level of phonetic similarity between two strings. It works as follows: the first letter of the string 

is kept, and the remaining letters are converted into three numbers in accordance with a 

transformation table. Based on the transformation table, ‘h’, ‘w’, ‘y’ and all vowels in the 

remaining letters of the string are converted into zeros. And the zeros should be deleted due to the 

encoding rule. When an encoded string contains repetitive numbers, the repetitive numbers should 

also be removed. In the end, if the number part of the encoded string contains more than three 
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digits, it is truncated to three digits only. If less than three digits exist in the number part of the 

encoded string, the number part will be extended with zeros to make sure its length is three. For 

example, the name ‘Joseph’ will be encoded to ‘J02010’ first; then zeros are removed from the 

code, and the new code turns to be ‘J21’. Since the number part only has two digits, a zero is added, 

and the final encoded string is ‘J210’.  

 Furthermore, Standard Blocking [9] technique is used to generate index blocks in this study. 

This approach aims to insert each record’s blocking keys into a single block. For a single blocking 

key, only one blocking key value (BKV) will be created for each record. This BKV will determine 

into which block will the corresponding record be inserted. In this way, all records that have the 

same BKV and come from different datasets are considered as candidate record pairs, and these 

candidate record pairs will be compared in the next step. Moreover, for the records that have the 

same BKV but come from the same dataset, they are not candidate record pairs since there are no 

corresponding records in other datasets. In a word, the records indexing step reduces the number of 

record pair comparisons and leaves similar records to be compared in the next step. It accelerates 

the progress of record linkage.  

 

3.2. Comparison Methods 

Errors are commonly seen in real-world data due to phonetic or typographical variations. 

Besides, phone numbers and addresses always change over time. Surnames can also be changed 

when people get married. Additionally, nicknames, spelling variation, typing errors, Optical 

Character Recognition (OCR) errors, poor tone quality on the phone, and many other cases can 

also result in variations of names. In order to have a high-quality record linkage result, many 

researchers try to standardize the datasets to improve the data’s quality. They focus on converting 

the attributes to the same form. However, this kind of technique cannot work very well to generate 

completely accurate results, and may leave several variations even in the standardized data. Hence, 

it is impossible to use a single function to find the exact matches among the data. Several 

comparison functions should be used to calculate the level of similarity between attributes. 

Comparison functions will generate similarity scores, which are always within [0, 1], to describe 

how similar two attributes are. A score close to 1 signifies that the two attributes are very similar, 

and a score close to 0 indicates that the two attributes are quite different.  
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In this study, ten comparison methods (functions) are selected to calculate the similarity scores 

among records. They are Syllable Alignment Distance, Bigram, Positional Bigram, Trigram, 

Longest Common Substring 2, Longest Common Substring 3, Smith-Waterman Edit Distance, 

Levenshtein Distance, Damerau-Levenshtein Distance, and Exact String comparison method.  

The exact string comparison method is the simplest one among all comparison functions. It just 

compares two input strings directly, and computes an exact similarity score. If the two input strings 

are exactly the same, the similarity score will be 1. If two strings are totally different, the score will 

be 0. This computation method can be represented using the following expression, where s1 and 

s2 are two input strings. 

simexact(s1, s2) = {
 1   if s1 = s2 
0   if s1 ≠ s2

 (3.1) 

The most widely used comparison methods in literature are those based on Edit Distance. Edit 

Distance method counts the smallest number of edit operations that are needed when converting a 

string to another one. For example, the edit distance of string ‘Chris’ and string ‘Kris’ is 2 as ‘C’ 

should be replaced by ‘K’ first and then ‘h’ should be eliminated. Since two edits are needed at 

least here, the edit distance is 2. It is obvious that the more similar two strings are, the smaller will 

the edit distance be. As a result, the similarity score will be small. In this study, three edit distance 

based comparison methods are used, viz. Smith-Waterman Edit Distance, Levenshtein Distance, 

and Damerau-Levenshtein Distance [9].  

The Levenshtein Distance method is the most basic one among these three edit-distance based 

methods. In this method, three basic edit operations are applicable when converting a string to 

another, viz. substitutions, deletions, and intersections. After the edit distance is obtained, the 

similarity score can be computed using the following formula, 

simlevenshtein(s1, s2) = 1.0 −  
distlevenshtein(s1, s2)

max(|s1|, |s2|)
 (3.2) 

where s1  and s2  represent two input strings, and | ∙ |  denotes the length of the string. 

distlevenshtein(s1, s2) represents the edit distance between string s1 and string s2. In the previous 

example, if we set ‘Chris’ as s1, ‘Kris’ as s2, we have distlevenshtein(s1, s2) = 2, |s1| = 5, |s2 | = 4, 

and the similarity score is 0.6. Hence, we can say that these two strings are relatively similar.  

 For the Damerau-Levenshtein Distance method, a fourth edit operation is added for 

computing the edit distance, viz. transposition (swapping) of two adjacent characters. Similarity 
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scores are computed by the same way as the Levenshtein Distance method. Generally, the 

Damerau-Levenshtein distance is smaller or equal to Levenshtein distance for the same string pair. 

Therefore, for the same two input strings, the similarity score from Damerau-Levenshtein Distance 

method is larger or equal to the score from Levenshtein Distance method. For example, the 

similarity scores based on Damerau-Levenshtein Distance and Levenshtein Distance for strings 

‘Cris’ and ‘Cirs’ are 0.75 and 0.5, respectively. Obviously, the first method gives a better 

description of the similarity level between these two strings. Hence, the Damerau-Levenshtein 

Distance method is more accurate than the Levenshtein Distance method when the input strings 

contain transposition errors.  

 The Smith-Waterman Edit Distance method allows for gaps and character specific match 

scores or costs. It has five basic operations, and each operation is assigned to a different match 

score ms. But there are four different match scores in total, viz. 5, 2, -1, -5, as two operations are 

assigned to the same match score. The similarity score is computed as follows, 

simsmith_waterman(s1, s2) = 
bssmith_waterman

divsmith_waterman × msm

 (3.3) 

where msm is the match score when two characters are exactly matching; bssmith_waterman is the 

highest value of needed operations; divsmith_waterman is a factor.  divsmith_waterman can be calculated 

in the following three ways:   

1) divsmith_waterman = min(|s1|, | s2|) 

2) divsmith_waterman = max(|s1|, | s2|) 

3) divsmith_waterman = 
|s1| + | s2|

2
 

where the first and third factors correspond to the overlap coefficient and Dice coefficient, 

respectively.  

 These three edit-distance based comparison methods are suitable for both name and non-name 

comparisons. Nevertheless, this kind of method has a high computational complexity.  

 Bigram, Trigram, and Positional Bigram methods are all based on q-grams [9]. The q-grams 

technique works as follows, first splitting two input strings into short substrings with length q by 

using a sliding window approach, and then counting the number of the q-grams (length q 

characters) that exist in both two input strings. The most commonly used values for q in record 
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linkage are 2 and 3, which corresponds to Bigram method and Trigram method, respectively. The 

normalized similarity score can be determined by the following expressions,  

simoverlap(s1, s2) = 
ccommon

min(c1, c2)
 (3.4) 

simjaccard(s1, s2) = 
ccommon

c1 + c2 − ccommon

 (3.5) 

simdice(s1, s2) = 
2 × ccommon

c1 + c2

 (3.6) 

where ccommon is the number of the q-grams that exist in both two input strings; c1 and c2 are 

respectively the numbers of q-grams in input strings s1 and s2. Obviously, these three expressions 

correspond to overlap coefficient, Jaccard coefficient and Dice coefficient, respectively. And the 

expression we use depends on which coefficient is selected. For example, for two input strings 

‘chris’ and ‘kris’, the 2-grams of them are ‘ch’, ‘hr’, ‘ri’, ‘is’, and ‘kr’, ‘ri’, ‘is’, respectively. Then 

we have c1 = 4, c2 = 3, and ccommon = 2. The similarity scores corresponding to overlap, Jaccard, 

and Dice coefficients are 0.67, 0.4, and 0.57. If 3-grams is used to calculate the similarity score of 

these two strings, their substrings will be ‘chr’, ‘hri’, ‘ris’, and ‘kri’, ‘ris’. We will have c1 = 3, 

c2 = 2, and ccommon = 1. The three similarity scores will be 0.5, 0.25, and 0.4. 

 Compared with Bigram method, the Positional Bigram method takes into account the 

positional information. In other words, each q-gram has a number indicating its position in the 

string. In this method, only the common q-grams whose position values are within a certain 

maximum distance can be used to determine ccommon. Then (3.4), (3.5) and (3.6) can be used to 

calculate the similarity score. Compared with edit-distance based methods, q-grams based 

comparison methods have smaller complexity. Hence, this kind of method has a high efficiency 

and is quite suitable for comparing long strings. When comparing Trigram with Bigram, it can be 

found that Trigram is more sensitive to single character differences.  

 In Longest Common Substring comparison method, the objective is to iteratively remove the 

longest substrings sc that two input strings have in common. This process is kept running until the 

length of the common substring is smaller than a certain number, lmin. lmin, which is also called the 

minimum length of characters, is always set as 2 or 3. Then the lengths of all found common 

substrings are added together, and the sum is used to compute the similarity score. The expressions 

are shown as follows, which are similar to the expressions of q-grams based methods, viz. (3.4), 

(3.5) and (3.6), 
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simlcs_overlap(s1, s2) = 
lc

min(|s1|, |s2|)
 (3.7) 

simlcs_jaccard(s1, s2) = 
lc

|s1| + |s2| − |lc|
 (3.8) 

simlcs_dice(s1, s2) = 
2 × lc

|s1| + |s2|
 (3.9) 

where lc = ∑ |sci
|n

i = 1  denotes the sum of the lengths for all common substrings, and n is the 

number of the common substrings. Similarly, the above three expressions correspond to three 

conditions when overlap coefficient, Jaccard coefficient, or Dice coefficient is applied. This 

comparison function performs well on the strings that contain some characters not in the same 

order. For example, strings ‘cris johnson’ and ‘johnson cris’ have common substrings 

sc1
 = 'johnson' and sc2

 = 'cris'. Thus, we have lc = 11, | s1| = | s2 | = 12, and the similarity scores 

corresponding to the above three coefficients are 0.917, 0.846 and 0.917.  

 The Syllable Alignment Distance method uses the Syllable Alignment Pattern Searching 

technique to compute similarity scores. This technique combines phonetic information with 

edit-distance based computation [9]. The idea behind this technique is to convert two input strings 

into sequences of syllables, and then count the number of edits that are needed when converting 

one sequence of syllables to the other one. Seven edit operations are included in this method, and 

they are assigned to different edit scores, which is similar to Smith-Waterman Edit Distance 

method. The edit scores in this method range between -4 to 6. After the distance is obtained, the 

similarity score can be computed in three ways. And the expressions are identical to those in the 

Smith-Waterman Edit Distance method. As phonetic information is contained in this method, it is 

usually used to compare names, where phonetic variations often occur. 

 

3.3. Artificial Neural Network Model 

Now, let us make a deep insight on how to construct the ANN model in the fifth step. The structure 

of the ANN is shown in Figure 3.2. The experimental data used for constructing this model is a set 

of input-output pairs (uij(k),t(k)), where uij represents the matching result for a candidate record 

pair, namely the similarity score for the ith field with the jth comparison method, and t is the 

target output for the record pair. The value of t is determined when generating the data since labels 

have been added to show whether the record pair is matched or not. Specifically speaking, if the 
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record pair is matched in practice, its target output will be 1. On the contrary, the target output of a 

non-matching record pair is 0. Furthermore, k=1, 2, …, n; j=1, 2, …, c; i=1, 2, …, m, where n is 

the number of record pairs that could hypothetically be matched (candidate record pairs); c is the 

number of selected comparison methods (functions), and m is the number of selected data fields. 

To be specific, u(k)∈[0, 1]mc, t(k)∈[0, 1]. Therefore, mc is the size of each vector u. In the structure 

shown in Figure 3.2., we assume that field 1 is given name; field 2 is surname; …; field m is date of 

birth (DOB). Each field is compared by c comparison methods (functions).  

 

 

Figure 3.2. Structure of the Artificial Neural Network 

 

 The records after indexed are used to calculate the similarity score for each data field with 

each comparison method. The values of similarity scores are all within [0, 1], where 0 indicates 

that the field is totally non-matched, and 1 corresponds to a total matching field. Then the scores 

are imported into the ANN as input data. The input data is split into a training set and a testing set 

first. In this model, the jth hidden neuron is connected to the fields where the jth comparison 

method is used. In other words, it is not connected to (j+1)th, (j+2)th, …, (j+c-1)th comparison 

methods. The output of the neuron in the hidden layer, yj, is expressed as follows,  
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p
j
 = ∑ uijzij

m

i = 1

, (3.10) 

y
j
 = f ( p

j ) (3.11) 

where f is a monotonically increasing function, whose value is within (0,1). z = [z11, z21, …, zm1, z12, 

z22, …, zm2, …, z1c, z2c, …, zmc] is a vector of weights, and the initial values of these weights are all 

within [-1, 1]. zij represents the relevance of the ith field with the jth comparison function. The 

output of the model v, namely the output of the single neuron in the output layer, is,  

 l = ∑ y
j
wj

c

j = 1

, (3.12) 

v = f ( l ) (3.13) 

where w = [w1, w2, …, wc] is also a vector of weights with initial values within [-1, 1]. wj links the 

jth hidden neuron with the single output neuron, and it denotes the significance of the jth 

comparison method. In this study, we select the sigmoidal function as the activation function that 

can be used in (3.11) and (3.13). This function is expressed as follows, 

f (x) = 
1

1 + e(-x)
 (3.14) 

 With the ANN, several similarity scores are aggregated into a single output. This makes a lot 

of superiority in the research. First, the weights are able to be adjusted to make matching record 

pairs apart from those non-matching ones as far as possible. Moreover, by looking at the values of 

the optimized weights, we could know which comparison methods and which data fields 

contribute more to a correct record linkage. After the optimized weights are obtained, 

normalization is employed to make these weights within [0, 1]. When a weight’s value is 1, it 

signifies that the specific data field or comparison method contributes the most to record linkage. 

A weight with the value 0 means the corresponding data field or comparison method has no impact 

on record linkage. Then the data fields and comparison methods that have small weights can be 

eliminated, as they make little contribution to the record linkage.  
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3.4. Probabilistic Graphical Model 

Among various types of PGMs, the Bayesian network is selected to calculate matching scores 

among candidate record pairs. The structure of the Bayesian network is shown in Figure 3.3, where 

μ
ij
 is the weight that expresses the significance of the ith field with the jth comparison method, and 

λj is the weight representing the relevance of the jth comparison method. Moreover, i=1, 2, …, m, 

j=1, 2, …, c, where m is still the number of data fields, and c is the number of the comparison 

methods. μ
ij
 is the normalized form of zij, where zij is the weight obtained from the ANN. 

Similarly, λj is also computed by normalizing wj. The initial values of weights z and w are within 

[-1,1], where 1 represents a largest positive impact, and -1 represents a largest negative impact. 

After training the ANN, the values of the optimized weights are still within [-1, 1]. However, these 

optimized weights cannot be applied to the Bayesian network directly since they may make some 

probabilities (matching scores of fields or comparison methods) larger than 1 or smaller than 0. 

For example, assume that the similarity scores of a record pair on fields name, surname and DOB 

are 0.7, 0.8 and 0.6, and the corresponding weights obtained from the ANN are 0.8, 0.7 and -0.1. 

Then the probability of being a match under the condition of matching name, matching surname 

and matching DOB is 0.7×0.8+0.8×0.7+0.6×(-0.1)=1.06, which is beyond the range [0, 1] and 

does not meet the requirements of the probability theory. Therefore, a normalization of the weights 

should be done as follows, 

δij =
zij - zmin

zmax - zmin

 (3.15) 

μ
ij
=

δij

∑ δij
m
i=1

 (3.16) 

εj =
wj - wmin

wmax - wmin

 
(3.17) 

λj =
εj

∑ εj
c
j=1

 
(3.18) 

where zmax and zmin represent the maximum and minimum values of weights zij, and wmax and 

wmin are the maximum and minimum values of weights wj. First, zij and wj are respectively 

scaled to [0, 1], and the scaled weights are denoted by δij  and εj, where i=1, 2, …, m, j=1, 2, …, c. 

Then the normalization is done by dividing scaled weight δij by the sum of the scaled weights that 
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are related to the jth comparison method. In this way, the sum of the normalized weights that 

correspond to the jth comparison method will be 1, namely ∑ μ
ij
=1m

i=1 , and μ
ij
∈[0, 1]. Similarly, 

normalized weight λj  is obtained by dividing scaled weight εj by the sum of all comparison 

methods’ scaled weights. Then the sum of all comparison methods’ normalized weights is 1, 

namely ∑ λj =1c
j=1 , and λj  is within [0, 1]. Considering the previous example again, after the 

normalization, the weights of fields name, surname and DOB are 0.53, 0.47 and 0. The probability 

of being a match under the same condition is 0.7×0.53+0.8×0.47+0.6×0=0.747, which is within [0, 

1] and meets the requirements of the probability theory. 

 

 

Figure 3.3. Structure of the Bayesian Network 

 

 Bayesian networks mainly consist of nodes and directed edges. In this proposed model, there 

are mc nodes in the first layer, c nodes in the second layer, and a single node in the third layer. 

Nodes are always labeled with variables in Bayesian networks. For example, name, surname, DOB 

could be variables’ names, and they can be showed inside the nodes. Here, we name the node 

(variable) in the last layer ‘Match’. The variable’s name of each node in the second layer is 

actually the name of the corresponding comparison method. The nodes located at the end points of 

arrows are called children nodes. Then the parent nodes refer to the nodes that are located at the 

start points of arrows. Bayesian networks can be parametrized with conditional probabilistic 

distributions (CPDs). For each variable (node), there is a CPD associated with it. Given parent 
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nodes’ CPDs, children nodes’ probability distributions can be calculated based on the probability 

theory. The determination of each variable’s CPD is an important task. The details on how to 

determine the CPDs will be discussed in Chapter 4. Here, we describe how to use the Bayesian 

network to calculate matching scores.  

 Probability theory is a tool to study uncertainty (randomness) which is a native nature of the 

real world [44]. The probability theory is constructed with random variables. Random variables 

can be continuous or discrete, and they may have a set of possible outcomes. For each possible 

outcome for random variable x, a value is assigned to it to represent the probability of occurrence, 

which is always denoted by P(x). In fact, we often consider several variables at the same time, and 

the probability distribution over multiple variables is known as the joint probability distribution 

[44]. Some variables are independent of each other, and some variables are dependent on others. 

For the independent variables, the joint probability distribution can be expressed as, 

P ( x1, x2, ... , xe ) = P (x1) P(x2) ⋯ P(xe) (3.19) 

where x1, x2, ..., xe are e independent random variables. We can also say that this distribution P 

satisfies (xi ⊥xj) for any i, j that i ≠ j, where ‘⊥’ means the corresponding two variables are 

independent of each other. For example, in our study, we have P(name1, surname1, ... , 

DOB1) = P(name1) P(surname1) ⋯ P(DOB1) since these variables are independent of each other. 

Sometimes the probability distribution of a variable depends on other variables. For this kind of 

situation, CPDs are suitable to describe the probabilistic relation among the variables. The CPD 

for two variables can be expressed as P(x1 | x2), which represents the probability distribution of x1 

with a given outcome of x2. Likewise, P(x2 | x1) is the probability distribution of x2 given the 

status of x1.  

 Similarly, in the Bayesian network, some variables (nodes) are independent, and some are 

dependent. The probability distributions of children nodes usually depend on their parent nodes’ 

probabilities. The parent nodes for variable xi  are represented as Paxi

𝒢 , where 𝒢  denotes the 

Bayesian network structure [2]. For the nodes that are not the descendants of xi, they are expressed 

as NonDescendantsxi
. Then, for variable xi, the relation among these three sets of nodes are 

expressed as follows, 

(xi ⊥NonDescendantsxi
 | Paxi

𝒢 ) (3.20) 
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This expression is also known as local independencies [2]. Assuming that 𝒢 contains e variables 

x1, x2, ..., xe, then the probability distribution over these variables can be expressed as, 

 P(x1, x2, ... , xe) = ∏ P(xi | Paxi

𝒢 )

e

i=1

 (3.21) 

where P(xi | Paxi

𝒢 ), i=1, 2, …, e, are the CPDs. This formula is also known as the chain rule for 

Bayesian networks [2].  

 After the determination of the CPDs for all variables (nodes), the objective is to perform an 

exact inference to calculate the final matching score for each candidate record pair. In other words, 

the aim is to obtain the individual probability distribution of variable Match. To complete an exact 

inference over a specific variable, an algorithm named variable elimination [2] is used in the 

proposed model. The fundamental idea of this algorithm is to keep summing the joint probabilities 

over one variable at a time until all variables’ calculations are finished. However, the joint 

probabilities are usually unknown. As conditional probabilities are always available, they are used 

to compute the joint probabilities beforehand. For example, assume that there is a simple Bayesian 

network: a → b → d , where a , b  and d  are three variables, and our goal is to acquire the 

probability distribution of variable d, viz. P(d), given the CPDs of all variables. By using basic 

probabilistic reasoning, we have the following expressions, 

 P(b) = ∑ P(a) P(b | a)

a

 (3.22) 

 P(d) = ∑ P(b) P(d | b)

b

 (3.23) 

where P(a), P(b | a), and P(d | b) are already known. Using the chain rule in Bayesian networks, 

the joint probabilities are given as, 

P(a, b, d) = P(a) P(b | a) P(d | b) (3.24) 

After inserting (3.22) and (3.24) into (3.23), we get, 
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 P(d)  = ∑ P(d | b) ∑ P(a) P(b | a)

a

 
b

 

        = ∑ ∑ P(a) P(b | a)

a

 P(d | b)

b

 

= ∑ ∑  P(a, b, d)             

ab

 

(3.25) 

From (3.25), we can see that this algorithm is a procedure of sum-product variable elimination [2]. 

Next, a general expression for computing variables’ probability distributions is shown as follows, 

which is also well discussed in [2]. Let x be a set of variables, namely x contains variables x1, 

x2, ..., xe. q ∉ x is a query variable, and ρ is a set of variables that ρ = x+q. ϕ(x, q) is a factor, and 

Φ is a set of factors where ϕ∈Φ. Then the probability distribution P(q) given by the sum-product 

variable elimination algorithm is, 

 P(𝑞) = ∑ ∏ ϕ

ϕ∈Φ

  
ρ

 (3.26) 

where Φ = {ϕ
xi

}
i=1

e

, ϕ
xi

 = P(xi | Paxi

𝒢 ), and 𝒢 is the Bayesian network.  

 Combining the background of the proposed Bayesian model, the probability distributions for 

the nodes are determined as follows. In this structure, as shown in Figure 3.3., there are c variables 

(nodes) in the second layer (corresponding to c comparison methods), and each one of these nodes 

is connected to m parent nodes (corresponding to m data fields). As the m parent nodes are 

independent of each other, the probability of being matched or being a non-match for a 

‘comparison method’ node (variable) is expressed as follows, 

 P(method j) = ∑ P(field 1j, field 2j,…, field mj, method j) 

field 1j, field 2j,…, field mj

 (3.27) 

P(field 1j, field 2j,…, field mj, method j) = 

P(method j | field 1j, field 2j, …, field mj) ∙ P(field 1j) ∙  P(field 2j) ∙  ⋯  ∙  P(field mj) 
(3.28) 

where P(method j) denotes the probability distribution of the jth node in the second layer, namely 

the variable named the jth comparison method, and P(field ij) is the probability distribution of the 

ith data field that is connected to the jth node in the second layer. 

P(method j | field 1j, field 2j, … , field mj) is the CPD of the jth node in the second layer (the 
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variable named the jth comparison method) given the probabilities of field 1j,  field 2j,  …, and 

field mj . P(field 1j, field 2j,…, field mj, method j)  is the joint probability distribution. The 

probability distribution of the jth node (variable) in the second layer is obtained by summing over 

the joint probability distribution. Since each ‘comparison method’ node (the node in the second 

layer of the Bayesian network) only has two statuses, being matched and not being matched, the 

probability distribution of each ‘comparison method’ node contains two probabilities, namely 

probabilities of being matched and not being matched.  

The probability distribution of the ‘Match’ node is determined by the same way. Using 

variable elimination, its probability distribution is defined as follows, 

   P(match) = ∑ P(method 1, method 2,…, method c, match)

method 1, method 2,…, method c 

 (3.29) 

P(method 1, method 2,…, method c, match) = 

P(match |method 1, method 2, …, method c) ∙ P(method 1) ∙ P(method 2) ∙ … ∙ P(method c) 
(3.30) 

where P(match) is the probability distribution of the ‘Match’ variable (node) for a candidate 

record pair, and P(method j) denotes the probability distribution of the variable named the jth 

comparison method. P(match |method 1, method 2, …, method c) is the conditional probability 

distribution of the Match variable given the probabilities of  method 1 , method 2 , … , and 

method c . P(method 1, method 2,…, method c, match)  is the joint probability distribution. 

Similarly, the probability distribution of the Match variable for a record pair is also obtained by 

summing over the joint distribution. The Match variable still only has two statuses. In other words, 

its probability distribution consists of two probabilities, being a match and being a non-match, and 

the sum of these two probabilities always equals to 1. The probability of being a match is certainly 

within [0, 1]. If the probability of being a match is close to 1, the corresponding record pair is most 

likely to be matched. In other words, the two records in this record pair refer to the same entity. 

When the probability of being a match is 0, it means that the two input records are totally not 

matched. Thus, they do not refer to the same entity in the real world, and we can also say that they 

refer to two different entities. 
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4. The Modeling of Record Linkage 

In Chapter 3, the operating principles of the ANN model and the Bayesian network model are fully 

discussed. To illustrate the construction of the record linkage model further, several other modules 

are described in this chapter, including the optimization of weights, the determination of CPDs, 

and performance assessment.  

 

4.1. Optimization of Weights 

As described before, the weights in the Bayesian network model are determined by the ANN 

model. In the ANN, a supervised gradient descent algorithm [45] is employed to optimize the 

weights. This algorithm is to adjust the weights by using the back-propagation learning rule until 

the objective function Q reaches the minimum value. The objective function (performance index) 

of the ANN is, 

 Q = ∑ vk
2

n

k = 1:tk < τ1

 + ∑ (1 – vk)
2
 

n

k = 1:tk > τ2

 (4.1) 

where τ1 and τ2 (τ1< τ2) are two thresholds; vk, k=1, 2, …, n, is the output of the ANN and 

corresponds to the input uij(k); n is the number of candidate record pairs. Given the target output 

t(k), this algorithm will adjust the weights (z and w) until the minimum value of Q is achieved. To 

be specific, if t(k) is below τ1, the error that will be back-propagated is defined as vk
2. If t(k) is 

above τ2, the error will be defined as (1- vk)
2. The target output t(k) has two statuses, non-match, 

namely t(k)=0, and match, namely t(k)=1. The performance index Q will optimize the weights 

until the final output, vk, is below τ1 or above τ2. Specifically, if t(k)=0, the corresponding vk 

should be smaller than τ1  in the end. On the contrary, the final value of vk should be larger than τ2 

when the corresponding target output t(k)=1.  

 After the values of τ1 and τ2 are selected, minimizing Q is done by iteratively employing the 

gradient descent algorithm. The updates of the weights in each iteration is expressed as follows, 

z (iter + 1) = z (iter) − α∇zQ (4.2) 

w (iter + 1) = w (iter) − α∇wQ (4.3) 

where α is the learning rate of the ANN and its value is within (0, 1). ∇Q is the gradient of the 

objective function Q, and iter denotes the number of iterations. The initial values of z and w are 
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within [-1, 1] and follow a normal distribution. Afterward, these weights are adjusted according to 

(4.2) and (4.3) until the minimum value of Q is achieved. To describe the process of calculating 

∇zQ and ∇wQ, we take a single input-output pair (u, t) as an example. The calculation is based on 

the chain rule, and the partial derivatives of the performance index with respect to the weights are 

shown in the following expressions,  

∂Q

∂wj

 = 
∂Q

∂v

∂v

∂l

∂l

∂wj

 (4.4) 

∂Q

∂zij

 = 
∂Q

∂v

∂v

∂l

∂l

∂y
j

∂y
j

∂p
j

∂p
j

∂zij

  (4.5) 

 Next, each part of the above equations should be solved. The performance index Q has two 

parts, as shown in (4.1), so the derivative of Q with respect to the output v also contains two parts, 

∂Q

∂v
= 2v,  if  tk < τ1 (4.6) 

 
∂Q

∂v
= 2(v-1),  if  tk > τ2 (4.7) 

Then the partial derivative of v with respect to the aggregation l is expressed as follows, which in 

essence is the derivate of the activated function shown in (3.14),  

∂v

∂l
= v(1 − v)  (4.8) 

The aggregation l is defined as follows, 

l = w1y
1
 + w2y

2
 + … + wjyj

 + … + wcy
c
 (4.9) 

where y
j
 is the output of the jth hidden neuron, and wj is the weight of the jth hidden neuron (the 

jth comparison method). For the partial derivatives of l with respect to wj and y
j
, the expressions 

are, 

∂l

∂wj

= y
j
 (4.10) 

∂l

∂y
j

= wj (4.11) 

The partial derivative of yj with respect to the aggregation pj is similar to (4.8). In essence, it is also 

the derivative of the activated function shown in (3.14), and its expression is, 
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∂y
j

∂p
j

 = y
j
(1 − y

j
) (4.12) 

Finally, the partial derivative of the aggregation pj with respect to the weight zij is calculated by the 

following two expressions, 

p
j
= z1ju1j + z2ju2j + … + zijuij +…zmjumj (4.13) 

∂p
j

∂zij

 = uij (4.14) 

 After combing (4.6), (4.7), (4.8), (4.10) and (4.6), (4.7), (4.8), (4.11), (4.12), (4.13), (4.14), 

respectively, ∇zQ and ∇wQ are expressed as follows,  

∂Q

∂wj

 = 
∂Q

∂v

∂v

∂l

∂l

∂wj

= 2v2(1 − v) y
j
,  if (t

k
 < τ1) (4.15) 

∂Q

∂wj

 = 
∂Q

∂v

∂v

∂l

∂l

∂wj

= -2v(1 − v)
2 y

j
,  if (t

k
 > τ2) (4.16) 

∂Q

∂zij

 = 
∂Q

∂v

∂v

∂l

∂l

∂y
j

∂y
j

∂p
j

∂p
j

∂zij

 = 2v2(1 − v)wj yj
(1 − y

j
)uij,   if (tk < τ1) (4.17) 

∂Q

∂zij

 = 
∂Q

∂v

∂v

∂l

∂l

∂y
j

∂y
j

∂p
j

∂p
j

∂zij

 = -2v(1 − v)
2
wj yj

(1 − y
j
)uij,   if (tk > τ2) (4.18) 

Therefore, (4.2), (4.3), (4.15), (4.16), (4.17) and (4.18) are used to update the weights (w and z). 

The above calculation process is iteratively applied until the performance index Q reaches its 

minimum value. At this point, w and z reach their optimized values. These optimized weights can 

be used to classify the candidate record pairs into match group or non-match group. Meanwhile, 

these optimized weights can minimize the numbers of false positives, false negatives, and clerical 

review records. Then we normalize these optimized weights to [0, 1], where a weight close to 1 

signifies that the corresponding data field or comparison method has a huge impact on the record 

linkage. On the contrary, when the value of a weight is close to 0, the corresponding field or 

comparison method’s contribution to the record linkage is minimal. The fields and comparison 

methods whose weights are close to 0 can be eliminated as they can hardly play their roles during 

the process of record linkage. 
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4.2. Determination of Conditional Probability Distributions 

In Chapter 3, we described how to calculate the matching scores (probabilities of being matched) 

among record pairs based on the Bayesian network. Nevertheless, the prerequisite of the 

computation is that the CPDs for all variables are already known. Hence, in this chapter, the 

process of determining CPDs is fully discussed. 

From the Bayesian network model shown in Figure 3.3., we can know that to obtain the 

probability distributions of the variables (nodes) in the second layer, the CPDs of the variables 

(nodes) in the first layer should be determined first. In the first layer, there are m × c nodes, where 

m is the number of fields and c is the number of comparison methods (functions). The second layer 

has c nodes, and each one of these nodes has m parent nodes. If we know the CPDs of the m parent 

nodes, the probability distribution of the children node can be determined by the Bayesian network. 

After a comparison method is selected, the similarity scores for all fields can be calculated. The 

CPDs of the variables (nodes) in the first layer are considered as follows, 

σ
ij = [uij, 1- uij] (4.19) 

where uij is the similarity score for the ith field with the jth comparison method, and its value is 

within [0, 1]. When the similarity score is 0, the attributes of the corresponding field are totally 

non-matched. If the attributes are totally matched, the score will be 1. σ
ij
 is the CPD of the ith node 

(field) which is connected to the jth node in the second layer (also known as the jth comparison 

method), where i=1, 2, …, m, j=1, 2, …, c. m is the number of selected data fields, and c is the 

number of comparison methods. uij and 1- uij are also known as the probability of being matched 

and the probability of not being matched for the combination of the ith field and the jth comparison 

method, respectively.  

As the CPDs of all the nodes (variables) in the first layer have two probabilities, the CPD of 

each node (variable) in the second layer has 2m+1 probabilities. Let fij
0 and fij

1 denote the probability 

of being matched and the probability of not being matched for the ith field which is connected to 

the jth comparison method. Then we have fij
0=uij, fij

1=1- uij. gj
0 and gj

1 are the column vectors that 

represent the conditional probabilities of being matched and being non-matched for the jth method 

(jth node in the second layer). Each of them has 2m probabilities (elements). For each selected 

comparison method, the CPD can be determined by the following process,  
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for a in [f1j
0, f1j

1]: 

 for b in [f2j
0, f2j

1]: 

  ….. 

   for m in [fmj
0, fmj

1]: 

    g= a∙ μ
1j

+b∙ μ
2j

+…+m∙ μ
mj 

 

where μ
ij
 is the normalized weight for the ith field with the jth comparison method. The value of g 

obtained from each iteration comprises gj
0. Then gj

1 is considered as, 

gj
1(k) = 1- gj

0(k) (4.20) 

where k=1, 2, ..., 2m; gj
0(k) represents the kth element of vector gj

0; gj
1(k) represents the kth element 

of vector gj
1. gj

0(k) is the weighted sum of fij
0 and/or fij

1 with weights μ
ij

. The process of 

determining μ
ij

 has been fully discussed in Chapter 3.4 and Chapter 4.1. An example of 

determining CPD is shown in Table 4.1., where three fields are selected (m=3). The formulas for 

calculating each conditional probability are also shown in the following expressions, 

 

Table 4.1. An Example of Determining CPD 

Name  f1j
0 f1j

1 

Surname  f2j
0 f2j

1 f2j
0 f2j

1 

DOB  f3j
0 f3j

1 f3j
0 f3j

1 f3j
0 f3j

1 f3j
0 f3j

1 

jth 

Comparison 

Method 

gj
0 gj

0(1) gj
0(2) gj

0(3) gj
0(4) gj

0(5) gj
0(6) gj

0(7) gj
0(8) 

gj
1 gj

1(1) gj
1(2) gj

1(3) gj
1(4) gj

1(5) gj
1(6) gj

1(7) gj
1(8) 

 

gj
0(1) =μ

1j
 f1j

0+μ
2j

 f2j
0+μ

3j
 f3j

0, gj
1(1) = 1- gj

0(1) (4.21) 

gj
0(2) = μ

1j
 f1j

0+μ
2j

 f2j
0+μ

3j
 f3j

1, gj
1(2) = 1- gj

0(2) (4.22) 

gj
0(3) = μ

1j
 f1j

0+μ
2j

 f2j
1+μ

3j
 f3j

0, gj
1(3) = 1- gj

0(3) (4.23) 

gj
0(4) = μ

1j
 f1j

0+μ
2j f2j

1+μ
3j

 f3j
1, gj

1(4) = 1- gj
0(4) (4.24) 

gj
0(5) = μ

1j
 f1j

1+μ
2j

 f2j
0+μ

3j
 f3j

0, gj
1(5) = 1- gj

0(5) (4.25) 

gj
0(6) = μ

1j
 f1j

1+μ
2j

 f2j
0+μ

3j
 f3j

1, gj
1(6) = 1- gj

0(6) (4.26) 
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gj
0(7) =μ

1j
 f1j

1+μ
2j

 f2j
1+μ

3j
 f3j

0, gj
1(7) = 1- gj

0(7) (4.27) 

gj
0(8) = μ

1j
 f1j

1+μ
2j

 f2j
1+μ

3j
 f3j

1, gj
1(8) = 1- gj

0(8) (4.28) 

To explain the meaning of gj
0(*), we take gj

0(3) as an example. gj
0(3) denotes the probability of 

being matched with the jth comparison method under the condition of matching name, 

non-matching surname, and matching DOB. Then the CPDs of the nodes (variables) in the second 

layer can be expressed as, 

Tj  = [gj
0 g

j
1
]
T
 (4.29) 

After the CPDs of the nodes in the second layer are obtained, variable elimination [44] is used 

to compute the probability distributions of these nodes, and these probability distributions will be 

used for computing the CPD of their children node. The variable elimination algorithm has already 

been described in Chapter 3. Now the problem is how to determine the CPD of the ‘Match’ node. 

The computation method is similar to the one for computing the CPDs of the nodes in the second 

layer. Assume that r0 and r1 are two column vectors representing the conditional possibilities of 

being matched and being non-matched for ‘Match’ node, then the CPD of the ‘Match’ node can be 

determined by the following for loops, 

 

for a in [h1
0, h1

1]: 

 for b in [h2
0, h2

1]: 

  ….. 

   for m in [hc
0, hc

1]: 

    x= a∙ λ1+b∙  λ2+…+m∙ λc  

 

where hj
0 = P(method j) and hj

1 = 1-P(method j) are obtained from the probability distribution of 

the jth comparison method (the jth node in the second layer). hj
0 represents the probability of being 

matched for the jth comparison method. hj
1 is the probability of being non-matched for the jth 

comparison method. λj  is the normalized weight for the jth comparison method. The value of r 

obtained from each iteration comprises r0. r1 is considered as, 

r1(k) = 1- r0(k) (4.30) 
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where k = 1, 2, ..., 2c; r0(k) represents the kth element of vector r0; r1(k) represents the kth element 

of vector r1. r0(k) is the weighted sum of hj
0 and/or hj

1 with weights λj . Then the CPD of ‘Match’ 

node is, 

T
match = [r0 r1]T (4.31) 

Up to now, the CPDs of all variables in the Bayesian network are determined. 

 

4.3. Performance Assessment 

In this study, confusion matrices are employed to evaluate the performance of the proposed record 

linkage model. The confusion matrix for record linkage contains six numbers, viz. the number of 

record pairs that are correctly classified as matches, the number of record pairs that are correctly 

classified as non-matches, the number of false negatives (matching record pairs classified as 

non-matches), the number of false positives (non-matching record pairs classified as matches), and 

the number of record pairs that are classified as potential matches. The confusion matrix indicating 

the misclassification costs is shown in Table 4.2,  

 

Table 4.2. Confusion Matrix for Record Linkage 

No. of record 

pairs/Unit cost 
Non-match 

Potential 

Match 
Match 

Non-match η
no, no

 /0 η
no, ?

 / β η
no, yes

 / γ 

Match η
yes, no

 /γ η
yes, ?

 / β η
yes, yes

 /0 

 

where η
no, no

, η
no, ?

, and η
no, yes

 respectively represent the numbers of the non-matching record 

pairs that are classified as non-matches, potential matches, and matches; η
yes, no

, η
yes, ?

, and η
yes, yes

 

are the numbers of the matching record pairs that are classified as non-matches, potential matches, 

and matches, respectively; γ is the unit cost for the misclassified record pairs, viz. false positives 

and false negatives; β is the unit cost for the record pairs that need clerical review. Of course, for 

the record pairs that are classified correctly, the cost is 0. Then the performance is expressed as 

follows, 

Performance = γ (η
no, yes

 + η
yes, no

) + β ( η
no, ?

+ η
yes, ?

) (4.32) 

Furthermore, the classification accuracy can be expressed as, 
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Accuracy = 
η

no, no
 + η

yes, yes

η
no, no

 + η
no, ?

 + η
no, yes

 + η
yes, no

 + η
yes, ?

+ η
yes, yes

 ×100% (4.33) 

 Obviously, we should keep the performance as low as possible, and meanwhile, keep the 

accuracy rate as high as possible. η
no, no

 + η
no, ?

 + η
no, yes

 + η
yes, no

 + η
yes, ?

+ η
yes, yes

 is the number 

of candidate record pairs, and it is usually fixed after indexing two selected datasets. Hence, the 

objective is to minimize the numbers of false positives, false negatives, and the record pairs that 

need clerical review. The numbers of false positives and false negatives are desired to be zeros 

since their unit costs are higher than the unit cost for the potential matches. Furthermore, the 

potential matches will be checked by a clerk to determine their categories, but the false positives 

and the false negatives have no opportunity to be checked again. Therefore, the primary objective 

is to make the numbers of false positives and false negatives as close to zeros.  

 Furthermore, precision, recall, and f-measure are also used to quantify the quality of the 

proposed record linkage model. Since the decision model we used contains three regions, the 

traditional formulas, which are based on the binary classification [8] to compute these three 

indexes, cannot be used directly. The traditional formulas are expressed as follows, where tp is the 

number of true positives; fp and fn respectively represent the number of false positives and the 

number of false negatives. Here, f-measure is defined as the harmonic mean of precision and 

recall. 

Precision = 
tp

tp + fp
 (4.34) 

Recall = 
tp

tp + fn
 (4.35) 

F-measure = 2 ∙ 
Precision ∙ Recall

Precision + Recall
 (4.36) 

In this study, the matching record pairs classified as potential matches or non-matches are 

considered as false negatives. Similarly, the non-matching record pairs that are classified as 

potential matches or matches are regarded as false positives. Therefore, the following expressions 

are used for computing precision and recall, 
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Precision = 
η

yes, yes

η
no, ?

 + η
no, yes

 + η
yes, yes

 (4.37) 

Recall = 
η

yes, yes

η
yes, no

 + η
yes, ?

 + η
yes, yes

 (4.38) 
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5. Experimental Studies 

To test the performance of the proposed record linkage model, we generated four synthetic 

datasets with different levels of noise (errors) to do the experiments. All these datasets were 

generated by the modified FEBRL (Freely Extensible Biomedical Record Linkage) tool. In this 

study, eight fields (m=8) were selected to identify records, namely date of birth (DOB), social 

security ID (SSI), given name, surname, address 1, suburb, state, and phone number. The ten 

comparison methods (functions) we selected were already described in Chapter 3.2, and they were 

used to compare all data fields. Then we have c=10. These ten comparison methods are Syllable 

Alignment Distance, Trigram, Bigram, Positional Bigram, Longest Common Substring 2 and 3, 

Levenshtein Edit Distance, Smith-Waterman Edit Distance, Damerau-Levenshtein Edit Distance, 

and Exact String Comparison. Therefore, the ANN has eight input nodes, ten hidden nodes, and 

one output node. In the Bayesian network, there are mc = 80 nodes (variables) in the first layer, 

ten nodes (variables) in the second layer, and one node (variable) in the third layer.  

Next, in the records indexing step, three index keys were generated for blocking. Given name 

and surname were combined to generate the first block key. The second block key was generated 

by sorting DOB, SSI, and phone number. For the third block key, the combination of address 1, 

suburb, and state is used for sorting the data. Afterward, the candidate record pairs were obtained, 

and the comparison step began. The comparison result (similarity score) for a specific field with a 

selected comparison method is within [0, 1]. The higher the similarity score is, the more similar the 

two attributes are.  

 

5.1. Synthetic Data 

When generating the data, there are two remarkable aspects. First, the synthetic data need to be 

reasonable. In other words, it should have the characteristics of the real-world data. To be specific, 

the attributes of the synthetic data should be similar to those of the real-world data, and these 

attributes should follow similar frequency distributions that the real-world data follows. For 

example, the common names in the real-world need to appear frequently in this synthetic data. 

Sometimes, nicknames are included in the given name, so the synthetic data should also cover this 

case. Second, the synthetic data should contain some noise/errors, which is commonly seen in the 

real-world data. Typically, the errors occurred in the real world obey certain frequency 

distributions. Thus, in synthetic data, the errors should be as close as possible to the real-world data. 
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Furthermore, various types of errors should be included, such as missing fields, typing errors, and 

OCR errors. Phonetical variations are very common, and they usually occur when an entry does 

not affect the phonetical sound of names. For example, ‘Chris’, ‘Cris’, and ‘Kris’ have the same 

phonetical sound. All these kinds of errors follow a certain frequency distribution in the real world, 

so the errors in the generated synthetic data should also obey the distribution. As the data is 

generated manually, we can have a deeper insight on it, and this will help us make a better 

qualitative assessment of the proposed record linkage model. 

 In this study, an open source record linkage system named FEBRL [41][42] helps us generate 

synthetic datasets. This tool has a graphical user interface (GUI), which is very convenient and 

easy to operate. When using this tool to complete record linkage tasks, Python codes are generated 

automatically in the background. Therefore, we are able to modify the Python codes to change the 

settings of the record linkage task. With this tool, we can not only generate synthetic datasets, but 

also obtain similarity scores that will be fed to the ANN and the Bayesian network. The generator 

in this tool can create a desired number of original records and a desired number of duplicates at 

the same time. Errors can be added by choosing a maximum number of duplicates per record, a 

maximum number of modifications per field, and a maximum number of modifications per record. 

Obviously, the maximum number of modifications per record should be larger or equal to the 

maximum number of modifications per field. By using the tables that contain field values and the 

corresponding frequency distributions, records and errors can be generated by the tool. Originally, 

the data generated by this tool contains 16 fields, viz. record ID, culture, title, age, date of birth 

(DOB), sex, given name, surname, state, suburb, address 1, address 2, street number, postal code, 

social security ID (SSI), and phone number. Furthermore, a single CSV file that contains all 

generated original records and duplicates is created by the generator. However, two documents are 

needed for the record linkage task. One contains some original records, and the other one contains 

all duplicates and the other original records. Thus, a module is added to the original Python codes 

by us to generate two CSV files. In addition, the attribute in field age is always changing over time, 

and it can be computed by the corresponding DOB, so we also modify the Python codes to 

eliminate the field age. With the modified Python codes, four synthetic datasets are generated as 

follows, 
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1) 4,500 original records and 1,500 duplicates with a maximum of 1 duplicate/record, a 

maximum of 1 modifications/field, and a maximum of 2 modifications/record; 

2) 4,500 original records and 1,500 duplicates with a maximum of 2 duplicates/record, a 

maximum of 2 modifications/field, and a maximum of 3 modifications/record; 

3) 4,500 original records and 1,500 duplicates with a maximum of 2 duplicates/record, a 

maximum of 3 modifications/field, and a maximum of 4 modifications/record. 

4) 4,500 original records and 1,500 duplicates with a maximum of 3 duplicates/record, a 

maximum of 3 modifications/field, and a maximum of 5 modifications/record. 

 

For each dataset, two CSV files are generated by the modified generator. File A contains 3,000 

records in total, viz. 1,500 original records that do not have duplicates, and 1,500 original records 

that have at least one duplicate. For File B, it also has 3,000 records totally, including 1,500 

original records that do not have duplicate records and 1,500 duplicate records. An example is 

shown in Table 5.1. to illustrate how the records are generated and modified. We can see that there 

were two duplicate records for ‘record-404-org’. For ‘rec-404-dup-0’, three fields were modified, 

including state, phone number, and SSI. A phonetical error and a typing error (replacing ‘0’ with 

an adjacent number ‘9’) occurred in field state and field SSI, respectively. Furthermore, the 

attribute in field phone number changed a lot. The possible reason is that this person changed 

his/her phone number. There were also three modified fields in ‘rec-404-dup-1’. In fields surname 

and street number, typing errors occurred again. Moreover, an OCR error (replacing number ‘1’ by 

a special character ‘|’) existed in field phone number. Overall, three types of errors were contained 

in this example, viz. typing errors, phonetical errors, and OCR errors.  

 

Table 5.1. An Original Record and Its Duplicates 

Rec_id|Culture|Sex|DOB|Title|Name|Surname|State|Suburb|Postcode|street #|address1|address 2|phone #|SSI 

rec-404-org|usa| |23|19940927|mr|joseph|brock|nsw|pyrmont|7000|44|the verge| |08 65000115|2043047 

rec-404-dup-0|usa| |23|19940927|mr|joseph|bronc|nsw|pyrmont|7000|44|the verge| | 07 77579416|2043947 

rec-404-dup-1|usa| |23|19940927|mr|josej|brock|nsw|pyrmont|7000|42|the verge| |08 65000|15|2043047 
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 Among these 15 fields, we select eight fields to be compared in the ANN and the Bayesian 

network. They are DOB, given name, surname, state, suburb, address 1, SSI, and phone number. 

Field address 2 is discarded since it is blank on most records. In other words, most address 

information is concentrated in field address 1. Since these eight fields are the most common ones 

in the real-world data and they can provide enough information to represent a person’s identity, 

they are selected to do the experiments for the record linkage. 

 

5.1.1. Low Noise 

In the first experiment, dataset 1 was used to perform the record linkage task. It has 4,500 original 

records and 1,500 duplicates with a maximum of one duplicate per record, a maximum of one 

modification per field, and a maximum of two modifications per record. Furthermore, four types of 

errors were included the data, viz. typographical errors, phonetical errors, OCR errors, and 

deletion of fields. Then this dataset was split into two files, one containing 3,000 original records, 

and the other one containing 1,500 original records and 1,500 duplicates. After records indexing 

with the Standard Blocking method, n=1641 candidate record pairs were generated. To obtain the 

weights for all fields and comparison methods, the ANN was used first. In the ANN training 

process, the candidate record pairs were separated into a training set and a testing set with the ratio 

7:3. Hence, the training set has 1149 record pairs, and the testing set has 492 record pairs.  

As described before, the objective is to classify the record pairs as a match or not a match, so 

the target vector t is represented in binary form. In other words, the target vector consists of 0 and 

1. The final decision is determined according to which region does the matching score belong to, 

below τ1 (non-match), above τ2 (match), or within τ1 and τ2 (potential match), where τ1 and τ2 

are two predefined thresholds. Obviously, the aim is to make record pairs classified as 

match/non-match as much as possible. To determine τ1 and τ2, for each candidate record pair, the 

similarity scores for all fields with all comparison methods were summed to get a global score. The 

histogram of the global scores for all candidate record pairs is shown in Figure 5.1. The values of 

τ1 and τ2 can be estimated from the histogram. Here, we set τ1 = 0.4, τ2 = 0.8. From Figure 5.1, 

we can also see that the training set was perfectly separated into two classes after the training 

process. 
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Figure 5.1. Histograms of Summation Scores for All 

Candidate Record Pairs and the Training Set in ANN 

with Dataset 1 (Low Noise) 

Figure 5.2. Q-plot for Candidate Record Pairs with 

Dataset 1 (Low Noise) 

 

Furthermore, in the ANN, the number of iterations was set to 300, and the learning rate 𝛼 was 

set to 0.4. The objective function (performance index) of the learning algorithm, viz. Q, should be 

as small as possible, and its trend graph is shown in Figure 5.2. It converged to 0.003 after 300 

iterations.  

Next, the trained ANN was tested with the data not used during the training process, namely 

the testing set. 20 groups of weights with random initial values were used to test the trained ANN. 

From the experimental results, we can see whether the weights coming from different groups have 

the same influence on the final decision or not. Among the 20 experiments, the most common 

confusion matrixes are shown in Table 5.2. The results show a 100% accuracy for the training set 

and a 99.80%  accuracy for the testing set, where only one non-matching record pair was 

classified as a potential match. Therefore, the weights obtained from the ANN are quite suitable 

for describing the role of each field and each comparison method. In other words, these weights 

can be used in the Bayesian network to match the records. Besides, since the confusion matrixes 

among the 20 experiments had a small variation, about 0.13%, we can conclude that the final 

weights derived from different random initials had the same influence on the final decision. Hence, 

we just need to extract one set of weights to be used in the next step, viz. the determination of 

matching scores. 
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Table 5.2. Confusion Matrixes for Training and Testing Sets in ANN with Dataset 1 (Low Noise) 

 
Training set 

 
Non-match Review Match 

Non-match 81 0 0 

Match 0 0 1068 

 
Testing set 

Non-match 59 1 0 

Match 0 0 432 

 

We extracted the final hidden-output weights w to find out which comparison methods 

contributed most during the training process. As described in Chapter 4, in the ANN, the final 

weights after normalized are all within [0, 1], and the weights whose values are close to 1 

contribute more than the weights whose values are close to 0. As 20 sets of weights were obtained 

from the experiments, we calculated the average values and standard deviations of these weights to 

have a clear insight into these weights. The mean values and standard deviations of these weights 

are shown in Table 5.3. We can see that the Trigram comparison method had the highest overall 

weight, so it was the biggest influence factor for record linkage. Besides Trigram, Positional 

Bigram and Levenshtein Distance methods also had higher mean weights than the others.  

 

Table 5.3. Hidden-output Weights w with Dataset 1(Low Noise) 

SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

0.4672 

± 0.464 

0.6793 

± 0.401 

0.3994 

± 0.394 

0.4618 

± 0.302 

0.5821 

± 0.345 

0.4447 

± 0.300 

0.5073 

± 0.280 

0.5610 

± 0.333 

0.4317 

± 0.325 

0.4387 

± 0.406 

 

 The final input-hidden weights z corresponding to the Trigram comparison method are shown 

in Table 5.4. Clearly, DOB field was the most relevant one since its weights had least variability, 

and the following fields were address and surname. Moreover, SSI and suburb also played an 

important role in separating the matching record pairs from the non-matching ones as their mean 

weights were higher than the others. 

 

Table 5.4. Input-hidden Weights z Corresponding to Trigram Comparison Method with Dataset 1 (Low Noise) 

DOB SSI Name Surname Address Suburb State Tel. 

0.5473 

± 0.121 

0.6851 

± 0.405 

0.4883 

± 0.183 

0.5243 

± 0.165 

0.5731 

± 0.150 

0.6467 

± 0.242 

0.5477 

± 0.187 

0.6136 

± 0.306 
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 However, the mean weights cannot be used in the Bayesian network since they have no actual 

meaning. In other words, the mean values cannot represent the actual distribution of these weights. 

As the confusion matrixes for the training and testing sets among the 20 experiments had a minor 

variation, we just extracted one experiment’s final weights and used them to classify the candidate 

record pairs. The input-hidden weights and hidden-output weights we selected are shown in Table 

5.5. The Positional Bigram comparison function contributed most for record linkage, and it was 

followed by Syllable Alignment Distance function and Levenshtein Distance function. For the 

input-hidden weights corresponding to Positional Bigram method, field suburb played an 

important role during the process of record linkage. Besides suburb, address and SSI also 

contributed a lot to the record linkage. Recalling that these weights cannot be directly employed to 

the Bayesian network, normalization should be done beforehand, and the details were already fully 

discussed in Chapter 3.4. After normalization, not only the sum of the hidden-output weights but 

also the sum of the input-hidden weights for each comparison method was 1. The details of the 

normalized weights are also shown in Table 5.5. Then the normalized weights were imported into 

the Bayesian network to complete the record linkage task. 

 

Table 5.5. Selected Hidden-output Weights w and Input-hidden weights z Corresponding to Positional Bigram 

Comparison Function with Dataset 1 (Low Noise) 

(a) Hidden-output Weights  

Normalization SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

Before 0.9639 0.1171 0.1089 0.2976 1 0.4375 0.4081 0.8819 0.5510 0 

After 0.2022 0.0246 0.0228 0.0624 0.2098 0.0918 0.0856 0.1850 0.1156 0 

(b) Input-hidden Weights 

Normalization DOB SSI Name Surname Address Suburb State Tel. 

Before 0.5638 0.8408 0.2413 0.25 0.8679 0.9811 0.6302 0.6483 

After 0.1122 0.1674 0.0480 0.0498 0.1728 0.1953 0.1255 0.1122 

 

 After 1641 candidate record pairs and the normalized weights were imported into the 

Bayesian network, the probabilities of being a match (matching scores) were computed by the 

variable elimination algorithm. Since we have known which record pairs are matched or not 

matched when generating the synthetic data, a confusion matrix can be constructed to quantify the 

quality of the proposed record linkage model. The thresholds used for constructing the confusion 
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matrix were determined by the histogram in Figure 5.3, which shows the distribution of the 

candidate record pairs’ matching scores. Most matching record pairs’ scores were within [0.7, 1]. 

Furthermore, the matching scores for most non-matching record pairs were lower than 0.6. And 

there was a gap between [0.6, 0.7], which could be the region of potential matches. Therefore, we 

set the thresholds as 0.6 and 0.7.  

 

 

Figure 5.3. Histogram of Matching Scores for Candidate Record Pairs with Dataset 1 (Low Noise) 

 

 The confusion matrix for the record linkage results coming from the Bayesian network is 

shown in Table 5.6. 62 record pairs were misclassified and 81 record pairs required clerical review. 

In particular, 33 false positives and 29 false negatives were included in the misclassified records. 

In this experiment, the accuracy rate was 91.29%. Furthermore, the precision, recall, and 

f-measure were 94.49%, 96.07%, and 95.27%, respectively. Here, we can see that the proposed 

model accomplished the record linkage task with a great result.  

 

Table 5.6. Confusion Matrix for the Final Record Linkage Results with Dataset 1 (Low Noise) 

 
Non-match Review Match 

Non-match 57 51 33 

Match 29 30 1441 

 

5.1.2. Medium-low Noise 

Next, dataset 2, which has 4,500 original records and 1,500 duplicates with two maximum 

duplicates per record, two maximum modifications per field, and three maximum modifications 
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per record, was used to perform the experiment. After records indexing by using the Standard 

Blocking method, 1650 record pairs were compared by the proposed record linkage model. 

Similarly, the data was split into a training set and a testing set, which consist of 1155 candidate 

record pairs and 495 candidate record pairs, respectively.  

 

  

Figure 5.4. Histograms of Summation Scores for All 

Candidate Record Pairs and the Training Set in ANN 

with Dataset 2 (Medium-low Noise) 

Figure 5.5. Q-plot for Candidate Record Pairs with 

Dataset 2 (Medium-low Noise) 

 

After observing the histogram of simple scores summation for all candidate record pairs, as 

shown in Figure 5.4, we set the thresholds as 0.4 and 0.8. In addition, all the other parameters in the 

ANN learning structure remained the same values as before, including the number of iterations, 

learning rate, etc. The objective function (Figure 5.5) converged to 0.0035 when 300 iterations 

were accomplished.  

 

Table 5.7. Confusion Matrixes for Training and Testing Sets in ANN with Dataset 2 (Medium-low Noise) 

 
Training set 

 
Non-match Review Match 

Non-match 89 0 0 

Match 0 0 1066 

 
Testing set 

Non-match 60 1 1 

Match 0 0 433 
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After training and testing the ANN learning structure, the confusion matrices which frequently 

appeared in the 20 experiments are shown in Table 5.7. The accuracy rates for the training set and 

testing set were 100% and 99.6%, respectively. In the testing set, one non-matching record pair 

was classified as a match, and another non-matching record pair was classified as a potential 

match. 

 The overall hidden-output weights w after training are shown in Table 5.8. The Trigram 

method had the highest mean weight among the ten comparison methods, so it influenced most on 

the record linkage results. Furthermore, the Longest Common Substring 3 method also had a high 

mean weight. However, the standard deviation of the Trigram function’s weights was also higher, 

which means Trigram’s influence on the record linkage changed a lot when performing the 20 

experiments. The input-hidden weights z corresponding to the Trigram function are also shown in 

Table 5.8, where field surname had the least variation. Hence, the surname was the most important 

influence factor in the process of record linkage. Besides surname, state, address and name (given 

name) also had fewer variations than the other fields. Overall, there were little differences in the 

mean weights of these eight fields. Comparing the final weights for dataset 1 and dataset 2, as 

shown in Table 5.3, Table 5.4 and Table 5.8, we found that in both two cases the Trigram function 

was the most significant one among the ten comparison functions. Regarding the field weights, the 

weights for name, surname, address, and state had fewer variations than the others.  

 

Table 5.8. Hidden-output Weights w and Input-hidden weights z Corresponding to Trigram Comparison 

Function with Dataset 2 (Medium-low Noise) 

(a) Hidden-output Weights  

SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

0.4690 

± 0.453 

0.6354 

± 0.406 

0.4533 

± 0.326 

0.5781 

± 0.216 

0.4527 

± 0.389 

0.5305 

± 0.246 

0.5106 

± 0.221 

0.5479 

± 0.325 

0.4861 

± 0.332 

0.4821 

± 0.443 

(b) Input-hidden Weights 

DOB SSI Name Surname Address Suburb State Tel. 

0.5499 

± 0.201 

0.6449 

± 0.427 

0.5231 

± 0.182 

0.5499 

± 0.141 

0.5884 

± 0.176 

0.6276 

± 0.420 

0.5647 

± 0.154 

0.5895 

± 0.186 

 

 The input-hidden and hidden-output weights that were selected to import into the Bayesian 

network are shown in Table 5.9, where the Trigram comparison method made the largest 

contribution for record matching, and it was followed by Damerau-Levenshtein Edit Distance 
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method, Bigram method, and Longest Common Substring 3 method. Regarding the data fields, 

suburb, SSI, and phone number had bigger impacts on the record linkage results. The normalized 

results of these weights are also shown in Table 5.9. As before, the sum of the normalized 

hidden-output weights and the sum of the normalized input-hidden weights corresponding to 

each comparison method were all 1.  

 

Table 5.9. Selected Hidden-output Weights w and Input-hidden weights z Corresponding to Trigram 

Comparison Function with Dataset 2 (Medium-low Noise) 

(a) Hidden-output Weights  

Normalization SyD Trigram Bigram LCS3 Pbigram LCS2 SW-D LE-D DLE Exact 

Before 0.2896 1 0.7656 0.7189 0.1667 0.6769 0.4109 0.2859 0.7898 0 

After 0.0567 0.1959 0.1500 0.1408 0.0327 0.1326 0.0805 0.0560 0.1547 0 

(b) Input-hidden Weights 

Normalization DOB SSI Name Surname Address Suburb State Tel. 

Before 0.3984 0.9951 0.3470 0.4110 0.4667 1 0.3860 0.7586 

After 0.0837 0.2089 0.0729 0.0863 0.0980 0.2100 0.0810 0.1593 

 

 

Figure 5.6. Histogram of Matching Scores for Candidate Record Pairs with Dataset 2 (Medium-low Noise) 

 

 Next, the selected weights were imported into the Bayesian network to illustrate the role of 

each comparison function and field. After the Bayesian network was constructed and variable 

elimination was completed, the matching scores for 1650 candidate record pairs were attained. 
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From the histogram of these matching scores, as shown in Figure 5.6, we can see that most 

matching record pairs had scores between 0.7 and 1, which is similar to the results got from dataset 

1. And most non-matching record pairs were concentrated within [0.5, 0.6]. Two bell-shaped 

distributions existed in this histogram: one is below 0.6 and the other one is above 0.7. Thus, 0.6 

and 0.7 were selected as the thresholds for the record linkage task. If the matching scores were 

within [0.6, 0.7], the corresponding record pairs would fall in the region of potential matches.  

With the above two thresholds, the confusion matrix for the final record linkage results is 

shown in Table 5.10. Here, 33 candidate record pairs were misclassified, including 11 false 

positives and 22 false negatives. Furthermore, 81 record pairs were classified as clerical reviews. 

Therefore, the accuracy rate was 93.09% for dataset 2. The precision and recall were 95.71% and 

96.73%, respectively. As a result, the f-measure was 96.22%. 

 

Table 5.10. Confusion Matrix for the Final Record Linkage Results with Dataset 2 (Medium-low Noise) 

 
Non-match Review Match 

Non-match 86 54 11 

Match 22 27 1450 

 

5.1.3. Medium-high Noise 

In the next experiment, we used dataset 3 to accomplish the record linkage task. This dataset 

contains 4,500 original records and 1,500 duplicate records. Moreover, several errors were added 

into the data by selecting a maximum of two duplicates per record, a maximum of three 

modifications per field, and a maximum of four modifications per record. 1629 candidate record 

pairs were obtained after records indexing. After splitting the candidate record pairs, 1140 record 

pairs comprise the training set, and the other 489 record pairs comprise the testing set. The training 

set was used to train the ANN to obtain the optimized weights. The histograms of summation 

scores before and after training are shown in Figure 5.7. The thresholds we selected were still the 

same as before, viz. 0.4 and 0.8. From the histograms, we can see that the matching record pairs 

were separated from the non-matching pairs after training. Figure 5.8 shows the plot of the 

objective function Q. It also converged to 0.003 after 300 iterations.  
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Figure 5.7. Histograms of Summation Scores for All 

Candidate Record Pairs and the Training Set in ANN 

with Dataset 3 (Medium-high Noise) 

Figure 5.8. Q-plot for Candidate Record Pairs with 

Dataset 3 (Medium-high Noise) 

 

Table 5.11. Confusion Matrixes for Training and Testing Sets in ANN with Dataset 3 (Medium-high Noise) 

 
Training set 

 
Non-match Review Match 

Non-match 85 0 0 

Match 0 0 1055 

 
Testing set 

Non-match 51 0 0 

Match 0 1 437 

 

The confusion matrices that were most commonly seen during the 20 experiments are shown 

in Table 5.11. The training set was classified perfectly, but the testing set had one record pair to be 

reviewed. The accuracy rates for the training and testing sets were 100% and 99.8%, respectively. 

Therefore, the optimized weights obtained from the ANN were applicable to the Bayesian network 

to complete the record linkage task. 

 

Table 5.12. Hidden-output Weights w and Input-hidden weights z Corresponding to Syllable Alignment 

Distance Comparison Function with Dataset 3 (Medium-high Noise) 

(a) Hidden-output Weights  

SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

0.6892 

± 0.403 

0.4305 

± 0.400 

0.4216 

± 0.326 

0.5778 

± 0.254 

0.5401 

± 0.351 

0.5552 

± 0.279 

0.5876 

± 0.218 

0.5258 

± 0.236 

0.5747 

± 0.237 

0.2303 

± 0.396 
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(b) Input-hidden Weights 

DOB SSI Name Surname Address Suburb State Tel. 

0.6767 

± 0.338 

0.6781 

± 0.361 

0.5278 

± 0.256 

0.5883 

± 0.092 

0.6303 

± 0.192 

0.4645 

± 0.341 

0.5527 

± 0.313 

0.3985 

± 0.336 

 

 Table 5.12 shows the final hidden-output weights w in the form of mean value plus/minus 

standard deviation. The Syllable Alignment Distance method influenced most on the final record 

linkage results since it had the highest mean weight among the ten comparison methods. Besides 

Syllable Alignment Distance method, Smith-Waterman Edit Distance function, Longest Common 

Substring 3 function and Damerau-Levenshtein Edit Distance function also played important roles 

for the record linkage. These four methods had similar effects on separating the matching record 

pairs from the non-matching ones. However, the standard deviation of Syllable Alignment 

Distance function’s weights was the highest among these four methods, which means this function 

had a high variation on the contribution to the record linkage. The overall input-hidden weights z 

corresponding to the Syllable Alignment Distance function are also included in Table 5.12. Field 

surname was the most important influence factor for record linkage, given that it had the least 

variation among the eight fields. Address and name (given name) were the following two fields 

that had less variations. After comparing the final weights for dataset 3 with dataset 1 and dataset 2, 

it can be found that name, surname, address and state were always the first four fields that had 

fewer variations. Moreover, for dataset 3, the weights for DOB and SSI were the top two, which 

indicates that these two fields were more useful for record linkage under the Syllable Alignment 

Distance method. 

Then we selected one set of input-hidden and hidden-output weights among the 20 

experiments’ results, as shown in Table 5.13. Similarly, Syllable Alignment Distance comparison 

method still made the largest contribution to record matching, and it was followed by the 

Positional Bigram method and Bigram method. Regarding data fields, DOB, SSI and phone 

number were the most relevant fields, and their weights were all round 0.9. It seemed that the 

Syllable Alignment Distance method worked better on number fields than text fields. The 

normalized values of the selected weights are also described in Table 5.13. Clearly, the 

normalized hidden-output weights were summed up to 1, and so were the normalized 

input-hidden weights corresponding to each comparison method.  
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Table 5.13. Selected Hidden-output Weights w and Input-hidden weights z Corresponding to Syllable 

Alignment Distance Comparison Function with Dataset 3 (Medium-high Noise) 

(a) Hidden-output Weights  

Normalization SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

Before 1 0.1416 0.8944 0.7964 0.9707 0.2772 0.3010 0.8062 0.7754 0 

After 0.1677 0.0237 0.1500 0.1336 0.1628 0.0465 0.0505 0.1352 0.1300 0 

(b) Input-hidden Weights 

Normalization DOB SSI Name Surname Address Suburb State Tel. 

Before 0.9220 0.9114 0.4455 0.7084 0.6577 0.7531 0.3846 0.8916 

After 0.1625 0.1606 0.0785 0.1248 0.1159 0.1327 0.0678 0.1571 

 

Afterward, the above selected weights were added to the Bayesian network to complete the 

record linkage task. The matching scores for the 1629 candidate record pairs were computed by the 

variable elimination algorithm, and the distribution of these scores is shown in Figure 5.9. Similar 

to the previous two datasets, the scores for most matching record pairs were larger than 0.7, and 

most non-matches had scores lower than 0.6. In this histogram, a gap existed within [0.6, 0.65]. 

Hence, the two boundary values were selected as the thresholds for the final record linkage. When 

the matching score was above 0.65, the corresponding record pair was classified as a match. On the 

contrary, a record pair that had a matching score lower than 0.6 was classified as a non-match. 

When a record pair had a score within [0.6, 0.65], it was identified as a potential match and 

required to be checked manually.  

 

 

Figure 5.9. Histogram of Matching Scores for Candidate Record Pairs with Dataset 3 (Medium-high Noise) 
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Afterward, the confusion matrix based on the above two thresholds was obtained, as shown in 

Table 5.14. In this case, 86 candidate record pairs were misclassified, including 48 false positives 

and 38 false negatives. Furthermore, 64 candidate record pairs were classified as potential matches 

that needed clerical review. Therefore, the accuracy rate of record linkage for dataset 3 was 

90.79%. The precision and recall were 94.50% and 95.51%, respectively. Then the f-measure for 

dataset 3 was 95.00%. 

 

Table 5.14. Confusion Matrix for the Final Record Linkage Results with Dataset 3 (Medium-high Noise) 

 
Non-match Review Match 

Non-match 53 35 48 

Match 38 29 1426 

 

5.1.4. High Noise 

In the last experiment, dataset 4 was used to perform the record linkage task. It has 4,500 original 

records and 1,500 duplicate records with three maximum duplicates per record, three maximum 

modifications per field, and five maximum modifications per record. We still used the Standard 

Blocking method to index the records. When records indexing was finished, 1645 candidate record 

pairs were generated and they would be compared in the following steps. These 1645 candidate 

record pairs were split into a training set and a testing set first. Then the training set contained 1152 

candidate record pairs, and the testing set contained the other 493 record pairs. Next, the ANN was 

trained with the training set to obtain the optimized weights. And the fully trained ANN was tested 

with the testing set to see if the optimized weights were qualified to link the records. The 

histograms of simply summed scores before and after training are shown in Figure 5.10. The 

histogram before training helped us decide the thresholds that should be used to train the ANN. 

Here, we set the thresholds to be 0.4 and 0.7. After training, all matching record pairs were 

separated from the non-matches. The plot of the objective function Q was shown in Figure 5.11. 

We can see that Q converged to 0.003 when 300 iterations were accomplished, which is similar to 

the results obtained from the previous three datasets.  
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Figure 5.10. Histograms of Summation Scores for 

All Candidate Record Pairs and the Training Set in 

ANN with Dataset 4 (High Noise) 

Figure 5.11. Q-plot for Candidate Record Pairs with 

Dataset 4 (High Noise) 

 

Table 5.15. Confusion Matrixes for Training and Testing Sets in ANN with Dataset 4 (High Noise) 

 
Training set 

 
Non-match Review Match 

Non-match 88 0 0 

Match 0 0 1064 

 
Testing set 

Non-match 67 0 0 

Match 0 1 425 

 

After using the above two thresholds, the confusion matrices for the training and testing sets 

were obtained. Table 5.15 shows the most common results among the 20 experiments. All record 

pairs in the training set were correctly classified, whereas one matching record pair in the testing 

test was classified as a potential match. Consequently, the accuracy rates for the training and 

testing set were 100% and 99.8%, respectively. Since the candidate record pairs were classified 

with a very high accuracy, the weights obtained from the ANN were applicable to match the 

records in the Bayesian network. 

The mean values and the standard deviations of the final hidden-output weights w coming 

from the ANN are shown in Table 5.16. The Positional Bigram comparison method contributed 

most to the record linkage task since its mean weight was the highest among the ten comparison 
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methods. The Trigram method and the Exact String Comparison method were the next two fields 

that had bigger impacts on records matching.  

The input-hidden weights z corresponding to the Positional Bigram comparison method are 

also shown in Table 5.16. Here, the DOB field had the least variation among the eight fields, so it 

was the most relevant field for separating the matches from the non-matches. Besides DOB, 

suburb and address were the fields that had fewer variations. For dataset 4, after excluding DOB, 

name, surname, address and state were still the first four fields that had fewer variations. 

Therefore, the roles of these four fields for dataset 4 are similar to the roles among the previous 

three datasets. Furthermore, the mean values of the optimized weights connecting to phone 

number and SSI were the lowest two. Field DOB had the fourth highest overall weight. These 

findings indicated that the Positional Bigram comparison method performed better on text fields 

than number fields with dataset 4.  

 

Table 5.16. Hidden-output Weights w and Input-hidden weights z Corresponding to Positional Bigram Comparison 

Function with Dataset 4 (High Noise) 

(a) Hidden-output Weights  

SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

0.4426 

± 0.408 

0.5199 

± 0.454 

0.4113 

± 0.364 

0.4949 

± 0.274 

0.5343 

± 0.385 

0.4193 

± 0.262 

0.3964 

± 0.274 

0.4501 

± 0.325 

0.4832 

± 0.289 

0.5164 

± 0.455 

(b) Input-hidden Weights 

DOB SSI Name Surname Address Suburb State Tel. 

0.5629 

± 0.107 

0.5075 

± 0.413 

0.5554 

± 0.239 

0.6003 

± 0.220 

0.5536 

± 0.192 

0.5664 

± 0.183 

0.5826 

± 0.241 

0.5226 

± 0.282 

 

The input-hidden and hidden-output weights we selected are shown in Table 5.17. Here, the 

Trigram comparison method, which is similar to Positional Bigram, influenced most on the 

record linkage, and it was followed by the Bigram method and Syllable Alignment Distance 

method. For data fields, SSI and phone number were the most relevant ones among the eight 

fields, and they were beyond the other six fields a lot. The normalized weights are also included 

in Table 5.17. As before, the summation of the normalized hidden-output weights and the 

summation of the normalized input-hidden weights corresponding to each comparison method 

were all 1. 
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Table 5.17. Selected Hidden-output Weights w and Input-hidden weights z Corresponding to Trigram 

Comparison Function with Dataset 4 (High Noise) 

(a) Hidden-output Weights 

Normalization SyD Trigram Bigram LCS3 PBigram LCS2 SW-D LE-D DLE Exact 

Before 0.7904 1 0.8257 0.6728 0.2482 0.3119 0.3042 0.6984 0.2687 0 

After 0.1544 0.1953 0.1613 0.1314 0.0485 0.0609 0.0594 0.1364 0.0525 0 

(b) Input-hidden Weights 

Normalization DOB SSI Name Surname Address Suburb State Tel. 

Before 0.4421 1 0.2633 0.2870 0.4422 0.4296 0.2132 0.8144 

After 0.1136 0.2569 0.0677 0.0738 0.1136 0.1104 0.0548 0.2093 

 

 

Figure 5.12. Histogram of Matching Scores for Candidate Record Pairs with Dataset 4 (High Noise) 

 

 The normalized weights and the 1629 candidate record pairs were imported into the Bayesian 

network to compute matching scores. The distribution of these matching scores is shown in Figure 

5.12. Most matching pairs’ scores were within [0.6, 1], where the lower boundary was a little bit 

lower than those for the previous three datasets. This is because more noise was included in this 

dataset. For the most non-matches, their matching scores were within [0.4, 0.55]. In the histogram, 

two bell-shaped distributions were connected in the region [0.55, 0.6]. This range was considered 

as the region of potential matches. Hence, the boundary values of this range were selected as the 

thresholds. The record pairs whose matching scores were higher than 0.6 were classified as 
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matches, and the record pairs that had matching scores lower than 0.55 were identified as 

non-matches. 

Finally, the confusion matrix for the record linkage task with dataset 4 is shown in Table 5.18. 

In total, 84 candidate record pairs were misclassified, including 59 false positives and 25 false 

negatives. Besides, 50 candidate record pairs were classified as potential matches. Thus, the 

accuracy rate, precision and recall were 91.85%, 93.91% and 97.31%, respectively. The f-measure 

was calculated based on precision and recall, which was about 95.58%. 

 

Table 5.18. Confusion Matrix for the Final Record Linkage Results with Dataset 4 (High Noise) 

 
Non-match Review Match 

Non-match 61 35 59 

Match 25 15 1450 

 

5.2. Analyzing All Datasets 

Overall, the accuracy rates for the four datasets with different levels of noise were all above 90%, 

which can be seen from Table 5.19. However, the datasets with higher levels of noise, viz. dataset 

3 and dataset 4, had lower accuracy rates than the other two datasets. Since f-measure is the 

harmonic mean of precision and recall, it is more suitable for quantifying the quality of record 

linkage than the precision and recall. For the four datasets we tested, the f-measures were all above 

or equal to 95%. Therefore, it can be concluded that the proposed model performs well for the 

record linkage task.  

 

Table 5.19. Performance Measures for Four Datasets 

Dataset Accuracy (%) Precision (%) Recall (%) F-measure (%) 

1 91.29 94.49 96.07 95.27 

2 93.09 95.71 96.73 96.22 

3 90.79 94.50 95.51 95.00 

4 91.85 93.91 97.31 95.58 

 

With respect to weights, surname, address, name, and state were the most relevant fields for 

record linkage since their weights had fewer variations among the four datasets. Meanwhile, the 

mean values of their weights were also very high. Among the ten comparison functions, Positional 
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Bigram’s weight was the most stable one as its mean values (viz. 0.58, 0.45, 0.54, and 0.53) moved 

in a tight range across the four datasets. The Longest Common Substring 2 and 3 comparison 

functions also had small variations on weights. The ranges of these two methods’ weights were 

from 0.42 to 0.56 and from 0.46 to 0.58, respectively. Furthermore, their weights were very close 

to each other for each of the four datasets. Hence, their roles in records matching were quite similar. 

For dataset 1, dataset 2 and dataset 4, the mean weights of the Trigram method were always among 

the top four. And the average value of its four mean weights was 0.57, which was the highest 

among the ten comparison methods. Hence, the Trigram was the most significant comparison 

function. Moreover, the Smith-Waterman Edit Distance comparison method played a more import 

role in the first three datasets than in the dataset 4 since its mean weight for dataset 4 (0.40) was 

apparently lower than the other three mean weights, viz. 0.51, 0.51 and 0.59.  

 To get insights into the drawbacks of the proposed model, a detailed analysis for the 

misclassified record pairs is provided as follows. We selected a set of records from dataset 4 as an 

example. Recalling that the dataset 4 was split into two files, one file (file A) had 3,000 original 

records, and the other one (file B) had 1,500 duplicate records and 1,500 original records. The 

original record we selected from File A had three duplicate records in File B, as shown in Table 

5.20. The ‘rec-2076-org’ was from File A, and the other three records with ‘dup’ were from File B. 

Each of the duplicates was compared with the original record after records indexing. The 

‘rec-2076-dup-0’ and ‘rec-2076-dup-1’ were classified as matching records since their matching 

scores were above the upper threshold (also known as autolink), 0.6. The ‘rec-2076-dup-2’ had a 

matching score smaller than the lower threshold (also known as clerical review), 0.55, so it was 

classified as a non-matching record. When we looked at the detailed information of the original 

record and ‘rec-2076-dup-2’, we found that the biggest difference was that the content of fields 

name and surname was exchanged, which resulted in a low matching score and a wrong decision. 

Furthermore, a typing error (‘i’ was replaced by an adjacent character ‘u’) occurred in field 

surname. In ‘rec-2076-dup-0’, two errors existed. First, two numbers were typed in the wrong 

order in DOB. The other error was that the number ‘3’ was replaced by ‘5’ in field Phone Number 

due to an OCR error. Similarly, the ‘rec-2076-dup-1’ also had two errors. A number in field SSI 

was entered incorrectly, and an additional character ‘c’ was inserted in field Suburb. The errors in 

‘rec-2076-dup-0’ and ‘rec-2076-dup-1’ were very minor so that the matching scores did not 

decrease so much. However, the ‘rec-2076-dup-2’ had a big error that two fields’ content was 
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exchanged, which became a ‘critical strike’, so its matching score was much lower than the other 

two duplicates. Moreover, a missing field in record linkage is always considered as a 

non-matching field, so the matching score will decrease when it occurs. It is therefore that the 

‘rec-2076-dup-0’ and ‘rec-2076-dup-1’ did not have high matching scores, like 0.9 or more, even 

only two minor errors existing in each of them.  

 

Table 5.20. Example 1 of Comparison Results with Dataset 4 (High Noise) 

Record 

ID 
DOB SSI Name Surname Address Suburb State 

Phone 

Number 

Match 

Score 

rec-2076-

org 
19780324 2858484 sophie aaternir <undefined> roxbydowns sa 746439244  

rec-2076-

dup-0 
19870324 2858484 sophie aaternir <undefined> roxbydowns sa 746459244 0.8672 

rec-2076-

dup-1 
19780324 2858784 sophie aaternoi <undefined> roxbycdwons sa 746439244 0.7538 

rec-2076-

dup-2 
19780324 2858484 aaternur sophie <undefined> roxbydowns sa 746439244 0.4404 

 

 Another misclassified record pair, a false positive, is shown in Table 5.21. The 

‘record-2473-org’ was from File A and the ‘record-3446-org’ was from File B. Apparently, the 

states in these two records were both ‘vic’. The names in these two records were also quite similar 

as ‘annabel’ and ‘annabelle’ had the same pronunciation. In other words, a phonetical error 

occurred here. Furthermore, field DOB in ‘record-3446-org’ had four identical numbers with 

‘record-2473-org’. Similarly, ‘record-3446-org’ and ‘record-2473-org’ also had three identical 

numbers in field Phone Number. Therefore, a high matching score, 0.6841, was generated. Since 

the score was above the autolink (0.6), this non-matching record pair was classified into the region 

of matches.  

 

Table 5.21. Example 2 of Comparison Results with Dataset 4 (High Noise) 

Record 

ID 
DOB SSI Name Surname Address Suburb State 

Phone 

Number 

Match 

Score 

rec-2473-

org 
19100120 8371008 annabel <undefined> 

shackleton 

circuit 
pascoevale vic 878490690  

rec-3446-

org 
19860728 6718759 annabelle <undefined> elvireplace mentone vic 872394383 0.6841 

 



 56 

5.3. Eliminating Two Comparison Methods 

From the overall hidden-output weights for the synthetic datasets, as shown in Table 5.3, Table 5.8, 

Table 5.12 and Table 5.16, we can see that the Syllable Alignment Distance comparison method 

and the Exact String comparison method had the most unstable performance in record linkage 

since the standard deviations of their weights were relatively significant and were very close to the 

mean values of the weights. This means that they made tiny contributions to the linkage of records 

and might even reduce the linkage accuracy. Therefore, we eliminated these two less significant 

comparison methods in the proposed record linkage model and repeated the experiments with the 

same data to see if the accuracy was increased or not.  

After elimination, we only had eight comparison methods, viz. c = 8. Hence, the ANN had 64 

neurons in the input layer, eights neurons in the hidden layer, and one neuron in the output layer. 

Similarly, the Bayesian network had 64 nodes in the first layer, eight nodes in the second layer, and 

a single node in the third layer. As the indexing method was not changed, the candidate record 

pairs remained the same as before. After using the proposed model (the ANN model and the 

Bayesian network model) to link the records, the experimental results are described as follows. 

The histograms of matching scores are shown in Figure 5.13, Figure 5.14, Figure 5.15 and Figure 

5.16, where the matches were further separated from the non-matches, compared with the 

experiments using ten comparison methods. From these four histograms, we can see that as more 

noise was added into the data, the region of matching record pairs moved left, which means the 

scores for matching record pairs were decreased. Furthermore, the scores for most non-matching 

record pairs were around 0.5. For most matching record pairs, their scores were higher than 0.6. 

For dataset 1 (low-noise data) and dataset 2 (medium-low-noise data), we set the thresholds as 0.55 

and 0.6 since there was a gap within [0.55, 0.6]. For the rectangles located below 0.55, their shape 

was similar to the right side of a bell-shaped distribution, thus they are considered as the region of 

non-matching records pairs. For dataset 3 (medium-high-noise data) and dataset 4 (high-noise 

data), the boundary between the matches and non-matches was not clear. However, the first 

rectangle was still considered as the region of non-matches as most non-matches had matching 

scores around 0.5. The heights of the second and third rectangles were relatively lower compared 

with their ‘neighbors’, so they were considered as the region connecting the matches and 

non-matches (viz. the region of potential matches). As the interval containing the second and third 

bins was [0.52, 0.57], its boundary values (0.52 and 0.57) were selected as the thresholds. 
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Figure 5.13. Histogram of Matching Scores for 

Experiments with Less Comparison Methods and 

Dataset 1 (Low Noise) 

Figure 5.14. Histogram of Matching Scores for 

Experiments with Less Comparison Methods and 

Dataset 2 (Medium-low Noise) 

 

  

Figure 5.15. Histogram of Matching Scores for 

Experiments with Less Comparison Methods and 

Dataset 3 (Medium-high Noise) 

Figure 5.16. Histogram of Matching Scores for 

Experiments with Less Comparison Methods and 

Dataset 4 (High Noise) 

 

 After selecting the thresholds, the confusion matrixes can be obtained, as shown in Table 5.22. 

For dataset 1, 41 candidate record pairs were misclassified, including 10 false positives and 31 

false negatives, and 34 candidate record pairs were classified as potential matches that needed 

clerical review. Dataset 2 had seven false positives and 28 false negatives. 42 candidate record 

pairs would be checked by a clerk. Regarding dataset 3 and dataset 4, more candidate record pairs 

were classified as potential matches, 63 and 79, respectively. Dataset 3 had the most misclassified 
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record pairs, including 19 false positives and 35 false negatives. For dataset 4, only 45 record pairs 

were misclassified, which is similar to dataset 1.  

 

Table 5.22. Confusion Matrixes for Experiments with Less Comparison Methods 

 
Dataset 1 (Low Noise) 

 
Non-match Review Match 

Non-match 114 17 10 

Match 31 17 1452 

 
Dataset 2 (Medium-low Noise) 

Non-match 131 13 7 

Match 28 29 1442 

 
Dataset 3 (Medium-high Noise) 

Non-match 82 35 19 

Match 35 28 1430 

 
Dataset 4 (High Noise) 

Non-match 102 39 14 

Match 31 40 1419 

 

 With the confusion matrixes, the performance measures, viz. accuracy rate, precision, recall, 

and f-measure, can be calculated. The performance measures for the original record linkage model 

where ten comparison methods were used and the revised record linkage model where eight 

comparison methods were used are shown in Table 5.23. From this table, we can see that the 

revised model outperformed the original model on accuracy, precision, and f-measure. As more 

noise was added into the data, the range of advancement was decreased. Overall, the revised model 

performed better than the original model on record linkage, and the accuracy was augmented at the 

same time.  

 

Table 5.23. Performance Measures for the Original Model and Revised Model 

Dataset 
Accuracy (%) Precision (%) Recall (%) F-measure (%) 

Original Revised Original Revised Original Revised Original Revised 

1 91.29 95.43 94.49 98.17 96.07 96.80 95.27 97.48 

2 93.09 95.33 95.71 98.63 96.73 96.20 96.22 97.40 

3 90.79 92.82 94.50 96.36 95.51 95.78 95.00 96.07 

4 91.85 92.46 93.91 96.40 97.31 95.23 95.58 95.81 
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5.4. Indexing Only the Field ‘Given Name’ 

In the real world, when we want to find a person in two or more databases, we usually search the 

records according to his/her given name, and then identify which records refer to the same entity. 

Therefore, indexing the given name can be considered as a technique of records indexing since it is 

commonly used in practice. Here, we selected dataset 3 to complete the record linkage task with 

indexing the given name. And we still used the original proposed record linkage model (the model 

with eight data fields and ten comparison methods) to link the records. After indexing, the records 

that had the same give name became the candidate record pairs. Specifically speaking, if we 

selected the first record in File A, the File B would be searched to find which records had the same 

given name with the record coming from File A. Assume that L records were found in File B, then 

these L records were respectively compared with the record coming from File A, and L matching 

scores were obtained in the end. This process proceeded iteratively until the comparisons between 

the last record in File A and its ‘look-alikes’ were completed. The dataset 3 was selected to 

perform this experiment, which has 2 maximum duplicates per record, 3 maximum modifications 

per field, and 4 maximum modifications per record. The dataset was split into two files, where File 

A has 3,000 original records, and File B contains 1,500 duplicate records and the other 1,500 

original records. Table 5.24 shows an example of the comparison results, where the record in the 

first row came from File A and the other four records were the searching results from File B based 

on given name indexing. From the searching results, we can see that the two duplicate records had 

higher matching scores, around 0.9. On the contrary, the other two original records had lower 

matching scores, about 0.6. 

 

Table 5.24. An Example of Given Name Indexing with Dataset 3 (Medium-high Noise) 

Record 

ID 
DOB SSI Name Surname Address Suburb State 

Phone 

Number 

Match 

Score 

rec-4092-

org 
20080723 3994703 sachin drulkak osburndrive wynnum qld 61347108564  

rec-4092-

dup-1 
20080723 3994703 sachin dru|kak osburndrive wynnum qld 61347108564 0.9335 

rec-2139-

org 
19770319 3726886 sachin garikapaty 

Williamwebb 

drive 
kirwan sa 705937275 0.6054 

rec-4092-

dup-0 
20080723 3994703 sachin drulkak osburndrive wynnm qld 6134718564 0.8932 

rec-3638-

org 
19931221 9177120 sachin kawrungruang 

Coningham 

street 
marcushill vic 853663699 0.6091 
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In total, 31,763 candidate record pairs were obtained after searching all records in File A and 

File B with indexing the given name. The distribution of the matching scores for all candidate 

record pairs is shown in Figure 5.17, where the scores of most matching record pairs were within 

[0.8, 1.0], and most non-matching records’ scores were less than 0.75. From the figure, we can also 

see that there was a large bell-shaped distribution with a higher peak value within [0.4, 0.75] and a 

small bell-shaped distribution with a lower peak value within [0.8, 1]. It seemed that a gap existed 

between 0.75 and 0.8, which might be the region of potential matches. Thus, we set 0.75 and 0.8 as 

the thresholds to classify the candidate record pairs into three classes, non-match, potential match, 

and match. These two thresholds are also known as clerical review and autolink. If the matching 

score fell below the clerical review, the record pair would be classified as a non-match. A 

matching score above the autolink indicated that the corresponding record pair was a match. When 

a record pair’s matching score was between the clerical review and the autolink, it would be 

classified as a potential match and be reviewed by a clerk. 

 

 

Figure 5.17. Distribution of Matching Scores for All Candidate Record Pairs Based on Given Name Indexing 

with Dataset 3 (Medium-high Noise) 

 

After setting the two thresholds, the confusion matrix for this record linkage task was obtained, 

as shown in Table 5.25. Here, the accuracy rate was 98.72%. The precision, recall, and f-measure 
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including 281 false negatives and 7 false positives. Moreover, 117 candidate record pairs were 

assigned to the region of potential matches, and they would be reviewed manually to determine 

their categories.  

 

Table 5.25. Confusion Matrix for the Record Linkage Based on Given Name Indexing with Dataset 3 

(Medium-high Noise) 

 
Non-match Review Match 

Non-match 30789 26 7 

Match 281 91 569 

 

For the matching record pairs classified as non-matches, viz. false negatives, the main reason 

is that there were missing fields in these records dues to the noise. The matching scores for the 

missing fields became 0, and as a result, the matching scores for the corresponding record pairs 

were lower than the normal values. Even if some records were compared with their duplicates, the 

matching scores were still very low.  

 

Table 5.26. Searching Results based on the Given Name ‘Eliza’ with Dataset 3 (Medium-high Noise) 

Record from File A Record from File B Matching Score 

rec-2643-org rec-4026-org 0.6231 

rec-2643-org rec-2243-org 0.6287 

rec-2643-org rec-615-org 0.5836 

rec-2643-org rec-1783-org 0.5579 

rec-2643-org rec-2883-org 0.6232 

rec-2643-org rec-2643-dup-0 0.5755 

rec-2643-org rec-106-dup-0 0.6208 

rec-2643-org rec-609-org 0.6018 

rec-2643-org rec-2643-dup-1 0.7539 

rec-2643-org rec-3516-org 0.6195 

 

An example is shown in Table 5.26 and Table 5.27 to illustrate this kind of situation, where 

field state was missing in both the original record and two duplicates. ‘Rec-2643-org’ was from 

File A. After searching the File B based on indexing the given name ‘eliza’, the indexing results 

were obtained, as shown in Table 5.26. Ten candidate record pairs were obtained after indexing. 

From this example, we can also see that even some records in File B were the duplicates, their 

matching scores were still lower than the normal values (about 0.8 to 1). The main reason is that 
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the missing fields existed in the record pair. Furthermore, for ‘rec-2643-dup-0’, the address and 

suburb were filled out with the wrong order. Thus, ‘rec-2643-dup-0’ and ‘rec-2643-dup-1’ were 

classified as a non-match and a potential match, respectively. So, when one or more fields are 

missing in the record pair, the matching score will be lower than that under the same condition but 

without missing fields. This demonstrates why some matching record pairs were classified as 

non-matches or potential matches. 

 

Table 5.27. The Record Information of the Original and Duplicate Records 

Record 

ID 
DOB SSI Name Surname Address Suburb State 

Phone 

Number 

rec-2643-

org 
19951112 9890381 eliza fairclough millerstreet castlemaine <undefined> 244911181 

rec-2643-

dup-0 
19951112 9890381 eliza fairclough osreetmiller castlemaine <undefined> 244911181 

rec-2643-

dup-1 
19951112 9890381 eliza fairclough millerstreet castlemaine <undefined> 244911181 

 

To visualize the record linkage results based on given name indexing, the candidate record 

pairs and their matching scores were imported into Neo4j, which is a powerful graph database that 

can run fast queries on complex graph datasets [34]. With this tool, graph sets can be constructed 

manually with setting nodes, directed edges, and relationships. Each node could have several 

properties and a label. Each edge could have one or two directions to represent the relationships 

between the nodes it connects to. Moreover, edges could have several properties to show their 

characteristic. If needed, a node can have several edges connecting to other nodes.  

In this study, we separated the information of records into three parts, personal information, 

home information and phone information. The personal information contains fields name, 

surname, DOB and SSI, and the home information refers to fields address, suburb and state. The 

phone information is precisely the phone number. For each record, each part of its information was 

represented by a node in the graph set, and we labeled these three parts of information as 

‘PersonA’/‘PersonB’, ‘HomeA’/‘HomeB’ and ‘PhoneA’/‘PhoneB’ depending on which dataset did 

the record belong to. Furthermore, we had the ID of each record when generating the data, so 

another type of node was added to show the record’ ID. In this way, we could know which records 

are the duplicates and which are the original records. Similarly, the fourth type of node was labeled 

as ‘idA’ or ‘idB’. In total, there were four types of nodes in the graph set we constructed. For 
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‘Person’ nodes, they had four properties, name, surname, DOB, and SSI. ‘Home’ nodes had three 

properties, address, suburb, and state. Apparently, both ‘Phone’ nodes and ‘id’ nodes had a single 

property, phone number and ID, respectively. Afterward, edges (relationships) between these 

nodes were built. Here, we set the relationship between ‘Person’ nodes and ‘Home’ nodes as 

‘LIVE_IN’, the relationship between ‘Person’ nodes and ‘Phone’ nodes as ‘TEL’, the relationship 

between ‘Person’ nodes and ‘id’ nodes as ‘ID’. All these relationships (edges) started from the 

‘Person’ nodes and pointed to the ‘Home’/‘Phone’/‘id’ nodes. In this way, the four types of nodes 

were connected with the three kinds of relationships.  

 

 

Figure 5.18. An Example from the Neo4j Graph Set Based on Given Name Indexing with Dataset 3 

(Medium-high Noise) 

 

To visualize the graph clearly, the records from File A and File B were represented by pink 

nodes and yellow nodes, respectively, as shown in Figure 5.18. The graph set in Figure 5.18 

displayed the linkage results based on the example shown in Table 5.24, where a record in File A 

had four candidate duplicates in File B. From the Bayesian network, the matching scores of the 
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candidate record pairs were obtained, which could indicate how likely did each record pair refer to 

the same entity. So, we imported the matching scores into the graph set, as shown in Figure 5.18. 

For each candidate record pair, an edge (relationship) named ‘MATCHING_SCORE’ was added, 

which started from the record in File A and pointed to the record in File B. This kind of 

relationship only had one property, matching score, to indicate the probability of being a match for 

the record pair. In this way, the whole graph set was constructed. From Figure 5.18, we can see that 

the record at the bottom right was probably a duplicate of the record in File A since their matching 

score (0.9335) was very close to 1, as shown at the bottom of the figure. Similarly, as the matching 

score between the pink ‘sachin’ and the yellow ‘sachin’ at the bottom left was 0.8932, there was a 

high probability that these two records referred to the same entity.  

It is worth mentioning that in this powerful graph database when we click on a node or edge, 

the toolbar at the bottom can show all its properties. For example, the matching score property and 

its value were both shown at the bottom of Figure 5.18 when we clicked on the 

‘MATCHING_SCORE’ edge. If we click on the ‘Person’ node, all the four properties and their 

values will be shown at the bottom. Moreover, we can choose any property of the nodes to be 

shown in the graph. In Figure 5.18, name was chosen to be shown on ‘Person’ nodes; suburb was 

selected for ‘Home’ nodes. From the ids and the matching scores of the records, we can easily find 

out whether the decision made by the proposed record linkage model is consistent with the truth. In 

addition, queries can be done easily based on the graph set we built. The graph in Figure 5.18 is a 

search result from the big graph set we built. In detail, we searched the graph set based on which 

records had the name ‘sachin’ and extracted all the nodes and relationships. In practice, people 

usually search databases according to a name, an address, or a social security ID. With Neo4j and 

the graph set constructed, the queries based on the above information can be done quickly and 

accurately. Anyway, this tool helps us a lot on visualizing our results and doing queries about the 

results.  
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6. Conclusions and Future Studies 

In this study, a PGM for record linkage was proposed. Several weights, which were previously 

determined by a supervised gradient-descent learning scheme, were added to the constructed PGM 

to improve the linkage results. The complete process of record linkage was shown, including fields 

selection, selection of comparison methods, construction of the gradient-based model, 

optimization of weights, determination of conditional probability distributions, construction of the 

Bayesian network, and the determination of the matching scores (probabilities). The indexing 

method, Standard Blocking, and the selected comparison methods were also fully discussed. 

Furthermore, a modified python script included in the FEBRL tool was used to generate the 

synthetic datasets. The similarity scores for fields with different comparison methods were also 

obtained with the FEBRL tool. These similarity scores were regarded as the input for the ANN and 

the Bayesian model (PGM) to obtain the optimized weights and matching probabilities, 

respectively. Moreover, a decision model was used to inspect the quality of the record linkage, 

based on our model.  

 From the experimental results, several interesting conclusions can be derived. First, the 

experiments showed that the proposed model could help us find out which comparison methods 

are more significant and which fields are more relevant. These are important influencing factors 

that help determine the final matching scores. Name, surname, address, and state were the most 

relevant fields since their mean weights were relatively high among the selected fields for all tested 

datasets. Regarding the comparison methods, Positional Bigram was the most stable one given that 

its mean weight was commonly optimized to around 0.52 in most experiments. Longest Common 

Substring 2 and 3 also reached a similar value in most experiments. Second, after several 

experiments on datasets with different levels of noise, the results showed that the proposed record 

linkage model is stable and robust since the fluctuation range of the accuracy rates from different 

experiments was relatively narrow. Moreover, the indexing of the entities effectively reduced the 

number of record pairs to be compared, which sped up the record linkage process. Next, the 

accuracy rates and the values of f-measure on the tested datasets were all above 90% and 95%, 

respectively. From this, we can see that the proposed model had an acceptable performance. 

Furthermore, with the revised record linkage model where the Syllable Alignment Distance 

comparison method and the Exact String comparison method were eliminated, the accuracy and 

f-measure on the tested datasets were higher than those with the original proposed record linkage 
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model. This indicates that removing the comparison methods that are less significant in record 

linkage will help to augment the accuracy of the linkage of records. Finally, a graph (generated in 

Neo4j) was shown in this study, which visually displayed the classification results based on the 

indexing a single given name. A system combining the proposed model with the graph could not 

only contribute to entity resolution, but also discover relations among individuals. For example, if 

we want to track which people are named ‘Chris’, we can query the system, and then the graph will 

show all the entities that have this name, including personal information and relationships among 

them. This kind of tool could be very useful in the real world.  

 Beyond this study, some interesting ideas can be pursued. First of all, some other widely used 

comparison functions can be added into the model, e.g. the Jaro-Winkler comparison function, the 

Bag Distance comparison function, or the Editex comparison function. Next, the identity fields 

that show little contributions to record linkage can be eliminated, and/or some other fields can be 

added into the model, such as gender, citizenship, etc. After changing several fields or comparison 

methods, an updated model can be generated. By comparing the experimental results from the 

original model and the updated model, we can potentially see whether the new model performs 

better than the original one or not. Moreover, we can look for some other methods to determine 

conditional probability distributions, and check if they can augment the classification 

accuracy/f-measure or not. Furthermore, it would be interesting to test our model’s performance 

with the real-world data. As of now, the proposed model requires labeled data. Real-world data 

does not contain labels, therefore we have to turn to unsupervised classification, such as K-Means 

or Fuzzy C-Means. 
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