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Abstract

Boundary value problems involving continuous flow reactors have been considered

in which tubular reactors have been modeled with an axial dispersion model. Con-

centration distribution in tubular reactors can have variety of consequences. It can

have negative effects on the conversion and selectivity of the desired reaction. Conse-

quently, it will affect the productivity and energy efficiency of the plant. It is therefore

important to design efficient controllers that are able to track the optimal pre-defined

trajectories of the operating conditions to ensure optimal operation of the reactor.

The governing transport phenomena occurring in a tubular reactor is modeled by

parabolic partial differential equations (pdes). In this work, infinite dimensional op-

timal control of a tubular reactor is studied which is discretized exactly over time,

without any discretization over space. The discrete case is derived from the continu-

ous case and the process is shown theoretically. Numerical simulations are performed

for formulated optimal controller and its performance is studied.
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support in the past two years. I appreciate the discussions that helped me explore

this field and move in this path.

I am grateful for the support my family who always encouraged me.

To my friends, thank you for being there whenever I needed you.

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Tubular Reactors and Self-Adjoint Operators 5

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Gain-Based Full-State Feedback . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Explicit Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.3 Implicit Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.4 Tustin’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Optimal Controller Design 34

3.1 Continuous Optimal Controller Design . . . . . . . . . . . . . . . . . 35

3.2 Discrete Optimal Controller Design . . . . . . . . . . . . . . . . . . . 40

3.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Summary and Conclusions 51

4.1 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 54

A Calculation of B∗d 56

v



List of Figures

2.1 Tubular reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Discrete system evolution in time for p0(ξ) = 2πξ − sin(2πξ). . . . . . 15

2.3 Discrete system evolution in time for p0(ξ) = 2πξ − sin(2πξ) and step

input uf (k) = cte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 System converges and has stability, and has a relatively fast dynamics. 23

2.5 System converges and has stability, and has a relatively slow dynamics. 24

2.6 System diverges and does not have stability, since the controller gains

are chosen poorly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Trajectory of boundary input uf for unstable gain value. . . . . . . . 26

2.8 The pde is stable, but the scheme is unstable, i.e. b = 2.666 > 1 . . . 29

2.9 The pde is unstable, but the scheme is stable. . . . . . . . . . . . . . 31

2.10 Mapping from discrete to continuous space via symplectic Euler . . . 33

2.11 (a) Forward Euler, (b) Backward Euler, (c) Symplectic Euler . . . . . 33

3.1 Trajectories of boundary input for optimal controller of continuous and

discrete time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 State evolution via optimal full-state feedback controller. . . . . . . . 45

3.3 Effect of the Π approximation on the trajectories of boundary input. 47

vi



List of Tables

3.1 Comparison of the cost function for continuous and discrete cases . . 46

vii



Chapter 1

Introduction

1.1 Motivation

Tubular reactors have vast applications in chemical and petrochemical industries.

They can be regarded as one of the most important parts of a chemical plant. In

a chemical plant, usually the reactors are followed by other unit operations such as

separation processes or stirred tanks. Therefore, the operational performance of the

ensuing processes strongly depends on the quality and state of the products from the

reactors. Thus, optimal operation of reactors in each plant is of great economical

and operational importance. If the concentration of the reactant in the reactor does

not follow the desired process, it can have negative repercussions on the conversion

and selectivity of the desired reaction. Consequently, it will affect the productivity

and energy efficiency of the plant. Therefore, the desired concentration must be

maintained through an off-line dynamic optimization problem. These trajectories are

used as the set-point variables for the controllers. It is therefore important to design

efficient controllers that are able to track the pre-defined trajectories of the operating

conditions.

In control theory, systems similar to a tubular reactor are regarded as distributed

parameter systems (DPS) where the dependent variables are functions of time and

space; opposite to lumped parameter systems where the dependent variables are only

functions of time (e.g., a well-mixed stirred pot). Other examples of DPS in chemical

engineering are heat exchangers, fluidized beds, and continuous flow stirred tank

reactors (CSTR). Traditionally, most of control methods have been developed for

lumped parameter systems. Therefore, the DPS are commonly approximated with

lumped parameter systems and controlled using algorithms for such lumped systems.

As a result of the boundless existence of DPS and economic advantages of precise

control of these systems, developing controllers that use the most punctilious model
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of these systems can have superabundant performance benefit. Motivated by this,

this thesis is focused on formulation of an optimal controller for tubular reactors. In

the following sections the available studies on the topic of DPS and the outline of the

thesis will be recapitulated.

1.2 Background

As stated before, the most conventional approaches for control of DPS use lump-

ing techniques to approximate the partial differential equations (pdes) model of the

system by a set of coupled ordinary differential equations (odes). Methods such as

finite differences may be used for spatial discretization, resulting in model approx-

imations that consist of odes. However, such approximations may not be proper

for high performance control schemes, as the dimensionality of the produced sets of

odes can be very high when trying to ensure high performance control. Besides, this

high dimensionality requires powerful and expensive computing tools which may not

be usually available. Also controllability and observability of the system will depend

on the number and location of the discretization points, see [8]. Another method for

controlling DPS is to develop the control algorithm based on the pdes and discretize

the resulting controller during the implementation. The advantage of this approach

is that the controller synthesis is based on the original model of the system which rep-

resent all the dynamical properties of the system without any approximation. Over

the recent years, research on the control of DPS is oriented towards development of

algorithms that deal with infinite dimensional nature of these systems.

Mathematical theory of optimal control of DPS began in late 1960s in the work of

Lions [20] and followed by other researchers (e.g., [4], [18], and [9]).

In a functional analysis frame of reference, systems modeled by pdes can be formu-

lated in a state-space form similar to that for lumped parameter systems by intro-

ducing a suitable infinite-dimensional system representation and operators instead of

usual matrices in lumped parameter systems, see [9]. The type of pde system (e.g.

hyperbolic, parabolic or elliptic) determines the approach followed for the solution of

the control problem [8]. Based on the governing phenomenon in a chemical process,

convection or diffusion, the model equations can be hyperbolic or parabolic.

For hyperbolic systems, Callier and Winkin in [7] studied the linear quadratic (LQ)

control problem using spectral factorization for the case of finite rank bounded ob-

servation and control operators. Aksikas in [1] extended this approach for the more

general case of exponentially stable linear systems with bounded observation and con-

trol operators. In his work, this method was applied to a non-isothermal plug flow
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reactor to regulate the temperature and the reactant concentration in the reactor.

The optimal control problem for a particular class of hyperbolic pdes is solved via

the infamous Riccati equation, which is developed in a series of papers by Aksikas and

co-workers. (e.g., [1], [2], [3], etc); however, the approach taken in this work addresses

only a particular class of hyperbolic pdes and does not address the case of parabolic

systems, which models widespread number of chemical engineering processes.

The conventional approach for dealing with parabolic systems is modal decomposi-

tion, see [25]. The main characteristic of parabolic systems is that their spectrum can

be partitioned into a finite slow part and an infinite fast complement (slow modes

and fast modes). This feature has been used by many researchers to perform model

reduction and synthesize finite dimensional models representing the distributed pa-

rameter system with arbitrary accuracy (see [8], [11], [17] and references therein).

The low dimensional model is used to formulate predictive controllers for the infinite

dimensional system. Although the model reduction method is computationally effi-

cient for diffusion dominant systems, it can result in a high dimensional system for

convection dominant parabolic systems.

The control action in a DPS can be distributed over the spatial domain of the system,

or can be applied at the boundary. For example, in the case of a tubular reactor, the

manipulated variable can be inlet concentration (i.e., boundary control) or the con-

centration profile of the reactor (i.e. distributed control). Boundary control systems

are mathematically more complex than systems with distributed control inputs.

Boundary control of DPS has been explored by few studies. Curtain and Zwart in [9],

Emirsjlow and Townley in [12], Yapari in [28], and Mohammadi in [22] address the

transformation of the boundary control problem into a well-posed abstract control

problem. Byrnes et al in [6] studied the boundary feedback control of parabolic sys-

tems using zero dynamics. The proposed algorithm is designed for parabolic systems

with self-adjoint operator A.

The topic of parabolic systems with non-self-adjoint operators was introduced by

Amundson in [24]; however, due to mathematical complexity, boundary control ap-

proach through abstract control problem has not yet been investigated much. An

applicable proposed solution is via backstepping method with some less theoretical

complexity (see [19], [16], and references therein).

The topic of optimal control of infinite dimensional systems is explored by many re-

searchers ( [2], [28], [22], and etc.), but time discretization issue was not discussed too

much. The novel idea of this thesis is that the optimality notion of the controller is

studied by exact time discretization. Exact time discretization for a class of parabolic

pdes is studied by [27]. In this thesis, optimality in controller design is added to the
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method proposed by [14] and [27].

Although the emphasis of this thesis is on tubular reactors, the general idea and

developed controllers are capable of controlling any system that is modeled by the

studied class of DPS in this work.

1.3 Outline and Contributions

In this thesis, the control of a tubular reactor is demonstrated through the application

of linear quadratic (LQ) controller. The system to be controlled is given in the form

of a parabolic partial differential equation (pde) which describes the spatiotemporal

dynamics of the concentration of the reactant, [23].

In Chapter 2, the governing pde is first put into an abstract boundary control problem

and then discretized exactly in time via symplectic Euler’s method. Then, a gain-

based full-state feedback controller is designed to show the original behavior of the

system. Exact time discretization is applied to this controller. In this chapter, three

different numerical schemes are studied and the effect of each one on the stability of

a parabolic system is inspected also. It is shown that the symplectic method used in

this work does not have any effects on the stability and preserves the system stability

status.

In Chapter 3, linear quadratic (LQ) controller is designed for the governing pde, both

in continuous and discrete space. The optimal gain K of the controller is calculated

and the stability of the LQ controller is studied.

Finally, Chapter 4 consists of the concluding remarks and summarizes possibilities

for future research direction.
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Chapter 2

Tubular Reactors and Self-Adjoint
Operators

In this chapter the approach proposed to solve the eigenvalue problem for a parabolic

pde is spectral decomposition used by [25]. Using the spectral properties of the

system, stability of the system is studied and the gained-based full-state feedback

controller is designed. The model studied in this work is parabolic pde.

In the nature, pure hyperbolic systems are found seldom. Normally, hyperbolic equa-

tions result from ignoring the effect of diffusion phenomenon within the process. In

most chemical engineering systems, more specifically in most tubular reactors, trans-

port may not be ignored and as a result, the model of the system should be represented

by one or a set of parabolic pdes. Here, system described by one parabolic pde is

studied.

The only difference between a first order hyperbolic pde and a parabolic pde is pres-

ence of the second order derivative with respect to the space variable. This difference

results in completely different dynamical behavior and mathematical properties.

Parabolic systems can be characterized by their set of eigenvalues and eigenfunctions.

The spectral property of these systems is the tool that is generally used to deal with

parabolic systems ( [25], [23], and [24]).

Control of transport systems, which are described by parabolic pdes has studied by

many researchers (e.g. [8], [11], [17] and references therein). In these works, modal

decomposition is used to derive finite dimensional system that captures the dominant

dynamics of the original pde and is subsequently used for low dimensional optimal

controller design. The potential drawback of this approach is that for diffusion-

convection-reaction systems the number of modes that should be used to derive the

ode system may be very large, which leads to computationally demanding controllers

which requires powerful and expensive computing tools that may not be available usu-
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ally.

Boundary control of parabolic systems have been explored in few studies. Curtain

and Zwart in [9], Emirsjlow and Townley in [12], Yapari in [28], and Mohammadi

in [22] introduced transformation of the boundary control problem to a well-posed

abstract control problem using an exact transformation. Byrnes et al in [6] studied

the boundary feedback control of parabolic systems using zero dynamics. The pro-

posed algorithm is designed for parabolic systems with self-adjoint operator A.

Parabolic systems with non-self-adjoint operators was introduced by Amundson in

[24]; however, due to mathematical complexity, boundary control approach through

abstract control problem has not yet been done. Proposed solution are via backstep-

ping method with less theoretical complexity (see [19], [16], and references therein).

The topic of optimal control of infinite dimensional systems is explored by many re-

searchers ( [2], [28], [22], and etc.), but time discretization issue was not discussed

too much. The novel idea of this work is that the optimality notion of the con-

troller is studied by exact time discretization. Exact time discretization for a class of

parabolic pdes is studied by [27]. In this work optimal controller design is added to

this method.

Although the emphasis of this thesis is on tubular reactors, the general idea and

developed controllers are capable of controlling any system that is modeled by the

studied class of DPS in this work.

2.1 Problem Statement

In this section, some background will be provided for infinite dimensional representa-

tion of parabolic partial differential equations. The introduced concepts will be used

throughout this thesis to formulate the infinite dimensional controller and analyze

the stabilizability of the parabolic systems. The following transport equation will be

used.

The problem is consisted of a tubular lead in which homogeneous first order reaction

(A→ Product) occurs. The entire reactor is held at a constant temperature.

Axial dispersion model is applied to the reactor, so that the differential equation

that governs the concentration c of the reactant A is given by

D
∂2c

∂x2
− v ∂c

∂x
− kc =

∂c

∂t
0 < x < l (2.1)

The boundary condition at the inlet (x = 0) is

−D∂c

∂x
(0+, t) + vc(0+, t) = vcf (2.2)
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Reactant A

x=0 x=l

Figure 2.1: Tubular reactor

where cf denotes the concentration at section −∞ < x < 0 which is a function of

time only.

The initial condition is

c(x, 0) = F (x) (2.3)

Non-dimensionalizing the variables

ξ ≡ x

l
; τ ≡ Dt

l2
; Pe ≡ lv

D
;

u(ξ, τ)e1/2 Pe ξ ≡ c(x, t)

cf (0)
; uf (τ) ≡ cf (τ)

cf (0)
; α ≡ kl2

D
;

β ≡ V

Al
; f(ξ) ≡ 1

cf (0)
F (x)e1/2 Pe ξ

Employing all of the dimensionless parameters above, the boundary value problem

becomes as

−∂
2u

∂ξ2
+

(
α +

Pe2

4

)
u = −∂u

∂τ
, 0 < ξ < 1 (2.4)

−∂u
∂ξ

(0+, τ) +
1

2
Peu(0+, τ) = Peuf (2.5)

1

β

∂u

∂ξ
(1−, τ) = 0 (2.6)

u(ξ, 0) = f(ξ) (2.7)

So, Equations 2.4 and 2.5 can be written in the following form

Fu =
∂u

∂τ

and

Bu = Pe uf
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where u(., t) = {u(ξ, t), 0 < ξ < 1} is the state variable in the Hilbert space H :=

L2([0, 1]; t) [9], and uf (t) ∈ R is the boundary actuation. F is the spatial derivative

operator defined as:

FΦ(ξ) =

[
∂2

∂ξ2
− γ
]
Φ(ξ) where γ = α +

Pe2

4
(2.8)

with the domain D(F) =
{

Φ(ξ) ∈ L2(0, 1) : Φ(ξ),Φ′(ξ) are abs. cont.,FΦ(ξ) ∈

L2(0, 1),Φ′(0) =
Pe

2
Φ(0),Φ′(1) = 0

}
. Here L2(0, 1) denotes the Hilbert space of

measurable, square-integrable, real-valued functions.

The boundary operator B : L2(0, 1) 7→ R can be defined as follows

BΦ(ξ) =

[
− ∂

∂ξ
+

1

2
Pe

]
Φ(0) (2.9)

Our pde equation is not well posed, due to the fact that the controlled input appears

in the boundary condition. Therefore, one define a new operator A such that

AΦ(ξ) = FΦ(ξ) and D(A) = D(F) ∩ ker(B) (2.10)

This is based on the assumption that uf ∈ C2([0, t];V ) is sufficiently smooth, and

one can find function B(ξ) such that ∀uf (τ), B(ξ)uf (τ) ∈ D(F), and

BB(ξ)uf (τ) = Peuf (τ), uf ∈ V (2.11)

Now having Equations 2.4 and 2.5, one can lift the boundary actuation into the

domain by having the following state transformation

u(ξ, τ) = p(ξ, τ) +B(ξ)uf (τ) (2.12)

So, Equations 2.4 and 2.5 become the following well posed abstract system of differ-

ential equations

duf
dτ

= ũf

∂p

∂τ
= Ap(ξ, τ) +AB(ξ)uf (τ)−Bũf (2.13)

with

p(ξ, 0) = p0(ξ) (2.14)

Now from the boundary conditions it is known that BB(ξ) = Pe which can be written

as

−∂B(0)

∂ξ
+

1

2
PeB(0) = Pe (2.15)
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So, one can write

−∂p(0, τ)

∂ξ
+

1

2
Pep(0, τ) = 0 (2.16)

Besides, from the boundary condition imposed over u at ξ = 1, one can say
∂u(1, τ)

∂ξ
=

0 which leads us to
∂p(1, τ)

∂ξ
+
∂B(1)

∂ξ
uf (τ) = 0

Since B(ξ) is an arbitrary function, one can define B(ξ) such that

∂B(1)

∂ξ
= 0 (2.17)

Based on Equations 2.15 and 2.17 and the assumption that A is the infinitesimal

generator of a C0-semigroup on L2, one can easily suggest a function for B(ξ) which

in this case would be B(ξ) = 2; a constant scalar function over space.

By taking Laplace transformation of Equation 2.13 it can be said

sp(ξ, s)− p0(ξ) =
∂2p(ξ, s)

∂ξ2
− γp(ξ, s)− 2γuf (s)− 2ũf (s) (2.18)

So, it can be said

∂

∂ξ


p(ξ, s)

∂p(ξ, s)

∂ξ

 =

 0 1

s+ γ 0



p(ξ, s)

∂p(ξ, s)

∂ξ

+

 0

−1

 p0(ξ) +

0

2

(γuf (s) + ũf (s)

)
(2.19)

The solution to this first order system is
p(ξ, s)

∂p(ξ, s)

∂ξ

 =

 cosh(
√
s+ γξ)

1√
s+ γ

sinh(
√
s+ γξ)

√
s+ γ sinh(

√
s+ γξ) cosh(

√
s+ γξ)



p(0, s)

∂p(0, s)

∂ξ



−

∫
ξ

0


1√
s+ γ

sinh
(√

s+ γ(ξ − x)
)

cosh
(√

s+ γ(ξ − x)
)

 p0(x)dx

+ 2

∫
ξ

0


1√
s+ γ

sinh
(√

s+ γ(ξ − x)
)

cosh
(√

s+ γ(ξ − x)
)


(
γuf (s) + ũf (s)

)
dx (2.20)

9



In addition, the following boundary condition is known for p(ξ, s)

0 =
∂p(1, s)

∂ξ

=
√
s+ γ sinh(

√
s+ γ)p(0, s) + cosh(

√
s+ γ)

∂p(0, s)

∂ξ

−
∫ 1

0

cosh
(√

s+ γ(1− x)
)
p0(x)dx+ 2

∫ 1

0

cosh
(√

s+ γ(1− x)
)(
γuf (s) + ũf (s)

)
dx

(2.21)

Besides, it is known that
∂p(0, s)

∂ξ
=

1

2
Pep(0, s)

So, putting above boundary condition into Equation 2.21 one will have

0 =
√
s+ γ sinh(

√
s+ γ)p(0, s) + cosh(

√
s+ γ)

1

2
Pep(0, s)

−
∫ 1

0

cosh
(√

s+ γ(1− x)
)
p0(x)dx+ 2

∫ 1

0

cosh
(√

s+ γ(1− x)
)(
γuf (s) + ũf (s)

)
dx

(2.22)

Thus

p(0, s) =

∫ 1

0
cosh

(√
s+ γ(1− x)

)
p0(x)dx− 2√

s+ γ
sinh(

√
s+ γ)

(
γuf (s) + ũf (s)

)
√
s+ γ sinh(

√
s+ γ) +

Pe

2
cosh(

√
s+ γ)

(2.23)

and (ũf (s) = suf − uf (0), where uf (0) = 0 is assumed without loss of generality)

p(ξ, s) =[
cosh(

√
s+ γξ)+

Pe

2

1√
s+ γ

sinh(
√
s+ γξ)

] ∫ 1

0
cosh

(√
s+ γ(1− x)

)
p0(x)dx

√
s+ γ sinh(

√
s+ γ) +

Pe

2
cosh(

√
s+ γ)

−
∫ ξ

0

1√
s+ γ

sinh
(√

s+ γ(ξ − x)
)
p0(x)dx

+

[
2

[
cosh(

√
s+ γ)− 1

]

−
[

cosh(
√
s+ γξ)+

Pe

2

1√
s+ γ

sinh(
√
s+ γξ)

] 2√
s+ γ

sinh(
√
s+ γ)(γ + s)

√
s+ γ sinh(

√
s+ γ) +

Pe

2
cosh(

√
s+ γ)

]
uf (s)

+ 2

∫ ξ

0

1√
s+ γ

sinh
(√

s+ γ(ξ − x)
)
(s+ γ)uf (s)dx (2.24)

10



In other words, it can be written

p(ξ, s) = Ā(ξ, s)p(ξ, 0) + B̄(ξ, s)uf (s) (2.25)

2.2 Time Discretization

Now, having built up the foundation, one will have a look at linear system time

discretization. If a system is represented as

Ẋ(ζ, t) = AX(ζ, t) + BU(t) (2.26)

we will have its solution in Laplace space in the following form

X(ζ, s) = (sI − A)−1X(ζ, 0) + (sI − A)−1BU(s) (2.27)

In addition, given a discretization parameter ∆t > 0, a slightly non-standard time

discretization of Equation 2.26 of Crank-Nicolson type is given by [14] as

X(ζ, k + 1)−X(ζ, k)

∆t
≈ A

X(ζ, k + 1) +X(ζ, k)

2
+ BU(k) (2.28)

Re-arranging Equation 2.28 gives us

X(ζ, k + 1) ≈ (
2

∆t
− A)−1(

2

∆t
+ A)X(ζ, k) + (

2

∆t
− A)−1BU(k) (2.29)

Here, Equation 2.29 is the discrete version of Equation 2.27. Comparing these two

equations, one can conclude that in order to discretize a continuous equation in

Laplace space, one can simply replace s by
2

∆t
and one will have the discrete version

as well [14].

There is an extensive discussion over the stability of the numerical methods given in

§2.5.

11



Discretization Procedure for a Simple Case

Consider the simple ordinary differential equation (ode) given by

ẋ = ax

x(0) = x0 (2.30)

it can be discretized with the following schemes.

• Explicit Euler method discretizes the ode as

xn+1 − xn

∆t
= axn

xn+1 = (∆t+ a)xn

• Implicit Euler method discretizes the ode as

xn+1 − xn

∆t
= axn+1

xn+1 = (a−∆t)−1xn

• Crank-Nicolson method discretizes the ode as

xn+1 − xn

∆t
= a

xn+1 + xn

2

xn+1 = (1− a∆t

2
)−1(1 +

a∆t

2
)xn

xn+1 =
1 +

a∆t

2

1− a∆t

2

xn

xn+1 = (
2

∆t
− a)−1(

2

∆t
+ a)xn

As shown above, in Crank-Nicolson method the coefficient of xn is the first order

approximation for the exponential expression.
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Applying the discretization method, the discrete expression for p over time is then

found.

p(ξ, k + 1) = [
cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

]

×

∫ 1

0
cosh

(√ 2

∆t
+ γ(1− x)

)
p(x, k)dx√

2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

−
∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
p(x, k)dx

+

(
2

[
cosh(

√
2

∆t
+ γ)− 1

]
−
[

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

]

×

2√
2

∆t
+ γ

sinh(

√
2

∆t
+ γ)(γ +

2

∆t
)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

+ 2

∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
(

2

∆t
+ γ)dx

)
uf (k) (2.31)

For k = 1 the above equation holds which implies that one can build the state at

any arbitrary k by starting from k = 0. It is utmost clear that k = 0 is given by the

initial condition.

Therefore, based on what is shown in Equation 2.31, it can be said that p(ξ, s) is

consisted of two parts; initial condition contribution, and input contribution.

13



Assuming zero-input condition, leads us to

p(ξ, k + 1) = [
cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

]

×

∫ 1

0
cosh

(√ 2

∆t
+ γ(1− x)

)
p(x, k)dx√

2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

−
∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
p(x, k)dx (2.32)

which is a function of initial profile p0(ξ) as it is shown.

Now, assuming an initial profile for p(ξ, t), one can see the system evolution through

time.

Hence, by taking p0(ξ) = 2πξ − sin(2πξ), one will have

p(ξ, 1) =

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

×
∫ 1

0

cosh
(√ 2

∆t
+ γ(1− x)

)
(2πξ sin(2πx))dx

−
∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
(2πξ − sin(2πξ))dx (2.33)

Implementing Equation 2.33 in Matlab, one will see the behavior of the system with

a prescribed initial condition p0(ξ) = 2πξ − sin(2πξ). State evolution is depicted in

Figure 2.2.

Note that in this case since there is no input at the boundary (uf = 0), the

evolution for both p and u would be the same.
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Figure 2.2: Discrete system evolution in time for p0(ξ) = 2πξ − sin(2πξ).

15



Now, how the input affects the evolution of the system is considered. To do that,

an arbitrary input function will be chosen and the system evolution would be governed

by Equation 2.31.

Here, step input is chosen, i.e. u(k) = cte1. Therefore, the governing equation would

be Equation 2.31 where p0(ξ) = 2πξ − sin(2πξ) and u(k) = cte, and the system

evolution in time is shown by Figure 2.3. Note that in this case, finally system

reaches the profile of the input.

0
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0123456

0

2

4

6

ξτ

u

Figure 2.3: Discrete system evolution in time for p0(ξ) = 2πξ − sin(2πξ) and step
input uf (k) = cte.

1denotes constant function
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2.3 Eigenvalue Problem

Now, looking back at abstract boundary control problem in Equation 2.13.

∂p

∂τ
= Ap(ξ, τ) +AB(ξ)uf (τ)−Bũf

with
∂p(0, τ)

∂ξ
=

1

2
Pep(0, τ),

∂p(1, τ)

∂ξ
= 0

This pde can be reformulated on extended state space Le2 := L2 ⊕ V , yielding

ẋe(ξ, τ) =

[
0 0
AB A

] [
uf (τ)
p(ξ, τ)

]
+

[
1
−B

]
ũf

xe(ξ, 0) =

[
uf (0)
p(ξ, 0)

]
= xe0(ξ) (2.34)

Here, the eigenvalue problem of interest is given by the following equation

Aeφ = λφ

where operator Ae is given by Equation 2.34 and

Ae =

[
0 0
AB A

]
(2.35)

We observe that the operator Ae is a lower triangular operator, therefore the set of

eigenvalues consists of the eigenvalues of the elements on its diagonal, i.e.

σ(Ae) = {0} ∪ σ(A) (2.36)

Eigenvalues of Operator A

The eigenvalues and corresponding eigenfunctions of A can be found through the

separation of variables [9]. Furthermore, eigenfunctions of the adjoint operator A∗

that satisfy the orthogonality condition 〈φi(ξ), φ(ξ)∗j〉 = δij, can also be computed [25].

For A it is known that

Aφ(ξ) =
d2φ(ξ)

dξ2
− γφ(ξ) = −λφ(ξ)

So, introducing new operator L, the above equation be written as

Lφ(ξ) =
d2φ(ξ)

dξ2
+ (λ− γ)φ(ξ) (2.37)
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where
dφ(0)

dξ
=

Pe

2
φ(0), and

dφ(1)

dξ
= 0

Equation 2.37 is Sturm-Liouville operator, which is self-adjoint and can be put in the

following general form of this type, i.e.

L(.) = a2(ξ)
d2(.)

dξ2
+ a1(ξ)

d(.)

dξ
+ a0(ξ)(.)

and its adjoint looks like

L∗(.) =
d2
(
a2(ξ)(.)

)
dξ2

+
d
(
a1(ξ)(.)

)
dξ

+ a0(ξ)(.)

Now, it is known that a2(ξ) = 1, a1(ξ) = 0, and a0 = −γ. Therefore, one can say

that L is self-adjoint, i.e. L = L∗ or A = A∗.
Hence, A has a solution for its eigenfunctions of the following form

φn(ξ) = An cos(
√
λn − γξ) +Bn sin(

√
λn − γξ) (2.38)

Applying boundary conditions, one has

dφ(0)

dξ
=

Pe

2
φ(0)⇒

√
λn − γBn =

Pe

2
An

dφ(1)

dξ
= 0⇒ An sin(

√
λn − γ) = Bn cos(

√
λn − γ)

Therefore one can write√
λn − γ sin(

√
λn − γ) =

Pe

2
cos(

√
λn − γ) (2.39)

Equation 2.39 is to be solved numerically. Assuming Pe = 2, γ = 1, and employing

Matlab to solve that, the following numerical values for λn are found:
λ1 = 1.7402

λ2 = 12.7349

λ3 = 42.4388
...

Based on the values found for λn, one can compute the coefficients An and Bn. Hence,

eigenfunctions of A are found. Here, φn and λn are the eigenvalues and eigenfunctions

of A.

So, associated eigenvalues of Ae are given by

σ(Ae) = {0} ∪ σ(A) = {λ̄n} n = 0, 1, 2, . . . (2.40)
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where λ̄0 = 0, and λ̄n = λn for n ≥ 1.

Note that if there are m boundary input variables, the zero eigenvalue will be

repeated m times. Here, m = 1 as there is only one input variable.

Since the operator A is self-adjoint, biorthogonality holds over the spectrum of its

domain [25], so

〈φn, φn〉 =

∫ 1

0

φ2
ndξ = 1

Coefficients An and Bn are calculated numerically.

Therefore φn are given by
φ1(ξ) = 0.8268 cos(

√
λ1 − γξ) + 0.9610 sin(

√
λ1 − γξ)

φ2(ξ) = 1.3110 cos(
√
λ2 − γξ) + 0.3827 sin(

√
λ2 − γξ)

φ3(ξ) = 1.3816 cos(
√
λ3 − γξ) + 0.2146 sin(

√
λ3 − γξ)

...

If Φn is defined as Φn =

[
F1,n

F2,n

]
as the eigenfunction of Ae, one can say

Ae
[
F1,n

F2,n

]
= σn

[
F1,n

F2,n

]
(2.41)

For, n ≥ 1 one can write Φn =

[
0
φn

]
.

For n = 0, it can be written

Ae
[
F1,0

F2,0

]
= 0

[
F1,0

F2,0

]
So, Φ0 =

[
1

−A−1(AB)

]
.

Therefore, by utilizing the definition of resolvent sets [9], associated eigenfunctions of

Ae are given by

Φ0 =

 1∑∞
j=1

1

λj
〈AB, φj〉φj

 , and Φn =

[
0
φn

]
n = 1, 2, . . . (2.42)

Eigenvalues of Operator Ae∗

By doing the same procedure as the previous section, one obtains the following ex-

pression for Ψn

Ψ0 =

[
1
0

]
, and Ψn =

 1

λn
(AB)∗φn

φn

 n = 1, 2, . . . (2.43)
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2.4 Gain-Based Full-State Feedback

In this part the state is inserted as the input to study the behavior of the model.

So, one will have ũf (k) = −Kxe and in this part there is constant gain, i.e. K = cte.

Hence, our extended state space will look like

ẋe(ξ, τ) =

[
0 0
AB A

] [
uf (τ)
p(ξ, τ)

]
+

[
1
−B

] [
K1 K2

] [ uf (τ)
p(ξ, τ)

]
[
u̇f (τ)
ṗ(ξ, τ)

]
=

[
K1 K2

AB −BK1 A−BK2

] [
uf (τ)
p(ξ, τ)

]
(2.44)

Now, a new extended state space arises where ẋe = Āxe and

ẋe = Āxe =

[
K1 K2

AB −BK1 A−BK2

]
xe

Expanding our state by the eigenvalues, it can be said[
1 0
0 φi

]
ẋei =

[
K1 K2

AB −BK1 A−BK2

] [
1 0
0 φi

]
xei (2.45)

Projecting this onto [
1 0
0 φ∗i

]
(2.46)

we obtain

ẋei =

[
u̇
ṗi

]
=

[
K1 K2

〈AB, φ∗i 〉 − 〈K1B, φ
∗
i 〉 λi − 〈K2B, φ

∗
i 〉

] [
u
pi

]
(2.47)

Putting i = 1, it is shown (in §2.3) that λ1 = 1.7402 and

φ1 = φ∗1 = 0.8268 cos(
√
λ1 − γξ) + 0.9610 sin(

√
λ1 − γξ).

Therefore, it can be written

ẋe1 =

[
u̇
ṗ1

]
=

[
K1 K2

〈AB, φ1〉 − 〈K1B, φ1〉 λ1 − 〈K2B, φ1〉

] [
u
p1

]
So, the above equation turns into the following simple equation

ẋe1 =

[
u̇
ṗ1

]
=

[
K1 K2

2.2340(−γ −K1) λ1 − 2.2340K2

] [
u
p1

]
(2.48)

Now one can find the eigenvalues of the above equation via det(λ̄I − Ā) = 0, i.e.

det(λ̄I − Ā) = det

[
λ̄−K1 −K2

2.2340(γ +K1) λ̄− λ1 + 2.2340K2

]
(2.49)

which says that in order to have closed-loop system stability, one has to manipulate

K1 and K2 such that it is always as <(λ̄) < 0. In other words, if the system is
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unstable, by proper choice of the coefficients in full-state feedback gains, one can

simply stabilize the system.

Another method is to decompose xe by the eigenfunctions of Ae, i.e.

xe =
∞∑
i=0

xiΦn

If Ki is at hand, Equation 2.44 becomes

ẋiΦi =

[
0 0
AB A

]
xiΦi +

[
1
−B

]
KixiΦi

ẋei =
(
σi + 〈BeKi,Ψi〉

)
xi (2.50)

This way gives the same result, that is Ki must be manipulated such that it is always

<(σ̄) < 0. In other words, if the system is unstable, by proper choice of the coefficients

in full-state feedback gains, one can simply stabilize the system.

2.4.1 Time Discretization

We know that

ũf = u̇f =
[
K1 K2

] [ uf (τ)
p(ξ, τ)

]
= K1uf +K2p

L{u̇f} = suf − uf (0) = K1uf +K2p

uf =
K2

s−K1

p+
1

s−K1

uf (0)

Without loss of generality, one can assume uf (0) = 0, so uf will look like this

uf =
K2

s−K1

p (2.51)

Therefore, taking Laplace’s transformation of Equation 2.44, the evolution of p will

be as

sp(ξ, s)− p0(ξ) =
∂2p(ξ, s)

∂ξ2
+ (−γ − 2K2)p(ξ, s) + (−2γ − 2K1)

K2

s−K1

p(ξ, s) (2.52)

So, it is

∂

∂ξ


p(ξ, s)

∂p(ξ, s)

∂ξ

 =

0 1

µ 0



p(ξ, s)

∂p(ξ, s)

∂ξ

+

 0

−1

 p0(ξ) (2.53)

where µ = s+ γ + 2K2 +
(2γ + 2K1)K2

s−K1

.
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Therefore, one has the following solution for Equation 2.53
p(ξ, s)

∂p(ξ, s)

∂ξ

 =

 cosh(
√
µξ)

1
√
µ

sinh(
√
µξ)

√
µ sinh(

√
µξ) cosh(

√
µξ)



p(0, s)

∂p(0, s)

∂ξ



−

∫
ξ

0


1
√
µ

sinh
(√

µ(ξ − x)
)

cosh
(√

µ(ξ − x)
)
 p0(x)dx (2.54)

Following the same procedure as was done early in this chapter, one has the following

expression for evolution of p(0, s)

p(0, s) =

∫ 1

0
cosh

(√
µ(1− x)

)
p0(x)dx

√
µ sinh(

√
µ) +

Pe

2
cosh(

√
µ)

(2.55)

So, one can write p(ξ, s) as

p(ξ, s) =

[
cosh(

√
µξ) +

Pe

2

1
√
µ

sinh(
√
µξ)

]∫ 1

0
cosh

(√
µ(1− x)

)
p0(x)dx

√
µ sinh(

√
µ) +

Pe

2
cosh(

√
µ)

−
∫ ξ

0

1
√
µ

sinh
(√

µ(ξ − x)
)
p0(x)dx (2.56)

Now, based on what was discussed in §2.2, one has the discrete expression for the

above equation as

p(ξ, k + 1) =

[
cosh(

√
µdξ) +

Pe

2

1
√
µd

sinh(
√
µdξ)

] ∫ 1

0
cosh

(√
µd(1− x)

)
p(x, k)dx

√
µd sinh(

√
µd) +

Pe

2
cosh(

√
µd)

−
∫ ξ

0

1
√
µd

sinh
(√

µd(ξ − x)
)
p(x, k)dx (2.57)

where µd =
2

∆t
+ γ + 2K2 +

(2γ + 2K1)K2

2

∆t
−K1

.

We see that another condition over the feedback gain arises; K1 cannot be chosen

equal to
2

∆t
. Hence, K1 must satisfy the stability condition for Equation 2.49 and

must hold K1 6=
2

∆t
. Besides, if gains are chosen in advance in order to stabilize the

system, one can say that one is not allowed to take any arbitrary ∆t. So, ∆t must

be chosen such it is always
2

∆t
6= K1.

One of these conditions must be met based on the design requirements.
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Numerical Demonstration

Looking back at Equation 2.49, one can assign stabilizing and unstabilizing values to

K1 and K2.

Similar to §2.2, the boundary condition must satisfy the original pde. Therefore,

the boundary condition is chosen as same as the way is chosen in that section (i.e.

p0(ξ) = 2πξ − sin(2πξ)).

For the stabilizing gains, it is well demonstrated in Figures 2.4 and 2.5 that by

changing gain values, the controller has different dynamics. By the proper choice of

the gains system can have the desired dynamics; fast or slow dynamics. Simulations

are conducted via Matlab.
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Figure 2.4: System converges and has stability, and has a relatively fast dynamics.
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Figure 2.5: System converges and has stability, and has a relatively slow dynamics.

As shown in Figure 2.6, by poor choice of the gain values, the system diverges

and does not have any stability whatsoever. In this case by simply just manipulating

K1 one is able to make the system unstable. It cannot be put K1 =
2

∆t
due to zero-

division limit; however, by putting K1 slightly greater than
2

∆t
, i.e. K1 =

2

∆t
+ ε,

the system becomes unstable.
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Figure 2.6: System diverges and does not have stability, since the controller gains are
chosen poorly.

Trajectory of boundary input uf for unstable full-state feedback systems are shown

in Figure 2.7. It is clear that by choosing poor gain values, the system oscillates and

there is no stability whatsoever.
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Figure 2.7: Trajectory of boundary input uf for unstable gain value.

2.5 Numerical Methods

In this section, motivated by [5] and [14], the stability of a generalized, infinite-

dimensional version of symplectic scheme used in this thesis is shown. The resulting

numerical method can be used for input/output simulation of input/output stable

linear dynamical systems that are governed by pdes, specifically parabolic pdes in

this thesis, see [14].

The only difference between a first order hyperbolic pde and a parabolic pde is pres-

ence of the second order derivative with respect to the space variable. This difference

results in completely different dynamical behavior and mathematical properties. How-

ever, this type of pde is not studied in this work.

In this section, each Euler method is presented and inspected by a general parabolic

pde. The stability and convergence of the scheme is then theoretically studied. Nu-

merical examples are given for each case too.
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2.5.1 General Case

To have a coherence and a common frame of reference in studying each numerical

scheme, let us assume the following parabolic pde as our general system which is

going to be solved via numerical methods.

∂x(ζ, t)

∂t
=
∂2x(ζ, t)

∂ζ2
+ Ψx(ζ, t) (2.58)

with
∂x(ζ, t)

∂ζ

∣∣∣∣
0

= 0 =
∂x(ζ, t)

∂ζ

∣∣∣∣
L

The stability of the above pde is dependent on the sign of the parameter Ψ, i.e. for

Ψ < 0 the system is stable and for Ψ > 0 the system is unstable.

2.5.2 Explicit Euler

An explicit Euler scheme, sometimes called a forward Euler, is perhaps the simplest

scheme to be implemented. To construct the approximation, one must first deal with

the time derivative in Equation 2.58. Recall that the derivative is defined by

dy

dt
= lim

h→0

y(t+ h)− y(t)

h

The computer has no chance of understanding this quantity. Since we have discretized

the time, no information about the solution on time scales less than ∆t can be found.

This suggests replacing the derivative with

dy

dt
≈ y(t+ ∆t)− y(t)

∆t

The forward Euler scheme is as follows.

For 1 ≤ n ≤ N

y(0) = y0,

dy

dt
= F (t, y)

is approximated by

y(0) = y0,

yn+1 − yn
∆t

= F (tn, yn) (2.59)

Let Ω = (0;L) be decomposed into a uniform grid {0 = ζ0 < ζ1 < . . . < ζN+1 = L}
with ζi = ih; h = 1/N , and time interval (0;T ) be decomposed into {0 = t0 < t1 <

. . . < tM = T} with tn = nδt = T/M . The tensor product of these two grids gives
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a two dimensional rectangular grid for the domain (0;T). We now expand Equation

2.58 by second order central difference on grid points.

xn+1
i − xni
δt

=
xni+1 − 2xni + xni−1

h2
+ Ψn

i (2.60)

Equation 2.60 can be written in matrix form, so
xn+1

1

xn+1
2
...

xn+1
N

 =


1− 2λ λ 0 · · · 0 0 0
λ 1− 2λ λ · · · 0 0 0

. . . . . . . . .

0 0 0 · · · λ 1− 2λ λ
0 0 0 · · · 0 λ 1− 2λ



xn1
xn2
...
xnN

+ δt


Ψn

1

Ψn
2

...
Ψn
N

 (2.61)

where λ = δt/h2.

Here, the first issue is on the stability in time. When Ψ = 0, i.e. pde does not

contain any source term, in the continuous level, the solution should decay exponen-

tially. In the discrete level, one has xn+1
i = Axni and want to control the magnitude

of x in certain norm.

Theorem 1 When the time step δt ≤ h2/2, the forward Euler method is stable in

the maximum norm in the sense that if xn+1
i = Axni then

‖xn‖∞ ≤ ‖x0‖∞ ≤ ‖x0‖∞

Proof. By the definition of the norm of a matrix

‖A‖∞ = max
i=1,...,N

N∑
j=1

|aij| = 2λ+ |1− 2λ|

if δt ≤ h2/2, then ‖A‖∞ = 1 and consequently

‖xn‖∞ ≤ ‖A‖∞‖xn−1‖∞ ≤ ‖xn−1‖∞

Numerical Demonstration

Now, having the following stable pde

∂x(ζ, t)

∂t
=
∂2x(ζ, t)

∂ζ2
+ Ψx(ζ, t), Ψ < 0

we will see that by manipulating the stability factor b =
δt

h2/2
such that b > 1, the

simulation becomes unstable numerically. Although the pde is stable intrinsically,

the system diverges which is as expected.
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Figure 2.8: The pde is stable, but the scheme is unstable, i.e. b = 2.666 > 1

2.5.3 Implicit Euler

An implicit Euler scheme is sometimes called a backward Euler.

The backward Euler scheme is as follows.

For 1 ≤ n ≤ N

y(0) = y0,

dy

dt
= F (t, y)

is approximated by

y(0) = y0,

yn+1 − yn
∆t

= F (tn+1, yn+1) (2.62)

Now backward Euler is studied to remove the strong constraint of the time step for

the stability. The method is simply using backward difference to approximate the

time derivative. We list the system below:

xni − xn−1
i

δt
=
xni+1 − 2xni + xni−1

h2
+ Ψn

i 1 ≤ i ≤ N, 1 ≤ n ≤M (2.63)
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In the matrix form, Equation 2.63 reads as

(I − λ∆h)x
n = xn−1 + δtΨn (2.64)

Starting from x0, to compute the value at the next time step, one needs to solve an

algebraic equation to obtain

xn = (I − λ∆h)
−1(xn−1 + δtΨn)

If there is no source term, i.e. Ψ = 0, our system would be (I − λ∆h)x
n = xn−1.

Note that it has been defined

∆h =


−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0

. . . . . . . . .

0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2


Theorem 2 For the backward Euler method, we always have the stability.

‖xn‖∞ ≤ ‖xn−1‖∞ ≤ ‖x0‖∞

Proof. We shall rewrite the backward Euler scheme as

(1 + 2λ)xni = xn−1
i + λxni−1 + λxni+1

Therefore, for any 1 ≤ i ≤ N

(1 + 2λ)|xni | ≤ ‖xn−1‖∞ + 2λ‖xn‖∞

which implies

(1 + 2λ)‖xni ‖∞ ≤ ‖xn−1‖∞ + 2λ‖xn‖∞

and the desired result then follows.

Numerical Demonstration

The amplification factor here is ε =
1

1 +
4∆t

h2(1 + ∆tΨ)
sin2

(kh
2

) , which is clearly

|ε| ≤ 1 for every ∆t at each time step. Hence, the scheme is unconditionally stable.

This scheme can turn an inherently unstable system into a stable discrete system.

Assuming the following unstable pde

∂x(ζ, t)

∂t
=
∂2x(ζ, t)

∂ζ2
+ Ψx(ζ, t), Ψ > 0

The result is shown in Figure 2.9.
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Figure 2.9: The pde is unstable, but the scheme is stable.

2.5.4 Tustin’s Method

Here, the approach used is Tustin’s method which for any stable continuous system,

returns continuous discrete system, see [14]. In other words, Tusin’s method does not

affect the stability of the system and that is the reason that this method is used to

discretize the system in this work.

In numerical analysis, integration schemes that preserve energy equalities or more

complex invariants of the system are called Hamiltonian or symplectic, respectively.

The Tustin scheme (Equation 2.28) for linear systems is the lowest order symplectic

integration scheme from the family of Gauss quadrature based Runge-Kutta methods.

There exists an extensive literature of symplectic schemes given in [13].

To briefly show the stability region of the symplectic method, from [13] and [14] the

following is given.

31



For 1 ≤ n ≤ N

y(0) = y0,

dy

dt
= λy

is approximated by
yn+1 − yn

∆t
=
λyn+1 + λyn

2
(2.65)

So it can be written

yn+1 =
1 +

hλ

2

1− hλ

2

yn = G(hλ) (2.66)

From [13], it is known that (m,n) Padé approximation for ez is

ez ≈ 1 + a1z + · · ·+ amz
m

1 + a1z + · · ·+ anzn
(2.67)

therefore, for (1, 1) Padé approximation of ez, the following holds

ez ≈ G(z) =
1 +

z

2

1− z

2

(2.68)

And it is known that for stability, it is required that |G(hλ)| < 1.

By using a conformal map as suggested by [13], it can be said

G(z) =
1 +

z

2

1− z

2

=
2 + z

2− z
=⇒ z = 2

G− 1

G+ 1
(2.69)

By assigning numerical values to G and using the mapping above, peer points in

z-plane are found. The mapping is graphically shown in Figure 2.10.

O : G = 0 =⇒ z = −2

A : G = 1 =⇒ z = 0

B : G = i =⇒ z = 2
i− 1

i+ 1

C : G = −1+ =⇒ z → i∞

C̄ : G = −1− =⇒ z → −i∞

D : G = −i =⇒ z = −2i
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Figure 2.10: Mapping from discrete to continuous space via symplectic Euler

2.5.5 Conclusion

To have a conclusion over these schemes, one can have the following graph. The

graph shows that the symplectic scheme preserves the stability status of the system

as expected, while for the other methods stability is case-sensitive, see [14].

(a) (b) (c)

Discrete
stable

=⇒ Continuous
stable

Discrete
stable

⇐=
Continuous

stable
Discrete
stable

⇐⇒ Continuous
stable

Can have continuous stable,

discrete unstable.

Can have continuous unstable,

discrete stable.

Figure 2.11: (a) Forward Euler, (b) Backward Euler, (c) Symplectic Euler
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Chapter 3

Optimal Controller Design

This chapter addresses the optimal control of tubular leads modeled by a parabolic

pdes.

Control of transport systems, which are described by parabolic pdes has been stud-

ied by many researchers (e.g. [8], [11], [17] and references therein). In these works,

modal decomposition is used to derive finite dimensional system that captures the

dominant dynamics of the original pde and is subsequently used for low dimen-

sional optimal controller design. The potential drawback of this approach is that for

diffusion-convection-reaction systems the number of modes that should be used to

derive the ode system may be very large, which leads to computationally demanding

controllers, see [22].

Boundary control of parabolic systems have been explored in few studies. Curtain

and Zwart in [9], Emirsjlow and Townley in [12], Yapari in [28], and Mohammadi

in [22] introduced transformation of the boundary control problem to a well-posed

abstract control problem using an exact transformation. Byrnes et al in [6] studied

the boundary feedback control of parabolic systems using zero dynamics. The pro-

posed algorithm is designed for parabolic systems with a self-adjoint spatial operator.

Parabolic systems with non-self-adjoint spatial operators were introduced by Amund-

son in [24]; however, due to mathematical complexity, boundary control approach

through abstract control problem has not been done much. One proposed solution

is via backstepping method with some less theoretical complexity (see [19], [16], and

references therein).

The topic of optimal control of infinite dimensional systems is explored by many re-

searchers ( [2], [28], [22], and etc.), but time discretization issue was not discussed too

much. The novel idea of this work is that the optimality notion of the controller is

studied by exact time discretization. Exact time discretization for a class of parabolic

pdes is studied by [27]. In this thesis, optimality of the controller design is added to
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this method.

Although the emphasis of this thesis is on tubular reactors, the general idea and

developed controllers are capable of controlling any system that is modeled by the

studied class of DPS in this work.

Current chapter focuses on the infinite dimensional control of a system represented

by a parabolic pde. The only difference between a first order hyperbolic pde and

a parabolic pde is presence of the second order derivative with respect to the space

variable. This difference results in completely different dynamical behavior and math-

ematical properties. Unlike hyperbolic systems, for parabolic systems the operator

Riccati equation cannot be converted to a matrix Riccati equation. Therefore, one

needs an alternative method to solve the operator Riccati equation. Here, method

used by [9] is employed to solve the Riccati equation.

The boundary control problem is already transformed into a well-posed abstract

boundary control problem by applying an exact transformation similar to the trans-

formation introduced by [9]. The stabilizability of the resulting systems is also in-

vestigated. Stability of linear parabolic systems with constant coefficients is studied

by [26], and [10] for the special case of a tubular reactor with two state variables. Fi-

nally, by using the spectral properties of the system, the operator Riccati equation is

converted into a set of coupled algebraic equations, which can be solved numerically.

It is solved via Newton’s method in this case. The Riccati equation is solved for the

continuous case and the result is then used for the discrete case.

In this work, our focus is on parabolic systems defined in one-dimensional spatial

domain, but the approach can easily be extended to a more general form of parabolic

systems with 2D or 3D domain in space, see [22].

3.1 Continuous Optimal Controller Design

In this section, a linear-quadratic optimal controller is formulated for a system de-

scribed by 2.34. The state-feedback controller assumes that full state measurement is

available. The existence of the solution for the LQ control problem requires that the

linear system is exponentially stabilizable and detectable. These two properties will

be investigated and in the following sections. Then, it will be proven that the infi-

nite dimensional system in Equation 2.34 is a Riesz spectral system. In this section,

one will use the spectral properties of Riesz spectral systems to solve the LQ control

problem, see [9].

The linear quadratic control problem on an infinite-time horizon employs the cost

35



function:

J(x0, u) =

∫ ∞
0

〈xe(s), Qxe(s)〉+ 〈u(s), Ru(s)〉ds (3.1)

where u(s) and xe(s) are the input and state trajectories, respectively. Q is nonneg-

ative operator in L(X) and R is a self-adjoint, coercive operator in L(U).

The control problem is to minimize the above cost functional over the trajectories of

the state linear system Σ(Ae, Be, Ce).

It is well-known that the solution of this optimal control problem can be obtained by

solving the following algebraic Riccati equation (ARE) by [9]:

〈Aexe1,Πxe2〉+ 〈Πxe1, Aexe2〉+ 〈Cexe1, C
eQxe2〉 − 〈BeΠxe1, R

−1Be∗Πxe2〉 = 0 (3.2)

When (Ae, Be) is exponentially stabilizable and (Ce, Ae) is exponentially detectable,

the algebraic Riccati equation 3.2 has a unique nonnegative self-adjoint Π ∈ L(H)

and for any initial state xe0 ∈ H the quadratic cost 3.1 is minimized by the unique

control uopt given by:

uopt(s, x
e
0) = −R−1Be∗Πxeopt(s), xeopt(s) = T−BeR−1Be

∗Πx
e
0 (3.3)

In addition, the optimal cost is given by J(xe0, uopt) = 〈xe0,Πxe0〉.
The ARE 3.2 is valid for any infinite dimensional system, but depending on the

characteristics of the infinite dimensional system different approaches are needed to

solve it. For Riesz spectral systems, the spectral properties of the system can be used

to solve the ARE 3.2. It is known that Φn are the normalized eigenfunctions of Ae. If

xe1 and xe2 are taken as xe1 = Φn and xe2 = Φm, then the Riccati equation 3.2 becomes:

〈AeΦn,ΠΦm〉+ 〈ΠΦn, A
eΦm〉+ 〈Φn, QΦm〉 − 〈BeΠΦn, R

−1Be∗ΠΦm〉 = 0 (3.4)

Assuming R = I and a solution of this form Π(.) =
∑∞

n,m=0 Πnm〈 . ,Φm〉Φn for Π,

turns Equation 3.4 to the system of infinite number of coupled scalar equations:

(σn + σm)Πnm +Qnm −
∞∑
k=0

∞∑
l=0

BklΠnlΠkm = 0 (3.5)

where Bkl = 〈BeBe∗Φn,Φm〉 = 〈Be∗Φn, B
e∗Φm〉 and Qnm = 〈Φn, QΦm〉.

Using the spectral properties of the Riesz spectral systems, the operator Riccati

equation 3.4 is converted to a set of coupled algebraic equations that can be solved

by any numerical algorithm. Then the main step to solve the optimal control problem

for these systems is to calculate the spectrum of the operator Ae, which is already

done.

Note that since Π is a self-adjoint operator, Πnm = Πmn. As a result, Equation
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3.5 gives
n(n+ 1)

2
coupled algebraic equations that should be solved simultaneously

where n is the number of modes that are used to formulate the controller. In this

work, the first two modes were used for numerical simulation. The computed LQ

controller was applied to the model of the reactor.

Employing two modes to calculate Π, there are three coupled quadratic equations,

i.e. n,m = 0, 1. So, it can be said

2σ0Π00 +Q00 −B00Π2
00 − 2B01Π01Π00 −B11Π2

01 = 0

2σ1Π11 +Q11 −B00Π2
01 − 2B01Π01Π11 −B11Π2

11 = 0

(σ0 + σ1)Π01 +Q01 −B00Π00Π01 −B01Π2
01 −B01Π00Π11 −B11Π01Π11 = 0

Therefore, using a preferred numerical method to solve the above coupled equations

(here Newton’s method) one has the following for each coefficient by assuming Q = I
Π00 = 1

Π01 = Π10 = 0

Π11 = −0.227723

(3.6)

Hence, our Π will be equal to

Π(.) = 〈 . ,Φ0〉Φ0 − 0.227723〈 . ,Φ1〉Φ1 (3.7)

Recalling Equation 2.42, if AB is replaced with −2γ, for Φ0 one can write

Φ0 =

 1∑∞
j=1

1

λj
〈AB, φj〉φj

 =

 1∑∞
j=1

1

λj
〈−2γ, φj〉φj

 =

 1

−2γ
∑∞

j=1

1

λj

∫ 1

0
φj(ξ)dξφj


Using first three modes to approximate the second element of Φ0, it can be said:

Φ0 =

 1

−2γ
∑3

j=1

1

λj

∫ 1

0
φj(ξ)dξφj


=

 1

−2γ

(
1

λ1

∫ 1

0
φ1(ξ)dξφ1 +

1

λ2

∫ 1

0
φ2(ξ)dξφ2 +

1

λ3

∫ 1

0
φ3(ξ)dξφ3

) (3.8)
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Deriving Equation 3.5

Conversion of Equation 3.4 to Equation 3.5 is done through the following procedure.

Recalling Equation 3.4, it is known that:

〈AeΦn,ΠΦm〉 + 〈ΠΦn, A
eΦm〉 + 〈Φn, QΦm〉 − 〈ΠΦn, B

eBe∗ΠΦm〉 = 0

Knowing that σn is an eigenvalue of the operator Ae and Φn is the corresponding

eigenvector, one has

〈AeΦn,ΠΦm〉+ 〈ΠΦn, A
eΦm〉 = 〈σnΦn,ΠΦm〉+ 〈ΠΦn, σmΦm〉

= σn〈Φn,ΠΦm〉+ σm〈ΠΦn,Φm〉

= σnΠnm + σmΠmn

= (σn + σm)Πnm

Now let us calculate the last term of the Riccati equation 3.4. From [9], it is known

that any element in the space can be written uniquely in the Riesz basis; particularly,

one claim that

BeBe∗ψ =
∞∑
k=0

〈BeBe∗ψ,Φk〉Φk

Therefore,

〈ΠΦn, B
eBe∗ΠΦm〉 =

〈
ΠΦn,

∞∑
k=0

〈BeBe∗ΠΦm,Φk〉Φk

〉
=
∞∑
k=0

〈BeBe∗ΠΦm,Φk〉〈ΠΦn,Φk〉

=
∞∑
k=0

〈ΠΦm, B
eBe∗Φk〉Πkn

=
∞∑
k=0

〈
ΠΦm,

∞∑
l=0

〈BeBe∗Φk,Φl〉Φl

〉
Πkn

=
∞∑

k,l=0

〈BeBe∗Φk,Φl〉〈ΠΦm,Φl〉Πkn

=
∞∑

k,l=0

BklΠmlΠkn

=
∞∑

k,l=0

BklΠnlΠkm

Hence, if Qnm is defined as Qnm = 〈Φn, QΦm〉, Equation 3.5 is found.
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It is utmost obvious that in order to implement a continuous system via computer,

its discrete version should be provided or the continuous case must be somehow

discretized. In this work, the exact discrete model in time is provided by the proposed

method without the need of space discretization. Besides, the continuous case can be

modeled through an approximation method (e.g. spectral decomposition, see [25]).

Therefore, in order to have a frame of reference to compare the performance of the

controller, both results are compared.

To model the continuous case optimal controller, one can use the spectral property of

the extended state space method, i.e. to approximate the system by its eigenfunctions.

To do so, one can write

ẋe(ξ, τ) =

[
0 0
AB A

]
xe(ξ, τ) +

[
1
−B

]
Kxe(ξ, τ)

where K = −R−1B∗Π.

From [25] it is known that xe(ξ, τ) =
∑∞

i=0 ai(τ)Φi(ξ). Therefore, by expanding the

extended space and projecting the resulting equation onto adjoint space of operator

Ae, one can say

ȧi(τ) =
(
σi − 〈BB∗ΠΦi(ξ),Ψi〉

)
ai(τ) (3.9)

Now, by using finite number of eigenfunctions, one can approximate the evolution of

ai in Equation 3.9 over time. Hence, the evolution of p can be found.
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3.2 Discrete Optimal Controller Design

Consider continuous-time state linear system Σ(A,B,C) on the Hilbert space H and

its related discrete-time system Σd(Ad, Bd, Cd, Dd) with −1 ∈ ρ(Ad). From previ-

ous section, it is known that the following relationship holds between discrete- and

continuous-time spaces

A = (I + Ad)
−1(Ad − I), (3.10)

B =
√

2(I + Ad)
−1Bd, (3.11)

C =
√

2Cd(I + Ad)
−1, (3.12)

D = Dd − Cd(I + Ad)
−1Bd (3.13)

Note that even if our continuous-time space does not have D, our discrete-time sys-

tem will always have Dd which is an important point. In other words, input has

contribution in at least one of discrete or continuous cases.

From [29] and [9], it is known that the following discrete algebraic Riccati equation

(DARE)

A∗dΠAd − Π + C∗dCd −K∗(B∗dΠBd +D∗dDd)
−1K = 0 (3.14)

has a unique nonnegative solution Π ∈ L(H) if and only if the continuous ARE has a

solution. And the solution for Π in continuous case would be the solution in discrete

case as well. Here K = B∗dΠAd +D∗dCd.

Besides, it is known that continuous-time ARE has the following form

ΠA+ A∗Π + C∗C − (ΠB + C∗D)(D∗D)−1(D∗C +B∗Π) = 0 (3.15)

Now, based on what was found in previous section, one has the solution for DARE

and therefore can design the discrete LQ controller.

First, for obtaining Ad, based on the definition of resolvent sets, one can write

A = (I + Ad)
−1(Ad − I)

Ad = (A+ I)(I − A)−1

Ad = (A+ I)
∞∑
i=1

1

1− λi
〈.,Ψi〉Φi (3.16)

And Bd has the following form

B =
√

2(I + Ad)
−1Bd

Bd =

√
2

2
(I + Ad)B
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Furthermore, if C = I, one can say that

I =
√

2Cd(I + Ad)
−1

Cd =

√
2

2
I(I + Ad)

Cd =

√
2

2
(I + Ad) (3.17)

Besides, it has been already assumed D = 0, so our Dd is achieved as follows

Dd = Cd(I + Ad)
−1Bd

Dd =

√
2

2
(I + Ad)(I + Ad)

−1Bd

Dd =

√
2

2
Bd (3.18)

Note that even if our continuous-time space does not have D, our discrete-time sys-

tem will always have Dd which is an important point. In other words, input has

contribution in at least one of the discrete or continuous cases.

Hence, K would have the following structure

K = B∗d

(
ΠAd +

1

2
(I + Ad)

)
(3.19)

Note that K is only used to simplify the equation and does not have anything to do

with optimal gain.

Since the continuous case has a solution Π, our discrete case has the same solution

and there is no need to solve the above DARE. However, the corresponding equations

to solve DARE are brought too.

From [9], it is known that the unique control input for the discrete case would be

ũopt(k) = −R−1Be∗Πxe(k) (3.20)

Besides, here the evolution of p(ξ, k) is of importance to us. Therefore, K = R−1Be∗ΠAe

and system can be simulated as well using the same approach as §2.4.
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Recalling Equation 2.31, the discrete system looks like this

p(ξ, k + 1) =

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

∫ 1

0

cosh
(√ 2

∆t
+ γ(1−x)

)
p(x, k)dx

−
∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
p(x, k)dx

−2

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

∫ 1

0

cosh
(√ 2

∆t
+ γ(1−x)

)(
γuf+ũf

)
dx

+ 2

∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
(γuf + ũf )dx

where u̇f = ũf . So by assuming uf (0) = 0, it can be said uf =
1

s
ũf . In discrete case

one should write uf =
∆t

2
ũf .

Now it can be said

Ād(.) =

[
cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

]

×

∫ 1

0
cosh

(√ 2

∆t
+ γ(1− x)

)
(.)dx√

2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

−
∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)
(.)dx (3.21)
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and

B̄d(.) = −2

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

×
∫ 1

0

cosh
(√ 2

∆t
+ γ(1− x)

)(
γ

∆t

2
+ 1
)
dx(.)

+ 2

∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)(
γ

∆t

2
+ 1
)
dx(.) (3.22)

As shown in Appendix A, by employing the method used in [21], B∗d is then

calculated as

B̄∗d(.) = −2
cosh

(√ 2

∆t
+ γ(1− ξ)

)(
γ

∆t

2
+ 1
)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

×
∫ 1

0

[
cosh(

√
2

∆t
+ γx) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γx)

]
dx(.)

+ 2

∫ 1

ξ

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(x− ξ)

)(
γ

∆t

2
+ 1
)
dx(.) (3.23)

Applying proper initial conditions which must satisfy the original pde, it can be

written

p0(ξ) = 2πξ − sin(2πξ)

Note that here any boundary condition that satisfies the original pde can be applied.

The above boundary condition is implemented without loss of generality, and can be

replaced by another condition of a choice.

Therefore, the simulation of full-state feedback optimal controller can be done with

the above gain and state space model. Simulations are conducted via Matlab.

Besides, to show the effect of Π approximation, trajectories of boundary control

input for two different Πs are brought in Figure 3.3. It is obvious that by increas-

ing the order of approximation for Π, the performance of the controller is improved.

Besides, it must be noted that from a step ahead, increasing the approximation of Π

will not have any significant effect on the performance of the controller and will only
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Figure 3.1: Trajectories of boundary input for optimal controller of continuous and
discrete time.
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Table 3.1: Comparison of the cost function for continuous and discrete cases
Controller J
Continuous case 71.4650
Discrete case with first two Φ 54.3307
Discrete case with first three Φ 49.3975

cost more numerical calculations, see [22].

Solution to ARE and DARE for a Simple Case

Consider the 1D equation below

ẋ = 2x+ u

y = x+ u (3.24)

the algebraic Riccati equation is given by

PA+ A′P + C ′C − (PB + C ′D)(D′D)−1(D′C +B′P ) = 0

Solving this equation and knowing that P ≥ 0, one can see that P = 0 is a solution

to above ARE.

Solving the discrete case Riccati equation based on the definitions for Ad, Bd, Cd,

and Dd will give the following

A∗dΠAd − Π + C∗dCd −K∗(B∗dΠBd +D∗dDd)
−1K = 0

Here K = B∗dΠAd +D∗dCd.

Finding the discrete coefficients and knowing that for DARE P ≥ 0, one can see the

solution to the DARE would be P = 0.

Hence, the solution to ARE is equal to DARE.
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Figure 3.3: Effect of the Π approximation on the trajectories of boundary input.
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3.3 Stability Analysis

Theorem 3 Consider the extended operator {Ae(t)}t>0 given by Equation 2.34. Then,

{Ae(t)}t>0 is a stable infinitesimal generator of C0-semigroup on H.

Proof. Operator A is a self-adjoint spatial operator. Therefore, A is the infinitesimal

generator of C0-semigroup T , [26], [10]. As discussed in eigenvalue problem (§2.3),

eigenvalues ofAe consist of eigenvalues ofA and 0. So, operatorAe has real, countable

and distinct eigenvalues. Furthermore, eigenfunctions of Ae are biorthogonal. Thus,

the operator Ae is a Riesz spectral operator [10]. By [9], Lemma 3.2.2, the operator

Ae is the infinitesimal generator of the C0-semigroup T e given by

T e(t) =

[
I 0

T21(t) T

]
(3.25)

where

T21(t)x =

∫ t

0

T (s)ABxds (3.26)

Theorem 4 Consider the state linear system Σ(A,B,−), where A is a Riesz spectral

operator on the Hilbert space Z with compact resolvent and the representation

Az =
∞∑
n=1

λn

rn∑
j=1

〈z, ψnj〉φnj (3.27)

for z ∈ D(A) = {z ∈ Z|
∑∞

n=1 |λn|2
∑rn

j=1 |〈z, φnj〉|2 < ∞}, where {λn, n ≥ 1} are

eigenvalues of A with finite multiplicity rn, and {φnj, j = 1, . . . rn, n ≥ 1} are gener-

alized eigenfunctions of A (and A∗). B is a finite rank operator defined by

Bu =
m∑
i=1

biui, where bi ∈ Z (3.28)

Necessary and sufficient conditions for Σ(A,B,−) to be β-exponentially stabilizable

are that there exists an ε > 0 such that σ+
β−ε(A) comprises, at most, finitely many

eigenvalues and

rank

 〈b1, ψn1〉 · · · 〈bm, ψn1〉
...

...
〈b1, ψnrn〉 · · · 〈bm, ψnrn〉

 = rn (3.29)

for all n such that λn ∈ σ+
β−ε(A).
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Proof. Since σ+
β−ε(A) comprises at most finitely many eigenvalues, Z+

β−ε is finite

dimensional. Therefore, A satisfies the spectrum decomposition assumption at β−ε [9]

and the corresponding spectral projection on the finite dimensional subspace Z+
β−ε is

given by

Pβ−εz =
1

2πj

∫
Γβ−ε

(λI − A)−1zdλ =
∑

λn∈σ+
β−ε

rn∑
j=1

〈z, ψnj〉φnj (3.30)

Consequently, it can be shown that

Z+
β−ε = span

λn∈σ+
β−ε

{φnj, j = 1, . . . , rn} (3.31)

Z−β−ε = span
λn∈σ−

β−ε

{φnj, j = 1, . . . , rn} (3.32)

T−β−ε(t)z =
∑

λn∈σ−
β−ε

eλnt
rn∑
j=1

〈z, ψnj〉φnj (3.33)

A+
β−ε(t)z =

∑
λn∈σ+

β−ε

λn

rn∑
j=1

〈z, ψnj〉φnj (3.34)

B+
β−ε(t)u =

∑
λn∈σ+

β−ε

rn∑
j=1

〈Bu, ψnj〉φnj (3.35)

From this, it is seen that T−β−ε(t) is a C0-semigroup corresponding to a Riesz spectral

operator on Z−β−ε. Hence, it satisfies the spectrum determined growth assumption and

it is β-exponentially stable. Now, one shall show that the finite-dimensional system

Σ(A+
β−ε, B

+
β−ε,−) is controllable. It can be done by proving that the reachability

subspace of Σ(A+
β−ε, B

+
β−ε,−) is dense in Z+

β−ε. From [9] (Definition A.2.29), R is

dense in Z+
β−ε if and only if when for the orthogonal complement of R we have

R⊥ = {0}.
Both R and R⊥ are given as

R := {z ∈ Z+
β−ε | ∃ τ > 0 and u ∈ L2([0, τ ];U)

s.t. z =

∫ τ

0

T+
β−ε(τ − s)B

+
β−εu(s)ds} (3.36)

R⊥ := {x ∈ Z+
β−ε | 〈x, y〉 = 0,∀ y ∈ R} (3.37)

In order to have R⊥ = {0}, there should be no x ∈ Z+
β−ε that is orthogonal to the

reachability subspace R. This means that for every x ∈ Z+
β−ε, there is a u such that

〈x,
∫ τ

0
T+
β−ε(τ − s)B

+
β−εu(s)ds〉 6= 0. As shown in [9], this condition is equivalent to∑

λn∈σ−
β−ε

eλn(t−s)
rn∑
j=1

〈x, φnj〉〈Bu, ψnj〉 6= 0 (3.38)
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Therefore, it can be shown that it is equivalent to say that

BnUn 6= 0 (3.39)

Bn =

 〈b1, ψn1〉 · · · 〈bm, ψn1〉
...

...
〈b1, ψnrn〉 · · · 〈bm, ψnrn〉

 (3.40)

Un =

 〈u1, ψn1〉 · · · 〈um, ψn1〉
...

...
〈u1, ψnrn〉 · · · 〈um, ψnrn〉

 (3.41)

If rank(Bn) < rn, there exists a u 6= 0 such that BnUn = 0. Thus, the system is

uncontrollable if rank(Bn) < rn. If rank(Bn) = rn, the only solution for BnUn = 0 is

u = 0 and therefore R⊥ = {0} and the system is controllable.

By duality, as shown in [15], Σ(A,−, C) is β-exponentially detectable, if Σ(A∗, C∗,−)

is β-exponentially stabilizable. Similarly, the system Σ(Ae,−, Ce) is β-exponentially

detectable.

Remark 5 Consider the infinite dimensional system Σ(Ae, Be,−) given by Equation

2.34. As discussed in eigenvalue problem, the eigenvalues of Ae consist of eigenval-

ues of A and 0 with finite multiplicity m. Since A is Sturm-Liouville operator, the

spectrum of A is finitely bounded (i.e., there exists an ω such that all λ ∈ σ(A) < ω).

Therefore, for any arbitrary β, σ+
β−ε(Ae) comprises finitely many eigenvalues and the

first condition of previous theorem holds.

50



Chapter 4

Summary and Conclusions

This thesis was concerned with the problem of the infinite dimensional optimal con-

troller design for distributed parameter systems with special emphasis on transport

processes (i.e. tubular reactors) that are normally modeled by partial differential

equations. It is obvious that the governing transport phenomenon in this system de-

termines the type of the pde involved in the modeling, which in this case is parabolic

pde. The goal was to develop the required mathematical tools for solution of the

optimal control problem for a general class of distributed parameter systems repre-

senting a tubular reactor with minimum number of simplifying assumptions in the

modeling of the reactor. Besides, it was desired to show the implementation of exact

time discretization for designing the optimal controller.

Chapter 2 addressed the problem of the tubular reactors and self-adjoint operators.

The mathematical modeling of tubular reactors via parabolic pdes was shown. The

governing pde was turned into well-posed abstract boundary control problem via ex-

act transformation. Then the eigenvalue problem of the governing parabolic spatial

operator was solved and corresponding eigenvalues and eigenfunctions of the self-

adjoint operator were found. Then, the proposed time discretization method was

brought up and applied to the problem. Discrete system evolution through time was

then studied; first, the evolution of the system was inspected under no control input

and some prescribed initial condition. After that, system evolution was studied un-

der the effect of constant input. At the end of this chapter, a gain-based full-state

feedback controller was designed and the system response to different gain values was

studied via numerical simulation. In the last section of this chapter, numerical models

for time discretization were discussed. Explicit Euler method was first introduced and

its stability condition was shown through theoretical formulation. Then a numerical

simulation was run for a general case and the effect of this method over stability was

shown. Implicit Euler method was after that treated with the same approach and it
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was shown that this method does stabilize every system, regardless of their intrinsic

stability. There was a numerical simulation of the general case to show these results

for this method too. Finally, symplectic Euler method was introduced and its region

of stability was shown. Through conformal mapping it was depicted that this scheme

does not have any effects on the stability of the system. As a conclusion, a mapping

was given to show the stability region and the effect of each scheme on the stability

of a system.

In Chapter 3, optimal boundary control of infinite dimensional systems described

by a parabolic pde with was studied. Using an exact transformation, the boundary

control problem was transformed into a well-posed infinite dimensional system. It

was proven that the resulting system is a Riesz spectral system. Stabilizability of the

system was investigated using the spectral properties of the system. The spectrum

of the system was required to solve the optimal control problem for Riesz spectral

systems and it was solved in Chapter 2. Then, by using the spectral properties of the

system, the operator Riccati equation was converted to a set of algebraic equations

that could be solved numerically. The LQ problem was first solved for the continuous

case and after that the solution for Π was used for discrete case. The performance

of the formulated controller was then compared to a LQ controller from continuous

case. Simulation results showed that the infinite dimensional controller with exact

time discretization leads to better performance in terms boundary input trajectory.

4.1 Directions for Future Work

This thesis took a leap towards building required tools for solution of optimal control

problem for a class of distributed parameter systems with special focus on tubular

reactors with self-adjoint operators. It was shown that exact time discretization is

applicable to this type of pdes. A number of challenges remain in the development of

the infinite dimensional controller for processes modeled by a general form of infinite

dimensional systems.

The method proposed in Chapter 2 had a limitation on the structure of the oper-

ator A. In order to solve the eigenvalue problem it was assumed that the infinite

dimensional operator had a triangular form, which means the coupling of the state

variables is one way. Solution of the eigenvalue problem for general form of infinite

dimensional operators cannot be performed analytically. For special cases the infinite

dimensional operator can be triangularized using a transformation. Exploration of

the conditions for existence of such a transformation is the topic that needs to be

addressed in future work.

52



Besides, non-self-adjoint operators can be studied, for which the eigenvalue problem

can be of a more complex form. For example, special case of boundary value problems

with mixed and oblique derivative boundary conditions can be studied. In that case,

complex variables arise in eigenvalue problem. This would be a potential topic to be

investigated in future endeavor.
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Appendix A

Calculation of B∗d

To obtain the adjoint of the operator Bd, one will use the adjoint property from [21].
Therefore, for a spatial operator F and any arbitrary functions Φ and Ψ in Hilbert
space H, there will be

〈FΦ,Ψ∗〉 = 〈Φ,F∗Ψ∗〉 (A.1)

where the asterisk denotes the adjoint of each element here.
Now, doing the same procedure for Bd, one will have:

〈BdΦ,Ψ
∗〉 =

∫
1

0

[
− 2

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

×
∫ 1

0

cosh
(√ 2

∆t
+ γ(1− x)

)(
γ

∆t

2
+ 1
)
Φ(x)dx

+ 2

∫ ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)(
γ

∆t

2
+ 1
)
Φ(x)dx

]
Ψ∗(ξ)dξ

(A.2)
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Now, by taking Ψ∗ into the integrals, Equation A.2 becomes as

〈BdΦ,Ψ
∗〉 =

∫
1

0

∫
1

0

[
− 2

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

× cosh
(√ 2

∆t
+ γ(1− x)

)(
γ

∆t

2
+ 1
)
Φ(x)Ψ∗(ξ)

]
dx dξ

+ 2

∫
1

0

∫
ξ

0

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)(
γ

∆t

2
+ 1
)
Φ(x)Ψ∗(ξ) dx dξ

=

∫
1

0

∫
1

0

[
− 2

cosh(

√
2

∆t
+ γξ) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γξ)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

× cosh
(√ 2

∆t
+ γ(1− x)

)(
γ

∆t

2
+ 1
)
Φ(x)Ψ∗(ξ)

]
dξ dx

+ 2

∫
1

0

∫
1

x

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(ξ − x)

)(
γ

∆t

2
+ 1
)
Φ(x)Ψ∗(ξ) dξ dx

(A.3)
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Now, by interchanging the roles of x and ξ, one can write

〈BdΦ,Ψ
∗〉

=

∫
1

0

∫
1

0

[
− 2

cosh(

√
2

∆t
+ γx) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γx)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

× cosh
(√ 2

∆t
+ γ(1− ξ)

)(
γ

∆t

2
+ 1
)
Φ(ξ)Ψ∗(x)

]
dx dξ

+ 2

∫
1

0

∫
1

ξ

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(x− ξ)

)(
γ

∆t

2
+ 1
)
Φ(ξ)Ψ∗(x) dx dξ

=

∫
1

0

[
− 2

cosh
(√ 2

∆t
+ γ(1− ξ)

)(
γ

∆t

2
+ 1
)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

×
∫ 1

0

[
cosh(

√
2

∆t
+ γx) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γx)

]
Ψ∗(x) dx

+ 2

∫ 1

ξ

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(x− ξ)

)(
γ

∆t

2
+ 1
)
Ψ∗(x) dx

]
Φ(ξ)dξ

= 〈Φ, B∗dΨ∗〉

(A.4)
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Therefore, it is obvious that the adjoint of the operator Bd is defined as

B∗d(.) = −2
cosh

(√ 2

∆t
+ γ(1− ξ)

)(
γ

∆t

2
+ 1
)

√
2

∆t
+ γ sinh(

√
2

∆t
+ γ) +

Pe

2
cosh(

√
2

∆t
+ γ)

×
∫ 1

0

[
cosh(

√
2

∆t
+ γx) +

Pe

2

1√
2

∆t
+ γ

sinh(

√
2

∆t
+ γx)

]
(.)dx

+ 2

∫ 1

ξ

1√
2

∆t
+ γ

sinh
(√ 2

∆t
+ γ(x− ξ)

)(
γ

∆t

2
+ 1
)
(.)dx

(A.5)

59


