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Abstract 

Predicting the productivity of microtunnelling construction projects is challenging due to the 

inherent complexities of this trenchless excavation method. One of these complexities has to do 

with estimating the micro-tunnel boring machine penetration rate, given that it is subject to a 

number of factors, including variations in ground conditions during microtunneling, uncertainty 

regarding underground conditions along the tunnel path, and the complexity of the mechanism 

underlying micro-tunnel boring machine excavation. A review of literature on predicting the 

penetration rate reveals a number of gaps with respect to the prediction of micro-tunnel boring 

machine penetration rate, including (1) the lack of a robust method for the use of machine-

generated data for dynamically updating the project progress, (2) limited research on small-

diameter microtunneling excavation through soft ground conditions, (3) the lack of mechanistic 

investigation of the mechanism governing micro-tunnel boring machine penetration into the soil, 

as well as the lack of a theoretical mechanistic relationship by which to quantify the influence of 

primary factors such as soil type, operational loads, and cutterhead characteristics, (4) the lack of 

integrated models by which to reduce uncertainty of micro-tunnel boring machine penetration rate 

in simulation-based microtunneling productivity studies, and (5) the lack of penetration rate 

prediction models suited for dynamic utilization during construction to update the penetration rate 

predictions and modify the project plan accordingly. 

The research presented in this thesis to enhance the prediction of micro-tunnel boring machine 

penetration rate and productivity in microtunneling construction, proceeding in three phases. In 

Phase 1, a dynamic penetration rate prediction model that uses a machine-learning approach is 

developed. Phase 2 involves the development of a mechanistic approach for modelling micro-
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tunnel boring machine penetration into soft ground. In this regard, a novel mechanistic approach 

(based on the contact mechanics theory) by which to model the interaction between the micro-

tunnel boring machine and the ground is introduced. The developed mechanistic model is further 

improved by modelling in greater detail the micro-tunnel boring machine’s engagement with the 

ground, taking into consideration in particular the engagement between cutting blade and soil, and 

quantifying the influence of this engagement on the micro-tunnel boring machine’s penetration 

rate. In Phase 3, to enhance the production rate estimation in microtunneling construction projects, 

the micro-tunnel boring machine penetration rate prediction models developed in Phases 1 and 2 

are integrated with simulation models. Two approaches are followed for integrating the 

mechanistic model for prediction of micro-tunnel boring machine penetration rate (developed in 

Phase 2) with operation simulation. The first approach is to use the exact mechanistic formula and 

incorporate it into the simulation model, while the second approach is to enhance the prediction 

made by the mechanistic model by leveraging observations (excavation times) made during 

construction and updating the initial predicted distribution of penetration rate accordingly. To 

integrate the dynamic machine-learning model for prediction of micro-tunnel boring machine 

penetration rate (developed in Phase 1) with an operation simulation model, a database of results 

is integrated with a simulation model. Whenever the micro-tunnel boring machine reaches specific 

locations along the tunnel in the simulation, it calls up the predicted penetration rate to be used for 

modelling excavation, and in this manner the entire microtunneling operation is simulated. 

The feasibility and functionality of the developed models for predicting micro-tunnel boring 

machine penetration rate (as well as the prediction models integrated with simulation) are validated 

using both actual case studies and a synthetic dataset of fifty microtunneling projects generated 

using the Monte Carlo approach. Ultimately this research provides practitioners and researchers 
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with a systematic procedure for using machine-generated data and available geotechnical 

information during tunnelling to achieve more accurate prediction of micro-tunnel boring machine 

performance in dynamic geological conditions, and to update the project progress dynamically 

based on what is actually occurring on site. Furthermore, this research proposes a novel approach 

for mechanistic analysis of the interaction between the micro-tunnel boring machine and the 

ground, and develops a mechanistic model for micro-tunnel boring machine penetration rate that 

characterizes in a quantitative manner the relationship between penetration rate and the combined 

influence of three primary factors—soil properties, operational loads, and cutterhead 

characteristics. 
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Chapter 1: Introduction 

1.1. Background and Problem statement 

Microtunneling is a trenchless technique for pipeline installation that has four main features: (1) 

the operation is controlled remotely (2) the tunnelling machine uses laser guidance for navigation, 

(3) pipe sections are jacked while the tunnel face is excavated and excavated material is removed, 

and (4) the tunnel face is continuously supported (ASCE, 2001). A look at the history of this 

trenchless technique reveals it has becoming increasingly popular in recent years, due in large part 

to its ability to minimize surface disruptions (especially in congested urban areas), its high 

accuracy in both line and grade pipeline installation (Chung et al., 2004), its minimal impact on 

traffic, and the low social cost compared with other methods (Hegab and Salem, 2010). 

Notwithstanding these benefits—not to mention the recent advancements in the technical features 

of microtunnel boring machines (MTBMs)—the microtunneling industry is still looking for 

solutions to enhance performance in terms of planning, control, and monitoring. Accurate 

prediction of productivity plays a key role in assisting owners in evaluating the contractor’s 

performance and in aiding contractors in controlling the project, including adjusting the production 

rate as needed to meet the expected milestones. In microtunneling projects, productivity of 

construction is highly dependent on MTBM penetration rate (PR) (Hegab et al., 2006), which is 

defined as “instantaneous excavation distance per time while the MTBM is operating, typically 
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measured in inches per minute or millimeters per minute” (ASCE, 2015). There are a number of 

factors that make forecasting MTBM PR particularly challenging: 

1. Variations in ground conditions during microtunneling: Since an MTBM operates in 

various ground conditions, its behaviour changes and is not constant during the excavation. 

2. Uncertainty in underground condition along the tunnel path: This uncertainty includes, but 

is not limited to, the soil types encountered during tunneling, the presence of boulders, and 

unforeseen conditions that may affect the microtunnelling excavation operation. 

3. Complexity of the MTBM excavation mechanism: Due to the complex nature of the 

MTBM excavation mechanism, practitioners lack an in depth understanding of the physics 

governing the PR or of the relationship between PR and primary mechanistic factors such 

as operational loads, soil properties, and cutterhead characteristics. 

A review of the literature shows that prediction of TBM/MTBM PR has been the focus of several 

studies (Ozdemir et al., 1978; Sanio, 1985; Sato et al., 1991; Rostami and Ozdemir, 1993; Rostami, 

1997, 2008; Alvarez et al., 2000; Sapigni et al., 2002; Ribacchi and Fazio 2005; Hegab et al., 2006; 

Yagiz, 2008; Eftekhari et al., 2010; Yagiz and Karahan, 2011; Hassanpour et al., 2009a, 2009b, 

2011; Farrokh et al., 2012; Salimi and Esmaeili, 2013; Jamshidi, 2018; Elwakil and Hegab, 2018). 

Meanwhile, others have developed empirical equations by collecting rock mass characteristics and 

tunnel boring machine (TBM) performance data from multiple tunneling projects using machine-

learning models (Alvarez et al., 2000; Eftekhari et al., 2010; Salimi and Esmaeili, 2013; Yagiz and 

Karahan, 2011; Sapigni et al., 2002; Hassanpour et al., 2009a, 2009b, 2011; Farrokh et al., 2012; 

Jamshidi, 2018), and some have used full-scale field tests to correlate field parameters with boring 

machine performance in order to deliver more accurate predictions (Rostami and Ozdemir, 1993; 

Rostami, 1997, 2008; Sato et al., 1991; Sanio, 1985; Ozdemir et al., 1978). Although the above-
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mentioned studies provide valuable insights on prediction of PR, existing models (developed using 

databases compiled from several projects) have low accuracy when used in different geological 

conditions, are limited in application domain to rocky conditions and large-sized TBMs, and 

require specialized equipment and laboratory facilities in order to generate the required data. 

Moreover, the models that have been developed based on case study analysis of hard rock 

tunneling projects or experimental tests have been limited to specific TBM cutter configurations 

and are not applicable to soft geological conditions. 

Another fact that is important to note is that, during tunneling/microtunneling excavation, the 

TBM/MTBM data generated represents the behaviour of the machine interacting with the ground. 

Although this data has been used for evaluation and prediction of operational loads such as torque 

and thrust (Shi et al., 2011; Han et al., 2017), it has not yet been widely applied for dynamically 

predicting the PR and updating the project productivity accordingly. Without a system that 

analyzes this data and transforms it into a format in which it can be used easily interpreted, decision 

makers will continue to rely mainly on practitioners’ subjective decisions.  

Leveraging the MTBM data generated during construction, practitioners can evaluate the MTBM 

performance and forecast the project progress using operation simulation modelling. Operation 

simulation modelling has been used to (i) model a variety of tunnel construction projects, such as 

shaft construction and tunneling (Al-Bataineh et al., 2013), and (ii) forecast the impact of various 

environmental factors, such as weather conditions (Shahin et al., 2014) and geological conditions 

(Zhang et al., 2017) on tunneling project performance. However, since existing tunneling 

simulation models are unable to incorporate new data (collected mainly from equipment-generated 

sources) in real time, they cannot be transformed into a reliable and comprehensive decision 

support system. Indeed, most of the simulation approaches described in the literature have been 
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designed to use only static historical data as an input for modelling uncertain activities. As a result, 

they are not able to capture the dynamic changes as the project progresses, and this limits their 

ability to represent the entire system. A review of the relevant literature reveals that there have 

been a number of studies aimed at recalibrating simulation parameters by incorporating newly 

generated information into the simulation parameters using a variety of approaches, such as the 

Markov chain Monte Carlo approach (Ji and AbouRizk, 2017) and the Baum-Welch approach 

(Werner et al., 2018). However, these models are not capable of updating the parameters involved 

in the microtunnelling construction domain (e.g., MTBM–ground interactions, MTBM PR). 

In summary, an analysis of the literature reveals five main gaps that need to be addressed:  

1) There is inadequate feedback with respect to the use of machine-generated data for 

dynamically updating the project progress. 

2) Most of the available studies on predicting PR in tunneling projects are applicable only to 

large-diameter tunneling excavation through hard rock formations and are not applicable 

to small-diameter microtunneling through soft ground. 

3) The mechanism of MTBM penetration into the soil has not been mechanistically 

investigated, and a theoretical mechanistic relationship that quantifies the influence of 

primary factors such as soil types, operational loads and cutterhead characteristics on 

MTBM PR has not yet been identified. 

4) Models to reduce uncertainty of MTBM PR in simulation-based microtunneling 

productivity prediction have yet to be developed. 

5) Existing PR prediction models are static and are not suited dynamic utilization during 

construction to update the PR predictions and modify the project plan accordingly. 
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Corresponding to these gaps in research and practice within this domain, the following 

research questions can be formulated: 

1) How can MTBM data generated during excavation be used for (i) improving PR prediction 

dynamically as the project progresses, and (ii) enhancing the productivity predictions and 

updating the project plan? 

2) How can the mechanistic behaviour of an MTBM operating in soft ground conditions be 

modelled, and how can the influence on PR due to primary factors such as operational 

loads, soil properties, and cutterhead characteristics be analyzed and evaluated in a 

quantitative manner? 

3) How can mechanistic understanding of MTBM behaviour be used to enhance dynamic PR 

prediction during excavation and update the project productivity accordingly? 

1.2. Research Objectives 

The overall goal underlying this research is to develop models to enhance MTBM PR prediction 

and, consequently, improve the productivity forecasting conducted during the construction phase 

of microtunneling projects. In this regard and to address the above-mentioned research questions, 

the following research objectives are defined: 

Objective 1: Improvement of MTBM PR prediction dynamically during microtunneling 

construction. 

Objective 2: Mechanistic investigation of MTBM penetration into soft ground. 

Objective 3: Enhancement of production rate estimation during microtunneling construction. 
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1.3. Scope of Research 

In this research, it should be noted, the study of MTBM PR is limited to soft ground conditions 

(i.e., soil), whereas hard rock excavations are outside the scope of this research. Moreover, the 

tunnel face condition is assumed to be steadily stable while the MTBM is excavating.  

1.4. Research Methodology 

A distinct research phase is undertaken corresponding to each of the research objectives defined, 

as shown in Figure 1.1. In Phase 1, a dynamic PR prediction model that uses a machine-learning 

approach is developed. To construct this dynamic machine-learning model, a procedure is 

established to create the database required for its development. In this procedure, MTBM data 

generated during excavation is used as a dynamic data source that is updated as the project 

progresses, while geotechnical data obtained from geotechnical reports is used as a static data 

source that is constant during excavation. Based on this procedure, after cleaning the data, a 

geoscience approach is used to interpolate the geotechnical parameters along the tunnel path, and 

the MTBM PR is calculated accordingly. Based on the MTBM PR at the locations where the 

geotechnical parameters are interpolated, the database to be used for establishing the machine-

learning model is created. Based on a comparison of the various machine-learning approaches, 

artificial neural network (ANN) is selected as the most suitable machine-learning approach for 

predicting the PR of the unexcavated portion of a tunnel based on geotechnical parameters. The 

dynamic aspect of this technique is that, as the project progresses and more information becomes 

available, the database is updated and a new ANN model is constructed for use in predicting the 

next tunnel section. 

Phase 2 is divided into two sub-phases. In Phase 2.1, a mechanistic approach for modelling MTBM 

penetration into soft ground is developed. In this regard, a novel mechanistic approach based on 
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the contact mechanics theory is introduced to model the interaction between MTBM and ground. 

Simulating the MTBM–ground interaction based on this fundamental mechanistic theory results 

in a mechanistic mathematical model capable of characterizing the relationship between PR and 

the combined influence of three primary groups of factors (soil properties, operational loads, and 

cutterhead characteristics). In Phase 2.2, the developed mechanistic model is improved by 

modelling in greater detail the MTBM engagement with the ground, taking into consideration in 

particular the engagement between cutting blade and soil, and quantifying the influence of this 

engagement on MTBM PR. In this regard, using the contact mechanics theory mentioned above, 

this engagement phenomenon is modelled and the influence of this behaviour on MTBM PR is 

quantified. 

In Phase 3, to enhance the production rate estimation in microtunneling construction projects, the 

MTBM PR prediction models developed in Phases 1 and 2 are integrated with simulation model. 

In this regard, in Phase 3.1, the mechanistic model for MTBM PR prediction is integrated with 

operation simulation. Two approaches are followed for this purpose. The first approach is to use 

the exact mechanistic formula and incorporate it into simulation model, while the second approach 

is to enhance the prediction made by the mechanistic model by leveraging observations 

(excavation times) made during construction and updating the initial predicted distribution of PR 

accordingly. In this regard, based on Bayes’ law and applying Bayesian updating technique on a 

mechanistic model for MTBM PR, a Bayesian updating mechanistic model is developed and 

integrated with simulation. In Phase 3.2, the dynamic machine-learning model for MTBM PR 

prediction (developed in Phase 1) is integrated with an operation simulation model. In this regard, 

a database of results (including the predicted PRs and the locations where they are predicted) is 

connected with the simulation model. Whenever the MTBM reaches to the specific location along 
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the tunnel in the simulation, it calls the predicted PR to be used for modelling excavation, and then 

the entire microtunneling operation is simulated. 

 

Figure 1. 1.Research phases defined and models developed to meet the corresponding research objectives 

This research provides practitioners and researchers with a systematic procedure for using 

machine-generated data and available geotechnical information during tunneling to achieve more 

accurate prediction of MTBMs performance in dynamic geological conditions, to prevent schedule 

delays by considering appropriate measures to counter possible slow excavation progress based on 

forecast PRs, and to update the project progress dynamically in conjunction with what is actually 

occurring on site. Furthermore, this research proposes a novel approach for mechanistic analysis 

of MTBM–ground interaction and develops a mechanistic model for MTBM PR that characterizes 

in a quantitative manner the relationship between PR and the combined influence of three primary 

groups of factors (soil properties, operational loads, and cutterhead characteristics). By modelling 

the MTBM engagement at the interface of the cutting blade and the ground, its influence on 

MTBM PR can be analyzed and quantified. Finally, to improve the productivity of microtunneling 

construction, the developed MTBM PR prediction models are integrated with simulation. The 
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feasibility and functionality of the developed MTBM PR prediction models and the MTBM PR 

prediction models integrated with simulation are validated using both actual case studies and a 

synthetic dataset of fifty microtunneling projects generated using the Monte Carlo approach. 

1.5. Thesis Organization 

This thesis is organized following a paper-based format corresponding to the research objectives 

shown in Figure 1.1. The chapters in this thesis are organized as follows: 

Chapter 2 investigates the physics governing MTBM excavation and mechanistic analysis of 

MTBM–ground interaction. By introducing a novel approach based on contact mechanics theory, 

a new state-of-the-art mechanistic model is developed. The developed mechanistic model not only 

identifies the primary factors governing MTBM PR (i.e., soil properties, operational loads, and 

cutterhead characteristics), but also sheds light on the complex relationships among PR and these 

factors. Moreover, the developed mechanistic model for MTBM PR provides insights on the 

mechanistic behaviour of MTBM during excavation that can aid practitioners in quantifying the 

influence on MTBM PR of various mechanistic factors, such as opening ratio and cutter head 

torque and diameter, and in evaluating MTBM performance under various geological conditions. 

Chapter 3 describes how the mechanistic model for MTBM PR can be improved by considering 

in greater detail the MTBM–ground interaction and modelling the MTBM–ground engagement 

that occurs when the cutting blades are engaged with the ground during excavation. Modelling of 

the MTBM–ground engagement is a novel tool by which for practitioners to (1) improve MTBM 

design in consideration of the key factors/mechanisms in high MTBM–ground engagement (and, 

therefore, high PR), (2) evaluate the performance of various MTBMs in order to select the most 

appropriate one (particularly in terms of high engagement) for a specific project, and (3) calculate 
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the upper and lower PR boundaries for a specific MTBM as the project progresses based on 

consideration of the extreme cases of high and low engagement at the tunnel face. These 

boundaries in particular can assist engineers and project managers in anticipating the likely range 

of excavation speeds under various geological conditions during the project and adjusting the 

MTBM performance accordingly to improve the project productivity. 

Chapter 4 describes the development of a novel model by which to dynamically predict MTBM 

PR as the project progresses. A dynamic procedure is developed that allows practitioners to use 

available geotechnical information and MTBM data generated during excavation to predict the 

MTBM PR using a machine-learning model. The dynamic aspect of the procedure assists 

engineers in continuously learning about the MTBM behaviour under various underground 

conditions for the purpose of improving prediction accuracy. The forecasts of PR along the tunnel, 

meanwhile, can be used to identify areas of low, moderate, and high productivity and therefore 

aids decision makers in planning effectively for future microtunneling excavations accordingly. 

Chapter 5 describes the development of (1) approaches to integrate MTBM PR prediction models 

with operation simulation in order to enhance the prediction of productivity as the project 

progresses, and (2) a novel procedure for evaluating the integrated simulation-based productivity 

models by applying them to several synthetic microtunneling projects generated using a Monte 

Carlo approach. The first part of the chapter provides a detailed explanation of how to integrate 

both machine-learning models of PR prediction and mechanistic models of PR prediction with 

simulation. This information can aid practitioners in leveraging the developed PR prediction 

models to enhance their productivity prediction. The integration of the mechanistic model with 

operation simulation in particular provides a novel tool by which to assess the influence of various 

mechanistic factors (e.g., cutterhead design and characteristics) on the productivity of the overall 
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project. The second part of the chapter describes how to generate synthetic microtunnelling 

projects. The use of synthetic projects allows researchers and practitioners to evaluate and compare 

different productivity prediction models with respect to a wide variety of project specifications 

and tunnel conditions. This, in turn, leads to a deeper understanding of the performance of the 

prediction models and aids in the identification of bottlenecks for further enhancement of the 

productivity prediction models. 

Chapter 6 summarizes the conclusions, research contributions, and limitations of the research 

presented in this thesis, and outlines possible avenues of future work.  
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Chapter 2: Modeling Micro-tunnel Boring Machine 

Penetration Rate Using a Mechanistic Approach*  

2.1. Introduction 

Demands for installation of utility service lines using microtunneling excavation as a non-

disruptive method have been increasing due to the growing population of cities and communities. 

Microtunneling is a trenchless technique for pipeline installation in non-person entry tunnel 

diameters. The microtunneling process is controlled remotely by providing support to the 

excavation face, and the micro-tunnel boring machine (MTBM) advances using a laser-guided 

approach. In this process, hydraulic jacks simultaneously push the pipes and the MTBM forward 

while the excavated material is removed from the tunnel face (ASCE 2015). 

The adoption of microtunneling following its introduction to the US was slow, as the MTBMs 

manufactured were not robust enough to handle ground conditions containing cobbles. MTBMs 

were later capable of excavating under various ground conditions, which consequently resulted in 

increased MTBM utilization. Additional microtunneling advantages, such as the ability to excavate 

in congested urban areas with minimal disruptions, the efficiency and cost-effectiveness in the 

context of utility installations, low risk of injury, fewer settlement issues, and the ability to 

accommodate social and environmental concerns, have led to increased MTBM usage in recent 

years (Luo and Najafi 2007). 

*This chapter is adapted from published work as “Modeling Microtunnel Boring Machine Penetration Rate Using a Mechanistic 

Approach” in Journal of Construction Engineering and Management 148(11), 04022128. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0002402 (2022) and has been reprinted with permission from ASCE. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0002402
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002402


13 
 

Despite these advancements, the ability to accurately predict productivity for the purposes of 

planning, controlling, and monitoring MBTM-based excavation remains an enduring issue. 

Without the ability to accurately predict penetration rates, owners are unable to effectively 

evaluate, control, and improve contractor performance. Problems of predicting productivity arise 

because of a wide variety of factors, such as the complexity of the underground operational 

process, and, more importantly, the penetration rate estimation of the MTBM. According to the 

Standard Design and Construction Guidelines for Microtunneling (2015), the penetration rate is 

defined as the “instantaneous excavation distance per time while the MTBM is operating, typically 

measured in inches per minute or millimeters per minute” (ASCE 2015). MTBM penetration rate 

prediction is a challenging, difficult, and unresolved problem due to the dynamic and complex 

interactions of the MTBM with uncertain and variable geotechnical conditions at the tunnel face 

that affect machine performance. Inaccurate prediction of machine penetration rates may lead to 

various types of issues including delays, cost overruns, and subsequent project failures (Wang et 

al. 2020). 

To address these issues, several studies investigated the penetration rate of tunnel boring machines 

(TBMs) (Sapigni et al. 2002, Yagiz and Karahan 2011, Jamshidi 2018); however, the majority of 

the studies were applicable in the context of large diameter tunneling excavations through hard 

rock formations. Due to the inherent difference between the failure mechanisms of—and the 

parameters describing the penetration phenomenon into—rocks and soils, these previous studies 

are not applicable for penetration rate prediction of MTBMs into soft ground conditions. 

Moreover, the approaches employed in previous studies to mechanically analyze the penetration 

phenomenon were experimental in nature and required equipped laboratory setups or the collection 

of data from several field tests from a wide variety of tunneling projects (Yagiz and Karahan 2011).  
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Addressing these gaps opens a new avenue for researchers and industry practitioners to 

quantifiably understand the mechanistic behavior of MTBMs and provides new opportunities to 

evaluate its influential factors. Such understanding is crucial for improving MTBM penetration 

rate prediction.  

This study proposes a novel theoretical mechanistic approach based on the fundamental theory of 

contact mechanics to model the penetration rate of MTBMs into soft ground conditions when 

access to experimental facilities and sufficient field data from multiple microtunneling projects is 

limited. The primary goal of this study is to improve the prediction of MTBM penetration rate in 

soft ground conditions using theoretical mechanistic approach by developing an analytical 

mechanistic model of penetration rate prediction. Here, a review of the literature is presented, 

followed by the research methodology and an illustration of mechanistic model development. 

Then, testing and validation of the model is described, followed by a discussion and the research 

conclusions. 

2.2. Research Background 

Penetration rate prediction of tunnel boring machines (TBMs) or MTBMs under different 

operational loads and various ground conditions has been one of the main challenges of 

tunneling/microtunneling projects. Research on developing a model for penetration rate prediction 

dates back to 1975, when Tarkoy (1975) worked on examining various geotechnical measurements 

and offered total hardness measurements for predicting penetration rates in hard rock formations. 

Since then, various models have been developed to predict penetration rates in hard rock formations. 

For mechanical analysis of penetration rate phenomenon, several scholars have used experimental 

approaches and developed empirical equations predicting TBM performance for tunneling through 

hard rock formations. Early studies investigated the TBM performance based on the forces acting on 
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disc cutters at the interface with different rock types and characteristics using laboratory tests or field 

tests data (Roxborough and Phillips 1975, Graham 1976, Ozdemir et al. 1978, Farmer and Glossop 

1980, Snowdon et al. 1982, Bamford 1984, Lislerud 1988, Innaurato et al. 1991). Continuing 

experimenting disc cutter performance, one of the well-known mechanical models for TBM 

performance prediction in hard rock formations was established by Rostami and Ozdemir (1993), 

who developed the Colorado School of Mines (CSM) model based on linear cutting machine (LCM) 

tests. Taking advantage of extensive full-size tests under controlled field conditions on intact rock 

properties, including unconfined compressive rock strength (UCS) and tensile strength; cutting 

geometry, including cutter spacing (S) and depth of penetration (P); and cutter geometry, including 

cutter diameter (D), tip width (W), and cutter edge angle (𝜃), a penetration rate prediction model 

was developed based on forces acting on disc cutters. A summary of the parameters used in their 

experimental analysis is illustrated in Figure 2.1. 

 

Figure 2. 1. Parameters used for experimental analysis of rock cutting by disc cutters for the CSM model 

Another well-known study for predicting tunneling performance in hard rocks was performed at 

the Norwegian University of Science and Technology in Trondheim (NTNU) (Bruland 1998). In 

contrast to the CSM model that studied the forces on individual disc cutters, the NTNU model is 

based on the achieved performance of the machine in the field as a whole system. To construct the 
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NTNU model, several Norwegian drillability tests were performed to estimate TBM tunneling 

time. The basic input of the NTNU model requires values obtained from brittleness, Sievers J 

index, and abrasion tests. Based on these values, other indices, including drilling rate index (DRI), 

cutter life index (CLI), bit wear index (BWI), and correction factor (k) for joint class can be 

determined. These indices, along with cutter load capacity, average spacing of the cutters on the 

cutterhead, cutter diameter, and TBM parameters (e.g., diameter), were used to predict the base 

penetration rate (mm/rev), which can be converted to the instantaneous penetration rate (Bruland 

1998). Although these studies provided well-defined models to estimate TBM performance, use 

of them on different projects, however, has revealed that they are applicable only to a specific 

range of geological conditions and require some adjustments or correction factors to be used on 

certain geological conditions (Hassanpour et al. 2010). This fact led to the study of TBM 

performance in the context of specific rock types and characteristic, such as the model developed 

by Hassanpour et al. (2009b) to predict TBM performance in carbonate-argillaceous rocks. In 

recent years, research on TBM performance has been directed towards examining various rock 

parameters and indices and developing new models based on them (Gong, and Zhao 2009, Hamidi 

et al. 2010, Jamshidi 2018 and Gong et al. 2022), or enhancing the previously well-known models 

by making them more generic by compiling comprehensive databases or reducing the limitations 

and number of input parameters required (Farrokh et al. 2012, Gong et al. 2022, Oreste and 

Spagnoli, 2022). For example, Hamidi et al. (2010) used a rock mass rating (RMR) system to 

develop an empirical performance prediction model of hard rock TBMs. Jamshidi (2018) used 

rock brittleness indices to establish statistical models for predicting the TBM penetration rate in 

rock by employing regression analysis to determine the correlation between TBM penetration rate 

and rock brittleness indices. Gong et al. (2022) used rock mass characteristic (RMC) model for 
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prediction of TBM penetration rate. In the RMC model, the basic concept is to find the correlation 

between the rock mass boreability index (BI) and TBM penetration rate using a power function. 

In their approach, they created a comprehensive database from laboratory cutting tests and actual 

job sites to model the interaction between rock mass and cutters. Oreste and Spagnoli (2022) 

developed a new probabilistic procedure based on the NTNU model to predict the advancement of 

TBM per revolution of TBM head. Their main goal was to facilitate the use of the NTNU model 

considering numerous parameters without the relative orientation of discontinuities of the rock 

with respect to the excavation face. Although, TBM performance through rock formations is 

studied extensively, research on the MTBM performance during microtunneling through soils is 

limited. Hegab (2005) studied the productivity of microtunneling projects by collecting data from 

35 microtunneling projects done by four different contractors using six different MTBMs. Based on 

the collected data, Hegab et al. (2006) performed statistical regression analysis to correlate the 

MTBM penetration time to jacking force, diameter, jacking length and cutterhead shear force. By 

using that database, Elwakil and Hegab (2018) developed a probabilistic model of MTBM 

penetration rate for different classes of soil types. Although these models provided good insights for 

contractors to estimate the penetration time during microtunneling construction, the application of 

these models was, however, limited to specific ranges of drive length, diameter, and jacking and 

shearing forces, and more importantly did not mechanistically analyze the mechanism of MTBM 

behavior during excavation through soils. Thus, the aforementioned models cannot be used to 

examine the influence of various mechanistic factors, such as cutterhead characteristics, on the 

overall performance of MTBMs. 
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2.3. Research Gaps on Modeling MTBM Penetration Rate into Soft 
Ground 

A review of literature on TBM performance modeling reveals that there are two main gaps for 

predicting MTBM performance through soft ground conditions. First, most of the research on 

TBM/MTBM performance were limited to hard rock formations, which have entirely different 

failure mechanisms than soils. Not only are the characterization parameters for rocks and soils 

different, but a greater number of factors are required to describe rock formations due to the variety 

of indices developed based on experimental tests. Therefore, existing models are not applicable for 

penetration rate analysis of MTBM into soft ground conditions (i.e., soils). Second, the approaches 

taken for developing TBM/MTBM performance models are primarily based on collecting data from 

multiple projects and/or laboratory tests and modeling the TBM/MTBM performance based upon 

different rock/soil characteristic and indices, which are limited to some extent to the specific ranges 

of rock/soil types and TBM/MTBM characteristics. One new approach to study the behavior of a 

system, other than performing experimental or data analytical analysis, is to use the fundamental 

laws of natural science to model the behavior of a system. Once a theoretical mechanistic model 

is constructed, it provides the opportunity to perform various analyses of mechanistic parameters 

and to evaluate their impact on the behavior of the system. Accordingly, to study TBM behavior, 

a theoretical mechanistic approach can be used to perform mechanistic analysis for predicting 

TBM penetration rate based on the force balance acting on the TBM during excavation. For 

instance, Wang et al. (2020) used a theoretical mechanistic approach for predicting the TBM 

penetration rate into rocks, and determined the rock breakage depth of a single cutter based on 

balancing forces on disc cutters. Once they found the rock breakage depth for a single disc cutter, 

they numerically summed the rock breakage depth over all the disc cutter areas and determined 

the total volume of rock breakage per revolution of the cutterhead. Knowing that the penetration 
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rate is a simple multiplication of excavation volume per revolution per surface area and the 

cutterhead revolution per minute (RPM), they developed a numerical model for predicting the 

penetration rate. 

To fill the above-mentioned gaps, the present research aims to develop a theoretical mechanistic 

model of MTBM performance for microtunneling projects that describes the relationship between 

the penetration rate and a combined influence of factors, such as soil properties, MTBM 

specifications, and operational loads. This research will improve current MTBM performance 

modeling practice by (1) alleviating the need to collect field data from multiple projects and/or 

laboratory tests, thereby reducing the cost and time required for data collection, (2) eliminating the 

limitations of being site or machine specific, and (3) providing an opportunity to analyze the 

influence of various mechanistic parameters on the behavior of MTBMs during excavations. 

2.4. Proposed Methodology 

First, a new approach to mechanistically model the MTBM penetration rate is presented, and 

fundamental factors that must be included in a mechanistic model to predict the penetration rate 

are identified. Then, the procedure for MTBM penetration rate modeling is detailed, and a closed-

form mechanistic model of the MTBM penetration rate is obtained. 

2.4.1. Introduction to Mechanistic Modeling of MTBM Penetration Rate 
The components of the mechanistic model required to estimate the penetration rate were 

investigated. Generally, for an object that penetrates into a medium, the following factors influence 

the penetration depth: (1) the properties of the medium that the object is penetrating into; (2) the 

loads that are transferred from the object to the medium to allow the object to penetrate into the 

medium; and (3) the shape and configuration of the object (Figure 2.2).  
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Figure 2. 2. Schematic representation of fundamental factors influencing the penetration of an object into a 
medium under subjected loads. 

Therefore, the mechanistic model for penetration rate will be a function of the loads, properties of 

the medium, and characteristics of the object, as shown in Eq.2.1.  

Penetration Rate = f(loads,  medium properties,  object charactersitcs)                            (2.1) 

2.4.2. Mechanistic Approach for Analysis of MTBM-Ground Interaction 
The objective is to determine the mechanistic model, 𝑓, capable of estimating the MTBM 

penetration rates. One approach for examining the microtunneling process is to analyze the MTBM 

and ground separately (Figure 2.3A), which determines the influence of (1) MTBM operations on 

the ground, such as settlement, or (2) ground loads on the MTBM, such as estimating the jacking 

loads required to push the pipes and MTBM forward. Another approach is to analyze the MTBM 

and ground as a united ground-MTBM system (Figure 2.3B), which allows users to determine the 

dynamic, interactive influence between the MTBM and the ground, thereby allowing the 

relationship between operational loads and MTBM penetration rates to be determined. As such, 

the proposed approach views the ground and MTBM as a united ground-MTBM system, as 
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illustrated in Figure 2B. In this approach, the coupling interaction between the ground and MTBM 

must be considered to determine the load-displacement (i.e., deformation) relationship.  

 

Figure 2. 3. Schematic illustrations viewing the ground and MTBM as (A) separate systems or (B) a united 
system. 

The ground-TBM system was then mechanically examined to determine the load-displacement 

relationship. A new mechanistic model based on contact mechanics theory (Johnson 1985) was 

developed, allowing the relationship between the loads and the deformations (i.e., stresses and 

displacements) between two contacting bodies to be described. In the proposed modeling 

approach, the MTBM is assumed to be a rigid body during penetration, as the stiffness of the 

MTBM is much greater than the ground. By modeling the interaction between the MTBM and 

ground, based on defining the contact problems and solving them using the differential equations 

of equilibrium under the boundary conditions, the relationship between the penetration rate and 

the applied operational loads, soil properties, and cutterhead characteristics can be obtained.   

2.4.3. Mechanistic Model Development 
Contact mechanics theory is used to study the interaction between the MTBM and the ground. In 

this theory, the interaction between two bodies results in development of stresses at the contact 

point between them that consequently leads to the relative deformation of the two bodies with 

respect to each other, as shown in Figure 2.4A, where the MTBM is rigid (i.e., Body 1) and is 
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penetrating into the ground (i.e., Body 2). This interaction between the cutterhead and the ground 

during microtunneling is schematically shown in Figure 2.4B. During MTBM excavation, the 

thrust force drives the cutterhead forward, and the torque drives the rotation of the cutterhead to 

cut the ground. The coupling influence of the thrust and torque at the tunnel face leads to the 

penetration of the MTBM into the ground. This coupling phenomenon was studied, and a 

mechanical model capable of determining the mechanical relationship between the penetration rate 

and the operational loads to estimate MTBM penetration rates was developed. 

 

Figure 2. 4. Proposed mechanistic model for penetration rate modeling based on contact mechanics theory 
for (A) two contacting bodies and the stresses between them due to applied loads and (B) MTBM 
penetration into the ground. 

Based on the theory of contact mechanics, analysis of this coupling interaction is performed by 

decoupling the influence of thrust force and torque on the ground. Here, the contact between the 

MTBM and the ground (Figure 2.5) is decomposed into two separate problems: (1) normal 

penetration due to the MTBM thrust force and (2) tangential rotation due to the MTBM torque.  
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Figure 2. 5. Decoupled ground-MTBM interactions of thrust force and torque. 

To obtain a mechanistic relationship between the thrust force and penetration (Figure 2.6), the 

differential equation of equilibrium for normal force under the boundary conditions is solved.  

 

Figure 2. 6. Normal thrust force of the MTBM at the MTBM-ground interface. 

Differential equations of equilibrium in cylindrical coordinates and boundary conditions for 

normal contact problem due to thrust force for normal contact problem are as presented as Eq.2.2 

and Eq. 2.3, respectively.  
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{

𝑈𝑧(𝑟, 0) = 𝛿            0 ≤ 𝑟 ≤ 𝑎    

𝜎𝑟𝑧(𝑟, 0) = 0        0 ≤ 𝑟 ≤ 𝑎      

𝜎𝑧𝑧(𝑟, 0) = 0                𝑟 > 𝑎       

                                                                                                  (2.3) 

where (𝑈𝑟 ,  𝑈𝑧) are displacements in the directions of (r, z), respectively, 𝑣 is Poisson’s ratio of the 

soil , 𝛿 is penetration depth, 𝑎 is the MTBM radius, and 𝜎𝑧𝑧 and 𝜎𝑟𝑧 are the normal and tangential 

stress respectively 

By solving the differential equations of equilibrium under the above boundary conditions, the 

normal stress distribution 𝜎𝑧𝑧 under the MTBM is obtained as Eq.2.4. 

𝜎𝑧𝑧(𝑟, 0) =
𝐸𝛿

𝜋(1−𝑣2)√𝑎2−𝑟2
                                                0 ≤ 𝑟 < 𝑎                                               (2.4) 

where E is Young’s elastic modulus. Similarly, for the tangential rotation problem due to the 

MTBM torque (Figure 2.7), the differential equation of equilibrium is solved under the 

corresponding boundary conditions.  

 

Figure 2. 7. Tangential torque force of the MTBM at the MTBM-ground interface. 
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The differential equations of equilibrium in cylindrical coordinates for torsional contact problem 

is described by Eq. 2.5. 

𝐺 (
𝜕2𝑈𝜃

𝜕𝑟2
+
𝜕𝑈𝜃

𝑟𝜕𝑟
−
𝑈𝜃

𝑟2
+
𝜕2𝑈𝜃

𝜕𝑧2
) = 0                                                                                                 (2.5) 

where (𝑈𝜃) is displacements in the directions of (𝜃). The boundary condition of the MTBM 

problem in terms of the tangential rotation of the cutterhead and considering the coefficient of 

friction, 𝑓, and Coulomb’s friction law is shown in Eq.2.6. 

{
𝜏𝑧𝜃(𝑟, 0) = 𝑓𝜎𝑧𝑧(𝑟, 0), 0 ≤ 𝑟 ≤ 𝑎   

𝜏𝑧𝜃(𝑟, 0) = 0                          𝑟 ≥ 𝑎     
                                                                                          (2.6) 

The tangential rotation problem, under the boundary conditions described in Eq. 2.6, can be solved 

using a normal stress distribution, 𝜎𝑧𝑧, that is determined using Eq. 2.4. Considering the ground as 

an isotropic space (𝐺 = 𝐸

2(1+𝑣)
), the shear stress distribution (𝜏𝑧𝜃) under the MTBM is obtained as 

Eq. 2.7. 

𝜏𝑧𝜃(𝑟, 0) =
2𝐺𝑓𝛿

𝜋(1−𝑣)√𝑎2−𝑟2
                                                                                                              (2.7) 

Once the shear stress distribution under the MTBM cutterhead is obtained, the total operational 

torque force can be calculated by taking the integral of the shear stress over the effective contact 

area between the MTBM cutterhead and the ground. The effective cutterhead area, 𝐴𝑒, is calculated 

by subtracting the opening area from the total area, 𝐴𝑡, as shown by Eq. 2.8.  

𝐴𝑒 = (1 − 𝜇)𝐴𝑡 = ∫ ∫ (1 − 𝜇)𝑟𝑑𝜃𝑑𝑟  
2𝜋

0

𝑎

0
                                                                                  (2.8) 

where 𝜇 is the opening ratio defined as the ratio of opening area to the total cutterhead area. 
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By taking the integral of the shear stress distribution over the effective contact area, the relationship 

between torque (T) and penetration per revolution (𝛿) is obtained as Eq. 2.9. 

𝑇 = ∫ ∫ (𝜏𝑧𝜃 𝑟)(1 − 𝜇)𝑟𝑑𝜃𝑑𝑟
2𝜋

0

𝑎

0

= ∫ ∫ (
2𝐺𝑓𝛿

𝜋(1 − 𝑣)√𝑎2 − 𝑟2
𝑟) (1 − 𝜇)𝑟𝑑𝜃𝑑𝑟

2𝜋

0

𝑎

0

= ∫ (
4𝐺𝑓(1 − 𝜇)𝛿

(1 − 𝑣)√𝑎2 − 𝑟2
𝑟) 𝑟𝑑𝑟

𝑎

0

 

𝑇 =
𝜋𝐺𝑓𝛿𝑎2(1−𝜇)

(1−𝑣)
                                                                                                                         (2.9) 

As PR(mm
min
) = RPM(

rev

min
) × δ(

mm

rev
), and rearranging Eq. 9, the mechanistic penetration rate (PR) 

model is developed as Eq. 2.10. 

𝑃𝑅 =
𝑅𝑃𝑀 𝑇

𝜋
×
(1−𝑣)

𝐺
×

1

𝑓𝑎2(1−𝜇)
                                                                                                  (2.10) 

The developed model enables engineers to determine MTBM behavior by (1) considering soil 

behavior parameters (i.e., shear modulus and Poisson’s ratio) that are influential in terms of the 

response of the soil under cutterhead loads; (2) incorporating the influence of cutterhead 

characteristics, namely diameter and opening ratio, which influence MTBM performance 

considerably; and (3) incorporating operational load factors, such as torque and RPM. 

As such, the developed model establishes a state-of-the-art relationship between MTBM 

penetration rates and the integrated influence of soil properties, operational loads, and cutterhead 

characteristics, as shown in Figure 2.8. 
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Figure 2. 8. Mechanistic model input parameters for MTBMs. 

2.5. Model Evaluation 

Two approaches were used to test the proposed mechanistic model. First, the model was tested 

under extreme conditions to evaluate model performance over a wide range of soil/MTBM 

conditions. Then, the predictive capability of the model was evaluated following its application in 

a microtunneling project case study. Results are detailed as follows. 

2.5.1. Extreme Condition Test 
To test model performance under extreme conditions in terms of soil and MTBM characteristics, 

and to compare the results with typical conditions, a set of different microtunneling excavation 

conditions was considered and the corresponding penetration rate for each condition was 

calculated, as shown in Table. 2.1.  
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Table 2. 1. Excavation conditions with corresponding model parameters and penetration rates. 

Excavation Conditions 
(Soil/MTBM) 

G 
(MPa) 𝒗 𝒂 (m) 𝝁 (%) f  RPM 

(rev/min) T (%) PR 
(mm/min) 

Hard soil/ 
Large diameter 80 0.1 1.4 45 0.4 1.2 88 4.82 

Very soft soil/ 
Small diameter 10 0.4 0.4 10 0.1 2 6 87.54 

Medium stiff soil/ 
Moderate diameter 20 0.25 0.75 30 0.25 1.6 20 21.34 

Hard soil/ 
Moderate diameter 80 0.1 0.75 45 0.4 1.2 88 16.81 

Very soft soil/ 
Moderate diameter 10 0.4 0.75 10 0.1 2 6 24.90 

The extreme conditions were considered based on the degree of soil stiffness and on the MTBM 

diameter, which generally falls in the small diameter tunneling category (i.e., less than 3 m) (Ueki 

et al. 1999). Penetration rates predicted for the extreme conditions of very soft soil/small diameter 

and hard soil/large diameter microtunneling construction (87.54 mm/min. (5.25 m/h) and 4.82 

mm/min. (0.29 m/h), respectively; Table 2.1), were consistent with expectations that smaller 

diameter tunnels with soft soils would yield a greater penetration rate than larger diameter tunnels 

with hard soils.  

Under the more typical conditions of medium stiff soil/moderate diameter tunnels, the model 

predicted a penetration rate of 21.34 mm/min. (1.28 m/h), which is consistent with penetration 

rates under similar conditions observed in microtunneling practice (Elwakil and Hegab, 2018). 

Together, these results demonstrate that the model is responsive to changes in input conditions and 

is able to generate results that are expected and observed in microtunneling practice. 
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2.5.2. Case Study 1 
To validate the application of the developed mechanistic model for penetration rate prediction, the 

penetration rates predicted by the proposed methodology were compared to actual values obtained 

from microtunneling data collected during the construction of a sanitary trunk in Alberta, Canada. 

The project used a number of drilling methods, including open cut from Borehole 1 to Borehole 

11, horizontal directional drilling from Borehole 11 to Borehole 12, and microtunneling from 

Borehole 12 to Borehole 16 (Figure 2.9). The diameter and length of the tunnel were 1.5 m and 

2.6 km, respectively, and tunnel depth ranged from 6 m to 15 m. The tunnel was composed of silty 

clay to clayey silt soil types, and, at some locations, traces of silty sand were identified. The soil 

types found at each borehole along the microtunneling sections under study are illustrated in Figure 

2.10. Since MTBM data were only available for two microtunneling sections, BH 4 to BH 14, and 

BH 5 to BH 6, in the present study these two sections were examined in developing the model. 

Moreover, since the MTBM is passing through different soil types in these two tunnel sections, 

the model will be tested on different ground conditions to show its practicality in the context of 

varied soil types.  

Operational load parameters (i.e., torque and RPM) were obtained from the MTBM data 

acquisition system; cutterhead characteristics (i.e., cutterhead radius and opening ratio) were 

obtained from project specification documents; and soil properties were obtained from 

geotechnical field investigation reports. 

Geotechnical information obtained from borehole sampling data were used to interpolate 

geotechnical conditions for the entire length of the tunnel. A summary of geotechnical data at each 

borehole along the microtunneling potion of the tunnel is provided as Table 2.3. The Poisson’s 

ratio for the entire tunnel length was assumed to be 0.25, and the shear modulus (G) was calculated 
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based on Young’s elastic modulus (E) assuming that the soil material is isotropic. The main 

MTBM specifications used for this project are detailed in Table 2.2. 

 

Figure 2. 9. Borehole locations along sewer line of sanitary trunk project under study. Black and gray lines 
show the availability or unavailability of MTBM data respectively. 

 

Figure 2. 10. Schematic representation of interpolated geological conditions along sewer line of sanitary 
trunk project for the selected sections under study between BH 4 to BH 6 based on geotechnical 
investigation report. 
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Table 2. 2. Specifications of MTBM. 

Cutterhead Parameter Value 

Opening ratio (𝜇; %) 30 

Diameter (R; mm) 1500 

Speed (RPM) 0-3 

Torque (nominal; kN⋅m) 550 

Maximum operating thrust (ton) 630 

 

Table 2. 3. Geotechnical data collected from borehole sampling along tunnel length. 

Closest 
Station Borehole Soil Type UCS 

(MPa) 
Strain at 
Failure (%) 

E 
(MPa) 

11+100 BH 4 Silty Clay 30 3 10 

11+300 BH 13 Clayey Silt + Sand 75 3.1 24.19 

11+600 BH 14 Clayey Silt 47 2.2 21.36 

11+900 BH 5 Silty Clay 68 9.7 7.01 

12+200 BH 6 Silty Clay 54 4.4 12.27 

12+500 BH 15 Silty Sand 74 5.2 14.23 

12+700 BH 7 Clayey Silt 60 10.4 5.76 

13+100 BH 16 Silty Clay 43 9.1 4.72 

A comparison of the actual and predicted penetration rates for two different tunnel sections (BH 4 

to BH 14 and BH 5 to BH 6) is presented in Figure 2.11. Since the frequency of fluctuations in 

penetration rate is very high along tunnel length, it is not possible to graphically show the results 

clearly for the entire tunnel sections, therefore only short portions of tunnel sections are presented 

in Figure 2.11. Model accuracy was calculated using the mean absolute percentage error formula 

(De Myttenaere et al. 2016), and was determined to be 83% overall for two tunnel sections, 

indicating that the developed model is able to provide a reasonable estimate of MTBM penetration 

rates when compared to rates obtained from similar microtunneling productivity studies (Hegab 

2005, Hegab et al. 2006).  
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Moreover, the covariance between the two datasets was 84%, demonstrating that the proposed 

mechanistic model was capable of predicting the trends and fluctuations in penetration rates along 

the microtunneling portion of the project. This is important feature of the developed model, as it 

indicates that the behavior of MTBM with soft ground conditions, in terms of direction of changes 

on MTBM penetration rate due to facing different soil types under various operational loads is 

properly modeled.  

 

Figure 2. 11. Comparison of actual and model predicted penetration rates along the (A) BH 4 to BH 14 and 
(B) BH 5 and BH 6 portion of the project under study. 

2.5.3. Case study 2 
The developed framework was applied to microtunneling construction in Edmonton, Canada. This 

project consists of two microtunneling sections between BH 18 to BH 15 (section A) and between 

BH 4 to BH 10 (section B) (Figure 2.12). To excavate the ground a hydraulic pressure cutter with 

a maximum torque capacity of 22 MPa pressure is used. Based on project document specifications 

each 1 MPa pressure is equal to 1.2 T.m torque. During the MTBM excavation the opening ratio 

varies between minimum 30% and 50% with a mode of 40% and the RPM varies between 1.2 to 

1.92 with a mode of 1.51. The diameter of tunnel was 1.69. According to the geotechnical 

investigation report a shear modulus along the tunnel varies between 5 to 25 MPa and Poisson’ 

ratio is between 0.2 to 0.25. The friction coefficient between cutterhead and ground is determined 
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by expert to be between 0.15 to 0.35 with an average of 0.25. The developed model is examined 

for both section A and B. The results of the comparison of the actual and predicted penetration 

rates along these two tunnel sections are shown in Figure 2.13. Model accuracy was 76 % for 

overall two tunnel sections, indicating that the developed model is able to provide a reasonable 

prediction of MTBM penetration rates along the various tunnel sections. 

 

 

Figure 2. 12. Microtunneling alignment for the examined microtunneling project. 
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Figure 2. 13. Comparison of actual and model predicted penetration rates along the (A) section A and (B) 
section B of tunnel. 

2.6. Discussion  

This study proposes a novel, contact mechanics theory-based mechanistic model for MTBM 

penetration rate modeling in microtunneling excavation projects. To construct the mechanistic 

model, fundamental factors affecting the MTBM penetration rate were studied and the primary 

components of a mechanistic model for MTBM penetration rate modeling were identified. Then, 

the mechanistic approach for analysis of MTBM-ground interaction is illustrated and two 

fundamental mechanistic approaches for analysis of MTBM-ground interaction are presented. One 

is to look at the MTBM and ground as separate systems interacting with each other, and the other 

is to analyze their interaction as a united system. It is shown that in order to be able to determine 



35 
 

the dynamic, interactive influence between the MTBM and the ground, the later approach should 

be used. Accordingly, to analyze the MTBM and ground as a united system, a contact mechanics 

theory is employed and a mechanistic model of MTBM penetration rate is constructed. The 

developed model incorporates the primary components that are expected to be in the mechanistic 

model including soil properties, cutterhead characteristics, and operational loads.  

Accuracy, functionality, and reasonableness of the proposed mechanistic model were evaluated 

using both an extreme conditions test and an event validity test using a real case study (Sargent 

2013). Two tunnel sections with different soil types and characteristics were selected to show the 

applicability of the model on various soil types. The proposed mechanistic model was found to be 

responsive to changes in soil and MTBM characteristics, was capable of generating reasonable 

results with high accuracy, and was able to mimic the fluctuations in penetration rates observed in 

a real project. The ability of the developed model to correctly predict the variations in MTBM 

penetration rate due to varied soil types indicates that the MTBM behavior was successfully 

modeled. This enables engineers to forecast sudden drops or jumps in penetration rate, thereby 

avoiding problems, such as failure of MTBM operation, because the necessary steps can be taken 

in advance to prepare for successful operation of MTBMs. 

2.7. Conclusion 

MTBM penetration rate prediction is one of the key elements of successful planning and 

controlling in microtunneling projects. The present research identified two main research gaps in 

the context of modeling the MTBM penetration rates through soft ground conditions (i.e. soils). 

The first is the geology: Most research studies examined rock formations, which have entirely 

different characteristics than soils. The second is that other studies used different approaches to 

model the penetration rate phenomenon. A common approach for modeling the TBM/MTBM 
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penetration rates was limited to either the use of data collected from multiple projects or 

performing laboratory tests to analyze the behavior of TBM/MTBMs under various soil/rock mass 

properties and indices. Although this approach provided well-established models, it does, however, 

still suffer from the challenge of needing a comprehensive list of various projects with a wide 

variety of machine specifications and soil/rock properties. Therefore, the approach is limited to 

specific ranges of available machine types and soil/rock properties. In this regard, the present study 

aims to address these gaps by developing a mechanistic model of MTBM penetration rate through 

soils using the fundamental theoretical contact mechanics approach. The developed model 

identified the relationships between the penetration rate and three primary influential factors, 

specifically operational loads, soil properties, and cutterhead characteristics, thereby providing an 

analytical tool that facilitates the analysis and prediction of MTBM penetration rates and their 

variability under the influence of these factors. This provides a great opportunity for practitioners 

to evaluate the impact of changes to each of model parameters on MTBM penetration rate without 

the need to undertake time-consuming and expensive field tests, especially in the early stages of a 

project.  

The proposed mechanistic model is expected to enhance the planning of microtunneling projects 

by providing practitioners with an objective and comparatively accurate method to predict 

penetration rates along a tunnel length for new projects. More accurate penetration rate predictions 

are expected to improve the planning of microtunneling projects by reducing deviations from 

planned schedules resulting from inaccurate productivity estimates or by identifying high and low 

penetration rate zones enabling mitigation strategies (i.e., those that would prevent cutterhead 

clogging) to be more effectively implemented.  
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The present research should be considered in light of being limited to soft ground (i.e., soil) 

conditions with a stable tunnel face. It is not applicable for excavations through rock formations 

due to the difference in their characteristics. Future research may include considering wearing 

between cutterhead and the ground and modeling its influence on the MTBM penetration rate. 

Moreover, extensive theoretical mechanistic analysis of the impact of cutterhead characteristics on 

MTBM penetration rate would be insightful for selection of appropriate MTBMs for new projects.  

2.8. Data Availability 

All models generated or used during the study are available from the corresponding author upon 
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Chapter 3: Mechanistic Modeling of Cutterhead-

Ground Engagement Influence on Micro-tunnel 

Boring Machine Penetration Rate  

3.1. Introduction 

The microtunneling method has found widespread application in the context of pipeline 

installation in recent decades due to its non-disruptive and environmentally friendly 

characteristics. In this non-person entry construction method, a micro-tunnel boring machine 

(MTBM) is remotely controlled from the surface and the MTBM typically navigates using a laser-

guided approach. While a hydraulic jack pushes the MTBM and pipe sections into the soil, the 

excavated materials are continuously removed from the tunnel face. The excavation process 

underground happens out of sight, which makes the planning of such construction operations a 

challenging task due to lack of visual monitoring of the excavation processes at the tunnel face. 

Therefore, prediction of MTBM performance and its behavior plays a key role in terms of planning 

and controlling microtunneling projects. One of the critical MTBM performance factors for 

accurate planning of micro tunneling construction is estimation of the MTBM penetration rate into 

the soil. 

Research on developing a model for penetration rate prediction dates back to 1973, when Tarkoy 

(1975) worked on examining various geotechnical measurements and offered total hardness 

measurements for predicting penetration rates in hard rock formations. Since then, various models 

have been developed to predict penetration rates in hard rock formations. Several scholars have 

used experimental approaches and analyzed forces acting on disc cutter (Rostami and Ozdemir 
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1993, Bruland 1998) or performed statistical analysis of various rock indices and examined the 

influence of different rock parameters (Hassanpour et al. 2009b and 2010; Hamidi et al. 2010; 

Jamshidi, 2018; Oreste and Spagnoli, 2022) and developed empirical equations predicting tunnel 

boring machine (TBM) performance. Although the penetration rate of TBMs for hard rock 

tunneling projects has been extensively studied, there are few studies that aimed to study the 

penetration rate of MTBMs into soils. The existing models for penetration rate estimation of 

MTBM into the soft ground conditions are based on statistical and data analytical approaches 

(Hegab et al., 2006; Elwakil and Hegab, 2018). For instance, Hegab et al (2006) collected data 

from 35 microtunneling projects and developed a regression model for penetration rate estimation 

of MTBMs. Elwakil and Hegab (2018) used the same database as Hegab et al. (2006) and 

developed a penetration rate prediction model using statistical regression analysis for different soil 

types. Based on the collected data and soil type classification, they developed different regression 

equations to estimate the MTBM penetration time.  

While these studies of MTBM penetration rate provide construction managers with good insights 

into the MTBM penetration time into soil, they do not illustrate mechanistically the mechanism of 

MTBM penetration rate for the purposes of assessment of MTBM performance and predictions of 

its behavior for the unexcavated tunnel length. In fact, a mechanistic approach for understanding 

the underlying physics of MTBM interaction with soil has not yet been extensively studied. In this 

regard, the aim is to mechanistically study the cutterhead-ground engagement mechanism and 

analyze its influence on the MTBM penetration rate. By employing a contact mechanics theory 

and analyzing the engagement area between the cutterhead and ground, a mechanistic model of 

MTBM penetration rate based on cutterhead engagement is developed. Further analysis of 

cutterhead engagement area, and consideration of two extreme cases of largest and smallest 
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engagement areas at tunnel face, lead to development of an upper boundary and a lower boundary 

for penetration rate estimation. These boundaries determine the range within which the actual 

penetration rate is and therefore can be used for reducing the planning uncertainties. Moreover, 

these two boundaries can be used to evaluate MTBM performance in the context of a variety of 

soil types and conditions based on the degree of cutterhead engagement with soil. 

3.2. Research Background 

Successful planning and execution of a tunneling/microtunneling project requires accurate 

determination of the TBM/MTBM penetration rates. Penetration rate is a function of cutterhead-

ground interaction, therefore, an analysis of cutterhead behavior at the tunnel face interface is 

required to determine the penetration rate. In this regard, several studies have been done to analyze 

this phenomenon. Analysis of cutterhead behavior has been done for various purposes such as 

development of cutterhead thrust and torque estimation models (Shi et al. 2011, Han et al. 2017); 

analysis of stability of excavation face, soil discharging rate, and cutterhead torque and wear (Wu 

et al. 2013, Jin et al. 2021); modeling the effects of penetration depth and disc cutter linear velocity 

on the performance of disc cutter cutting process (Fang et al. 2021); and analysis of disc cutter 

failure modes and their causes during tunneling (Ling et al. 2022). Review of literature reveals that 

although cutterhead behavior has been studied thoroughly, there remains a gap in terms of 

analyzing the mutual interactive engagement between the cutterhead and the ground. In other 

words, review of literature shows that the studies on interaction between cutterhead and ground 

belong primarily to one of two major groups: either the studies analyzed (1) the response of ground 

under cutterhead loads, or (2) the response of cutterhead due to the ground. This perspective on 

cutterhead behavior analysis has led to the development of models that aimed to analyze the 

response of ground, such as face stability and tunnel face failure (Group 1), or models that aimed 



41 
 

to analyze the response of cutterhead, such as cutterhead torque and disc cutter failure and wear 

(Group 2). However, there is a third group of studies that investigated the mutual interactive 

engagement between cutterhead and ground. In this group of studies, analysis of the cutterhead-

ground engagement for the purpose of understanding its influence on the MTBM penetration rate 

into the ground has not yet been studied from a mechanistic perspective. Moreover, the existing 

models on cutterhead-ground mutual interactions are complex, requiring several computational 

inputs, are limited to project specifications and are not user friendly enough to provide construction 

engineers with a clear picture of cutterhead-ground engagement influence on MTBM penetration 

rate. In this regard, the present research aims to address these gaps through mechanistic analysis 

of cutterhead-soil engagement and by developing analytical models based on fundamental 

theoretical laws that shed light on the influence of cutterhead-ground engagement on MTBM 

penetration rate. The analytical models developed in the present study may be easily employed by 

construction engineers and managers to improve productivity of microtunneling construction 

projects by incorporating it into modeling the entire microtunneling operation system. 

3.3. Methodology  

First, the mechanistic approach to modeling the cutterhead-ground engagement is illustrated. Then, 

the procedure for modeling is detailed, and a closed-form mechanistic model of the cutterhead-

ground engagement is presented. 

3.3.1. Mechanistic Approach for Analysis of Cutterhead-Ground Engagement 
To study and model the interaction between the MTBM and the ground, the present research 

employs the fundamental theory of contact mechanics. Based on this theory, the interaction 

between two bodies contacting each other can be analyzed and their relative deformation due to 

the stresses at the contact between them can be determined as shown in Figure 3.1-A. By applying 
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this theory, the interaction between MTBM and ground is modeled by assuming MTBM as Body 

1 and the ground as Body 2 as shown in Figure 3.1-B. At the contact between MTBM and ground, 

the MTBM penetrates into the ground due to the thrust force that propels the cutterhead forward 

and torque force that rotates the cutterhead to cut the ground at the tunnel face.  

 

Figure 3. 1. Proposed mechanistic model for penetration rate modeling based on contact mechanics theory 
for (A) two contacting bodies and the stresses between them due to applied loads; and (B) MTBM 
penetration into the ground (Moharrami et al., 2022). 

Mechanically, if two bodies are in contact by a normal force and consequently are subjected to a 

tangential force, then the interface contact area will be composed of an inner stick zone and an 

outer frictional zone (Johnson, 1985). Hence, the contact area between the MTBM and the ground 

due to normal thrust force and consequent tangential torque force can be decomposed into an inner 

engagement area and outer frictional area. Considering the disc cutter arrangement on the 

cutterhead (Figure 3.2-A), during excavation disc cutters produce the excavation trace by cutting 

the soil along the cutting direction (Figure 3.2-B), and while continuing the excavation disc cutters 

create an actual engagement area shown in Figure 3.2-C. In the present research, the actual 

engagement area is modeled by considering the equivalent circular engagement area in the center 

of the cutterhead (Figure 3.2-D). During excavation, the actual engagement area changes, which 
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results in variation of penetration rate. As the engagement of cutterhead increases, during each 

rotation of cutterhead the larger tunnel face area will be excavated, which leads to a higher 

penetration rate. In terms of simulating cutterhead excavation, the actual engagement area of the 

cutterhead can be obtained from experimental tests; however, by considering instead the two 

extreme cases of largest and smallest engagement area, an upper and lower boundary for 

penetration rate of the MTBM can be obtained.  

A.            B. 

                                               

C.            D. 

                                                                                           

Figure 3. 2. Schematic simulation of the actual engagement area at the cutterhead-ground interface (A) 
Cutter arrangement (B) Excavation traces (C) Actual engagement area  (D) Simulated engagement area. 

3.3.2. Cutterhead-Ground Engagement Model Development 
Based on the theory of contact mechanics, analysis of cutterhead–ground engagement is performed 

by establishing the boundary conditions for the normal stress 𝜎𝑧𝑧,  and tangential stresses 𝜏𝑧𝜃 and 
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normal displacement 𝑤 and tangential displacement 𝑈𝜃 between MTBM and ground as shown in 

Eq. 3.1 and finding the normal and torsional stresses at the contact between cutterhead and ground. 

{
 
 

 
 

𝑤 (𝑟) = 𝛿                     0 ≤ 𝑟 ≤ 𝑎    
𝑈 (𝑟) = 𝑟𝜑                 0 ≤ 𝑟 ≤ 𝑐      

𝜏𝑧𝜃(𝑟) = 𝑓𝜎𝑧𝑧(𝑟)           𝑐 < 𝑟 ≤ 𝑎       

𝜎𝑧𝑧(𝑟) = 0                           𝑟 > 𝑎    
𝜏𝑧𝜃(𝑟) = 0                           𝑟 > 𝑎     

    

                                                                                    (3.1) 

where 𝛿 is the penetration depth, 𝜑 is the torsion angle, 𝑓 is friction coefficient, r is polar radius 

in the contact plane, and c and a are radius of cutterhead engagement and cutteread radius 

respectively (Figure 3.3). Referring to Moharrami et al., (2022), the solution for the normal contact 

problem between rigid MTBM and ground with elasticity of E and Poisson’s ratio of 𝑣 has been 

solved and the corresponding normal stresses are obtained as shown in Eq. 3.2. 

𝜎𝑧𝑧(𝑟) =
𝐸𝛿

𝜋(1−𝑣2)√𝑎2−𝑟2
                                                                                                             (3.2) 

 

Figure 3. 3. Schematic representation of MTBM penetration (δ) under thrust force (F) and torque (T) and 
the radius of engagement area (c) and radius of cutterhead (a). 

The solution for torsional contact is to find the function 𝜑(𝑥, 𝑎) such that the boundary conditions 

in Eq. 3.1 are satisfied. The solution must satisfy Coulomb's law in the frictional area, and must 

describe a rigid body rotation in the area of engagement. In the frictional area the shear stress 

follows the Coulomb’s friction law shown in Eq. 3.3. 
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𝜎𝜑𝑧 = 𝑓𝜎𝑧𝑧                          𝑐 < 𝑟 ≤ 𝑎                                                                                           (3.3) 

where 𝑓 is friction coefficient and 𝜎𝑧𝑧 is the normal stress. In the engagement area, the shear stress 

𝜎𝜑𝑧 can be obtained by Eq. 3.4 (Johnson, 1985) and its relationship with torque can be obtained 

by calculating the integral of the shear stress distribution over the contact area (s), as shown in Eq. 

3.5. 

𝜎𝜑𝑧 = ∫
𝑟𝑞0(𝑠)

√𝑎2−𝑟2

𝑎

𝑐
𝑑𝑠                      0 < 𝑟 ≤ 𝑐                                                                                  (3.4) 

𝑇 = 2𝜋(1 − 𝜇) ∫ 𝜎𝜑𝑧𝑠
2𝑑𝑠

𝑎

𝐶
                                                                                                         (3.5)  

where 𝑞0(𝑠) is the shear stress density and 𝜇 is the opening ratio of cutterhead. By analysis of 

shear stress at the transition boundary from engagement to the frictional area, the shear stress 

density 𝑞0(𝑠) is obtained from Eq. 3.6.  

𝑞0(𝑠) =
−2𝑓

𝜋

𝑑

𝑑𝑠
∫

𝜎𝑧𝑧(𝑎,𝑥)

√𝑥2−𝑠2

𝑎

𝑠
𝑑𝑥             𝑐 < 𝑟 ≤ 𝑎                                                                          (3.6)   

Substituting 𝑞0(𝑠) into the Eq. 3.4 and then substituting the result (𝜎𝜑𝑧) into Eq. 3.5, the function 

for 𝑇(𝑐, 𝑎) is obtained as shown in Eq. 3.7. 

𝑇 =
8𝑓𝑐3(1−𝜇)

3
∫

𝜎𝑧𝑧(𝑎,𝑥)

√𝑥2−𝑎2

𝑎

𝑐
𝑑𝑥                                                                                                          (3.7) 

Substituting normal stress distribution 𝜎𝑧𝑧 from Eq. 2 into Eq. 3.7, the relationship between torque 

(𝑇) and penetration (𝛿) is obtained as shown in Eq. 3.8. 

𝑇 =
𝑓𝐸𝐻(1−𝜇)

𝜋𝑎(1−𝑣2)
𝛿                                                                                                                             (3.8) 

where H is a parameter that is a function of engagement radius (c) and cutterhead radius (a) as 

presented in Eq. 3.9. 
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𝐻 = [
8

3
𝑐3𝐾(√1 −

𝑐2

𝑎2
  ) + 8∫ 𝑥2𝐾(√1 −

𝑥2

𝑎2
  )𝑑𝑥]

𝑎

𝑐
                                                                     (3.9) 

where K() is the complete elliptical integral of the first kind.  

Rearranging Eq. 3.8 and considering the fact that penetration rate (PR) is proportional to the 𝛿 by 

the rotational speed of cutterhead (in RPM) (Eq. 3.10) and assuming the ground as an isotropic 

space (𝐺 = 𝐸

2(1+𝑣)
), the result is an expression for the penetration rate that considers the influence 

of engagement radius (c) as shown in Eq. 3.11 and Eq. 3.12. 

𝑃𝑅(𝑚𝑚/𝑚𝑖𝑛) = 𝑅𝑃𝑀(𝑟𝑒𝑣/𝑚𝑖𝑛) × 𝛿(𝑚𝑚/𝑟𝑒𝑣)                                                                  (3.10) 

𝑃𝑅 = 𝛼 × 𝑅𝑃𝑀 × 𝑇 ×
(1−𝑣)

𝐺
×

1

𝑓𝑎2(1−𝜇)
                                                                                     (3.11) 

𝛼 =
𝜋𝑎3

2𝐻
                                                                                                                                       (3.12) 

To analyze the developed penetration rate model and evaluate the influence of engagement area 

on penetration rate, the relationship between engagement factor Alfa (𝛼) and normalized 

engagement radius (c/a) is plotted in Figure 3.4. 

 

Figure 3. 4. Relationship between normalized engagement radius (c/a) and engagement factor Alfa (α). 
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An analysis of Figure 3.4 shows that as the engagement radius increases, the engagement factor 

Alfa (𝛼) increases until it reaches a maximum value of 0.375. Therefore, the upper boundary for 

the MTBM penetration rate based on consideration of complete engagement (i.e., 𝑐 = 𝑎) is 

obtained as shown in Eq. 3.13.  

𝑃𝑅 = 0.375 × 𝑅𝑃𝑀 𝑇 ×
(1−𝑣)

𝐺
×

1

𝑓𝑎2(1−𝜇)
                                                                                (3.13) 

On the other hand, when the engagement radius decreases, the engagement factor decreases as 

well until it asymptotes to an infinitesimal number for very small engagement radius. By assuming 

a minimum engagement radius to be 20% of cutterhead radius, a lower boundary for MTBM 

penetration rate is defined and shown in Eq. 3.14. 

𝑃𝑅 =
3𝜋

16𝐾(0.96)
× 𝑅𝑃𝑀 𝑇 ×

(1−𝑣)

𝐺
×

1

𝑓𝑎2(1−𝜇)
                                                                            (3.14) 

When the cutterhead engagement area with soil increases, it more effectively excavates the tunnel 

face and therefore the penetration rate increases. In ideal conditions, when the cutterhead is fully 

engaged, the penetration rate would be at the highest rate. On the other hand, when the cutterhead 

loses engagement with soil and slips on it, the penetration rate decreases. It follows that Eq. 3.13 

and 3.14 are two mechanistic models of MTBM penetration rate that determine the boundaries of 

penetration rate where the actual MTBM penetration rate would be found between the two 

boundaries (Figure 3.5). 
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Figure 3. 5. Schematic representation of upper and lower penetration rate boundaries based on cutterhead 
engagement area with soil. 

In order to find the actual area of MTBM engagement, experimental investigation is required to 

be performed which is beyond the scope of the present study. To examine the developed MTBM 

penetration rate boundaries, they are applied in a microtunneling project case study. 

3.4. Model Evaluation 

3.4.1. Case Study 1 
 

The predictive capability of the model was evaluated following its application in a microtunneling 

project case study. Results are detailed as follows. To validate the application of the developed 

mechanistic model for penetration rate prediction, the penetration rates predicted by the proposed 

model were compared to actual values obtained from microtunneling data collected during the 

construction of a sanitary trunk in Alberta, Canada. 

The project used a number of drilling methods, including open cut from Borehole 1 to Borehole 

11, horizontal directional drilling from Borehole 11 to Borehole 12, and microtunneling from 

Borehole 12 to Borehole 16 (Figure 3.6). The section diameter and length of the tunnel were 1.5 
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m and 2.6 km, respectively, and tunnel depth ranged from 6 m to 15 m. The tunnel was composed 

of silty clay to clayey silt soil types, and, at some locations, traces of silty sand were identified. 

Based on geotechnical investigation report, soil types at the boreholes along the microtunneling 

sections under study are illustrated in Figure 3.6. 

The underground geology was mainly silty clay to clayey silt soil types along with some traces of 

silty sand. The Young’s elastic modulus (E) range was between 5 to 24 MPa, the Poisson’s ratio 

was 0.25 and the shear modulus (G) is calculated based on Young’s elastic modulus (E) assuming 

soil to be isotropic material. The cutterhead used in this project has the following characteristics: 

Cutterhead opening ratio (𝜇) was 30 % and the cutterhead diameter (a), speed (RPM), nominal 

torque capacity, and maximum operating thrust limit were 1500 mm , 0–3 rev/min, 550 kN.m and 

630 ton, respectively.  

 

Figure 3. 6. Sewer line alignment and borehole locations of sanitary trunk project. Black and gray lines 
show the availability or unavailability of MTBM data respectively. The schematic representation of soil 
types at the boreholes for the selected sections of tunnel under study is also shown in the Figure. 

The inputs of the mechanistic parameters including operational load parameters (i.e., torque and 

RPM) were obtained from the MTBM data acquisition system (Figure 3.7); cutterhead 

characteristics (i.e., cutterhead radius and opening ratio) were obtained from project specification 
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documents; and soil properties were obtained from geotechnical field investigation reports. Based 

on these above-mentioned parameters, upper and lower boundaries of MTBM penetration rate 

were determined using the proposed mechanistic models. Comparison of the actual penetration 

rate, and the developed boundaries for two different tunnel sections between BH4 to BH14 and 

BH5 to BH6 along the tunnel length are presented in Figure 3.8. 

  

Figure 3. 7. MTBM data obtained from data acquisition system: Torque (% of max torque capacity) and 
RPM during excavation portion of tunnel between BH4 and BH14. 
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A.  

 

B.  

 

Figure 3. 8. Actual and predicted penetration rates boundaries along the (A) BH4 to BH14 and (B) BH5 
and BH6 portion of the project under study. 

As shown in Figure 3.8, the actual penetration rate lies between the upper and lower boundaries 

and is closer to the upper boundary for both tunnel sections, which indicates the relatively high 
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engagement of MTBM with ground, leading to the high penetration rate. To further anlyze the 

influence of engagement area on penetration rate, the actual penetration rate for the tunnel section 

between BH4 to BH14 along the tunnel length was analyzed and the corresponding engagement 

factor Alfa (𝛼) at each point are plotted as shown in Figure 3.9. This analysis shows that a huge 

drop in penetration rate occurs at low engagement factor Alfa (𝛼) that corresponds to the low 

engagement radius (c) of cutterhead with ground (Figure 3.9). Moreover, the analysis shows that 

during excavation of this tunnel section, the average value of enagement factor was 0.371, which, 

based on Figure 3.4, corresponds to a ratio of engagement radius (c) to cutterhead radius (a) of 

90%, indicating high engagement area during the course of tunneling excavation. 

 

Figure 3. 9. Actual penetration rate (PR) for tunnel section between BH4 to BH14 and corresponding 
cutterhead engagement factor Alfa (α) along the tunnel length. 
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3.4.2. Case study 2 
The developed framework was applied to microtunneling constrcution in Edmonton, Canada. This 

project consists of two microtunneling sections between BH 18 to BH 15 (section A) and between 

BH 4 to BH 10 (section B). The project description is provided in Chapter 2, Section 2.5.3. Section 

A of the microtunnelling was from BH4 to BH10, and Section B was from BH18 to BH15. 

Analysis of the engagement model shows that (Figure 3.10), the actual penetration rate occurs 

between the upper and lower boundaries and is closer to the upper boundary for both tunnel 

sections. This shows the relatively high engagement of MTBM with ground for both section A and 

B of the project. The penetration rate boundaries are not constant during the tunnel excavation and 

the influence of both soil properites and MTBM operational loads led to variation in MTBM 

engagament areas and therfore results in variation of upper and lower boundaries at different 

locations of tunnel path. 
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Figure 3. 10. Actual and predicted penetration rates boundaries along the (A) section A and (B) section B 
of the microtunneling project. 

3.5. Conclusion 

Complex interaction between the cutterhead and soft ground makes the prediction of MTBM 

penetration rate a challenging task which consequently affects the prediction of the overall 

productivity of microtunneling projects. This complexity arises from various interactions that 

occur between cutterhead and ground such as engagement phenomeon between cutterhead and the 

ground during an excavation process. Although this engagement phenomeon highly influences the 

MTBM penetration rate, this phenomenon has not yet been thoroughly investigated from a 

mechanistic perspective. Therefore, in the present research, the main goal was to fill this gap and 
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mechanistically investigate the engagement of cutterhead with ground and evaluate the influence 

of this phenomenon on the MTBM penetration rate. To achive this goal, by applying the theory of 

contact mechanics, the engagement of cutterhead with ground is modeled and the mathematical 

expression for calculation of the MTBM penetration rate based on the radius of cutterhead 

engagement with ground is developed. Considering two cases of largest and smallest engagement 

areas the upper and lower boundaries for MTBM penetration rate were determined. To examine 

the developed mechanistic MTBM penetration rate boundaries and also the cutterhead engagement 

influence on penetration rate, the data from two microtunneling projects was studied. Analysis of 

the results for two different tunnel projects showed that the actual MTBM penetration rate lies 

between the developed upper and lower boundaries and is closer to the upper penetration rate 

boundary. Moreover, it is found that a drop in penetration rate occurs at locations where the 

engagement area was smaller. Further analysis showed that  during the course of tunneling 

excavation, the engagement radius on average was about 90% of the cutterhead radius which 

indicates high engagement of cutterhead with ground. Results also showed that the developed 

upper and lower boundaries provide a promising range within which the actual MTBM penetration 

rate is likely to occur. Obtaining this range helps to reduce the uncertainity of MTBM penetration 

rate prediction and to facilitate the planning of microtunneling projects by considering these 

boundaries for production rate analysis. The developed penetraton rate boundary models should 

be considered in light of being limited to soft ground (i.e, soil) with stable tunnel face conditions. 

3.6. Data Availability 

All models generated or used in the present study are available from the corresponding author 

upon reasonable request. Case study data used in this research were provided by a third party. 
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Chapter 4: Dynamic Data-Driven Approach for 

Penetration Rate Prediction in Microtunneling 

Construction 

4.1. Introduction 

Microtunneling was introduced in Japan in the early 1970s, and it later spread to Europe and the 

United States (Luo and Najafi, 2007). Its application in North America has undergone continuous 

growth since the 1980s (Chung et al., 2004). According to the American Society of Civil Engineers 

(ASCE), microtunneling is a trenchless construction method for pipeline installation that is 

remotely controlled and that uses laser guidance (ASCE, 2001). During microtunneling projects, 

pipe sections are jacked while the tunnel face is excavated and soil materials are removed, and the 

face of the tunnel is continuously supported (ASCE, 2001). Several factors have led to an increase 

in microtunneling applications, including its ability to minimize surface disruptions (especially in 

congested urban areas) and its high accuracy of both line and grade pipeline installation (Chung et 

al., 2004). Moreover, improvements in the technical features of microtunnel boring machines 

(MTBMs) have allowed for their use in various geological and geotechnical conditions.  

Although these advancements have increased the application of microtunneling, a key challenge 

facing the industry is accurate prediction for planning, control, and monitoring purposes. For 

instance, productivity prediction provides insightful information for owners in their efforts to 

control and evaluate the contractor’s performance and assess project progress. One of the key 

parameters in predicting the productivity of microtunneling projects is the penetration rate (PR) of 

the MTBM (Hegab et al., 2006). The Standard Design and Construction Guidelines for 
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Microtunneling (2015), define PR as “instantaneous excavation distance per time while the MTBM 

is operating, typically measured in inches per minute or millimeters per minute” (ASCE, 2015).  

The complexity of MTBM interactions with various ground conditions, as well as changes in 

geological or geotechnical conditions at the tunnel face, make PR prediction a challenging task. 

Various models have been developed to predict PR, and scholars have developed empirical 

equations by collecting rock mass characteristics and tunnel boring machine (TBM) performance 

data from multiple tunneling projects using machine learning models such as Artificial Neural 

Networks (ANNs) (Alvarez et al., 2000; Eftekhari et al., 2010; Salimi and Esmaeili, 2013), particle 

swarm optimization (PSO) (Yagiz and Karahan, 2011), and single- or multi-variate regression 

analysis (Sapigni et al., 2002; Hassanpour et al., 2009a, 2009b, 2011; Farrokh et al., 2012; 

Jamshidi, 2018). Researchers have also used full-scale field tests to correlate field parameters with 

boring machine performance in order to deliver more accurate predictions (Rostami and Ozdemir, 

1993; Rostami, 1997, 2008; Sato et al., 1991; Sanio, 1985; Ozdemir et al., 1978). A review of 

existing models for predicting PR shows that most of them have been developed for tunneling 

excavations through hard rock formations (Alvarez et al., 2000; Sapigni et al., 2002; Ribacchi and 

Fazio 2005; Yagiz, 2008; Hassanpour et al., 2009b and 2011, Farrokh et al., 2012; Jamshidi, 2018), 

whereas relatively few studies have targeted the prediction of PR for microtunneling excavations, 

particularly those involving soft underground conditions (Hegab et al., 2006; Elwakil and Hegab, 

2018). Moreover, existing approaches for PR prediction require either extensive data collected 

from multiple projects representing a wide variety of geotechnical conditions or the use of 

specialized equipment and laboratory facilities. In addition, existing prediction approaches use 

static data (e.g., laboratory test results, database of historical project data)—rather than dynamic 

MTBM data generated during the tunneling process—to predict the PR.  
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This research aims to address these limitations by providing a new dynamic data-driven approach 

that integrates near-real-time machine-generated data (i.e., MTBM data) with geotechnical data to 

predict the PR of MTBMs. The key features of this approach is that it dynamically learns from the 

MTBM data and enhances the prediction accuracy as the excavation proceeds.  

4.2. Research Background  

As noted above, research on the use of TBM-generated data collected during microtunneling 

operations to improve productivity prediction is limited. The data generated by TBMs is typically 

stored and is seldom used for project management purposes. Although the generated TBM data is 

typically used for evaluating TBM responses such as the jacking force required to push the pipes 

(Khazaei et al., 2004; McCabe et al, 2012, Ji et al., 2019) or analyzing cutterhead torque (She et 

al., 2011, Lin et al, 2022), instantaneous TBM PR data has been used in a few studies for evaluating 

overall project productivity (Hegab et al., 2006; Elwakil and Hegab, 2018). However, the aim of 

these studies was to statically evaluate the project productivity, and they did not investigate the 

use of TBM data for continuously evaluating and updating the project plan and productivity. A 

review of the literature in this domain reveals that continuous project plan-updating has been done 

using a variety of methods and considering different factors of interest (Haas and Einstein, 2002; 

Einstein, 2004; Sousa and Einstein, 2012; Špačková et al., 2013; Mahmoodzadeh et al. 2021). For 

instance, continuous project plan-updating during tunnelling operations has been applied to reduce 

the negative impacts of geological and geotechnical uncertainties on project time and cost. In this 

regard, Haas and Einstein (2002) underscored the need for ongoing productivity projections during 

construction as a way of improving scheduling, resource allocation, financial planning, and so on. 

They proposed a procedure that not only replaces the original prediction with actual data from 

excavation, but that also includes a learning component that uses information from the actual 
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excavation to improve prediction for the length of tunnel yet to be excavated. They used Bayes’ 

theorem to devise a method that learns from the actual excavation and considers observations made 

during construction. Sousa and Einstein (2012), meanwhile, presented a method to evaluate the 

risks associated with tunnel construction. They developed a framework that uses a geologic 

prediction model to predict geological conditions in the length of tunnel to be excavated, 

combining it with another model that enables users to select the construction strategy that poses 

the least risk based om the given conditions. Both the geological prediction model and the 

construction strategy decision models used to update project information were developed using 

the Bayesian network technique.  

Špačková et al. (2013) developed a model for updating the construction time predictions based on 

observed geotechnical conditions. Using the dynamic Bayesian network (DBN), they developed a 

framework for probabilistic prediction of tunnel construction time and cost, considering in 

particular the stochastic dependencies involved in probabilistic estimates of tunneling construction 

time and cost. More recently, Mahmoodzadeh et al. (2021) used continuous space–discrete state 

Markov process for forecasting geological conditions in order to reduce the effects of geological 

and geotechnical uncertainties on tunnel construction time and cost.  

The common aim of these studies was to predict the geological conditions ahead of tunneling 

operations and, taking into account observations made during excavation, develop a decision 

support tool for tunneling construction accordingly. However, in these studies, TBM performance 

was not considered a key factor in continuous updating of planning during tunneling excavation. 

As such, there is a gap with respect to the use of continuously generated TBM data for forecasting 

and updating the project schedule. This gap is particularly notable considering that continuously 

generated TBM data is capable of representing TBM–ground interactions, which can in turn be 
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used as the basis for dynamically predicting tunneling progress, as well as predicting TBM 

performance for the purpose of taking preventative measures against TBM failure when passing 

through similar ground conditions during excavation. 

4.3. Methodology 

To achieve more efficient project control, a novel decision-support framework for predicting 

MTBM PR during the microtunneling excavation phase is developed. Generally, the inputs to this 

framework can be categorized into two groups: MTBM data (i.e., PR) and geotechnical data (e.g., 

soil properties). Since the progress is based upon the availability of data, the approach underlying 

the developed framework is to dynamically use the MTBM data generated from excavation of 

different tunnel segments. The conceptual framework of the dynamic data-driven approach, 

illustrated in Figure 4.1, consists of seven components: studying of the system, data acquisition, 

data source creation, data cleaning and transformation, data analysis, model development, and 

decision support. 
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Figure 4. 1. Conceptual framework of the proposed MTBM PR prediction approach. 

As illustrated in the figure, the first step is to study the actual microtunneling system to gain 

understanding of the factors influencing the MTBM PR. Then, in the data acquisition module, 

different data sources, such as geotechnical reports, MTBM data, project documents, and daily 

progress reports, are collected to form the initial data set. The data source module extracts the 

dynamic MTBM data and the static geological and geotechnical data, then stores them in a 

database for analysis. The data preparation module processes the raw data by performing data 

cleaning. The data analysis module then interpolates the geotechnical parameters between 

boreholes and calculates the MTBM PR from the MTBM data to establish the prediction model. 

In the model development module, an artificial neural network (ANN) model is developed to 

predict the PR for the unexcavated length of tunnel based on the interpolated geotechnical data. 

Finally, the decision-support module uses the predicted MTBM PR to support decision-making 
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and improve the overall productivity of microtunneling operations. It is important to note that the 

results of the decisions are reflected in the progress of the actual system. Each of these modules is 

described in greater detail below. 

4.3.1. Data source creation 
The initial data source is prepared by reviewing geotechnical baseline reports—such as soil type 

and Standard Penetration Test results (SPT-N value)—from different borehole locations. The 

initial geotechnical database having been created, the values between borehole locations need to 

be predicted, this task being performed by the data analysis module. The MTBM data, meanwhile, 

are collected once the MTBM starts excavation. After a section of a tunnel has been excavated, 

the MTBM data collected is stored into a data source module (as near-real-time data) to be used 

subsequently in the data preparation module. 

4.3.2. Data preparation 
In this module, the near-real-time MTBM data collected are cleaned, and the outliers for each 

factor are removed using the R programing language (R Core Team 2013). Since the MTBM data 

are generated in 1-second intervals, the resulting data set is large; thus, the data are grouped into 

1-minute intervals (i.e., mm/minute) in preparation for the work of the data analysis module. 

4.3.3. Data analysis 
The purpose of this module is to interpolate the geotechnical parameters between boreholes and 

obtain the MTBM performance parameters. The geoscience interpolation technique known as the 

inverse distance weighted (IDW) method is used to interpolate between boreholes. This method 

uses distance to weight the influence of observations. The concept underlying this method is that 

locations that are in close proximity to one another are more alike than those that are further apart. 

The IWD is a deterministic method for interpolation between scattered set of points. The IWD is 
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used to predict the unknown value �̂�(𝑆0) in the location 𝑆0 given the observed y values at the 

sampled locations 𝑆𝑖 based on the following equation (Lu and Wong 2008): 

�̂�(𝑆0) = ∑ 𝜆𝑖𝑦(𝑆𝑖)
𝑛
𝑖=1                                                                                                                   (4.1) 

The predicted value in 𝑆0 is a linear combination of the weights (𝜆𝑖) and observed values in 𝑆𝑖. 

The weights  (𝜆𝑖) are defined as following: 

𝜆𝑖 =
𝑑0𝑖
−𝛼

∑ 𝑑0𝑖
−𝛼𝑛

𝑖
⁄                                                                                                                         (4.2) 

With  

∑ 𝜆𝑖 = 1
𝑛
𝑖=1                                                                                                                                    (4.3) 

In Eq. 4.2, the numerator is the inverse of distance (𝑑0𝑖) between 𝑆0 and 𝑆𝑖 with the power 𝛼 and 

the denominator is a the sum of the inverse distance weights for all locations 𝑖. The sum of all 

weights 𝜆𝑖’s for an unsampled point is unity as shown in Eq.4.3. To obtain the MTBM performance 

parameters, the MTBM data recorded during excavation of a section of tunnel are used. Once soil 

properties are interpolated and MTBM penetration rate is calculated, then a database for 

developing a machine learning model is created. 

4.3.4. Model development 
Various machine learning models are tested to determine which one provides the highest PR 

prediction accuracy. In comparing ANN, random forest, linear regression, and decision tree, the 

ANN model is found to provide the best results (results of comparison are explained in case study 

1). This is also found in several penetration rate prediction studies (Alvarez Grima et al. 2000; 

Benardos and Kaliampakos 2004; Yavari and Mahdavi 2005; Yagiz et al., 2009; Eftekhari et 

al.,2010; Gholamnejad and Tayarani 2010; Ghulami et al., 2012; Salimi and Esmaeili, 2013; 



65 
 

Torabi et al., 2013). To predict the MTBM PR for unexcavated tunnel length, an ANN model is 

constructed. The inputs to the ANN model are the geotechnical parameters interpolated along the 

tunnel length, while the output is the predicted MTBM PR for unexcavated tunnel length. 

4.3.5. Decision support 
By predicting PR along the tunnel path, the areas of high or low PR can be identified, and this 

information, in turn, can aid decision makers in adjusting the tunneling process accordingly. More 

importantly, practitioners can estimate the project’s progress and productivity and, as a result, 

modify the tunneling schedule accordingly.  

4.3.6. Data source updates 
The data source is updated anytime a new tunnel section is excavated and new MTBM data are 

generated. The newly obtained MTBM data are appended to the previous MTBM data (i.e., the 

MTBM data obtained during excavation of the previous tunnel section), and the MTBM data 

source is updated. Moreover, based on the observations from excavated soil materials, the 

interpolated geotechnical parameters, such as soil type, can be updated according to the actual site 

conditions, and the geotechnical data source updated accordingly. 

4.3.7. Dynamic aspect of machine learning model 
The developed framework is meant to be used dynamically during project execution. The neural 

network model constructed is not static, and will be reconstructed several times during excavation. 

In other words, the ANN model constructed based on excavation of a given tunnel section will be 

used to predict the next tunnel section; the next tunnel section having been excavated, based on 

the obtained MTBM data for the newly excavated section and corresponding geotechnical data for 

that section, the main database will be updated, and a new ANN model will be created for 

predicting the PR for the subsequent tunnel section. This process continues until excavation is 
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complete. Figure 4.2 shows the dynamic process of updating the main database and creating new 

ANN models. 

 

Figure 4. 2. Dynamic aspect of the data-driven framework. 

4.4. Case Study 1 

The proposed framework was applied to the construction of a sanitary trunk project in Alberta, 

Canada. This project consisted of 11 boreholes and three different tunneling methods: open-cut 

(from Borehole 1 (BH1) to BH2), horizontal directional drilling (from BH2 to BH4), and 

microtunneling (from BH4 to BH11). The microtunneling diameter and length were 1.5 m and 2.6 

km, respectively, and the tunnel depth ranged from 6 m to 15 m.  

4.4.1. Data source preparation 
Based on information obtained from the boreholes logs and the geotechnical report, the initial 

database of geotechnical parameters was constructed. Table 4.1 shows the initial geotechnical data 

obtained, including soil type descriptions, standard penetration test results (SPT-N values), and 

water content. The stability number, which assesses the soil behaviour based on the undrained 

shear strength of the soil (Terzaghi, 1950; Heuer, 1974), was also determined, along with the 

stability number at collapse, which is a function of tunnel face pressure and the cover-to-depth 
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ratio (C/D), where C is the thickness of the cover of soil over the tunnel, and D is the cut diameter 

of the tunnel (Terzaghi, 1950; Heuer, 1974).  

Table 4. 1. Initial borehole data obtained from geotechnical baseline report. 

Borehole 
number Soil type SPT-N 

value Water content (%) Stability 
number 

Stability number at 
collapse 

BH1 clayey silt 26 20.5 3.5 8.2 

BH2 silty clay 34 13.9 4.4 8.1 

BH3 clayey silt 6 16.5 4.1 11.1 

BH4 silty clay 20 18.6 5.7 11.7 

BH5 clayey silt with 
sand 30 20.4 5.7 10.2 

BH6 silty clay 19 29.7 4.9 9.6 

BH7 silty clay 30 21.0 5.5 9.6 

BH8 silty clay 11 4.8 4.4 9.3 

BH9 clayey silt with 
sand 15 27.7 4.5 8.4 

BH10 silty sand 12 13.7 4.4 8.7 

BH11 silty clay 8 38.8 5.1 8.7 

 

The raw MTBM data collected were cleaned and the outliers removed. Based on the geographical 

position of each borehole (Figure 4.3), the geotechnical data were interpolated, and the database 

of geotechnical parameters along the tunnel path was constructed. The results of the data 

interpolation of soil type along the tunnel path is shown in Figure 4.4 as an example. 
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Figure 4. 3. Borehole locations along the sewer line alignment. 

 

Figure 4. 4. Soil type interpolation along the tunnel path. 

4.4.2. Model development 
As noted above, the ANN model was selected based on a comparison of four machine-learning 

models, the other three being random forest, decision tree, and multiple linear regression. Based 

on the models trained using data from Segment 1, the PR was predicted for the subsequent tunnel 

segment. Analysis of the four models revealed that the ANN model provides the highest prediction 

accuracy—92%, compared with 81%, 86%, and 70% for random forest, decision tree, and multiple 
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linear regression, respectively. For the model development, the microtunneling procedure was 

divided into multiple excavation segments. The initial excavation segment (Segment 1) was from 

BH4 to BH6. For this segment, the MTBM data were collected, and the MTBM PR was calculated 

accordingly. Using the geotechnical and MTBM PR from the first excavation segment, an ANN 

model was constructed to predict MTBM PR for the remaining tunnel length based on the 

interpolated geotechnical data. After predicting the PR for the remaining unexcavated tunnel 

segments, the same procedure was continued on the second segment (from BH6 to BH7) and the 

third segment (from BH7 to BH8). The procedure ended with the prediction of the PR for the 

fourth tunnel segment (from BH10 to BH11). After excavation of each new tunnel segment, the 

database of MTBM performance parameters and the developed ANN for predicting PR were 

updated to increase the accuracy of the prediction. 

4.4.3. Results and discussion 
In the developed framework, reference data were defined to illustrate the dynamic prediction 

procedure. The MTBM data used for PR prediction of the next tunnel segment (Figure 4.5) served 

as the reference data. For example, in Figure 4.5, “reference data A” refers to the MTBM data 

generated during excavation of the first tunnel segment, while “reference data B” refers to the 

MTBM data generated during excavation of the first and second tunnel segments. 

 

 

Figure 4. 5. Schematic representation of the dynamic prediction procedure for different tunnel segments. 
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The PR prediction accuracy values (calculated based on mean absolute percentage error) for 

different reference data and for different tunnel segments are shown in Figure 4.6. This figure 

shows that the prediction accuracy increased as more tunnel segments were excavated. For 

example, for Segment 4, the prediction accuracy based on excavation of the first segment was 

81%, and it increased with the data from the second and third segments to 83% and 91%, 

respectively. This increase in prediction accuracy was the result of a growing set of MTBM data 

and the learning of MTBM behavior based on a widening range of ground conditions. 

 

Figure 4. 6. Penetration rate prediction accuracy based on different reference data and for different tunnel 
segments. 

On the other hand, the prediction accuracy for each set of reference data decreased as the distance 

between predicted segment and the reference data segment increased. This is also illustrated in 

Figure 4.6, where it can be seen that the prediction accuracy based on the excavation of the first 

segment (reference data A) for Segment 2 was 92%, whereas the prediction accuracy decreased 

for subsequent segments (i.e., Segments 3 and 4) to 90% and 81%, respectively. The reason for 

the reduction in accuracy is that the probability of facing new ground conditions increases as the 

distance between predicted segment and the excavated tunnel face increases. In reference data A 

(excavation of first segment), the MTBM passed through two soil types—i.e., “clayey silt with 
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sand” and “silty clay”—whereas it encountered “silty sand” in Segment 4 (between BH10 and 

BH11); thus, the prediction accuracy dropped to 81% for Segment 4. 

4.5. Case Study 2 

The developed framework was applied to microtunneling construction in Edmonton, Canada. The 

project description is provided in Chapter 2, Section 2.5.3. Section A of the microtunnelling was 

from BH4 to BH10, and Section B was from BH18 to BH15. Based on information obtained from 

the borehole logs and geotechnical report, the initial database of geotechnical parameters was 

constructed. Table 4.2 shows the initial geotechnical data obtained, including soil type 

descriptions, standard penetration test results (SPT-N values), and water content. The soil type 

code (STC) was used for transforming the soil type descriptions into numeric parameters to be 

used in the ANN model. In addition to the geotechnical information, the MTBM data required was 

also provided by the contractor. To validate the dynamic data-driven framework, the PR for the 

tunnel segment between BH17 and BH16 in Section A was predicted based on excavation data for 

the segment from BH18 to BH17, also in Section A. Excavating subsequent segments (BH17 to 

BH16), a new ANN model was constructed based on information from BH18 to BH16, and the 

prediction was made for the segment from BH16 to BH15. For Section B, similarly, based on 

excavating BH4 to BH5, the PR is predicted for the segment between BH5 and BH6. Then, by 

continuing excavation of the segment between BH5 and BH6, the PR for the tunnel segment 

between BH6 and BH7 can be predicted. Table 4.3 shows a summary of the accuracy of predictions 

for both Section A and Section B. 

Using the concept of reference data introduced in the developed framework, the analysis of the 

results shows that, in Section A, when considering the data for the segment between BH18 and 

BH17 as the reference data for ANN model training, the prediction accuracy for the segment 
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between BH17 and BH16, which has a similar soil type (silty clay with sand), is 86%. By 

considering the segment between BH18 and BH16 as the reference data for ANN model training, 

the prediction accuracy for the segment between BH16 and BH15, which has a different soil type 

(silty clay) is 81%. These findings demonstrate that the data obtained from excavating further 

segments helps to enhance the prediction accuracy if the target prediction area has similar ground 

conditions. Further analysis of the results for Section B also shows that, if in continuing the 

excavation the reference data for ANN model training includes some component of the target 

prediction area, the prediction accuracy increases. For instance, the initial reference data for the 

portion of tunnel between BH4 and BH5 in Section B does not have similar ground conditions to 

the portion of tunnel between BH5 and BH6, and the prediction accuracy is 74%. In continuing 

the excavation between BH5 and BH6, the reference data for ANN model training contains similar 

ground conditions (silty clay) to the portion between BH6 and BH7, and the prediction accuracy 

increases to 81%. 

Table 4. 2. Initial borehole data obtained from geotechnical baseline report. 

Borehole 
number Soil type SPT-N 

value Water content (%) 

BH4 silty clay with sand 11 38.4 

BH5 silty clay with sand 10 33.5 

BH6 silty clay 9 35.2 

BH7 silty clay 11 36.6 

BH8 silty clay with sand 7 38.3 

BH9 silty clay with sand 20 24.5 

BH10 silty clay with sand 14 27.4 

BH15 silty clay 10 31.1 

BH16 silty clay with sand 17 16.3 

BH17 silty clay with sand 15 20.8 

BH18 silty clay with sand 12 20.5 
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Table 4. 3. Summary of PR prediction accuracy for Sections A and B. 

Reference data Predicted segment Accuracy Tunnel area 

Excavation of BH18 to BH17 Between BH17 and BH16 86% 
Section A 

Excavation of BH18 to BH16 Between BH16 and BH15 81% 

Excavation of BH4 to BH5 Between BH5 and BH6 74% 
Section B 

Excavation of BH4 to BH6 Between BH6 and BH7 81% 

4.6. Conclusion 

In this chapter, a new dynamic data-driven based approach for predicting PR in microtunneling 

construction was proposed. It uses near-real-time MTBM and geotechnical data to predict MTBM 

PR for unexcavated tunnel length. The key contribution of this approach is that it dynamically 

learns the MTBM performance in different ground conditions as the excavation proceeds in order 

to enhance the prediction accuracy for the next tunnel sections. In addition, since both the data 

sources and the ANN model used for prediction of PR are dynamically updated, the prediction 

accuracy can be continuously enhanced if the target prediction area has similar ground conditions 

to the data source used for training the ANN model. As tunnel excavation continues, the area that 

that is yet to be observed and learned by the machine-learning model decreases and the probability 

of enhancing the prediction accuracy increases. It should be noted that, since the proposed 

framework uses machine-generated data, it is limited to steady microtunneling excavation during 

construction. Occurrence of unusual events, such as encountering foreign materials or machinery 

problems, is not considered. Hence, the expert opinion could be used in conjunction with the 

machine-generated data to increase the prediction accuracy by taking into consideration additional 

factors that may affect microtunneling PR. 
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Chapter 5: Integrating MTBM Penetration Rate 

Prediction Models and Operation Simulation Model to 

Enhance Microtunneling Productivity Prediction 

 

5.1. Introduction 

Accurate productivity estimation in microtunneling construction can improve project planning and 

scheduling, as well as reduce the risk of project delays and cost overruns. One of the main 

approaches to predicting the productivity of microtunneling construction projects is to model the 

entire process using operational simulation modelling. The applicability and practical advantages 

of this approach have been verified in a number of studies (Al-Battaineh et al., 2006; Luo and 

Najafi, 2007; Trung, 2013; Werner and AbouRizk, 2015; Moharrami et al., 2022). For example, 

Luo and Najafi (2007) used simulation modelling to assess the parameters affecting the 

productivity of microtunneling construction. Having found productivity of microtunneling 

operation to be highly dependent on soil conditions, they analyzed the impact of soil conditions 

on productivity by conducting a field study at Louisiana Tech University. Werner and AbouRizk 

(2015) used simulation to analyze the influence of delays due to equipment breakdowns and 

unexpected conditions on the productivity of tunneling projects.  

Although these studies have reported promising results of using simulation modelling to predict 

and/or evaluate the productivity of tunneling/microtunneling constructions, there are still 

challenges yet to be addressed with regard to modelling activity durations in simulation. One of 

the key activities in microtunneling is the process of excavation by micro tunnel boring machine 
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(MTBM), which involves penetration of the MTBM into the ground. In this respect, the 

instantaneous rate of MTBM penetration into the ground—defined as the MTBM penetration rate 

(PR)—is a crucial piece of knowledge for modelling the excavation process in simulation (Luo 

and Najafi, 2007; Chung, 2007; Moharrami et al., 2022). It is particularly critical when the intended 

purpose of the simulation is to enhance the productivity estimation of ongoing construction, where 

there may be a need to update the existing plan or redirect the excavation process to the original 

schedule. Considering that PR estimation is inherently challenging due to complexities of 

interactions of the MTBM with various ground conditions and changes in geological and 

geotechnical conditions at the tunnel face, PR typically is either estimated in an ad hoc, 

experienced-based manner by experts or is estimated based on historical data. As such, there is 

high degree of uncertainty associated with the MTBM PR inputs used in the simulation of 

microtunneling construction projects. This underscores the need to enhance simulation-based 

microtunneling productivity prediction models by improving the accuracy of MTBM PR inputs. 

To address this gap, this research proposes a novel approach that integrates MTBM PR prediction 

models with simulation modelling to enhance the prediction of microtunneling productivity.  

In this regard, two approaches for forecasting the MTBM PR are used as the basis for the MTBM 

PR prediction models developed in the present research. The first approach is to mechanistically 

analyze the cutterhead-ground interactions in order to develop a mechanistic model based on the 

physics governing the MTBM PR and find the mathematical solution that predicts the MTBM PR. 

The second approach is to develop a dynamic data-driven framework that uses MTBM data 

generated during the course of construction in conjunction with geotechnical data at borehole 

locations to predict the MTBM PR for an unexcavated length of tunnel. By integrating the resulting 

MTBM PR prediction models with simulation modelling, two productivity models—an 
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“integrated simulation + Bayesian updating mechanistic model for MTBM PR prediction” and an 

“integrated simulation + machine-learning model for MTBM PR prediction”—are developed. 

These are successfully implemented in two case studies of actual projects to demonstrate their 

practicality and applicability for estimating the PR in microtunnelling operations. Moreover, to 

further evaluate the proposed simulation-based integrated approaches, using Monte Carlo 

approach, fifty pseudo-random microtunneling projects are generated, and the practicality of the 

proposed productivity prediction models is examined by applying them on the generated projects. 

5.2. Research Background  

Discrete-event simulation (DES) has been widely used by researchers to predict tunneling 

productivity and to evaluate TBM performance. Simulation inputs for modelling tunneling 

activities can be determined by using similar project data. For example, Frough et al. (2019) used 

DES simulation to predict TBM utilization factor and advance rate and to find the distributions for 

the various tunneling activities. They applied their work to the Karaj Water Tunnel project as a 

case study, constructing a simulation model based on data from this project. To improve the quality 

of the simulation input, it should be noted in this regard, a notable approach is to use the Bayesian 

updating technique, which is based on observations made during tunneling operations (Zouaoui 

and Wilson, 2003; Chung et al., 2006). For example, Chung et al. (2006) considered the PR of a 

TBM and showed how the original distribution determined based on expert opinion can be updated 

using actual PR observations. They also showed that updates early in tunneling operations can 

improve the accuracy of predictions of project productivity by eliminating the uncertainty of the 

original subjective distributions. Although these research studies show the advantages of using the 

Bayesian updating technique, in each case the prior distribution (original assumption for activity 

duration) has been obtained either by data fitting using similar projects or by using subjective 
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expert opinions (which pose inherent uncertainties as an input for simulation modelling). To 

address this issue concerning the use of the Bayesian updating technique, a separate model for 

predicting the prior distribution of TBM PR is needed. However, a review of the relevant literature 

reveals that an integrated system combining a simulation model and a separate MTBM PR 

prediction model for predicting the prior distribution of excavation time has yet to be developed. 

Another approach for improving the quality of simulation inputs is to use data-driven models that 

utilize machine-learning tools to forecast the activity durations for the simulation. This approach 

requires a continuous stream of data both to serve as a dynamic input to the machine-learning tools 

and for predicting the activity durations (Akhavian and Behzadan, 2014, 2015). For example, 

Akhavian and Behzadan (2015) used built-in smartphone sensors to collect data for construction 

equipment activities and simulation input modelling. They used the case study of front-end loader 

operation to demonstrate the performance of their data-driven approach for action recognition and 

for recognizing the various states of construction equipment (e.g., engine off, idle, busy). They 

obtained satisfactory results with respect to classifying activities and obtaining activity durations. 

Although there have been attempts to improve the quality of simulation inputs for various 

construction activities, an integrated system combining a simulation model and MTBM PR 

prediction models for microtunneling operations in construction has yet to be developed. 

5.3. Integrating mechanistic model for MTBM PR with operation 
simulation 

To integrate the mechanistic model for MTBM PR described in Chapter 3 with simulation, two 

approaches are developed. The first approach is to incorporate the exact mathematical expression 

of MTBM PR into simulation, while the second approach is to leverage Bayesian law to enhance 
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the predictions made by the mechanistic model using the observations of PR obtained during the 

excavation. In the following subsections, each of these approaches is presented. 

5.3.1. Incorporation of exact mathematical expression of MTBM PR into 
simulation  
To incorporate the exact mathematical formula underlying the mechanistic model into the 

simulation, two important considerations need to be taken into account: (1) the distributions of the 

parameters of the mechanistic model, and (2) the inter-correlations among the parameters of the 

mechanistic model. 

5.3.1.1. Distributions of parameters of mechanistic model  
The developed mechanistic model for MTBM PR can predict the PR to the exact value only if the 

user knows the exact values for the parameters of the model. Given that, in the absence of access 

to the MTBM data generated during excavation or laboratory analysis of the ground properties as 

the basis for obtaining exact values of ground properties, the exact values of the mechanistic model 

parameters are unknown, and bearing in mind that practitioners typically prefer to use simulation 

to predict productivity prior to or in the early stages of construction, a mechanistic model for 

MTBM PR can be used to produce distributions of PR based on distributions of model parameters. 

To obtain an accurate prediction of MTBM PR distribution using the mechanistic model, it is 

important to find the proper distributions for each parameter of the model. Considering that the 

parameters of the mechanistic model fall into three categories (i.e., operational loads, ground 

properties, cutterhead characteristics), a distribution for each of the mechanistic model parameters 

can be obtained from the following sources of information. The distribution for operational load 

parameters (i.e., cutterhead torque, RPM) can be determined based on data from similar projects, 

data from recently excavated tunnel sections from the same project under construction, and 
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expert’s judgements. The distribution of ground properties (e.g., Poisson’s ratio, shear modulus), 

meanwhile, can be determined based on geotechnical reports and expert’s judgements. The 

distribution of cutterhead characteristics (e.g., cutterhead opening ratio, diameter, and friction 

coefficient), finally, can be obtained from MTBM design specification documents. 

5.3.1.2. Inter-correlations among parameters of mechanistic model  
The range of each parameter of the model having been determined, a value must be sampled for 

each parameter. During the sampling process, it is important to consider the inter-correlations that 

exist among the parameters of mechanistic model; otherwise, the sample inputs to be used in the 

mechanistic model for predicting PR will not be reflective of the real relationships among the 

parameters, resulting in errors in the predicted PR values. For example, once the distributions of 

friction coefficient and torque have been properly defined, values for each of these parameters in 

simulation model need to be sampled before they can be reliably implemented in the mechanistic 

model for MTBM PR. Given that torque is strongly correlated with the friction coefficient, if any 

values is sampled from the lower tail of the friction coefficient distribution, correspondingly, the 

values sampled from the torque distribution should also be taken from the lower tail, as shown in 

Figure 5.1. 

 

Figure 5. 1. Schematic example of considering inter-correlation among friction and torque when sampling 
the values from their distribution to input into the mechanistic model for MTBM PR. 
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To consider this inter-correlation between variables of mechanistic model, a joint correlated 

distribution is defined and implemented in the simulation model. For this purpose, the well-

established Copula function is used. Copula, it should be noted, is a multivariate distribution that 

examines the associations or dependencies among many variables, allowing for multiple univariate 

distributions to be combined in a single multivariate distribution.  

A joint multivariate distribution among all variables of mechanistic model parameters can be 

obtained by considering the correlation matrix (P) among them. Then, by assuming the normal 

marginal distribution for all variables of the mechanistic model, the Gaussian Copula function can 

be used to produce the joint multivariate distribution. 

Gaussian Copula function 

The Gaussian Copula is a distribution over the interval [0,1]. For a given correlation matrix P, the 

Gaussian copula can be expressed as follows: 

𝐶𝑃
𝐺𝑎𝑢𝑠𝑠 =𝜑𝑃(𝜑−1(𝑢1), … . , 𝜑−1(𝑢𝑑)) (5.1) 

where 𝜑−1 is the inverse cumulative distribution function of a standard normal distribution, and 

𝜑𝑃 is the joint cumulative distribution function of a multivariate distribution with a mean vector 

of zero and a covariance matrix equal to the correlation matrix P. 

5.3.1.3. Incorporation of MTBM PR model into simulation 
Recalling the developed mechanistic model for MTBM PR, as shown in Eq. 3.10 in Chapter 3. 

𝑃𝑅 =
𝑅𝑃𝑀 𝑇

𝜋
×
(1−𝑣)

𝐺
×

1

𝑓𝑎2(1−𝜇)
 (3.10) 

This exact mathematical formula of the mechanistic model is coded in the Simphony simulation 

model referred to as “MechanisticPR”, as shown in Figure 5.2. In this element of the simulation 



81 
 

model, the correlations among various attributes of the mechanistic model are then coded. 

Moreover, to make it easier for the user to define the distributions of each of the mechanistic 

parameters, they are all defined as task elements in the user interface of the Simphony simulation 

model, as shown in Figure 5.3. In this way, to define the distribution of a given mechanistic 

parameter, the user simply clicks on it and defines its distribution as a duration of the task element. 

 
Figure 5. 2. Element of the simulation model, referred to as “MechanisticPR”, in which the exact 
mathematical formula of the mechanistic model is coded. 

 
Figure 5. 3. Parameters of mechanistic model defined as task elements in the simulation model. 

Once the user has defined the distribution for each of the mechanistic parameters, the 

“MechanisticPR” element of the simulation model calculates the PR based on the mechanistic 

model as a local variable Lx(10), and then calculates the duration of the MTBM excavation as a 

local variable Lx(11). This value serves as the duration input to the “TBM-Excavation” task 

element in the simulation model, as shown in Figure 5.4. 
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Figure 5. 4.  “TBM-excavation” task element in the simulation model. 

The other processes of microtunneling construction defined in the simulation model are then run 

and the entire project duration estimated accordingly. 

5.3.2. Use of Bayesian updating approach for incorporating the mechanistic 
model for MTBM PR into the simulation  
To leverage the PR observations made during microtunneling construction and improve the 

predicted distribution of PR based on the mechanistic model, the Bayesian updating technique is 

applied to the mechanistic model. In the following subsections, a brief overview of Bayesian 

updating technique is first provided, followed by a summary of the steps involved in applying this 

technique in conjunction with the mechanistic model for MTBM PR. 

5.3.2.1. Overview of Bayesian updating techniques 
Bayes’ theorem is defined in the following equation: 

𝑃(A|B) =
P(B|A)P(A)

P(B)
 (5.2) 

where P(A|B) is a conditional probability, i.e., the probability of event A occurring given that B is 

true, also referred to as the posterior probability of A given B; P(B|A) is the likelihood of A given 

B; and P(A) and P(B) are the probabilities of observing A and B, respectively, without any given 

conditions, the latter also being known as the prior probability. Based on this theorem, if the input 

distribution for an activity in the simulation model is continuous and has an underlying probability 

density function, this prior distribution can be updated using Bayes’ theorem when actual 

observations become available. The updated distribution is referred to as the posterior distribution. 
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The posterior distribution is proportional to the prior distribution and the likelihood of 

observations, as expressed in the following equation: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∝ 𝑃𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 × 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 (5.3) 

The derivation of the posterior distribution of a parameter can be simplified mathematically if the 

prior distribution of the parameter is selected in consideration of the underlying random variable. 

This means that, if a given prior distribution is a conjugate of the distribution of the underlying 

variable, a posterior distribution can be obtained using the same mathematical form as the prior 

(Ang and Tang, 1975). For example, if a prior distribution is a normal distribution with a mean of 

𝜇′ and a standard deviation of 𝜎′, the posterior distribution parameters can be obtained from the 

following equation, where the mean and standard deviation of the observations are �̅� and 𝜎 and 

the number of observations is n (Ang and Tang, 1975). 

𝜇′′ =
�̅� (𝜎′)2+𝜇′(𝜎

2
𝑛⁄ )

(𝜎′)2+(𝜎
2
𝑛⁄ )

 (5.4) 

𝜎′′ = √
(𝜎′)2(𝜎

2
𝑛⁄ )

(𝜎′)2+(𝜎
2
𝑛⁄ )

 (5.5) 

Based on the Bayesian updating technique described in this section, the distribution of PR obtained 

from the mechanistic model can be updated once observations of the PR / excavation time become 

available as the project progresses. In the following subsection, the procedure for using the 

Bayesian updating technique in combination with the mechanistic model for MTBM PR is 

presented. 
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5.3.2.2.  Bayesian updating mechanistic model for MTBM PR 
To use the Bayesian updating concept in conjunction with the mechanistic model for MTBM PR 

to develop a Bayesian updating mechanistic model for MTBM PR, three steps are followed as 

outlined below: 

1- Find the prior predictive distribution of PR / excavation time based on mechanistic model 

2- Obtain the PR / excavation time observations; and 

3- Obtain the posterior predictive distributions of PR / excavation time. 

5.3.2.2.1. Finding the prior predictive distribution of PR / excavation time based on the 
mechanistic model 

A prior predictive distribution is a prior distribution in which the parameters of the distribution 

each have their own uncertainties. For example, a prior predictive distribution of MTBM PR based 

on the mechanistic model is the prior knowledge that the MTBM PR distribution obtained using 

the mechanistic model and the parameters of the PR distribution (assuming a beta distribution) has 

uncertainties (e.g., Alfa, which is one of the parameters describing beta distribution, has a 

triangular distribution). To find the prior predictive distribution of PR / excavation time, a prior 

distribution of PR / excavation time based on mechanistic model must first be determined, 

following which the uncertainties of the prior distribution’s parameters are calculated.  

To find the initial distribution of the MTBM excavation duration based on the mechanistic model, 

the type of distribution that the mechanistic model produces for the excavation duration must first 

be determined. In the Simphony simulation environment, a simple model is created that includes 

the mechanistic model for MTBM PR, which is coded in the “MechanisticPR” element shown in 

Figure 5.5. In turn, the MTBM excavation time is calculated. A user-friendly interface is developed 

to input the ranges of the mechanistic model parameters into simulation environment. Based on 

the analysis of the mechanistic model achieved by inputting the ranges of mechanistic model 
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parameters in the simulation environment (shown in Figure 5.5) and calculating the PR and 

excavation time, and fitting a distribution to the excavation time results obtained, it is determined 

that the mechanistic model produces a “Beta” distribution for the MTBM excavation duration, as 

shown in Figure 5.6.  

 

Figure 5. 5. Simphony simulation model developed to obtain the prior predictive distribution of excavation 
time based on mechanistic model. 
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Figure 5. 6. Distribution of excavation time based on mechanistic model. 

The type of distribution having been determined, the next step is to define the uncertainties of the 

parameters in “Beta distribution”, namely, Alfa, Beta, Low, and High. To find the distributions for 

each of the “Beta distribution” parameters, the simulation model shown in Figure 5.5 is 

experimented several times (each experiment has 1,000 simulation runs). Records of beta 

distribution parameters for each run are collected, and distributions for the parameters of “Beta 

distribution of excavation time” are determined accordingly (Figure 5.7). 
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Figure 5. 7. Example of experiment records for determining distributions for the parameters of “Beta 
distribution of excavation time”. 

5.3.2.2.2. Obtaining PR / excavation time observations 

During microtunneling excavation, observations of PR or excavation time for each pipe section 

can be made. These observations can be used to “update” the prior understanding concerning the 

distribution of MTBM excavation time as obtained from the mechanistic model. 
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5.3.2.2.3. Obtaining posterior predictive distributions of PR / excavation time 
Once observations of excavation times become available, the posterior predictive distribution 

based on Bayes’ rule can be determined. Figure 5.8 shows the posterior predictive distribution 

(green line), prior predictive distribution (red line), and histogram of excavation time observations 

(blue histogram). 

 

Figure 5. 8. Example of updating the prior predictive distribution using observations and obtaining posterior 
predictive distribution of excavation time. 

The figure above demonstrates the successful deployment of Bayes’ theorem to integrate the 

mechanistic model for MTBM PR with simulation. Using this approach, not only can practitioners 

benefit from the predictions made by the mechanistic model for MTBM PR, but they can also 

enhance the performance of the mechanistic model by updating it using the Bayesian updating 

technique.  
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5.4. Integrating Machine-learning model for MTBM PR with 
Simulation 

To integrate the machine-learning model for MTBM PR with the simulation model for 

microtunneling construction, a database is created in the simulation model (Figure 5.10) that calls 

the results of the machine-learning model for MTBM PR. This database includes both the predicted 

PR and the location along the tunnel length where the PR prediction is made. Figure 5.9 shows an 

example MTBM PR prediction between boreholes in the “St. Albert project” (referenced in the 

case study section below). 

 

Figure 5. 9. Example of MTBM PR predicted spectrum between boreholes in St. Albert microtunneling 
project. 
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Figure 5. 10. Simulation environment that includes “Database” element for calling the predicted PR using 
machine-learning approach and “Load Data” element to load the data into simulation model. 

The predictions of PR along the tunnel length having been inputted to the simulation model, these 

data will be read. Based on the predicted PR, the excavation time for pipe sections can be 

calculated and used to model the MTBM excavation time in the simulation environment. 

5.5. Case study analysis  
Two actual microtunneling construction projects in the Alberta, Canada are used to test the 

proposed approaches of integrating MTBM PR prediction models with simulation. With respect 

to each of the microtunnelling projects, the aim is to update the project productivity and expected 

project duration during project execution. To examine the effect of continuous updating of the 
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project plan during construction, each project plan is updated at various percentages of project 

completion. In the following subsections, these projects are described in greater detail. 

5.5.1. Case study 1 
To validate the application of the “integrated simulation + Bayesian updating mechanistic model 

for MTBM PR prediction” and the “integrated simulation + machine-learning model for MTBM 

PR prediction”, the predicted project durations are compared to the actual values obtained from 

microtunnelling construction of a sanitary trunk in Alberta, Canada. (A detailed description of this 

case study is provided in Section 2.5.2.) The tunnel length is divided into four sections, as shown 

in Figure 5.11. The first tunnel section is used to obtain (1) the initial estimate of mechanistic 

model parameters, and (2) the MTBM data required for training the first artificial neuron network 

(ANN) model. Based on the respective predictions of PR for the remaining tunnel length at 37% 

and 60% project completion, the project plan is updated and the predicted project durations are 

compared with the actual project duration. As shown in Figure 5.12A, when the project duration 

is updated using the “integrated simulation + Bayesian updating mechanistic model for MTBM 

PR prediction” at 37% project completion, the actual project duration at 60%, 73%, and 100% 

project completion is found to fall between the predicted upper and lower ranges of project 

duration. As the project progresses and more information about the MTBM–ground interaction 

becomes available, the predicted range for project duration becomes narrower and closer to the 

actual project duration. This is shown in Figure 5.12B, where the project duration is predicted at 

60% project completion. To examine the “integrated simulation + machine-learning model for 

MTBM PR prediction”, the project duration is updated at 37% and 60% project completion (Figure 

5.13). The approach integrating the simulation model with machine-learning model for MTBM 

PR, like the approach integrating simulation with the mechanistic model, yields promising results, 
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with the actual project durations obtained by updating it at 37% and 60% project completion being 

found to fall within the predicted ranges of project duration. Moreover, a comparison of these 

results with the predictions obtained based on expert opinion and the CPM method reveals that the 

proposed integrated simulation-based models improves the accuracy of the predictions of project 

duration while updating it at various percentages of project completion

 

Figure 5. 11. Obtaining the initial information required for both the mechanistic model and the machine-
learning model for MTBM PR. 
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Figure 5. 12. Results of updating the project duration at (A) 37% project completion and (B) 60% project 
completion using the “integrated simulation and Bayesian updating mechanistic model for MTBM PR 
prediction” and comparison with predictions generated by practitioners and by the CPM method. 
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Figure 5. 13. Results of updating the project duration at (A) 37% project completion and (B) 60% project 
completion using an “ integrated simulation and machine-learning model for MTBM PR prediction” and 
comparison with predictions generated by practitioners and by the CPM method. 

5.5.2. Case study 2 
The second case study is a microtunnelling construction project in Alberta, Canada. This project 

consists of two microtunneling sections, one between borehole 18 (BH18) and BH15 (i.e., Section 

A) and another between BH4 and BH10 (i.e., Section B). (The project is described in greater detail 

in Chapter 2, Section 2.5.3.) To examine the performance of the integrated MTBM PR prediction 

models, the project duration is updated after 22% excavation of Section B and using the excavation 

time observations, and the predicted project durations are compared with the actual project 

duration.  

Analysis of the results for the two developed approaches shows that the actual project durations 

for completing excavation to 52% and 100% of the project fall within the predicted ranges for both 
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approaches (Figure 5.14A, and 5.14B). Moreover, a comparison of the simulation-based prediction 

models with forecast by practitioners shows that the proposed integrated simulation-based 

productivity models significantly improve the accuracy of the predictions. This improvement in 

predicting the project duration is illustrated in Figure 5.14A, where the difference between the 

predicted project duration by practitioner (at 100% completion) and actual project duration is much 

higher (100 days − 60 days = 40 days) compared with the predicted range generated using the 

“integrated simulation + Bayesian updating mechanistic model for MTBM PR prediction”, i.e., a 

maximum duration of 64 days and a minimum duration of 55 days. Further analysis of the results 

of both approaches, i.e., both the “integrated simulation + Bayesian updating mechanistic model 

for MTBM PR prediction” and the “integrated simulation + machine-learning model for MTBM 

PR prediction”, shows that, as the distance between the updating location and the target location 

decreases, the predicted window of project duration becomes smaller, meaning that the degree of 

uncertainty concerning the project duration is decreasing. 

 

Figure 5. 14. Results of updating the project duration at 22% project completion using (A) Simulation + 
Bayesian updating mechanistic model for MTBM PR and (B) Simulation + Machine-learning model for 
MTBM PR. 



96 
 

5.6.  Validation of integrated simulation and MTBM PR prediction 
models using Monte Carlo project generation approach 

5.6.1. Introduction 
When examining a complex system with multiple interacting components, a large number of data 

points (or projects) is needed to serve as inputs for evaluating the system. In this regard, the idea 

of generating synthetic data to simulate the real system has been used for evaluating model 

performance in various fields, including electrical engineering (Schweitzer et al., 2017), transport 

planning (Frick and Axhausen, 2003), robotics (Buch and Kraft, 2017), health care (Walonoski et 

al., 2018), and construction management (Ead, 2020). For example, Frick and Axhausen (2003) 

generated synthetic populations in order to acquire useful data for large-scale multi-agent-based 

microsimulations in the field of transport planning. Since the Public Use Sample (PUS) often used 

in transportation studies represents only a small percentage of the complete census records for each 

individual, Frick and Axhausen (2003) generated, in a synthetic manner, a large number of 

individuals with appropriate characteristic values representative of demographic variables. 

Walonoski et al. (2018) to address the lack of freely distributable health records that is a hindering 

factor for innovations in health care system, created a source of synthetic electronic health records 

and generated synthetic patients. In simulating construction operation, the uniqueness of each 

project typically results in an inadequate dataset of actual projects that can be used for validation 

and comparison of simulation-based prediction models (Ead, 2020). To overcome this issue, Ead 

(2020) employed a random project generation approach Monte Carlo approach in order to test the 

performance of various forecasting theories used for project control purposes.  

Due to the relatively limited number of actual microtunnelling project case studies available based 

upon which to test the integrated models for MTBM PR prediction (to forecast the project duration 

during construction), synthetic pseudo-random microtunneling projects are generated in the 
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present research for validation of the “integrated simulation + Bayesian updating mechanistic 

model for MTBM PR prediction” and the “integrated simulation + machine-learning model for 

MTBM PR prediction”. 

5.6.2. Methodology  

To generate microtunneling projects using the Monte Carlo approach, the following considerations 

need to be taken into account: 

1) MTBM behaviours such as PR and operational excavation loads strongly depend on the 

soil properties (stiffness, moisture content, etc.)  

2) Selection of MTBM and its characteristics, such as opening ratio, also depends on the soil 

properties and tunnel conditions. 

3) Soil properties are inter-dependent.  

 

Figure 5. 15. Schematic representation of inter-dependencies among primary components of MTBM 
excavation. 
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As such, when generating microtunneling projects, it is important to model these inter-

dependencies (Figure 5.15) and incorporate them into the algorithm used for project generation. 

5.6.2.1. Main algorithm for microtunneling project generation 
The main algorithm for the generation of microtunneling projects is shown in Figure 5.16. The 

first step in generating microtunneling projects is to generate the microtunneling project 

specifications (detailed in Algorithm A). The soil parameters at each borehole along the tunnel 

length are then generated in order to simulate the initial geotechnical data available at each 

microtunneling project (Algorithm B). The soil properties at each borehole along tunnel length 

having been specified, they are then interpolated in the third step. In the fourth step, which is the 

most complex step, the MTBM data corresponding to the soil properties and tunnel conditions is 

generated, and independent MTBM parameters are also generated (as is addressed in greater detail 

in the description of Algorithm C). Once all the soil properties have been interpolated and the 

MTBM data generated, the next step is to determine the locations at which the project duration is 

to be updated and examine the dynamic performance of integrated simulation and MTBM PR 

prediction models. In this regard, the tunnel is broken down into four sections divided at 10%, 

20%, and 30% of project completion in order to update the project duration. As the last step in the 

main algorithm of project generation, a PR observation must be collected for the same locations at 

which the project duration is to be updated. (This last step is required due to the fact that the 

Bayesian updating technique in the PR prediction model uses observations.) 
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Figure 5. 16. Main algorithm for the generation of microtunneling projects. 

5.6.2.2. Generation of microtunneling project specifications (Algorithm A) 
The process of generating microtunneling project specifications is initiated by generating a random 

tunnel length (Figure 5.17). The MTBM type and specifications are then determined. In this regard, 

based on information obtained from various MTBM manufacturers’ websites, a database of 27 

actual MTBM types with their specifications is created (Figure 5.18) and, for each project, a 

random MTBM type and specifications are selected. The MTBM specifications include MTBM 

type (brand), maximum torque capacity (kN.m), diameter (m), and maximum RPM. The various 

cutterhead characteristics, including the opening ratio, are then generated. Regarding tunnel 

condition, a random cover depth, fixed distance between boreholes, and number of tunnel sections 

are generated. A borehole table that includes borehole ID (BHID) and borehole locations (BH 

locations) can then be generated accordingly. Ultimately, taking into account the MTBM 
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specifications for each project, the distributions for the MTBM parameters (e.g., torque) and soil 

parameters (e.g., SPT) are generated for use in random sampling. 

 

Figure 5. 17. Algorithm for generation of microtunneling project specifications (Algorithm A). 
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Figure 5. 18. Database of 27 microtunneling types and their specifications. 

5.6.2.3. Generation of soil parameters at each borehole (Algorithm B) 
To generate the soil parameters at each borehole, the algorithm shown in Figure 5.19 is used. First, 

two main soil categories (cohesive and cohesion-less) are created. Then, a Markov chain 

representing the transition between cohesive and cohesion-less soil zones is created (Figure 5.20). 

Based on the initial-state soil category (i.e., either cohesive or cohesion-less) and the project 

number generated, a probability of choosing a given soil category is generated. Then, based on the 

soil category probability for each borehole location, a soil category is randomly sampled. Once a 
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soil category for each borehole in the given project has been specified, the SPT-N value (i.e., one 

of the soil properties) can be determined in accordance with Algorithm B-6. The SPT-N value for 

each borehole having been specified, the other geotechnical parameters corresponding to the 

generated SPT-N values can be generated using the soil correlation matrix detailed in Algorithm 

B-7. 

 

Figure 5. 19. Algorithm for generation of soil parameters at each borehole (Algorithm B). 

 

Figure 5. 20. Schematic representation of Markov chain for transition between cohesive and cohesion-less 
soil zones. 
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5.6.2.3.1. Determining the SPT-N value for each borehole based on soil type category 
(Algorithm B-6) 

For the purpose of determining the SPT-N value for each borehole, the algorithm shown in Figure 

5.21 is developed. First, for each category of soil (cohesive and cohesion-less), different states of 

relative density are created, and the probability of choosing a given state within a given soil 

category is determined. In this regard, two well-known tables that classify the various states of soil 

for each soil category and also determine the ranges of SPT-N value for each status are adopted 

and redefined based on Peck et al. (1974). For cohesive soils, the “consistency table” (Table 5.1) 

and for granular soil (cohesion-less) the “relative density table” (Table 5.2) are created. In looking 

at each borehole soil category, if the borehole is cohesive, then a soil status from the consistency 

table is sampled randomly (considering the probability of each status selection), whereas, if the 

borehole is cohesion-less, then a soil status from the relative density table is sampled randomly. 

Then, depending on the status of the sampled soil, the corresponding SPT-N value from the 

specified ranges (available in both the consistency table and the relative density table) is randomly 

selected. 
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Figure 5. 21. Algorithm for determining the SPT-N value for each borehole based on soil category. 

Table 5. 1. Consistency table defining SPT-N value for cohesive soils states. 

 

 

Table 5. 2. Relative density table defining SPT-N value for cohesion-less soils states. 
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5.6.2.3.2. Generation of the other geotechnical parameters corresponding to the 
generated SPT-N values based on soil properties correlation matrix (Algorithm B-7) 

In this step, the aim is to generate the other geotechnical parameters based on consideration of 

their inter-correlations among one another and with SPT (Figure 5.22). The soil environment, it 

should be noted, is highly complex in terms of the inter-correlations among various properties. To 

capture these inter-correlations in generating the soil environment, the correlation matrix linking 

the various soil properties is defined based on analysis of geotechnical data from available projects. 

To capture uncertainty in the generated soil correlation matrix, meanwhile, two soil correlation 

matrices are defined. For each generated project, one of the soil correlation matrices is randomly 

sampled.  

Before discussing the manner in which the other geotechnical parameters are generated, an 

explanation of the procedure for generating samples from joint multivariate correlated distributions 

is warranted. In this procedure, based on correlation matrices between various attributes, samples 

from joint correlated distributions can be obtained. The procedure is as follows: 

Step 1: Compute a correlation matrix, P, comprising all variables. 

Step 2: Compute the Cholesky decomposition, C, of P such that P = CTC. 

Step 3: Generate the vector of independent random variables from standard normal distribution 

𝑍 = (𝑍1,… , 𝑍𝑛) for each parameter. 

Step 4: Generate samples from joint multivariate normal distribution (U) using the calculation 𝑈 =

𝐶 × 𝑍. 

Step 5: Transform the samples from the joint correlated distribution to attributes’ values using the 

inverse transform method. 
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Applying this procedure, the following specific steps are taken to obtain the other geotechnical 

factors (i.e., those corresponding to the generated SPT-N values at each borehole). Based on the 

selected correlation matrix, the Cholesky decomposition of soil correlation matrix is determined. 

The marginal distributions for the soil properties (e.g., water content) and MTBM data (e.g., 

torque) are then defined. Then, the U matrix, which is in fact the samples from the joint correlated 

normal distributions, can be obtained by transforming the SPT-N values to a sample from a 

standard normal distribution using the inverse transform method. The U matrix is then multiplied 

by the inverse of the Cholesky decomposition to obtain the Z matrix. By sampling the missing 

entries of Z from the standard normal distribution and multiplying the samples by the Cholesky 

decomposition, a matrix containing a sample from the joint correlated distribution can be obtained. 

By transforming the joint correlated sample to the specified ranges for each of the soil properties 

(using the inverse transform method), the values of the other soil properties corresponding to the 

SPT-N values are obtained. The last step in this algorithm (i.e. Algortihm B-7) is to generate a 

database of soil parameters for each borehole ID and borehole location. 
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Figure 5. 22. Algorithm for generation of the other geotechnical parameters corresponding to the generated 
SPT-N values based on soil properties correlation matrix. 

The next step in the main algorithm (Figure 5.16) is interpolation of the soil properties between 

boreholes. 

5.6.2.4. Interpolation of soil properties between boreholes  
To interpolate soil properties between boreholes, the inverse weighted distance (IWD) approach 

is used. (The detail explanation of the IWD method can be found in Section 4.3.3 above.) Once 

the interpolation of soil properties between boreholes along the tunnel path is completed, the next 

step is to generate the corresponding MTBM data along the tunnel path (at specified interpolated 

locations) based on the correlation matrix between MTBM parameters and soil properties, and also 

to generate the independent MTBM parameters.  
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5.6.2.5. Generate the MTBM data based on correlation matrix between 
MTBM parameters and soil properties and generate independent MTBM 
parameters (Algorithm C)  
In this step, the MTBM data are generated using the algorithm shown in Figure 5.23. To generate 

MTBM data based on analysis of two actual case studies, four correlation matrices between 

MTBM parameters and soil properties are constructed. Then, for each project generated, one of 

the correlation matrices is randomly selected. This selection is done in consideration of the selected 

soil correlation matrix described in Section 5.6.3.2. Using the method explained for generating 

samples from joint multivariate correlated distributions (Section 5.6.2.3.2), the MTBM data that 

are correlated with soil properties are generated as follows. The Cholesky decomposition of the 

correlation matrix between MTBM parameters and soil properties is calculated (C). The marginal 

distributions for soil properties and MTBM parameters are then defined accordingly. Next, using 

the inverse transform method, the values of soil properties are transformed to samples from a 

standard normal distribution, and the U matrix is obtained. By multiplying the inverse of the 

Cholesky decomposition (C) by the U matrix, the Z matrix is also calculated. The missing entries 

of the Z matrix are then obtained by sampling from the standard normal distribution. Finally, the 

Z matrix is multiplied by the Cholesky decomposition matrix (C) to obtain a matrix containing a 

sample from the joint correlated distribution. Since the values of the joint correlated distribution 

are normal, they need to be transformed to the MTBM data based on their distribution using the 

inverse transform method. The MTBM parameters correlated with soil properties having been 

generated, the independent MTBM parameters are randomly generated from their distribution, 

culminating in the final database containing the interpolated soil properties and MTBM 

parameters. 
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Figure 5. 23. Algorithm for generating MTBM data based on correlation matrix between MTBM parameters 
and soil properties (Algorithm C). 

Once the final database including all interpolated soil properties along the tunnel length and 

corresponding MTBM parameters has been generated, the next step is to determine the locations 

along the tunnel for updating the project duration. In this regard, the next step in the main algorithm 

(Figure 5.16) is to break the tunnel down into four sections divided at 10%, 20%, and 30% of the 

tunnel length (Figure 5.24). 

 

Figure 5. 24. Schematic representation of four tunnel sections divided at 10, 20, and 30% project 
completion. 

Once the tunnel has been divided into four sections, the last step in the main algorithm is to collect 

the PR observations from the PR readings generated as described in Section 5.6.2.3.2. 
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5.6.2.6. Considerations of external factors affecting the performance of MTBM 
excavation 
To make sure that the developed models work well under actual working conditions, consideration 

of external factors is incorporated into the generated projects. It should be noted that, although the 

external factors are not a part of the PR prediction models, they do affect the microtunneling 

construction practice. In this regard, an algorithm is developed to generate the external factors 

(e.g., presence of boulders, mix face conditions, utility lines, high water level), as shown in Figure 

5.25. 

 

Figure 5. 25. Schematic representation of external factors considered in the generated projects. 

The first step to generate the external factors (Figure 5.26) is to randomly determine for each 

project whether or not it is to be assigned external factors. If it is determined that a given project 

is not to be assigned any external factors, the algorithm procedure ends; if, on the other hand, the 

given project has external factors, then the number of each of the external factors to be generated 

along the project are determined. Then, the locations of the external factors along the tunnel length 

are randomly determined. The next step is to determine the influence of each external factor in 

terms of its effect in delaying the MTBM excavation. In this regard, for each external factor, an 

influence value is considered. The influence value is defined as a multiplication factor that reduces 

the excavation speed. For example, an influence value of 0.1 for high water level means that the 



111 
 

excavation speed will be one tenth of its original speed due to the influence of this factor. The last 

step is to generate observations of PR along the tunnel length for tunnel sections specified at 10%, 

20%, and 30% of project completion. 

 

Figure 5. 26. Algorithm for considering the influence of external factors on generated projects. 

 

5.6.3. Results of project generation 
Using the developed algorithm (i.e. main algorithm for microtunneling project generation), fifty 

microtunneling projects are generated (Figure 5.27). Each generated project has a separate 

database that includes both MTBM data and soil properties data interpolated along the tunnel 

length.  
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Figure 5. 27. Results of generated projects. 

The distribution of project characteristics (e.g., tunnel length, diameter, cover depth) over the 

generated projects are shown in Figure 5.28. 
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Figure 5. 28. Distribution of project characteristics over the generated projects. 
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5.6.4. Randomness test on generated projects 
To test whether or not the projects have been generated in a pseudo-random manner, the Wald-

Wolfowitz runs test (often referred to simply as the “runs test”) is performed on all the project 

characteristics. The runs test, it should be noted, is a type of non-parametric statistical test that 

determines whether or not a sequence of data has been derived through a random process. A 

common application of the runs test is a test for randomness of observations as evidence that there 

was no bias in a selection process.  

In this approach, data is transformed into a dichotomous vector by determining that each value is 

above (U) or below (L) a given threshold. The threshold used is usually a median, where values in 

the sample data that are equal to the median are removed. Once the data has been transformed, the 

number of runs is calculated. A “run” is defined as a series of consecutive observations. A sample 

with too many or too few runs suggests that it may not be random (Bujang and Sapri, 2018). Two 

hypotheses are used: the null hypothesis, H0 (null), is that the data was produced in a random manner, 

and the alternative hypothesis, H1, is that the data was not produced in a random manner. The runs 

test determines whether the null hypothesis, H0 (null), is correct (i.e., whether the data has been 

produced in a pseudo-random manner) or there is enough evidence to reject the null hypothesis. 

After defining the hypothesis, the next step is to calculate the test statistics, which show whether 

or not the null hypothesis should be rejected. The method of calculating test statistics and critical 

values differs depending on the size of the sample. Generally, for small samples (fewer than 20 

data points), the test statistics are calculated based on the number of runs, whereas, for large 

samples, approximation is used. The critical value (i.e., the value against which the number of runs 

is compared), meanwhile, is obtained from a runs test on a randomness table in the case of a small 
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sample, whereas in the case of a large sample the critical value is determined based on a formula 

stated in the following (Bujang and Sapri, 2018). 

The test statistics for a large sample can be calculated using the following equation (Bradley, 

1968): 

𝑧 =
𝑟−𝜇𝑟

𝜎𝑟
 (5.6) 

where r is the number of runs, 𝜇𝑟 is the expected number of runs, and 𝜎𝑟 is the standard deviation 

of the number of runs. The values for 𝜇𝑟 and 𝜎𝑟, in turn, can be computed using the following 

equations based on the number of samples below the median (𝑛1) and above the median (𝑛2). 

𝜇𝑟 =
2𝑛1𝑛2

𝑛1+𝑛2
+ 1 (5.7) 

𝜎𝑟 = ∑√
(2𝑛1𝑛2)(2𝑛1𝑛2−𝑛1−𝑛2)

(𝑛1+𝑛2)
2(𝑛1+𝑛2−1)

 (5.8) 

Once the test statistic (z) has been calculated, it needs to be compared with the critical value. For 

a large sample and considering two tail of distribution, the 𝑧1−𝛼/2 score from the standard normal 

distribution is the critical value, whereas, for a one-sided tailed runs test, the critical value is 𝑧1−𝛼, 

where 𝛼 is the significance level (Bujang and Sapri, 2018). 

5.6.5. Randomness test results 
The runs randomness test is performed on project characteristics and also on the data produced in 

sample project #11, including both MTBM and soil data (Figure 5.29). All of the p-values are 

found to exceed the significance level 𝛼 = 0.05, which means that the null hypothesis is 

confirmed, i.e., there is sufficient evidence to conclude that the generated projects have been 

produced in a pseudo-random manner. 
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Figure 5. 29. Runs randomness test results for project characteristics and for a data point produced in sample 
project #11. 

5.6.6. Analysis of integrated Simulation + MTBM PR prediction models using 
generated projects 
To analyze the performance of the “integrated simulation + Bayesian updating mechanistic model 

for MTBM PR prediction” and “integrated simulation + machine-learning model for MTBM PR 
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prediction”, the predicted project durations are updated at 10%, 20%, and 30% project completion, 

while the actual durations (obtained from inputting the generated PRs into the simulation model) 

are compared with the predicted ranges obtained from both models. The results generated by both 

models for sample project #43 are shown in Figure 5.30. For both models, in updating the project 

durations at 10%, 20%, and 30% project completion, the actual project durations are found to fall 

within the predicted range of project durations. 

 

Figure 5. 30. Results of integrated Simulation + Bayesian updating mechanistic model and Simulation + 
Machine-learning model for updating the project #43 duration at 10%, 20%, and 30% of project completion. 

All of the generated projects are analyzed in order to evaluate the performance of the developed 

models in dynamically predicting the project durations at 10%, 20%, and 30% of project 

completion (Figure 5.31). At each project completion location, the percentage of the fifty 

generated projects to have been correctly predicted is calculated. Analysis of the “integrated 

simulation + MTBM PR prediction models” reveals that both models perform well even at the 

early stages of a given project, and that their performance improves as the project progresses, this 

being due to continuous learning and updating on the part of the models based on observations 

made during excavation. 
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Figure 5. 31. Percentage of correctly predicted projects at 10%, 20%, and 30% project completion (by 
consideration of external factors). 

The further analysis of the integrated models for MTBM PR prediction is depicted in Figure 5.32. 

This figure shows that, when including the external factors, the performance of models decreased 

(compared to when the external factors are excluded). This decrease in on proportion of correctly 

predicted projects is due to the fact that the external factors were not originally part of the 

prediction models, but that they nevertheless have a strong influence on project duration. However, 

the reduction is found to be less pronounced in the case of the “integrated simulation + machine-

learning model for MTBM PR prediction” than in the case of the “integrated simulation + Bayesian 

updating mechanistic model”. This shows that the “integrated simulation + machine-learning 

model for MTBM PR prediction” is more flexible in learning and taking into account the influence 

of various important external factors on MTBM excavation during microtunneling construction. 

Although the “integrated simulation + Bayesian updating model for MTBM PR prediction” uses 

the observations and updates the excavation durations (predicted based on mechanistic model), the 

percentage of correctly predicted projects decreases more, (i.e., the model did not perform as well 

as the “integrated simulation + machine-learning model for MTBM PR prediction”. 
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Figure 5. 32. Percentage reduction on number of correctly predicted projects at 10%, 20%, and 30% project 
completions by including external factors for both the “integrated simulation + Bayesian updating 
mechanistic model for MTBM PR prediction” and the “integrated simulation + machine-learning model for 
MTBM PR prediction”. 

5.7.  Summary and Conclusion 

A review of simulation-based productivity models for tunneling/microtunneling projects reveals a 

deficiency with respect to modelling the activity durations in simulation. One of the key activities 

in microtunnelling is the process of excavation by MTBM and penetration of the MTBM into the 

ground. In this regard, and to enhance the simulation-based productivity models for dynamically 

predicting the project duration, two developed MTBM PR prediction models (a mechanistic model 

and a dynamic machine-learning model) are integrated with an operation simulation model. To 

integrate the mechanistic model with simulation, it is important to consider and model the inter-

correlations among the various attributes of the mechanistic model parameters, including soil 

properties, operational loads, and cutterhead characteristics. These inter-correlations are 

incorporated into the simulation model by defining the joint correlated distribution among all 

variables, such that the samples from the distribution of each mechanistic parameters can be 

obtained from the joint correlated distribution. To integrate the mechanistic model with simulation, 

two approaches are developed. The first approach is to incorporate the exact mathematical formula 
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underlying the mechanistic model into the simulation, while the second approach is to leverage 

the Bayesian updating technique to update the predictions being generated by the mechanistic 

model based on observations made during excavation. This approach, referred to herein as the 

Bayesian updating mechanistic model, is found to improve the predictive performance of the 

mechanistic model by taking into account the actual excavation time observations. To validate the 

proposed integrated models for MTBM PR prediction, they are applied to two actual case studies 

of microtunnelling projects in Alberta, Canada, and the performance of these models for 

dynamically updating the project duration at various percentages of project completion is 

evaluated. To further test the models, they are applied on fifty microtunneling projects 

synthetically generated. For this purpose, an algorithm for generating microtunnelling projects is 

developed and elaborated. To model the actual work conditions, external factors (e.g., presence of 

boulders, high water level, utility line, mix face conditions) are taken into consideration in the 

generated projects. The randomness test is also performed to confirm that the generated projects 

have been produced in a pseudo-random manner. In evaluating them on generated projects, both 

models are found to perform well even at the early stages of a given project; moreover, both the 

“integrated simulation + Bayesian updating mechanistic model for MTBM PR prediction” and the 

“integrated simulation + machine-learning model for MTBM PR prediction” see improved 

performance as the excavation continues, as they learn/update based on observations made during 

the project progress. The analysis of the influence of external factors, meanwhile, reveals that, 

although both models see a decrease in the number of correctly predicted project durations (at 

10%, 20%, and 30% project completion) when external factors are included compared to when 

they are excluded, the “integrated simulation + machine-learning model for MTBM PR prediction” 

is found to be less sensitive to the influence of external factors, and the decrease in correct 
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predictions is less pronounced than in the other model due to its relative flexibility in learning new 

information (presence of external factors) as the project proceeds. The evaluation of the 

performance of the integrated models for MTBM PR prediction reveals that the integration of 

simulation with models that utilize ongoing project information to update their predictions 

(whether using machine-learning model to learn the behaviour of the system or using mechanistic 

model combined with Bayesian updating technique to update the prior mechanistic prediction 

based on observations) can improve the accuracy of dynamic productivity prediction. This robust 

and accurate method of dynamic productivity prediction, in turn, can aid practitioners in adjusting 

the construction plan to prevent delays and cost overruns and can provide more accurate insights 

with respect to forecast project timelines. 
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Chapter 6: Conclusions, Limitations, and Future 

Directions 

6.1. Research Conclusions 

This thesis outlines the development of mechanistic and machine-learning models to enhance 

micro tunnel boring machine (MTBM) penetration rate (PR) prediction and productivity 

estimation in microtunneling construction.  

Chapter 2 investigates the mechanistic analysis of MTBM–ground interaction and proposed a 

novel approach for modelling MTBM penetration into soft ground. By employing contact 

mechanics theory for mechanistic analysis of MTBM penetration, and solving the contact 

mechanic problem defined between MTBM and ground, the interaction between MTBM and 

ground is modelled and the mathematical formula revealing the relationship between PR and the 

fundamental factors including soil properties, operational loads and cutterhead characteristics is 

developed. The key contribution of the developed mechanistic model is that, the fundamental law 

governing the behaviour of the MTBM having been defined, engineers can use the model as an 

experimental platform to assess the influence on the output (i.e., PR) of the mechanistic parameters 

involved both as individual factors (e.g., opening ratio) and as groups of factors (e.g., cutterhead 

characteristics). Moreover, it provides the opportunity to forecast PR based on the existing MTBM 

operational load capacity as well as expected ground conditions during tunneling. The 

functionality and validity of the mechanistic model are demonstrated using two actual 

microtunneling projects. The analysis of the mechanistic model using these two projects shows 

that not only does it provide accurate predictions of MTBM PR, but the predictions also follow 
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the actual trend of PR along the tunneling length. This confirms that the behaviour of the MTBM 

along the tunnel length while excavating different ground conditions is modelled correctly.  

Chapter 3 further explored the mechanistic behaviour of MTBMs in order to enhance the 

mechanistic model developed in Chapter 2. In this regard, the engagement phenomenon occurring 

at the interface between cutting blade and ground is analyzed. To model this phenomenon, the 

contact mechanics theory proposed in the previous chapter is used, and the engagement area 

between cutterhead and soil at the tunnel face is simulated. Based on the simulated engagement 

area and solving the contact mechanic problem, a mechanistic model for MTBM PR prediction 

that considers engagement behaviour is modelled. In the developed model, the influence of the 

engagement phenomenon is formulized as the “engagement factor”, which quantifies the influence 

of this particular interaction on the MTBM PR. Based on the consideration of the two extreme 

cases of high and low engagement areas at the tunnel face, upper and lower boundaries, 

respectively, of MTBM PR along the tunnel length are developed. These boundary models are 

examined on two microtunneling projects, with the results showing that the actual PR falls within 

the boundaries and is closer to the upper boundary. In other words, the MTBM engagement areas 

on these projects are found to be high, in turn resulting in a relatively high PR along the tunnel 

path. This analysis of MTBM engagement can assist (1) practitioners in evaluating how well the 

particular MTBM is excavating and (2) designers and engineers in enhancing the MTBM 

performance by designing MTBMs that achieve a high engagement area at the tunnel face. 

Moreover, the upper and lower boundary models can be used to estimate the fluctuation range of 

MTBM PR for the particular project more precisely and plan the project accordingly.  

Chapter 4 describes how to use the MTBM data generated during the project to enhance prediction 

of MTBM PR dynamically as a project progresses. In this regard, a procedure is established that 
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explains the steps required to utilize the generated MTBM data, along with available geotechnical 

data, to predict the PR for the unexcavated tunnel lengths. In this procedure, using an artificial 

neural network (ANN) model, the MTBM PR is predicted by inputting the geotechnical parameters 

to the model. The dynamic aspect of the procedure is that it manages the continuously generated 

MTBM data during excavation. Through the continuous updating of the database with MTBM 

data and soil properties data, a new ANN model is created by which to predict the next tunnel 

section. Applying this approach to two cases of microtunneling projects shows that, as the project 

progresses, the prediction accuracy improves due to the continuous learning of the MTBM–ground 

interaction. This demonstrates the benefits of using the data generated during construction to 

improve the prediction of the MTBM PR and productivity for the overall microtunneling 

construction. 

Chapter 5 demonstrates the integration of the machine-learning and mechanistic models for 

MTBM PR prediction with operation simulation model to enhance productivity prediction in 

microtunneling projects. In this regard, to leverage the observations made during excavation, a 

Bayesian updating technique is applied on the mechanistic model to update its predictions. This 

Bayesian updating mechanistic model for MTBM PR prediction is integrated with simulation to 

forecast the productivity of the overall project. Evaluation of “integrated simulation + Bayesian 

updating mechanistic model for MTBM PR prediction” and the “integrated simulation + machine-

learning model for MTBM PR prediction” is performed by applying each of the two integrated 

models on two actual microtunneling projects. Then, to further evaluate their performance for 

wider ranges of project specifications and tunnel conditions, they are applied to several synthetic 

projects generated using the Monte Carlo approach. The procedure for generating microtunneling 

projects is addressed in this chapter, and, to ensure that the generated projects accurately simulate 
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the actual site conditions, the influence of external factors such as presence of boulders and utility 

lines along the tunnel path is also considered. Analysis of the results of applying the two integrated 

simulation-based models to fifty projects reveals that they both perform well in predicting the 

project duration at 10% project completion and that, as the project progresses and the productivity 

is updated at 20% and 30% project completion, the prediction accuracy improves. This 

demonstrates the benefits of updating the initial PR predictions to enhance the productivity 

prediction and update the ongoing construction plan more accurately. The dynamic updating of 

project duration, meanwhile, can aid practitioners in avoiding delays by redirecting the project 

progress to its original plan and/or can assist decision makers in planning the future construction 

taking into account the forecasted project durations at various percentages of project completions. 

6.2. Academic Contributions 

This research makes several academic contributions, including: 

• Demonstrating the benefits of dynamic utilization of MTBM-generated data for enhancing 

the prediction of MTBM PR; 

• Improving the accuracy of PR prediction for remaining (unexcavated) tunnel length by 

dynamically learning the MTBM interaction with the ground; 

• Introducing a novel approach for mechanistically analyzing and modelling the MTBM–

ground interaction; 

• Establishing a mechanistic formula by which to characterize and quantify the relationship 

between PR and the combined influence of soil properties, cutterhead characteristics, and 

operational loads; 
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• Developing a mechanistic model of MTBM engagement with the ground that quantifies 

the influence of this phenomenon on PR, and developing upper and lower boundaries of 

MTBM PR based on consideration of high and low engagement areas at the tunnel face; 

• Enhancing productivity estimation during construction by improving MTBM PR 

prediction and integrating simulation with the PR prediction models in order to 

dynamically update the project duration; and 

• Establishing a procedure for generating synthetic microtunneling projects using the Monte 

Carlo approach for evaluating different microtunneling productivity prediction models. 

6.3. Industrial Contributions 

This research makes several contributions to industry practice, including: 

• Bridging the gap between geotechnical engineering and management aspects of 

microtunneling construction by providing a tool (i.e., “integrated simulation + Bayesian 

updating mechanistic model for MTBM PR prediction”) that allows practitioners to 

evaluate the influence of various mechanistic engineering factors (such as cutterhead 

characteristics) on microtunneling construction productivity; 

• Developing a procedure for the use of MTBM-generated data obtained during construction 

to forecast PR for the unexcavated tunnel length and update the microtunneling 

construction plan as the project progresses; 

• Providing practitioners with a better understanding of the quantitative relationship between 

PR and the combined influence of soil properties, cutterhead characteristics, and 

operational loads, as well as a means of quantifying the influence of these factors on 

MTBM PR; 
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• Providing a novel tool by which to evaluate the degree of MTBM engagement with the 

ground and assess the performance of MTBM excavation under various ground conditions; 

and 

• Improving the prediction of MTBM productivity by developing integrated simulation-

based models that incorporate the enhanced models for prediction of MTBM PR. 

 

6.4. Research Limitations 

The limitations of this research are as follows: 

• The mechanistic model presented in Chapter 2 and Chapter 3 is developed based on the 

assumption that the tunnel face is continuously stable during MTBM excavation. 

Moreover, the excavation medium is limited to soft ground conditions (i.e., soil), 

whereas hard rock excavation is not considered in the model due to the inherent 

differences between the respective mechanisms underlying soil excavation and rock 

excavation. 

• The analysis of the engagement phenomenon in Chapter 3 is limited in that it is 

assumed that clogging between the cutting blade and soil at the tunnel face will not 

occur. The value of the engagement factor for a specific MTBM needs to be assessed 

based on experimental analysis. 

• The application of the machine-learning model for dynamic prediction of MTBM PR 

presented in Chapter 4 is limited in that it is reliant on the ready availability of (1) 

MTBM data generated during construction, and (2) geotechnical baseline reports (for 

extraction of information on soil properties at different borehole sites). Moreover, it is 
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assumed in the present work that the same type of MTBM is being used for the entire 

microtunneling construction. 

• The microtunneling project generation procedure explained in Chapter 5 may need to 

be adjusted depending on the MTBM type and geological and geotechnical conditions 

of interest. To generate the excavation environment and corresponding MTBM 

behavioural data, the correlation matrix between various soil properties and also 

between soil properties and MTBM parameters may need to be revised based on further 

investigations. 

• The accuracy and reliability of the developed integrated simulation-based models in 

presented Chapter 5 is largely dependent on the quality of the inputs, including the 

mechanistic parameters (for modelling excavation activity) and information pertaining 

to other activities involved in microtunneling construction. The inputs to the 

mechanistic model must be carefully chosen based on the MTBM’s specifications, the 

soil properties, and the tunnel conditions for the given project.  

6.5. Future Directions 

The following avenues of future research are recommended: 

• The development of an advanced integrated system that automates extraction of 

geotechnical parameters from geotechnical reports, updates them (if information is 

available) and interpolates them along the tunnel path to reduce the preparation time for 

developing the machine-learning model for MTBM PR prediction; 

• The exploration and development of simple and rapid methods of automating the streaming 

of the raw MTBM-generated data to the engine that cleans, prepares, and updates the 

database for prediction of MTBM performance; 
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• Research and development of mechanistic models based on (1) further analysis of MTBM 

engagement phenomenon, leading to enhanced MTBM design, (2) analysis of the influence 

of cutterhead wear on the MTBM PR, and (3) analysis of MTBM excavation through 

unstable soil conditions and rock formations; and 

• Investigation and incorporation of additional types of data sources, such as behavioural 

data (including MTBM operator competency) as a means of comprehensively enhancing 

the simulation-based decision support system for productivity evaluation of 

microtunneling construction. 
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