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Abstract

Herein, a new methodology is developed to replicate functions, measures
and stochastic processes onto a compact metric space. Each replica object
is a weak or strong modification of the original object, so many results are
easily established for the replica objects and then transferred back to the
original ones. Two problems are solved within to demonstrate the method:
(1) Finite-dimensional convergence Herein, a new methodology is developed to
replicate functions, measures and stochastic processes onto a compact metric
space. Each replica object is a weak or strong modification of the original
object, so many results are easily established for the replica objects and then
transferred back to the original ones. Two problems are solved within to
demonstrate the method: (1) Finite-dimensional convergence to possibly non-
cadlag limits is established for processes living on general topological spaces.
(2) New tightness and relative compactness criteria are given for the Skorokhod
space of Tychonoff-space-valued cadlag mappings. The methods herein are
also used in companion papers to establish the: (3) existence of, uniqueness of
and convergence to martingale problem solutions, (4) classical FKK and DMZ
filtering equations and stationary filters, (5) finite-dimensional convergence to
stationary signal-filter pairs, (6) invariant measures of Markov processes, and

(7) Ray-Knight theory, all in general settings.
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Preface

The current thesis is an original work by Chi Dong under the supervision
of Dr. Michael A. Kouritzin. This manuscript is based on the preprint of a
submitted research paper with the same title and co-authored by Chi Dong
and Michael A. Kouritzin. The research conducted for this thesis is the core
component of several interrelated projects of Chi Dong and Dr. Kouritzin
in various domains of mathematics. These projects were partly initiated by
Dr. Kouritzin. The theory that interrelates them and generates this thesis is
co-proposed by Chi Dong and Dr. Kouritzin. The formulation of the research
problems and the concrete research works are done by Chi Dong with the

advice of Dr. Kouritzin. The composition of this manuscript is responsible by
Chi Dong.
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CHAPTER 1. INTRODUCTION 1

Chapter 1
Introduction

Traditionally, researchers have focused on stochastic processes living on
“good” topological spaces which are metrizable, separable, completely metriz-
able and/or (locally) compact etc. However, there are many settings of in-
terest that violate these convenient assumptions. For example, Holley and
Stroock [1979] and Mitoma [1983] considered probability measures on the Sko-
rokhod _#;-space of tempered distributions. Szpirglas [1976] considered the
nonlinear filtering problem for cadlag signals living on Lusin spaces. Meyer
and Zheng [1984] considered tightness in the space of all cadlag functions
from the non-negative real numbers R™ to the real line R equipped with the
pseudo-path topology, which was further discussed by e.g. Stricker [1985]
and Kurtz [1991]. Fitzsimmons [1988] considered the construction of Markov
branching processes whose values are finite Borel measures on a Lusin space.
Jakubowski [1997a] considered extending the Skorokhod Representation The-
orem to tight sequences of probability measures on non-metrizable spaces.
Jakubowski [1997b] considered a sequentially defined topology on the space of
all cadlag functions from the compact interval [0, 7] to R. Dembo and Zeitouni
[1998] considered the space of all Borel probability measures on a Polish space
equipped with the strong topology. Jakubowski [1986] and Kouritzin [2016]
considered probability measures on D([a,b]; E), the Skorokhod _#;-space of
all cadlag mappings from a compact interval [a,b] to a Tychonoff space E.
Lyons [1994, 1998], Friz and Victoir [2010] and Friz and Hairer [2014] worked
with non-separable Banach spaces of rough paths equipped with homogeneous

p-variation or 1/p-Holder norms. None of these spaces are necessarily Polish
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nor compact, some even non-metrizable or non-separable.

Replication

M-A
E E
u

Redefinition

Figure 1: The main idea of replication

The point of our work, as illustrated in Figure 1 above, is that Borel mea-
surable functions, finite measures and stochastic processes living on a general
topological space E often can be replicated as replica functions, replica mea-
sures or replica processes living on some compact metric space E. In particular,
even non-cadlag processes can have cadlag replicas. These replica objects are
more easily analyzed on E than the original objects on E, and many results
about the replica objects are transferrable back to the original ones by proper
redefinitions.

One could extend results one at a time to various generalized settings.
However, replication is probably an easier and more unified approach of ex-
tending results from compact or Polish spaces to a large category of exotic
spaces simultaneously. This approach is believed to have equal merit in many
different areas such as weak convergence, martingale problems, nonlinear filter-
ing, large deviations and Markov processes etc., where compactness or metric
completeness can play a big role. Indeed, even a Polish space can be improved
by adding compactness.

The contributions of this work are:

Theme 1 Methodology of replication (Chapter 3 - Chapter 6).

Theme 2 Criteria for finite-dimensional convergence of possibly non-cadlag

processes living on general spaces (§6.2 and Chapter 7).

Theme 3 Criteria for tightness and relative compactness in D(R™; E),
the Skorokhod _¢#;-space of all cadlag mappings from R* to a
Tychonoff space E (§6.4 and Chapter 8).

2



CHAPTER 1. INTRODUCTION 3

Theme 1, conceptualizing and concretizing the idea of replication, an-
swers the question when and how one can perform replication and serves as
the theoretical foundation of the current and several companion works (see
Dong and Kouritzin [2017a,b,d]). Our developments were motivated in part
by and especially benefit from the works of Ethier and Kurtz [1986], Bhatt
and Karandikar [1993b], Blount and Kouritzin [2010] and Kouritzin [2016],
which exploit the use of imbedding and compactification techniques in various
aspects of probability theory.

The question what replication can do is partially answered by Theme
2 and Theme 3. Theme 2 grew out of investigating the convergence of
a stochastic evolution system to its stationary distribution(s) or solution(s)
over the long term, which has been the central topic of many classical works
on both theory and application ends. For example, [Ethier and Kurtz, 1986,
§10.2 and §10.4] considered the existence of stationary distributions for diffu-
sion approximations of the Wright-Fisher model. For a Fleming-Viot process
X, Ethier and Kurtz [1993] and Donnelly and Kurtz [1999] considered the ex-
istence of a stationary distribution u, and Ethier and Kurtz [1998] established

the pointwise ergodic theorem

lim %/0 f(Xpdt = [ f(z)u(dx), a.s. (1.1)

Regarding nonlinear filtering, [Kunita, 1971, Theorem 4.1] considered the

“asymptotic mean square filtering error”

lim % / 'E (et () = r(x19)?] at, (1.2)

T—o0

where X* is the signal with initial distribution g and 7#(f) is the optimal
filter for function f of X*. [Budhiraja and Kushner, 1999, (2.6)] considered

weak limit points of the “pathwise average error”

%/0 (T (f) — F(XI)2dt as T 1 oo, (1.3)



CHAPTER 1. INTRODUCTION 4

[Budhiraja, 2001, (1.2)] studied the “(u, u’)-stability”

T
jim 7 [ 8 | (i) ') (1.4
of 7(f), where 7* represents an approximate filter with incorrect initiation
1. In other areas, Cox et al. [2010] and Cox et al. [2013] considered non-trivial
stationary solutions for the Lotka-Volterra model and those for perturbations
of the voter model. Cox and Griffeath [1983] and Cox [1988] established (1.1)
for a basic voter process X and an invariant measures p of X. All the works
(and many others) above were based on separable compact Hausdorff spaces,
Polish spaces or compact metric spaces. The following question, considering a
weak and abstract form of long-time-average limits like (1.1), (1.2), (1.3) and

(1.4), still remains unanswered:

Q1 Let £ be a non-Polish, non-compact or even non-metrizable space, and
X = {Xi}i>0 be an E-valued, non-cadlag, measurable process. Then,
is there an F-valued stationary process X°° such that the long-time-

averaged distributions

1 [ _
T/ Po (Xrytysoor Xope,) - dr (1.5)
n JO0

converge weakly to the distribution of (X7°,..., X7*) as T, 1 oo for
almost all finite subset {t1,...,t;} of RT7

In the FE is a separable metric space setting, weak convergence of finite-
dimensional distributions of E-valued cadlag processes is implied by their weak
convergence as D(R™; E)-valued random variables. Let N denote the pos-
itive integers, {X"},en and X be E-valued cadlag processes with paths in
D(R"; E) and “=" denote weak convergence of Borel probability measures.
The weak convergence

X,=XasnToo (1.6)

on D(R™; E) has two implications:
(1) The weak convergence
(X7, ... X)) = (X4, Xy,) asn T oo (1.7)

4
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for all finite collection {¢1,...,t4} in a dense subset of RT.
(2) {X"},en is relatively compact in D(R™; E).

It is often (2) that requires strong or difficult-to-verify conditions in prac-
tice. By contrast, (1) or a weaker form of it is believed to be establishable
for possibly non-cadlag processes under much milder conditions than those for
weak convergence on D(R™; F). For instance, Bhatt and Karandikar [1993b]
discussed (1) with {X"},.en being progressive approximating processes and X
being a progressive martingale problem solution, none of which is necessarily
cadlag. Their development was based on a Polish space E and furthered that
of [Ethier and Kurtz, 1986, §4.8]. Herein, we work with a more general space

E and answer the following more general questions:

Q2 When will a subsequence of E-valued processes { X };c1 converge finite-

dimensionally to an F-valued process with general paths?

Q3 When will a subsequence of E-valued processes { X };c1 converge finite-

dimensionally to an E-valued progressive process?

Either of these two questions may be answered in an individual way, but
replication helps to handle Q2, Q3 and the weak convergence of cadlag pro-
cesses on path spaces in one framework. We shall establish several relatively
mild and explicitly verifiable criteria for uniqueness and existence of the limit
processes in Q2 and Q3 above. These criteria will be used to deduce the
finite-dimensional convergence in (1.5) and answer Q1 that motivates Theme
2.

Theme 3 is concerned with two basic problems for cadlag processes taking

values in a Tychonoff space E:

Q5 When is a family of E-valued cadlag processes bijectively indistin-
guishable from a tight family of D(R™; E)-valued random variables?

Q6 If the answer to Q5 is uncertain, then what about relative compactness

in lieu of tightness?



CHAPTER 1. INTRODUCTION 6

The main importance of tightness is that it implies relative compactness
for Borel probability measures even on general Hausdorff spaces. However, the
verification of tightness can be challenging. Kurtz [1975], Jakubowski [1986],
Dawson [1993], Bhatt and Karandikar [1993b], Kallianpur and Xiong [1995],
Perkins [2002] and Kouritzin [2016], to name just a few, all spent consider-
able efforts in establishing tightness of cadlag processes on exotic spaces. In
particular, Jakubowski [1986] developed systematic tightness criteria for prob-
ability measures on both D([0,1]; E) and D(R™; E), which extended several
results of [Ethier and Kurtz, 1986, §3.7 - 3.9] from the Polish to the possi-
bly non-metrizable Tychonoff case. Kouritzin [2016] recently generalized the
results of Jakubowski [1986] for D([a,b]; E') by loosening [Jakubowski, 1986,
Theorem 3.1, (3.4)] to the milder Weak Modulus of Continuity Condition (see
[Kouritzin, 2016, §6]). As a continuation of Kouritzin [2016] on infinite time

horizon, we answer Q5 by establishing the equivalence among:

o Indistinguishability from a tight family of D(R™*; E)-valued random vari-

ables;

o Metrizable Compact Containment Condition plus Weak Modulus of Con-

tinuity Condition;

o Metrizable Compact Containment Condition plus Modulus of Continuity

Condition; and

o Mild Pointwise Containment Condition plus Modulus of Continuity Con-

dition for v when (F,t) is a complete metric space.

Relative compactness is a weaker concept than tightness if the underlying
space is non-Polish. With this difference in mind, we establish milder condi-
tions for relative compactness than those for tightness. As aforementioned,
weak convergnce on D(R™; F) is commonly thought to be composed of finite-
dimensional convergence along densely many times plus relative compactness

in D(RT; E). Herein, we give a more precise interpretation by showing that:

o Relative compactness in D(R'; E) always implies Modulus of Continuity

Condition.
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o Weak convergence on D(R™; E) implies finite-dimensional convergence
along densely many times whenever E belongs to a much broader cate-

gory than metrizable and separable spaces.

o When FE is metrizable and separable, finite-dimensional convergence
along densely many times plus Modulus of Continuity Condition (weaker

than relative compactness) are sufficient for weak convergence on D(R™; E).

Based on the results above, we answer Q6 on metrizable spaces by showing
that:

o When F is metrizable and separable, relative compactness in D(R™; F)
is equivalent to Modulus of Continuity Condition plus relative compact-
ness with respect to finite-dimensional convergence to E-valued cadlag

processes along densely many times.

o When (FE,t) is a metric space, the combination of Modulus of Con-
tinuity Condition for ¢, Mild Pointwise Containment Condition and
relative compactness with respect to finite-dimensional convergence to
D(R*; E)-valued random variables along densely many times is sufficient

for relative compactness in D(R™; E).

The results of Theme 3 demonstrate the superfluity of Compact Containment
Condition for relative compactness in Skorokohod _#;-spaces. This is also
why the second approach of Bhatt and Karandikar [1993b] was well received.
While their work was restricted to a martingale problem setting, our results
are general.

Besides Theme 2 and Theme 3, several companion papers of this work
also provide motivation for and impact of replication.

For martingale problems in general settings, Dong and Kouritzin [2017a]
uses replication to establish existence of, uniqueness of and the finite-dimensional
convergence of non-cadlag approximating processes to non-cadlag solutions.
Previously, existence or uniqueness was mostly established on Polish spaces
(see Ethier and Kurtz [1986] and Bhatt and Karandikar [1993a,b]). Conver-
gence results were mostly done for the weak convergence of cadlag approxi-

mating processes to cadlag solutions on path space.
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For the classical nonlinear filtering problem in general settings, Dong and
Kouritzin [2017b] uses replication to establish the unique characterization of
filters by classical filtering equations and the existence of stationary filter given
a stationary signal. Previously, characterization of nonlinear filters by classical
filtering equations were only known on Polish spaces (see Kurtz and Ocone
[1988] and Kouritzin and Long [2008]), Lusin metric spaces (see Szpirglas
[1976]) or separable compact Hausdorff spaces (see Kunita [1971]). Stationary
filters have only been established on separable compact Hausdorff spaces (see
Kunita [1971]) or Polish spaces (see Bhatt et al. [2000]).

The remainder of this manuscript is organized as follows. Chapter 2 serves
a preliminary collection of notations, terminologies, facts and examples for
the three themes of this work. Theme 1 occupies four chapters: Chapter
3 develops the space change method of replication. Chapter 4 focuses on
the replication of function and linear operator. Chapter 5 discusses weak
convergence on general topological spaces, the replication of measure and their
association. Chapter 6 is devoted to the replication of stochastic process and
the associated convergence problems. Chapters 7 and 8 correspond to Theme
2 and Theme 3 respectively. We provide background content in Appendix
A and miscellaneous results in Appendix B for self-containment and referral

ease, especially for readers’ convenience.
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Chapter 2
Preliminaries

The current chapter makes the necessary preparation for our major devel-
opments in Chapter 3 - 8. For the sake of clarity and accuracy, §2.1 - §2.6
introduce our general notation system, specify relevant terminologies and re-
views a few elementary facts. Relevant background materials are provided
in Appendix A. Prior to introducing replication, §2.7 further motivates this
approach by specifying several examples of “defective” settings or boosting a

result by space chagne in probability theory.

2.1 Basic concepts

2.1.1 Numbers, sets and mappings

)

“@” denotes the empty set. NN denotes the positive integers and Ny =
N U {0}'. Q denotes the rational numbers and Q" = {¢ € Q : ¢ > 0}. R
denotes the real numbers and R* = {z € R : 2 > 0}. “” and “|” denote
the non-decreasing and non-increasing convergence of real numbers (including
convergence to +00) respectively.

“C” and “D” denote the containment of sets including equalities. Let E
and A C E be non-empty sets. R(E) denotes the cardinality of E. Zy(F)
denotes the family of all finite non-empty subsets of £. A is a cocountable

subset of F if £\ A is a countable set. In this work, empty, finite and countably

lwoy

means “being defined by”.
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infinite sets are all considered as countable sets?.

“x” denotes the Cartesian product of non-empty sets. Let I and {S;}icx
be non-empty sets. [[..; Si denotes the Cartesian product of {S;}icr. When
S; = E for all i € I, [[,.;S; is often denoted by E' for general I, or by E*
if X(I) = R(N), or by E* if X(I) = d € N. The projection on [],;S; for
non-empty sub-index-set Iy C I is defined by

poc S — [ S

i€l 1€lp

(2.1.1)

In particular, p; = py;) is called the one-dimensional projection on Il;c1S; for
1€ L

“0” denotes the composition of mappings. 1,4 denotes the indicator func-
tion of A. For a mapping f defined on E, f|4 denotes the restriction of f to
A. For a family of mappings D = {f; € SF}ic1, we define

Dla={fla: f €D} (2.1.2)
and
XRp=K) fi:E—]]S:
i€l i€l (2.1.3)

2.1.2 Measurable space and measure space

Let (E,%) and (S, ) be measurable spaces and A C E be non-empty.
The concentration of % on A is defined by

Ul\a={BNA:Beuy, (2.1.4)

2So0, “countable” is indifferent from “at most countable”.

10
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which is apparently a o-algebra on A. For a family of mappings D from E to
S, the o-algebra induced by D is defined by

o(D)=o({f(B):Bed, fecD}). (2.1.5)

, denotes the Dirac measure at x € E, i.e. 0,(B) = 1 precisely when
B € % contains x.

M (E, %) (resp.® P(E, %)) denotes the family of all non-trivial finite
measures (resp. probability measures) on (F,% ). Herein, non-triviality of a
measure j on (E, %) means u(E), the total mass of p is non-zero. Also, we
consider measures to be non-negative and countably additive as most proba-
bilistic literature does.

Let (E, % , 1) be a measure space (i.e. p € M (E, %)). A () denotes the
family of all p-null subsets of E, i.e. each member of .4 (1) has zero measure
under the outer measure induced by p (see [Dudley, 2002, p.89]). Complements
of the members of A4 (u) are called p-conull sets. If A (u) C %, then % is
called p-complete and (E, 7 , ) is called complete.

A is a support? of u (or u is supported on A) if E\A € 4" (). The
expansion of v € M (A, % |4) onto E is defined by

vI¥(B) = v(ANB), VB € % (E). (2.1.6)
When A € %, the concentration of 1 on A is defined by
wla(B) = u(B), VB € U|a C % . (2.1.7)

The following facts are well-known and we omit the proof for brevity.

Fact 2.1. Let (E,%) be a measurable space, A C E be non-empty, p €
M (E, %) andv € M (A, %|a). Then, the following statements are true:

(a) If A € U, then (2.1.7) well defines p|a € MY (A, % |4). If, in addition,
pEP(E,U), then pla € P(A, % | 4) precisely when p(A) = 1.

34resp.” abbreviates “respectively”.

4By our definition, a measure may have more than one supports.

11
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(b) (2.1.6) well defines v|¥ € MY(E, %) and v|F € P(E, %) precisely

when v(A) = 1.
(c)If A € U, then v = (v|¥)|a. If in addition, u(E\A) = 0, then
p=(pla)l®.

For a measurable mapping f : £ — S, the push-forward measure of p by
f is defined by
wo fUB) = u(f\(B)), VB € o (2.1.8)

and is well-known to be a member of 9™ (S, o).

Let 7 be another o-algebra on E. If ¥ C % and v is the restriction of p
as a set function to ¥, then v € M*(E,¥) is called the restriction of i to
¥, v is called an extension of v to % and (F, %, 1) is called an extension
of (E,7V,v). (E,%,u) is the completion of (E, 7, v) if: (1) (E,%,p) is a
complete extension of (E, ¥, v), and (2) any complete extension (E, %', 1’) of
(E,7,v) is also an extension of (E, %, ).

2.1.3 Topological space

Hereafter, we will not always include the underlying o-algebra (resp. topol-
ogy) in the notation of a measurable (resp. topological) space for simplicity.

Let E be a topological space and A C E be non-empty. By O(F), € (F),
H(E), ™(E), *,(E), Z™(F) and B(F) = 0(0(F)) we denote the fam-
ilies of all open, closed, compact (see p.224), metrizable (see p.220) compact,
o-compact, o-metrizable compact (i.e. countable union of metrizble compact)

and Borel subsets of E, respectively.

Op(A)={ONA:0e0(E)} (2.1.9)
denotes the subspace topology of A induced from FE.

PBr(A) =0 (Og(A)) = B(E)|a (2.1.10)

denotes the subspace Borel o-algebra of A induced from FE.
Let R be a family of pseudometrics (see [Dudley, 2002, §2.1, Definition,

12
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p.26]) on E. The topology induced by R is generated by the topological basis

{ N {veE t(wy <27} :2eBpeNRy€ %(R)} L (2.111)

t€Ro

This topology is the metric topology of (E,t) when R is the singleton of a

metric t on E. When (F, t) is a metric space, we define
A ={z € E:v(x,y) < e for some y € A}, Ve € (0,00). (2.1.12)

Let S be a topological space and D be a family of mappings from E to
S. The topology generated by the topological basis (see [Munkres, 2000, §13,
Definition, p.78])

{ N () FOnA: % e 2[6(5)],Do € %(D)} (2.1.13)

f€Do o

is called the topology induced by D on A and is denoted by Op(A). The
Borel o-algebra induced by D on A refers to Zp(A) = o[Op(A)].

Let % be another topology on E. If % C O(FE), then the topological space
(E,% ) is called a topological coarsening of E, or equivalently, E is called
a topological refinement of (E,%).

Hereafter, by “x,, — x as n T oo in E” we mean that: (1) {z,},en and x

are members of I, and (2) {x, },en converges to x with respect to the topology
of E.

2.1.4 Morphisms

Let E and S be topological spaces and f : ¥ — S be a mapping. f is a
homeomorphism between E and S if f is bijective and both f and f~! are
continuous. E and S are homeomorphic to and homeomorphs of each other if
there exists a homeomorphism between them. f is an imbedding from E into
S if f is a homeomorphism between E and (f(E), Os(f(E))).

Compared to Borel subset and homeomorphism, two less common notions

are standard Borel subset and Borel isomorphism.

13
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Definition 2.2. Let E and S be topological spaces® and A C F be non-empty.

o A mapping f: E — S is a Borel isomorphism between F and S if
f is bijective and both f and f~! are measurable with respect to Z(FE)
and A(S).

e}

FE and S are Borel isomorphic to and Borel isomorphs of each

other if there exists a Borel isomorphism between them.

(¢]

(A, 0g(A)) is a Borel subspace of E if A € #(F).

(¢]

E is a standard Borel space if E is Borel isomorphic to a Borel sub-

space of some Polish (see p.222) space.

o

A is a standard Borel subset of E if (A, 0r(A)) is a standard Borel
space. #°(F) denotes the families of all standard Borel subsets of E.

The standard Borel property derives from Borel sets in Polish spaces and al-
lows a topological (sub)space to acquire the nice properties of Borel o-algebras

of Polish spaces. A brief review of standard Borel spaces/subsets is provided
in §A.5.

2.1.5 Product space

“®” denotes the product of o-algebras. Given measurable spaces {(S;, %) }ier,

the product o-algebra of {7 }ic1 on [[,.; Si refers to

1€l

Q) % = o ({pi}icr) - (2.1.14)
i€l
When (S;, #) = (S, /) for all i € I, Q,. % is often denoted by &7®! for
general I, or by &®N if R(I) = R(N), or by &/®? if R(I) = d € N. The

following facts are well-known and we omit the proofs for brevity.

Fact 2.3. Let (E, %) and {(S;, ;) }ic1 be measurable spaces, 1y be a countable
subset of I, S = [[icr Siy @ = Qicr #ir So = [licr, Siv @ = Qjer, @ and
f:E—S; be a mapping for each i € 1. Then:

Standard Borel property can be defined for general measurable spaces. Herein, we focus
on the topological space case.

14
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(a) p1, is a measurable mapping from (S, <) to (Sy, ).

(0) Q,cx fi - (E, %) — (S,4) is measurable if and only if f; : (E, %) —
(S;, o) is measurable for all i € 1.

“®” also denotes the product of topologies. Given topological spaces
{Si}ier, the product topology of {&(S;)}ier on [, Si refers to

QR o(S) = Oy (H sz») . (2.1.15)
i€l i€l
When S; = E for all i € I, Q,; O(S;) is often denoted by O(E)! for general
I, or by O(E)> if X(I) = X(N), or by &(FE)? if X(I) = d € N. The following

facts are well-known and we omit the proof for brevity.

Fact 2.4. Let E and {(S;, %%)}ic1 be topological spaces, Iy € Zy(1), S =
Hiel Si, U = ®i61 O(Ei), So = Hielo Si, U = ®z’elo Oi(E) and f : £ — S,
be a mapping for each i € 1. Then:

(a) p1, is a continuous mapping from (S, %) to (So, %).

(0) Q,cx fi + £ — (S.%) is continuous if and only if f; - E — S; is

continuous for all i € 1.

(c) Qcx fi + E — (S.%) is continuous at x € E (see [Munkres, 2000,
p.104]) if and only if f; : E — S; is continuous at x € E for all i € 1.

Standard discussions about product topological spaces can be found in e.g.
[Munkres, 2000, §15 and §19] and [Bogachev, 2007, Vol.II, §6.4]. Herein, we
remind the readers of one basic but indispensable fact: For general topological
space {S;}ier, the Borel o-algebra o[,y O(S;)] generated by their product
topology is likely to differ from ), ; #(S;), the product of their individual
Borel g-algebras. Such difference happens even in the two-dimensional case
(see [Bogachev, 2007, Vol.II, Example 6.4.3]). This is why we use different
notations for product o-algebra and product topology. Avoidance of the dif-
ference above needs additional countability of the product topology @),.; O'(S;)
(see Proposition B.46).

15
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Hereafter, R* (with & € N) denotes the k-dimensional Euclidean space
equipped with the usual norm “|-|” and the k-dimensional Lebesgue measure.
Conull subsets of R¥ are in the Lebesgue sense, which are well-known to be

dense subsets. || also denotes the norm metric on RE.

2.2 Spaces of mappings

2.2.1 Spaces of general mappings

Let I, E and S be non-empty sets. The Cartesian power E! is the family
of all mappings from I to E. When I has certain index meaning (e.g. time,
order), a member of E' is often considered as a “path indezed by I". So, we

define the associated path mapping of f € S¥ by®

@i(f) = K) fop: € (SH. (2.2.1)

iel
This mapping sends every E-valued path z indexed by I to the S-valued path
fox indexed by I. We define the associated joint path mapping of D C S¥
by
o B
@1(D) = Q) {wi(f) : f € D} € [(SHP]". (2.2.2)

For simplicity, w(f) is often denoted by w(f) if I = R™, or by wp(f) if
I=10,T], or by was(f) if I = [a,b]. Similar notations apply to wi(D).
Remark 2.5. wi(D) and wi(@ D) are different. The latter is a mapping from
E' to (SP)L.

Let 0,7 € (0,00), [a,b] C R and ¢ be a pseudometric on E. We define

the v-modulus of continuity

Wy sr(2) = inf § max sup  t(x(t),x(s)) : 0 < tg
)05 1<i<n S,6€E[ti—1,ti),s<t (2 2 3)

<..<T< tn,'u<1f(t,» —ti1) >0,n € N}

6w is the calligraphical form of the greek letter .

16



CHAPTER 2. PRELIMINARIES 17

for each © € E®", define

oy (2, Y) = til[lpb] LAt (z(t),y(t)) (2.2.4)

for each =,y € Fl*Y or ER" and let

s—t—

J(z) = {t e R z(t) # lim z(s) € E} (2.2.5)
denotes the set of left-jump times of z € ER".

2.2.2 Spaces of measurable, cadlag and continuous map-
pings
When E and S are measurable spaces, M(S; FE) denotes the family of all

measurable mappings from S to E. When F or S is a topological space,
M (S; E) abbreviates M (S; E, Z(E)) or M(S, A(S); FE) respectively. When
E and S are both topological spaces, C(S; E), hom(S; E), imb(S; E) and
biso(.S; E) denote the families of all continuous mappings, homeomorphisms,
imbeddings and Borel isomorphisms from S to E, respectively.

TC(R") (resp. TC([a,b])) denotes the family of all time-changes on R™
(resp. [a,b] C RT). That is, each A € TC(R") (resp. A € TC([a,b])) is a

strictly increasing homeomorphism from R™ (resp. [a,b]) to itself and satisfies

Alt) — (s
IN] 2 sup [ A ZAG) (2.2.6)
t>s t—
Then, we define
Gan(@y) = jnf (Y ten(@ oA ) (2.2.7)

[a,b

for each z,y € E*¥ and define

se = _nt (I [T taternn) @2y
0

AeTC(RT

for each z,y € ER",

17
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When E is a topological space, z € ER" is cudlug (i.e. right-continuous
and left-limited) if for every ¢ € R, there exists a unique y' € F such that
z(u,) =y asn 1 oo in E for all u, 1t and z(v,) — z(t) asn 1 oo in F for all
vp, L t. When E is a Tychonoff space” (see p.231), Proposition A.25 to follow
shows that the topology of F is induced by a family R of pseudometrics on E.
Then, by D(R*; E) (resp. D([a,b]; E)) we denote the space of all cadlag mem-
bers of ER" (resp. El*%) equipped with the Skorokhod _#;-topology _# (E)
(resp. Zap(E)), that is, the topology induced by pseudometrics {0 }cer (resp.
{0}, 4 }rer). 1t is worth noting that #(E) and _Z,4(E) turn out to be inde-
pendent of the choice of the pseudometrics R. We refer the readers to §A.6

for more information about Skorokhod _#;-spaces.

2.2.3 Spaces of R*-valued functions

Let E be a non-empty set. Given {f,g} C RE, we define fV g(x) =
max{f(z), g(x)), f A g(x) = min{f(z),g(z)}, fT(z) = max{f(z),0} and
f~(z) = max{—f(x),0} for all x € E. A subset of RF is a function lattice if
it is closed under the operations “A” and “V”.

Let k € N and D C (R*)E. The additive expansion of D is defined by

ae(D)=DU{f+g: f,g€D}, (2.2.9)

and the additive closure of D is defined by

ac(D) = {Z f:Dye %(D)} : (2.2.10)
f€Do
When k = 1, the multiplicative closure of D is defined by

me(D) = { I17:Doe %(D)} : (2.2.11)

f€Do

"We use the terminologies “Tychonoff space” instead of “completely regular space” since
the latter sometimes is used in a non-Hausdorff context.

18
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the Q-algebra generated by D is defined by

agq(D) = ac({af : f e me¢(D),a € Q}), (2.2.12)
the algebra generated by D is defined by

ag(D) = ac({af : f € me(D),a € R}), (2.2.13)

and, for a finite index set I, we define

J
(o) = {g eR” :g= [[fisopifijeD1<j< N(I)} . (2.2.14)

i=1

which is formed in a similar way to the function class in [Ethier and Kurtz,
1986, §4.4, (4.15)]. Hereafter, IT*(D) is often denoted by I1¢(D) with d = R(I).
The enlargements of D above are often used to construct a rich but countable
collection of functions that includes D. Some of their basic properties are
specified in §A.2 and §B.1 - §B.2.

“4” denotes uniform convergence of R*-valued functions. When the mem-
bers of D C (R*)® are bounded®, ¢[(D) denotes the closure of D under the

supremum norm || - ||« and, if & = 1, we define
ca(D) = cl[ag(D)] = ¢l [agq(D)] - (2.2.15)

The second equality above is immediate by the denseness of Q in R and
properties of uniform convergence.

M,(E;RF) (resp. Cy(E;RF)) denotes the Banach space over scalar field R
of all bounded members of M (FE;R*) (resp. C(E;RF)) equipped with || - ||sc-
C.(E;RF) denotes the subspace of all members of C'(E; R¥) that have compact
supports, i.e. the closure of E\f~'({0}) is compact for all f € C.(E;RF).
Co(E;RF) denotes the subspace of all members of C(F;R") that vanish at
infinity, i.e. for any € > 0, there exists a K, € # (E) such that || f|g\ k.|l < €.

8f is bounded if || f|lo € R™.
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2.2.4 Functions and separation of points

This work intensively uses the following point-separation properties of func-
tion classes. Let F and A C E be non-empty sets and D C R¥. D separates
points on A if QD is injective, or equivalently, f(x) = f(y) for all f € D
implies = y in A. Suppose E is a topological space. Then, D strongly
separates points on A if Og(A) C Op(A). D determines point conver-
gence on A if @ D(z,) = ® D(z) asn 1 oo in (R, O(R)P) implies z,, — =
asn T ooin (A4, Op(A)).

Remark 2.6. Q D(z,) — QD(z) as n T oo is equivalent to lim, . f(z,) =
f(z) for all f € D by Fact B.11.

Note 2.7. The point separability, strong point separability or point convergence
determining of D C R on A C E is apparently inherited by any D' ¢ RF
with D C D'.

The following are several simple examples of function classes with the afore-

mentioned point-separation properties.

Example 2.8.

(1) Let C(]0,1]; R) be alternatively equipped with the product topol-
ogy O(R) 01 The one-dimensional projection p. 1s continuous on
C([0,1];R) for all € [0, 1], since the convergence under product
topology means pointwise convergence (see [Munkres, 2000, Theo-
rem 46.1]). Note that

xeQnI0,1] xeQn0,1]

implies f = ¢ by the denseness of Q in R and the continuity of
f and g. Hence, {px}erm[O,l} is a countable collection of R-valued

continuous functions and separates points on C([0,1]; R).

(I)  Let (F,t) be a metric space and define

Gy k() =[1 —ke(z,y)| VO, Vo,y € E,k € N. (2.2.17)
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(111)

[Blount and Kouritzin, 2010, (4)] showed that {g, x }yep ren strongly
separates points on E. It separates points and determines point

convergence on E by Proposition A.17 (a, b) to follow.

Let (E,t) be a metric space. For each x € FE,
9:(y) =x(y,z), Vy € E (2.2.18)
is a Lipschitz function by triangular inequality. If = # y in E, then

If g.(x,) — g.(x) as n T 0o in R, then

lim t(z,,z) = lim |g.(x,)| = lim |g.(x,) — g.(z)| =0 (2.2.20)
n—oo n—oo

n—oo

and so x, — z asn T oo in E. D = {g,}.cr separates points,
determines point convergence and strongly separates points on £
by (2.2.19), (2.2.20) and Proposition A.17 (b) to follow. The fam-
ily of all Lipschitz functions on E has the same point-separation

properties as D by Note 2.7.

For each n € N,

L ite e [0.2],
falz) = —foa+ 22 ifze (L)), (2.2.21)
0. if x € [n, 00)

defines a bounded continuous function on R* which is strictly de-
creasing on its compact support [0,n]. One immediately observes
that D = {f,}nen separates points and determines point conver-
gence on R*. D strongly separates points on E by Proposition A.17
(b) to follow. C.(R*;R) has the same point-separation properties
as D by Note 2.7.

Note 2.9. C(E;R) and Cy(F; R) separate points and strongly separate points

on E when F is a Tychonoff space (see Proposition A.25). For more general F,
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however, even C'(F; R) does not necessarily separate points on F (see Example
A.39).

For D = {f;};en C R¥ and d € N, the pseudometric
pD(iﬂl, I'Q) = Z 2_j+1 (|fj($1) — f]($2)| N 1) s \V/IE1, To € E (2222)
j=1

on E induces Op(FE) (see Proposition A.17 (d)), and the pseudometric

Pp (1, y2) = max pp (pi(y1), pi(v2)) » Yo, 92 € B (2.2.23)

on E¢ induces Op(E)? (see Corollary A.18).

2.2.5 Linear Operators

We review several basic notions about linear operators which are involved in
§4.2. Let (S, ]|-||) be a Banach space over scalar field R (like (Cy(E; R), ||“]|s0))-
By a single-valued linear operator £ on S we refer to a linear subspace
L C S x S such that for each f € S, {g € S : (f,g9) € L} is either @ or
a singleton denoted by {L£f}. The domain ©(L) and range R(L) of L are
defined respectively by

D)= {fesS:Ln{f}xS)+£0} (2.2.24)

and

R(L)={ge S:LN(S x{g}) # 0}, (2.2.25)

which are well-known to be linear subspaces of S.
L is closed if it is a closed subspace of S x S. The restriction of L to
(subdomain) D C ©(L) is defined by

Llp=A{(f,Lf)e L: feD}. (2.2.26)
L is dissipative if

BILFIF<Bf = LA, Vf € D(L), 8 € (0,00). (2.2.27)
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L satisfies positive mazimum principle if sup,cp f(z) = f(xo) > 0 implies
Lf(xg) <0 for all f € D(L). L is a strong generator on S if the closure
of £ under || - || is the infinitesimal generator (see [Yosida, 1980, p.231]) of
a strongly continuous contraction semigroup (see [Yosida, 1980, p.232]) on
S. When E is a locally compact (see p.224) Hausdorff (see p.217) space and
S = (Co(E;R), ||']lsc), L is a Feller generator on S if ¢[(£) is the infinitesimal
generator of a Feller semigroup® (see [Ethier and Kurtz, 1986, §4.2, p.166]) on
S.

If needed, more details about operators on Banach spaces can be found in
standard texts like [Yosida, 1980, Chapter VIII and Chapter IX] and [Ethier
and Kurtz, 1986, Chapter 1].

2.3 Spaces of non-negative finite Borel mea-

sures

Let E be topological space. The members of M+ (E, B(E)) and P(E, B(F))

are called finite Borel measures and Borel probability measures respectively.

Definition 2.10. Let E be a topological space and % be a sub-c-algebra of
A(E). Then, any extension of p € M+ (E, %) to B(F) is said to be a Borel

extension of .

Hereafter, be(y) denotes the family of all Borel extension(s) of p (if any).
If 1/ is the unique member of be(u), then we specially denote u' = be(u).

Note 2.11. Any ' € be(;) has the same total mass as p since the full space

lies in and p is indifferent from g restricted to the domain of p.

MT(E) denotes the space of all finite Borel measures on E equipped with
the weak topology. P(FE) specially denotes the subspace of all probabilistic
members of M1 (FE). To be specific, the weak topology of M*(E) is defined
by

O [M*(E)] £ Ocypry [MT(E)], (2.3.1)

9There are multiple definitions of Feller semigroup in literature. Herein, we choose the
traditional definition based on locally compact spaces.
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where f* denotes the linear functional

[ MH(E) — R,
2.3.2
MH/f (2.3.2)

for each f € M,(E;R) and
D* = {f*: f €D} (2.3.3)

for each D C My(E;R). Given f € M,(E;R*) (with k € N), we define
= Qi (pio f)"

Remark 2.12. The weak topology of M*(E) is sometimes called “narrow topol-
ogy”, since it is generally different from the standard notion of weak-x topology
induced by dual space. This confusion is avoided when E is a locally compact
Hausdorfl space (see [Malliavin, 1995, Chapter II, §6.5 - 6.7]). Hereafter, we
conventionally use the notation “f*” to denote the linear functional in (2.3.2),

but when D is a linear space, D* does not mean any dual space of D.

Weak convergence is one of the central interests of this work. As specified

in §2.1.3 for general topological spaces, the statement
fn = pas n 1 oo in MT(E) (2.3.4)

means that: (1) {j,}nen U {p} are members of M*(E), and (2) {fin}nen
converges to ;. with respect to the weak topology of M™(FE) (converge

weakly to p for short). Similar terminology and notation apply to P(FE).

Remark 2.13. Weak convergence in M*(E) can always be rescaled to that in
P(E) (see Fact B.21 (b)).

p € MT(E) is a weak limit point of ' C M™(FE) if there exist
{itn }nen C T satistying (2.3.4). By

w- lim p, = p (2.3.5)
n— oo

we denote p is the weak limit of {y,}nen € MT(E), that is, (2.3.4) holds
and p is the unique weak limit point of {p,}nen. T' € MT(E) is rela-
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tively compact if any infinite subset of I' has at least one weak limit point
in MT(E)".
Remark 2.14. (2.3.4) does not necessarily imply (2.3.5) since M™*(F) in general

is not guaranteed to be a Hausdorfl space so p in (2.3.4) might not be unique.

2.3.1 Weak topology in sequential view

In this work, we consider weak convergence as a type of topological con-
vergence, i.e. convergence induced from a topology. Apparently, (2.3.4) is

equivalent to the integral test

tm [ f@hnldn) = [ futdn), vf € CUE:R). (236)
In literature, one more often defines weak convergence by (2.3.6) and then
defines weak topology sequentially by weak convergence. Below we briefly
explain the connection between our and the sequential definitions of weak
topology.

The relationship between topology and convergence are bidirectional. In
one direction, topological convergence comes after defining open or closed sets.
In the other direction, convergence (topological or non-topological) can induce
a sequential topology. Indeed, convergence is definable without any topological
structure or even be non-topologizable. Weak convergence defined by (2.3.6) is
one example since it does not formally involve any topology of M™(FE). Two
other examples are almost sure convergence and bounded pointwise convergence
(see [Ethier and Kurtz, 1986, §3.4]). Suppose a sense of convergence is given,
which is often called convergence a priori. Then, one defines closedness
of a set to be the containment of limits of all convergent a priori sequences.
A sequential topology is generated by these “sequentially closed” sets, which
claims its own topological convergence called convergnce a posteriori.

Convergence a priori and convergence a posteriori need not be the same
in general (see [Jakubowski, 2012, §5] for further details). One example is the
S-topology introduced by Jakubowski [1997b] (see §2.7.2 for a short glance).

Below is another elementary example.

100f course, this weak limit point need not belong to I
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Example 2.15. We say {z,},en *-converges to x in R if
|z, —z] < 27" Vn € N. (2.3.7)

The specific control of convergence rate makes x-convergence strictly stronger
than the Euclidean convergence in R ({n™'},en is not x-convergent). How-
ever, if one considers x-convergence as convergence a priori, then the induced
sequential topology turns out to be the Euclidean topology (see Fact B.13).
In this case, convergence a posteriori is the Euclidean convergence and differs

from convergence a priori.

The property of a point to be the limit of some subsequence, and that of
a set to have some convergent subsequence are sequential rather than topo-
logical concepts, which can be defined for any convergence a priori. Indeed,
“weak limit point” and “relative compactness” of T' C M™(E) are such se-
quential concepts with weak convergence being convergence a priori. Their
independence of the weak topology of M™(FE) may cause ambiguity in general

settings:

o Weak limit point is stronger than limit point (see [Munkres, 2000, p.97])
with respect to weak topology, since M™(F) is not guaranteed to be
first-countable™ (see p.217).

o The topological interpretation of “relative compactness” is usually the
existence of compact closure (see p.224). However, relative compact-

ness of I' € M*(FE) is generically different from the compactness of I'’s

closure in M*(FE).

o Relative compactness of I' C M™(E) might also be different from I'
having a limit point compact (see p.224) or sequentially compact (see

p.224) closure with respect to weak topology.

The ambiguity above is due to that weak topology is generally coarser than
the sequential topology induced by weak convergence as convergence a priori.

This also causes the possible difference of weak convergence and the associated

"UThe absence of first-countability results in that a limit point with respect to weak
topology does not necessarily imply a subsequence that converges weakly to this limit point.
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convergence a posteriori. Similar issue is also incurred by the S-topology (see
[Jakubowski, 2012, §2 - 3]).

When F is a metrizable space as in the majority of probabilistic literature,
MT(E) is also metrizable (see Proposition A.45) and does not incur the ambi-
guity above. This explains why the sequential definition of weak topology by
(2.3.6) and the ambiguous use of “weak limit point” and “relative compact-

ness’ are conventional nowadays.

2.3.2 Separation of measures by functions

The measure-separation properties of D C M,(F;R) (i.e. point-separation
properties of D*) are vital for studying weak convergence and M™(E)-valued
or P(E)-valued processes (e.g. filters, measure-valued diffusions, non-Markov
branching particle systems). The following terminologies are conventionally
adapted from [Ethier and Kurtz, 1986, §3.4]: D C M,(FE;R) is separating or
convergence determining on E if D* separates points or determines point

convergence on M™(FE) respectively.

Note 2.16. Cy(E; R)* by definition strongly separates points and so determines
point convergence on M (E) (see Proposition A.17 (b)). Hence, C,(E;R) is

convergence determining on M™(E).

We refer the readers to §A.4, [Topsge, 1970, Part 1I] and [Bogachev, 2007,
Vol. II, Chapter 8] for more details about the topological properties of M (E)
and P(F).

2.3.3 Portmanteau’s Theorem

One way of establishing (2.3.4) is testing the integral convergence in (2.3.6)
for all f from a convergence determining collection. A useful alternative is
the Portamenteau’s Theorem. This useful tool was commonly established on
metric spaces (see [Kallianpur and Xiong, 1995, Lamma 2.2.2]). [Topsge, 1970,
p.XII and p.40 - 41] gave the following partial generalization on Hausdorff

spaces.

Theorem 2.17 (Portmanteau’s Theorem, [Topsoe, 1970, Theorem 8.1]).
Let E be a Hausdorff space. Consider the following statements:
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(a) (2.3.4) holds.
(b) limsup,,_, o (F) < u(F) for all F € €(F).

(¢) liminf,, o 1, (O) > u(O) for all O € O(F).

Then, (b) and (c) are equivalent and each of them implies (a). If, in addition,
E is a Tychonoff space, then (a) - (c) are equivalent.

2.3.4 Tightness

Tightness is often more explicitly verifiable than relative compactness.
Compact subsets are not necessarily Borel subsets in non-Hausdorff spaces.
At the same time, they can lie in the domain of possibly non-Borel measures
(see §3.3.4). So, we slightly adjust the ordinary definition of and extend tight-

ness to general finite measures.

Definition 2.18. Let (F, %) be a measurable space, S be a topological space
and .o/ be a o-algebra on S.

o When S C E,I' C M (E, %) is tight in S (resp. m-tight in S) if for
any € € (0,00), there exists a K, € #(S) (resp. K. € #™(S)) such
that K. € % and sup,; p(E\K,) < e.

o ' C MH(S, o) is tight in A C S (resp. m-tight in A) if A is non-
empty and I is tight (resp. m-tight) in (A, Os(A)).

o ' CMH(S, o) is tight (resp. m-tight) if it is tight (resp. m-tight) in
S.

Note 2.19. Hereafter, any type of tightness of a measure p refers to that of
the singleton {u}.

Remark 2.20. m-tightness is stronger than tightness, and they are the same
if every compact subset of the underlying space is metrizable. We refer the

readers to §3.3.4 for specific discussion about metrizable compact subsets.

The classical Ulam’s Theorem (see [Billingsley, 1968, Theorem 1.4]), show-
ing tightness of every finite set of Borel probability measures on a Polish space

E. has the following stronger form about m-tightness.
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Theorem 2.21 (Ulam’s Theorem, [Bogachev, 2007, Vol.II, Theorem 7.4.3)).
If E is a Souslin space (see p.222), especially if E is a Lusin (see p.222) or
Polish space, then any finite subset of M™(E) is m-tight.

The Prokhorov’s Theorem is a fundamental result that connects relative
compactness and tightness of finite Borel measures. Part (a) below is adapted
from [Bogachev, 2007, Vol.II, Theorem 8.6.2] which gives one direction of the
classical Prokhorov’s Theorem. Part (b), extending the other direction from
Polish to Hausdorff spaces, is adapted from [Kallianpur and Xiong, 1995, The-

orem 2.2.1].

Theorem 2.22 (Prokhorov’s Theorem).

(a) If E is a Polish space, then relative compactness implies tighteness for
any subset of MT(E).

(b) If E is a Hausdor[f space, then tightness implies relative compactness
for any subset of P(E).

2.3.5 Finite Borel measures on D(R*; E)

When E is a Tychonoff space, the Skorokhod _¢;-space D(R*; E) always
satisfies
Z DR E)] =0 7(E)] D B(E)™™

2.3.
D(R+;E) (2.3.8)

and

M* [D(RY; E)] c m* (D(R*; E), B(E)*R"

. 2.3.9
D(RﬁE)) ( )

However, one may not have the equality of (2.3.8) or (2.3.9) in general. The set
of fixed left-jump times of ;€ MY (D(R*; E), B(E)*R" | pr+.p)) refers
to

Jpw)={teR":p({z e DR E):te J(z)}) >0} (2.3.10)

if it is well-defined. These measurability issues about D(R™; E) are further
discussed in §A.6.
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2.4 Random variable

Let (Q,.7,P) be a probability space (i.e. P € P(Q,.F)), (E,%) be a
measurable space and S be a topological space. Any X € M(Q,.%;E, %) is
said to be an (F, % )-valued random variable. Po X! € B(E, % ), the push-
forward measure of P by X is called the distribution of X. S-valued random
variables refer to (.S, #(5))-valued random variables if not otherwise specified.
Hereafter, by (€, #,P; X) we abbreviate a random variable X defined on
probability space (Q,.%,P).

Any type of tightness in Definition 2.18 is defined for random variables by
referring to the corresponding property of their distributions. “X,, = X as
n 1 oo on S” means the distributions of S-valued random variables {X,, },en
converge weakly to that of S-valued random variable X as n 1 oo in P(95).
Similar interpretations apply to the statements “X is a the weak limit of
{Xn}tnen on S”, “ X is a weak limit point of {X;}ier on S” and “{X;}ier is

relatively compact in S”.

2.5 Stochastic process

The stochastic processes treated in this work are indexed by time horizon
R™ and take values in topological spaces'?. Throughout this section, we let
(Q,.7,P) be a probability space, E be a topological space and X € (E®")%.

2.5.1 Definition

X is an F-valued (stochastic) process if Z(E)*®" is a sub-o-algebra of
Uy = {B CER Xl ff}, (2.5.1)

or equivalently,
X e M(Q, .Z; ERX", B(E)*R"). (2.5.2)

Remark 2.23. The %x in (2.5.1) is often called the “push-forward o-algebra
of X”. In any case, X € M(Q,.Z; E®" %x).

12Stochastic processes are definable on general measurable spaces without any topological
structure.
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Let (Q,.%,P; X) be an E-valued process'®. For each w € Q, X (w) € ER" is
called a (realization) path of X. The process distribution of an E-valued
process X refers to the push-forward measure of Pby X : (Q, %) — (ER", %x)
and is denoted by pd(X) € P(ER", %x). For ecach t € RT, X; = p, 0 X
denotes the (one-dimensional) section of X for t. For each Ty € Z,(R"),
the section of X for T, refers to the ET-valued mapping Xr, = pr, o X,
and the finite-dimensional distribution of X for T refers to pd(X) opil).

From Fact 2.3 we immediately observe that:

Fact 2.24. Let (Q2,.%,P) be a probability space and E be a topological space.

Then, the following statements are true:

(a) X € (ER")? is an E-valued process if and only if p,o X € M(Q, .%; E)
forallt € RT.

(b) If ¢t € M(Q, F; E) for allt € RT, then
X(w)(t) = (H(w), Vte RT,we (2.5.3)

well defines an E-valued process X satisfying ¢* = pioX for allt € RT.

(¢) The section of an E-valued process (2, %, P; X) for each Ty € Zo(RT)
is a member of M(Q, F, ETo, B(E)*™0).

(d) The finite-dimensional distribution of an E-valued process X for each
Ty € Po(R7) is the distribution of X1, and belongs to PB(ET, B(E)®T0).
In particular, the finite-dimensional distribution of X for each t € R™

is a member of P(E).

Remark 2.25. Given an E-valued process X and a general Top € Zy(R"), X
(resp. Xr,) need not be an (ER" B(ER"))-valued (resp. (ETo, B(E™0))-
valued) random variable, nor is the process distribution of X (resp. the finite-
dimensional distribution of X for T) necessarily a Borel measure. This is due
to the possible difference between the Borel o-algebra generated by product
topology and product of Borel g-algebras on each individual dimension, which

was mentioned in §2.1.5.

13An E-valued process is an (l*?l)”+,<%’(E)(X’R+ )-valued random variable, hence it is con-
sistent for (Q,.%,P; X) to denote an E-valued process X defined on (Q,.7,P).
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According to Fact 2.24 above, an FE-valued process is indifferent from a
family of F-valued random variables indexed by R*. Hereafter, an E-valued
process X is also denoted by X = {X;}+>0 or just by {X;}i>0; its section X,
for To = {t1, ..., ta} is also denoted by (X, ..., X¢,).

Let S be a topological space, X be an F-valued process and f € M(FE;S).
The process {f o X;};>0 is exactly the mapping w(f) o X that sends every
w € Q to the S-valued path @w(f)[X(w)]. A popular notation of this process
is f o X. Herein, we prefer to treat processes as path-valued mappings and so

we stick to the more precise notation @(f) o X.

2.5.2 Cadlag process

X is an E-valued cadlag process if
{w € Q: X(w) is not a cadlag member of ER+} e FnNnAN(P), (2.5.4)

which is apparently an E-valued process. When E is a Tychonoff space, the
path space of an E-valued cadlag process refers to D(R™; E). From (2.3.8)

we immediately have that:

Fact 2.26. Let E be a Tychonoff space. Then:

(a) Every E-valued cadlag process (2, F,P; X) satisfies that

O\X"'[D(R"E)] € ZNnA(P), (2.5.5)
that
XYA) e Z, VA e B(E)R : (2.5.6)
D(RT;E)
and that
. ®RT
POy € B (DRSELE™ | ). @s)

(b) Every member of M(Q), % ; D(RT; E))" is an E-valued cudlag process
defined on (), F . P).

YUM(Q, 7; D(RT; E)) denotes the family of all D(R*; E)-valued random variable defined
on (Q,.7,P).
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Remark 2.27. As B[D(R*; E)] is generically larger than Z(E)*R" | pg+.5), an
E-valued cadlag process is not necessarily a D(R'; E)-valued random variable.

More details about cadlag processes are presented in §A.7.

2.5.3 Relevant terminologies

The following are several common terminologies about stochastic processes.
Let X and Y be two E-valued processes defined on (€2, %, P). The set of fixed

left-jump times of X refers to
J(X)é{t€R+:P(lir{l Xs:Xt> <1} (2.5.8)
s—t—

if it is well-defined. X is a stationary process if

PoXpy =PoXq . VTo € Zo(R"),c € (0,00), (2.5.9)
where
To+c={t+c:teTy}. (2.5.10)

X and Y are (pathwisely) indistinguishable if {X #Y} € A/ (P)N.Z#. X and
Y are modifications of each other if {X; #Y;} € #/(P)NF forallt € RT.
A filtration (see [Dudley, 2002, p.453]) {4 }i>0 on (Q, F,P) is P-complete
if 4, is P-complete for all ¢ > 0. We call (Q, .7, {9, }i>0,P) a stochastic basis if
both .# and {%, };>¢ are P-complete. X is %-adapted if FX C &, for all t > 0,
where
FXZolo({ X, :uel0,t]})u N (P)], Vt>0. (2.5.11)

FX = {FX}i>o is called the augmented natural filtration of X. Let &(t,w) =
X (w) for each w € Q and t € RT. Then, X is a measurable process if

¢eM R xQBRY)®.F,E,BE)). (2.5.12)
X is a Y,-progressive process if
loaxa € M ([0,1] x Q, B([0,t]) ©®%4; E, B(E)), Vt € R". (2.5.13)
X is a progressive process if it is ﬁtx—progressive.
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2.6 Conventions

In view of simplicity and brevity, the remainder of the paper will always

stick to the following conventions if not otherwise specified:
o Iis a non-empty index set.
o Subsets are non-empty.
o Measures are non-trivial.

o Subsets of topological spaces are equipped with their subspace topolo-

gies.
o Topological spaces are equipped with their Borel o-algebras.

o Any Cartesian product of topological spaces is equipped with the product
topology and, hence, is equipped with the Borel o-algebra generated by
the product topology.

o Linear spaces are over the scalar field R.

o Linear operators are single-valued.

o (Q,.7,P),{(Q", F",P") }en, and {(Q, F', P") };e1 denote complete prob-
ability spaces with expectation operators E, {E"},en, and {E'};c1, re-

spectively.

2.7 Motivating examples

We mentioned in Introduction many inspiring settings for replication. Herein,
we outline seven representative examples to further motivate the readers. In
§2.7.1 - §2.7.6, we give a brief review of the pseudo-path topology of cadlag
functions, the S-topology of cadlag functions, the strong topology of Borel
probability measures, strong dual of nuclear Frechét space, Banach spaces of
finite p-variation or 1/p-Hélder continuous paths, and Banach spaces of rough
paths. These spaces forfeit the traditional assumptions of metric complete-

ness (see [Munkres, 2000, §43, Definition, p.264]), compactness, separability
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and/or metrizability. Moreover, we review in §2.7.7 a version of Kolmogorov’s
Extension Theorem for standard Borel spaces, which is a good illustration of

boosting results by space change.

2.7.1 Pseudo-path topology

In Meyer and Zheng [1984], the pseudo-path topology (also known as
“Meyer-Zheng topology”) was used to characterize tightness of cadlag semi-
martingales with respect to the topology of convergence in measure. This is

an example of a non-Polish metrizable Lusin space.

Example 2.28. Let DP?(R";R) denote the space of all cadlag members of
RR" cquipped with the pseudo-path topology'®. This topology is induced by
the mapping ¢PP associating each x € DPP(R™; R) to its N'-almost everywhere
unique pseudo-path PP (z) € P(K), where X is the Lebesgue measure on R,

K =10, 00] X [—00, 00,
N(A) = / e 'A(dt), VA € BR"), (2.7.1)
A
and
YPP(z)(B) = XN ({t e R" : (t,z(t)) € B}), VB € B(K). (2.7.2)
[Meyer and Zheng, 1984, Theorem 2| showed that
YP € imb (DP(R*; R); P(K)) (2.7.3)

and
¢P (DP(R*;R)) € B (P(K)). (2.7.4)

K is a Polish space by Proposition A.12 (d). P(K) is a Polish space by Theo-
rem A.44 (b). Hence, ¢??(DPP(R*;R)) is a metrizable Lusin space by Propo-
sition A.49 (a, d), so is its homeomorph DPP(R™;R). However, [Meyer and

15pPseudo-path topology can be defined similarly on the family of all cadlag members of
ER" when F is a Polish space. In that case, K will be a metrizable compactification of
R x E.
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Zheng, 1984, p.355 - 356] pointed out that ¢*?(DPP(R*;R)) and DP?(R*;R)

are not Polish spaces.

2.7.2 S-topology

Jakubowski [1997b] defined the S-topology by introducing the S-convergence
of cadlag functions from [0,7] C R™ to R. This sequential topology is related
to the pseodo-path topology as the tightness conditions proposed by Stricker
[1985] for the pseudo-path topology turns out to be superfluous (see Kurtz
[1991]) but serves precisely for the S-topology (see Jakubowski [1997b] and
Jakubowski [2012]).

Example 2.29. We define the total variation of z € RI®”) by

n

[z [l1-varjor) = |2(0)] + sup > () — a(ti)l, (2.7.5)

0<to<...<tn <T,neN T3

and put
V = {z € RO : 1 is cadlag, ||z 1-var,o.r) < 00} (2.7.6)

Cadlag functions {x, }pen C R%T! S-converge to cadlag function xq € RIOT)

if for any € € (0, 00), there exist {vS},en, € V such that

sup ||z, — vy |l-var o) < € (2.7.7)
neNy
and
lim f(t)dv,(t) = f(t)duvo(t), Vf € C([0,T];R). (2.7.8)
n— 00 0,7] [0,7]

Considering S-convergence as convergence a priori, the induced sequential
topology is the S-topology on the space of all cadlag members of RI®7], This
S-topological space is a topological coarsening of the Skorokhod _#;-space
D([0,T];R) (see [Jakubowski, 2012, p.5]). However, it is neither necessar-
ily a Tychonoff space, nor is it known to be a topological vector space (see
Jakubowski [1997b] and [Jakubowski, 2012, p.5]). S*-convergence, the conver-
gence a posteriori induced by S-convergence is different from S-convergence

(see [Jakubowski, 2012, p.3 - 4]). Moreover, S*-convergence turns out to be
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the topological convergence under some coarserning of the S-topology, but

their equality remains an open question (see [Jakubowski, 2012, p.4]).

2.7.3 Strong topology of Borel probability measures

The strong topological space of all Borel probability measures on a Polish
space E was used in Dembo and Zeitouni [1998] for large deviation theory.
This is an example of a non-metrizable and non-separable (see p.218) Tychonoff

space.

Example 2.30. Let E be a Polish space and Pg be the space of all Borel
probability measures on E equipped with the strong topology

0 [Ps(E)] = Owmymmy- [P(E)] - (2.7.9)
Then, Ps(F) is a topological refinement of P(E),
My(E;R)" C G, (Ps(E); R), (2.7.10)

and M,(E;R)* strongly separates points on Pg(E). Furthermore, from the
fact
{Qa)" A€ B(E)} C My(E;R)" (2.7.11)

it follows that M, (F; R)* separates points Ps(FE). Hence, Ps(E) is a Tychonoff
space by Proposition A.25 (a, b). However, [Dembo and Zeitouni, 1998, p.263]

argued that Pg(F) is neither metrizable nor separable.

2.7.4 Strong dual of nuclear Frechét space

[Jakubowski, 1986, §5.11] discussed tightness of probability measures on
the Skorokhod _#i-space D([0,1]; E)) with E being the strong dual of a gen-
eral nuclear Frechét space. This is an example of a possibly non-metrizable,

Tychonoff topological vector space.

Example 2.31. Let E be the strong dual of some infinite-dimensional, un-
normable, nuclear Frechét space. E is not metrizable by [Garling and Kothe,
2012, §29.1, (7), p.394], nor is D([0, 1]; E') by [Jakubowski, 1986, Proposition
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1.6 iii)]. According to [Jakubowski, 1986, Proposition 1.6 ii)], neither E nor
D([0,1]; E)) is necessarily separable. However, F is a nuclear space by [Schae-
fer and Wollf, 1999, §IV.9.6, Theorem, p.172] and the topology of F is induced
by countably many Hilbertian semi-norms (see [Speed and Hida, 2012, Defi-
nition A.4]). Hence, E is a Tychonoff space by [Kallianpur and Xiong, 1995,
Theorem 2.1.1], so is D([0, 1]; E') by Proposition A.62 (e).

2.7.5 Spaces of finite-variation or Holder continuous func-

tions

The spaces of Rfvalued continuous functions with finite p-variation or
R%-valued 1/p-Hélder continuuous functions are frequently used in stochastic
differential equations driven by non-classical noises. They are examples of

non-separable Banach spaces.

Example 2.32. Let d,N € N, p € [1,00) and T € (0,00). A path x €
(R0 has finite p-variation or is 1/p-Holder continuous if the homogeneous

p-variation norm of z defined by

n 1/p
[l p-var,jor) = [2(0)] + sup < () — x(ti_1)|p> (2.7.12)
1

0<to<...<tn <TneN \ T2

or the homogeneous 1/p-Holder norm of = defined by

o |z(t) — 2(s)]
||xH%—H61,[O,T] = sup —————— (2.7.13)
0<s<t<T |t — 5|

is finite respectively. The normed spaces

{z € C([0,7);RY) : ||2|p—var,o.r) < 0} (2.7.14)

and
(0,77
{we @Y™ alls oo < o0} (2.7.15)

are non-separable Banach spaces (see [Friz and Victoir, 2010, Theorem 5.25]).

38



CHAPTER 2. PRELIMINARIES 39

2.7.6 Space of rough paths

The approach of rough path, initiated by the pioneering works of Lyons
[1994] and Lyons [1998], is important to generalizing stochastic differential
equations like

dY; = a(t,Y,)dt + o(t, Y;)d X, (2.7.16)

to the case where the driven noise X is not necessarily a semimartingale. By
this approach, the original driven noise X is enhanced to a random rough path
X (see [Friz and Victoir, 2010, §9.1]) and the Stratonovich solution of (2.7.16)

is closely linked to the solution of
dY; = a(t,Y,)dt + o(t, Y;)dX,, (2.7.17)

where (2.7.17) is considered as rough differential equations driven by the real-
ization paths of X as a process (see [Friz and Victoir, 2010, §10.3, §10.3, §17.1
and §17.2]). Friz and Victoir [2010] and Friz and Hairer [2014] considered the
following spaces for the paths of X, which are also examples of non-separable

Banach spaces.

Example 2.33. Let d,N € N, p € [1,00) and T € (0,00). A rough path
is often considered as a mapping from [0,7] to GV (R?), the free nilpotent
group of Step N over R? (see [Friz and Victoir, 2010, p.142-143]). As a Lie
group, G (R?) is equipped with the usual addition “+” of functions and the
Carnot-Caratheodory norm || -||c (see [Friz and Victoir, 2010, Theorem 7.32]).
Similar to Révalued paths, a path x € GV (R%)[%™] has finite p-variation or is

1/p-Hélder continuous if the homogeneous p-variation cc-norm of x defined by

n 1/p
[ ce.p—var, 0,1 = sup (Z z(t:) — w(ti—l)!\§c> (2.7.18)

0<to<..<tn <TEN \ “7

or the homogeneous 1/p-Holder cc-norm of x defined by

£ —
120l ce.t —msrjor) = Sup l=(t) 33(;9)||CC
’p Y 0<s<t<T |t—5|5

(2.7.19)
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is finite respectively. The random rough path X in (2.7.17) may have paths in
{x eC ([O,T]; aN (Rd)) 2] cep—var,o,1] < oo} (2.7.20)

or
{a: eGY (Rd)[O’T} 2l ee,2 —psro.m < oo}. (2.7.21)
7p ) k)

By [Friz and Victoir, 2010, Theorem 8.13|, these normed spaces are non-

separable Banach spaces.

2.7.7 Kolmogorov’s Extension Theorem

The Kolmogorov’s Extension Theorem is recognized as one of the corner-
stones of modern probability theory and has been reproduced by many re-
searchers in various settings. The Kolmogorov’s extension (see [Aliprantis and
Border, 2006, §15.6]) in its nature is a non-topological concept and depends
purely on the relevant o-algebras. Hence, existence of Kolmogorov’s exten-
sion should be transferrable from a “nice” topological space to any “defective”
topological space which are “indifferent” as measurable spaces.

A typical pair of “measurably indifferent” topological spaces is Polish and

standard Borel spaces. Let {S;}ic1 be a family of standard Borel spaces,

AR (H Si7®%(5i)>, (2.7.22)

i€l i€l

and

(Sty, ) = (H S, Q) B(S:) ) , VI € Z(1). (2.7.23)

i€lp i€lp

For each ¢ € I, Proposition A.52 (a, d) allows us to change the topology of S;
to a possibly different one %; such that (.S;, %) is a Polish space and the Borel
sets B(S;) = AB(S;, %;) remain unchanged. So, any ur, € PB(S1,, 4,) can be
viewed as a probability measure on (St,, @),y B (S;, %)) for each Iy C Fy(1),
PB(S;, %;)) would

be a desired Kolmorogov’s extension of them on (S, 7). Therefore, the well-

i€lp

and any Kolmogorov’s extension of {1, }1,e 1) on (S, @,

known version of Kolmogorov’s Extension Theorem for Polish spaces extends

immediately to the standard Borel case.
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Theorem 2.34 (Kolmogorov’s Extension Theorem, [Kallenberg, 1997,
Theorem 5.16]). Let {S;}ier be standard Borel spaces, (S, <7) be as in (2.7.22),
{(S1, ) hroemory be as in (2.7.23) and py, € P(Sy,. 4,) for each Iy €
Po(1). Suppose in addition that for each 1,1, € Poy(I) with I} C I, ug,
15 the push-forward measure of py, by the projection from Sy, to Sy,. Then,
there exists a p € P(S, o) such that for each Iy € Py(1), u1, is the push-

forward measure of (1 by the projection from S to Sy,.
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Chapter 3
Space Change in Replication

An ideal case where a topological space E needs no enhancement is when
FE is compact and metrizable. Otherwise, a problem on E might be greatly
simplified if it is translated onto such a “perfect” space. Replication is a
convenient scheme of space change and object transformation for this purpose.

The current chapter discusses the space change aspect of replication. §3.1
introduces the notion of base as our core platform to implement space change
and other goals of replication. §3.2 and §3.3 discuss the existence and various
properties of baseable spaces or baseable subsets with which one can construct

the desired bases.

3.1 Base

The goal of space change in replication is to create a compact metric space
E related to the original space E. As illustrated by the following figure, the
most natural way is to establish a metrizable compactification (see p.233) of

E itself or, more generally, a Borel subset Ey of E.
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2 QF

homeomorphism

K \J:/L 7,

"
/ homeomorphlsm
! , by coarsening
\\ , - the topology of E,
- - , '
! E— RF »R>
) = - ’ continuous mapping

Figure 2: Space change in replication

3.1.1 Definition

Base, a foundational notion of replication concretizes the space change idea

mentioned above.

Definition 3.1. Let E be a topological space. The quadruple (Ey, F; E, .7?)

is a replication base over F (a base over F or a base for short) if:
o FEjy is a non-empty Borel subset of E.
o F C Cy(E;R) is countable and contains the constant function 1.
o Eisa topological space containing FEj.

o F c R is a countable collection, separates points on E and satisfies!

R Fle, = Q) Flz, (3.1.1)

and
O(E) = 0(E). (3.1.2)

!The notations “F|g,” and “@ F” were defined in §2.1.2. “0(-)” denotes the family of
all open subsets.
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o @ F(E) is the closure of ® F(E,) in R™.

Remark 3.2. In general, F need not be a subset of E.
The following lemma justifies that a base indeed brings about the com-

pactification in Figure 2.

Lemma 3.3. Let I be a topological space, (Ey, F; E,]—A") be a base over E and
A C Ey. Then, the following statements are true:

(a) F C C(E:R) is countable, contains the constant function 1 and strongly

separates points on E. In particular,
&) F € imb (E; R"O) . (3.1.3)

(b) ®]—A"(E) is a compactification of @ F(Ey) and E is a compactification
Of (EQ7 ﬁ]:(Eo))

(c) E is a Polish space and is completely metrized by pﬁz.

(d) @ Fla € imb(A, 05(A); R>). Moreover, (A, Oz(A)) is a metrizable
and separable topological coarsening of (A, Og(A)).

(e) @ F € C(E;R>) is injective on A. Moreover, F separates points on
the Hausdorff space (A, Op(A)).

Proof. (a) The members of F are continuous and F strongly separates points
on E by (3.1.2). F is countable and contains 1 by (3.1.1) and 1 € F. Moreover,
(3.1.3) follows by Lemma A.28 (a, ¢) (with E = E and D = F).

(b) R* is a Polish space by Proposition A.11 (f). It follows by the Ty-
chonoff Theorem (Proposition A.12 (b)) and Proposition A.12 (a) that

Kr = [T1=l1fllos 1f ] € # (RY) € €(R™). (3.1.4)
fer

A~ A~

Q) F(E) by definition is the closure of & F(Ep) in R*. So,

R F(E) € € (K, Or(K5)) C # (R®) C €(R™) (3.1.5)

%pz is defined by (2.2.22) with D = F.
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and E is compact by (3.1.4), (3.1.3) and Proposition A.12 (a, e).
Moreover, it follows by (a) and (3.1.1) that

Oz (Eo) = Oz(Ey) = OF(Ey). (3.1.6)

Q) F(Ep) by definition is dense in ®]—A" (E), so Ey is a dense subset of E by
(3.1.3). E is a Hausdorff space by (3.1.2) and Proposition A.17 (c¢) (with
E=A=FE and D= F). Hence, E is a compactification of (Ey, Or(Ep)).

(c) pz metrizes E by (a) and Proposition A.17 (d) (with E = F and
D =F). ®F is an isometry (see p.219) between (E, pz) and (Q F(E),d>®),

where the metric?
d>(x,y) = 22_" ([pn(z) = pu(y)| A1), Yo,y € R™ (3.1.7)
n=1

completely metrizes R> by Proposition A.7 (b) (with (S;,t;) = R). (Q F(E),d>®)
is complete by its compactness and Proposition A.12 (c¢). Thus, (E, pz) is a
complete metric space by Proposition A.5 (a).

(d) The first statement of (d) follows by (3.1.3) and (3.1.1). (A, O5(A)) is
metrizable and separable by (c¢) and Proposition A.11 (¢). Moreover, one finds
by (3.1.6) and F C C(£;R) that

O=(A) = Gr(A) C Op(A). (3.1.8)

(e) The first statement of (e) follows by (d), F C C(F;R) and Fact 2.4
(b). The second part follows by Proposition A.17 (e) (with D = F). O

Corollary 3.4. Let E be a topological space. If {(Eo, F; EZ-, .7?2-)}2-:1,2 are bases

over E, then Fy and FEs are isometric hence homeomorphic.

Proof. Let F = {fu}nen. By (3.1.1) and Lemma 3.3 (a) (with £ = E; and
F = .7?2), F C C’(EZ-;R) can be written as F; = {ffl}neN for each i € {1,2}
such that f1|g, = fulg, = f2|g, for all n € N. Then, f} = f2foralln € N
by the denseness of Ej in E and their continuities. Now, the corollary follows
by Lemma 3.3 (c) (with E = E; and F = F;) and Proposition A.5 (a) (with
EzEl andS:EQ). O

3p,, denotes the one-dimensional projection on R* for n € N.
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Remark 3.5. Compactification determined by eztending* continuous functions
was adopted by e.g. Ethier and Kurtz [1986], Bhatt and Karandikar [1993b],
Blount and Kouritzin [2010] and Kouritzin [2016] to imbed stochastic processes
into compact metric spaces. An ultimate case of such compactification is the
well-known Stone-Cech compactification (see p.233) which exists for any com-
pactifiable, or equivalently, Tychonoff space. While the Stone-Cech compact-
ification is determined by the continuous extension of all bounded continuous
function, the compactification E of (Ey, O(Ey)) can be thought of as a “possi-
bly smaller” compactification which might not extend all of Cy(Ey, O%(Ep); R).

Remark 3.6. As a cost of metrizability, E compactifies (see p.233) Ey with re-
spect to a possibly coarser topology than its natural subspace topology induced
from E. In fact, neither the original space E nor the subspace (Ey, Og(E)))

is necessarily a Tychonoff space, hence need not have compactification.

Remark 3.7. One-point compactifications (see p.233) exist for locally compact
Hausdorff spaces (see Proposition A.31). We do not presume Ej to be a lo-
cally compact subspace of E , SO E is not necessarily a one-point compactifica-
tion. Nonetheless, even Stone-Cech compactifications are sometimes one-point
compactifcations. Corollary 4.8 to follow illustrates when the compactification

establishing a base is of one-point compactification type.

The following theorem justifies the converse of Lemma 3.3 (e) and answers

the question when a base exists.

Theorem 3.8. Let E be a topological space, Ey € B(E) and F > 1 be a
countable subset of Cy(E;R). Then, there exists a base (Ey, F; E,]?) over
if and only if F separates points on Ej.

Proof. Necessity follows by Lemma 3.3 (e) and we prove sufficiency. There
exist a compactification E of (Eo, Or(Ep)) and an extension ¢ € imb(E ; R>)
of @ F|g, by Lemma A.28 (a, b) (with E = (Ey, Ox(Ey)) and D = F|g,).
Then, (Ey, F; E, .7?) is base over E with F = {Pn © ©}nen- O

4Recall that mapping ¢ is a continuous extension of mapping f if g is continuous, the
domain of g contains that of f and g = f restricted to f’s domain.
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3.1.2 Properties

The following four results specify the basic finite-dimensional properties of

bases.

Lemma 3.9. Let E be a topological space, (Eqy, F; E,]?) be a base over E,
d €N and A C EJ. Then, the following statements are true:

(a) (B2 TI4(F); B, 14(F)) is a base over E°.
(b) I4(F) C C(E%:R) contains the constant function 1, separates points

and strongly separates points on El. In particular,

R I(F) € imb (Ed; R°°> . (3.1.9)

(c) E* is a compactification of (E¢, Or(Ey)?). Moreover, E* is a Polish

space and is completely metrized by pdfﬁ.

(d) Q Fla € imb(A, Oz.(A); R®). Moreover, (A, Oz.(A)) is a metrizable
and separable coarsening of (A, Ora(A)).

(e) TI(F\{1}) separates points on the Hausdor[f space (A, Oga(A)).

Proof. (a) We verify the four properties of Definition 3.1 in four steps:
Step 1. We have by Ey € #(F) and Fact 2.3 (a) that

d
Ef = (\p; " (Eo) € B(E)®, Vd € N. (3.1.10)

i=1

Step 2. We have by 1 € F C Cy(E;R), Fact B.16 (a) (with D = F) and
Proposition A.21 (a) (with D = F) that TI¢(F) is a countable collection and

1€ ca (IYF)) € Gy (EY, Or(E);R) C Cy(E%R). (3.1.11)
Step 3. We have by (3.1.1) that

QU(F)| , = QU(F)

>The notation “TI%(-)” was defined in §2.2.3.
ﬁp% is defined by (2.2.23) with D = F.

(3.1.12)

.
Eg
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We have by (3.1.2) and Proposition A.21 (a) (with £ = E and D = F) that
4(F) c C(E%R). (3.1.13)

Then, I1%(F) separates points on E?, strongly separates points on E¢ and
satisfies”
Onazy = O(E?) = Oz(E)? (3.1.14)

by Lemma 3.3 (a), Proposition A.21 (b) (with £ = E and D = F), (3.1.13)
and Proposition A.17 (b, ¢) (with E = A = E4 and D = II4(F)).

Step 4. E¢ is dense in B by the denseness of Ej in E and the definition of
product topology. Elis a compact space by Lemma 3.3 (b) and the Tychonoff
Theorem (see Proposition A.12 (b)). @ II4(F) € C(E%R>®) by (3.1.13) and
Fact 2.4 (b).

QR I(F)(EY) € #(R®) C €(R™) (3.1.15)

by Proposition A.12 (a, €). So, @ II%(F)(E) is the closure of &) II4(F)(EY)
in R* by (3.1.12) and [Munkres, 2000, Theorem 18.1 (a, b)].

(b) follows by (a) and Lemma 3.3 (a).

(¢c) The first statement follows by (a) and Lemma 3.3 (b). E? is a Polish
space by (a) and Lemma 3.3 (¢). Moreover, p;l? metrizes £ by Lemma 3.3 (c)
and Proposition A.7 (a) (with I = {1,...,d} and (£;,v;) = (E, pz)).

(d) follows by (a) and Lemma 3.3 (d).

(e) I%(F\{1}) separates points on EJ by Lemma 3.3 (e) and Proposition
A.21 (b) (with D = F\{1}). The rest of (e) follows by (a) and Lemma 3.3
(e). O

Corollary 3.10. Let I be a topological space, (Fq, F; E, .7?) be a base over E
and d € N. Then?,

C(ER) = Co( B R) = Cy(E R) = C(E%; R) = ¢t |agq (I1(7) )|
(3.1.16)
and

cl [agq (T1* (Fls,))] = C(E%R) (3.1.17)

.
Eg

"In contrast, 0'(E?) is not necessarily the same as 0'x(F)®.

8The notation “cl(-)”, “agq(:)” and “ag(-)” were defined in §2.2.3.
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Proof. ag(I1%(F)) is uniformly dense in C(E%R) by Lemma 3.9 (b, ¢) and
the Stone-Weierstrass Theorem (see [Dudley, 2002, Theorem 2.4.11]). Thus,
(3.1.16) follows by Lemma 3.9 (c), Fact B.43 (with £ = E and k = 1) and
(2.2.15) (with D = II4(F)). (3.1.17) follows by (3.1.16), the denseness of Ed

in £ and properties of uniform convergence. (I

Corollary 3.11. Let E be a topological space, (Ey, F; E,]?) be a base over F,
deN, AC E% and D = mc[lI4(F\{1})]°. Then, the following statements are

true:

(a) D' separates points and strongly separates points on P(A, Opi(A)).

(b) D)o U {1} (especially mc[II%(F)]|4) is separating and convergence de-
termining on (A, Ogz4(A)).

(¢) MT(E?) and P(E®) are Polish spaces and, in particular, P(EY) is

compact.

Proof. E is a Polish by Lemma 3.3 (c). So, (a) follows by Lemma A.35 (b)
(with E = (A, Oz4(A))).

(b) follows by (a), Fact B.22 and the fact (D U {1}) C me[II4(F)].

(c) follows by Lemma 3.9 (c) and Theorem A.44 (with E = E4). O

Fact 3.12. Let E be a topological space, (Ey, F; E, .7?) be a base over K, d € N
and A C E?. Then, Bpi(A) = B(E)®4| 4.

Proof. This fact is immediate by Lemma 3.3 (c) and Proposition B.46 (d)
(with I={1,...,d} and S; = E). O

Corollary 3.13. Let E be a topological space, (Eqy, F; E, .7?) be a base over E

and d € N. Then, the following statements are true:

9The notation “mc(-)” was defined in §2.2.3.
10The notation “D*” was defined in §2.3. Moreover, the terminologies “separating” and
“convergence determining” were introduced in §2.3.

UThe notations “Z(E)®% and “%B(E)®? A” were defined in §2.1.5.
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(a) Any A C E¢ satisfies'

B(1a,0-my)(A) = %(E)w’ = Bpu(A) = Bnor)(A) = Br(B)*|,
C B(EV|, C Bya(A).

In particular, E satisfies

Bpi(E§) = Br(Ey)® C Br(Ey)** C B(E)* c B(EY) (3.1.19)

(b) F satisfies

ca (I(F)) C M, (E*, 7(E)*;R)

(3.1.20)
C M, (E%, B(E)*:R) C My(E%R).
Proof. (a) We have that
‘%)(Edﬁ;(E)d)(A) - ‘%(Eg,ﬁ}'(Eo)d)(A)
= B0 (A) = Bpa(A) = %(E)W‘A (3.1.21)

= ‘%E(EO)(XM‘A = %]:(EO)@d‘A = %}—(E)@d‘A

by (3.1.6), Fact 3.12 and the fact A C E¢ C (E? N E%). Then, the first line
of (3.1.18) follows by (3.1.21), (3.1.12) and Lemma 3.9 (b). The second line
of (3.1.18) follows by F C C'(E£;R) and Lemma B.46 (a). Now, (a) follows by
(3.1.10).

(b) follows by F C Cy(F;R), Proposition A.21 (a) (with D = F) and
(3.1.19). O

In general, Ej is not necessarily a Borel subset of E , nor does E endow Ey
with the same Borel sets as E. This measurability issue is avoided if Ej is a
standard Borel subset of F.

Lemma 3.14. Let E be a topological space, (Ey, F; E, .7?) be a base over E,
d €N and A C EJ. Then, the following statements are true:

12The notation “%x(E)” was defined in §2.1.3.
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(a) A € B5(E)" if and only if*!

Bri(A) = Bp.(A) and A € B(EY). (3.1.22)

(b) If A € %°(E?), then

PBra(A) = B(E)*|, C B(E)* C B(EY). (3.1.23)

(¢) If A=, en An and {An}nen C B5(E?), then A € B5(E?).

(d) If A=TI°_, A, and {A,}1<n<a C B3(E), then

Bu(A) = B(E)™|, C [@(E)@d N %(Ed)] . (3.1.24)

Proof. (a - Necessity) Let f be the identity map on A, which is certainly
injective. f € M(A, Bra(A); EY) by (3.1.18). A € #°(E?) and A C E¢
imply A € #%(A, Oga(A)). E? is a Polish space by Lemma 3.9 (c). It then
follows by Proposition A.57 (with E = A and S = E?) that A € %°(E%) and
PBra(A) = Bza(A). So, A € B(E?) = 2°(E?) by Proposition A.56 (b) (with
E = EY).

(a - Sufficiency) follows by (3.1.22) and Fact A.48 (a).

(b) A € PBp.(E]) by (3.1.22). Then, (3.1.23) follows by (3.1.19) and
(3.1.18).

(¢) We find by (a) (with A = A,,) that

Bra(An) = Bpa(A,) C B(EY), Yn € N. (3.1.25)
Then, A satisfies (3.1.22) by (3.1.25), Fact B.1 (with £ = A, % = Bra(A)
and % = $Bz.(A)) and (3.1.18). Hence, A € #°(E?) by (a).

(d) A C E¢ implies A, = p,(A) C E; for all 1 < n < d. We have that

B(A,) = B(A,) C [%’(E) N @(E)] Vi<n<d (3.1.26)

1398%(E?) denotes the family of all standard Borel subsets of 9.
U Bpa(A) = Bza(A) plus A € B(EY) is equivalent to Bra(A) = Bp.(A) C B(E).
Hereafter, we frequently use the latter notation.
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by (a) (with d =1 and A = A,)) and the fact Ey € Z(FE). It then follows by
(3.1.26) and Corollary 3.13 (a) (with d =1 and A = A,,) that

A=(p."(A,) € BE)* N B (E) (3.1.27)

Boa(A) = @(E)@d‘ — R Z5(A) = R Zu(A) = BE)™|,. (3.1.28)

n=1

0

Corollary 3.15. Let E be a topological space, (Ey, F; E,]?) be a base over F,
d €N and A C EJ. Then, the following statements are true:

(a) If A € H (E, Op(Ey)?), then
(A, Opa(A)) = (A, p%) = (A, Opa(4)) (3.1.29)

and"™

A e #™EYNH(EYNEEY. (3.1.30)
(b) If A € A, (ES, Op(Ey)?), then

A e #(EY N ™ EY N, (EYY N B(E)* N B(EY.  (3.1.31)

Proof. (a) follows by Lemma 3.9 (b, ¢, e) and Fact B.51 (b) (with £ = E¢,
D =T%F) and K = A).

(b) A € ™ (EY) N, (EY) N B(EY) by (3.1.30). A€ B5(E%) N B(E)
by (a) and Lemma 3.14 (b, c). O

Note 3.16. Given a base (Ey, F; E,]?) over E and d € N, Corollary 3.15 (b)
shows that 7, (ES, O (Ey)?) lies in the domain of any p € M (B, B(E)).

Corollary 3.17. Let E be a topological space, (Eqy, F; E,]?) be a base over F,
d €N and p € M (£, B(E)®9).

15The notations “€(-)”, “(-)” and “#™(-)” as defined in §2.1.3 denote the families of
closed, compact and metrizable compact subsets, respectively.
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a) If p is supported on A C EHN® and A € P°(E?), then be(u)'" is a
0

singleton.

(b) If p is tight in (ES, Op(Ey)?), then there exists a y' = be(u) which is
tight in (ES, Op(Ey)?).

Note 3.18. Please be noted that p' € be(p) (if any) is not an expansion of u to
a superspace. Rather than that, i/ is an extension of u as set functions to the
broader domain of all Borel sets. Hence,  and 1/ have the same total mass as

mentioned in Note 2.11 and, in particular, any support of yu is also that of p'.

Proof of Corollary 5.17. (a) One finds by Lemma 3.14 (b) that A € B(E)*?
and Bpa(A) = B(E)®? 4. Hence, (a) follows by Lemma B.48 (c) (with T =
{1,....d}, S;=E, S = E? and & = B(E)®?).

(b) p is supported on some A € #,(EY, Op(Ey)?) by its tightness. A €
%°(EY) by Corollary 3.15 (b). Hence, (b) follows by (a). O

The standard Borel property of A C E§ also yields useful properties of the
weak topological space M (A, Opa(A)).

Corollary 3.19. Let E be a topological space, (FEy, F; E,]?) be a base over
E,d € N, A € #°(E?) with A C E¢ and D = me[lI4(F\{1})]. Then, the

following statements are true:

(a) D|% separates points on P(A, Opa(A)). Moreover, D% U{1} (especially
mc[l14(F)]|a) is separating on (A, Oga(A)).

(b) M*(A, Ori(A)) and P(A, Oga(A)) are Tychonoff spaces.

Proof. (a) D% separates points on P(A, Ozi(A)) = P(A, Ora(A)) by (3.1.1),
Corollary 3.11 (a) and Lemma 3.14 (a). Now, (a) follows by Fact B.22 (a) and
the fact (DU {1}) C me[II¢(F)].

(b) follows by (a) and Proposition A.34 (a, ¢) (with £ = (A, Ora(A))). O

16Support of measure was specified in §2.1.2.
17be(11) as defined in §2.3 denotes the family of all Borel extensions of .
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3.2 Baseable space

Theorem 3.8 equates the problem of establishing a base and that of finding
a subset of E' whose points can be separated by countably many bounded

continuous functions. In fact, boundedness is not necessary.

Lemma 3.20. Let E be a topological space, Eg € B(E) and D C C(E;R) be
countable and separate points on E. Then, there exists a base (Fy, F; E, .7?)

over E satisfying the following properties:
(1) Op(E) C Ox(E).
(b) (DN Cy(E;R)) C F.
(¢) F can be taken to equal DU {1} whenever D C Cy(E;R).

Proof. By the fact {(f An)V (—n)}nen,repupy C Co(£; R) and Lemma B.52
(with G = DU{1} and H = C,(E; R)), there exists a countable F C C,(E; R)
which satisfies (a) - (¢). (Eo, Op(Ep)) is a Hausdorff space by Proposition
A.17 (c) (with A = Fjy), hence (Fy, Or(FEyp)) is also by (a) and Fact A.1. F
separates points by Proposition A.17 (¢) (with A = Ey and D = F). Now, the
result follows by Theorem 3.8. O

We introduce the words “baseable” and “baseability” to describe the above-

mentioned ability of inducing bases.
Definition 3.21. Let E be a topological space and A C E be non-empty.

o FE is a D-baseable space if D C C'(E;R) has a countable subset sepa-

rating points on F.

o A is a D-baseable subset of F if A € A(F), D C C(F;R) and
(A, Og(A)) is a D|a-baseable space.

o E is a baseable space if E is a C'(E; R)-baseable space.

o Ais a baseable subset of F if A is a C'(E;R)-baseable subset.
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Remark 3.22. “being a baseable subset” equals “being a baseable subspace”
plus Borel measurability. Moreover, the “D|s-baseable space” above is a

proper statement since
D|4 C C(E;R)|4 C C(A, Op(A);R). (3.2.1)

Baseable spaces or their analogues have appeared in many probabilistic
literatures such as [Ethier and Kurtz, 1986, Chapter 3], Jakubowski [1986],
Kurtz and Ocone [1988], Jakubowski [1997a], [Bogachev, 2007, Chapter 6],
Blount and Kouritzin [2010], Kouritzin and Sun [2017] and Kouritzin [2016]
etc. Herein, we first characterize and exhibit several concrete examples of

baseable topological spaces. The next section will treat baseable subsets.

3.2.1 Characterization

The definition of baseability is not as explicit as usual topological notions
because separating points is a non-topological property for function classes.
Nonetheless, baseable spaces turn out to be a broad category with their own

uniqueness.

Theorem 3.23. Baseable spaces are precisely the topological refinements of

metrizable and separable spaces.

The theorem above addresses the accurate boarderline of baseable spaces
and follows by two straightforward observations. First, we note that baseable

spaces sit between Hausdorff spaces and separable metric spaces.
Fact 3.24. The following statements are true:
(a) If E is a baseable space, then E is a Hausdorff space.

(b) If E is a metrizable and separable space, then E is a D-baseable space
for some countable D C Cy(E;R) that strongly separates points on E.

Proof. (a) follows by Proposition A.17 (e) (with A = F).
(b) follows by Corollary A.30 (a, b). O

Corollary 3.25. Metrizable Souslin spaces, metrizable Lusin spaces and metriz-

able standard Borel spaces are all baseable spaces.
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Proof. Souslin and Lusin spaces are separable by Proposition A.11 (d). Metriz-
able standard Borel spaces are Lusin spaces by Proposition A.53 (a, b). Now,
the result follows by Fact 3.24 (b). O

Refining the topology of a metrizable and separable space E may cause a
function class D C C(E;R) forfeit many topology-dependent properties like
continuity or strongly separating points on F. However, we observe that re-

fining topology does not affect the D-baseability of F.
Fact 3.26. If E is D-baseable, then any topological refinement of E is also.
Proof. Note that D C C(E;R) C C(E,%;R) it % refines O(F). O

Proof of Theorem 3.25. (Necessity) If E is a baseable space and D C C(E;R)
is countable and separate points on F, then (E, Op(FE)) coarsens E and is a
metrizable and separable space by Proposition A.17 (d).

(Sufficiency) follows by Fact 3.24 (b) and Fact 3.26. O

3.2.2 Examples of baseable spaces

The following figure illustrates the relationship of baseable spaces and other

major categories of topological spaces.
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Spaces with Cardinality no more than R

Metrizable and
Separable Spaces

Polish spces

Baseable Spaces

T4 Spaces

Tychonoff Spaces

T3 Spaces

Hausdorff Spaces

Figure 3: Comparison of baseable spaces and other topological spaces

On one hand, topological refinements of metrizable and separable spaces
are varied, so baseable spaces range from Polish spaces to even non-T3'® (see

p.217) Hausdorfl spaces as in the following examples.

Example 3.27.

(1) A baseable, metrizable and non-Polish Lusin space: Example 2.28
mentioned that the pseudo-path topological space DPP(R*;R) is a
metrizable but non-Polish Lusin space. Lusin spaces are separable
by Proposition A.11 (d). Hence, DP?(R™; R) is a baseable space.

(I)  Baseable and non-separable Banach spaces - 1: Let [*° be the space

of all bounded R-valued sequences equipped with the supremum

18Herein, we use the terminologies “T'3” and “T4” instead of “regular” and “normal”
since the latter sometimes are used in a non-Hausdorff context.
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(111)

norm, i.e.
>~ = {T € R™ : ||7|loo = sup |z,| < oo} : (3.2.2)
neN

(I°°, Or=(1*°)) is metrizable and separable by Proposition A.11 (c,
f). (I°°,]| - ||s) is a Banach topological refinement of (I°°, Or(I*°))
by [Munkres, 2000, Theorem 43.5 and Theorem 20.4], so (I*,|| -
|) is a baseable space. However, (I*,|| - ||) is non-separable by
[Bachman and Narici, 2012, Example 6.6, p.83].

Baseable and non-separable Banach spaces - 2: We now consider
the non-separable Banach spaces mentioned in Example 2.32 and
Example 2.33. [Friz and Victoir, 2010, Corollary 7.50] showed that
GN(RY), the free nilpotent group of Step N over R? is a separable
Banach space equipped with the Carnot-Caratheodory norm || - ||cc.
C([0,T); R?) equipped with || - [l and C([0, T]; GN¥(R?)) equipped

with the supremum cc-norm

[2lloocc = sup [[z(t)]]ce (3.2.3)
te[0,7

are Polish spaces by [Srivastava, 1998, Theorem 2.4.3]. Then, the
spaces in (2.7.14) and (2.7.15) equipped with || - ||oo, and those in
(2.7.20) and (2.7.21) equipped with || - ||cc.cc are all metrizable and
separable spaces by Proposition A.11 (c). It is known that the norms
in (2.7.12) and (2.7.13) both induce finer topologies than ||+ ||, while
the norms in (2.7.18) and (2.7.19) both induce finer topologies than
| llooce (see [Bayer and Friz, 2013, p.262 and Remark 3.6]). Thus,
all the non-separable Banach spaces in Example 2.32 and Example

2.33 are baseable spaces.

A baseable, non-second-countable (see p.218), separable, Lindelof
(see p.218) and non-metrizable T4 space: The Sorgenfrey Line R,

refers to the space of all real numbers equipped with the lower limit
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(VII)

topology which is generated by the topological basis
{la,b) :a,b e R,a < b}. (3.2.4)

R, as a topological refinement of R is a baseable space. R; is sep-
arable, Lindelof but not second-countable by [Munkres, 2000, §30,
Example 3]. Ry is a T4 space (see p.217) by [Munkres, 2000, §31,

Example 2]. Furthermore, R; is non-metrizable by Proposition A.6

(c)-

A baseable, non-Lindelof, separable and mon-T4 Tychonoff space:
The Sorgenfrey Plane R7 is a topological refinement of R? and hence
is a baseable space. Since Ry is a separable Tychonoff space, R} is
also by Proposition A.3 (c) and Proposition A.26 (c). However, R?
is neither a Lindel6f space nor a T4 space by [Munkres, 2000, §30,
Example 4 and §31, Example 3].

A baseable, non-separable and non-metrizable Tychonoff space: When
E is a Polish space, P(FE) is also by Theorem A.44 (b). Example
2.30 explained that the strong topological space Ps(FE) of all Borel
probability measures on E is a non-metrizable, non-separable and
Tychonoff refinement of P(F£), so Ps(E) is a baseable space.

A baseable, second-countable and non-T3 space: Let R denote the
space of all real numbers equipped with the K-topology which is

generated by the countable topological basis

{(a,b) :a,b € Q,a<b}U {(a,b)\{l/n}neN ca,beQ,a< b}.
(3.2.5)
So, Rk is a second-countable topological refinement of R and hence
is baseable. However, [Munkres, 2000, §31, Example 1] explained
that R is not a T'3 space, nor is it a Tychonoff space by Proposition
A.26 (a).

(VIII) A non-first-countable baseable space: Example 2.8 (I) exhibited a

simple countable set of continuous functions that separates points
on the product topological space (C([0,1];R), O(R)®). So, this
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space is a baseable space. However, the argument in [Munkres,
2000, §21, Example 2] explained that C(]0, 1]; R) is not even a first-

countable space.

On the other hand, it is intuitive that a baseable space has no more points
than the real line since its points are distinguishable by a countable function

class.
Fact 3.28. The cardinality of a baseable space is no greater than X(R).

Proof. The cardinality of a metrizable and separable space never exceeds
N(R*) = X(R) by Corollary A.30 (a, c), nor can their topological refine-

ments. O

In general, Tychonoff spaces, metrizable spaces or separable spaces are not

necessarily “small” enough to be baseable spaces.

Example 3.29. R equipped with the product topology is a Tychonoff
space by Proposition A.26 (c) and is a separable space by [Munkres, 2000,
§30, Exercise 16 (a)]. (R[] - ||s) is a Banach space by [Munkres, 2000,
Theorem 43.5]. However, RI®! can not be baseable with any topology since

its cardinality is strictly greater than R(R).

It is worth mentioning that some of the baseable spaces in Example 3.27 are
also examples of non-Polish, non-separable or non-metrizable standard Borel

spaces.

Example 3.30. Every metrizable Lusin space is a standard Borel space by
Proposition A.53. In particular, the pseudo-path topological space DP?(R*; R)
is an example of a baseable, non-Polish, metrizable, separable, standard Borel

space by Example 3.27 (I).

By Proposition A.52 (a, d), a topological space is standard Borel if its Borel
o-algebra can be generated by some Polish topology. The following examples

are all of this type:

Example 3.31.
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(D

(I11)

The Sorgenfrey Line R; is an example of a baseable, separable,
non-metrizable, standard Borel space. According to Example 3.27
(IV), it suffices to show Z(R;) C #A(R). By the definition of Ry,
[Munkres, 2000, Lemma 13.1] and Fact B.12, any O € O(R,) satis-
fies
0 = Jla:,b:) € Z(R) (3.2.6)
i€l

for some ({a;}ier U {b;}ic1) C R, thus proving Z(R;) C A(R).

A Polish space £ . Hence, the strong topological space Pg(F)
has the same Borel o-algebra as the Polish space P(E) by Lemma
A.47. According to Example 3.27 (VI), Ps(E) is a baseable, non-

separable, non-metrizable, standard Borel space.

The K-topological space R is an example of a baseable, second-
countable, non-T3, standard Borel spaces. According to Example
3.27 (VII), it suffices to show B(Rk) C A(R). By the definition of
R and [Munkres, 2000, Lemma 13.1], any O € 0(Rk) satisfies

0= <U(ai,bi)> \{1/n}nen € B(R) (3.2.7)

1€l

for some ({a;}ier U {b;}ic1) C Q, thus proving Z(Rk) C Z(R).

Remark 3.32. The baseable but non-separable Banach spaces in Example 3.27
(II, IITI) can not be standard Borel, since Lemma A.54 (b) shows metrizable

standard Borel spaces must be separable. To a certain extent, the lack of

standard-Borel property evidences the complexity of random rough paths and

their distributions.

3.3 Baseable subset

When a topological space is not necessarily baseable, its baseable subsets

are often used as “blocks” for building baseable subspaces.
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3.3.1 General properties

The following three facts give initial descriptions of baseable subsets.

Fact 3.33. Let E be a topological space and A C E. Consider the following

statements:

(a) A is a baseable subset of E.
(b) There exits a base (A, F; E, F) over E.
(c) A is a Cy(E;R)-baseable subset of E.
(d) (A, Og(A)) is a baseable space.
(¢) There exists a base (A, F; E, F) over (A, Og(A)).
Then, (a) - (c) are equivalent, so are (d) and (e). Moreover, (a) implies (d).

Proof. ((a) — (b)) follows by Lemma 3.20 (with Ey = A). ((d) — (e)) follows
by (a, b) (with £ = (A, Og(A))). The other parts are immediate by definition.
O

Fact 3.34. Let E be a topological space, A C E and D C C(E;R). Consider

the following statements:
(a) (A, Og(A)) is a D|a-baseable space.
(b) A is a D-baseable subset of E.
(c) A is a Dy-baseable subset of E for some countable Dy C D.
(d) A is a D'-baseable subset of E for any D' C C(E;R) that includes D.

(e) Any B € Br(A) is a D-baseable subset of any topological refinement
of E.

Then, (b) - (e) are equivalent and any of them implies (a). Moreover, if
A€ B(E), then (a) - (e) are all equivalent.
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Proof. We only prove ((b) — (e)) and the other parts are immediate by
definition. To show this implication, it suffices to note that if (E, %) is
a topological refinement of E, then Br(A) C B (A) C B(E, %) and
C(E;R) C C(E,%;R). O

Fact 3.35. Let E be a topological space. Then, the following statements are

equivalent:

(a) E is a D-baseable space (resp. baseable space).
(b) Any A C E is a D|s-baseable subspace (resp. baseable subspace).

(c) All members of B(E) are D-baseable subsets (resp. baseable subsets)
of any topological refinement of E.

Proof. ((a) — (b)) follows by (3.2.1). ((b) — (c)) follows by Fact 3.34 (a, e)
(with A = E and D =D or C(F;R)). ((c) — (a)) is automatic. O

The next three results look at the union and the product space of countably

many baseable subsets.

Fact 3.36. Let E be a topological space and A, be a D,-baseable subset of
E for each n € N. If {A,}nen is nested? (i.e. any A,, and A,, admit a

common superset Ay, ), then |, cn An 15 a U,en Dn-baseable subset of E.
Proof. This result is immediate by Fact B.19. O

Proposition 3.37. Let A, be a D, -baseable subset of topological space S, for

each n € N. Then, the following statements are true:

(a) [T, Ay is a D™-baseable subset of [[—, Sy with D™ = {fop,:1<
n<m,f €D,} for allm € N.

(0) T1,en An s a U,,en D™ -baseable subset of ], cn Sn-

Proof. (a) [, A = o, 0, (Ay) € B(E)®™ C B(E™) by Proposition
B.46 (a). Let {fox}ren C D, separate points on A, for each n € N and

19A typical case of nested {A, },en is when A,, C A,;; for all n € N.
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DI = {fur © Pnticncmren. Then, @ Do (z) = @ Di(y)* in RPS" implies
=@ pa(z) = Qo pn(y) =y in [[[-,S,. Thus, D" is a countable
subset of D™ that separates points on [[, A,.

(b) follows by an argument similar to (a). O

Corollary 3.38. Let E be a topological space, { A, }nen be D-baseable subsets
of E and d € N. Then, [[_, A, is a TI%(D)-baseable subset of E°.

Proof. This corollary follows by Proposition 3.37 (a) (with m = d and D,, =
D), the definition of I1%(D) and Fact 3.34 (b, d). O

3.3.2 Selection of point-separating functions

When using D-baseable subsets to construct a base, one can always include
arbitrary, up to countably many, bounded members of D within the base. This
is useful in many applications because one may include a desirable set of
functions such as subdomains of operators, observation functions of nonlinear

filters and test functions for measure-valued processes, etc.

Lemma 3.39. Let E be a topological space, Ey be a D-baseable subset of E
and Dy C Cy(E;R) be countable. Then, the following statements are true:

(a) There exists a base (Ey, F; E, F) over E with Dy C F.

(b) If D is countable, then the F in (a) can be taken to contain D N
Cy(E;R). If, in addition, D C Cy(E;R), then F can be taken to
equal DU {1}.

(c) If Dy C D C Cy(E;R), then the F in (a) can be taken within DU {1}.
If, in addition, D is closed under addition or multiplication, then F

can be taken to have the same closedness.

Proof. Let D' C D be countable and separate points on Ey. Then, (a) and (b)
follow by Lemma 3.20 (with D =D’ U Dy).

20Please be noted that the notation “@” for functions has nothing to do with multipli-
cation. The separability argument above does not require 1 € D,, for any n € N.
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For (c), we define®!

;

DyUD U{1}, in general,
ac (Do UD' U{1}), if D > 1 is closed under addition,
D/l é
me (Do UD U{1}), if D > 1 is closed under multiplication,
ac(me (Do UD U{1})), if D> 1is closed under both.
(3.3.1)

In any case above, D” is a countable subset of DU {1}, contains {1} UD, and
separates points on Ey. Now, (c) follows by (b) (with D = D"). O

A common situation of constructing bases is when D C C(FE;R) (often
uncountable) is known to separate points on £, and one desires if a subset
A C E is D-baseable. In other words, one desires reducing this specific D to
a countable subcollection separating points on A. One sufficient condition is
the hereditary Lindelof property (see p.218) of A.

Proposition 3.40. Let E be a topological space, A € B(E) and D C C(E;R)
separate points on A. If {(xz,x) : © € A} is a Lindelof subspace of E X E,
especially if A is a Souslin or second-countable subspace of E, then A is a
D-baseable subset of E.

Proof. If A is a Souslin or second-countable subspace of E, then A x A is a
hereditary Lindel6f subspace of E x E by Proposition A.11 (d, f) and Proposi-
tion A.3 (b, ¢), which implies {(z,z) : x € A} is a Lindel6f subspace of I x E.
Now, the result follows by Proposition A.24 (a) (with F = (A, Og(A)) and
D =D|a). O

Remark 3.41. Separating points is usually weaker than strongly separating
points. Compared to Proposition A.24 (b), the selection result above uses

hereditary Lindelof property, which is weaker than second-countability.

Remark 3.42. When FE is a Tychonoff space, C(F; R) separates points on E
by Proposition A.25 (a, b). So, Proposition 3.40 (with D = C'(£;R)) slightly
generalizes [Bogachev, 2007, Vol. II, Theorem 6.7.7 (ii)].

Moreover, the point-separating functions can always be selected from a

uniformly dense collection.

21The notation “ac(-)” was defined in §2.2.3.
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Proposition 3.43. Let E be a topological space and A be a D-baseable subset.
If Dy C Cy(E;R) satisfies D C cl(Dy), then E is a Dy-baseable subset.

Proof. Let {f,}nen C D separate points on A. D and its superset cl(Dy) both
lie in the normed space (M,(E;R),| - ||o), so there exist {fni}lnren C Do
such that f, 2 f, as k1 oo for each n € N by Fact A.9. Hence, {fu}nen C
cl({ furtnren) and {fnx}nren separates points on A by Corollary A.19 (with
D= {fn}neN and Dy = {fn,k}n,keN)- O

3.3.3 Baseable standard Borel subsets

In general, standard Borel subsets and Borel subsets are not the same.
However, they coincide for a baseable standard Borel subspace. It is worth
noting that the following result generalizes its classical version established on

metrizable spaces (see Proposition A.56 (b)).

Proposition 3.44. Let E be a topological space and A € %°(E). Then the

following statements are true:

(a) If (A, Og(A)) is a baseable space, then B°(A, Opg(A)) = Br(A) C
PB(E).

(b) If E is a baseable space, then #%(F) C B(E).

(c) If E is a baseable standard Borel space, then B(E) = $°(F).

Proof. (a) #r(A) C $B°(A, Op(A)) C $°(E) by Proposition A.56 (a). Now,
let B € %°(A, 0p(A)). There exists a base (A, F; E, F) over (A, Og(A))
by Fact 3.33 (d, e¢). Then, B € #g(A) by Lemma 3.14 (b) (with d = 1,
E=FEy= (A 0g(A)) and A= B).

(b) There exists a base (E,F;E,F) over E by Fact 3.33 (d, ) (with
A = E). Then, (b) follows by Lemma 3.14 (b) (with d =1 and Ey = E).

(c) follows immediately by (a) (with A = E). O

For D-baseable standard Borel subsets, the function class D not only sep-

arates their points but also determines their subspace Borel o-algebras.
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Proposition 3.45. Let E be a topological space and A € %(E). Then, A is
a D-baseable subset of E if and only if A € B(E) and there ezists a countable
Doy C D such that Br(A) = Bp,(A) = a(Dy)|a*.

Proof. The D-baseability of A implies A € #(F) and a countable Dy C D C
C(F;R) that separates points on A. Then, the result follows by Proposition
A.60 (b, ¢) (with E = (A, Og(A)) and D = Dyl a). O

Baseability facilitates countable union of standard Borel subsets.

Proposition 3.46. Let E be a topological space, 1 be a countable set, {A;}ie1 C
B (E) and A =, .1 Ai- If (A, Op(A)) is a baseable space, then A € 5°(E).

i€l
Proof. There exists a base (A, F; E, F) over (A, O(A)) by Fact 3.33 (d, e).
Then, A € %°(F) by Lemma 3.14 (c) (with £ = Ey = (A, Og(A)) and
d=1). O

Baseabe standard Borel support often implies unique Borel extension.

Proposition 3.47. Let E be a topological space, A be a baseable subset of F,
d € N and p € MY (EY, B(E)*?). If u is supported on B € %5(E?) and
B C A%, then be(p) is a singleton.

Proof. The baseability of A implies A € Z(E) and A? € B(E)*?. One finds by
Fact 2.1 (a) (with % = Z(E)®% and A = A?) that p|4a € M (A4, B(E)®?| 4a).
There exists a base (A, F; E, F) over (A, Op(A)) by Fact 3.33 (d, e). be(y]4a)
is a singleton by Corollary 3.17 (a) (with £ = Ey = (A, Og(A)), A = B and
p = | 44). Now, be(yu) is a singleton by the fact A? € B(E)®? and Lemma
B.48 (b) (with 1= {1,...d}, Si = B, S = B, of = B(E)* and A = A%). O

The following three results relate the baseability of a standard Borel space
E and that of P(FE).

Proposition 3.48. Let E be a topological space, D C Cu(F;R) and A €
P (E). If (A, Op(A)) is a D] a-baseable space, then P(A, Og(A)) is an me(D|4)*-

baseable space.

22The o-algebra o(Dy) was defined in §2.1.2. Recall that o(Dg)| is generally smaller
than ‘@Do (A)
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Proof. There exists a base (4, F; E, F) over (A, Og(A)) with (F\{1}) C D|4
by Lemma 3.39 (¢) (with £ = Ey = (A, 0r(A)) and D = D|4). Then,
me(F\{1})* is a countable subset of me¢(D|4)* by Fact B.15 and separates
points on P(A, Or(A)) by Corollary 3.19 (a) (with £ = (A, Og(A)) and d =
1). O

Corollary 3.49. Let E be a baseable standard Borel space. Then, M™T(E)
and P(E) are baseable spaces.

Proof. This corollary follows by Fact 3.33 (a, ¢) (with A = E), Proposition 3.48
(with D = Cy(F;R) and A = E) and Fact B.22 (a) (with D = C,(E;R)). O

Proposition 3.50. Let E be a first-countable space and {{z} : = € E} C
B(E)?3. If P(E) is a baseable space, then E is also.

Proof. We suppose {g,}nen € C(P(E);R) separates points on P(F) and
define f,,(z) = ¢,(0,)** for all 2 € F and n € N. For distinct z,y € F, §, # 4§,
by Proposition A.41 (a) and s0 @Q),,cn fn (%) = Qen 9n(02) # Qpen In(6y) =
Q,en [o(y). Hence, {fn}nen € RF separates points on E. We show each
fn€ C(E5R). If 2y = 2 as k 1 oo in E, then §,, = 6, as k 1T oo in
P(E) by Fact B.24. It follows by the continuity of g, that limy . fn(x) =
limy o0 Gn(0z,) = gn(dz) = fu(x). Now, the continuity of f, follows by the
first-countability of F and [Munkres, 2000, Theorem 30.1 (b)]. O

3.3.4 Metrizable compact subsets

Metrizable compact subsets form an essential class of hereditary Lindelof,
standard Borel, baseable subsets for replication and weak convergence. The
following proposition gives several equivalent forms of metrizable compact sub-

sets.

Proposition 3.51. Let E be a topological space, K € & (FE) and D C
C(E;R). Consider the following statements:

(a) K is a D-baseable subset of E.

23That singletones are Borel sets is even milder than the Hausdorff property or the T1
aziom (see [Munkres, 2000, §17, p.99]).
245, denotes the Dirac measure at .
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(b) K is a Souslin subspace of E.

(¢) K is a Hausdorff subspace of E and {(z,x) : * € K} is a Lindelof
subspace of E x E.

(d) (K, Og(K)) is a baseable space.

(e) K is a Hausdorff and second-countable subspace of E.
(f) K € #™(E).

(4) K € #(E).

Then, (b) - (f) are equivalent and implied by (a). (f) implies (g). Morever, if
D separates points on E, then (a) - (f) are all equivalent.

Proof. ((b) — (c)) follows by Proposition A.11 (d, f).

((c) = (d)) (K, Or(K)) is Tychonoff by Proposition A.12 (d) and Propo-
sition A.26 (a). Then, (d) follows by Proposition A.25 (a, b) (with £ =
(K,0g(K))) and Proposition 3.40 (with £ = A = (K,0g(K)) and D =
C(K,Op(K);R)).

((d) — (e, f)) (K, Ogr(K)) is a Hausdorff space by Fact 3.24 (a). Let
D C Cy(K,O0p(K);R) be countable and separate points on (K, Og(K)). D
strongly separates points on (K, 0g(K)) by Lemma A.20. Now, both (e) and
(f) follow by Proposition A.17 (d).

((e) — (c)) follows by Proposition A.3 (b).

((f) — (b, g)) follows by Proposition A.12 (d), Proposition A.11 (a) and
Fact A.48 (a).

((a) — (d)) follows by Fact 3.34 (b, d) (with D’ = C'(E;R)) and Fact 3.33
(a, d) (with A = K).

Moreover, if D separates points on E, then K € %B(E) by Proposition A.17
(e) (with A = E) and Proposition A.12 (a), and (c¢) implies (a) by Proposition
3.40 (with A = K). O

Baseable spaces, Lusin spaces and Souslin spaces are not necessarily metriz-

able, but all of them have metrizable compact subsets.

Corollary 3.52. Let E be a topological space and K € J#(FE). Then, the

following statements are true:
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(a) If E is a baseable space, then K is a metrizable standard Borel subspace

and is a baseable subset of F.

(b) If E is a Souslin or Lusin space, then K is a metrizable, baseable,
standard Borel subspace of E. If, in addition, C(E;R) separates points
on E, then K is a baseable subset of F.

Proof. (a) follows by Fact 3.35 and Proposition 3.51 (a, f, g) (with D =
C(E;R)). Regarding (b), we note by Proposition A.12 (a), Proposition A.11
(a, b) and Proposition A.2 (c) that Lusin (resp. Souslin) spaces are Souslin
(resp. Hausdorff) spaces and compact subsets of a Souslin space are closed,
Souslin, Hausdorft subspaces. Then, (b) follows by Proposition 3.51 (a, b, d,
f, g) (with D = C(E;R)). O

The two results above indicated that many non-metrizable topological
spaces like those in Example 3.27 have metrizable compact subsets. Mean-
while, we remind the readers of that having metrizable compact subsets is a

strictly milder property than baseability.

Example 3.53. (0, 1]%! ||-||») is a Banach space so it certainly has metriz-

able compact subsets. However, it is not baseable as in Example 3.29.
Here are several constructive properties of metrizable compact subsets.

Lemma 3.54. Let E be a topological space, m € N and {A; }1<i<m C A ™(E).
If A=, A; is a Hausdorff subspace of E, then A € #™(E).

Proof. A € J(F) by Proposition A.12 (b). A is a Souslin subspace of F by
Proposition A.11 (g). Now, the result follows by Proposition 3.51 (b, f). O

Lemma 3.55. Let I be a countable index set, {S;}ic1 be topological spaces and

S = [1;e1 Si- Then, the following statements are true:
(a) If A; € H™(S;) for all i € 1, then [, Ai € H™(S).

(b) If A € ™ (S) and p;(A) is a Hausdorff subspace of S; for some i €1,
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Proof. (a) follows by Proposition A.12 (b) and Proposition A.8.

(b) (A, Os(A)) is hereditary Lindel6f by Proposition 3.51 (b, f) (with F =
S), so {(z,z) : * € A} is a Lindel6f subspace of S. It follows that p;(A) €
H(S;) and

{(v,9) -y € pi(A)} = {(pi(), pi()) - v € A} (3.3.2)
is a Lindelof subspace of S; by Fact 2.4 (a), Proposition A.12 (e) and Proposi-
tion A.3 (d). Thus, p;(A) € #™(S;) by its Hausdorff proeprty and Proposition
3.51 (c, f). O

When generalizing m-tightness to non-Borel measures, Definition 2.18 has
to require a collection of compact sets lying in their domains. The next lemma
shows that if F is a Hausdorff space, then this requirement is automatically
satisfied by the members of 9MT(E?, B(E)®4).

Lemma 3.56. Let I be a countable index set, {S;}icr be topological spaces,
(S,e7) be as in (2.7.22) and A € #™(S). If B; € A(S;) is a Hausdorff
subspace of S; and contains p;(A) for alli € I, then A € o and Bs(A) = 7| 4.

Proof. p;(A) € £™(S;) for all + € I by Proposition A.2 (¢) and Lemma 3.55
(b). As B; € A(S;) for all i € I, we have that

AcF=]]riA) e Bs.(B:) Cc o (3.3.3)
i€l i€l
by Corollary A.13 (a) (with S; = B;). F € #™(S) by Lemma 3.55 (a). F is
a second-countable subspace of S by Proposition 3.51 (e, f).

Bs(F) = of | C o (3.3.4)

by Proposition B.46 (c¢) (with S; = p;(A)) and (3.3.3). This implies Bs(A) =
|4 since A C F. Moreover, F' is a Hausdorff subspace of S by Proposition
A.2 (d). Hence, A € Bs(F) C & by Proposition A.12 (a) and (3.3.4). O

We now show that m-tightness ensures unique and tight Borel extension.

25We remind the readers again that the Borel o-algebra of the product topological space
E4 is possibly different from the product o-algebra Z(E)®<. Moreover, the notation 9+ (-)
means the family of all non-negative finite measures.
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Proposition 3.57. Let 1 be a countable indez set, {S;}ic1 be topological spaces,
(S, o) be asin (2.7.22), T C M (S, o) and A C S. Suppose in addition that
pi(A) € B(S;) is a Hausdorff subspace of S; for all i € 1. Then, I is m-tight
in A if and only if {i/ = be(p)},er® is m-tight in A.

Proof. #™(A,0s(A)) C &/ by Lemma 3.56 (with B; = p;(A)). So, the m-
tightness of I' and that of {y/'},er (if any) are equivalent. It now suffices to
show the m-tightness of I" in A implies the existence of ' = be(u) for each
€ T'. Given such tightness, p is supported on some B € J# ™ (A, Os(A)).
PBs(B) = o/ |p by Lemma 3.56 (with B; = p;(A)). Then, the unique existence
of 1/ follows by Lemma B.48 (c) (with A = B). O

3.3.5 o-metrizable compact subsets

o-metrizable compact subsets inherit many nice properties from its metriz-

able compact components.

Proposition 3.58. Let E be a topological space, {K,}nen C H(E), A =
Unen Kn and D C C(I;R). Consider the following statements:

(a) (A, O(A)) is a Souslin space.

(b) {Kn}tnen C A ™(E) (hence A € A (E)).

(c) (K, Or(K,)) is a baseable space for all n € N.
(d) (A, Og(A)) is a baseable space.

(e) A is a D-baseable subset of E.

(f) Ae #(E).

Then, (a) - (e) are successively stronger. (e) implies (f). Moreover, if D

separates points on E, then (a) - (e) are all equivalent.

Proof. ((b) — (a)) Each (K,, Og(K,)) is Souslin by Proposition 3.51 (b, f).
Hence, (a) follows by Proposition A.11 (g).
((c) — (b)) follows by Proposition 3.51 (d, f) (with K = K,,).

26The notation “u’ = be(p)” defined in §2.3 means u’ is the unique Borel extension of .
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((d) — (c)) follows by Fact 3.35 (a, b) (with £ = (A, Og(A)) and A = K,,).

((e) — (d)) is automatic by definition.

((e) — (f)) We showed (e) implies (b) - (d). Then, (f) follows by (d),
Proposition 3.51 (f, g) and Proposition 3.46.

When D separates points on £, A € #(F) by Proposition A.17 (e) (with
A = E) and Proposition A.12 (a), and (a) implies (e) by Proposition 3.40. [

Remark 3.59. o-metrizable compact subsets are baseable subspaces but not
necessarily metrizable. So, “o-metrizable compact” is generally weaker than

“metrizable o-compact”.
Below are several constructive properties of o-metrizable compact subsets.
Lemma 3.60. Let E be a topological space and {A,}nen C H(E). If A =

Unen An s a Hausdorff subspace of E, then there exist {Ky}qen C K ™(E)
such that A =J,cn Ky and Ky C Ky for all g € N.

Proof. Let Ay, = Uyen Kpn With { K n}pen C 2™ (E) for each n € N. Define

¢ = Ui_i Ui_y Kpn for each ¢ € N, so K, C Ky, for all ¢ € N and A =
Ugen Ky Furthermore, each (K, Or(K,)) is a Hausdorff space by Proposition
A.2 (c) and hence is metrizable by Lemma 3.54. O

Lemma 3.61. Let I be a countable index set, {S;}ic1 be topological spaces and

S = [1;e1 Si- Then, the following statements are true:
(a) If 1 is finite and A; € ;™ (S;) for all i € 1, then [[,oq Ai € Z(S).

(b) If A € Z™(S) and p;(A) is a Hausdorff subspace of S; for all i € 1,
then p;(A) € 2™ (S;) for alli € 1.

Proof. (a) Without loss of generality, we suppose I = {1,...,d} and let A; =
Upen Kpi with {K} i }pen C 2™ (S;) for each 1 <14 < d. We have that

d
HAZ DFpl Da é1_‘[[(7”2 Ge/di/m(S), Vpl,...,pdGN (335)

77777

i=1 il
by Lemma 3.55 (a). For any x € ]_[f:1 A;, there exist pq, ..., pq € N such that
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It then follows by (3.3.5) that

[T4a= U  Fouw €270 (3.3.7)

i=1 (p1,---,pa) ENY

(b) Let A = J,cn Kp with {K,}pen C #™(S). We have that pi(K,) €
H™(S;) for all p € N and ¢ € I by the fact p;(K,) C p;(A4), the Hausdorff
property of p;(A), Proposition A.2 (¢) and Lemma 3.55 (b). Hence, p;(A4) =

pi(UpeN Kp) = UpGN pz(Kp) S c%/gm(Sz) for all 4 el O

3.3.6 Baseability about Skorokhod _¢;-space

When F is a Tychonoff space, the associated Skorokhod _#1-space D(R*; E)
is also Tychonoff (see Proposition A.62 (c)). The following proposition shows
that baseability of E passes to D(R™; E).

Proposition 3.62. Let E be a Tychonoff space. Then, the following state-

ments are true:

(a) If E is a D-baseable space with D C Cy(E;R), then D(RT; E)*" is a
{a{n : f €D, t € Qt}-baseable space with

t+1/n
of (@)= /t F(s))ds (3.3.8)

n
for each f € D, t € Qt and n € N.

(b) If E is a baseable space, then D(RT; E) is also a baseable space and
J(z) C (0,00)* is at most countable for all x € D(R™; E).

Proof. (a) Without loss of generality, we suppose D is countable. Then, (a)
follows immediately by Proposition A.62 (b).

(b) There exists a countable D C C,(E; R) separating points on E by Fact
3.33 (a, b) (with A = E) amd so p = @ D is injective. p € C(E; RP) by Fact

2"The Skorokhod _#;-space D(R™; E) was defined in §2.2.2.
28The notation “J(z)” was defined in §2.2.1.
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2.4 (b) and D(R™; E) is baseable by (a). RP is a Polish space by Proposition
A.11 (f). Therefore,

J(z) = J[w(p)(z)], Vo € D(RT; E) (3.3.9)

by Proposition A.62 (d) (with S = E, E = RP and f = ¢) and both sets
above are countable subsets of (0, c0) by [Ethier and Kurtz, 1986, §3.5, Lemma
5.1]. O

Metrizability of compact subsets of E also passes to D(R™; E).

Proposition 3.63. If £ is a Tychonoff space with J# (E) = Z™(F), then
A (DRTE)) =™(DR"; E)).

Proof. Let K € 2 (D(R*; E)). By Proposition A.67, there exist {A,}nen C
K (E) = A ™(E) such that K C D(R™; A)* with A = [J,cnAn. Als a
baseable space by Proposition A.25 (a, ¢) and Proposition 3.58 (b, d) (with
K, = A, and D = C,(E;R)). D(R*; A) is a baseable space by Proposition
3.62 (b) (with ' = A). K is a baseable subspace of D(R™; E) by Fact 3.35
and Corollary A.65. Hence, K is metrizable by Proposition 3.51 (d, f) (with
E = D(R*; E)). O

The countability of fixed left-jump times of an E-valued cadlag process is
well-known when E' is a metrizable and separable space. Herein, we extend

this fact to baseable Tychonoff spaces.

Proposition 3.64. Let E be a baseable Tychonoff space. Then, the following

statements are true:

(a) For any p € M (D(R*; E), B(E)*R | pw+.m)*° (especially for any
p € MT(DRYE))), J(n)? is a well-defined countable subset of
(0,00).

(b) For any E-valued cadlug process X, J(X)*? is a well-defined countable
subset of (0, 00).

PD(RY; U, en An) is well-defined by Corollary A.65.

30Please be reminded that Z(E)*R" |p(r+;E) is generally smaller than Z(D(R*; E)).
31J(p), the set of fixed left-jump times of ;1 was defined in (2.3.10).

32 J(X), the set of fixed left-jump times of X was defined in (2.5.8).
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In particular, the conclusions above are true when E is a metrizable and sep-

arable space or a Polish space.

Proof. (a) Polish spaces, metrizable and separable spaces and baseable spaces
are successively wider classes by Fact 3.24 (b) and Proposition A.11 (c¢). As E
is a baseable space, there exists a countable D C Cy(F; R) separating points
on E by Fact 3.33 (a, b) (with A = E) and so ¢ = Q) D is injective. We
deduce ¢ € C(E;RP), (3.3.9) and

=(¢) €M (DRY; B), B(E)™ |pms n); a0
3.3.10
D(R™;R), BR")™™' | pmo) )

from Fact 2.4 (b), Proposition A.62 (d) (with S = E, £ = R? and f = o)
and Fact B.10 (b) (with f = ¢).

v = pow(p) e mt (D(R+; RP), @(RD)@RWDW;RD)) (3.3.11)
by (3.3.10). RP as aforementioned is a Polish space, so (3.3.9) implies

p({z € DRTE):te J(x)}) =p({z € DRTE)  t € Jw(p)(z)]})
=v({ye DR"RP):te J(y)}), vt e RY,

(3.3.12)
while the equalities in (3.3.12) as well as J(p) and J(v) are well-defined by
Fact A.71. Hence, we have J(u) = J(v) by (3.3.12) and this set is a countable
subset of (0, 00) by [Ethier and Kurtz, 1986, §3.7, Lemma 7.7].

(b) follows immediately by Fact 2.26 (a), the definition of J(X) and (a)
(with g = pd(X)|pw+m) ™). O

33pd(X) denotes the process distribution of X and was specified in §2.5.
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Chapter 4

Replication of Function and

Operator

The previous chapter discussed the space change through a base ( Ey, F; E , F )
over topological space E and the derivative notions of baseable spaces and
baseable subsets. Now, we start to discuss the replication of objects from F
onto E and the association of the original and replica objects. §4.1 of this
chapter introduces replica of continuous function and §4.2 introduces replica
of linear operator on Cy(E;R). Under the regularity conditions proposed in
§4.2.3, the replica operators constructed in §4.2.4 are strong generators of
semigroups on (' (E ; R) which play substantial roles in our companion papers
Dong and Kouritzin [2017a,b,d].

4.1 Replica function

Given a base (FEy, F; E , F ) over topological space E, replicating a function
f € M(E;R) onto E basically means extending f|p, onto E. A simplistic
approach is preserving the values of f on Fjy and assigning constant value 0
on E\EO. This idea is also used in several other aspects of this work, so we

make the following general notation for simplicity.

Notation 4.1. Let E, S; and S; be non-empty sets, A be an arbitrary subset
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of S; NSy, yo € E and f € ES'. By var(f; Sz, A, yo)' we denote the mapping

] flo), ifxeA,
var(f; S, A, yo)(z) = Vo € Sy (4.1.1)
Yo, otherwise,

from Sy to F.

Remark 4.2. var(f;Sa, f7 ({vo}), yo) = var(f; S, F,90) is the constant map-
ping that sends all x € Sy to yo.

var(f; E, FEy,0) may not preserve the continuity or even the Borel mea-
surability of f if Ejy is not a standard Borel set. Nonetheless, noticing that
(3.1.1) links every member of F bijectively to a member of F C C(E:R), we
can define the replica of suitable continuous function on E as a continuous

function on E.

Definition 4.3. Let E be a topological space, (Fy, F; E, ]?) be a base over E
and d, k € N. The replica of f € C(E% RF) with respect to (Fo, F; E, F) (if

any) refers to the continuous extension fof f | ¢ on E°.

Remark 4.4. We mentioned in Remark 3.5 that the compactification inducing
E does not necessarily extend every member of Cy(Ey, O(Ep): R) continu-

ously onto E. So, a general f € Cy(E? RF) need not have a replica.

Notation 4.5. Let (Ep, F; E, .7?) be a base over F and d, k € N. Hereafter,
we will always let f denote the function var(f; E, Ey,0) for f € (Rk)Ed and f

denote the replica of f € C(E% RF) if no confusion is caused.
Below are several basic properties of f and f

Proposition 4.6. Let E be a topological space, (Egy, F; E,]?) be a base over
E and d,k € N. Then, the following statements are true:

(a) If f € (RF)E" is bounded, then f is also bounded.

(b) If f € M(EYR) and f|gga =0 for some A € #°(E?) with A C Ef,
then f € M(E*R¥). In particular, this is true if ES € 9%(E?).

Lepar” is “var” in fraktur font which stands for “variant”.
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(c) The replica of f € C(E4RF) (if any) is unique.

(d) If fi, fo € C(E%REF) have replicas, then afi + bfo (resp. f1 2 when
k =1) is the replica of afy + bfy for all a,b € R (resp. of fifs).

(e) F={f:feF}, ag(F)={f:f€ag(F)} and aglI*(F)] ={f: f e
ag(I1%(F))}.

(f) f € C(E%RF) admits a replica if and only if
pio flpg € ca I (Flg,)], V1 <i <k (4.1.2)

In particular, every f € ca[ll*(F)| admits a replica.

Proof. (a) The definition of f implies ||f]loc < ||£]]oo-

(b) hla = hla € M(A, Oz.(A); RF) by Lemma 3.14 (a). So, h = hl, €
M(E® R¥)? by Fact B.2 (with E = EY, % = #B(E?) and f = h).

(c) follows by the denseness of Ef in E?, the fact f]| Bl = jA| pa and the
continuities of f and f.

(d) follows by the fact that (afi +bf2)|ps = (afy + bJ?Q>|E6i and fi1 fo|pa =
]?1]?2|Eg, that af, + bfs € C(Ed; R*) and that fifs € C’(Ed; R) when k£ = 1.

(e) Letting F = {fn}nen, we have F = {f,}nen by (3.1.1) and Lemma
3.3 (a). Foreach 1 <1 < d and ny,...,n € N, f = Hézlfm o p; and
g= Hézl J?m o p; satisfy

l l
Floa =TT faleo o pi =[] Fuulzo 0 pi = gl (4.1.3)
=1 i=1

So, g = f by (3.1.13) and (4.1.3). Note that the members of ag(F) (resp.
ag[I1%(F)]) correspond bijectively to those of ag(F) (resp. ag[II*(F)]). Now,
(e) follows by (d).

(f - Necessity) If f exists, then {pi o f}lgigk C C(E%R) by Fact 2.4 (a).
Hence, (4.1.2) follows by (3.1.17).

(f - Sufficiency) If (4.1.2) holds, then {m}lgigk exists by Corollary 3.10.

214 denotes the indicator function of A.
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Hence, ®f:1 pjc?f = f by Fact 2.4 (b) and the fact

k k
f|Eg:®Piof|Eg:®Piof|Eg- (4.1.4)
i=1 i=1

O

Note 4.7. For the sake of brevity, hereafter we may use the replica of f €
ca(I1¢4(F)) without referring to Proposition 4.6 (f) for its existence.

The following proposition shows a nice property of locally compact baseable
spaces which recovers [Srivastava, 1998, Corollary 2.3.32]. This is also an

example where f and fA coincide.

Proposition 4.8. Let E be a locally compact space and D C Co(E;R)?. Con-

sider the following statements:

(a) E is a D-baseable space.

(b) There exists a base (E,F; E,]?} over E such that E is a one-point
compactification of E, (F\{1}) € D C Co(E;R) C ca(F) and F

strongly separates points on E.
(c) E is a Polish space.
(d) E is a metrizable and separable space.
(e) E is a Cy(E; R)-baseable space.

Then, (a) - (e) are successively weaker. Moreover, (e) implies (a) when D is
uniformly dense in Co(E;R).

Proof. ((a) — (b)) By (a), there exists a countable F C (DU{1}) C Cy(EF;R)
that separates points on F. E is a Hausdorff space by Fact 3.24 (a) and admits
a one-point compactification E by Proposition A.31. It follows by Lemma A.32
(with D = F) that F strongly separates points on F and

F= {t)at(f L E,E,0): f € f\{l}} uU{1} c C(E:R) (4.1.5)

3Co(E;R), the family of all R-valued continuous functions vanishing at infinity was
defined in §2.2.3.
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separates points and strongly separates points on E. Hence, (E, F; E , F ) by
definition is a base over E. Moreover, we get Co(E;R) C ca(F) by Corollary
3.10 (with d = 1 and Ey = F) and Fact B.43.

((b) = (¢)) O(E) = Ox(F) by (b), so E is an open subspace of the Polish
space £ by Proposition A.2 (a) and Lemma 3.3 (b, ¢). Hence, (c) follows by
Proposition A.11 (b).

((c) — (d)) follows by Proposition A.11 (c).

((d) — (e)) Co(E;R) separates points on £ by Proposition A.33 (a, d).
Then, (e) follows by Proposition A.6 (c) and Proposition 3.40 (with A = E
and D = Cy(E;R)).

Moreover, if Cy(E;R) C ¢l(D), then (e) implies (a) by Proposition 3.43
(with A= FE, D= Cy(F;R) and Dy = D). O

4.2 Replica operator

We now focus on replicating a linear operator £ on the Banach space
(Co(E;R), |||l) as a linear operator on (C(E; R), ||]|e). Most concepts about
linear operators used below were reviewed in §2.2.5 and, as aforementioned in

§2.6, we always consider single-valued operators.

4.2.1 Definition

Replicating £ from Cy(E;R) onto C(E;R) means constructing a linear
operator on C (E, R) whose domain and range are formed by the replicas of
the member of ®(L) and (L) respectively. Under the following conditions,
the replica of L exists as a densely defined operator on C (E :R).

Proposition 4.9. Let E be a topological space, (Eq, F; E,]?) be a base over
E and L be a linear operator on Cy(E;R) such that

me(F) C D(L),

(4.2.1)
R (ﬁ‘mc(]:)) C ca(}").

Then, the following statements are true:
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(a) There exists a unique linear operator Lo on C(E;R) such that
D(Ly) = ag(F) (4.2.2)

and
Lof =Lf, Vf € ag(F). (4.2.3)

(b) There exists a unique linear operator L; on C(E;R) such that
D(L,) = {f (f,Lf) e LN (calF) x ca(]—"))} (4.2.4)

and

C\f = Lf. Vf e D(Ly). (4.2.5)
Proof. We have that
ag(F) =ac({af : f € me(F),a € R}) C D(L) (4.2.6)

and

R (Llagr)) = {Lh:h€ac{af: femeF),acR})}
=ac ({ag g €E€R (£|mc(;)) ,a € R}) (4.2.7)
= ag [R (Llmr)] C ca(F)

by (4.2.1), the linearity of £ and linear space properties of ©(L) and ca(F).
Thus,

Lo={(J.L]): f € ag(F)} (4:28)

and
L= {(7.9): (f.9) € £0 (ca(F) x ca(F)) } (4.2.9)
are the desired linear operators by (4.2.6), (4.2.7) and Proposition 4.6 (d, f)
(with d = k = 1). 0

The EAO and El above are defined as two (possibly) different replicas of L.

Definition 4.10. Let E be a topological space, (Ey, F; EJ?) be a base over
FE and L be a linear operator on Cy(E; R).
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o (Ey, F;E,F) is said to be a base for £ if (4.2.1) holds.

o When (Ey, F; E, F) is a base for £, the operator Lo in (4.2.8) and the
operator L, in (4.2.9) are called the core replica and the extended

replica of L respectively.

Hereafter, we use the following notations for brevity if no confusion is

caused.

Notation 4.11. Let £ be a topological space, (Ey, F; E, .7?) be a base over
E, L be a linear operator on Cy(FE;R) and § € R.

o We define f = flga for each d,k € N and f € M(E?% RF). Moreover,
F=Flg, =1{f:f€F}

o When (FEy, F; E\7 .7?) is a base for £, we define
EO = 'C|ug(]-')>
L1 = LN (calF) x ca(F)), (4.2.10)
L= {(7.9): (f.9) €Lif, Vi=12
and Ly (resp. L) always denote the core (resp. extended) replica of L.

o We define the operator  — L by

(B-=L)f=Bf—Lf, VfeDCL). (4.2.11)

Similar notations apply to L;, EZ and EAZ for each 7 =0, 1.

Below are several basic facts about the domain and range of the above-

mentioned linear operators.

Proposition 4.12. Let E be a topological space, L be a linear operator on
Cy(F; R) and (Ey, F; E,]?) be a base over E for L. Then, the following state-

ments are true:

(a) The linear operators Lo and Ly satisfy Lo = Li|egF) and
R(L;) Ccl(D(L;)) =ca(F), Vi=0,1. (4.2.12)
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(b) The linear operators Lo and Ly satisfy Lo = Zl‘ag(f) and

R(L;) C el (@(ZZ«)) = ca(F), Vi=0,1. (4.2.13)

(¢) The linear operators Lo and Ly satisfy Lo = El‘ag(ﬁ) and

R(L,) C ol (@(@)) —ca(F)=C(E;R), Vi=0,1.  (4.2.14)

(d) If £1 =0, then Lol =0 and £,1 = 0.

Proof. (a) The linearities of £y and £; follow by that of L. It follows by
(4.2.10) and (4.2.7) that

R(Lo) = R (Llagir) © calF) = el (ag(F) = (D(La)).  (12.15)
It follows by (4.2.10) and (4.2.15) that
R(Ly) C ca(F) =cl(D(Ly)) C cl(D(Ly)) C ca(F). (4.2.16)

Now, (a) follows by (4.2.15) and (4.2.16).
(b) The linearity of Lo (resp. £;) follows by that of Lo (resp. £p). It
follows by (4.2.10), (4.2.7) and properties of uniform convergence that

R (Zo) - {Ef . fe ag(f)} = R (Llog) |,

4.2.17
C ca(F)|p, C ca(F) =l (ag(ﬁ>) — (@(Zo>) . 4247
It follows by (4.2.10) and (4.2.17) that
R(L1) ={7: 9 € R(L1)} C cal(F)|g,
N _ (4.2.18)

C ca(F) = o (@(ZO)) el (@(Zl))  ca(F).

Now, (b) follows by (4.2.17) and (4.2.18).
(c) follows by Proposition 4.25 and Corollary 3.10 (with d = 1).
(d)1=1€F C DLy and Lol = L1 =0 = 0 by the fact 1 € F, (4.2.2),
(4.2.3) and the denseness of Ey in E. O
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4.2.2 Markov-generator-type properties

The compact Polish space E and the association of the orignal and replica
functions allow the replica operators Zo and 21 to inherit or refine many prop-
erties of the original operator £. In particular, we desire replica operators
with the following Markov-generator-type properties as in our companion pa-
pers Dong and Kouritzin [2017a,b,d].

Property.
P1 L, = cl(Ly).
P2 EAO satisfies the positive maximum principle.
P3 21 satisfies the positive maximum principle.
P4 Ly is a strong generator on C(E;R).

P5 Ly is a Feller generator on C(E;R).

The following proposition gives a sufficient condition for P1 and explains

why we call 20 and EAl the core and extended replica of L.

Lemma 4.13. Let E be a topological space, L be a linear operator on Cyp(E; R)
and (Ey, F; E,]?) be a base over E for L. Then, the following statements are

true:

(a) If P2 (resp. P3) holds, then Lo (resp. L) is dissipative.
(b) If P4 holds and L, is dissipative (especially P3 holds), then P1 holds.

Proof. Eisa compact Polish space by Lemma 3.3 (b, c). C’O(E; R) = C(E; R)
by (3.1.16) (with d = 1). Then, the result follows by Proposition 4.12 (c¢) and
[Ethier and Kurtz, 1986, §4.2, Lemma 2.1 and §1.4, Proposition 4.1]. O

Remark 4.14. El is a linear superspace of EAO, so we call 21 the extended
replica. “core replica” comes from the fact that D (L) is a core (see [Ethicr
and Kurtz, 1986, §1.3, p.17]) of L, in the setting of Lemma 4.13 (b).

The following lemma specifies when P2 - P5 hold.
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Lemma 4.15. Let E be a topological space, L be a linear operator on Cy(E; R)
and (Ey, F; E,]?) be a base over E for L. Then, the following statements are

true:
(a) Lo (resp. 21) is dissipative if and only if Lo (resp. Zl) is dissipative.

(b) P2 (resp. P3) holds if and only if for any € € (0,00) and f € ag(F)
(resp. f € D(Ly)), there exists an n! € N such that*

sup [Ef(m) —n! (HFHOO - f(an))] <. (4.2.19)

z€FEy

(c) P4 holds if and only if- (1) Lo is dissipative, and (2) There exists a
B € (0,00) such that’

FCca ({(ﬁ ~L)f:fe mc(f)}) : (4.2.20)

(d) P5 holds if and only if (1) L1 =0, (2) There exists a 8 € (0,00) such
that (4.2.20) holds, and (3) For any € € (0,00) and f € ag(F), there
exists an n/ € N such that ({.2.19) holds.

Proof. (a) We have by Lemma B.72 (a) (with d = k = 1) that
1Flloo = 1l ¥f € ca(F). (4.2.21)

Letting g = (3 — L) f, we have by (4.2.5) and Proposition 4.6 (d) that

|67 = £7|_ =13 = 131l = ||7 = Z7|| . vF e D(£1). 5 € (0,00)
(4.2.22)
Now, (a) follows by (4.2.21), (4.2.22) and the fact that Lo C Ly and Lo C L.
(b - Sufficiency) We only prove the result for Zo since 21 follows by a
similar argument. Let € € (0,00), f € ag(F) and n/ € N satisfy (4.2.19). We
have by Lemma B.72 (with d = k£ = 1) that

7= and | FH]loo = [/ |- (4.2.23)

4f* was defined in §2.2.3 and F was defined in Notation 4.11.
5The operator A — £ was defined in Notation 4.11.
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Then, there exists an xy € E such that
HFH - Hf+H = f(wo) (4.2.24)

by (4.2.23), the compactness of E, the continuity of f* and [Munkres, 2000,
Theorem 27.4]. E is a metrizable space by Lemma 3.3 (c), so there exist
{zr}ren C Ejp such that

ar — z0 as kT ooin E (4.2.25)

by Eqy’s denseness in £ and Fact A9 (with E = E and A = Ey). It follows

that -
L) = £F () < n (| 77|~ S@n) +e

n

/ (‘ f+HOO - f(xk)) +e (4.2.26)
= n{ <]?(:1:0) — f(xk)) +e¢ VEeN

by (4.2.3), (4.2.19) and (4.2.24). Hence, we have that

I
3

—

Lf(x0) = lim Lf(wy)

k—o0

< lim n! (f(:co) _ f(xk)> te (4.2.27)

k—o00

— ! (Flwo) = lim flag)) +e=c

by the continuities of j?and Z} , (4.2.25), (4.2.26) and the independence of n/
and {xy}ren. Letting € | 0 in (4.2.27), we get 2}?(:1’0) <0.

(b - Necessity) Fix € € (0,00) and f € ca(F). Then, f satisfies (4.2.23)
by Lemma B.72 (with d = k£ = 1). Lo is dissipative by P2 and Lemma 4.13
(a). By (4.2.3), (4.2.21), the compactness of E, [Ethier and Kurtz, 1986, §4.5,
Lemmas 5.3] and the development establishing [Ethier and Kurtz, 1986, §4.5,
Theorem 5.4], there exist an n/ € N and a positive contraction (see [Ethier
and Kurtz, 1986, §1.1, p.6 and §4.2, p.165]) S, s on C(E;R) such that

(4.2.28)
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for all z € Ey C E, where g = ||f+|c — f > 0 satisfies S, /i 9(x) = 0 by the
positiveness of S, Jnd -
(c) It follows by (4.2.13), (4.2.20), the linearity of Lo and (4.2.10) that

P-)]=dls(@-2)]
{87 -l feag(@(L0)}]
{87 -L7:1eD(L0)f]

=cl SR (6 - Eo>] C ca(F),

thus proving the equivalence between (4.2.20) and
cl [@(Eo)] — [9% (ﬁ - Eo)] . (4.2.30)

Next, we find by (4.2.10), (4.2.2), Proposition 4.6 (d, e) and (4.2.3) that

D(Lo) = ag(F) = ag(F) - D(Lo) . (4.2.31)
and
R (6 - Eo) _ (6 - Zo) . (4.2.32)
Then, (4.2.30) is equivalent to
cl [@(ZO)] — C(E;R) =« [m (6 - Eo)] (4.2.33)

by (4.2.31), (4.2.32), the denseness of Ej in E, properties of uniform conver-
gence and (4.2.14).

So far, we have shown the equivalence of (4.2.20), (4.2.30) and (4.2.33).
Now, (c) follows by (a) and the Lumer-Phillips Theorem (see [Yosida, 1980,
§1X.8]).

(d) follows by (b), Proposition 4.12 (d), [Ethier and Kurtz, 1986, §4.2,
Theorem 2.2] and the equivalence between (4.2.20) and (4.2.33). O
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4.2.3 Several regularity conditions about operator

Herein, we introduce several typical regularity conditions about the opera-
tor £ under which: (1) One can construct bases in either of the following two

forms, and (2) The associated replica operators satisfy one or more of (P1) -
(P5).

Property.
P6 There exists a base (E,F; E,F) over E for £ with Dy C F = agq(F).

P77 There exists a base (Fy,F; E, .7?) over E for L such that A C Ey,
E() S %m(E) and D() CF= agQ(}")

Remark 4.16. The D, above, as appeared in Lemma 3.39, represents a desired
set of bounded continuous functions from the domain of £. For example,
in the application of martingale problem, Dy can be a rich collection that
approximates both the domain and range of £ (see e.g. [Dong and Kouritzin,
2017a, §3.1]). In the application of filtering, Dy could be used to approximate
the given sensor function (see e.g. Dong and Kouritzin [2017b]). With similar
consideration, the A above stands for a desired subset of E to be contained in
Ey. For example, in the application of martingale problems, the set A could
be a support of the given initial distribution (see e.g. [Dong and Kouritzin,
2017a, §A.1]).

Our regularity conditions consist of four types. The first type is about the

denseness of the domain and range of L.
Condition (Denseness). The operator £ satisfies:
D1 R(L) C c(D(L)).
D2 (L) C cl(R(B — L)) for some S € (0, 00).

Remark 4.17. D1 and D2 are true for any strong generator £ by the Lumer-
Phillips Theorem.

The second type is about the point-separability of the domain of L.

Condition (Separability). The operator £ satisfies:
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S1 ©(L) contains the constant function 1 and separates points on E.

S2 (L) contains the constant function 1 and E is a D (L)-baseable space.

S2 is stronger than S1. According to §3.2, they are mild requirements

about the richness of ©(L). The next example further illustrates their gener-

ality.

Example 4.18.

(D

(111)

For martingale problems and nonlinear filternig problems, a com-
mon setting (see Szpirglas [1976], Bhatt et al. [1995] and Bhatt et al.
[2000]) is that E is a metrizable Lusin (especially Polish) space and
the domain ©(L) of £ contains 1 and separates points on E. In this
case, E is a second-countable space by Proposition A.11 (d) and
Proposition A.6 (c). So, L satisfies S2 by Proposition 3.40 (with
A=Fand D =29(L)).

Another classical setting for martingale problems is that E is a
locally compact separable metric space with one-point compactifi-
cation E'U{A}, L is a linear operator on Cy(E;R) and its domain
D (L) is uniformly dense in Cy(F; R) (see [Ethier and Kurtz, 1986,
Chapter 4] and Kurtz and Ocone [1988]). In this case, one can sim-
ply extend L to a linear operator £* on Cy(E; R) by defining ©(L*)
as the linear span of ©(£) U {1} and defining

L(af +b)=alf, VfeD(L),abeR. (4.2.34)

By Proposition 4.8 (a, b, d, e) (with D = ©(L)), there exists a
countable F C C,(E;R) such that F\{1} C ©(L) strongly sepa-
rates points on £ and Cy(E;R) C ca(F). Thus, £* satisfies S2 by
Proposition A.17 (a). Moreover, this £* satisfies D1.

Suppose that F is a (possibly non-metrizable) Tychonoff space and
L is a strong generator on Cy(E; R). Without loss of generality, one
can consider 1 € ®(L). Otherwise, we extend L to £* as in (II).
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D (L) is uniformly dense in C,(E;R) by the Lumer-Phillips Theo-
rem, so D1 holds. C,(F;R) separates points on E by Proposition
A.25 (a, ¢), so S1 holds by Corollary A.19.

The third type of our regularity conditions includes several analogues of

dissipativeness and positive maximum principle.

Condition (Generator). The operator £ satisfies:

G1 L is dissipative.

G2 Forany e, 5 € (0,00) and z € E, there exist {K;’f}qeqm[o,u Cc ™)
(independent of f) such that each f € ©(L) satisfies

BIF@) = || (BF = £6) |z

o oo (4.2.35)
< (Bl flloo +[£fllc + 1) €, Vf € D(L)

for some ¢ = ¢/*# € QN [0, 1].

G3 For any € € (0,00) and f € D(L), there exists an n/ € N such that

sup [Lf(@) —nl (IfT]leo — f(z))] e (4.2.36)

BAS

G4 For any ¢ € (0,00), # € E and f € D(L), there exist {K} }nen C
A ™(FE) independent of f and an n = n/ € N independent of x such
that

L) —nf (| £+

T f(a:)) <e (4.2.37)

KT,
Remark 4.19.

o G2 can be thought of as local dissipativeness on metrizable compact

subsets.

o When F is a locally compact metric space, positive maximum principle
implies dissipativeness and is satisfied by Feller generators. G3 extends
this property to non-locally-compact spaces while G4 localizes it on

metrizable compact subsets.
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The next example shows that G2, G3 and G4 are not unnatural.

Example 4.20. Let £, £ and £* be as in Example 4.18 (II) and € € (0, c0).

If £ satisfies positive maximum principle, then £* does also. Con-
sequently, G3 is satisfied by both £ and £* by an argument similar
to the proof of Lemma 4.15 (b - “only if”).

When L is a Feller generator, the Feller semigroup {S; }+>0 generated
by ¢l(£) on Cy(E;R) is often given by a transition function (see
[Ethier and Kurtz, 1986, §4.1, p.156]) x : RT x E x Z(FE) — [0, 1].

In the remainder of the example, we fix x € E.

o We fix § € (0,00). E is a Polish space by Proposition 4.8 (c,
d). So for each q € Q, k(q, x,-) is tight in £ by Ulam’s The-
orem (Theorem 2.21), so there exist {K7}qeqp € #(E)
such that

K (q,a:,E\Kgi’f) <e VgeQnN(o,1]. (4.2.38)

One finds by [Ethier and Kurtz, 1986, §1.2, (2.1) and (2.6)],

change of variable and Jensen’s Inequality that
sl =| [ e s - 0
0

1
S/
0

Then, there exist {¢/"7};cn(z) C (0,1) such that

(4.2.39)

‘1%45—cﬁ@ﬂmMer©w)

Bl @) <|Sues(B = L)f(2)], VF€D(L).  (4.2.40)

by (4.2.39), Mean-Value Theorem and Jensen’s Inequality. For
each fixed f € D(L), there exists a ¢/*% € QNI0, 1] such that

by the strong continuity of {S;};>0. From (4.2.40), (4.2.38)

%yﬂﬁ—@f—&mﬂﬁ—ﬁﬁH<e (4.2.41)

92



CHAPTER 4. REPLICA FUNCTION AND OPERATOR 93

and (4.2.41) it follows that

811 |</|B £)f ()] % (a5 x.dy) + ¢
g/K (BF — LHY@)| 5 (77, ., dy)

9z9f
AT

+ ([I1Bfloe + I1£flc0) € + €

<[ —entees, |+ 0810+ BT+ e

e (4.2.42)
Thus, £ satisfies G2 as we select { K2} ,cqnio,) without in-

volving any f.

o Let = be fixed as above. For each n € N, the tightness of

-1

k(n~', x,-) implies a K} € J(E) satisfying

k(n', @, E\K?,) < QL (4.2.43)

Meanwhile, we fix f € ©(L). cl(£) is the infitesesimal gen-
erator of {S;}i>0, so there exists a sufficiently large n/ € N
such that

w1 fle (4.2.44)

and

sup
z€EE

Lf(z) —n! l/f (1/n?, z,dy)—f(z)”ﬁ%.

(4.2.45)
The sequence of compact sets { K} }nen is determined by x
and the transition function s, which is independent of f. The
convergence rate nf is an intrinsic parameter of f and is un-

related to x. From (4.2.43), (4.2.44) and (4.2.45) it follows
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that

1/ lloc€

Cf(x) < n! / ) (1nd o, dy) + =t g
zg)e 2 (n{)
<nf <Hf+ K, —f(x)) +e.
A (4.2.46)

Thus, L satisfies G4.

The fourth type is a common technical assumption. It is equivalent to
assuming (L) is closed under multiplication since £ and ©(L) are linear

spaces.

Condition (DA). The domain of the operator £ is a subalgebra of C,(E; R).

4.2.4 Existence of Markov-generator-type replica oper-

ator

Now, we give four constructions of Markov-generator-type replica operators
under the aforementioned regularity conditions. The first two propositions

assume S2 and construct bases satisfying P6.

Lemma 4.21. Let E be a topological space, L be a linear operator on Cy(E; R)
and Dy C D(L) be countable. If S2, D1, G3 and DA hold, then P6, P2 and
P3 hold.

Proof. We use induction to construct the F in P6. By S2, there exists a
countable D C (L) that separates on E. For k =0,

Fo = (DyUDU {1}) € D(L) (4.2.47)

is countable, contains 1 and separates points on FE. For £ € N, we assume
Fo C Fr—1 € (L) and find by DA that

agq(Fr-1) C D(L). (4.2.48)
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Then, we define

Fi = U {f, 9%} c D(L), (4.2.49)

feagq(Fr-1),9eN

where each gg’k € ©(L) is chosen by D1 to satisfy

)" —Cf|, <27 (4.2.50)
It follows immediately that
agq(Fi-1) C Fi (4.2.51)
and
N (ﬁ\agQ(ﬂ_l)) C ol (F) . (4.2.52)

Based on the construction above®,

F=J A (4.2.53)
k€eENg
satisfies

and (4.2.1). So, F separates points on F as D does. Now, P6 follows by
Lemma 3.39 (b) (with £y = F and D = F) and (4.2.54). P2 and P3 follow
by G3 and Lemma 4.15 (b) (with Ey = E, Lo = Lo and L1 = L,). O

Lemma 4.22. Let E be a topological space, L be a linear operator on Cyp(E; R)
such that S2, D1, D2 and DA hold, and Dy C ©(L) be countable. Then, the

following statements are true:
(a) If G1 holds, then P6, P1 and P4 hold.

(b) If L1 =0 and G3 holds, then P6, P1, P3 and P5 hold.

Proof. (a) We follow the proof of Lemma 4.21 to establish the F in P6 except

6

Ny = {0} UN denotes the non-negative integers.
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for reconstructing

Fi = U {f.gl% hI*} cD(L). (4.2.55)

q ’°7q
f€agq(Fr-1),9eN

As before, we choose each g/* € D(L) by D1 to satisfy (4.2.50). Meanwhile,
we find a constant 3 € (0, 00) and choose each hl* € D(L) by D2 to satisfy

(8 = L)ns* = f| <277 (4.2.56)

Consequently, F defined in (4.2.55) satisfies not only (4.2.51) and (4.2.52)
but also
agq(Fi—1) C LR (B — L|7)]. (4.2.57)

F defined in (4.2.53) not only satisfies (4.2.54) and (4.2.1) but also satisfies
FC[R(B-LIF)] CealR(B—Llnm)]- (4.2.58)

Now, P6 follows by Lemma 3.39 (b) (with £y = E and D = F) and (4.2.54).
Both Ly and £, are dissipative by G1, so P4 and the dissipativeness of 21
follow by (4.2.58) and Lemma 4.15 (a, ¢) (with Ey = E, Lo = Lo and £, = £;).
Moreover, P1 follows by Lemma 4.13 (b).

(b) Let F be constructed as in (a). Then, P6 follows by the same argument.
P5 and P3 follow by G3, (4.2.58) and Lemma 4.15 (b, d) (with Ey = E,
Lo= Lo and £, = L;). P1 follows by Lemma 4.13 (b). O

The next proposition turns an arbitrary A € Z ™ (E) and suitable metriz-

able compacts provided by G4 into a base satisfying P7.

Lemma 4.23. Let E be a topological space, A € F™(E), L be a linear
operator on Cy(E;R) such that S1, G4 and DA hold, and Dy C D(L) be

countable. Then, the following statements are true:

(a) If D1 holds, then P7, P2 and P3 hold.

(b) If L1 =0, and if D1 and D2 hold, then P7, P1, P3 and P5 hold.
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Proof. (a) We construct the (Ey, F) in P7 by induction. For k = 0, we define
Ag=Ae X™(E) (4.2.59)

and
Fo = (DU {1}) C D(L). (4.2.60)

For k € N, we assume A1 € Z,™(E) and Fy C Fr_y C D(L). (Ak—1, Op(Ax_1))
is a separable space by Proposition 3.58 (a, b) and Proposition A.11 (d), so it
has a countable dense subset {xf‘l}jeN. For each i € N and « € Aj,_q, one
finds by G4 a sequence of metrizable compact sets {K , i}nen C H™(E)
such that each f € ©(L) satisfies

f+

Lf(z)— ng_i (‘

Ko, —f(:v)> <2 (4.2.61)

n L ,27
2—2

for some sufficiently large ng_i € N independent of x. Then, we redefine
gkt
Ay = A, U (U Uy anQ_i> e H™(E). (4.2.62)
ieN neN jeN

By S1 and Proposition 3.58 (b, e) (with A = A, and D = ©(L)), there
exists a countable J, C ©(L) that separates points on A;. DA implies

agq (Fk—l U jk) C @(C) (4263)
Then, we define

Fi = U {f.90%} c D(L), (4.2.64)

feagq(Fr—1UTk),q€EN

where each g/* is chosen by D1 to satisfy (4.2.50).

By the construction above, {mf‘l}jykeN is a countable dense subset of

Ey= ) A€ A™(E) (4.2.65)

k€N

under the subspace topology Or(Fy). E is a Hausdorff space by S1 and Propo-
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sition A.17 (e) (with A = E and D = D(L)), so Ey € #(F) by Proposition
A12 (a).

F defined by (4.2.53) satisfies (4.2.54) and (4.2.1). F contains J and
separates points on Ay for all k € N. {4 }ren are nested” by (4.2.62), so F
separates points on Fy by Fact B.19. Moreover, fixing i € N and f € (L),
we have by (4.2.61) that

(4.2.66)

et —flh) | <27
K —i
n i’2 o

k—
J
f
2—

I
2—1

1

for all 7,k € N and a sufficiently large n;_, € N independent of any xf‘ )

Therefore, it follows that
Lf(z)—nl, (HFH - f(x)) <27, Vo € F (4.2.67)

by the denseness of {xf‘l}jykeN in (Ey, Op(Ey)) and the continuities of f and
Lf.

Now, P7 follows by Lemma 3.39 (b) (with D = F). P2 and P3 follow by
(4.2.67) and Lemma 4.15 (b).

(b) We follow the proof of (a) to establish (Ey, F) except for reconstructing

Ty = U {f.97* ni*) c D(L). (4.2.68)

feagq(Fr-1UTk),qEN

Here, we choose each g/** € (L) by D1 to satisfy (4.2.50). We find a constant
B € (0,00) and choose each hl* € D(L) by D2 to satisfy (4.2.56). Conse-
quently, F not only satisfies (4.2.54) and (4.2.1) but also satisfies (4.2.58).
Now, P7 follows by the same argument of (a). (4.2.20) follows by (4.2.58)
and properties of uniform convergence. Hence, P5 follows by (4.2.67), Propo-
sition 4.12 (d) and Lemma 4.15 (b, d). Moreover, P1 follows by Lemma 4.13
(b). O

The next proposition turns an arbitrary A € ™ (F) and suitable metriz-

"The terminology “nested” was explained in Fact 3.36.
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able compacts provided by G2 into a base satisfying P7.

Lemma 4.24. Let E be a topological space, A € H™(E), L be a linear
operator on Cy(E;R) and Dy C D(L) be countable. If S1, D1, D2, G2 and
DA hold, then P7, P1 and P4 hold.

Proof. We follow the proof of Lemma 4.23 (a) to establish the (Fy, F) in P7
except for reconstructing Ey = Jyen, Ax € £, (E) as follows. For k =0, we
still define Ay as in (4.2.59). For each i € N, z € A;_; and 8 € Q*®, one finds
by G2 a sequence of metrizable compact sets {K;’f_i}qum[O,l] C ™ (F) such
that each f € ©(L) satisfies

< (Bl flloo + 1L loo +1) 27" (4.2.69)

[e.e]

B1f) - H(ﬁf ey

270

for some ¢/*# € QN |0, 1]
Then, we still take a countable dense subset {xf‘l}jeN of (Ag_1,O0p(Ar_1))
and redefine A; by

s=au|l UU U UKL exmmr). @2

BeQt €N ¢eQN[0,1] jEN

By the reconstruction above, (Ey, F) has almost the same properties as in
the proof of Lemma 4.23 (b) except for (4.2.61). Fixing f € D(L), 8 € QT
and i € N, we alternatively have by (4.2.69) and (4.2.70) that

Blf@as | - |8F -5

< BIFESD = B =LA o, (4.2.71)

k—1
fiel™ 58
q 7 27
2= o0

< (Bllfllso + 1Ll + 1) 27

8Q* denotes the non-negative rational numbers.
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it
for all j,k € N and some qg’_f P e Q N[0, 1]. Therefore, it follows that

Bl flloe = 18F = Lflloo < (Bl flloo + 1Ll +1) 27 (4.2.72)

by the denseness of {xf‘l}j,keN in (Ey, Or(Ey)) and the continuities of f.
Letting ¢ 1 oo in (4.2.72), we obtain

Bl flloe < 1BF = Lf|loos Vf € D(L). (4.2.73)

Next, we still fix f € ©(L) and let g € (0,00). Choosing {f}men € QT N
(0, 00) with lim,, o B = 3, one finds that

Bl Flle < Tim Bullflc
< o723+ g 757, a7
< |67 £7|_ + lim 1Tl 180 — 81 = |87 - £7

by (4.2.73) (with 8 = f,,) and Triangle Inequality, thus proving the dissipa-
tiveness of ZO and Zl.

Now, P7 follows by Lemma 3.39 (b) (with D = F). Herein, (4.2.58) holds
as in the proof of Lemma 4.23 (a) and implies (4.2.20). Then, P4 and the
dissipativeness of 21 follow by Lemma 4.15 (a, ¢). Moreover, P1 follows by
Lemma 4.13 (b). 0

Morever, the existence of replica operator needs less regularity of £ if one

does not require Markov-generator-type properties.

Proposition 4.25. Let E be a topological space, A € H™(E), Dy C D(L) be
countable and L be a linear operator on Cy(E;R) such that D1 and DA hold.

Then, the following statements are true:
(a) If S2 holds, then P6 holds.
(b) If S1 holds, then P7 holds.

Proof. The construction of the desired base (Ey, F; E, F) for (a) is contained
in the proof of Lemma 4.21. That for (b) is contained in the proof of Lemma
123 (a). O
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Chapter 5

Weak Convergence and

Replication of Measure

Weak convergence is a typical area of probability theory that benefits from
replication. Using our results about baseable spaces and baseable subsets, §5.1
establishes mild conditions for the uniqueness, existence and consistency of
weak limit points on the finite-dimensional Cartesian power E? of a topological
space E. §5.2.1 introduces (Borel) replica of possibly non-Borel measure on
E¢. §5.2.2 discusses the association of weak convergence about the replica
measures and that about the original ones, which will be a basic tool for our
developments in Theme 2 and Theme 3. By the aid of replica function and
replica measure, we extend two fundamental theorems in probability theory
to non-classical settings. In §5.3.1, we establish a version of the Radon-Riesz
Representation Theorem on a non-locally-compact and even non-Tychonoff
space. In 5.3.2, we establish the Skorokhod Representation Theorem under
slightly milder conditions than Jakubowski [1997a].

5.1 Tightness and weak convergence

Given a general topological space E, tightness and m-tightness unsurpris-
ingly play a key part for establishing weak convergence on E“. Existence of a
tight subsequence implies existence of a weak limit point in most situations.
For uniqueness, one needs slightly stronger tightness than just having a tight

subsequence.
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Definition 5.1. Let (E, %) be a measurable space, S be a topological space
and &7 be a o-algebra on S.

o When S C E, T C M (E,%) is said to be sequentially tight (resp.
m-tight) in S if: (1) I" is an infinite set, and (2) Any infinite subset of
[' admits a subsequence being tight (resp. m-tight) in S.

o ' C MT(S, o) is said to be sequentially tight (resp. m-tight) in
A c Sif: (1) I' is an infinite set and A is non-empty, and (2) Any
infinite subset of I" admits a subsequence being tight (resp. m-tight) in
(4, 65(A)).

o I' C MT(S, o) is said to be sequentially tight (resp. m-tight) if " is
sequentially tight (resp. m-tight) in S.

Note 5.2. Any type of sequential tightness in Definition 5.1 is defined for ran-

dom variables by referring to the corresponding property of their distributions.

The following companion of Proposition 3.57 relates sequential m-tightness

and unique existence of Borel extension.

Proposition 5.3. Let I be a countable index set, {S;}ier be topological spaces,
(S, o) be as in (2.7.22), T C MT(S, /) and A C S. Suppose in addition
that p;(A) € B(S;) is a Hausdorff subspace of S; for all i € 1. Then, I is
sequentially m-tight in A if and only if there exists a Iy € Py(I')" such that
{1 = be(p) buerr, s sequentially m-tight in A.

Proof. For any {, }nen C T', the m-tightness of {1, }nen'\I'o in A is equivalent
to that of {¢/' : u € {pntnen\I'o} (if any) by Proposition 3.57. Now, it
suffices to show that the sequential m-tightness of I'" implies the existence of
{1 = be(u) }perr, for some I'y € F(I"). Suppose IV C I' is an infinite set and
N(be(u)) # 1 for each p € I, Given I'’s sequential m-tightness, there exists
an m-tight subsequence {i,},en C I and, by Proposition 3.57, be(u,) is a
singleton for all n € N. Contradiction! O

We then give our conditions for Borel extensions of finite measures on the

product measurable space (E?, Z(E)®?) to have a unique weak limit point.

L 2,(I) is the family of all finite subsets of I.
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Theorem 5.4. Let E be a topological space, d € N, T C IMT(E4, B(E)®),
D C Cy(E;R) and G = mc[l14(D)]. Suppose that:

(i) T is sequentially m-tight.

(1) {[ga [(x)p(dz)}yer has at most one* limit point in R for all f €
GU {1}.

(i1i) D separates points on E.

Then, the following statements are true:

o

(a) I = {1/ = be(p)} yer\r, ewists for some I'y € Po(T") and is sequentially
m-tight.

(b) I" has at most one weak limit point in M*(E?).

(¢) If, in addition, {u(E?)}er C [a,b] for some 0 < a < b, then I" has a
unique weak limit point v in M*(E®). In particular, v is an m-tight

measure with total mass® in [a,b] and satisfies

w- lim g, = v, V{pn}nen C T\T. (5.1.1)
n—oo

Note 5.5. The condition (iii) above is true for a wide subclass of Hausdorff

spaces which need neither be Tychonoff nor be baseable.

Note 5.6. Any D C M,(E;R) satisfies
ca [II%(D)] € M, (E?, B(E)*%R) (5.1.2)
and any D C C,(E; R) satisfies

ca [IY(D)] G, (EY, O(E)";R) (5.1.3)

2{[ga f(@)p(dz)}yer lies in [~ flloo, || flloc] and has at least one limit point in R by the
Bolzano- Welerbtrass, Theorem. So, it actually has a unique limit point.

3The notion of total mass was specified in §2.1.2. The notation “w-lim,_ e ftr, = v”
introduced in §2.3 means that v is the weak limit of {i,}nen. In other words, it means
tn = v asn T oo and v is the unique weak limit point of {, }nen-
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by Proposition A.21 (a) and properties of uniform convergence. Hence, the
integral [, f(x)u(dz) is well-defined for all f € ca[lI?(M,(E;R))] and p €
M (B, B(E)*).

Before giving the proof, it is worth putting here a basic but useful Portmanteau-

type lemma for compact sets.

Lemma 5.7. Let E be a topological space and C(E;R) separate points on E.

Then, the following statements are true:
(a) (2.3.4) implies p(K) > limsup,,_, o pn(K) for all K € H(F).

(b) If u is a weak limit point of T in MT(E), and if T is tight (resp.
m-tight) in A C E, then T'U {u} is tight (resp. m-tight) in A.

Note 5.8. We remind the readers of that C'(£;R) separating points (resp.
strongly separating points) on FE is equivalent to C,(E;R) separating points
(resp. strongly separating points) on F (see Corollary B.53).

Remark 5.9. The classical Portmanteau’s Theorem asserts that the mass of a
weakly convergent sequence in every closed set is confined without any escape.
In the setting of Theorem 5.4 and Lemma 5.7, the mass may no longer be
confined by a general closed subset of the possibly non-Tychonoff space F
(see Theorem 2.17). Nonetheless, the lemma above confirms that the subclass
H (F) of €(F) still maintains this property.

Proof of Lemma 5.7. (a) (E, Ocgr)(E)) is a Tychonoff topological coarsen-
ing of £/ by Proposition A.25 (a, b). K € # (E, Ocpr)(E)) C €(E, Ocer)(E))
by Fact B.51 (b) (with D = C(E;R)).

o => pasn 1 oo in M* (E, Ocpr)(E)) (5.1.4)

by Fact B.26 (b) (with % = Oc@r)(E;R)). Now, (a) follows by Theorem
2.17 (a, b) (with £ = (E, Ocz;r)(E))).

(b) Let {un}nen C I satisfy (2.3.4). By tightness (resp. m-tightness) of
I'in A and (a), there exist {K,},en C # (A, Op(A)) (resp. A ™(A, Or(A)))
such that

H(E\K}) < lirginf pn(E\Kp) < sup u(E\K,) <277, Vp € N. (5.1.5)

pel’
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O

Proof of Theorem 5.4. (a) E is a Hausdorff space by Proposition A.17 (e)
(with A = E). By Proposition 5.3 (with I = {1,...,d}, S; = F and A = E?),
there exists a I'g C Py(I") such that I is well-defined and is sequentially
m-tight.

(b) Suppose {u;,, :i=1,2,n € N} C I" satisfy

1}, => p; as n T oo in MH(EY), Vi=1,2. (5.1.6)

The sequential m-tightness of " implies an m-tight subsequence {y;,, }ren
for each i = 1,2. G separates points on E¢ by Proposition A.21 (b), so does
C(E%R) by (5.1.3). Then, {1}, }reni=12U{p1}U{p2} is m-tight by Lemma
5.7 (b) (with B = A= E%and I' = {4}, }ren,i=1,2). It follows that

n— oo

f(@)p(de) = lim f*(p5,)
Bl (5.1.7)

n— oo

— lim S(,) /f ia(dr) Vf € GU {1}

by (5.1.6), (5.1.3) and the fact that { [, f(@)pin(dz)}nen,i=1,2 has at most
one limit point in R for all f € GU{1}. Now, u; = ps by Lemma B.59 (a)
(with £ = E? and D = G).

(c) E4 is a Hausdorff space by Proposition A.2 (d). So, I has a unique
weak limit point v in MT(E?) with v(E?) € [a,b] by (b) and Lemma A.46
(with E = E4 and T = I). v is m-tight by Lemma 5.7 (b) (with £ = A = E4
and I' =I"). Furthermore, (5.1.1) follows by the sequential m-tightness of I",
the fact

W (E?) = u(E?) € [a,b] C (0,00), Yu € T\I'g (5.1.8)

and Corollary B.57 (with E = A=F4 y=v, T =T1" and p, = t,). O
For finite measures on infinite-dimensional Cartesian power of E, one can
use the two results above to show unique existence of weak limit point for

their finite-dimensional distributions. In the following theorem, we establish

the Kolmogorov’s Extension of these finite-dimensional weak limit points.

4The notation f* was defined in (2.3.2).
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Theorem 5.10. Let E be a topological space, T C M+ (EY, B(E)®Y) and D C
Cy(E;R). Suppose that:

(i) {po pI_Ol}Mep is sequentially m-tight for all Iy € Zy(1).

(1) { g1, f(@)p 0 pi)l(daj)}uep has at most one limit point in R for all
feme[Il(D)] U {1} for all Iy € Py(1).

(i1i) D separates points on E.

() {u(EY}uer C la,b] for some 0 < a < b.
Then, there exist a unique p> € MT(EL, B(E)*") such that:

(a) The total mass of u™ lies in [a,b].
(b) p>= opy! € MT(E™) is m-tight for all Iy € Z(I).

(¢) For each Iy € P,(1), there is some I}, € Po(T) such that p> o py'!
is the weak limit® of any subsequence of {py, = be(p o p:[_ol)}uel"\l"% in
0

M*(EY).

Remark 5.11. For each p € T' C M (EY, B(E)®Y), the family of finite-
dimensional distributions {u o P, l}ue[‘ naturally satisfies the Kolmogorov’s
consistency (see [Aliprantis and Border, 2006, §15.6, p.520]) as they are pro-
jected from the same p. The goal of Theorem 5.10 is to show existence and
consistency of weak limit points of {y" = p o py, "} .er on each finite dimen-
sion Iy € Zy(I). Then, these finite-dimensional weak limit points extend to a
measure on (EY, B(E)%Y).

Proof of Theorem 5.10. We fix I, I, € Zy(I) with I, C Iy, let py; denote the
projection from ET to E% for each j = 1,2, use p to specially denote the
projection from E™ to E™ and observe p o pp!(E%) = p(E") € [a,b] for all
peland j =1,2.

>The notation “II™(D)” was defined in §2.2.3. II%(D) = I14(D) with d = X(Ip).
6The notion of weak limit was specified in §2.3.
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By Theorem 5.4 (a, ¢) (with d = X(I;) and I' = {p o pfjl}uep), there exist
g, € M*(EY) and F?j € Po(I') for each j = 1,2 such that 457 is an m-tight

measure with total mass in [a,b] and is the weak limit of any subsequence of

Iy, = {/Lij = be(po pl_jl)} C MT(EY). (5.1.9)

ueF\I‘gj
Suppose that {1, }nen C I'\(I'}, UTY)) satisfies
W~ Ji_{goﬂil,lj =ug,, V=12, (5.1.10)

where 7, 1. = be(p,, opfjl) € Iy, for each n € N and j = 1,2. p € C(E"; EM)
by Fact 2.4 (a). It follows that

fhy, = pnopy, op = ppop tasntooin MT(ED) (5.1.11)

by (5.1.10) and the Continuous Mapping Theorem (Theorem B.25 (a)). So,
(5.1.10) and (5.1.11) imply

UT, = T, opI_ll. (5.1.12)

By the argument above, I uniquely determines {ug> € M*(E™)}y ez,
such that: (1) {40 }rye 2, 1) satisfies the Kolmogorov’s consistency and admits
a common total mass ¢ € [a,b], and (2) each u5° is m-tight and is the weak
limit of any subsequence of {4} perry for some Iy € Z(T). {E"}erm
are all Hausdorff spaces by (5.1.3) (with d = R(I)) and Proposition A.17
(e) (with E = A = E% and D = C(E™;R)). Now, the unique existence of
p> € M (EY, B(E)*) satisfying u>°(E') = ¢ and

popyt = pgs, VI € (1) (5.1.13)

follows by a suitable version of the Kolmogorov’s Extension Theorem (see
[Aliprantis and Border, 2006, Corollary 15.28]). O
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5.2 Replica measure

5.2.1 Definition

Given a base (Fjy, F; E,]? ) over E and d € N, replicating a finite measure
11 from the product measurable space (E%, Z(E)®%) onto E? means expanding

the concentrated measure p pd to a Borel replica measure on E1.

Definition 5.12. Let £ be a topological space and d € N. The replica of
i€ MH(EL, B(E)®) with respect to a base (Ey, F: E, F) over E is defined
by’

)[E (5.2.1)

= (IU|E0
The following fact justifies our definition of replica measure.

Fact 5.13. Let E be a topological space, (Fo, F; E, .7?) be a base over E and
d € N. Then, any p € M (EL, B(E)??) satisfies

pleg € M (B BB ) = M (B, B(E)™)

(5.2.2)
C M (ES, Br(E)*?) = M* (Ef, Op(E)?) .

Moreover,
MT(ES, Op(Ey)?) C MY (EY, Br(E)®). (5.2.3)

Proof. The first line of (5.2.2) follows by (3.1.10) and Fact 2.1 (a) (with £ =
B U = B(E)® and A = EY). The second line of (5.2.2) and (5.2.3) follow
by (3.1.19). O

Notation 5.14. If no confusion is caused, we will always let 7@ denote the
replica of p with respect to the underlying base and do not make special

mention.
Below are several basic properties of replica measure.

Proposition 5.15. Let E be a topological space, (Eq, F; E, .7?) be a base over
E,d €N and p € M (E?, B(E)®?). Then, the following statements are true:

"The concentrated measure “ii|4” and expanded measure “v|®” were defined in §2.1.2.
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(a) (5.2.1) well defines i € M*+(EY). Moreover,
i(A) =pu(ANEY), VA € B(EY) (5.2.4)
(b) 7 € P(EY) if and only if u(E%) = 1.

(c) Any v € be(u) satisfies 7 = Ti.

(d) If f € My(E%R) satisfies f € My(E%R)3, then

flgg@udn) = [ flpaulgld)
Ed (B¢, #5(Eo)®)
= a(x) | pa(dx) = f()m(dx).
/( iy 1 (0 [ Tt
(5.2.5)
(e) If f € C(E%R) has a replica f, then
f@)gg(oulr) = [ gl )
Ed (Ed#p(Eo)®d)
- /( iy 8 ) = | Faymtas).
(5.2.6)

In particular, (5.2.6) is true for all f € ca[ll4(F)].

Proof. (a) follows by (5.2.1), (5.2.2) and Fact 2.1 (b) (with E = E%, A = E¢
and v = pi|ge) and (b) is immediate by (5.2.4).

(c) Note that p|gs = v|pg as members of M (EF, B(E)*|gq).

(d) We have by (3.1.19) that

fles = Flos € My (E§, Bpa(E§);R) C My (Ej, Bp(Eo)*;R). (5.2.7)

We then have by (5.2.7), (3.1.10) and Fact B.2 (with £ = E?, % = 2(F)®?
and A = EJ) that
flgg € My (B, B(E)*R). (5.2.8)

So, (5.2.5) is well-defined and follows by (5.2.7) and (a).

8f was defined in Notation 4.5.
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(e) We have by (3.1.19) that

Floa = fles € Cy (BS. Opa(BD;R)

(5.2.9)
C M, (Ef. Oza(ES);R) C M, (E§, Br(Ey)*"R) .
So, (5.2.6) is well-defined and follows by (5.2.9) and (a). O

The next proposition gives a sufficient condition for a Borel measure on E¢

to be the replica of some Borel measure on <.

Proposition 5.16. Let E be a topological space, (Eq, F; E, .7?) be a base over
E andd e N. Ifv e MT(E?) is supported on A C ES and A € %°(EY), then

p= (]2)|F e MH(EY (5.2.10)

satisfies pi|a = v|la € MY (A, Opa(A)) and v = .

Proof. We have by A € #°(E?) and Lemma 3.14 (a, b) that
Bra(A) = Bzi(A) C [%(Ed) N %(Ed)} (5.2.11)

It follows by Fact 2.1 (a) (with = v and (E, %) = (E%, Z(E%)) and (5.2.11)
that
Vg € MY (A, Opa(A)) = M* (A, Oz4i(A)). (5.2.12)

Then, p € M*(E?) by (5.2.12) and Fact 2.1 (b) (with E = E¢, % = #(E?)
and v = v|4). It follows by Fact 2.1 (¢) (with £ = E¢, % = B(E?) and
v =vla) and (5.2.12) that

pla =vls € M* (A, Ozi(A)) . (5.2.13)

It follows by the fact v(E%\A) = 0, (5.2.13) and Fact 2.1 (c) (with E = E<,
U = B(E?) and p = v) that

)| F = m (5.2.14)

v= ()" = (ula

O
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5.2.2 Weak convergence of replica measures

We now consider the association of weak convergence of Borel extensions
on E¢ and that of replica measures on E¢. The next proposition discusses the

direction from E¢ to E?

Proposition 5.17. Let E be a topological space, (Eq, F; E, .7?) be a base over
E,d € N, G = mc[lIYF\{1})] and {pin}nen U {u} C MT(EL, B(E)®?).

Consider the following statements:

(a) The replica measures {fi, }nen and @i satisfy

w- lim 71, = 7 in MT(E?). (5.2.15)

n—00

(b) The concentrated measures {f|patnen and plgs satisfy

w- im piu| ga = pl gg in M* (ES, O(Ey)?). (5.2.16)
(¢) The original measures {ji, tnen and p satisfy’

lim [ f ()1 g () i (di) = Edf(x)lEg(x)ﬂ(dx)’ viegufl}

n—oo Ed
(5.2.17)
(d) E¢ is a common support of {in }nen U {p}. Moreover,
lim f x) i (dx) / f(x ), Vfe GU{l}. (5.2.18)
n—oo

(e) E¢ is a common support of {fin tnexU{p}. Moreover, there exist {yl, €
be(tn) tnen and p' € be(p) such that

p = asn 1 oo in MT(E?). (5.2.19)

(f) E¢ is a common support of {fin fnenU{p}. Moreover, there exist {yl, €

9The integrals in (5.2.17) are well-defined by Proposition 5.15 (d, e). Those in (5.2.18)
are well-defined by Note 5.6 (with D = F).
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be(pn) bnen and p' € be(p) such that

Halgg = #'lgg as nt oo in MT (Ej, On(Ep)") - (5.2.20)

Then, (a) - (c) are equivalent. (c) - (f) are successively stronger. Moreover,

(e) and (f) are equivalent when E? is a Tychonoff space.

Proof. ((a) — (b)) E4 is a Tychonoff space by Lemma 3.9 (c) and Proposition
A.26 (a). (EY, Oz(FEo)?) is a metrizable and separable space by Lemma 3.9 (d)
(with A = EY), so is MT(ES, 05(Ey)?) by Corollary A.43. Now, (b) follows
by (5.2.15), (5.2.1), Lemma B.55 (with E = E?, A = E¢, v, = fin| ge and
v = fi|ga) and the Hausdorff property of MT(ES, O5(Ep)?).

((b) = (c)) We have by Lemma 3.9 (b, d) (with A = Ef) that G|z C
Cy(E§, O5(Ep)"; R). Hence, we have by (5.2.16) and (5.2.2) that

tim [ ()1 5(2)a(dr)

n— oo Ed

= lim flga () 1tn] ga (de)
n—00 (Eg,ﬁE(EO)d)

-/ Fla (@)1 g (d)
(B8.05(Eo)?)

=/, f(@)1ga(z)pu(dz), Vf e GuU{l}.

(5.2.21)

((c) — (a)) It follows by Proposition 5.15 (e) (with g = u, or u) that

lmﬁ@ﬁwmmﬂmwmmw>

n—oo n— oo

) (5.2.22)
B / [ (@)L pg(@)n(de) = F*(m), Vf € GU {1},

M*(E) is a metrizable space by Corollary 3.11 (c). Now, (a) follows by
(5.2.22), Corollary 3.11 (b) (with A = E%) and the Hausdorff property of
M*(ED).
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((d) — (c)) Note that if E is a common support of {p, }nen U {1}, then

/Ed f(@)1ga (@) pn(de) — /Ed (@) (dr)

= » f(z)lEg(m)u(dI) — . f(x)u(dx) =0, ¥n € N.

(5.2.23)

((e) — (d)) follows by F C Cy(E;R) and Fact B.54 (with p = p, or p).

In both (e) and (f), EJ is a common support of {u, }nen U {1/} and so
w = (uﬁl|Eg)|Ed for all n € N and p/ = (u’|Eg)|Ed by Fact 2.1 (c) (with
FE=F % = #(E), A= E{ and u = i/, or i'). Tt then follows by Lemma
B.55 (with B = E%, A = Ef, j1, = | ga and p = /| gg) that (f) implies (e)

in general, and (e) implies (f) when E? is a Tychonoff space. O

The following corollary specializes Proposition 5.17 for probability mea-

sures.

Corollary 5.18. Let E be a topological space, (Eqy, F; E,]?) be a base over I,
d € N and {jin}nen U {p} C B(EY, B(E)®?). Then, either of the following

statements is equivalent to the statement of Proposition 5.17 (d):

(a) The replica measures {fi, }nen and i satisfy

T, = 7i as n 1 oo in P(EY). (5.2.24)

(b) The concentrated measures {fi|patnen and plge satisfy

finlpg = il as nt oo in P (Ef, Op(Eo)?) . (5.2.25)

Proof. This result follows by Proposition 5.15 (b) and Proposition 5.17. O

One can leverage proper tightness to transform a weak limit point of replica

measures back into that of Borel extensions of the original measures.

Proposition 5.19. Let E be a topological space, (Eq, F; E7 .7?) be a base over
E,d e N, G = mc[UY(F\{1})] and {ptn}nen C MT(EL, B(E)2Y). Suppose
that:

(i)  {in}nen is sequentially tight in ES.
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(1) {[pa f(@)pn(dx)}nen is convergent in R for all f € GU{1}.

(ii1) {pn(E?)}nen C [a,b] for some 0 < a < b.
Then, there exist p € MT(EY) and N € N such that:
(a) p is m-tight in ES and {, = be(jin) }nsn emists.
(b) {u, }nsn satisfies
W_nh_{%o M;@|Eg = N|Eg in M* (Eg, ﬁE(Eo)d) (5.2.26)

and
p = asnt oo in MT(E?). (5.2.27)

Proof. {jin }nen is sequentially m-tight in (EZ, Op(Ey)?) by Corollary 3.15 (a).
There exists an N; € N such that {p,},>n, are all supported on Eg by Fact
B.29 (with (E, %) = (E%, B(E)*Y), A= E¢ and T = {t, }nen). There exist
v € MT(EY, Og(Ey)?) and Ny € N such that v is m-tight in (EY, Op(Ey)?),
{vn = be(tn|ga) bn>n, exists and

w- lim v, = v in M7 (E, Op(Ep)?) (5.2.28)

n—oo

by Lemma 3.9 (e) and Theorem 5.4 (a, ¢) (with E = (Ey, Op(FEy)), ' =
{#n| g tnen and D = F\{1}).

1= v|F* satisfies tlge = v by (3.1.10) and Fact 2.1 (c) (with (E, %) =
(E?, B(E)* and A = EY).

o d
i v P = b [wEg)

R
1 = be(,ll/n), Vn > N = Nl vV N2 (5229)

by (3.1.10), Fact 2.1 (¢) (with (E, %) = (E*, #B(E)?%), A= EJ and v = 1)
and Lemma B.48 (b) (with I = {1,...,d}, S; = E, A = E}, u = pu, and
be(ula) = vn).

Hence, (5.2.26) follows by (5.2.28). (5.2.27) follows by (5.2.26) and Lemma
B.55 (with E = B¢, A = E¢, i, = v, and p = v). O
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Corollary 5.20. Let E be a topological space, (Eq, F; E, .7?) be a base over E
andd € N. If {ji, bnen C MT(E4, B(E)®?) is sequentially tight in (ES, Op(Ey)?),
and if

I, = v asn 1 oo in M*(EY), (5.2.30)

then there exist p € MT(E?) and N € N satisfying Proposition 5.19 (a, b)
and, in particular, v = .

Proof. There exists an N; € N such that {p, },>n, are all supported on E¢
by Fact B.29 (with (F,%) = (B, B(E)®%), A = Ed and T = {, }nen). It
follows by (5.2.30) and Proposition 5.15 (e) (with u = p,,) that

lim [ f(2)pn(dr) = lim () = f*(v), Yf e me [I4(F)] . (5.2.31)

n—oo Ed

It follows by the fact 1 € TI%(F) and (5.2.31) that

E) 3v(E
(B € (@#) C (0,00), Vn > N, (5.2.32)
for some Ny € NN (N, 00). Now, we obtain the desired p and N by (5.2.31),
(5.2.32) and Proposition 5.19 (with n = Ny +n, a = v(E)/2 and b = 3a).

{1t hnen satisfies (5.2.27), so we have'”
n=w-lim @z, = w- lim 7z,, = v (5.2.33)

n— oo n—oo

by Proposition 5.15 (¢) (with p© = u, and v = p) and Proposition 5.17 (a,
e). O

5.3 Generalization of two fundamental results

5.3.1 Integral representation of linear functional

The celebrated Riesz-Radon Representation Theorem was established for
positive linear functionals on Co(E; R)" with E being a locally compact Haus-

dorft space. Herein, this result is extended to avoid the local compactness

1077’ denote the replica of p!,.

HPositiveness of a functional on Cy(F; R) means it maps non-negative functions into R*.
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assumption which is violated by many infinite-dimensional spaces. Given rea-
sonable regularity of the positive linear functional, we use the approach of
replication and establish an analogue of the Riesz-Radon Representation The-
orem on baseable spaces. As aforementioned in §3.2.2, baseable spaces need

not be locally compact nor Tychonoff.

Theorem 5.21. Let E be a C.(E;R)-baseable space, ¢ be a linear functional
on C.(E;R) and

B={g€C(E;R):0<|glloc <1}. (5.3.1)
Then, the following statements are equivalent:

(a) There exists a positive linear functional A on Cy(E;R) such that

v(9) < A(g), Vg € C.(E;R) (5.3.2)
and
Ao = sng v(g) = A1) < . (5.3.3)

(b) There exists an m-tight p € M™(E) such that

e(g9) = g"(n), Vg € C(E;R) (5.3.4)
and
n(E) = sup 9" (w). (5.3.5)

Remark 5.22. In the theorem above, E is a Hausdorfl space by Fact 3.24 (a).
C.(E;R) is a possibly non-unit'? subalgebra of C,(F;R) and is a function
lattice'® by Proposition B.44 (a). C.(E;R) # {0} since C.(E;R) separates
points on E, so

B+ (5.3.6)

and the supremum in (5.3.3) is well-defined.

124non-unit” means excluding the constant function 1.

13The terminology “function lattice” was specified in §2.2.3.
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Proof of Theorem 5.21. ((a) — (b)) We divide our proof into six steps.

Step 1: FEztend ¢ to a positive linear functional on Cy(E;R). ¢(g) <
A(g) < 0 for all non-positive g € C.(F;R) by (5.3.2) and the positiveness of
A, so ¢ is also a positive linear functional. Then, there exists a positive linear

functional ® on Cy(FE;R) satisfying

¢ = Pleer) (5.3.7)

and
®(g) < Alg), Vg € Cy(E;R) (5.3.8)

by a suitable version of the Hahn-Banach Theorem (see [Aliprantis and Border,
2006, Theorem 8.31]). In particular,

N=A(1)>d(1)> sup @ (L) >sup®(g) = Ao (5.3.9)
N{o} 19l

geCy(E;R geB

by (5.3.3), (5.3.8), the positiveness of ® and the fact
9< gl <1, Vg€ B. (5.3.10)
Step 2: Construct a suitable base. Letting
foap =ag+0b, Yg € C.(E;R),a,b €R, (5.3.11)
we have that
D=ag(C.(E;R)U{1}) ={fyap:9 € Ce(E;R),a,b e R}. (5.3.12)

FE is a D-baseable space by Fact 3.34 (d) (with A = E, D = C.(F;R) and
D' = D). There exist {g,},en C B satisfying

O(1) = Ao = lim ¢(g,) = lim P(g,) (5.3.13)
p—00 p—00
by (5.3.9), (5.3.3) and (5.3.7). We then find a base (E, F; E, F) over E satis-
fying

{gp}pen C(FNB) C (F\{1}) CC.(E;R) CD (5.3.14)
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by Lemma 3.39 (c¢) (with Ey = E and Dy = {g,}peN)-
Step 3: Construct a replica positive linear functional on C(E;R). We
have!?
Joas =G +b=ag+b, Vfyap €D (5.3.15)

by Proposition 4.6 (d) (with d = k =1 and Ey = F), Lemma 3.3 (¢) and Fact
B.45 (with E=F, A=FE and f =3).

ag(ﬁ) = {f;,mb : fg7a,b S ag(F)} (5316)
is a linear subspace of C' (E ; R) on which

O (fyap) = ap(g) + b, ¥fyas € ag(F) (5.3.17)

defines a positive linear functional. Moreover,

(fyan) = P(foan) < Mol fpanlle = Ao || Forap

‘ , Vfgap € ag(F) (5.3.18)

by (5.3.7), the first equality of (5.3.13) and Lemma B.72 (a) (with d =k =1,
Ey=F and f = f,.5). Hence, ® extends linearly onto C'(E;R) and satisfies

Mo =®(1) = ®(1) = sup 2h) o (5.3.19)

necEr) IRl
by (5.3.17), (5.3.18) (with ¢ = 0 and b = 1) and the classical Hahn-Banach
Theorem (see [Dudley, 2002, Theorem 6.1.4]).
ag(F) is uniformly dense in C(E;R) by Corollary 3.10 (with d = 1 and
Ey = E). For each fixed h € C(E;R), there exist {fn} C ag(F) such that

Hm [|Blg — fallo = lim [|Bp — falglle < Hm ||h— folle =0.  (5.3.20)
n—oo n— oo n—oo

® and ® are continuous functionals by (5.3.9), (5.3.19) and [Dudley, 2002,
Theorem 6.1.2]. So, (5.3.18) and (5.3.20) imply

O(h) = lim (f,) = lim ®(f,) = &(h|p). (5.3.21)

n— oo

14We noted in Notation 4.5 that § = vat(g; E, Eo, 0).
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From the argument above and the positiveness of ® it follows that
®(h) = ®(h|g), Vh € C(E:R) (5.3.22)

and ®(h) > 0 for all non-negative b € C(E;R). Thus, @ is a positive func-
tional.

Step 4: Establish integral representation of the replica functional. Since Eis
a compact Polish space, we apply the classical Riesz Representation Theorem
(see [Kallianpur and Xiong, 1995, Theorem 2.1.5]) to ® and obtain a v €

~

MT(E) satisfying
®(h) = h*(v), Vh € C(E;R). (5.3.23)

It follows by (5.3.22) and (5.3.23) that
®(h|g) = h*(v), Yh € C(E;R). (5.3.24)
Moreover, it follows by (5.3.24) and (5.3.13) that
v(E) = (1) = Ao = lim (g,) = lim (g,) = lim Gy(v). (5325
Step 5: Establish the desired measure u. We define
A={geC(E;R) : fyap € agg(F) for some a,b € R}, (5.3.26)

let K, € #(F) denote the closure of E\g~*({0}) in F for each g € A, and
have by Corollary 3.15 (a) (with d = 1 and E, = E) that

{K,}gen C #(E) C B(E). (5.3.27)
agq(F) is a countable collection by Fact B.15, so A is also countable and

A=|J K, € #™E)NB(E) (5.3.28)

geA

by Corollary 3.15 (b) (with d = 1 and Ey = E). We have {g,}yen C A and

G =7, =Gplk, <1, VpeN (5.3.29)
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by (5.3.14), (5.3.15) (with g = g,, a =1 and b = 0) and (5.3.10).

v(E) > v(A) > lim v(K,,)

i R (5.3.30)
> lim (ﬁlegp) (v) = lim ?]\;(V) =v(FE)

~ p—oo p—r00

by (5.3.27), (5.3.28), (5.3.29), (5.3.23) and (5.3.25). Hence, we have by (5.3.30)

and Proposition 5.16 that v is the replica of pu = (v|4)|¥ and

w(E) = w(A) = v(A) = v(E) = . (5.3.31)

Moreover, the m-tightness of x4 follows by (5.3.31) and the fact A € Z™(E).
Step 6: Redefine the integral representation of the replica functional as that
of . First, we find that

p(g) =®(9) =9"(v) = 9" (1), Vg € C(E;R) (5.3.32)

by (5.3.7), (5.3.15) (with @ = 1 and b = 0), (5.3.24), the fact v = @ and
Proposition 5.15 (e) (with d = 1 and Ey = F), thus proving (5.3.4). Secondly,

we have

u(E) = Ao = lim ¢(gp) = lim g; () (5.3.33)
p—00 p—00

by (5.3.31), (5.3.13) and (5.3.32) (with ¢ = g,). Then, (5.3.5) follows by
(5.3.33) and (5.3.10).

((b) — (a)) The functional defined by A(g) = g*(u) for each g € Cy(E;R)
satisfies Alc,(gr) = ¢ and is a positive linear functional. (5.3.3) follows by
(5.3.5). O

Corollary 5.23. Let E be a C.(E; R)-baseable space, ¢ be a linear functional
on Co(E;R) and B be as in (5.3.1). Then, the following statements are equiv-

alent:

(a) ¢ is continuous and there exists a positive linear functional A on Cy(E; R)
satisfying (5.5.2) and (5.5.3).

(b) There exists an m-tight ;1 € M*(E) satisfying (5.3.5) and
w(9) = 9" (1), Yg € Co(E;R). (5.3.34)
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Proof. ((a) — (b)) There exists an m-tight © € M*(FE) satisfying (5.3.5) and
(5.3.4) by Theorem 5.21. C.(E; R) is uniformly dense in Cy(F; R) by Fact 3.24
(a) and Proposition B.44 (b). Hence, (5.3.34) follows by (5.3.4), the continuity
of ¢ and the Dominated Convergence Theorem.

((b) — (a)) The functional defined by A(g) = ¢g*(u) for each g € C,(E;R)
satisfies A|cy(z:r) = ¢, has linearity and is continuous by the Dominated

Convergence Theorem. Moreover, (5.3.3) is immediate by (5.3.5). O

5.3.2 Almost sure representation of weak convergence

We now turn to generalizing the Skorokhod Representation Theorem in
Jakubowski [1997a]. Commonly, the Skorokhod Representation Theorem is
established on separable metric spaces. [Jakubowski, 1997a, Theorem 2] ex-
tended this result to sequences of tight probability measures on baseable
spaces'®. m-tightness is equivalent to tightness in a baseable space E by
Corollary 3.52. Hence, the conditions of the following theorem are strictly
milder than those of Jakubowski [1997a].

Theorem 5.24. Let E be a topological space, C(E;R) separate points on E,
fn => p1o as n T oo in P(E), (5.3.35)

and { iy }nen be m-tight. Then, there exist E-valued random variables {&, }nen,
defined on the same probability space such that ., is the distribution of &, for

all n € Ny and {&, }nen converges to & as n 1 oo almost surely.

Proof. {pn}nen, is m-tight by Lemma 5.7 (b) (with T' = {u, }nen). There
exists a base (Eo, F; E, F) such that {1, }nen, is tight in

Ey € A™(E)N%°(E)N %B(E) N AB(E) (5.3.36)

by Lemma B.74 (with I'; = {i, }nen, and D = C(FE;R)) and Corollary 3.15

(b).
inf p,(Ey) = 1€nl\fI T, (Eo) =1 (5.3.37)

n€Np

15While Jakubowski [1997a] did not use the term “baseable”, he did assume point-
separability by countably many continuouos functions.
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by the tightness of {zi, }nen, in Fo and Proposition 5.15 (a). Furthermore,
T, = T, as k 1 oo in P(E) (5.3.38)

by (5.3.35) and Proposition 5.17 (a, e) (with d = 1, u!, = p, and ¢’ = py).

E is a Polish space by Lemma 3.3 (c), so the classical Skorokhod Rep-
resentation Theorem (see [Dudley, 2002, Theorem 11.7.2]) is applicable to
{7, }neng, vielding random variables {€, }nen, C M(R,.7,P; E) that satisfy
P oE;I =, for all n € Ny and

P (&, — & asntoo) =1 (5.3.39)

Singletons are Borel sets in E by Proposition A.2 (a, b). Hence, there exist

such that
n1€nl\fIO P& =¢,) > nlenléo P (¢, € Eo) nleano i, (Ep) =1 (5.3.41)

by (5.3.37) and Fact B.3 (b) (with (S,.«) = (Q,.%), (B, %) = (E,#(F)),
A=Fyand f=¢,).
Now, we have by (5.3.39) and (5.3.41) that

P& — &asntoo) >P(E, — §asntoo) =1 (5.3.42)

(5.3.36) mentioned Ey € #°(E). It then follows by Lemma 3.14 (a) (with
d=1and A = E) and (5.3.40) that

0
Remark 5.25. ([0, 1)1 || - ||.) mentioned in Example 3.53 is non-baseable.

Compact subsets of this normed space are automatically metrizable. This

space is Tychonoff by Proposition A.26 (a) and so its points are separated by
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C([0, 1] || - ||oo; R) by Proposition A.25 (a, b). Theorem 5.24 applies in this

case whereas [Jakubowski, 1997a, Theorem 2| does not.

123



CHAPTER 6. REPLICA PROCESS 124

Chapter 6

Replication of Stochastic

Process

This chapter is devoted to the replication of E-valued stochastic process via
a base (Ey, F; E , F ) over E. §6.1 introduces and discusses the basic properties
of replica process. §6.3 focuses on the special case of cadlag replica. Compared
to weak convergence about F-valued processes, it is generally easier to deal
with weak convergece about their replica processes. Indeed, many properties
like tightness and relative compactness are simpler to verify or even automatic
on the compact Polish space E. Whereas, §6.2 associates the finite-dimensional
convergence of general processes to that of their general replicas. §6.4 discusses
tightness and weak convergence of cadlag replicas as path-space-valued random
variables. Finally, §6.5 considers when a family of processes can be contained
in a large baseable set to perform the desired replication. If necessary, the
readers are referred to §2.5 where we specify our terminologies and notations

about stochastic processes.

6.1 Introduction to replica process

6.1.1 Definition

Given a base (FEy, F; E, F ) over topological space E, a replica of E-valued
process X means a process that takes values in the compact Polish space B

and is analogous to X. Since X and its replicas may live in different spaces,
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they are generically associated by the mappings &) F and ®.7-A" rather than

their own values.

Definition 6.1. Let £ be a topological space and (Q,.%,P; X)! be an E-
valued process. With respect to a base (FEy, F; E,]? ) over E, an E-valued
process (2, #,P; )?) is said to be a replica of X if

P(@ﬁo)?t:@foxt) ZIP(@]?oXt c @ﬁ(@)) |Vt e R*.

(6.1.1)
Note 6.2. An E-valued process X may have multiple replicas, among which
indistinguishability? is certainly an equivalence relation.
We make the following notations for simplicity.

Notation 6.3. Let E be a topological space, (FEy, F; E,]?) be a base over

and X be an E-valued process.

o tep(X; Fy, F)* denotes the family of all equivalence classes of X’s replicas
with respect to (Eg, F; E.F ) under the equivalence relation of indistin-

guishability.

o tep,,(X; Eo, F), vep,(X; Eo, F) and rep (X; Ep, F) denote the measur-

able!, progressive and cadlag members of vep(X; Fy, F), respectively.

o By X = tep(X; o, F) we mean vep(X; Fy, F) equals the singleton {)?}

Similar notations apply to the above-mentioned subfamilities of tep(X; Ey, F).

Remark 6.4. The notation “vep(X; Eg, F)” merely specifies the first two com-
ponents (Ey, F) of the base (Ey, F; E, F) since Theorem 3.8 showed that this
base is totally determined by (Ep, F).

Note 6.5.

o R,R™®, E and ® F(E) (as subspace of R*) are Polish spaces by Propo-
sition A.11 (f), Lemma 3.3 (c) and (3.1.3).

L4, .7 ,P; X)” as defined in §2.4 means an E-valued random variable or process X
defined on probability space (§2,.%#,P). We imposed in §2.6 that the probability space
(Q, Z,P) is complete.

2The terminology “indistinguishability” was explained in §2.5.

34ep” is “rep” in fraktur font which stands for “replica”.

4The notions of measurable process and progressive process were reviewed in §2.5.
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o D(R*;R), D(R*;R®), D(R*; E) and D(R*; ® F(E)) are well-defined
Polish spaces by Proposition A.72 (d).

o B(EY) = B(E)* for all d € N by Fact 3.12, so finite-dimensional
distributions of any E-valued process (especially any replica process)
are all Borel probability measures®. This is also true for any Polish-

space-valued process.
The following proposition justifies the general existence of replica proecsses.

Proposition 6.6. Let E be a topological space, (Ey, F; E,]?) be a base over
E and (Q,.7,P; X) be an E-valued process. Then, the following statements

are true:
(a) vep(X; Ey, F) is non-empty.
(b) If X is a measurable process, then vep  (X; Eg, F) is non-empty.

Proof. (a) We fix 2oy € Ep, let ¢ be the identity mapping on R* and define®
ap = DT (so; R, (X) F(E). (X)F(fco)) : (6.1.2)

Q F(E) € B(R>) by (3.1.5). R™ is a Polish space, so {®) F(z)} € Z(R>®)
by Proposition A.2 (a, b). We then have that

ao(y) =y, ¥y € R) F(E) (6.1.3)

and

0oy € M (R‘X’; @ﬁ(ﬁ)) (6.1.4)
by Fact B.3 (b) (with (S, &) = (E, %) = (R®, BR®)), A = Q@ F(E), f = ¢
and yo = @ F(xo)). It follows that

((X) ﬁ>_l 0 ¢y 0 R) F € M(E; E) (6.1.5)

°As aforementioned in §2.5, this is not necessarily true for general processes.
6“par(-)” was introduced in Notation 4.1.
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by (3.1.3), (6.1.4) and Lemma 3.3 (e). Hence,

X2 [(@ﬁ)_logpxoo®f1 o X (6.1.6)

well defines an E-valued process (€2,.%,P; X) by Fact B.32 (a) (with S = E
and f = (QF) oy, 0 Q F). It follows by (6.1.3) and (6.1.6) that

P(QFoxie®FE))
(@72 (®7) oo @Fe K- @Fex @D

<P (@ﬁo)@ - ®]—'0Xt) . VieRY,
(6.1.7)
thus proving X € vep(X; By, F) by (6.1.1).
(b) Let X be as above and define £(t,w) = X;(w) and g(t,w) = X,(w) for
each (t,w) € R* x Q. If X is a measurable process, then

€= (®ﬁ>_lo%oo® Fot e M (R+ < Q, BRY) 0 F; E,%(E)) (6.1.8)

by (6.1.5), thus proving X € vep,, (X; Eo, F). O

6.1.2 Association with the original process

In the next two propositions, the original and replica processes have further

association than just (6.1.1) due to suitable properties of the base.

Proposition 6.7. Let E be a topological space, (Ey, F; E,]?) be a base over
E, T CRT, (Q,%,P; X) be an E-valued process satisfying

inf P(X, € Ey) =1 (6.1.9)

teT
and X, X', X2 € vep(X; Eo, F). Then, the following statements are true:

(a) X satisfies
inf P (Xt — X, e EO) ~ 1. (6.1.10)

teT
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Moreover, X' and X? satisfy

inf P ()?tl — XZe E0> ~1. (6.1.11)

teT

(b) Po )?{01 is the replica measure of Po X! for all Tg € Z5(T)".

Proof. (a) (6.1.10) follows by (6.1.1) and Lemma B.75 (with ¥ = X). (6.1.11)
is immediate by (6.1.10) (with X = X! or X?).
(b) Note 6.5 argued that P o )?{01 € P(E™). Then, we have by (a) that

P ()?TO € A) — P (Xp, € ANET) | VA € B(E™) (6.1.12)

and
P (XTO = X, € E(')TO> — 1. (6.1.13)
O

Proposition 6.8. Let E be a topological space, (Ey, F; E,]?) be a base over
E, T C R and (Q, Z,P; X) be an E-valued process satisfying

inf P <®]—'0Xt e (X)ﬁ(@)) ~ 1. (6.1.14)

teT
Then, the following statements are true:

(a) Any X € vep(X; Eo, F) satisfies

P (foXTO _ fo)?TO) =1, Vf € ca [I™(F)] , Ty € Z4(T)
(6.1.15)

and

E[f o Xp,] =E [fo )?TO] L Vf € ca [II™(F)], Ty € Zo(T). (6.1.16)

(b) If T C R" is dense, then vep (X; Ey, F) is at most a singleton.

7)?T0, the section of X for Ty was defined in §2.5.
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Proof. (a) Any X € tep(X; Ey, F) satisfies

gglﬁp(@ﬁo)?t _ ®]—"oXt>
> tigqﬁlP’(@FoXt e ®f(§)) —1

by (6.1.1) and (6.1.14). Now, (6.1.15) follows by (6.1.17) and properties of
uniform convergence. (6.1.16) is immediate by (6.1.15).

(b) T must have a countable subset Ty being dense in R*. w@w(® F)® is
injective on D(R*; F) by Lemma 3.3 (a) and Fact B.20 (with £ = A = E and
D = F). Given any X!, X2 € vep (X; Eo, F), {w(® F) 0 X}i12 are cadlag
processes by (3.1.3) and Fact B.34 (a) (with E = E, S = R® and f = ®]?),

and

(6.1.17)

P(X'=X2) =P (2(®F) o X' = =(@F) e X?)

> Rt (6.1.18)
zP(@fng ~ R FoX2vie To) —1

by (a) (with X = X?), Proposition B.33 (g) and the injectiveness of w(®) F).
O

The following consequence of (3.1.1) is apparent but indispensable.

Fact 6.9. (6.1.9) is stronger than (6.1.14).

6.1.3 Application to replicating measure-valued processes

Lemma 6.10. Let E be a topological space, (Eq, F; E\,]?) be a base over E,
e = @me(F), 7= @me(F)*, Sy € BR>®) be contained in GIMT(E)],
Yo € So, ¢ be the identity mapping on R® and X € M(Q,.7; M*(E))™¥ satisfy

P(poX € 5p) = 1. (6.1.19)

Then, the following statements are true:

8The notations “co(f)” and “w(Q) F)” were defined in §2.2.1.

9The notation “me(F)*” was specified in §2.3.

WX e M(Q,7; M*(E)) means X is a non-negative finite Borel random measure on E.
That X is P-almost surely supported on E means .
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(a) ¥ = 51 ovar(gp; R, So,yo) satisfies

UeM [ROO; 571(S0), O ey (cﬁ—l(so))] : (6.1.20)

(b)Y £ VopoX e MEQ,F;M(E)) satisfies'!

P (f* oX = fto Y) — 1, Vf € ca(F). (6.1.21)

(c) If
{weQ: X(w)(E\E) >0} € A(P), (6.1.22)

then Y (w) equals the replica (measure) of X (w) for P almost all w € €.

(d) If A € $°(F) satisfies A C Ey and

(weQ: X(W)(E\A) > 0} € A (P), (6.1.23)

—_—

then'? (hf)* o X and (h1af)* oY belong to M(Q,.7;RF¥) and satisfy

P ((hf)* o X = (MAf)* o Y) —1 (6.1.24)
for all f € ca(F), h € My(E;R") and k € N.

Remark 6.11. Every f € Cy(FE;R) satisfies f* € Cp,(M™(E); R) by the def-
inition of weak topology and so f*o X € M(Q,.#;R). For f € M,(F;R),
however, f* does not necessarily belong to M,(M™(E); R) in general, nor is

f* o X always a random variable.

Proof of Lemma 6.10. (a) mc(F)* (resp. mc(F)*) is a countable subset of
C’b(/\/ﬁ( ):R) (resp. Co(M*(E):;R)) by Fact B.15 (with E= Eor E, D = F
or F and d = k = 1), Definition 3.1 and Lemma 3.3 (a). Then, we have by
Fact 2.4 (b) that

peC (M (E);R™). (6.1.25)

1The notation “f*” was specified in §2.3.

12The k-dimensional integration function (hf)* was defined in §2.3. hl, denotes the
function var(hla; E, A,0).
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At the same time, we have that
5 € imb (/W(E); R°°) (6.1.26)

by Corollary 3.11 (b) (with d = 1 and A = E) and Lemma B.7 (b) (with
E = M*(E), S = R* and D = m¢(F)*). Furthermore,

var (¢; R™, So, o) € M (R™;Sp) (6.1.27)

by the fact Sy € Z(R>) and Fact B.3 (b) (with (S, ) = (E, %) = (R*, Z(R>)),
A= Spand f = ¢). Now, ( ) follows by (6.1.26) and (6.1.27).
(b)Y € M(Q, F; M*(E)) by (6.1.25) and (a). ¥ equals $~! restricted to
Sp, hence
PlpoX;=poY €5) >P(poX,€5)=1 (6.1.28)

by (6.1.14), which implies
P(g* 0 X =G oY,¥g € ag(F)) = 1 (6.1.29)
by linearity of integral. Fixing f € ca(F) and g € ag(F), we find that

JroX =oY@ <If = gle+f=Gle+lg o X =G oY|(w)
<2f —gllw + g7 0 X =G 0 Y| (w), Yw € Q
(6.1.30)
by Triangle Inequality, (6.1.29), Proposition 4.6 (d) (with a = 1 and b = —1)
and Lemma B.72 (a) (with f = f — g). Now, (b) follows by (6.1.29), (6.1.30)
and (2.2.15) (with D = F).
(¢) We let v denote the replica of X (w) for each fix w € €2 and find that

({weﬂ poX(w) =" () e [/W(E)]})
=P({weQ: X(w)(E\Ey) =0}) =1

(6.1.31)

by the countability of mc(F), Proposition 5.15 (a, e) (with d = 1, p = X(w)
and 77 = v*) and (6.1.22). Since Sy is contained in the closure of G*[M™*(E)],
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it follows by (6.1.28) and (6.1.31) that
PlweQ:poY(w)=p1")}) =1 (6.1.32)

Hence, (c) follows by (6.1.26) and (6.1.32).
(d) We fix f € ca(F) and h € My(E:RF), get {hla,hf14} C My(E;RF)
from Proposition 4.6 (b) (with d =1 and f = hl4 or hf14), and find

{weQ:(hf) o X(w) = (hf1a)" 0 X (w) = (ATTa)" (") = (RTa])" (") }
D{weN: X(w)(K\A) =0}

(6.1.33)
by Proposition 5.15 (d) (with d = 1), the fact Af14|g, = hlaf|p, and the
definition of v¥. Thus, (6.1.24) follows by (6.1.33) and (c). Moreover, we
have (h_lAf)* oY € M(Q,.Z;RF) by the fact hiLf € Mb(E; R*), Lemma 3.3
(c) and Proposition B.71 (b) (with E = E, f = hlsf and £ = Y). Hence,
(hf)*oX € M(Q, Z;RF*) by Lemma B.31 (a) (with F = S = R¥, % = Z(R"),
X =(hf)*oX and Z = (h1,f)* o Y). O

Corollary 6.12. Let E be a topological space, (Ey, F; E,]?) be a base over F,
and (Q, F,P; X) be an M™(E)-valued process satisfying

{weQ: Xy (w)(E\Ey) >0} € 4/ (P), Vt e RT. (6.1.34)

Then, there exists an M*(E)-valued .F{* -adapted process (0, F,B;Y) satis-
fying the following properties:

~

(a) w(f*) oY is a modification of w(f*)o X for all f € ca(F).

(b) If X satisfies
inf P(X; € P(E)) =1, (6.1.35)

teR*

then' Y can be a P(E)-valued process.

(c) For each t € R, there exists an )y € N (P) such that Yy(w) equals the
replica (measure) of X(w) for all w € Q\.
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(d) If A € $°(Ey) satisfies A C Ey and
{weQ: X;(w)(E\A) >0} € #/(P), Vt € R, (6.1.36)

then w((R14f)*)oY is a modification of w((hf)*)oX for all f € ca(F),
h € My(E;R¥) and k € N.

-~

Remark 6.13. An implication of the statements “c(f*) o Y is a modification
of @(f*) o X7 in (a) and “w((ALAf)*) oY is a modification of w((hf)*) o X"
in (d) is that w(f*) o X, @(f*) oY, w((R1af)*) oY and w((hf)*) o X are
indeed processes. For (a), we know f € ca(F) C Cy(E;R) and f € C(E:R),
so @(f*)o X and w(f*)oY are processes by Proposition B.71 (a). For (d), we
shall justify w((mf)*) oY and w((hf)*) o X are processes by Lemma 6.10

(d) (with X = X, and Y =Y}).

Proof. We set ¢, ¢ yg and ¥ as in Lemma 6.10. In general, we let Sy =
PIMT(E)]. If (6.1.35) holds, we let Sy = @[P(E)]. Recall that 3 satisfies
(6.1.26). MT(E), P(E) and R™ are Polish spaces by Corollary 3.11 (c) (with
d = 1) and Note 6.5. Consequently, Sy € Z(R>) in both cases by Proposition
A57 (with E = A = M*(E\) or P(E), f =@ and S = R*) and Proposition
A.56 (b) (with £ = R>). Hence, Y = w (V¥ o ) o X is the desired process by
(6.1.25), Lemma 6.10 (with X = p; 0 X and Y = p; oY) and Fact B.32 (a)
(with E = M*(E), f =Voypand ¥, = .Z;%). O

6.2 Finite-dimensional convergence about replica

process

6.2.1 Definition

We start this section with the precise definition of and two important
notions for establishing finite-dimensional convergence. Given a general space
E, the finite-dimensional convergence of E-valued processes is about the Borel

extensions of their possibly non-Borel finite-dimensional distributions.
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Definition 6.14. Let E be a topological space and (Q, %, P; X)'? {(Q, F', P X7) }iex
and {(Q", . Z" P"; X")},en and be E-valued processes.

o {X"},en converges finite-dimensionally to X along T if: (1) T C
R" is non-empty, (2) For each Ty € Zy(T), there exist Np, € N,
{n € be(P" o (X3,) ") }nsng, and p € be(Po X)), and (3) pn = pu as
n 1 oo in P(ET0).

o X is a finite-dimensional limit point of {X'},c; along T if there
exists a subsequence of {X'};cr converging finite-dimensionally to X

along T.

o Two finite-dimensional limit points of {X"};cr along T are equivalent if

their finite-dimensional distributions for any Ty € &2,(T) are identical.

o X is a finite-dimensional limit of {X"},cn along T if {X"},en
converges finite-dimensionally to X along T and any finite-dimensional

limit point of {X"},en is equivalent to X.

o {X'}ie is finite-dimensionally convergent along T under D ((T, D)-
FDC' for short) if: (1) I is infinite, (2) T € RT and D C M,(F;R)
are non-empty, and (3) {E’[f o X} ]}ier' has a unique'® limit point in
R for all f € m¢[lI™(D)] and Ty € Zy(T).

o {X'}.e1 is asymptotically stationary along T under D ((T,D)-AS
for short) if: (1) I is infinite, (2) T C R* and D C M,(F;R) are non-
empty, and (3) The unique limit point of {E'[f o Xi — fo Xf ,J}ier'”
in R is 0 for all ¢ € (0,00), f € me[ITT°(D)] and Ty € Fy(T).

Note 6.15. Given E-valued process X, the expectation E[f o X1,] is well-

defined for any f € mc[[1%(M,(E;R))] by Fact 2.24 (d) and Note 5.6 (with
w="Po X,f;)

BLOH F1 P }ier and {(Q7, F",P") }hen, Were assumed in §2.6 to be complete proba-
bility spaces. Completeness of measure space was specified in 2.1.2.

“Hereafter, “(T,D)-FDC” and “(T,D)-AS” also stand for “(T,D)-finite-dimensional
convergence” and “(T, D)-asymptotical stationarity”.

15E? denotes the expectation operator of (QF, Z¢ P?).

1ﬁIp the definitions of (T,D)-FDC and (T, D)-AS, {E’[f o X, ]}ier and {E'[f o X —
fo X%, .ol ier both lie in [=2]| f|lco; 2/ flloo]- Each of them has at least one limit point in R
by the Bolzano-Weierstrass Theorem, so it is enough to assume “at most one limit point”.

1"The notation “T( + ¢” was defined in (2.5.10).
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Note 6.16. Let X and Y be E-valued processes and T C R*. We define
X ~Y if X1, and Y, have the same distribution for all Ty € Z,(T). This
“~7 which Definition 6.14 uses to define equivalence of finite-dimensional limit

points, is indeed an equivalence relation among FE-valued stochastic processes.

We make the following notations for simplicity.
Notation 6.17. Let X, {X"};cr and {X"},en be E-valued processes.

o {X"},en converging finite-dimensionally to X along T is denoted by

xn 2D L x as n 1 oo. (6.2.1)

o By X = flp({X"},en)'™® we mean X is the finite-dimensional limit of
{X"},en along T.

o By flpr({X"}ic1) we denote the family of all equivalence classes (see Note
6.16) of finite-dimensional limit points of {X*};cr along T.

o By X = flpp({X"}ie1) we mean X is the unique member of flpp({ X }ier).

Remark 6.18. In general, X = fl.({X"},en) is stronger than (6.2.1) because:
(1) Each of the finite-dimensional distributions of { X"}, cn may have multiple
Borel extensions. (2) P(E™?) is not necessarily a Hausdorff space and a weakly

convergent sequence may have multiple limits.
The following fact is straightforward.

Fact 6.19. Let E be a topological space, T C R* and {(Q", F",P"; X™)}en
and (9, .Z,P; X) be E-valued processes. If (6.2.1) holds, then'

lim E" [fo Xg ] =E[f o Xr,] (6.2.2)

n—oo

for all f € me[lI™(Cy(E;R))] and Ty € Po(T). As a consequence, { X" }nen
is (T, Cy(E;R))-FDC.

18457 and “flp” are “fi” and “fip” in fraktur font which stand for “finite-dimensional limit”
and “finite-dimensional limit point” respectively.
YE" denotes the expectation operator of (", . F" P").
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Proof. Fixing f € mc[lIT(Cy(E;R))] and Ty € P,(T), it follows by Fact
B.54 (with d = RX(Ty) and X = Xj or Xg,), (5.1.3) (with d = ®(T,) and
D = Cy(F;R)) and (6.2.1) that

lim B [f 0 X3,] = lim f*() = () = E[f 0 X, (6.2.3)

n—oo

for some {1, € be(Po (X7,) " }nsny, With Np, € N and p € be(Po Xp). O

6.2.2 Transformation of finite-dimensional convergence

The following theorem is our main tool for transforming a finite-dimensional

limit point of replica processes back into that of original processes.

Theorem 6.20. Let E be a topological space, {(Q", F™ P"; X™)},en be E-
valued processes, (Ey, F; E,]?) be a base over E, o € Ey, T C R*?, and

var (Vi Q, Y, Y(Ey), z0), ifteT,
X, = ( 682, Y, T (Fo) o) f (6.2.4)
var (Y Q.Y ({xo}),z0) . ift € RT\T,

where (2, #,P;Y) is an E-valued process. Suppose that:
(i) {XP}nen is sequentially tight*' in Ey for allt € T.
(1)) {X"}nen and Y satisfy
Tim E [f 0 X3,] =E | [ o Y, (6.2.5)
for all f € me[lITo(F\{1})] and Ty € Zy(T).
Then, the following statements are true:

Rt22
Eo

(a) X = {Xi}i>0 s an E-valued process with paths in and for each

20Remark 4.2 mentioned that var(Yy; Q, Y, 1 ({x0}), o) is the constant mapping that sends
every w € ) to xg. We do not use zy to denote this mapping for clarity.

21Sequential tightness and sequential m-tightness of measures and random variabels was
specified in Definition 5.1 and Note 5.2 respectively.

224with paths in ER"” means all paths of the process lying in ER". Of course, an
E-valued process with paths in E§+ is equivalent to an (Eg, Or(Ep))-valued process.
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Ty € Po(T), there exist*
ip, = be (IP 0 (X;O)‘l) e P(E™), ¥n > N, (6.2.6)
for some N, € N and
pir, = be (Po Xg!) € P(E™) (6.2.7)
such that

. /
w- lim ‘ T
n—oo /'LTo,n EO 0

= ,UTolE;Fo in P (E(r)roa ﬁE(Eo)TO) . (6.2.8)
Moreover, X, is m-tight in E3° for all Ty € Py(T),

infP(X, =Y, € By) =1 (6.2.9)

teT
and (6.2.1) holds.

(b) If T =R" and {X"}en is (RT, F\{1})-AS, then X and Y are both

stationary processes>*.
(c) If Cy(E; R) separates points on E* | then X = flp({ X, nen)-

Remark 6.21. The condition (i) above will ensure the following two facts for
Ty € Po(T) with finite exception of n € N: (1) P" o (X%, )~' admits a

unique Borel extension, and (2) P" o ()?%O)_l

is the replica measure of P" o
(X Z}O)_l. Hence, transforming finite-dimensional convergence from the replicas
{X"}en to the original processes { X" },en comes down to transforming weak

convergence from replica measures to Borel extensions of original measures.

Proof of Theorem 6.20. (a) We divide the proof of (a) into four steps.
Step 1: Constructing pr, for each Ty € P5(T). We know from (i) and
Fact B.76 (with I = N) that {pr,, = P" o (X%,) ' }nen is sequentially tight

*3The notation “ury, ,, = be(Po (X )~")” as defined in §2.1.3 means yur, ,, is the unique
Borel extension of Po (X, )~

24The notion of stationary process was specified in §2.5

ZNote 5.8 argued that Cy(F;R) separating points on E is equivalent to C'(E;R) sepa-
rating points on F.
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in Ey° and there exists an Ny, € N such that

inf  P"(X'eEy)=1 (6.2.10)

TL>NTO ,teTy

and the {uf . = be(ur nsNp. 1 (6.2.6) exist. We then have
To,n To,n Tg

inf P (@fo X" e ®ﬁ(1§)) —1 (6.2.11)

n>NTO ,teTo

by (6.2.10) and Fact 6.9 (with X = X"). From (6.2.11), the condition (ii)
above and Lemma B.78 (c, e) it follows that

X 2D Ly oasnt oo (6.2.12)

From (6.2.12) and Proposition 6.7 (b) (with X = X™ and T = Ty) it follows
that?

—~ —1 ~
Firgn =P o (X3,) = vn, =PoYy!asntooin P(E™).  (6.213)

Now, by Corollary 5.20 (with d = R(Ty), pn = Urgn+ne,s K = uirOMNTO and
v = vp,) and Fact B.23 (with £ = E™0 or (Ey°, Op(F)™)), there exists a
pr, € P(ET) such that*

w- lim M'TM\Eg = pimo| g in P (Eq°, Op(Eo)™) (6.2.14)

n

pir, is tight in ES*, vpy = g, and
[y = p1, as 1T oo in P (ET°) . (6.2.15)

Step 2: Verify X = {X;}i>o0 defined by (6.2.4) is a process and satisfies
(6.2.9). Foreacht € T, we let iy € P(E) be the measure constructed in Step
1 with Ty = {t}. By our argument above, each p is tight in (Ey, Op(£p))
and so is supported on some S; € . (Eo, Op(Ey)). Sy € B(E) and By (S;) =

267 o.n as specified in Notation 5.14 denotes the replica measure of yit, .

2TThe notation “w-lim” was introduced in §2.3 and means weak limit of a sequence of
non-negative finite Borel measures.

ZThe tightness of the limit measure pr, in EZ is given by Corollary 5.20.
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P35 (S;) by Corollary 3.15 (b) and Lemma 3.14 (a). Let vy = Po ¥, =iy,
be defined as in (6.2.13) with Ty = {¢}. It follows by Proposition 5.15 (a) that

Hence,
satisfy (6.2.9) by Lemma B.31 (b, ¢) (with (E,%) = (E,B(E)), So = Si,
(S,%") = (FEo, Br(Fp)), X =Y; and Y = X;). Furthermore, we have

{x0} € B(E) N B (Eo, Op(Ey)) N B(E), (6.2.18)

by Lemma 3.3 (c, e), the fact Fy € #(F) and Proposition A.2 (a), which
implies

Now, X is an (Ey, Op(Ep))-valued process by Fact 2.24 (b).
Step 3: Verify the m-tightness of Xx, in Ey° and (6.2.7) for each Ty €
P(T). Letting {S;: }ier be as in Step 2, we have that

S, = H Sy € Ay (B °, Op(Eo)™) (6.2.20)

teTy

by Corollary A.15 (b) (with I =Ty and S; = (Ey, Or(E)))). It follows that
St, € B(ET) N B(E)¥T N ™ (E™) (6.2.21)

and
PBrro(ST,) = ,%’ETO(STO) (6.2.22)

by Corollary 3.15 (b) and Lemma 3.14 (a). Now,
Uty (STO) =P (YTO € ST()) =1 (6223)
by (6.2.21) and (6.2.16). Moreover,

vr, (A N STO) = HUT, (A N STO) = ,LLTO(A), VA € %(ETO) (6224)

139



CHAPTER 6. REPLICA PROCESS 140

by (6.2.21), (6.2.22), the fact vy, = Tg,, (6.2.23) and Proposition 5.15 (a)
(with u = pr,). It follows that

IP)(XTO c A) = P(YTO S A)

. (6.2.25)
=V, (A N ST()) = ﬂTo(A)v VA e %(E)(X) 0

by (6.2.9), (6.2.23) and (6.2.24). Thus, X, is m-tight in E;° by (6.2.20),
(6.2.21), (6.2.23) and (6.2.25). (6.2.7) follows by (6.2.25) and Proposition 3.57
(with I =Ty, S;=FE, A= Ej° and T = {Po X '}).

Step 4: Verify (6.2.8) and (6.2.1). One obtains (6.2.8) from (6.2.14) estab-
lished in Step 1 and (6.2.7) established in Step 3. (6.2.1) follows from (6.2.15)
and (6.2.7).

(b) We have by (a) (with T = R*) that

inf P(X, =Y; € B) =1 (6.2.26)
and
n  D®RY)
X" ———— X asn 1 0. (6.2.27)

It then follows that

E [fOYTO _fOYT()-I-C] =E[fo X, — foXryi
= lim E" [fo X}, — fo X} ] =0

n— oo

(6.2.28)

for all ¢ > 0, Tg € Z(RT) and f € me[[I™(F\{1})] by (6.2.27), Fact B.35
(b) (with T = R*), Fact 6.19 (with T = R™), (6.2.26) and Lemma B.77 (a)
(with T = R*). Hence, the stationarity of Y follows by Corollary 3.11 (a)*
(with d = R(T) amd A = E). Po X! is m-tight in Fy by (a), so there
exists an A € #,(Ey, Og(Ep)) such that

inf P(X,=Y,€A)=1, (6.2.29)

teR*

by (6.2.26) and the stationarity of Y. Now, X is stationary by Lemma B.77

2P o Xp! and each P" o (X% )~! are Borel probability measures as mentioned in Note
6.5.
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(e).
(c) We fix Ty € P(T) and let each pr,n, pip,,, and pur, be as in (a).
It follows by (6.2.15), (5.1.3) (with D = Cy(E;R)) and Fact B.54 (with d =

N(To), 4t = prom and vy = prp, ) that

lim [ f(@)pmgn(de) = lim f* (i) = f*(rmy) (6.2.30)

n— oo ETO

for all f € me[ITT°(C,(F;R))]. Hence, (6.2.15) implies

w- lim pp, = pir, (6.2.31)

n—o0

by Theorem 5.4 (a, b) (with d = X(Ty), I' = {pt1yn }nen and D = C,(E; R)).
Now, (c) follows by (6.2.6), (6.2.31) and Fact B.36 (with I = N). O

Remark 6.22. As mentioned in Note 6.5, Polish-space-valued processes (espe-
cially replica processes) have Borel finite-dimensional distributions and their
finite-dimensional convergence refers exactly to the weak convergence of their
finite-dimensional distributions. Moreover, P(E ) is a Polish space by Corollary
3.11 (c). Hence, (6.2.12) is equivalent to Y = f[T({)A(”}neN).

The next corollary leverages Theorem 6.20 to establish finite-dimensional

convergence to a given limit process.

Corollary 6.23. Let E be a topological space, {(2",.F™,P"; X")},en be E-
valued processes, (Ey, F; E,]?) be a base over E and T C R*. Suppose that:

(i) {X[}nen is sequentially tight in Eq for allt € T.

(ii) (6.2.2) holds for all f € me[IITo(F\{1})] and Ty € P,(T).

(11i) E-valued process (0, %, P; X) satisfies (6.1.14) (especially (6.1.9)).
Then, the following statements are true:

(a) (6.2.6), (6.2.7), (6.2.8) and (6.2.1) hold for some { N, }roezy() C N.
Moreover, X, is m-tight for all To € Zy(T).

(b)) If T =R" and {X"},en is (RT, F\{1})-AS, then X is stationary.
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(¢) If Co(E; R) separates points on E, then X = flp({ X, }nen)-

Proof. Letting Y = X, we obtain (6.2.5) for all f € me[lIT(F\{1})] and
Ty € Hy(T) by the conditions (ii) and (iii) above, Fact 6.9 and Proposition
6.8 (a). Now, the result follows by Theorem 6.20 immediately. O

6.3 Cadlag replica

Cadlag replicas have features that can ease establishing relative compact-
ness, tightness, well-posedness of martingale problems and convergence prop-
erties of nonlinear filters etc. As Polish-space-valued cadlag processes, they

have the following nice measurability.

Fact 6.24. Let E be a topological space, (Eg, F; E, .7?) be a base over E and
(Q, #,P; X) be an E-valued process. Then, vep.(X; Ey, F) C M(Q, #; D(R™; E))30
and vep (X; Eo, F) C vep,(X; Eo, F) C vep,, (X; Ep, F)*'.

Proof. The first statement follows by Fact A.77 (b) (with E = E and X =
X € vep.(X; Ey, F)) and Fact A.76 (a) (with E = E). The second statement
follows by Proposition B.33 (a, c). O

Due to the topological difference of £ and E , non-cadlag FE-valued pro-

cesses can have cadlag replicas if they are almost cadlag on the functions in

F.

Definition 6.25. Let E be a topological space and (2, %#,P; X) be an E-
valued process. X is said to be weakly cadlag along T under D ((T,D)-
cadlag for short) if: (1) T € R" and D € M(F;R) are non-empty, and (2)
There exist R-valued cadlag processes {(Q, #,P; (/) }ep such that

il P(fox,=¢f)=1. (6.3.1)

feDeT

300M(Q, Z; D(RT; E)) denotes the family of all D(R*; E)-valued random variables de-
fined on measurable space (Q,.%).

rep,, (X Eo, F), vep,(X; Eo, F) and vep.(X; Eg, F) were introduced in Notation 6.3 and
stand for all equivalence classes of measurable, progressive and cadlag replicas of X with
respect to (Eg, F; E, F).
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Note 6.26. X is (R*,D)-cadlag if {w(f) o X}sep are all cadlag processes,
especially if X is cadlag and D C C(E;R) by Fact B.34 (a) (with S = R).
Apparently, (R, D)-cadlag property is transitive between modifications.

Remark 6.27. A special case of an (R*,D)-cadlag X is when w(f) o X is
cadlag for all f € D. This can happen to a non-cadlag X even if £ = R.

Here are three typical sufficient conditions for unique existence of cadlag

replica.

Proposition 6.28. Let E be a topological space, (Eq, F; E, .7?) be a base over
E, (Q,%,P;X) be an E-valued process and T C R*Y be dense. Then, the

following statements are true:

(a) If X is (RT, F)-cadlag and (6.1.14) holds, then X = tep (X; Ey, F)
exists and w () F)oX (resp. w(f) o X ) is the unique cadlag mod-
ification® of w(QF) o X (resp. w(f) o X for each f € F) up to
indistinguishability.

(b) If {w(f)oX }rer are all cadlug and (6.1.14) holds, then X = vep.(X; Ey, F)

exists and**

P (w(f) o X =w(f) o X,Vf € ca(F)) = 1. (6.3.2)

(¢) If X is cadlag and satisfies (6.1.9), then X = vep (X; Eo, F) exists and

-~

)o )?,‘v’f € C(FE;R) having a replica f) =1.
(6.3.3)

P(w(f)oX:w(

Remark 6.29. The functional indistinguishability of X and X in (6.3.2) is a
valuable property of cadlag replica. Corollary 3.10 showed C' (E, R) = ca(]? ),

so (6.3.2) allows many properties to be transferred between X and X.

Our construction of X is based on the following technical lemma.

32We specified in Notation 6.3 that “X = vep,(X; Eo, F)” means X is the unique cadlag
replica of X up to indistinguishability. “Unique up to indistinguishability” means any two
processes with the relevant property is indistinguishable.

33The terminology “modification” was explained in §2.5.

34Please be reminded that fdenotes the continuous replica of f.
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Lemma 6.30. Let E be a topological space, (Eq, F; E\,]?) be a base over E,
(Q, Z,P; X) be an E-valued process satisfying (6.1.14) for some dense T C R*
and T C S C R*. Then, the following statements are equivalent:

(a) X is (S, F)-cadlag.
(b) There exists an R™-valued cadlag process (2, % ,P; () such that

inf P (@f o X, = ct) ~ 1 (6.3.4)

(¢) There exists an X € M(Q,.Z; D(R*; E)) such that

inf P (®J—"o Xi=QFo Xt) — 1. (6.3.5)

Proof. ((a) — (b)) is immediate by Fact B.37 (with D = F and T = S).
((b) = (c)) Let Ty C T be countable and dense in R*. &) F(E) is a closed
subspace of R by (3.1.5).

PlceD(RYQFE))]
zP(Q ~QRFoxie QF(E) Ve T0> —1

by (6.3.4), To C S, (6.1.14), the cadlag property of ( and the closedness of
®]?(E) Then, there exists a

(e M[ (R+ R F(E) )] (6.3.7)

(6.3.6)

satisfying

P((=()=1 (6.3.8)
by (6.3.6), Proposition A2 (b) (with £ = R"O) and Lemma B.70 (b) (with
E=R>, Ey=Q®F(E), So=DR"QF(E)) and X = ().

It follows by by (3.1.3) and Proposition A.62 (d) (with S = ® F(E),
E=FEand f=(QF)™") that

- [(@ ﬁ) _l} =xe, [D (R+; ®f(E)) . D(R*; E)} . (6.3.9)
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It follows by (6.3.7) and (6.3.9) that
- -\ -1 N
X2w l(@]—") ] o' e M (Q Z: DR E)) . (6.3.10)

It follows by (6.3.8), (6.3.10) and (3.1.3) that

P(e-=(®F)ow|(®7) o -2 (®F)oX) -1 (311
Now, (6.3.5) follows by (6.3.4) and (6.3.11).

((c) — (a)) is automatic. O

Proof of Proposition 6.28. (a) By Lemma 6.30 (with S = R™), there exists an
X € M(Q,.Z; D(R*; E)) such that

i P (QF X = QFoX)
=12> sup IP’(@]—"OXt € ®]?(E)>

teRt+

(6.3.12)

@(Q F) o X (resp. w(f) o X) is a cadlag modification of @(® F) o X (resp.
w@(f) o X for each f € F) by (3.1.3), the fact F C C(E;R), (6.3.12) and Fact
B.34 (a) (with £ = E, X = X and f = f or ®.7-A") Now, (a) follows by
Proposition 6.8 (b) and Proposition B.33 (h).

(b) Given any X € vep (X; Ey, F), one finds that

{W €0 w(f)oX(w) =w(f) o X(w),Vf € ca(]—")}
fecn (@) xt - =(@7) e 510)

by properties of uniform convergence. Then, (b) follows by (6.3.13) and (a).

(c) Let Tg C T be countable and dense in R*. Given a cadlag X and
any X € vep (X Fo, F), w(f) o X and w(fA) o X are cadlag process for all
f € C(E;R) by Fact B.34 (a).

(6.3.13)

{w €0:w(f)oX(w) =w(f) o X(w),Vf € C(E;R) having a replica f}

D {w €0 X, (w) = X (w) € By, Vt € TO}
(6.3.14)
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by the fact f|gz, = f|g, and Proposition B.33 (g). Now, (c) follows by Fact
6.9, (b), Proposition 6.7 (a) and (6.3.14). O

Remark 6.31. The cadlag property of @w(® F) o X(w) in (R®)R" does not
guarantee that of X (w) in E®" since R F is not necessarily an imbedding on
E.

If Ey is large enough for X to almost surely live in Eé’”+, then one can mod-
ify merely a P-negligible amount of paths of X and obtain an indistinguishable
replica of X.

Proposition 6.32. Let E be a topological space, Ey € B(E) and (0, F,P; X)

be an E-valued process satisfying
P (X €Sy C EOR*) —1. (6.3.15)

Then, there exists an X e SS! satisfying the following properties:
(a) X is an (Eo, O(Eo))-valued process and P(X = X € Sp) = 1.
(b) X € vep(X: Ey, F) for any base (Eo, F; E, F) over E.
(c) If every element of Sy is a cadlag member of (ER", Og(Ey)® ), then

X = vep,(X; Eo, F) for any base (Eo, F; E, F) over E.

Proof. We fix yo € Sy and define X = var(X;Q, X 1(Sy), 40)*. Then, (a)
follows by Lemma B.31 (b, ¢) (with (E,%) = (ER", B(E)*R"), S = S,
U = U|g, and Y = X). Given any base (Eo, F; E, F), (Eo, Op(Ey)) is
coarser than (Ey, Og(Ep)) by Lemma 3.3 (d) and so X is an E-valued process.
We have by (3.1.1) that

(@7 % - @ %)

> P (Xt — X, € Ey,Vt € R+) > P (X —Xe So> (6.3.16)

=1> supP(@]—“oXt E®]?(E)),

teR*

3%(Ey, Or(FEy)) mneed not be a Tychonoff space, so we avoid the notation
D(R™; Ey, Op(Ep)).
36par(-) was introduced in Notation 4.1.
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thus proving (b). The cadlag property of X (w) : Rt — (Eo, O(Ey)) implies
X(w) € D(RF; E) for all w € Q%7 by Fact B.14 (b) (with E = (Ey, Op(Ey)),
S = (Ey, Og(Ey)) and f being the identity mapping on Ej). Hence, (c) follows
by (b), (6.3.16) and Proposition 6.8 (b) (with T = R™). O

Remark 6.33. In general, many paths of a cadlag replica could live outside
E§‘+. It is not necessarily an FE-valued process, nor is it (pathwisely) indistin-

guishable from X. Specifically, if X is cadlag and satisfies

inf P(X, € Ey) =1, (6.3.17)

teR*

then X = vep (X: Eo, F) satisfies

inf P (Xt ~ X, e Eo) ~1 (6.3.18)
teRT

by Proposition 6.28 (¢) (with T = R*) and Proposition 6.7 (a) (with T = R™).
However, this does not necessarily imply P(X € ER") = 1 nor P(X = X €
Eé’”+) = 1 since Ey might not be a closed subspace of E or E.

Moreover, we transform M (FE)-valued weakly cadlag® processes into
P(E)—valued cadlag processes by similar construction techniques for cadlag
replica, which furthers Corollary 6.12. An analogue for the measurable pro-

cess case is given in Lemma B.92 in §B.4.

Lemma 6.34. Let E be a topological space, (Ey,F; E,]?) be a base over
E, (2, % ,P; X) be an M*(E)-valued (R*, mc(F)*)-cadlug process satisfying
(6.1.34) and (6.1.35). Then, there exists an F{ -adapted D(R*; P(E))-valued
random variable (Q, F,P;Y) satisfying Corollary 6.12 (a, ¢, d).

Remark 6.35. In the proof below, we let ¢, @ yo and ¥ be as in Lemma
6.10 and set Sy = B[P(E)]. Recall that @ satisfies (6.1.26). P(E) is a com-
pact Polish space Corollary 3.11 (c¢) (with d = 1). Hence, Sy € € (R>) is a
Polish subspace of R* by Proposition A.12 (a, ) and Proposition A.11 (b,
f). D(R*;P(E)) and D(R*; Sy, Or(S0)) are Polish spaces by Proposition
A.72 (d) (with E = P(E) or (S, Or=(S))). Therefore, D(R*; P(E))-valued

3TThis statement is stronger than being an E-valued cadlag process.
38The notion of weakly cadlag was introduced in Definition 6.25.
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and D(R™; Sy, Or=(Sp))-valued random variables are cadlag processes by Fact

A.76 (a), for which .Z*-adaptedness is a proper concept.

Proof of Lemma 6.34. The proof of Lemma (6.10) mentioned that mc(F) is
countable and ¢ satisfies (6.1.25), so ¢ o X has an R*-valued cadlag modifi-
cation ¢ by Fact B.37 (with £ = M*(E), D = me¢(F)* and T = R") and ( is
FX-adapted by Proposition B.33 (e).
Similar to (6.1.31), we have that
fJﬁéMQ = o X; € S)

= inf PHw e Q:poXi(w)=7g" (v*) € So}) (6.3.19)

teRT

—P({we Q: X(@)(E) = X(w)(E) = 1}) = 1

by the countability of mc(F), Proposition 5.15 (a, b, e) (with d = 1, p = X;(w)
and 1 = ), (6.1.34) and (6.1.35). It follows that

inf P (¢ € D (R"; So, Or=(S5)))) =1 (6.3.20)

teR*

by (6.3.19), the closedness of Sy and the cadlag property of (. Then, there
exists a

¢('e M [Q,.Z;D (R"; S, Or=(5))] (6.3.21)

satisfying (6.3.8) by (6.3.20), Proposition A.72 (b) (with F = R*) and Lemma
B.70 (b) (with £ = Ey = R>®, Ey = Sp, So = D(RT; Sy, Or=(Sy)) and
X = (). As (is FX-adapted, ¢’ is FX-adapted by (6.3.8) and Proposition
B.33 (e). Furthermore,

inf P(¢] =poX, €S =1 (6.3.22)

teR*

by (6.3.8) and (6.3.19).
The proof of Lemma (6.10) mentioned that @ satisfies (6.1.26) and ¥ equals
¢! restricted to Sy. Hence, we have that: (1)

Y 2w ol =w(@ Yol e M [Q Z:D (R+; P(E))] (6.3.23)
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by (6.3.21) and Proposition A.62 (d) (with S = (S, Or~(S)), E = P(E) and
f=91, (2) Y is FX-adapted by (6.1.26), the .ZX-adaptedness of ¢’ and
Fact B.32 (a) (with E = (S, Or~(5)), S = P(E), f = ' and X = ('), and
(3)

inf P(poX,=( =goY,) =1 (6.3.24)

teR T
by (6.3.23) and (6.3.22).
Now, the result follows by Corollary 6.12 (a) - (d), (6.3.24) and (6.1.26). O

6.4 Weak convergence about cadlag replica

6.4.1 Several regularity conditions about processes

Before discussing weak convergence of cadlag replicas on their path space,
we give a series of regularity conditions about stochastic processes for our later

use.

Definition 6.36. Let E be a topological space and {(Q, ' P X%)}ier be

FE-valued processes.

o When (E,t) is a metric space, { X'} satisfies Mild Pointwise Con-
tainment Condition for T (T-MPCC for short) if T C R" is non-
empty and for any € € (0,00) and t € T, there exists a totally bounded
(see p. 222) set A., € B(E) satistying®

inf P (X, € A) >1—e (6.4.1)

o {X'}cr satisfies T-Pointwise m-Tightness Condition or T-Pointwise
Sequential m-Tightness Condition in A C E (T-PMTC or T-
PSMTC in A for short) if T C R* is non-empty and {X] };c1 is m-tight
or sequentially m-tight in A for all ¢ € T, respectively. Moreover, we
say {X'}ier satisfies T-PMTC (resp. T-PSMTC) if it satisfies T-PMTC
(resp. T-PSMTC) in E.

#The notation “A¢,” was defind in §2.1.3.
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o { X'} satisfies Metrizable Compact Containment Condition in
A (MCCC in A for short) if for each €,7" € (0, 00), there exists a K. €
™ (FE) such that K. o C A,

() (X)) ' (Ker) € F' Wil (6.4.2)
te[0,T
and
inf P' (X} € K.p,Vt €[0,T]) >1—e. (6.4.3)

1€l

Moreover, by {X*};c1 satisfies MCCC we mean it satisfies MCCC in E.

o When {X};cr are measurable processes, { X*};cr is said to satisfy Long-
time-average m-Tightness Condition in A for {7} }ien (T:-LMTC
in A for short) if T}, 1 co®® and

T
{i/ Pfo(X;')—ldr} C P(E) (6.4.4)
Ty Jo kEN,icl

is m-tight in A. Moreover, by {X'};c1 satisfies Tp-LMTC we mean it
satisfies T;,-LMTC in E.

o {X,}ier satisfies Modulus of Continuity Condition for t (--MCC for
short) if: (1) v is a pseudometric on £, and (2) For any ¢, 7" € (0, c0),

there exists a 0.7 € (0, 00) such that*!

{w €Q:uly , roXi(w) > e} e 7 Viel (6.4.5)
and
sup P* (w;(;eT’T o X' > e) <e. (6.4.6)
iel '

o {X,}ier satisfies Modulus of Continuity Condition (MCC for short)
if there exist a family of pseudometrics R that induces O(E)** and
{X"}ic1 satisfies t-MCC for all v € R.

4047 1 00” as usual denotes a non-decreasing sequence {7} }ren C R that converges to

0.
41 “wll-IA&T” is defined by (2.2.3) with F =R and v = |-|.
42The meaning of R inducing ¢(E) was explained in §2.1.3.
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o {X;}ier satisfies Functional Modulus of Continuity Condition for
D (D-FMCC for short) if: (1) @(f) o X* admits a cadlag modification
¢/ for each f € D C M(E;R) and i € I, and (2) {¢/}icr satisfies
|-|-MCC* for all f € ae(D).

o {X'};er satisfies Weak Modulus of Continuity Condition (WMCC
for short) if: (1) There exists a D C C(E;R) separating points on FE,
and (2) {X"},cr satisfies D-FMCC.

Note 6.37. An E-valued process X is said to satisfy any of the properties above
except T-PSMTC (in A)** if the singleton {X} does.

Note 6.38. If { X '};e1 and {Y"},e1 are two bijectively indistinguishable families
of E-valued processes (i.e. X and Y are indistinguishable for all ¢ € I), then
each of the conditions above is transitive between between { X*};cy and {Y " }c1.
Moreover, D-FMCC and WMCC are transitive between {X*};cr and {Y"}ier
if Y is a modification of X for all i € I.

Remark 6.39.

o Assuming total boundedness in lieu of compactness for each A ;, R*-
MPCC weakens the Pointwise Containment Property in [Ethier and
Kurtz, 1986, §3.7, Theorem 3.7.2] and [Kouritzin, 2016, §5].

o MCCC is a variant of the famous Compact Containment Condition (see
[Jakubowski, 1986, §4, (4.8)] and [Ethier and Kurtz, 1986, §3.7, (7.9)])
with respect to m-tightness, which become indifferent if £ has metrizable
compact sets. RT-PMTC is a similar variant of the Pointwise Tight
Condition in [Kouritzin, 2016, §5] and [Ethier and Kurtz, 1986, §3.7,
(7.7)].

o Tp-LMTC often appears in constructing stationary distributions (see Ku-
nita [1971] and Bhatt et al. [2000]). The measures in (6.4.4) are well-

defined by properties of measurable process and Fubini’s Theorem.

43].|-MCC means MCC for Euclidean metric |-|. The notation “ae¢(D)” was defined in
§2.2.3.

44Note that sequential m-tightness is for infinite collections of measures or random vari-
ables.
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Remark 6.40.
o MCC was used in Jakubowski [1986] and Kouritzin [2016] (in its finite-

time-horizon form) for general Tychonoff spaces. As long as E is Haus-
dorff, the assumption of pseudometrics R inducing ¢'(E) in MCC implies
E is Tychonoff (see Proposition A.25 (a, d)).

o WMCC is a special case of D-FMCC. Both of them are generically milder
than MCC as D need not strongly separate points on E.

Note 6.41. If {X'};o5 satisfy D-FMCC, then they are apparently (R*,D)-
cadlag processes.

Remark 6.42. In many standard texts like Billingsley [1968] and Ethier and
Kurtz [1986], +-MCC and MCCC are two fundamental criteria for establish-
ing tightness or relative compactness in Skorokhod _#;-spaces. The common
setting of F for t-MCC and MCCC is that (E,t) is a separable metric space.
Herein, we specify the measurability conditions (6.4.2) and (6.4.5) in the def-
initions of MCCC and MCC respectively since they are not necessarily true
for a general E. Given a cadlag X, Lemma A.79 justifies (6.4.2) under very
mild conditions about E and K., and Lemma A.80 justifies (6.4.5) for the

following four cases:

(1) (E,v) is a metric space and X' is a D(R™; F)-valued random variable.

(2) (E,¢) is a separable metric space.
(3) v= p{f}45 with f € C(E;R).

(4) v = pp with D C C(E;R) being a countable point-separating collection
(hence E is baseable).

Consequently, D-FMCC never incurs measurability issue like (6.4.5) by case
(2) above (with £ = R), nor does pgs;-MCC (resp. pp-MCC) for cadlag
processes and D consistent with case (3) (resp. case (4)) above.

Besides the measurability conditions (6.4.2) and (6.4.5), §A.7 of Appendix
A also provides several results about the relationship among t~-MCC, MCC, D-
FMCC and WMCC. The above-mentioned containment or tightness conditions
will be further discussed in §6.5.

*5The pseudometric pgsy is defined by (2.2.22) with D = {f}.
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6.4.2 Tightness of cadlag replicas

Given E-valued processes { X' }cr, we first consider tightness of their cadlag
replicas {X" € vep,(X'; Eo, F)}icx in the path space D(R'; E).
Remark 6.43. Cadlag replicas are always D(R'; E)-valued random variables

(see Fact 6.24) and their tightness in D(R*; E) has the usual meaning (com-

pared to our general interpretation in §2.4).

Note 6.44. Thanks to the compactness of E (see Lemma 3.3 (b)), the stringent

MCCC becomes an automatic condition for any family of E-valued processes.

Given MCCC, tightness of {X‘};c; in D(R*; E) can be reduced to that
{X"}ic1 satisfies F-FMCC.

Proposition 6.45. Let E be a topological space, (Eq, F; E, .7?) be a base over
E and {(¥, F' P, X") }ier be E-valued processes satisfying

inf P (®]—"on c ®ﬁ(§)) —1 (6.4.7)

teT,icl

for some dense T C R*. Then, the following statements are true:

(a) If {X;}ie1 satisfies F-FMCC, then {X' = vep.(X"; Ey, F) Vic1 satisfies
F-FMCC, satisfies pz-MCC and is tight in D(R™; E)

(b) The converse of (a) is true when T = R or {X;}ie1r are all cadlag.

(c) If 1 is an infinite set and any subsequence of { X }ier has a sub-subsequence
satisfying F-FMCC, then {X' = vep (X'; Eo, F)}iena, is sequentially
tight in D(R*; E) for some Iy € Z,(1).

Proof. (a) Suppose ¢/ is a cadlag modification of @ (f)oX® for each f € ae(F)
and i € T and {(/}c1 satisfies |-|-MCC for all f € ae(F). It follows by (6.4.7)
and Proposition 6.28 (a) (with X = X) that {X' = vep,(X'; Eo, F) }icr exists
and satisfies

o~ .

inf P"( Xi— f) _1, 6.4.8
reatd o w(f)o ¢ (6.4.8)

thus proving {X'}ier satisfies F-FMCC. {X*}.¢g satisfies p#MCC by Lemma
3.3 (a) and Proposition A.84 (with £ = E and D = F). Now, (a) follows
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by Note 6.44, Lemma 3.3 (c) and Theorem A.88 (with (E,t) = (E, pz) and
Xt = X?).

(b) Given tightness of {)A("}iel in DR E), {w(f) o )?i}z-el is tight in
D(R*;R) for all f € ae(F) by Proposition A.62 (d) (with £ = F and S = R)
and Fact B.60 (a) (with E = A = D(R*; E), S = D(R*:R), f = w(f) and
I = {Pio(X)Yer). Then, {w(f)o X }iex satisfies |-|-MCC for all f € ae(F)
by Theorem A.88 (with (E,t) = (R, |:|) and X' = @(f) o X1).

We have that

inf P (foXt —Fo X’;‘)

teT,icl, fcae(F)

- P (®7 % e @FE) -

by (6.4.7) and (6.1.1) (with X = X' and X = X?), so @(f) o X' is a cadlag
modification of w(f) o X' for all i € T and f € ae(F). If T # R and
{X"}ic1 are all cadlag, then @(f) o X' is indistinguishable from w(f) o X°
for all i € T and f € ae(F) by Proposition 6.28 (¢). In either case, {X"}er
satisfies F-FMCC.

(c) follows immediately by (a) and a subsequential argument. O

(6.4.9)

Next, we consider tightness of the indistinguishable cadlag replicas con-
structed by Proposition 6.32 in D(R™; Ey, Op(Ep)) or D(RT; E).

Proposition 6.46. Let E be a topological space, (Eq, F; E, .7?) be a base over
E and {(Q, F',P"; X?) }ier be E-valued cudlug processes. Suppose that:

(i) (Eo, Op(Fy)) is a Tychonoff space.
(ii) {X'}ier satisfies MCCC in Ej.
Then, there exists an Sy C ER" such that:

(a) Dy = D(RT; Ey, Op(Ey)) satisfies

B(Do)|g, = B(E)*R . C B(E)*R" _CADy).  (64.10)

46 (Dyg) is generated by the Skorokhod _#i-topology ¢ (Eo, Or(FEy)).
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(b) {)A(Z = rep (X" Eo, F)}ier satisfies

Xie M [, 758, 0, (S0)], Vi€l (6.4.11)
and
inf P! (Xi —Xie So) — 1. (6.4.12)
1€

(¢) {X"}iex is m-tight in Sy as Dy-valued random variables if and only if
{X"}ier satisfies F-FMCC.

Remark 6.47. The cadlag replicas {)A( “}ie1 above are Dy-valued random vari-
ables and their tightness in Sy C Dy has the usual meaning. We noted in §2.3
that Dy and Sy always satisfy*”

B(Dy)|s, O B(E)*R . (6.4.13)

but not the equality in (6.4.10). So, Dy-valued random variable (like X' in
(6.4.11)) is generally a stronger concept than (Ey, Og(FE))-valued cadlag pro-

Cess.

In fact, the developments of Proposition 6.46 do not require a base. We
establish the following more general result without imposing the boundedness

of the point-separating functions.

Theorem 6.48. Let E be a topological space, {(Q', F*, P'; X*) }iex be E-valued
cadlag processes, Ey € B(FE) and D C C(E;R). Suppose that:

(i) D separates points on Ey.
(i) (Eo, Op(Fy)) is a Tychonoff space.
(iii) {X'}ier satisfies MCCOC in Ej.
Then, there exist Sy C E®R" and {X' € S Vier such that:
(a) Dy = D(RY; Ey, Op(Ey)) satisfies (6.4.10).

(b) {X'Vicx satisfies (6.4.11) and (6.4.12).

17%(Dy) is generated by the Skorokhod _#;-topology of D(R™; Ey, O (Ep)).

155



CHAPTER 6. REPLICA PROCESS 156

(¢) {X}iex is m-tight in Sy as Dy-valued random variables if and only if
{X}iax satisfies D-FMCC.

Proof. We divide the proof into five steps. We equip Ey with the subspace
topology Or(Fy) throughout the proof, which we make implicit for conve-
nience.

Step 1: Construct Sp. By the condition (iii) above,
inf P’ (X; € Ay gVt €[0,q]) >1—27779 Vp,qg e N. (6.4.14)
1€

holds for some {A, ,}pqen C A ™(FEp). It follows that
q
= U pi € A (Eo) C C(Ey), Vp.q € N (6.4.15)

by the Hausdorff property of Ey, Proposition A.2 (¢), Lemma 3.54 and Propo-
sition A.12 (a). From (6.4.14) and (6.4.15) we obtain that

K,q,C Kpgi1, Vp,g €N (6.4.16)
and
ngpi (X} € Kpq,Vt€[0,q]) >1—27779 V¥p,q €N. (6.4.17)
Letting
V, = () {reby:alpy € KL}, VpeN, (6.4.18)

geN

one finds by the fact Ey € A(E), Lemma B.50 (b) (with E = Ey, A = K,,
and 1" = ¢) and and Proposition A.68 (b) (with £ = Ej) that

V, € Bp(E)*® s B(E)ERT _C#Dy), VpEN, (6.4.19)
which immediately implies
So= |V, € B(E)*H . C B(E)RT < B(Dy). (6.4.20)

peN

Step 2: Verify (a). Each of {K,,}pqen is a D|g,-baseable subset of Ey by
(6.4.15) and Proposition 3.51 (a, f) (with F = Ey, K = K,, and D = D|g,).
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So, D has a countable subset that separates points and strongly separates
points on each of {K, ,},,en by Lemma A.20. For simplicity, we assume D is
countable in Step 2 - 4 of the proof.

Letting U = w|ae(D)], we have

¥|y, € imb (V,, Op,(V,); DR R)*™)) , Vpe N (6.4.21)

and

B(Dyo)|, = BE)™| | VpeN (6.4.22)

p

by Lemma B.65 (with £ = Ey, V =V, p = g and A, = K, ). One then
finds by (6.4.19), (6.4.22) and Fact B.1 (with £ = Sy, n = p, 4, =V,
U, = B(Dy)|s, and % = B(E)R"|g,) that

B(Dy)|s, C B(E)R" . (6.4.23)

Now, (a) follows by (6.4.20), (6.4.13) and (6.4.23).
Step 3: Construct {X'}icr and verify (b). It follows by (6.4.16) and (6.4.17)
that

infP (X' €V,) > 1—sup» [1—P (X] € K,V € [0,q])]
el i€l
¢eN (6.4.24)
>1—2"7 VpeN.

Then, (6.4.20) and (6.4.24) imply
inf P (XZ‘ €Sy C Eg‘*) ~ 1. (6.4.25)

By Proposition 6.32 (a) (with X = X*), there exist

XieM (Qﬁ Sy, B(E)ZR"

) ) L Viel (6.4.26)

satisfying (6.4.12). Now, (b) follows by (6.4.26) and (a).
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Step 4: Verify sufficiency of (c). We have that’®

inf P (w(f) o X' =w(f)o f() —1 (6.4.27)

f€ae(D),iel

and
w(f)o X' e M (9, F%, D(R*;R)), Vf € ae(D),i €1 (6.4.28)

by (6.4.12) and Proposition A.62 (d) (with S = Ey and £ = R). Fixing
f € ae(D), w(f) o X' is the unique cadlag modification of w(f) o X up
to indistinguishability for all ¢ € I by (6.4.27) and Proposition B.33 (f, h).
{@(f) o X1}e1 satisfies |-|-MCC by (6.4.27) and {X*},c; satisfying D-FMCC.
{w(f) o)?i}ig satisfies MCCC by the boundedness of f. Hence, {w(f)o)?"}iel
is tight in D(R™;R) by Theorem A.88 (with (E,t) = (R,|-|) and X* = @(f)o
X).

Letting ¥ be as above, {¥ o)?i}iel is tight in D(R™; R)*(P) by tightness of
{w@(f)oX}icr in D(R*; R) and Proposition B.63 (a) (with E = Ey, D = ae(D)
and /' = P o (X))! € P(Dy)). (We assumed D is countable in this step, so
ae(D) is countable by Fact B.15.) R%“(®) is a Polish space by Proposition A.11
(f).

p = (X) ae(D B;R™(P)) (6.4.29)

by Fact 2.4 (b). Letting {K,,},4en be as in (6.4.15), we have that
X) ae(D)(K,,,) € & (R*P)) ¢ ¢ (R™P) (6.4.30)

by (6.4.29) and Proposition A.12 (a, e). It follows by Lemma B.66 (with
E=FE),V=V,p=qand A, = K,,) that

U(V,) € € (DRTR)™P)), ¥p e N. (6.4.31)

Hence, tightness of {X'}icr in Sy follows by Lemma B.67 (with E = Dy,
S=DR"R)*P) A, =V, Fy=S)and f = V).

A=, gen Kpg € K7 (E) is a D|g,-baseable subset of £y by Proposition
3.58 (b, e) (with E' = Ey, and D = D|g,). Sy is a baseable subspace of Dy by

48Herein, the replica process X' is an FEy-valued process and so f o )?; is well-defined.
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Proposition 3.62 (b) (with E = E,) and Fact 3.35. Thus, {X'};c1 is m-tight
in Sy by Corollary 3.15.

Step 5: Verify necessity of (c¢). In this step, we do not require D to be
countable and suppose {X};c1 is m-tight in Sy. For each fixed f € ae(D),
{@(f) o Xi}ser is tight in D(R*;R) by Proposition A.62 (d) (with E = E,
and S = R) and Fact B.60 (with F = Dy, S = D(R™;R), f = w(f), ' =
Pio (X))t € P(Dy) and T = {u'}icr). {@(f) o Xi}ier satisfies |-|-MCC by
Theorem A.88 (with (E,t) = (R,|-|) and X’ = @(f) o X?). Hence, {X }icr
satisfies D-FMCC by (6.4.27) and Proposition B.33 (f). O

Proof of Proposition 6./6. This result follows immediately by Theorem 6.48
(with D = F) and Proposition 6.32 (with X = X"). O

6.4.3 Weak convergence of cadlag replicas on path space

The following proposition connects the weak convergence of cadlag replicas

on path space and their finite-dimensional convergence.

Proposition 6.49. Let E be a topological space, {(Q", F™ P"; X™)},en be
E-valued processes, (Eg, F; E, .7?) be a base over E, X" e vep (X" Eo, F) for
each n € N and (Q, #,P;Y) be a D(RY; E)—valued random variable. Then,

the following statements are true:

(a) If {X"}nen and Y satisfy™

X" =Y asn?t oo on D(R";E), (6.4.32)
then
~ +
Xr PRAVED Ly g T 00. (6.4.33)

(b) If (6.2.12) holds for some dense T C R™, and if {X"},en satisfies

inf  P" (®]—"o X" e @f@)) —1 (6.4.34)

teT neN

and F-FMCC, then (6.4.32) holds.

49The meaning of (6.4.32) follows our interpretation in §2.4. Moreover, the notation
“J(Y)” is defined by (2.5.8) with X =Y.
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(c) If (6.4.32) holds, {X"}nen is (T, F\{1})-AS" and (6.4.34) holds for

some conulP' T C R*, then'Y is an E-valued stationary process.

Note 6.50. If Y is an E-valued cadlag process (especially a cadlag replica),
then J(Y) C (0,00) is countable by Lemma 3.3 (¢) and Proposition 3.64. In
other words, R™\J(Y) is a cocountable®® (hence non-empty and dense) subset
of RT.

Proof of Proposition 6.49. (a) follows by Lemma 3.3 (¢) and Theorem A.87
(a) (with E=E, X"=X"and X =Y).

(b) {X"},en is tight in the Polish space D(R*; E) by Proposition 6.45
(a) (with I = N). It is relatively compact in D(R"; E)5 by the Prokhorov’s
Theorem (Theorem 2.22 (b)). Now, (b) follows by Theorem A.87 (b) (with
E=E, X"=X"and X =Y).

(c) T\J(Y) is a conull set, so

Sym, = () {c € (0,00) 1t +c € T\J(Y)} (6.4.35)

teTo

is a conull hence dense subset of RT. Fixing Ty € Z(T\J(Y)) and [ €
me[IITo(F\{1})], we have

E [fo YTO] . [fo YTW] (6.4.36)

for all ¢ € Sy, by (a) and Lemma B.78 (b, e) (with T = T\J(Y) and
St, = Sy1y). {Yitcleso is a cadlag process for all ¢ € Ty since Y is cadlag.

-~

¢ = {@(f) o Yryicteso is also a cadlag process by Fact B.34 (a, b) (with
I="Ty i=1t X' =Yy X ={Yrschso and f = f). Then, (6.4.36) extends
to all ¢ € (0,00) by the denseness of St,y in R*, the cadlag property of ¢
and the Dominated Convergence Theorem. Now, (c) follows by Corollary 3.11

(a) (with d = X(To) and A = E) and Fact A.76 (a) (with E = E). O

50The notion of (T, F\{1})-AS was introduced in Definition 6.14.
51Conull set was specified in §2.1.5. Conull subset of R. is in the Lebesgue sense.
52The notion of cocountable set was defined in §2.1.1.

53Relative compactness of D(R'; E)-valued random variables {X"}nen follows our in-
terpretation in §2.4.
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The next proposition connects weak convergence of cadlag replicas on
D(R*; E) and that on the restricted path space D(R*; Ey, Op(E,)) (if well-
defined).

Proposition 6.51. Let E be a topological space, (Eq, F; E, .7?) be a base over
E, (Q,F,P; X) and {(Q", F™,P"; X") }en be E-valued cadlag processes, X e
vep (X Eo, F) and Xn e vep (X™; By, F) for eachn € N. In addition, suppose
(Eo, Op(Ey)) is a Tychonoff space. Then, the following statements are true:

(a) If X and {X"}nen satisfy®
X"= X asntoo on D (R*; Ey, Op(Ey)), (6.4.37)
then they satisfy

X" = X asnt oo on DR E). (6.4.38)

(b) If there exists an Sy C ER" satisfying (6.3.15) and

inf P" (X" €S, C Eg“) _ 1, (6.4.39)

neN
and if F strongly separates points on Fy, then (6.4.38) implies (6.4.57).

Proof. (a) For ease of notation, we let (2°,.7° P% X%) = (Q, #,P; X), Dy =
D(R*; Ey, Op(Ey)) and D = D(R*; E). (Ey, Ox(Ey)) is a topological refine-
ment of (Ey, Oz(Ey)) by Lemma 3.3 (d). D(R*; Ey, O0z(Ey)) is a subspace of
D by Corollary A.65 (with E = E and A = Ey). It then follows by (6.4.37)
and Proposition A.62 (e) (with E = (Ey, Oz(Ey)) and S = (Ey, Og(E)))) that
Dy C ]13), ]13)0 = (Do, O5(IDy)) is a topological coarsening of Dy and

X" e M (", 7%Dy) € M (Q“,ﬁ”;]ﬁo) . Vn € No. (6.4.40)

Let u,, v, and v, denote the distribution of X" as Dy-valued, D-valued

and ﬁo—valued random variables for each n € Ny, respectively. It follows by

54 A specified in §2.4, (6.4.37) abbreviates the statement that {X"},en and X are Do-

valued random variables and the distributions of {X"},en converge weakly to that of X in
P(Dy).
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(6.4.37) and Fact B.26 (with E =Dy, % = 6(Dy) and p = o) that
Vp = 1y as n 1 oo in P(Dy). (6.4.41)

It follows by (6.4.41) and Lemma B.55 (with E = D, A = Dy, p, = v, and
i = vp) that

~

Up = l/n|ﬁ = 1/0|ﬁ =Dy as n 1 oo in P(D), (6.4.42)

which proves (6.4.38).
(b) (6.3.15) and (6.4.39) imply

inf P* (X" € D) > inf P"(X" € S, NDy) = 1. (6.4.43)
n€ENy n€Ng
We have 0y (Ey) = O3(Ey) and Dy = Dy by F strongly separating points on
Ey and Lemma 3.3 (b). According to Proposition 6.32 (¢) (with .S = Dy and
X = X" or X), one can take

X" = vep (X" Eo, F)
e M (Q", F"Dy) = M (Qn,ﬁ";ﬁo) cM (Q” ﬁ”;]ﬁ) . VneN,
(6.4.44)

and each pu,, U, and v, in (a) are all well-defined with
ftn = v € P(Dy) = P(Dy), Vn € Ny. (6.4.45)

(6.4.38) implies (6.4.42). As D(R*; E) is a Polish space, (6.4.42) implies
(6.4.41) by Lemma B.55 (with E =D, A = Dy, ptn = v, and g = 15). Now,
(6.4.37) follows by (6.4.44), (6.4.41) and (6.4.45). O

6.5 Containment in large baseable subsets

Given E-valued processes {(€2',. 7% P"; X")},er and a base (FEy, F; E,]?)
over F, most developments of §6.1, §6.2 and §6.4 need Fj to have containment

properties like (6.4.7),
inf P'(X] € Ep) =1 (6.5.1)

teT,icl
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or (6.4.25) for {X"}ic1. In practice, one usually constructs a basesable set
F satisfying the non-functional® conditions (6.5.1) or (6.4.25) first, and then
select proper functions to establish the base (Ey, F; E,]? ). From Fact 6.9 we

immediately observe that:

Fact 6.52. (0.4.7), (6.5.1) and (6.4.25) are successively stronger for any index
set I and T C R*.

The simplest case is when FE itself is a baseable space. Then, one easily
obtains a base (E, F; E, F ) by Lemma 3.39 and the containment properties
in Fact 6.52 are automatic. When E is non-baseable, one can use T-MPCC,
MCCC, T-PMTC or T,-LMTC introduced in §6.4.1 to construct the desired
Ey in (6.4.25) or (6.5.1).

When {X}cr are all cadlag, the following proposition uses T-MPCC and
t-MCC to construct an Ej satisfying (6.4.25).

Proposition 6.53. Let (E,t) be a metric space, D C C(E;R) separate points
on E, T be a countable dense subset of RY and {(Q', F',P"; X?)}ier be E-
valued cadlag processes satisfying T-MPCC and v-MCC. Then, there exist
{Ap . }paen C C(E) satisfying the following properties:

(a) {Apq}pgen are totally bounded and satisfy
Apg CApgir, Vpog eN (6.5.2)
and

inf P’ (X; € A4, Vt € [0,q]) >1—27779 Vp,qg e N. (6.5.3)

1€l

(b) Eo = U, en Apg 18 a second-countable subspace and is a D-baseable

subset of E.
(c) Ey and Sy = UpeN V, satisfy (6.4.25), where
V= () {zreDy:alpg € AP}, VpeN. (6.5.4)
qeN

55(6.4.7) by contrast is a functional condition depending on the choice of F.
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(d) If (E,x) is complete, then {A,,}pgen C H(E) and {X'}iax satisfies
MCCC in Ey.

As noted in §3.3.4, metrizable compact subsets provided by MCCC, T-
PMTC and Tp-LMTC are nice baseable “blocks” for building Ey. In metric
spaces, totally bounded subsets provided by T-MPCC form another category
of such blocks.

Fact 6.54. Let (E,t) be a metric space, D C C(E;R) separate points on
E and {A,}nen be totally bounded Borel subsets of E. Then, |J,cn An @5 @

second-countable subspace and, in particular, is a D-baseable subset of E.

Proof. A = |J,en An is a separable subspace of £ by Proposition A.10 (a)
and Proposition A.3 (e). Now, the result follows by Proposition A.6 (c¢) and
Proposition 3.40. O

Proof of Proposition 6.53. (a) An inspection of the proof of [Kouritzin, 2016,
Theorem 17] shows that T-MPCC is enough for their developments. So, one
follows Kouritzin [2016] to construct totally bounded {A,,},qen C F(F)
satisfying (a).

(b) follows by (a) and Fact 6.54.

(c) One finds by (a) that

inf P (X' €V,) >1 - sig)z [1-P (X] € Ay, V€ ]0,q])]
qeEN (655)
>1—2"7 VpeN.

(d) Each (A, 4, t) is complete by the fact A, , C € (£) and Proposition A.5
(c). Then, (d) follows by Proposition A.16. O

The next proposition uses MCCC to construct an Ey satisfying (6.4.25).

Proposition 6.55. Let E be a topological space, D C C(FE;R) separate points
on E and {(Q', F',P"; X') }ic1 be E-valued processes satisfying MCCC in A C
E. Then, there exist { Ky 4}pqen C A ™(E) satisfying the following properties:

(a) (6.4.16) and (6.4.17) hold.
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(b) Eo = U, sen Kpg C A is a D-baseable subset of E. Moreover, {X" }iex
satisfies MCCC in Ey.

(c) Ey and Sy = |
(6.4.18).
Proof. (a) We pick {A,,}pqen C F™(E) satistying A,, C A for all p,g € N

and (6.4.14). E is a Hausdorff space by Proposition A.17 (e) (with A = F).
Then,

V,, satisfy (6.4.25), where {V,}pen are defined as in

peN

q
Kypg =\ K, € #™(E) C €(E) C B(E), ¥p,q €N (6.5.6)
i=1
by Proposition A.2 (c¢), Lemma 3.54 and Proposition A.12 (a). Now, (6.4.16)
and (6.4.17) follow by (6.4.14) and (6.5.6).
(b) follows by (6.5.6), (a) and Proposition 3.58 (b, e).
(c) Ep and S satisfy (6.4.24) by (a), which implies (6.4.25) immediately. [

In the following fact, one gets an Fj satisfying (6.5.1) by T-PMTC for a
countable T C R™*.

Fact 6.56. Let E be a topological space, A C E and {(Q, F',P'; X*) }ier be

E-valued processes. Then, the following statements are true:

(a) If 1 is an infinite set and { X' };er satisfies T-PMTC in A, then {X'}ier
satisfies T-PSMTC in A.

(b) {X'}ier satisfies T-PMTC in A if and only if {X7, }ier is m-tight in
Ao for all Tg € Py(T).

(c) If {X"}iex satisfies T-PSMTC in A, then {Xf, }ier is sequentially m-
tight in AT for all Ty € P,(T).

(d) If {X"}ier satisfies T-PMTC in A for a countable T C R* and D C
C(E;R) separates points on E, then there exists a D-baseable subset
Ey € ™ (FE) such that {X"}cr satisfies T-PMTC in Ey C A.

(e) When (E,t) is a metric space, {X'}ier satisfying T-PMTC implies
{X}iar satisfying T-MPCC and the converse is true if (E,t) is com-
plete.
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(f) If {X"}ier satisfies MCCC in A, then {X'}ier satisfies RT-PMTC in
A.

Proof. (a) and (f) are automatic by definition. (b) and (c) follow by Lemma
B.61 (with I =Ty, S; = E, 4; = Aand I' = {P’ o (X, ) "' }ier). (d) follows
by Lemma B.74 (with I =T, i =t and T'; = {P" o (X}) ' }sc1).

(e) The first part is immediate by Proposition A.16. Then, we suppose
{X}iax satisfies T-MPCC and (F,t) is complete. For any ¢ € (0,00) and
t € T, there exists a totally bounded B, C E such that (6.4.1) holds for the
closure A.; of B.;. A.; is totally bounded by Proposition A.10 (c). (Acg, )
is complete by Proposition A.5 (¢). Hence, A.; € J#(E) by Proposition
A.16. O

Given countably many processes satisfying 7Tj,-LMTC, the next proposition
constructs an Ejy satisfying (6.5.1) for a conull T C R*.

Proposition 6.57. Let E be a topological space, D C C(E;R) separate points
on E and {(Q", F™,P"; X" }en be E-valued measurable processes satisfying
Tp-LMTC in A C E. Then, there exists a D-baseable subset Ey € F,™(F)
with A D Ey and a conull T C R™ such that

inf P" (X' € Eo) =1 (6.5.7)

teT ne
and {X"}en satisfies Tp-LMTC in Ej.
Proof. We take {K,},en C ™ (A, Op(A)) satisfying

Tk

1
inf — P"(X'e K,)dr>1—-2"7 VpeN (6.5.8)

k,nEN Tk 0

and let By = (J,cn K € (A, Op(A)). Tt follows that

Ty
sup / P" (X" ¢ Ey)dr =0 (6.5.9)
0

kneN

by (6.5.8) and continuity of measure. Hence, (6.5.7) holds for the conull set

T=R" | J {t€[0,Ti]:P"(X]' ¢ Ey) > 0}. (6.5.10)

kneN
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Now, the result follows by (6.5.8) and Proposition 3.58 (b, e) (with A =
Ep). U

The relationship among MCCC, T-MPCC, T-PMTC and T-LMTC is
illustrated in Figure 4 below, where green arrows means definite implication,
blue arrow means conditional implication and red crossed arrow means false

converse.

a dense T

| a t| am

R+-PMTC | ", T-PMTC - T-PMTC

—_—
for for

a conull T a dense T

(IV) s

o~
[
p—
™,
.,
o~
R
—_
e
e
<
o

Figure 4: The relationship among tightness/containment conditions

Remark 6.58. All the unlabelled arrows in Figure 4 are immediate. Below is

some explanation for the labelled ones:

o (I) was justified in Proposition 6.53 (a, d) for cadlag processes living
on a complete (but not necessarily separable) metric space (F,t) and
satisfying t-MCC. This is a generalization of [Kouritzin, 2016, Theorem
17] on infinite time horizon since T-MPCC with a dense T is weaker

than the Pointwise Containment Property in [Kouritzin, 2016, §5].

o By Fact 6.56 (e), (II) is true on arbitrary metric spaces and (III) is true

on complete metric spaces.

o (IV) was justified in Proposition 6.57 for a countable collection of mea-

surable processes.
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o (i) is not true because T-LMTC will not be affected by changing the
distributions of {X}};cr to a non-tight family for each t € Q.

o (ii) and (iii) are disproved by the constant process {t}:>o.

o (iv) and (v) are disproved by Example 6.59 below, where we construct
a non-stationary cadlag process that satisfies Tj,-LMTC and RT-PMTC
but violates MCCC. (iv) was also disproved by [Kouritzin, 2016, Exam-
ple 2].

Example 6.59. Let 4 be the uniform distribution on (0,1) and

l—w+t, iftel|0,w),
m(w) = 0.w) Vw e (0,1),t € RT. (6.5.11)
z if t € [w, ),

N = {nt }>0 satisfies RT-PMTC since (0, 1) is o-compact. However, n violates
MCCC because for any a,b € (0,1),

w(n; € [a,b],Vt € [0,1]) (6.5.12)
<l—p{we0,1):0<w—t<1—0b,3e€0,w)}) =0.
For each 7 > 0 and € € (0,1/2),
(nelel—€e}=((rAD)V(e+71),1AQ+T7—€)U(0,7AL). (6.5.13)
Letting T' > 1/¢, one finds by (6.5.13) that

e I
T/o /L(’I]TE[E,l—E])dTZT/l ldr > 1—e. (6.5.14)

Hence, n satisfies T-LMTC for any T} T oo. Moreover, n is non-stationary

since 7y and 7,2 have distinct expectations.
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Chapter 7

Application to

Finite-Dimensional Convergence

The previous four chapters elaborate Theme 1 of this work. With the help
of replication, we have developed in §6.2 several tool results for Theme 2, the
finite-dimensional convergence of possibly non-cadlag processes. Now, we are
going to answer the target questions Q1, Q2 and Q3 of Theme 2 in the
following three sections. §7.1, establishing finite-dimensional convergence to
processes with general paths, answers Q2. §7.2, establishing finite-dimensional
convergence of weakly cadlag processes to weakly cadlag or progressive limit
processes, provides answers to both Q2 and Q3. In §7.3, we answer Q1 by
establishing finite-dimensional convergence to long-time typical behaviors of a

given measurable process.

7.1 Convergence of process with general paths

Let {X'}icx be E-valued processes and S C R*. We give in this section a
set of sufficient conditions for the unique existence of X € flpg({X*}ic1)!. The
nature of establishing an X € flpg({X"}ic1) with general paths is establishing
a Kolmogorov’s extension of weak limit points of the finite-dimensional distri-
butions of {X"};c1 for each Ty € Zy(S). Hence, our goal can be achieved by
directly applying Theorem 5.10 established in §5.1.

!The readers are referred to §6.2 for definitions and notations about finite-dimensional
convergence, finite-dimensional limit point and finite-dimensional limit.
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Theorem 7.1. Let E be a topological space, {(Q', ", P" X") }ier be E-valued
processes, D C Cy(F;R) separate points on E* and S C R*. Then, the

following statements are true:

(a) If {X"}icx satisfies S-PSMTC® in A C E, then any X € flpg({ X" }icr)
satisfies S-PMTC in A.

(b) If {X}ic1 is (S, D)-FDC" and satisfies S-PSMTC, then there exists an
X = flpg({ X" }ier) satisfying S-PMTC and X = flg({ X }en) for any
{in}nGN C I

(c) If {X}ier is (RT,D)-FDC, is (RT,D)-AS and satisfies RT-PSMTC,
then there exists a stationary X = flpr+ ({ X }ic1) satisfying RT-PMTC
and X = flg+ ({ X }nen) for any {iy nen C L

Remark 7.2. We pointed out in Fact 6.56 (b) (with T = S) that X satisfying
S-PMTC in A is equivalent to X, being m-tight in AT° for every Ty € Zy(S).
In particular, X satisfying RT-PMTC is equivalent to all finite-dimensional
distributions of X being m-tight.

Proof of Theorem 7.1. (a) Without of loss of generality, we suppose X is de-
fined on (2, %, P) and

xin PO % as n T oo. (7.1.1)
It follows by (7.1.1) and Fact 2.24 (d) that

P o (X/") ' = PoX;'asntooinP(E), Vt €S. (7.1.2)

{X/"}nen is sequentially m-tight in A for all t € S as {X'}e1 satisfies S-
PSMTC in A. Hence, (a) follows by (7.1.2) and Lemma 5.7 (with I' = {P o
(X{") " nen and =P o X;7).

2As mentioned in Note 5.5, the assumption of D C Cy(E;R) separating points on E
below does not require F to be a Tychonoff or baseable space.

3S-PMTC (in A) and S-PSMTC (in A) were introduced in §6.4.1. As specified in Note
6.37, that X satisfies S-PMTC in A means the singleton {X} satisfies S-PMTC in A.

4The notion of (S, D)-FDC was introduced in §6.2.
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(b) For each i € I, we let p; be the restriction of pd(X) to B(E)*R">. For
each Ty € Zy(S), the probability measures

pi o ppe =Po (X))t e B(E™, B(E)*™), Viel (7.1.3)

form a sequentially m-tight family by Fact 6.56 (c¢) (with A = F). For each
Ty € Z(S) and f € mc[IITo(D)] U {1}, the integrals

i ()i 0 ppo(da) =E' [fo X ], Viel (7.1.4)
ETo

admit at most one limit point in R since {X'};e1 is (S, D)-FDC. Hence, it
follows by Theorem 5.10 (with I' = {g; }ie1, I =S, Iy = Tp and a = b = 1) that
there exists a unique pu € P(ES, B(F)®S) and some {Ir, € Py(I)}r ez s)
such that p o pr}é € P(E™) is the weak limit of any subsequence of and,
hence, is the unique weak limit point of {yr,;, = be(u; o p,}(l))}iel\ITO for all
Ty € Zy(S).

We fix ty € S and define

, iftes,
x, =" vt e RY. (7.1.5)
pto) ift € R+\S)

By Fact 2.3 (a) and Fact 2.24 (b), X = {X;};>o well-defines an E-valued
process on the probability space (ES, Z(E)®S, 1) and certainly satisfies

,uerE; = opil), VTo € P (S). (7.1.6)

Now, (b) follows by (a) and Fact B.36 (with T = S).

(c) One obtains by (b) (with S = R") an X = flpg+ ({X'}ic1) satisfying
all conclusions of (c) except for stationarity. Without loss of generality, we
suppose X is defined on (€2, .%#,P) and

xin _PBRD Ly as n T oo. (7.1.7)

SRestriction of measure to sub-o-algebra and X’s process distribution pd(X) were spec-
ified in §2.1.2 and §2.5 respectively.
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Fixing ¢ € (0,00) and Ty € Z,(R"), it follows by (7.1.7), Fact B.35 (b) (with
n =1,) and Fact 6.19 (with n = 4,) that

E[foXp]—E[foXg, ] = limE"[foXy —foXg, ]=0 (7.18)
for all f € me[lI™(D)]U{1}. Hence, Po Xy =PoXy.,, by their m-tightness
and Lemma B.59 (b) (with d = X(Ty)). O

Theorem 7.1 can be used to identify a given E-valued limit process as the

unique finite-dimensional limit point.

Corollary 7.3. Let E be a topological space, S C RT and {(Q', Z', P"; X*) }icx
and (2, #,P; X) be E-valued processes. Suppose that:

(i) D C Cy(E;R) separates points on E.
(ii) {X'}ier satisfies S-PSMTC.
(11i) X satisfies S-PMTCE.

(w) E[f o Xq,] is the unique limit point of {E'[f o X%, }ier in R for all
f € mc[HTO(D)] and TQ € QQ(S)

Then, the following statements are true:

(a) X = flps({ X }icr) and X = flg({ X" }nen) for any {in}nen C L.

(b) If S = RT and {X'}ic1 is (RT,D)-AS, then X = flpg+ ({ X }ic1) is a
sationary process and X = flg+ ({ X }nen) for any {in}nen C L.

Proof. (a) {X'}ier is (S, D)-FDC by the condition (iv) above. By Theorem
7.1 (b), there exists a Z = flpg({X }ier) such that Z satisfies S-PMTC and
Z = flg({ X" }nen) for any {i, }nen C I We suppose Z is defined on (Q, .7, P)
for simplicity, fix {in}nen C I and show IP)oX_; =Po ZE; for all Ty € Z(S).
Since

xin P8 L 7 asn T o0, (7.1.9)

6X satisfying S-PMTC means the singleton {X} satisfies S-PMTC.
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we have by (iv) and Fact 6.19 (with X = Z) that
E[fOXTO] :E[fOZTO] (7110)

for all f € me[lI™(D)] U {1}. X1, and Zp, are m-tight by the condition (iii)
above and Remark 7.2 (with X = X or Z). Hence, Po Xg! = Po Zg! by
Lemma B.59 (b) (with d = R(T))).

(b) follows by (a) (with S = R*) and Theorem 7.1 (c). O

Remark 7.4. A variant of Theorem 7.1 will be given in Proposition 7.15 that

relies heavily on our results herein.

7.2 Convergence of weakly cadlag processes

This section is concerned with finite-dimensional convergence of E-valued
processes satisfying D-FMCC”. Such processes as mentioned in Note 6.41 are
(RT, D)-cadlag® processes.

Given {X"},en satisfying D-DMCC, part (a) of the next theorem estab-
lishes an (S, D)-cadlag X € flpg({ X" }nen) and gives an alternative answer to
Q2 in Introduction. Part (b) further imposes the standard Borel property and
establishes a progressive member of flpg({ X"} en). In lieu of a standard Borel
assumption, part (c) assumes the (T, D)-AS of {X"},en for a conull T O S
and establishes a stationary and progressive member of flpg({X"},en). These

two parts provide answers to Q3 in Introduction.

Theorem 7.5. Let E be a topological space, {(Q", F" P" X")}en be E-
valued processes and S C T C R* with S being dense. Suppose that:

(i) Cy(E;R) separates points on E.
(i1) D C Cy(E;R) is countable and Ey is a D-baseable subset of E.
(111) {X"}nen satisfies (6.5.7).

(v) {X"}nen satisfies S-PSMTC in Ey and D-FMCC.

"The notion of D-FMCC was introduced in Definition 6.36.
8The notion of (S, F)-cadlag process was introduced in Definition 6.25.
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(v) flpg({w(p)o X"} en) has at least one cadlag member with ¢ = @ D.

Then, there exist a stochastic basis’ (Q, F,{% }i>0,P), some {ng}ren C N
and X, X" € (ER")® such that the following statements are true:

(a) X = flg({X™ }ren) is an E-valued (S, D)-cadlug process and satisfies
S-PMTC in Ey.

(b) If Ey € P$(E), then X' = flg({X™ }ken) is an E-valued, (S,D)-
cadlag, 9,-progressive'® process and satisfies S-PMTC in Ey. In par-
ticular, X' has an (S, D)-cadlug progressive modification with paths in

R+11
ERTIL

(c) If T is conull and {X"™ }ren is (T, D)-AS, then X' = flg({X"™ }ren)
is an E-valued, stationary, (RT,D)-cadlug process and satisfies R -
PMTC in Ey. In particular, X' has an (R, D)-cadlag progressive

modification with paths in ER".

Remark 7.6. If Ey is a D-baseable subset for a general D C C(FE;R), then Ej
is Dy-baseable for some countable Dy C D (see Fact 3.34 (c)) and Dy-FMCC
is a weaker assumption than D-FMCC. Hence, it is no less general to make D

a countable collection in the theorem above.

Remark 7.7. Any compact subset contained in a baseable set Ej is metrizable
by Corollary 3.52. So, the m-tightness within S-PSMTC in Ej is reduced to

ordinary tightness.

Remark 7.8. The proof of Theorem 7.5 relies on Theorem 6.20 in which the
limit processs X was initiated as a collection of Ey-valued mappings {X;}i>o.
Of course, this is equivalent to initiating the limit process as an E§+-Valued
mapping (like the X and X’ in Theorem 7.5). Moreover, both Theorem 6.20
and Theorem 7.5 consider the limit processes as F-valued processes with paths

. + . A . . .
in B for the desired finite-dimensional convergence.

We use the next lemma to establish progressiveness in Theorem 7.5 (b, c).

9The notion of stochastic basis was reviewed in §2.5.
10The notion of ¥,-progressive processes was specified in §2.5.

1 Given Ey C E, an E-valued process with paths in Egﬁ is equivalent to an (Fy, Og(Fy))-
valued process.
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Lemma 7.9. Let E be a topological space, o € Eqy C E, T C R* and
(Q, .7, P;Y) be an E-valued process satisfying

tlél%P(Y% € Ey) =1. (7.2.1)
Then, the mapping
° 1 R+ Q
X = Q) var (Y .Y, (Eo),z0) € (EO ) (7.2.2)

teR*

satisfies the following statements:
(a) Xi =proX € M(Q, F; Ey, Be(Ey)) for allt € T and (6.2.9) holds.

(b) If T = R*, then X is an E-valued process with paths in EX" | satisfies
(6.2.26) and is a modification of Y.

(c) If Ey € B(E), then X is an (Ey, Og(Ey))-valued FY -adapted process.
If, in addition, Y is a measurable or progressive process, then X is

measurable or FY -progressive respectively.

(d) If Ey € B(E)NA*(E), and if Y is a measurable process, then X is an
0, O(Eo))-valued, measurable, F, -adapted process and admits an
Ey, Og(E lued ble, F -adapted d ad

FY -progressive modification.

Proof. (a) follows by Lemma B.31 (b, ¢) (with Z = B(E), S = Sy = Ey,
U = Br(Ey), X =Y, Y =X, and yo = x9).
(b) follows by (a) (with T = R*) and Fact 2.24 (b) (with E = (Ey, Op(Ey))).
(c) Let ¢ denote the identity mapping on E. We find that

¢ = var(p; E, By, v9) € M (E; Ey, Op(Ey)) (7.2.3)

by Ey € #(FE) and Fact B.3 (b) (with (S,«) = (E,%4(F)), (B, %) =
(Eo, Br(Ey)), A = Ey, f = ¢ and yop = x9). Then, (c) follows by (7.2.3),
the fact X = w(y’) oY and Fact B.32 (a) (with S = (Ey, Op(Ey)), [ = ¢,
X =Y and ¥ =Z)).

(d) X is an (Ey, Op(Ep))-valued, measurable, .#} -adapted process by (c).
Let ¢o denote the identity mapping on E,. By Ey € %°(E) and Proposi-
tion A.52 (a, d), there exists a topology % on Fy such that (Ey, %) is a
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Polish space and ¢y € biso(Ey, Or(Ey); Ey, %) . Then, (Ey, Or(Ey))-valued
measurable (resp. .#Y -progressive) processes are equivalent to (Ey, % )-valued
measurable (resp. %} -progressive) processes by Fact B.32 (a) (with E (or S)
being (Ey, Or(Ey)), S (or E) being (Ey, %), f = ¢o and 4, = F). We owe to
[Ondrejat and Seidler, 2013, Theorem 0.1] the proof of that every Polish-space-
valued, measurable, .7} -adapted process (like X) admits an .%#} -progressive

modification. Thus (d) follows immediately. O

Corollary 7.10. Let E be a topological space, Ey € HB(E) N B°(F) and
(Q, 7 ,P; X) be an E-valued measurable process satisfying (6.3.17). Then,

X has a progressive modification with paths in Eg“.

Proof. This corollary follows by Lemma 7.9 (b, d) (with Y = X and X =Y)
and Proposition B.33 (e). O

Corollary 7.11. Let E be a topological space, D C Cy(F;R), Ey be a D-
baseable standard Borel subset of E and (), % ,P; X) be an E-valued (R™,D)-
cadlag process satisfying (6.5.17). Then, X has a progressive modification with
paths in ER".

Proof. There exists a base (Ey, F; E, F) over E with F C (DU{1}) by Lemma
3.39 (¢). X = vep.(X; Eo, F) exists by the fact (F\{1}) C D and Proposition
6.28 (a). It follows by Fact 6.24 and Proposition 6.7 (a) (with T = R") that X
and X satisfy (6.3.18) and X is a progressive process. .ZX = %
B.77 (e) (with A = Ey and Y = X), so X is .%;X-progressive. Furthermore,

we have

K12 by Lemma

Br(Eo) = Bs(Eo) C B(E) (7.2.4)

by Lemma 3.14 (a) (with d = 1 and A = Ej). X has an FX-progressive
modification Z with paths in ER" by (6.3.18), (7.2.4) and Lemma 7.9 (b, c)
(with E=F and Y = X). Z is an (Eo, Og(Eo))-valued process by (7.2.4). Z
is a modification of X by (6.3.18). So, Z is progressive by Proposition B.33
(e). O

Remark 7.12. A special case of Corollary 7.10 and Corollary 7.11 is when

E = Ej is a D-baseable standard Borel space and (6.3.17) becomes automatic.

12The notation “#X” as defined in §2.5 means the augmented natural filtration of X.
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The following proposition shows that the condition (v) of Theorem 7.5 is

realizable.

Proposition 7.13. Let E be a topological space, D C Cy(E;R) be countable,
Eqy be a D-baseable subset of E and I be an infinite index set. If E-valued
processes {(QV, F' P XO) Vet satisfy (6.4.7) and D-FMCC, then there exists
a countable J C (0,00) such that flpg+\y({@w(D) o X'}icr) has at least one

cadlag member.

Proof. There exists a base (Ey, F; E, F) over E with F = DU {1} by Lemma
3.39 (b), so {X"},en satisfies F-FMCC. It follows by Proposition 6.45 (a)
and Note 6.5 that {X' = vep.(X'; Fy, F)}ier is tight in the Polish space
D(R*; E). {X'}ier admits at least one weak limit point Y on D(R*; E) by
the Prokhorov’s Theorem (Theorem 2.22 (b)). J = J(Y) C (0,00) is count-
able by Note 6.50. Now, the result follows by Proposition 6.49 (a) and Lemma
B.81. O

We now prove the main theorem of this section.

Proof of Theorem 7.5. The proof is divided into six steps.

Step 1: Establish a base (Fo, F; E, .7?) and cadlag replicas {)?"}neN. There
exists a base (Ey, F; E, F) over E with F = DuU{1} by the condition (ii) above
and Lemma 3.39 (b). (6.4.34) holds by the condition (iii) above and Fact 6.52
(withI = N). {X"},en satisfies F-FMCC by the condition (iv) above and the
fact F\{1} = D, so they are (R", F)-cadlag. It then follows by Proposition
6.45 (a) (with I = N), Proposition 6.28 (a) (with X = X™) and Note 6.5 that
{X" = vep.(X™: Ey, F)}nen is tight in the Polish space D(R; E) and satisfies

inf P (9o Xj' = o X7 ) =1 (7.2.5)
with @ = ® F\{1}.

Step 2: Establish {ni}ren and a D(RT; E)-valued random variable Y such

that

X P8y sk T o0. (7.2.6)

By the condition (v) above, the tightness of { X" },en in D(RT; E) and Prokhorov’s
Theorem (Theorem 2.22 (b)), there exist {n}ren C N, a D(RT; E)-valued

177



CHAPTER 7. FINITE-DIMENSIONAL CONVERGENCE 178

random variable Y (see Remark 7.14 below for an explicit construction) and

an RP-valued cadlag process Z such that

X™ =Y as k1 oo on D(R; E) (7.2.7)
and
n D(S)
w(p)o X™ ———— Z as k 1 oc. (7.2.8)

Without loss of generality, we suppose Y and Z are both defined on (2, #, P).

Since D is countable, RP and D(R™;RP) are Polish spaces as mentioned
in Note 6.5. So, Z can be considered as a D(R™; RP)-valued random variable
by Fact A.77 (b) (with E = RP). F\{1} separates points on E by Lemma
3.3 (a). ]?\{1} strongly separates points on E by Lemma 3.3 (a) and Lemma
A20 (with E = E and D = F\{1}). So,

% € imb(E; RP) (7.2.9)

~

by the fact D = F\{1} and Lemma B.7 (b) (with £ = E, S = R and
D = F\{1}). ~
=(@) e C (D(R+; E); D(R*;R)) (7.2.10)

by Proposition A.62 (d) (with S = E, E = RP and f = ).
It follows by (7.2.7), (7.2.10) and Continuous Mapping Theorem (Theorem
B.25 (a)) that
w(P) o X™ = w(@) oY as k1 oo on D (RT;RP). (7.2.11)
It follows by (7.2.5) and (7.2.8) that
(S)

(@) o X — 28 7 as kit oo (7.2.12)

{@(?) o X" }pen is tight in D(R*; RP) by (7.2.10) and Fact B.60 (with E =
D(R*;E), S = D(R";RP and f = w($)). Hence, (7.2.15) implies

@(3) o X™ = Z as k 1 0o on D (R™;RP) (7.2.13)
by the Prokhorov’s Theorem (Theorem 2.22 (b)), the denseness of S and The-
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orem A.87 (b) (with £ = R, X" = @w(#)oX™, X = Z and T = S).
P(D(R*;RP)) is a Polish space by Theorem A.44 (b) (with E = D(RT; RP)),
SO

PoZ '=Po(w(@)oY) ' € P(DR";RP)) (7.2.14)

by (7.2.11) and (7.2.13). Y and Z as RP-valued processes have the same
finite-dimensional distributions by (7.2.14) and Fact A.76 (b) (with E = RP),
so (7.2.15) implies

o(@) o X —P® s (@)oY as k1t oo (7.2.15)

We fix Ty € P(S) and put d = R(To). {X™}ren, {@(P) 0 X" bpen, ¥

and w(®) oY all have Borel finite-dimensional distributions as mentioned in
Note 6.5, so (7.2.15) implies

(@@opt> o X = <®@opt> oY as k1 oo on R (7.2.16)

teTo teTyo

One finds that

v @ op e C|FE), One (AE)) 5 ] (7.2.17)
teTy
by (7.2.9) and Fact 2.4 (a, b). Hence, it follows by (7.2.17), (7.2.16) and
Continuous Mapping Theorem (Theorem B.25 (a)) that

S 0o (@eon ) o 5
teTy

(7.2.18)
— Vo <®$opt> oY =Y as /{:TooonETO.

t€To
Step 3: Construct (Q, F,{%}1>0,P), X and X'. We fix an arbitrary xq €
Eo, set {4} >0 = F7Y, define X by (6.2.4) with T = S and define X' by (7.2.2)
with X replaced by X'.
Step 4: Verify (a). 1t follows by the conditions (i, iv) above, (7.2.6), Lemma
B.78 (c, e) (with n = ny) and Theorem 6.20 (a, ¢) (with n = n, and T = S)
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that the X defined in Step 3 is an F-valued process with paths in Eg“ and
satisfies: (1) S-PMTC in Ejy, (2)

infP (X, = Y; € B) = L. (7.2.19)

and (3) X = flg({X™ }ren). Hence, (a) follows by the fact D C F, (7.2.19)
and Lemma B.77 (b) (with T = S).

Step 5: Verify (b). Y is cadlag hence ¥;-progressive by Proposition B.33

(a). Given Ey € #°(F), (7.2.4) holds by Lemma 3.14 (a) (with d = 1 and

A = Ej,). Hence, the X’ defined in Step 3 is an (Ey, Op(Ey))-valued ¥;-

progressive process satisfying

infP (X, = Y; = X/ € By) = 1 (7.2.20)
by (7.2.19), (7.2.4) and Lemma 7.9 (a, ¢) (with £ = Eand T = S and
X = X'). Then, X' = flg({X™ }ren) by (a) and (7.2.20). X' is (S, D)-cadlag
by the fact D C F, (7.2.20) and Lemma B.77 (b) (with T =S and X = X’).
X is a measurable process by Proposition B.33 (¢). Now, (b) follows by the
fact Ey € B(E) N P$*(E), Corollary 7.10 (with X = X’) and Note 6.26.

Step 6: Verify (c). {X"}nen is (T, F\{1})-AS since D = F\{1}. Then, Y
is a stationary process by (7.2.7) and Proposition 6.49 (c¢) (with n = ny). We
know from (a) that X satisfies S-PMTC in £, and (7.2.19). So, there exists
an A € #™(Ey, Og(Ey)) such that

inf P(Y;e AC Ey) =1. (7.2.21)

teR*

A is a D-baseable standard Borel subset of £ and satisfies
Bp(A) = By(A) C B(E) (7.2.22)

by Corollary 3.15 (b) (with d = 1), Lemma 3.14 (a) (with d = 1), the fact
F\{1} = D and Fact 3.34 (a, b). Hence, the X’ defined in Step 3 is an
(Ey, Os(Ey))-valued process satisfying both (7.2.20) and

inf P(X,=Y,€ AC Ey) =1 (7.2.23)

teR*
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by (7.2.21), (7.2.22), Lemma 7.9 (b) (with E = E, Ey = A and X = X)
and (7.2.19). X' is an (Ey, Or(Ep))-valued process and satisfies RT-PMTC
in Ey by (7.2.23), (7.2.22), Lemma B.31 (b, ¢) (with E = E, % = B(E),
So=A, 8 =Ey, % = Pr(Ey), X =Y, and Y = X]) and Fact 2.24 (b).
Thus, X' = flg({X™ }ren) by (a) and (7.2.20). X' is stationary by (7.2.23)
and Lemma B.77 (e) (with X = X’). X’ is (R™, D)-cadlag by the fact D C F,
(7.2.23) and Lemma B.77 (b) (with T = R™ and X = X’). Finally, (c) follows
by Corollary 7.11 (with Ey = A and X = X') and Note 6.26. O

Remark 7.14. Let {)?”k}keN be as in the proof of Theorem 7.5. One can realize
(7.2.7) by letting Q = D(R"; E), P be the weak limit of the distributions of
{X"}een in P(DRT:E)), Z be the completion'® of Z($2) with respect to
P and Y be the identity mapping on D(RT; E) This process (2, #,P;Y) is

often called the coordinate process or canonical process on D(R™; E ).

With the help of Lemma 7.9, we give a slightly weaker form of Theorem

7.1 (b) that can be used to show uniqueness in the settings of Theorem 7.5.

Proposition 7.15. Let E be a topological space, {(2', F* P! X)}ier be E-
valued processes and S C T C RT. Suppose that:

(i) Cy(E;R) separates points on E.

(ii) D C Cy(E;R) separates points on Ey € B(E).

(iii) (6.5.1) holds.

(iv) {X'}ier is (S, D)-FDC and satisfies S-PSMTC' in Ey.

Then, there exists an X = flpg({X'}icr) with paths in ER and satisfying
S-PMTC in Ey. Moreover, X = flg({ X" },en) for any {in}nen C L

Proof. We let fé f|Egl4 for each f € Cy(E% R) and d € N, put D= D|g, =
{f:f €D} fix zy € Ey and define {ZN >0 C Ey for each i € T by (6.2.4)
with Xy, V3,  replaced by Z}, X/, Q' respectively.

13Completion of measure space was specified in §2.1.2.
1 Gimilar notations were used in Notation 4.11.
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It follows by (6.5.1) and Lemma 7.9 (a) (with (Q, %, P;Y) = (', #', P'; X¥)
and X; = Z}) that

Z, € M (', F" Ey, Op(Ey)), YVt € T,i€l (7.2.24)
and
telTr{ZfGIIP (X! =7 € Ey)) =1. (7.2.25)

FE is a Hausdorff space by Proposition A.17 (e) (with A = E and D =
Cy(E;R)). So, (Ey, Op(Ey)) is a Hausdorff subspace and {x¢} € #(FE) by
Proposition A.2 (a, ¢) and the fact Ey € Z(F). This immediately implies

Zy € M (Y, F' Ey, Op(Ey)), Vt e RF\T,i e L (7.2.26)

Hence, Z' = {Z}}>0 is an (Ey, Og(Ep))-valued process for all 7 € T by Fact
2.24 (b) (with E = (Ey, Og(Ep))).

{Z'};er satisfies S-PSMTC by (7.2.25) and the condition (iv) above. At
the same time, we observe by (7.2.25) that

E [fo Z,?’FO] —E [foXE ] (7.2.27)

for all f € me[lT™(Cy(E;R))], To € Zo(T) and i € T, s0 {Z'}iex is (S, D)-
FDC.

Now, we apply Theorem 7.1 (b) (with E = (E, Og(E)), D =D, X' = Z
and X = Z) and obtain an (Ey, Og(Ey))-valued process (2, .7, P; Z) satisfy-
ing: (1) S-PMTC (in Ej), and (2) Z = flg({Z" },en) for any {i, }nen C L

Considering Z as an E-valued process with paths in E§+, it follows by Z’s
property (2) above, Fact 6.19 (with X" = Z and X = Z) and (7.2.27)
that E[f o Zp,] is the unique limit point of {E‘[f o Xx,]}icr for all f €
mc[[IT(Cy(E; R))] and Ty € Py(S). Now, the result follows by Z’s prop-
erty (1) and Corollary 7.3 (a) (with X = Z and D = C,(F;R)). O

Remark 7.16. The tiny difference between Theorem 7.1 (b) and Proposition
7.15 lies in that Proposition 7.15 does not require D to separate points on the

entire space E as in Theorem 7.1 (b).
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Corollary 7.17. Let E be a topological space, S C' T C RT and (Q, F,P; X)
and {(Q, Z,P"; X)) }iex be E-valued processes. Suppose that:

(i) Cy(E;R) separates points on E.

(ii) D C Cy(E;R) separates points on Ey € B(E).
(iii) (6.5.1) holds.

(iv) {X'}ier satisfies S-PSMTC in Ey.

(v) X satisfies S-PMTC.

(vi) E[f o Xq,] is the unique limit point of {E'[f o X{, |}ier in R for all
f S mc[HTO(D)] and T() S QZO(S)

Then, X = flps({X"}ie1) and X = flg({X" }nen) for any {in}nen C L

Proof. This corollary follows immediately by Proposition 7.15 and a similar

argument to the proof of Corollary 7.3 (a). O

7.3 Stationary long-time typical behavior

We now come to Q1 in Introduction that motivates our interest in finite-
dimensional convergence of stochastic processes. In order to utilize our results
in §7.1 and §7.2, we introduce the randomly advanced processes of a given
measurable process X whose finite-dimensional distributions are the long-time-

averaged distributions in (1.5).

Definition 7.18. Let E be a topological space and (§2,.%,P; X) be an E-

valued measurable process.

o For each T € (0,00), by (Q..Z,PT; XT) = vap,(X)" (XT = vap,(X)
for short) we denote that Q = R* x Q, Z = Z(R*) ® .Z,

1 [T —~
PT(A) = f/o /QlA(T,w)IP(dw)dT, VA e F, (7.3.1)

154eqp” is “rap” in fraktur font which stands for randomly advanced process.
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and
XT(r,w)(t) = X, (W), Vt € RY, (T,w) € Q. (7.3.2)

XT e (ER+)ﬁ defined by (7.3.2) is called the T-randomly advanced

process of X.

o A long-time typical behavior of X along T refers to a member of
flpp({ X beenw) with Tj, 1 0o, XTF = vapy, (X) for each & € N and
RT\T being a countable subset of (0, 00)'°.

Remark 7.19. As its name implies, the T-randomly advanced process of X
is defined by advancing X to start at a random time (7,w) +— 7 defined on
(€, F).

Below is a justification of our definition of randomly advanced process.
Proposition 7.20. Let E be a topological space, (2, #,P; X) be an E-valued
measurable process and T € (0,00). Then, (Q, . F,PT; XT) = vap,(X) is an

E-valued measurable process.

~ o~

Proof. (7.3.1) well defines PT € (2, .#) by Fubini’s Theorem. Let &(t,w) =
Xi(w), 7(t, (1,w)) = X, e(w) and (¢, (T,w)) = (7 + t,w) for each € RT
and (7,w) € Q. It is well-known that

pe M (R+ « 0, BRY) ® 7 Q, f) . (7.3.3)

X being a measurable process implies & € M (€2, :%5:7 FE) and
—topeM (R+ x 0, BR) @ F; E) , (7.3.4)

thus proving X7 is a measurable process. U

We present several further properties of randomly advanced process in §B.1

of Appendix B. Now, we give our answer to Q1.

Theorem 7.21. Let E be a topological space, (2, F,P; X) be an E-valued
measurable process satisfying Tp-LMTC in A C E'" and D C Cy(E;R) sepa-

rate points on E. Then, the following statements are true:

16This means T is cocountable.
"The terminology “X satisfying Tx-LMTC in A” was specified in Definition 6.36 and
Note 6.37.
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(a) If {%k OTk E[f o Xry1r]tren is convergent in R for all f € me[IITo(D)]
and Ty € Po(RT) with 0 € Ty, then X has a stationary long-time
typical behavior along R™.

(b) If D is countable and { X }en satisfies D-FMCC, then there exist a
cocountable S C R, an Ey € ™ (F) such that {%k OT’“ PoX 'dr}ren
is m-tight in Fy C A, and a stationary long-time typical behavior of X
along S which is an E-valued, (R", D)-cadlug, progressive process with
paths in ER".

Proof. (a) Let X' = vapy, (X) for each k € N. By Proposition 6.57 (with
{X"}en = {X}), there exists a D-baseable subset Ey C ™ (FE) such that
Ey C A and (6.1.9) holds for some conull T C R* and {X;*}en is m-tight in
FEy. By Lemma B.42 (b, ¢, d) (with A = Ey), { X+ }ren satisfies RT-PSMTC
in Fy, is (R",D)-AS and is (R", D)-FDC. Now, (a) follows by Theorem 7.1
(c) (with T = {T} }rer).

(b) Let Fy be as above. As (6.1.9) holds for the conull set T, we have that

inf P (XtTk c Eo) ~ 1. (7.3.5)

teRt,keN

by Lemma B.80 (a) (with 7" = T}). Now, (b) follows by (7.3.5), Proposition
7.13 (with ¢ = Ty) and Theorem 7.5 (¢) (with n = T, T = Rt and S =
R*\J). O
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Chapter 8

Application to Weak

Convergence on Path Space

The current chapter addresses the target problems Q5 and Q6 of Theme
3 using the replication tools developed in §6.4. Throughout this chapter,
we consider cadlag processes taking values in a (at least) Tychonoff space F,
whose common path space is the Skorokhod _#;-space D(R™; E). If necessary,
the readers can look back at §2.2.2, §2.4 and §2.5 for our terminologies and
notations about the Skorokhod _#;-space and cadlag process. Also, §A.6 of
Appendix A together with §B.2 of Appendix B provide a short, almost self-
contained review of Skorokhod _#;-space.

The results of this chapter are sketched in Figure 5 below.
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Figure 5: Tightness and relative compactness in D(RY; E)

Given MCCC, §8.1 establishes the equivalence among tightness in D(R*; E)
and the MCC-type conditions introduced in §6.4.2, which answers Q5. §8.2
looks into the relationship between weak convergnce on D(R™; E) and finite-
dimensional convergence. Based upon the developments of §8.2, §8.3 estab-
lishes several results connecting finite-dimensional convergence and relative
compactness in D(R™; E), which answers Q6.

Prior to the formal discussion, we recall several basic but essential facts for
this chapter. Let E be a Tychonoff space, y € MT(D(R™; E)), Ty € Z5(RT)
and (Q,.%,P; X) be an E-valued cadlag process. Then:

o D(R"; E) is a Tychonoff space as mentioned in §3.3.6.

o poprp! lies in M (LT, B(E)*T0) (see Corollary A.69).

Herein, pr, denotes the projection on ER for Ty C R restricted to D(R™; E).
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o The set J(u)? of fixed left-jump times of  and the set J(X)? of fixed left-
jump times of X are well-defined when a countable subset of M(E;R)
separates points on E. R\ J(x) and RT\J(X) are cocountable (hence
non-empty and dense) subsets of R* when E is baseable (see Proposition
3.64).

o D(R"; E)-valued random variables are E-valued cadlag processes (see

Fact A.76 (a)) but the converse is not necessarily true.

o When X is a D(R*; FE)-valued random variable, Po X! is the restric-
tion of pd(X)|pm+k) to o( £ (E))* and (P o X™') o pyl is the finite-
dimensional distribution of X for T as an E-valued process (see Fact
A.76 (b, ¢)).

Hereafter, we may not always make special reference for the facts above.

8.1 Tightness

Our treatment of tightness in Skorokhod _#;-space continues Kouritzin
[2016] in the infinite time horizon setting. Tightness in D(R™; E) is stronger
than the Compact Containment Condition in Jakubowski [1986] and Ethier
and Kurtz [1986] (MCCC if E has metrizable compact subsets).

Fact 8.1. Let E be a Tychonoff space and {(QV', F',P'; X?)}ier be a tight fam-
ily of D(R*; E)-valued random variables. Then, {X'}ic1 satisfies the Com-
pact Containment Condition in [Jakubowski, 1986, §4, (4.8)]. In particular,
{X"}iax satisfies MCCC when X (E) = A ™(F).

Proof. This fact is immediate by Proposition 3.63. O

The following theorem is a version of [Kouritzin, 2016, Theorem 20] on

infinite time horizon. This result plus Fact 8.1 answer Q5 in Introduction.

Theorem 8.2. Let E be a Tychonoff space and {(2',.F, P X") }ier be E-

valued cadlag processes. Consider the following statements:

2J(n) was defined in (2.3.10).

3J(X) was defined in (2.5.8).

1 #(F) denotes the Skorokhod _#;-topology of D(R™; E). Restriction of measure to sub-
o-algebra and X'’s process distribution pd(X) were specified in §2.1.2 and §2.5 respectively.
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(a) X' is indistinguishable from some X' € M(V, Z'; D(R*; E)) for all
ie1, and {)A(i}iel is m-tight in D(R™; E).

(b) {X"}ier satisfies D-FMCC and the closure of D C C(E;R) under the
topology of compact convergence (see [Munkres, 2000, §46, Definition,
p.283]) contains Cy(E;R).

(c) {X'}icx satisfies MCC.

(d) {X"}icx satisfies WMCC.

Then, (a) implies (b), (c) implies (d), and (a) - (d) are all equivalent when
{X'}iax satisfies MCCC.

Note 8.3. Part (a) of the theorem above addresses a stronger statement than

tightness of {X'},cy in D(R™; E). Moreover, tightness of the D(R™; E)-valued

random variables {X};cr above is in the usual sense’.

Remark 8.4. The condition in Theorem 8.2 (b) was used in [Kurtz, 1975,
p.628-629] to show tightness in D(R™; F) with E being a locally compact
Polish space. For general Polish spaces, it appeared in [Ethier and Kurtz,
1986, §3.9].

Remark 8.5. When (FE,t) is a metric space, the standard combination of t-
MCC plus MCCC was used as a sufficient condition for relative compactness
in D(R*; E) by [Ethier and Kurtz, 1986, §3.7, Theorem 7.6]. Its necessity was
treated in [Ethier and Kurtz, 1986, §3.7, Theorem 7.2, Remark 7.3] with F
being a Polish space. Theorem 8.2 refines these two results as well as [Ethier
and Kurtz, 1986, §3.9, Theorem 9.1] and a few other analogues in the following

four aspects:
o We establish tightness which is often stronger than relative compactness.

o The E herein need not be metrizable or separable.

SRandom variables do not always live on topological spaces. The E-valued processes
{X"}ser in Theorem 8.2 are (ER" | 2(E)®R")-valued but not necessarily D(R™; E)-valued
random variables, where D(RT; E) is a subset of the measurable space (ER", B(E)*R")
and has the Skorokhod _#;-topology. Then, their tightness in D(R™; E) follows our gener-
alized definition of tightness introduced in §2.4.
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o We allow unbounded functions in D, which can be handy when working
with algebras of polynomials for random measures as in [Dawson, 1993,
§2.1].

o {@w(f) o X'}ier satisfying |-|-MCC is milder than {@(f) o X*};c1 being
relatively compact if f is not necessarily bounded. So, WMCC is weaker
than the analogous condition in [Jakubowski, 1986, Theorem 4.6, (4.9)]
which was shown very useful for establishing tightness of measure-valued
processes in [Dawson, 1993, §3.7] and [Perkins, 2002, §11.4].

Proof of Theorem 8.2. ((a) — (b)) For each fixed f € D = C(FE;R), {w(f) o
X'}ier is tight in D(R*; R) by Proposition A.62 (d) and Fact B.60 (with F =
D(R*;E),S = DR";R), f = w(f) and T = {P'o(X") " icr). {@(f)oX }ier
satisfies |-|-MCC by Theorem A.88 (a) (with £ = R). Now, (b) follows by the
bijective indistinguishability of {@(f) o X'};cr and {@(f) o )A("}Z»GI 6,

((c) — (d)) is proved in Fact A.85.

((b) — (c) given MCCC) For each g € C,(E;R), € € (0,1/2) and T" €
(0,00), there exist K. € Z™(FE) and f,.r € D such that

||fgv€7T|Ke,T - glKe*T”oo S e < 1-— €

. . 8.1.1
<P (X eKapviepr), O
i€l
which implies that
supIP’i sup ‘fg,E,T on —g on| > €
iel te[0,T] (8.1.2)

<1- 1n£19>i (X} € K,V € [0,T]) <e.
1€

Then, {X},c1 satisfies MCC by (8.1.2), Proposition A.25 (a, ¢) and Proposi-
tion A.82 (a, b) (with D; = D and D, = Cy(E; R)).
((d) — (a) given MCCC) follows by Theorem 6.48 (with Ey = E). O

When (E,t) is a complete (but not necessarily separable) metric space

and ©-MCC is given, we have shown in Proposition 6.53 the equivalence be-

6Note 6.38 mentioned the terminology “bijective indistinguishability” and the transitivity
of |-]-MCC between two bijectively indistinguishable families of processes.

190



CHAPTER 8. WEAK CONVERGENCE ON PATH SPACE 191

tween MCCC and T-MPCC with a dense T. This gives us one more tightness

criterion.

Proposition 8.6. Let (E,t) be a metric space, T be a dense subset of R*
and E-valued cadlag processes {X'}ier satisfy ©-MCC and T-MPCC. Then,

the following statements are true:

(a) There exists an Ey € B(E) such that Ey is a separable subspace of £
and X' is indistinguishable from a D(R™; E)-valued random variable
X' with paths in ER" for alli € 1.

(b) If (E,x) is complete, then the {X'}Y;e1 in (a) is tight in D(R*: E).
Remark 8.7.

o Compared to [Ethier and Kurtz, 1986, §3.7, Theorem 7.2], part (b) above
applies to non-separable spaces, looses compact containment to totally

bounded containment and improves relative compactness into tightness
in D(R™; E).

o Compared to [Ethier and Kurtz, 1986, §3.7, Lemma 7.5, part (a) above
replaces MCCC by t-MCC plus T-MPCC with a dense T. T-MPCC
is weaker than MCCC for any T C R* on metric spaces. In practice,
t-MCC is usually no more difficult than MCCC to verify.

Proof of Proposition 8.6. (a) C(E;R) separates points on E by Proposition
A.26 (a) and Proposition A.25 (a, ¢). By Proposition 6.53 (a, b, ¢) (with D =
C(E;R)) and Proposition 6.32 (a) (with X = X" and Sy = D(R™; Ey, Or(Ey))),
there exists an Fy € Z(F) such that (Ey, Op(FEy)) is a separable subspace and
X' is indistinguishable from an E-valued process X! with paths in D(R*; Ey, Og(Ey))”
for all i € I. These {X'}ie1 are D(RT; Ey, Og(Ey))-valued variables by Fact
A.T7 (a) (with E = (FEy, Op(Ey))). They are D(R™; E)-valued random vari-
ables by Corollary A.65 (with A = Ej).

(b) When (E, ) is complete, the {X'};e above satisfies MCCC in Ey by
Proposition 6.53 (d). Then, (b) follows by Corollary A.86 (a) and Theorem
8.2 (a, c). O

T“with paths in D(R%;FEy, Op(Ey))” means all paths of the process lying in
D(R+;E0,ﬁE(E0)).
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8.2 Weak convergence and finite-dimensional

convergence

We discuss in this section the relationship of the following properties of
E-valued cadlag processes {(Q2", . 7™, P" X") }hen-

Property.
P8 S C R" is dense and { X"} en, satisfies®

lim E" [fo X | =E°[fo X%, ] (8.2.1)

n—oo
for all f € mc[IT™(D)] and Ty € Py(S).

P9 PS8 holds with D separating points on .

P10 PS8 holds with D strongly separating points on E.

P11 S C R* is dense and { X"} en, satisfies

D(S)

X" XY asn 1 oo. (8.2.2)

P12 There exist {X" € M(Q", Z™ DR*; E))}nen, such that X" and
X" are indistinguishable for all n € Ny and’

X" = X° asn 1 oo on D(R'; E). (8.2.3)

Remark 8.8. P(D(R™; E)) is a Tychonoff space by Corollary A.36, so (8.2.3)
is equivalent to that X is the weak limit of {X"},en on D(RT; E).

Below are several immediate observations about P8 - P11:

Fact 8.9. Let E be a topological space and {(Q", Z", P X") }nen, be E-valued
processes. Then, P11 implies P8 with D = Cy(E;R). Moreover, if E is a
Hausdorff (Tychonoff) space, then P10 (resp. P11) implies P9 (resp. P10).

8Note 6.15 argued that the expectations in (6.2.2) are well-defined.
9Weak convergence, weak limit point and weak limit of random variables were interpreted
in §2.4.
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Proof. This fact follows by Fact 6.19 (with X = X% and T = S), Proposition
A.17 (a) (with A = E) and Proposition A.25 (a, c). O

When F is a metrizable and separable space, weak convergence on D(R™; E)
is well-known to imply finite-dimensional convergence along all time points
with no fixed left-jumps (see Theorem A.87 (a)). Recall that every metriz-
able and separable space is baseable (see Fact 3.24 (b)), so the result below
generalizes Theorem A.87 (a).

Theorem 8.10. Let E be a Tychonoff space and {(Q", F™ P"; X™)},en, be

FE-valued cadlag processes. Then, the following statements are true:

(a) If M(E;R) has a countable subset separating points on E'°, and if
S = R™\J(X) # @, then P12 implies (8.2.2).

(b) If E is a baseable space, then P12 implies P11 with S = R\ J(X").

We prove the more general result below, and Theorem 8.10 then follows.

Lemma 8.11. Let E be a Tychonoff space and {jin}nen, € MT(D(RT; E))
satisfy
pn = o asn 1 oo in M (D(RY; E)). (8.2.4)

If M(E;R) has a countable subset separating points on EY and RT\J(uo)
is mnon-empty, especially if E is a baseable space, then there ezist {vr,n €
be(p, © pr}é)}neNo such that

UTym = Ur,0 a8 1 T 0o in MH(ET0) (8.2.5)

and"

lim [ J()n o prl(de) = [ @)oo pg) (dr) (8.2.6)

n—oo ETO ETO

for all f € mc[IT™(Cy(E;R))] and Ty € Po(RT\J (10)).

10This condition ensures J(X°) is well-defined.

"This condition ensures J(ug) is well-defined.

20, op,}i and o op,}i are members of MM+ (ETo, B(E)T0), so the integrals in (8.2.6) are
well-defined by Note 5.6.
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Proof. The introductory part of this chapter noted that R™\J(ug) # @ when
E is baseable. Let D = D(R'; E) and (D,.%,,v,) be the completion of
(D, B(D), p1,) for each n € Ny. It follows by Lemma B.62 (with (&%, u,v) =
(-Zns tin, V) that

VT = Vn © Py € be (pn 0 pg,), Vn € No. (8.2.7)
It follows by (8.2.4) and Fact B.27 (with £ =D and %, = .%,) that
vy, => 1 as n 1 oo in M (D). (8.2.8)

The set of discontinuity points (see [Munkres, 2000, p.104]) of pr, has zero
measure under jo (hence under 1) by the definition of J(p) and Proposition
A.68 (c). Now, (8.2.5) follows by (8.2.8) and the Continuous Mapping Theorem
(Theorem B.25 (b) with £ =D, S = ET u, = v,, p = vy and f = pp,).
(8.2.6) follows by (8.2.5) and Fact B.54 (with d = R(Ty), p = s, o py, and
VL = Upyn)- O
Proof of Theorem 8.10. (a) follows by Lemma 8.11 (with s, = P" o (X™)71)
and the indistinguishability of X™ and X". When F is baseable, S is a dense
subset of R*. Thus (b) follows by (a). O

The remainder of this section is about the converse of Theorem 8.10. First

of all, we establish a result about the converse of Lemma 8.11.

Lemma 8.12. Let E be a baseable Tychonoff space, {ptn }neny C MT(D(RT; E))
and D C Cy(E;R). Suppose that:

(i) S is a dense subset of R and (8.2.6) holds for all f € me[lIT0(D)]U1
and T() S c@o(S)

(i1) There exists an Sy € B(D(RT; E)) such that pg is supported on Sy
and

Bom+p)(So) = B(E)™ (8.2.9)

So
iii) There exist {V,},en C €(D(R'; E)) such that V, C Sy for allp € N
pJp p

and
lim inf p,, (D(R*; E)\Vp) <277 ¥peN. (8.2.10)

n—o0
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(1v) {in}nen is relatively compact.
Then, the following statements are true:

(a) If D strongly separates points on E, then (8.2.4) holds.

(b) If D separates points on E, pg o p; ' is tight and {u, o p; ' nen is
sequentially tight for all t in a conull T C RY, then (8.2.4) holds.

Proof. Let v* = pg and D = D(R™; E). By the condition (iv) above and Fact
B.6, it suffices to show 7' = 42 for any weak limit point * of {u, }nen in

MT(D). By passing to a subsequence if necessary, we suppose
pn = v* as n 1 oo in M (D) (8.2.11)

and let S' = S and S? = J(v?). The rest of the proof is divided into three
steps.
Step 1: Verify

tim [ @ opin) = [ f@)r o pgt(dr) (3.2.12)
n=oo JETo ETo
for each f € me[lI™(D)| U1, Ty € Py(S?) and i = 1,2. Fori =1, (8.2.12)
is given by the condition (i) above. For i = 2, (8.2.12) follows by (8.2.11) and
Lemma 8.11 (with uo = v?).
Step 2: Verify

Y opgl =~ opgl in MY (BT, B(E)*T), VT, € Zo(RT).  (82.13)

Under the conditions of (a), (8.2.13) follows immediately by (2.3.9), Step 1
and Lemma B.69 (a).

It takes a bit more work to show (8.2.13) for (b). E is baseable, so S? is
cocountable. T is conull by the hypothesis of (b), so SN T is a conull hence
dense subset of RT. Fixing ¢t € S? N T, we find from Step 1 that

iy [ (e, o () = / F(@)? o py (de) (8.2.14)

n—o0
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for each f € me(D)UL. Letting f = 1in (8.2.14), we find that {g,op; *(E)}nen
must be contained in a compact sub-interval of (0,00). 7! o p; is m-tight and
{1tn © Pt}nen is sequentially m-tight by the hypothesis of (b), the baseability
of E and Corollary 3.52 (a). It then follows by (8.2.14) and Theorem 5.4 (c)
(with d =1 and T' = {u,, }nen) that

w- lim p, op; ' =72 op;t (8.2.15)
n—oo

and 72 o p; ! is m-tight.

For each Ty € 2(S8? N'T), both 4" o p! and ~* o py! are m-tight by
Lemma B.61 (a) (with I =Ty, S; = A; = E, A= E™ and I’ = {7 o py}
or {72 o pgl}). Thus, (8.2.13) follows by (2.3.9) and Lemma B.69 (b) (with
S=S°NnT).

Step 3: Verify v = 7% in M*T(D). As D is a Tychonoff space, we have
that

P(D\V,) < lim inf 12, (D\V,) <277, Vp € N (8.2.16)

by {V,}pen € € (D), (8.2.10) and the Portmanteau’s Theorem (Theorem 2.17
(a, c) with E'=D). As Sy € #(D) contains every V,, we have by (8.2.16) and
(ii) that

7 (D\So) = ~*(D\So) = 0. (8.2.17)

It follows by Step 2, the definition of Z(E)®R" and (8.2.17) that

fmm&ngmn&mVAe%uww*w (8.2.18)

It follows by (8.2.18) and (8.2.9) that

so = 7lso in M (So, Op(Sy)) - (8.2.19)
It then follows that
=% in MT(D) (8.2.20)

= 72|50

v =] "

by the fact , (8.2.19) and Fact 2.1 (c¢) (with £ =D, % = #(E), A =S, and
p="or ). O
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The following proposition treats a typical case of Lemma 8.12 where each
fn, is the distribution of D(R™; E)-valued random variable X™ and the {V, },en

in condition (iii) are compact sets provided by tightness.

Proposition 8.13. Let E be a baseable Tychonoff space, D C Cy(E;R), S C
R and X" € M(Q", F", P", D(R*; E)) for each n € Ny. Suppose that:

(i) There is an Sy € B(D(R"; E)) satisfying P°(X° € Sy) = 1 and
(8.2.9).

(11) {X"}nen is tight in Sy.
(iii) T C R* is conull and X° satisfies T-PMTC.

Then, P9 implies P12.

Remark 8.14. In Proposition 8.13, tightness in Sy is different from tightness
in D(RY; E) since Sy = D(R™; F') does not necessarily satisfy (8.2.9).

Proof of Proposition 8.13. Let p, = P" o (X")™! € P(D(R™;F)) for each
n € Ny. P9 implies S is dense in R™ and (8.2.6) holds for f € mc[II™0(D)]u{1}
and Ty € P(S). The condition (i) above implies p(Sy) = 1. By the con-
dition (ii) above, there exist {V,},exn C J# (D(R";E)) such that V, C Sy
for all p € N and inf,enun(V,) > 1 —27P. As D(R'; E) is a Tychonoff
space, {Vp}pen C € (D(RT; E)) by Proposition A.12 (a) and the tight se-
quence {i, }nen is relatively compact by the Prokhorov’s Theorem (Theorem
2.22 (b)). As E is a baseable space, the tight sequence {X"},en satisfies
MCCC by Fact 8.1 and Corollary 3.15. {X"},en satisfies RT-PMTC by Fact
6.56 (f) (withI =N, i=mnand A = E), 50 {i, o p; ' }1nex is m-tight for all
t € R*. Moreover, pgop; ! is m-tight for all ¢ € T by the condition (iii) above.
So far, we have justified all conditions of Lemma 8.12 (b) for {1, }nen,, thus
(8.2.4) and P12 hold. O

The following proposition uses our tightness criteria established in §8.1 to

realize the “tightness in Sy” desired by Proposition 8.13.

Proposition 8.15. Let E be a Tychonoff space, {(Q", F™ P"; X™)}en, be E-
valued cadlug processes, D C Cy(E;R) and S C RT. Suppose that {X™},en,
satisfies MCCC and { X"} en satisfies D-FMCC. Then, P9 implies P12.

197



CHAPTER 8. WEAK CONVERGENCE ON PATH SPACE 198

Proof. The proof is divided into three steps.

Step 1: Construct a suitable base. By Proposition 6.55 (with I = Ng and
i = n), there exists a D-baseable subset Ey of F such that {X"},cn, satisfies
MCCC in Ey. By Proposition 3.39 (c), there exists a base (Ey, F; E; .7?) with
F C (DU{1}).

Step 2: Construct {)A( "t eNo- Eo is a Tychonoff subspace of E by Propo-
sition A.26 (b). Dy = D(R™; Ey, Or(Ey)) is a Tychonoff subspace of D(R™; E)
by Corollary A.65 (with A = Ej). {X"},en satisfies F-FMCC since (F\{1}) C
D. By Proposition 6.46 (with Ey = E and I = Ny), there exists an

Sy € B(E)*R |, C B(Dy) (8.2.21)

and

~

X" =rvep (X" By, F) € M (2", .F"; Sy, Op,(S0))

(8.2.22)
C M(Q",.F"Dy) C M ("2, DR E)) , ¥n € Ny
such that (8.2.9) holds,
nf P (X ~ X eso) —1 (8.2.23)

and {X"},cn, is m-tight in Sy'%.

Step 3: Show (8.2.3). It follows by (8.2.23), Fact 6.52 (with I = Ny and
i =mn), P9, the fact (F\{1}) C D and Lemma B.78 (d) (with X = X° and
Y = X°) that
lim E” [f o )?;] — B [f 0 )?%0] (8.2.24)

n—o0

for all f € me[IITo(F\{1})] and Ty € Py(S). X satisfies MCCC, so it satisifes
R*-PMTC by Fact 6.56 (f) (with A = F and I = {0}). It then follows that

X" = X% as n 1 oo on Dy (8.2.25)

by (8.2.22) and Proposition 8.13 (with £ = Ey, D = F|g,\{1}, X" = X" and
T = R"). Now, (8.2.3) follows by (8.2.22), (8.2.25) and Lemma B.55 (with

131t is the subsequence {X"},en that satisfies F-FMCC, so Proposition 6.46 (c) is just
applied to {X"},en with X© removed.
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E =DR"E), A=Dy, u, =P"o ()?n)—l € P(Dy) and p = P’ o (X-O)—l c
P (D)) O

Another typical case of Lemma 8.12 is when E has a metrizable and sep-
arable subspace Ejy, and the Sy in condition (ii) and the {V}},en in condition
(iii) are all taken to be D(R™; Fy, Og(FEy)). Then, the assumption of relative

compactness can be loosen to D-FMCC.

Theorem 8.16. Let E be a Tychonoff space, {(Q", F", P"; X™)}hen, be E-
valued cadlag processes, D C Cy(E;R) and S C R™. Suppose that:

(i) D is countable and strongly separates points on Eq € B(E).
(ZZ) {Xn}nENo Satisﬁes

inf P" (X” c Eg‘*) ~1. (8.2.26)

n€Np
(111) {X"}nen satisfies D-FMCC.

Then, P8 implies P12.

Remark 8.17. The condition (i) above implies Ej is a second-countable sub-
space of E by Proposition A.17 (d) (with A = Ej). Given such Ej, the
condition (i, iii) above is weaker than relative compactness by Theorem 8.21
(a) to follow, Corollary A.83 and Proposition A.24 (b).

Proof of Theorem 8.16. The proof is divided into four steps.

Step 1: Construct a suitable base by Eq and D. FEjy is a Tychonoff subspace
and is a D-baseable subset of F by Proposition A.26 (b) and Proposition A.17
(a) (with A = Ey). As D is countable, there exists a base (Eo, F; E; F) with
F =D U{1} strongly separating points on Ey by Proposition 3.39 (b).

Step 2: Construct {X™}nen,. Let D = D(RT: E), Sy = D(R'; By, Op(Ey))
and D = D(R*; E). (Ey, Op(E,)) is metrizable and separable by Corollary
A.30 (a, b) (with £ = Ey and D = F|g,). Sy is a subspace of D by Corol-
lary A.65 (with A = Ey). Sy satisfies (8.2.9) by Proposition A.72 (b) (with
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E = (Ey, Op(Eyp))). Then, there exist

~

X" =vep (X" Ey, F)
e M (Q", F"; Sy) N M (2", Z™ D) N M (Q” Fm. ﬁ) , ¥n € Ny
(8.2.27)
satisfying (8.2.23) by (8.2.26), Proposition 6.32 (with X = X™) and Fact 6.24.

Step 3: Show X° is the weak limit of {)?n}nGN on D. In this step, we
consider {)/(\' "}eN, as D-valued random variables. As mentioned in Note 6.5,
E is a compact Polish space, so {X"}nen, automatically satisfies MCCC by
Note 6.44. {X"},en satisfies F-FMCC since F\{1} = D, s0 { X" },en satisfies
F-FMCC by Proposition 6.45 (a). (8.2.24) holds for all f € me[lITo(F\{1})]
and Ty € Z(S) by (8.2.26), Fact 6.52 (with I = N and ¢ = n), P8, the
fact F\{1} = D and Lemma B.78 (d) (with X = X and ¥ = X°). F\{1}
is a subset of Cy(E:R) by Corollary 3.10 (a) and separates points on E by
definition of base. Now, the conclusion of Step 3 follows by Proposition 8.15
(with £ = E, X" = X" and D = F\{1}).

Step 4: Show (8.2.3). {X"}nen, as So-valued random variables satisfies
(8.2.25) with Dy = Sy by Step 3 and Proposition 6.51 (b). {X"},en, as D-
valued random variables satisfies (8.2.3) by (8.2.27), (8.2.25) and Lemma B.55
(with B = D, A = So, ptn = P" o (X")™F € P(S,) and pn = P o (X0)! €
P(S0))- O

If E itself is a metrizable and separable space, then the Ey in Theorem

8.16 can be taken to equal E.

Corollary 8.18. Let E be a metrizable and separable space, {(2", F", P X™)}eN,
be E-valued cudlug processes and S C R*T. Then, the following statements are

successively weaker:

(a) {X"}nen satisfies MCC and P11.
(b) {X"}nen satisfies D-FMCC and P10 for some D C Cy(E;R).
(c) {X"}nen satisfies D-FMCC and P10 for some countable D C Cy,(E; R).

(d) {X"}nen satisfies P12.
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Proof. ((a) — (b)) follows by Fact 8.9 and Corollary A.86 (b). ((b) — (¢))
follows by Proposition A.6 (¢) and Proposition A.24 (b). ((¢) — (d)) follows
by Theorem 8.16 (with £y = E). O

Remark 8.19. Compared to Theorem A.87 (b), Corollary 8.18 (a, d) reduces
relative compactness to MCC which is a weaker condition by Theorem 8.21
(a) to follow.

When F is a non-separable metric space, one can obtain the Ej in Theorem
8.16 by t-MCC and T-MPCC.

Proposition 8.20. Let (E,t) be a metric space, {(Q", F" P" X")}nen, be
E-valued cadlag processes and S C R*Y. Then, the following statements are

successively weaker:

(a) {X"}nen satisfies ©-MCC and T-MPCC with a dense T C R*. X
satisfies ©-MCC. Moreover, P11 holds.

(b) {X"}nen satisfies t-MCC, D-FMCC with D C Cy(E;R) and T1-MPCC
with a dense T; C RY. X° satisfies v-MCC and To-MPCC with a
dense Ty C RT. Moreover, P10 holds.

(c) {X"}nen, satisfies P12.

Proof. ((a) — (b)) By Corollary A.86 (a), { X" },en satisfies MCC. By Fact 8.9
and Corollary A.83 (a, b), there exists a D C Cy(E; R) such that { X"}, en sat-
isfies D-FMCC and P10 holds. By Proposition 6.53 (a), there exist {A, ;}pqen C
¢ (F) such that each A, , is a totally bounded set and

inf P" (X' € A,,) >1—-27P YVt €[0,q], p,qg € N. (8.2.28)

neN

Hence, {X"},en satisfies RT-MPCC. For each t € S and n € Ny, the (one-
dimensional) distribution P" o (X}*)~! € P(FE) by Fact 2.24 (d) and so P11
implies

X"= XY asn1ooon k. (8.2.29)
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As FE is a Tychonoff space, it follows by (8.2.28), (8.2.29), the closedness of
each A, , and the Portmanteau’s Theorem (Theorem 2.17 (a, b)) that

P’ (X} € 4,4) > inf P" (X € A,,)
neN (8.2.30)
>1-2"" vteSn|[0,q],p,q €N,

thus proving X satisfies S-MPCC. Now, (b) follows by letting T; = T and
T, =S.

((b) — (c)) The union of two second-countable subspaces of E is still
second-countable by Proposition A.6 (¢) and Proposition A.3 (b, e). So, we
apply Proposition 6.53 (a - ¢) to {X"},en and the singleton { X} respectively
and find a second-countable subspace Ey of E satisfying (8.2.26). There exists
a countable Dy C D strongly separating points on Ey by P10 and Proposition
A.24 (b). {X"}nen, certainly satisfies the weaker property P8 than P10.
Now, (c) follows by Theorem 8.16 (with D = D). O

8.3 Relative compactness and finite-dimensional

convergence

When (E, ¢) is a separable metric space, relative compactness in D(R™; E)
implies t--MCC (see e.g. [Ethier and Kurtz, 1986, §3.7, Theorem 7.2]). For a
general Tychonoff space E, we now justify the sufficiency of relative compact-
ness in D(RT; F) for MCC. If E is also baseable, we leverage Theorem 8.10
and establish the sufficiency of relative compactness in D(R™; F) for “relative

compactness” under finite-dimensional convergence.

Theorem 8.21. Let E be a Tychonoff space, I be an infinite index set and
{(, F1 P X bier be a relatively compact™ family of D(R™; E)-valued ran-

dom variables. Then, the following statements are true:
(a) {X"}ic1 satisfies C(E;R)-FMCC and MCC.

(b) If E is baseable, then any infinite subset of {X'}icr has a subsequence

that converges finite-dimensionally to some D(R™; E)-valued random

l4Relative compactness of random variables was interpreted in §2.4.

202



CHAPTER 8. WEAK CONVERGENCE ON PATH SPACE 203

variable X along R\ J(X).

Proof. By the relative compactness of {X*},c1 in D(R™; E), any infinite subset

of I has a subsequence {i, },en C I such that
P o (X™) ' = pasntooinP (DR E)) (8.3.1)

for some p € P(D(RT; E)). Let Q = D(R%E), F = $(Q), P = i and
X be the identity mapping on €. Then, (2,.%,P; X)" is a D(RT; E)-valued

random variable and satisfies
X" = X asn 1 oo on D(RT; E). (8.3.2)
For each f € C(F;R), it follows that
@(f)o X = w(f)oX asn T ooon D(RT;R) (8.3.3)

by (8.3.2), Proposition A.62 (d) (with S = R) and the Continuous Map-
ping Theorem (Theorem B.25 with £ = D(R™; E), S = D(RT;R) and f =
@(f)). The argument above proves the relative compactness of {w@w(f)o X }ier
in D(Rt;R). D(R";R), as mentioned in Note 6.5, is a Polish space, so
{@w(f) o X'}iex is tight in D(R™;R) by the Prokhorov’s Theorem (Theo-
rem 2.22 (a)) and satisfies |-|-MCC by Theorem A.88 (with (E,t) = (R, |-|).
C(E;R) strongly separates points on £ by Proposition A.25 (a, b). Now, (a)
follows by Fact A.81 (b) (with D = C(E;R)) and Corollary A.83 (a, d) (with
D = C(FE;R)). If E is also baseable, then we have by Theorem 8.10 (b) (with
n = i,) that

Xin DR\J(X))

» X asn T oo, (8.3.4)
thus proving (b). O
We then consider the converse of Theorem 8.21.

Theorem 8.22. Let E be a Tychonoff space, 1 be an infinite index set and
{(Q, Z1, P X bier be E-valued cadlug processes. Suppose that for each infi-
nite * C 1, there exists a subsequence I = {in}nen C I*, an Eoyz € B(E),

5The X herein is known as the coordinate process on D(R*;E). We did a similar
construction in 7.14.
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a D C Cy(E;R), an Sz C RY and an E-valued cudlug process (2, F,P; X7T)
such that:

(i) Dz is countable and strongly separates points on Epz.
(ii) {X"}en and X7T satisfy

inf Pin (X c E(E};) —P (XI c E(ff;) ~1. (8.3.5)

neN

(iii) {X}nen satisfies Dz-FMCC.

(iv) Sz is dense in RT and

lim E™ [fo X ] =E[foXT,] (8.3.6)

n—oo

for all f € me[IlI™(D7)] and Ty € Po(Sz).

Then, there exist an Iy € Py(1) and D(RY; E)-valued random variables {)?"}iel\lo
such that X' is indistinguishable from X' for alli € Iy and {X'}cng, is rel-
atively compact in D(RY; E).

Proof. Let D = D(R™; FE) and Dy = D(R"; Ey, Op(Ep)). For any infinite
I* C I, we take Z = {in}nen C Z%, Eoz € B(F), Dz C Cy(E;R), Sz C R
and E-valued cadlag process (2,.%,P; X7) satisfy the conditions (i) - (iv)
above. It follows by (8.3.5) and the cadlag properties of {X?};c1 and X7 that

inf P (X €Dy) =P (X' eDy) =1. (8.3.7)
By Proposition 6.32 (a) (with Sy = Dy and X = X or X7), there exist
({X bnenw U{XT}) € M (@, F": Do) € M (Q", F:D)  (3.3.8)
satisfying
inf Pin (X — Xin ¢ ]D0> —P (XZ —XT¢ ]D)O) ~ 1. (8.3.9)

neN
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It follows by (8.3.9) and the condition (iv) above that

Tim B [f o X%"O] —E [f o X%O] (8.3.10)
for each f € mc[IIT°(Dz)] and Ty € Fy(Sz). It then follows by Theorem 8.16
(with X" = X», X0 = XT Ey= Eyz, D = D7 and S = S7) that

X = X” as n 1 oo on D. (8.3.11)

From the argument above we draw two conclusions: (1) There would be
at most finite members of {X*};c; which may not admit an indistinguishable
D-valued copy. Let Iy € Zy(I) be the indices of these exceptions. For each
i € I\Iy, different {i,,},en C I that contains ¢ may induce different D-valued
copies of X*. However, such copy can be thought of as a unique one up to
indistinguishability, which we denote by X*. (2) For any infinite Z* C (I\I,),
there exist a subsequence {i, },en C Z* and a D-valued random variable X7
such that (8.3.11) holds. In other words, {X'},eny, is relatively compact in
D. O

The following special cases of Theorem 8.21 correspond to the settings of

Corollary 8.18 and Proposition 8.20 respectively.

Corollary 8.23. Let E be a metrizable and separable space, 1 be an infinite
index set and {(Q, F',P'; X")}iax be E-valued cadlug processes. Then, the

following statements are successively weaker:

(a) Any infinite subset of { X'}ic1 has a subsequence that satisfies MCC and
converges finite-dimensionally to some E-valued cadlag process along a

dense subset of RY.

(b) For any infinite T* C 1, there exist a subsequence T = {i,}nen C Z%,
a Dr C Cy(E;R), a dense Sz € RY and an E-valued cudlag pro-
cess (0, F,P; X7T) such that: (i) D is countable and strongly separates
points on E, (ii) { X" },en satisfies Dz-FMCC, and (iii) (8.3.6) holds
Jor all f € me[lI™(Dz)] and Ty € Py(Sz1).
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(¢) There exist an Iy € Po(I) and D(RT; E)-valued random wvariables
{)A(i}ig\lo such that X' is indistinguishable from X' for all i € T\I
and {)?i}iel\lo is relatively compact in D(RT; E).

Proof. ((a) — (b)) follows by Fact 8.9 (with X" = X and X = X7) and
Corollary A.86 (b). ((b) — (c)) follows by Theorem 8.22 (with Ey = E). O

Proposition 8.24. Let (E,t) be a metric space, 1 be an infinite index set
and {(Q, F1,P"; X)) }ier be E-valued cudlug processes. Then, the following

statements are successively weaker:

(a) For any infinite T* C 1, there exist a subsequence T = {i,}nen C Z%,
an E-valued cadlug process (Q,.F,P; XT) and dense subsets Tz and St
of RV such that: (i) {X'™},e1 satisfies --MCC and Tz-MPCC, (ii) X*
satisfies t-MCC, and (iii)

xin _POD T 4oy 1 00. (8.3.12)

(b) For any infinite T* C 1, there exist a sub-subsequence T = {i,}nen C
T*, a Dr C Cy(E;R), an E-valued cadlag process (Q,.7,P; XT) and
dense subsets T%, T%, Sz of RT such that: (i) D strongly separates
points on E, (i) { X }en satisfies v-MCC, Dz-FMCC and T%-MPCC,
(iii) XT satisfies v-MCC and T2-MPCC, and (iv) (8.5.6) holds for all
[ € me[lI™(Dz)] and Ty € Py(S1).

(c) There exist an Iy € Po(1) and D(R"; E)-valued random wvariables
{)A(i}iel\lo such that X' is indistinguishable from X* for all i € I\,
and {)?i}ig\lo is relatively compact in D(R™; E).

Proof. This result follows by: (1) Applying Proposition 8.15 (with X" = X',
X0 =X T, =T, Ty = T2, S = Sz and D = D7) to a suitable sub-
subsequence {i, },en of each infinite Z* C I, and (2) Applying our argument
about the finite index set I of exceptions in the proof of Theorem 8.22. A

formal proof is omitted to avoid redundancy. O
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Appendix A

Background

This appendix presents a series of background results used in Chapters 3 -
8. We limit our discussions to the most necessary material.

§A.1, §A.2 and §A.3 are about the point-set topology. More details are
found in [Munkres, 2000, Chapter 1 - 7], [Bogachev, 2007, Vol. II, Chapter
6], [Ethier and Kurtz, 1986, §3.4] and Blount and Kouritzin [2010]. §A.4 deals
with weak topology of Borel measures in the spirit of [Ethier and Kurtz, 1986,
§3.1 - 3.4], [Kallianpur and Xiong, 1995, Chapter 1] and Blount and Kouritzin
[2010]. §A.5 discusses standard Borel property of topological spaces and their
subsets, where we refer the readers to [Srivastava, 1998, §3.3] and [Bogachev,
2007, Vol. 1II, Chapter 6] for further materials. §A.6 gives a short review
of Skorokhod _#;-spaces. Excellent treatments of this topic are available in
[Ethier and Kurtz, 1986, §3.5 - 3.10], Jakubowski [1986], Blount and Kouritzin
[2010] and Kouritzin [2016]. §A.7 reviews some basic properties of cadlag
processes. Moreover, a collection of miscellaneous results about these topics
are presented in §B.2 of Appendix B.

This appendix complies with all our notations, terminologies and conven-
tions introduced before. Several general technicalities used herein are provided
in §B.1 of Appendix B.
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A.1 Point-set topology

A.1.1 Separability

Separability of a topological space E refers to the separation of points by
open sets. FE is a Hausdorff space if for any distinct z,y € E, there exist
disjoint O,, O, € O(E)" such that 2 € O, and y € O,. From this definition

one immediately observes that:
Fact A.1. Any topological refinement® of a Hausdorff space is also Hausdorff.

F is a T3 space if E is a Hausdorff space and for any € F and F' € € (F)
excluding x, there exist disjoint O,, O € O(F) such that xz € O, and F' C Op.
FE is a T4 space if E is a Hausdorff space and for any disjoint Fy, Fy € € (F),
there exist disjoint Oy, Oy € O(F) such that F; C O; and Fy C Oy. Below are

several basic properties of Hausdorff, T3 and T4 spaces.

Proposition A.2. The following statements are true:

(a) Any finite subset of a Hausdorff space is closed.
(b) The families of T4, T3 and Hausdorff spaces are successively larger.

(c) Subspaces of a T3 or Hausdorff space are T3 or Hausdorff spaces re-

spectively. Moreover, closed subsets of a T/ space are T/ subspaces.

(d) Any product space of T3 or Hausdor[f spaces is a T3 or Hausdor[f space

respectively.

Proof. (a) was proved in [Munkres, 2000, Theorem 17.8]. (b) is immediate by
(a). (c) was justified in [Munkres, 2000, Theorem 31.2 and §32, Exercise 1].
(d) was proved in [Munkres, 2000, Theorem 31.2]. O

A.1.2 Countability

Intuitively, countability of a topological space E describes the “number of

open sets”. F is first-countable if for cach x € FE, there exists a countable

10(FE) and € (E) denotes the family of all open and closed subsets of E respectively.
2The terminology “topological refinement” was introduced in §2.1.3.
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O, C O(F) such that O 5 z for all O € O, and any U € O(F) containing
x is the superset of some member of O,. FE is separable if F has a countable
dense subset. E is a Lindelof space if any {O;}ic1 C O(F) satisfying E =
Uier Oi admits a countable subset {O;, }nen satisfying £ = |J,cn Oi,- E s
a hereditary Lindelof space if any subspace of E is a Lindelof space. E is a
second-countable space if it admits a countable topological basis. Below are

some basic facts about the countability notions above.

Proposition A.3. The following statements are true:

(a) Subspaces of a first-countable, second-countable or heredetary Lindelof
space are first-countable, second-countable or heredetary Lindelof spaces,
respectively. Moreover, closed subsets of a Lindelof space are Lindelof

subspaces.

(b) Every second-countable space is first-countable, separable and heriditary

Lindelof simultaneously.

(¢) The product space of countably many first-countable, second-countable
or separable spaces is first-countable, second-countable or separable, re-

spectively.

(d) The image of a separable, Lindelof or heriditary Lindelof space under
a continuous mapping is separable, Lindelof or heriditary Lindelof, re-

spectively.

(e) The union of countably many separable, Lindelof or hereditary Lindelof
subspaces is a separable, Lindelof or hereditary Lindelof subspace, re-

spectively.

Proof. (a) was proved in [Munkres, 2000, Theorem 30.2 and §30, Exercise 9].
(b) Second-countable spaces are first-countable by definition. They are
separable and Lindeldf by [Munkres, 2000, Theorem 30.3]. Moreover, they are
hereditary Lindelof spaces by (a).
(c) was justified in [Munkres, 2000, Theorem 30.2 and §30, Exercise 10].
(d) Let E and S be topological spaces and f € C(E;S) be surjective. If E
is separable or Lindeldf, then S is also by [Munkres, 2000, §30, Exercise 11].
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Now let E be hereditary Lindelof, A C S and B = f~'(A). (B,0g(B)) is
Lindelof and f|p € C(B, Og(B); A, Os(A)) is surjective. Hence, (A, Os(A)) is
also Lindelof.

(e) Let E' = J,,cn An be a topological space. If {A,},en are all separable
subspaces, then there exist {z,,;}nien C F such that {,,;}ien is dense in A,
for all n € N. Hence, {y; }n.ien is a countable dense subset of E. If {A, },en
are all Lindelof subspaces of E and E = J,; O; with {O;},er C O(E), then
there exist {O;,, tren C {O;}icr satisfying A, C Uen O, for each n € N.
Hence, £ = J, 4en O
and Lindelof subspaces. That about hereditary Lindelof subspaces follows

So far we proved the conclusions about separable

in,k*

immediately. O

A.1.3 Metrizability

The metric space is the most well-known type of topological spaces and
we merely recall a few necessary facts. Let (E,t) and (S,0) be metric spaces.
f € SE is an isometry between (E,t) and (S,0) if f is a surjective and t(z,y) =
o(f(z), f(y)) for all z,y € E. (E,v) and (S,0) are isometric if there exists an
isometry between them. (S,0) is a completion of (E,tv) if (S,0) is complete

and F is isometric to a dense subspace of S.

Note A.4. Without loss of generality, a metric space (F,t) can always be
treated as a dense subset of its completion (5, 0) (if any) such that 9 restricted

to E x E equals t.

Below are several facts about the completeness of metric spaces.

Proposition A.5. Let (E,t) and (S,0) be metric spaces. Then, the following

statements are true:

(a) If (E,t) and (S,0) are isometric, then they are homeomorphic. In

particular, (E,t) is complete precisely when (S,0) is complete.
(b) There exists a unique completion of (E,t) up to isometry.

(c) If (E,v) is complete, then the closure of A C E equipped with (the

restricted metric of ) v is the completion of A.
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Proof. (a) Any isometry between E and S maps their open balls bijectively
and equates Cauchy property or convergence of their sequences.

(b) was proved in [Munkres, 2000, Theorem 43.7].

(c) If (E,t) is complete, then every Cauchy sequence in A’s closure A

converges to a member of A. O

If E’s topology is the same as the topology of (E,t) for some metric t,
then F is said to be metrizable, v is said to metrize E and (E,t) is called
a metrization of E. Below are several elementary results about metrizable

spaces.

Proposition A.6. The following statements are true:
(a) Metrizable spaces are T4 (hence T3 and Hausdorff) spaces.
(b) Subspaces of a metrizable space are metrizable.

(c¢) Subspaces of a metrizable and separable space are metrizable and second-

countable (hence separable and hereditary Lindelof).

(d) Homeomprhs of metrizable spaces are metrizable.

Proof. (a) follows by [Munkres, 2000, Theorem 32.2] and Proposition A.2 (a).
(b) was justified in [Munkres, 2000, §21, Exercise 1]. (c) follows by [Munkres,
2000, §30, Exercise 5], (b) and Proposition A.3 (a, b). Regarding (d), we note
that if (£, t) is a metric space and f € hom(E; S), then S is metrized by the
metric 0 defined by 0(z,y) = v(f~(z), f'(y)) for each z,y € S. O

The next two results summarize metrizability of countable Cartesian prod-

ucts.

Proposition A.7. Let {(S;,v;)}ie1 be metric spaces and S = [[;.; Si- Then,

the following statements are true:

(a) When I ={1,...,d}, S is metrized by’

vz, y) = max v (pi(x),p:(y)), Yo,y € S. (A.1.1)

1<i<d

If {(Si, v;) b1<i<a are all complete, then (S,t?) is also.

3The notation “p;” as defined in §2.1.1 denotes one-dimensional projection on S for i € I.
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(b) When I =N, S is metrized by

v (z,y) = supi [t (pi(2), pi(y)) A1, Va,y €S, (A1.2)

1€EN

or alternatively by
(2 y) =) 27 oy (pi(x), pily)) A1), Y,y € S, (A.1.3)
=1

If {(S:i,v) bien are all complete, then (S,t°) and (S,t3°) are also.

Proof. (a) was proved in [Munkres, 2000, §21, Exercise 3 and Theorem 43.5].
(b) We prove t3°* metrizes S and the case for t{° follows by a similar argu-
ment. Let x € S, € € (0,1), {i1,....,ia} C N,

Bf’e o {y € Sz T (pZ(ZE),y) < E}, if7 € {il, ...,’id}, (A]_4)

S; otherwise

and N = max{ij, ...,iq}. From the fact

dE x,€ o0 —
{yES:tgo(x,y)< 2N_1} cIBc{yes: ey <de+27%

iEN
(A.1.5)
and the openness of the left side of (A.1.5) it follows that t3° metrizes S. When
{(Si,ti) }ien are all complete, the completeness of (S, t3°) and (S, t3°) follows
by the argument establishing [Munkres, 2000, Theorem 43.4]. O

Proposition A.8. Let I be a countable index set, {S;}ier be topological spaces
and S = [l,c; Si- Then, A is a metrizable subspace of S if and only if p;(A)

s a metrizable subspace of S; for all i € 1.

Proof. Necessity follows by the argument establishing [Aliprantis and Bor-
der, 2006, Theorem 3.36]. Regarding sufficiency, we get the metrizability
of [[;crpi(A) from Proposition A.7 (with S; = p;(A)) and then get that of
A C J[,erpi(A) by Proposition A.6 (b). O

The following property of first-countable and metrizable spaces is indis-

pensable.
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Fact A.9. Let E be a topological space, v € E and A C E. Then, the following

statements are true:

(a) If E is metrizable, then I is first-countable.

(b) If there exist {x,}nen C A converging to x in E, then x is a limit

point* of A. The converse is true when E is first-countable space.

Proof. This fact was proved by [Munkres, 2000, p.131 and Theorem 30.1]. O

A subset A of metric space (F,t) is said to be totally bounded if for any

=

¢ € (0,00), there exists an A, € F(E)° such that £ = (J,c,{y € F :
t(z,y) < €}. We used in §6.5 the following properties of totally bounded sets.

Proposition A.10. Let (E,t) be a metric space. Then, the following state-

ments are true:

(a) If A C E is totally bounded, (A, Og(A)) is a second-countable space.
(b) The union of finitely many totally bounded subsets of E is totally bounded.

(c) If A C E is totally bounded, then its closure is also.

Proof. (a) For each p € N, we pick an A, € y(E) such that A C ., {y €
Eve(z,y) <277} Then, U, en
follows by Proposition A.6 (c).

A, is a countable dense subset of E. Now, (a)

(b) is immediate by the definition of totally bounded sets.

(c) For any € > 0, there exists an A, € F(A) such that A C |J,c4 {v €
E :t(r,y) < €/2}. Then, A’s closure is contained in (J,c4 {y € £ : t(7,y) <
€} O

A.1.4 Polish, Lusin and Souslin spaces

Polish, Lusin and Souslin spaces are topological variations of complete
separable metric spaces. Homeomorphs of complete separable metric spaces

are called Polish spaces. FE is a Lusin space (resp. Souslin space) if £ is a

4The notion of “limit point” was mentioned in p.26.
> P4(E) denotes the family of all finite subsets of E.
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Hausdorff space and there exists a bijective (resp. surjective) f € C(S;FE)
with S being a Polish space. The following are several basic facts about these
spaces above and §A.5 will discuss the measurability aspect of Polish and Lusin

spaces further.

Proposition A.11. The following statements are true:

(a) Every Polish (resp. Lusin) space is a Lusin (resp. Souslin) space.

(b) Open and closed subsets of a Polish, Lusin or Souslin space are Polish,

Lusin or Souslin subspaces, respectively.
(¢) Subspaces of a Polish space are metrizable and second-countable.

(d) Subspaces of a Polish, Lusin or Souslin space are separable and herid-
itary Lindelof.

(e) A metric space is separable if and only if its completion is a Polish

space.

(f) The product space of countably many Polish, Lusin or Souslin spaces is
a Polish, Lusin or Souslin space, respectively. In particular, R>* and

its subspace N> are Polish spaces.

(g) The intersection or union of countably many Souslin subspaces is a

Souslin subspace.

Proof. (a) Note that the identity mapping is a continuous bijection between
any topological space and itself.

(b) Let E be a topological space, O € O(F) and F € €(FE). If F is a Polish
space, then O and F' are Polish subspaces of E by [Bogachev, 2007, Vol. II,
Example 6.1.11]. If F is a Lusin (resp. Souslin) space, then there exist a Polish
space S and a bijective (resp. surjective) f € C(S;FE). f~4O) € €0(S) and
[~ (F) € €(S) are Polish subspaces of S. f|s-1(0y and f|z-1(r) are bijective
(resp. surjective) continuous mappings from f~!(0) and f~*(F) to O and F
respectively. Thus, O and F are Lusin (resp. Souslin) subspaces of E.

(c) follows by Proposition A.6 (c, d).

(d) follows by (c) and Proposition A.3 (b, d).
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(e) Sufficiency follows by Proposition A.3 (a). For necessity, we note that
any countable dense subset of a metric space is also dense in its completion.

(£) If { S }nen are all Polish spaces, then [], _n S» is a Polish space by [Sri-
vastava, 1998, §2.2, (v), p.52]. If {9/ }nen are all Lusin (resp. Souslin) spaces
and {f, € C(Sy; S},) fnen are bijective (resp. surjective), then &), . fn 0P €
C(IT,en Sni [Lnen S5)° is bijective by Fact 2.4 (a, b). Hence, [],.nS) is a
Lusin (resp. Souslin) space.

(g) was proved in [Bogachev, 2007, Vol. II, Theorem 6.6.6]. O

A.1.5 Compactness

Let E be a topological space and A C E be non-empty. F is compact if
any {O;}ier C O(E) satisfying E' = (J;.; O; admits a finite subset {O;, }1<j<n
satisfying £ = U?:l O;;. E is sequentially compact (resp. limit point com-
pact) if any infinite subset of E has a convergent subsequence (resp. a limit
point). A is a compact, sequentially compact or limit point compact subset
of £ if (A, Og(A)) is compact, sequentially compact or limit point compact,
respectively. A is a precompact” subset of E if A’s closure is compact. E is lo-
cally compact if for any = € F, there exist K, € #(E)® and O, € O(F) such

that x € O, C K,. Compact spaces have the convenient properties below.

Proposition A.12. The following statements are true:

(a) Closed subsets of a compact space are compact. Moreover, compact

subsets of a Hausdorff space are closed and hence Borel subsets.

(b) The union of finitely many compact subsets is compact. Moreover, any

product space of compact spaces is a compact space.
(c) Compact metric spaces are complete.

(d) Hausdorff (resp. metrizable) compact spaces are T4 (resp. Polish)

spaces.

6p,, herein denotes the projection on R* for n € N.

"Having a compact closure is commonly known as relative compactness. Herein, we use
the alternative terminology “precompactness” to distinguish this notion from the relative
compactness about finite Borel measures.

8¢ (E) denotes the family of all compact subsets of E.
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(e) Compact spaces are Lindelof spaces. Moreover, the image of a compact

space under any continuous mapping is a compact space.

(f) Compactness implies limit point compactness. Moreover, compactness,
sequential compactness and limit point compactness are equivalent in

metrizable spaces.

Proof. (a) was proved in [Munkres, 2000, Theorem 26.2 and Theorem 26.3].
The first statement of (b) was proved in [Munkres, 2000, §26, Exercise 3]. The
second statement of (b) is the well-known Tychonoff Theorem (see [Munkres,
2000, Theorem 37.3]). (c¢) was justified in [Munkres, 2000, Theorem 45.1 and
§30, Exercise 4]. (d) follows by [Munkres, 2000, Theorem 32.3] and (c). The
first statement of (e) is automatic. The second statement of (e) was proved in
[Munkres, 2000, Theorem 26.5]. (f) was proved in [Munkres, 2000, Theorem
28.1 and Theorem 28.2]. O

Corollary A.13. Let {S;}icr be topological spaces and (S, <7) be as in (2.7.22).

Then, the following statements are true:

(a) If A; € H(S;) for alli €1, then [[,.; Ai € (S). 1If, in addition, I is
countable and {S;}ie1 are all Hausdorff spaces, then A; € AB(S;) for all
i€l and [[,.4 Ai € .

i€l

(b) If A€ Z(S), then p;(A) € H(S;) for alli € 1. If, in addition, {S; }icx
are all Hausdorff spaces, then p;(A) € B(S;) for all i € L.

Proof. (a) The first part follows by Proposition A.12 (b). The second part fol-
lows by Proposition A.12 (a), Fact 2.3 (a) and the fact [,.; Ai = Nicr b7 (A2).

(b) The first part follows by Fact 2.4 (a) and Proposition A.12 (e). The
second part follows by Proposition A.12 (a). O

Corollary A.14. Let I be a countable index set, {S;}ic1 be Hausdorff spaces,
(S,4) be as in (2.7.22), T C MT(S, o) and i’ € be(p) for each pn € T'. Then,
{W'}uer is tight or sequentially tight” if and only if T is.

9The notion of sequential tightness was introduced in §5.1.
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Proof. We only prove the tightness of {/'},er implies that of I' and the rest is
immediate. Given the tightness of {y'} e, there exist {K,},en C #(S) such
that sup,,cp ¢f'(S\K}) > 1 =277 for all p € N. It follows by Corollary A.13 (a)
that F, = [[,c;0:(K,) € & N (S) for all Vp € N. Now, we have that

sup u(S\F,) = sup ¢/ (S\F,) <supp/(S\K,) >1—-277, ¥pe N. (A.1.6)

pel pel’ pel
Ol

Corollary A.15. Let {S;}ic1 be topological spaces and (S, <) be as in (2.7.22).

Then, the following statements are true:

(a) If I is countable, A; € H#,(S;) for alli € I and {S;}ic1 are all Hausdorff
spaces, then A; € PB(S;) for alli €1 and [[,.; Ai € .

(b) If 1 is finite and A; € H#,(S;) for all i € I, then [],.; Ai € H5(S).

(c) If A € J,(S), then p;(A) € JH,(S;) for all i € 1. If, in addition,
{Si}ier are all Hausdorff spaces, then p;(A) € B(S;) for all i € 1.

Proof. (a) follows by Proposition A.12 (a), Fact 2.3 (a) and the fact [[,.; A; =
ﬂiel pz_l(Az)

(b) follows by a similar argument to the proof of Lemma 3.61 (b).

(c) Let A=, en Kp With {K}}pen C #(S). We have that

pi(A) = pi (U K,,) = U ni(K,) € H(S)), Viel (A.1.7)

by Corollary A.13 (b). The second part of (c¢) follows by Proposition A.12
(a). O

We used in §6.5 the following connection of total boundedness and com-

pactness.

Proposition A.16. Compactness of a metric space is equivalent to total

boundedness plus completeness.

Proof. This result was proved in [Munkres, 2000, Theorem 45.1]. O
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A.2 Point-separation properties of functions

§2.2.4 introduced three functional separabilities of points: separating points,
strongly separating points and determining point convergence. The following

proposition specifies the relationship among these three separabilities.

Proposition A.17. Let E be a topological space, A C E be non-empty, D C
R” and d € N. Then, the following statements are true:

(a) If {{z} : x € A} C C(F), especially if A is a Hausdorff subspace of A,
then D strongly separating points on A implies D separating points on

A.

(b) If D strongly separates points on A, then D determines point conver-
gence on A. The converse is true when (A, Op(A)) is a Hausdorff

space.

(c) D separates points on A if and only if (A, Op(A))" is a Hausdorff

space.

(d) Op(A) is induced by pseudometrics {pin}tren''. If D is countable,
then (A, Op(A)) is a second-countable space pseudometrized by pp. If,
in addition, D separates points on A, then Op(A) is metrized by pp.

(e) If D|a C C(A, Or(A);R) separates points (resp. strongly separates
points) on A, then (A, Og(A)) is a Hausdorff space (resp. Op(A) =
Op(A)).

Proof. (a) The Hausdorff property of (A, Og(A)) (if any) implies {{z} : x €
A} C (A, Or(A)) by Proposition A.2 (a). We then prove (a) by contradic-
tion. If D fails to separate points on A, then there exist distinct z,y € A
such that @ D(x) = @ D(y). Since {y} is a closed set and D strongly
separates points on A, there exist D, € (D) and € € (0,00) such that
y € {z € A:maxsep, |f(z) — f(2)|} < e C A\{y}. Contradiction!

(b) was proved in [Blount and Kouritzin, 2010, Lemma 4].

0The notation &p(A) was introduced in §2.1.3.
" The pseudometrics pp and pg, were defined in §2.2.4 and py sy refers to pp with D = {f}.
The meaning of {pgs} : f € D} inducing Op(A) was explained in §2.1.3.
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(c - Sufficiency) follows by (a) (with A = (E, Op(E))).

(¢ - Necessity) Let z1,z9 € A be distinct. Since D separates points on
A, there exists an f € D such that ¢y = |[f(z) — f(y)| > 0. Then, we define
O;={z€A:|f(z) — f(2)| < 2} € Op(A) for each i = 1,2 and observe that
X1 € O, 19 € Oy and 01N Oy = O.

(d) The first statement follows by the fact that

{yeA:%%);If(x)—f(y)l <2‘”} = () {yed:ppry) <27}
f€Do

(A.2.1)
for all Dy € P(D), v € A and n € N. If D = {f;};en is countable, then

{{yeA: max |f;(z) — f;(y)| <2—n} :xeA,m,neN} (A2.2)

1<j<m

defines a countable topological basis of Op(A). From the fact

{yeA:pp(zy) <27}
e {ve s mox 1@ - i <2 (A2

- {yEA:pD(x,y) <m2_”+2_m}, Ve e A,m,n € N

it follows that pp induces Op(E). If, in addition, D separates points on A,
then pp(z,y) = 0 implies Q D(z) = @ D(y) and so = = y, thus proving pp is
a metric.

(e) follows by the observation Op(A) C Or(A), (c) and Fact A.1. O

Corollary A.18. Let E be a topological space, D C RF be countable and
d € N. Then, (B, Op(E)?) is a second-countable space pseudometrized by
0% If, in addition, D separates points on E, then Op(E)? is metrized by p,.

Proof. This corollary follows by Proposition A.17 (d) and the argument estab-
lishing Proposition A.7 (a). O

Corollary A.19. Let E be a topological space and the members of Dy C R¥
and D C R¥ are bounded. If D C cl(Dy)'?, then Op(E) C Op,(E). In

2Recall that “cl(-)” refers to closure under supremum norm.
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particular, if D separates points or strongly separates points on E, then Dy

does also.

Proof. D C C(E, Op,(E); R) by [Munkres, 2000, Theorem 43.6] and so &p(E) C
Op,(E). If D separates points on E, then (E, Op(F)) is a Hausdorff space
by Proposition A.17 (c) and (E, Op,(F)) is also by Fact A.1. So, D, sepa-
rates points on E by Proposition A.17 (c¢) (with A = E and D = Dy). That
D strongly separates points on E implies O(E) C Op(E) C Op,(FE), so Dy

strongly separates points on F too. O

The next lemma shows that strongly separating points and separating

points coincide for continuous functions on compact spaces.

Lemma A.20. Let E be a compact space and D C C(FE;R). Then, E is a
Hausdorff space and D strongly separates points on E if and only if D separates

points on E.

Proof. (Necessity) follows by Proposition A.17 (a).

(Sufficiency) E is a Hausdorff space by Proposition A.17 (e) (with A = E).
So, we need only show D determines point convergence on E by Proposition
A.17 (b). Suppose lim,, o f(z,) = f(z) for all f € D. {z,},en has at least
one convergent subsequence by the compactness of E and Proposition A.12
(f). f x,, >y € E as k T oo, then f(y) = limy oo f(zn,) = f(z) for all
f € D. This implies v = y and z,, — = as k 1 oo as D separates points on
E. O

Below are two useful properties of the function class I1¢(D) introduced in
§2.2.3.

Proposition A.21. Let E be a topological space and d € N. Then, the

following statements are true:
(a) Any D C RF satisfies™

ag [1Y(D)] C [C (B, Op(E);R) N M (EY,0(D)*;R)]. (A.24)

13The notations “ag(-)” and “ca(-)” were defined in §2.2.3.
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If, in addition, the members of D are bounded, then,

ca [ID)] C [Cy (EY, Op(E); R) N M, (B, 0(D)*;R)]. (A.2.5)

(b) If D separates points (resp. determines point convergence) on E, then

[14(D)* separates points (resp. determines point convergence) on E?.

Remark A.22. Please be reminded that the o-algebra o(D) induced by D is
possibly smaller than the Borel o-algebra Zp(F) induced by D (see Fact B.5).

Remark A.23. TI4(D) does not only include functions like HZZI fr o pr with
{fx}1<k<a C D. Hence, we do not need 1 € D in Propoisition A.21 (b).

Proof of Proposition A.21. (a) For each g € T1%(D), there exist k¥ € N and
fi,-wos fx € D such that g = @ o (R, f; o p;) with ¢ = [[1_, p; € RF".

{p:}i<i<k C [M (E?,0(D)*% E,0(D)) NC (E?, Op(E); E, Op(E))]
(A.2.6)
by Fact 2.3 (a) and Fact 2.4 (a).

®fi op; € [C(EY, Op(E);RY) N M (EY, o(D)*: R, ZR)*")] (A2.7)

by Fact 2.3 (b) and Fact 2.4 (b). Z(RF) = Z(R)®* by Proposition B.46 (d)
(with S; = R), so

¢ € C(R*R) C M (R*, BR)*";R) . (A.2.8)

Now, (A.2.4) follows by (A.2.7) and (A.2.8). (A.2.5) follows by (A.2.4), Fact
B.16 (b) and the fact that uniform convergence of functions preserves bound-
edness, continuity and measurability.

(b) If x # y in £ and D separates points on E, then there exist 1 <1i <d
and f € D such that p;(x) # pi(y) and fopi(x) # fopi(y). So, YD) > fop;
separates points on E?. @ II4D)(z,) — QI*D)(z) as n 1 oo in RMP)
implies ® D o p;(z,) = Q@ Dop;(x) asn T ooin RP for all 1 <i < d by Fact
B.11. It follows that p;(z,) — p;(x) asn T oo in F for all 1 < i < d since D

14The definition of TI%(D) refers to (2.2.14).
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determines point convergence on E. Hence, z,, — x as n 1 oo in E? by Fact
B.11. O

The following proposition describes two typical cases where one can select

countably many (strongly) point-separating functions.

Proposition A.24. Let E be a topological space and D C C(E;R). Then,

the following statements are true:

(a) If {(z,x) : * € E} is a Lindelof subspace of E x E and D separates
points on E, then there exists a countable Dy C D that separates points
on F.

(b) If E is a second-countable space and D strongly separates points on F,
then there exists a countable Dy C D that strongly separates points on
E.

Proof. (a) follows by the argument establishing [Bogachev, 2007, Vol. II,
Proposition 6.5.4]. (b) was proved in [Blount and Kouritzin, 2010, Lemma
2]. O

A.3 Tychonoff space and compactification

E is a Tychonoff (or T3}) space if E is a Hausdorff space and for any
r € F and F € ¥(F) that excludes x, there exists an f, p € C(E;]0,1])
such that f, p(z) = 0 and (the image) f, r(F) = {1}. Besides the functional
separability of points and closed sets above, Tychonoff spaces are also defined
as the spaces whose topology is induced by some family of R-valued functions,

or alternatively by some family of pseudometrics.

Proposition A.25. Let E be a topological space. Then, the following state-

ments are equivalent:
(a) E is a Tychonoff space.
(b) C(E;R) separates points and strongly separates points on E.
(c) Co(E;R) separates points and strongly separates points on E.
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(d) E is a Hausdorff space and O(E) is induced by a family of pseudomet-

T1CS.

(e) E is a Hausdorff space and O(E) = Op(E) for some D C RE.

Proof. ((a) — (b)) For each non-empty O € O(F), there exists an f C
C(E;R) such that {y € £ : f(y) <€} C O for all € € (0,1) by the definition
of Tychonoff spaces. This implies O¢(g.r)(F) is finer than &(F) and C(E;R)
strongly separates points on E. The Hausdorff property of (E, Ocgr)(E))
follows by that of E and Fact A.1. Hence, C(F;R) separates points on E by
Proposition A.17 (c¢) (with D = C(E;R)).

((b) = (c)) Observing {(f An)V (—n)}tnen, reczr) C Co(E; R), one finds
O(E) = Oc¢,p;r)(£) by Lemma B.52 (with 0(F) = Oc@r)(E), § = C(E;R)
and H = C(E;R)).

((c) — (a)) Let x € E and F' € ¥(F) such that = ¢ F. Since Cy(F;R)
strongly separates points on F, there exist D, € Z(C,(E;R)) and € € (0, 00)
such that

T € {y ekb: ?é%x|gf(y)| < e} C E\F, (A.3.1)

where g¢(y) = f(y) — f(x) for each y € E and f € D,. One finds by (A.3.1)
that
=1, ify e F,
h(y) =1ae maxlgs(y)] §=0,  ify=u, (A.3.2)
€ [0,1], otherwise,

proving that E is a Tychonoff space.

((b) — (d)) follows by Proposition A.17 (d, e) (with A = E and D =
C(E;R)).

((d) — (e)) Given pseudometrics {t;};er inducing O (F), [Kouritzin, 2016,
p.5687] showed O(F) = Op(E) with D = {f1, y }yepto 19 2o1) and

]- - Y y» Ui
frox(@) = [T w VO, Ve EyecEY e 2. (A3.3)

i€lp

((e) — (b)) is immediate by Proposition A.17 (c) (with Op(FE) = O(F)).
O
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Below are a few more properties of Tychonoff spaces.

Proposition A.26. The following statements are true:

(a) T4 spaces, especially metrizable spaces are Tychonoff space. Moreover,

Tychonoff spaces are T3 spaces.
(b) Subspaces of a Tychonoff space are Tychonoff spaces.

(c) Any product space of Tychonoff spaces is a Tychonoff space.

Proof. (a) The first statement follows by the Urysohn’s Lemma (see [Munkres,
2000, Theorem 33.1]) and Proposition A.6 (a). The definition of a Tychonoff
space E implies (£, O¢,gr)(£)) is T3. Then, E is T3 by Proposition A.25
(a, c).

(b) and (c) were proved in [Munkres, 2000, Theorem 33.2]. O

Tychonoff space has close link to compactification. S is called a compact-
ification of £ (or S compactifies F) if S is a compact Hausdorff space and
F is a dense subspace of S. S is the Stone-Cech compactification of F if S
compactifies £ and & C(E;R) extends to a member of imb(S; RC(FR)),
S is the one-point compactification of E if S compactifies £ and S\FE is a
singleton. The Tychonoff property, general compactifiability and Stone-Cech

compactifiability are equivalent.

Proposition A.27. Let E be a topological space. Then, the following state-

ments are equivalent:
(a) E has a compactification.
(b) E is a Tychonoff space.
(c) E has a unique Stone-Cech compactification up to homeomorphism'®.

Stone-Cech compactification is a special case of the following result.

Lemma A.28. Let E be a topological space and D C RF be a collection of

bounded functions. Then, the following statements are equivalent:

15«Unique up to homeomorphism” means any two spaces with the relevant property are
homeomorphic.
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(a) D C Cy(E;R) separates points and strongly separates points on E.

(b) E admits a unique compactification S up to homeomorphism such that
Q) D extends to a homeomorphism between S and the closure of Q D(E)
in RP.

(c) ®D € imb(E; RP).
Proof. ((a) — (b)) is adapted from [Kouritzin, 2016, Theorem 6 (1 - 3)]. ((b)

— (c)) is immediate as E is a subspace of S. ((c) — (a)) follows by Lemma
B.7 (b) (with S = R). O

Remark A.29. If the D above is countable, then the induced compactification
has a homeomorph in R* and hence is metrizable. This is the foundation of

the replication bases.

The next result is about compactification of metrizable and separable space.

Corollary A.30. Let E be a topological space. Then, the following statements

are equivalent:

(a) E is metrizable and separable.

(b) There exists a countable subset of D C Cy(E;R) that separates points

and strongly separates points on E.

(¢) E has a compactification that is homeomorphic to a compact subset of
R>™.

(d) E admits a metrizable compactification.

(e) E is a dense subspace of some Polish space.

Proof. ((a) — (b)) follows by Proposition A.26 (a), Proposition A.25 (a, c),
Proposition A.6 (c), Proposition A.24 (b) and Proposition A.17 (a). ((b) —
(c)) follows by Lemma A.28. ((c) — (d)) follows by Proposition A.6 (b, d).
((d) — (e)) follows by Proposition A.12 (d). ((e) — (a)) follows by Proposition
A11 (c). O
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Proof of Proposition A.27. ((a) — (b)) follows by Proposition A.12 (d) and
Proposition A.26 (a, b). ((b) — (c)) follows by Proposition A.25 (a, ¢) and
Lemma A.28 (a, b) (with D = C,(E;R)). ((c) — (a)) is automatic. O

Locally compact Hausdorff spaces are well-known to have a unique one-

point compactifiable up to Homeomorphism.

Proposition A.31. Let E be a locally compact space. Then, the following

statements are equivalent:

(a) E is a Hausdorff space.
(b) E has a unique one-point compactification up to homeomorphism.
(c) E is a Tychonoff space.

Proof. ((a) — (b)) was proved in [Munkres, 2000, Theorem 29.1]. ((b) — (c))
follows by A.27 (a, b). ((c) — (a)) is automatic. O

The next lemma is an analogue of Lemma A.20 for locally compact spaces.

Lemma A.32. Let E be a locally compact space and D C Cy(E;R). Then,

the following statements are equivalent:

(a) D separates points on E.

(b) DA = {f2}ep U {1} is a subset of C(E®;R) which separates points
and strongly separates points on E®, where E® is a one-point com-
pactification of E and f» = vac(f; E®, E,0)'% for each x € E® and
femD.

(c) E is a Hausdorff space and D strongly separates points on E.

Proof. ((a) — (b)) E is a Hausdorff space by Proposition A.17 (e) (with A =
F), so E admits a one-point compactification E~ = E U {A} by Proposition
A31. ¢ (E) C €(E?) by the Hausdorff property of E® and Proposition A.12
(a). f2 is a continuous extension of each f € D C Cy(E;R) by Lemma B.17
(with S = E?). D separates points on E2 since 1 € D2, {f» : f € D}

16 “par(.)” was defined in Notation 4.1.
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separates points on E and f2(A) = 0 for all f € D. Thus, D? strongly
separates points on £ by Lemma A.20.

((b) = (c)) follows by Proposition A.2 (c¢) and the fact O(F) = Oga(E) =
Opa(E) = Op(E). ((c¢) — (a)) follows by Proposition A.17 (a). O

The local compactness of E leads to the following point-separability of

Proposition A.33. Let E be a locally compact space. Then, the following

statements are equivalent:

(a) E is a Hausdorff space.

(b) C.(E;R) separates points on E.

(c) C.(E;R) separates points and strongly separates points on .
(d) Co(E; R) separates points and strongly separates points on E.
(e) E is a Tychonoff space.

Proof. ((a) — (b)) Let x,y € E be distinct. By the local compactness and
Hausdorff property of E, there exist O,,0, € O(F) and K, € J# (E) such
that + € O, C K,, y € Oy and O, N0, = @. K,\O, € H(E) C €(F)
and {y} € € (F) by the Hausdorff property of E, Proposition A.12 (a) and
Proposition A.2 (a). So, O.’s closure F lies in K,\O,, E\{y} is an open
superset of F' and F' € J# (F) by Proposition A.12 (a). Now, by a version of
the Urysohn’s Lemma for locally compact Hausdorff spaces (see [Kantorovitz,
2003, Theorem 3.1]), there exist an f € C.(F;R) such that f(F) =1 and the
closure of E\ f~'({0}) lies in E\{y}. Hence, f(z) =1#0= f(y).

((b) — (c)) follows by Fact B.43 and Lemma A.32 (a, ¢) (with D =
C.(E;R)). ((¢) = (d)) is immediate by Fact B.43. ((d) — (e)) follows by
Proposition A.25 (a, b). ((e) — (a)) is automatic. O
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A.4 Weak topology of non-negative finite Borel

measures

Recall that the weak topology of MT(E) is induced by C,(E; R)*'". Hence,
the Tychonoff properties of MT(E) and P(FE) is reduced to their Hausdorff

properties.

Proposition A.34. Let E be a topological space. Then, the following state-

ments are equivalent:
(a) MT(E) and P(E) are Tychonoff spaces.
(b) P(E) is a Hausdorff space.
(c) Cy(E; R)* separates points on P(E).

Proof. ((a) — (b)) is automatic. ((b) — (c)) follows by Proposition A.17 (c)
(with E = MT(E), A = P(E) and D = Cy(E;R)*). Given (c¢), Co(E;R)*
separates points on M™(E) by Fact B.22 (a) (with D = Cy(F;R)). Then,
(a) follows by (2.3.1), Proposition A.17 (¢) (with E = M*(FE) and D =
Cy(F; R)*), Proposition A.25 (a, e) and Proposition A.26 (b). O

E’s functional separabilities of points is related to those of M™(FE) and
P(E).

Lemma A.35. Let E be a topological space, D C M,(E;R), d € N and
G = mc(I14(D))'8. Then, the following statements are true:

(a) If D C Cy(E;R) strongly separates points on E, then G* separates
points on P(E?) and G U {1} is separating on E.

(b) If D is countable and strongly separates points on E, then G* separates
points and strongly separates points on P(E?), and GU{1} is separating

and convergence determining on E°.

1"The notation “Cy(E;R)*” was specified in §2.3.
18As mentioned in Remark A.23, we need not impose 1 € D in Lemma A.35 by the
definition of T1¢(D).
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Proof. (a) G determines point convergence on E? by Proposition A.17 (b)
(with A = F) and Proposition A.21 (b) (with D = Cy(E;R)). G strongly
separates points on E? by Proposition A.17 (a) (with A = F = E? and
D =G). Og(E)= O(F) by (5.1.3) and Proposition A.17 (e) (with A = E and
D = G). Now, (a) follows by [Blount and Kouritzin, 2010, Theorem 11 (a)]
and Fact B.22 (a) (with £ = E? and D = G U {1}).

(b) G strongly separates points on E? by a similar argument to above. G
is a countable subset of M,(E?; R) by (5.1.2) and Fact B.15. Now, (b) follows
by [Blount and Kouritzin, 2010, Theorem 6 (b) and Theorem 11 (c)] and Fact
B.22 (b) (with E = E? and D = G U {1}). O

We now investigate the connection between the Tychonoff property of E
and those of M*(E) and P(FE). On one hand, we give a generalization of
[Kallianpur and Xiong, 1995, Theorem 2.1.4] without the restriction to Radon

measures.

Corollary A.36. Let E be a Tychonoff space and d € N. Then, MT(E?)
and P(E?Y) are Tychonoff spaces and me[l14(Cy(E;R))] is separating on E°.

Proof. me¢[lI%(Cy(E; R))]* by definition is a subset of Cy(M™(E?); R) and it
separates points on M*(E4) by Proposition A.25 (a, ¢) and Lemma A.35 (a)
(with D = Cy(F;R)). Hence, the result follows by Proposition A.34 (a, c)
(with E = M™(E?)) and Proposition A.26 (b). O

On the other hand, we give an explicit example showing that the converse

of Corollary A.36 is not true.

Example A.37. Example 3.27 (VII) and Example 3.31 (III) mentioned that
Ry is a non-T3 (hence non-Tychonoff) topological refinement of R with
BRi) = B(R). P(R) is a Tychonoff space by Corollary A.36. P(Rk)
is a Hausdorff topological refinement of P(R) by Fact B.26 (a) and Fact A.1.
Thus, P(Rg) and M*(Ry) are Tychonoff spaces by Proposition A.34 (a, b).

The two examples below illustrate that the Hausdorff property of E and
those of M™(F) and P(F) do not imply each other.

Example A.38. Let £ = {1,2,3,4}, A = {1,2}, B

= {3,4} and equip
E with the topology O(F) = {@,A, B, E}. Then, B(E) =

¢(E) = O(E)
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and singletons in E are neither closed nor Borel. So, E is non-Hausdorff
by Proposition A.2 (a). Letting'® pua = (6; + &2)/2 and pp = (03 + d4)/2,
we observe that Cy(E;R) = {ala + blp : a,b € R} and P(E) = {u, =
aps + (1 —a)pup : a € [0,1]}. Co(E;R)* separates points on P(E) since for
any ay,ag € [0, 1],

/ 1a(2)pte, (dz) = a3 = ag = / 14(dx) e, (dx) (A.4.1)
E E

implies fto, = fay- Thus, P(E) and MT(E) are Hausdorff by Proposition
A.34.

Example A.39. Due to the limit of space, we refer the readers to [Munkres,
2000, §33, Exercise 11] for the non-trivial construction of a topological space
E satisfying: (1) E is a T3 (hence Haudorff) but non-Tychonoff space, and
(2) there exist a # b in E such that f*(d,) = f(a) = f(b) = f*(6)* for all
feC(E;R). 4, and ¢, are distinct measures by the Hausdorff property of £
and Proposition A.41 (a), but they can not be separated by C,(E;R)*. So,
neither P(E) nor M*(FE) is Hausdorff by Proposition A.34.

Remark A.40. The difference of the two examples above is at the Borel mea-
surability of singletons and the distinctiveness of Dirac measures at distinct

points.

As long as the extreme non-Borel singletons are avoided, the Hausdorff

property of (the usually more complicated space) P(FE) implies that of F.

Proposition A.41. Let E be a topological space satisfying {{z} : x € E} C
AB(E) and D C My(FE;R). Then, the following statements are true:

(a) 0, # 0, for any distinct z,y € E.
(b) If D* separates points on P(E), then D separates points on E.

(¢) If P(E) is a Hausdorff space, then Cy(E; R) separates points on E and
E is a Hausdorff space.

195 denotes the Dirac measure at x.
20The notation “f*” was specified in §2.3.
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Proof. (a) x # y in E implies 6,({z}) =1 # 0 = 6,({z}).
(b) One finds by (a) an f,,, € Dwith f, ,(z) = f,(0.) # f5,(y) = fay(y)-
(c) follows by Proposition A.34 (b, ¢), (b) (with D = C,(£; R)) and Propo-
sition A.17 (e) (with A = E and D = Cy(F;R)). O

Below are two corollaries of our previous developments.

Corollary A.42. Let E be a metrizable and separable space. Then, there
exists a countable D C Cy(F; R) satisfying the following:

(a) D > 1 is closed under addition and multiplication.
(b) D separates points and strongly separates points on E.

(c) D is separating and convergence determining on E.

Proof. There exists a countable Dy C Cy(F;R) that separates points and
strongly separates points on F by Corollary A.30 (a, b). D = m¢(Dy U {1})*
is countable by Fact B.15 and satisfies (a, b). Now, (c¢) follows by Lemma A.35
(b). O

Corollary A.43. The following statements are equivalent:

(a) E is a Tychonoff space, and M™*(E) and P(E) are metrizable and

separable spaces.

(b) E is a metrizable and separable space.

Proof. ((a) — (b)) By Proposition A.24 (b) (with ¥ = M™(F) and D =
Cy(F; R)*) and Proposition A.17 (a, b), there exists a countable D C C,(E; R)
that is separating and convergence determining on M (E). D separates points
and strongly separates points on E by Proposition A.41 (b), Lemma B.58 (a,
b) and Proposition A.2 (b). Now, (b) follows by Corollary A.30 (a, b).

((b) — (a)) follows by Proposition A.26 (a), Corollary A.42 (c), Proposition
A.17 (b) (with E = MT(FE) and D = D*), Corollary A.30 (a, b) (with E =
MT(E) and D = D*) and Proposition A.6 (c). O

The properties of M™ and P(E) below are vital.

21The notation “mc(-)” was defined in §2.2.3.
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Theorem A.44. The following statements are true:

(a) If E is a compact Hausdorff space, then P(E) is also.

(b) If E is a Polish space, then M (E) and P(E) are also.

Proof. (a) follows by Proposition A.12 (d), Corollary A.36 (with d = 1), the
Prokhorov’s Theorem (Theorem 2.22 (b) with I' = P(E)) and Fact B.23.

(b) The case for P(E) was proved in [Bogachev, 2007, Vol. II, Theorem
8.9.5]. The case for MT(E) refers to [Ethier and Kurtz, 1986, §9.5, Problem
6]. O

As noted in p.26, the sequential concepts “weak limit point??” and “relative
compactness” in MT(E) may cause ambiguity in general, but one can get rid

of that when FE is a metriable space.

Proposition A.45. Let E be a topological space and T' C M™(E). Then, the

following statements are true:

(a) If E is metrizable, then M*(E) and P(FE) are metrizable by the same

metric.

(b) If v is a weak limit point of I, then v is a limit point of T' with respect

to weak topology. The converse is true when E is metrizable.

(c) If E is metrizable, then the relative compactness of T' is equivalent to

its precompactness with respect to weak topology.

Proof. (a) The construction of the Lévy-Prokhorov metric on P(E) can be
found in [Ethier and Kurtz, 1986, §3.1]. A natural extension of this metric to
M*(FE) was given in [Ethier and Kurtz, 1986, §9.5, Problem 6].

(b) follows by (a) and Fact A.9 (b) (with E = M™(E) and A=T).

(c) Let (MT(E),t) be a metrization?® of M*(E), T be I''s closure in
M*(E) and let {ji,}nen C . T's compactness implies I'’s relative compact-
ness by (b) and Proposition A.12 (f). Conversely, we suppose I is relatively

22Weak limit point and relative compactness of finite Borel measures were reviewed in
§2.3.
23The notion of metrization was specified in §A.1.3.
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compact and pick a v, € I' satisfying v(uy,, v,) < 27" for each n € N. Any
weak limit point of T lies in I' by (b) and the closedness of I'. Then, there
must exist v € T' and {n;} C N such that

lim t(ptn,,v) < lim v(pn,, Vs, ) + klim t(Vp,,v) = 0. (A.4.2)
—>

k—o0 k—o0 00

This proves the sequential compactness of I, hence (c) follows by Proposition
A12 (f). (I

The next lemma extends Theorem 2.22 (b) to the non-probabilistic case.

Lemma A.46. Let E be a Hausdorff space, ' C M™(FE) be sequentially tight
and 0 < a < b satisfy {p(E)}uer C [a,b]. Then, I' is relatively compact and

the total mass®* of any weak limit point of T lies in [a, b].

Proof. Let i/ = p/u(E) € P(F) for each u € I'. By the sequential tightness of
I', there exist a tight subsequence {ji, tnen and {K,},en C J(E) such that
SuUp,en Mn(E\K,) < 27Pa for all p € N and

, . sup,, n(FAK
SU.p,LLn(E\Ap)S p EN/"L( \ p)

- <277 V¥peN. A.4.3
neN lnanN Mn(E) P ( )

Thus, {1, }ren is tight by (A.4.3) and is relatively compact by the Prokhorov’s
Theorem (Theorem 2.22 (b)). Then, there exist v € M1 (E), {nxtrex € N
and c € [a, b] such that p;, = v as k1 oo in MT(E) and limy_,o fin, (E) = c.
Hence, p,, = cv as k1 oo in MT(E) by Fact B.21 (b). O

Morever, given a perfectly normal (see e.g. [Munkres, 2000, §33, Exercise
6]) space E, we equate the Borel sets of M*(F) generated by its strong®® and
weak topologies, which generalizes [Bolthausen and Schmock, 1989, Lemma
2.1].

Lemma A.47. Let E be a perfectly normal (especially metrizable or Polish)
space. Then, B, er)s(MT(E)) = B(MT(E)).

24The notion of total mass was specified in §2.1.2.

25Strong topology of Borel probability measures was reviewed in Example 2.30, Example
3.27 and Example 3.31. It can be defined for non-negative finite Borel measures in almost
the same way:.
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Proof. Let O € O(FE). By the definition of perfectly normal space, there exist
{F.}nen C €(F) such that F, C Foyq forall n € N and O = (J,,on Fa-
E is a T4 space by [Munkres, 2000, §32, Exerise 6 and §33, Exercise 6 (b)].
Then, there exist {f,} C C,(E;R) such that 15, < f, < 1p for alln € N
by [Munkres, 2000, §33, Exercise 5|. Consequently, f* — 1§, as n 1 oo by the

Dominated Convergence Theorem. The O above is arbitrary, so
O(E)C {BeBE): 15 € M, (M E))}. (A.4.4)

The right-hand side above is a Dynkin system (see e.g. [Bogachev, 2007, Vol.
I, Definition 1.9.2]). It then follows that

15 € M, (M*(E)), VB € B(E) (A.4.5)

by a suitable Monotone Class Theorem (see [Bogachev, 2007, Vol. I, Theorem
1.9.3 (ii)]), thus proving

By, ryr (MT(E)) C B (MH(E)). (A.4.6)

The converse containment of (A.4.6) is immediate. Moreover, Polish and
metrizable spaces are perfectly normal by Proposition A.6 (d) and [Munkres,
2000, §33, Exercise 6 (a)]. O

A.5 Standard Borel space

We review in this section a few fundamental properties of standard Borel

spaces and standard Borel subsets.

Fact A.48. The following statements are true:

(a) Borel isomorphs of standard Borel spaces are still standard Borel spaces.

In particular, Polish spaces, their Borel isomorphs and their Borel sub-

6

spaces®® are standard Borel spaces.

(b) The cardinality of a standard Borel space can never exceed X(R).

26The notion of Borel subspace was introduced in Definition 2.2.
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Proof. (a) is automatic by definition. Regarding (b), we note that subsets of
Polish spaces can be injectively mapped into R* by Proposition A.11 (c¢) and
Corollary A.30 (a, ¢). So, the cardinalities of their Borel isomorphs will not
exceed N(R>*) = X(R). O

Standard Borel spaces are Borel isomorphic to Borel subsets of Polish

spaces. The latter turns out to be precisely the metrizable Lusin spaces.

Proposition A.49. Let E be a metrizable space. Then, the following state-

ments are equivalent:

(a) E is a Lusin space.
(b) E has a Polish topological refinement (E, %) with B(E) = o(%).

(c) E is separable and for any metrization (E,¢) of E, F is a Borel subset
of the completion of (E, ).

(d) E is a Borel subspace of some Polish space.

(e) There exist an S € € (N*) and a bijective f € C(S; E).

The key to prove the equivalence above is the preservation of Borel sets
under bijective Borel measurable mappings. Here is a standard result about
this.

Lemma A.50. Let E be a Lusin space, S be a Polish space, f € M(S;E)
and*’
U ={OCE:f0)e0(S)}. (A5.1)

Then, the following statements are true:

(a) If [ is continuous and bijective, then f € hom(S; E, %) and (E, %)
is a Polish topological refinement of E.

(b) If E is metrizable (especially a Polish space) and [ is injective, then
f(B) € B(E) for all B € A(S).

219/} is known as the “push-forward topology of f”. In any case, f € C(S; E, %).
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(c) If E is metrizable (especially a Polish space) and f is bijective, then
f € biso(S; E)*.

Proof. (a) f € C(S; E) implies O(E) C %, so (a) follows by Lemma B.8 (a).
(b) Polish and Lusin spaces are separable by Proposition A.11 (d). F is

a dense subspace of some Polish space S’ by Corollary A.30 (a, e), so f €

M(S; 5’) is injective. Now, (b) follows by [Srivastava, 1998, Theorem 4.5.4].
(c) follows immediately by (b). O

Corollary A.51. Lusin spaces (resp. Souslin spaces) are precisely the Haus-

dorff topological coarsenings® of Polish spaces (resp. Lusin spaces).

Proof. (Necessity) The case of Lusin spaces follows directly by Lemma A.50
(a). The case of Souslin spaces follows by a similar argument.
(Sufficiency) Note that the identity mapping on a topological space is a

continuous bijection from any of its topological refinement(s) to itself. O

Proof of Proposition A.49. ((a) — (b)) As E is a Lusin space, there exist a
Polish space S and a bijective f € C(S; E). Let %; be as in (A.5.1) and % =
U;. Then, (E,7% ) is a Polish topological refinement of £ and f € biso(S; E)
by Lemma A.50 (a, ¢). Z(F) = o(%) by Lemma B.8 (b).

((b) — (c)) Let f be the identity mapping on E. f € C(E,%;F) since
O(FE) C %. So, E is separable by Proposition A.11 (¢) and Proposition
A.3 (d). The completion S” of (E,t) is a Polish space by Proposition A.11
(e). f €biso((E,%); E) by B(E) = o(%). Since (E,% ) and S’ are Polish
spaces, £ = f(E) € $(F) by Lemma A.50 (b) (with S = (F, %) and E = 5').

((c) — (d)) follows by Proposition A.11 (e).

((d) — (e)) We refer this non-trivial result to [Bogachev, 2007, Vol. II,
Lemma 6.8.4 and Corollary 6.8.5].

((e) = (a)) (S, On=(S)) is a Polish space by Proposition A.11 (b, f), so E

is a Lusin space. (I

From above we observe that a general (resp. metrizable) Lusin space is a
topological coarsening of some Polish space that does not necessarily preserve

(resp. does preserve) the Borel o-algebra. By contrast, the next proposition

28The notation “biso” was defined in §2.2.2.
29The terminology “topological coarsening” was specified in §2.1.3.
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shows that a general standard Borel space is a topological variant (not nec-
essarily a coarsening or refinement) of some Polish space that preserves the

Borel g-algbera.

Proposition A.52. Let E be a topological space. Then, the following state-

ments are equivalent:

(a) E is a standard Borel space.
(b) E is Borel isomorphic to some metrizable Lusin space.

(c) There exists a topology 2 on E such that (E, %) is a metrizable Lusin
space and B(E) = o(%).

(d) There exists a topology U on E such that (E, %) is a Polish space
and B(E) = o(U).

(e) E is Borel isomorphic to some Polish space.

Proof. ((a) — (b)) follows by Proposition A.49 (a, d).

((b) = (c)) Let S be a metrizable Lusin space, f € biso(S; E), %; be as
in (A.5.1) and %, = %;. 1t follows by Lemma B.8 that f € hom(S;(E, %))
and B(E) = (%), thus proving (E,%4) is a metrizable Lusin space.

((c) — (d)) It follows by Proposition A.49 (a, b) (with £ = (F,%4)) that
(E,%4) has a Polish topological refinement (E., %) with B(E) = o(%) =
o(%).

((d) — (e)) The identity mapping on F is a Borel isomorphism between E
and Polish space (E, %).

((e) — (a)) is immediate by Fact A.48 (a). O

Given metrizability, standard Borel property and Lusin property become
indifferent. Such spaces coarsen the topology but preserve the Borel o-algebras

of certain Polish spaces.

Proposition A.53. Let E be a metrizable space. Then, the following state-

ments are equivalent:

(a) E is a standard Borel space.
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(b) E is a Lusin space.

(¢c) E admits a Polish topological refinement (E, %) satisfying B(E) =
o(%).

Our proof is based on the following interesting result which illustrates that

a Borel measurable mapping may preserve some topological properties.

Lemma A.54. Let E be a standard Borel space and S be a metrizable space.

Then, the following statements are true:
(a) If there is a bijective f € M(E;YS), then S is separable.
(b) If E is metrizable, then E is separable (hence second-countable).

Proof. (a) There exist a Polish space S” and an f’ € biso(S’; E') by Proposition
A52 (a, e). fof € M(S;S) is injective. Now, (a) follows by [Srivastava,
1998, Proposition 4.3.8].

(b) Let S” and f’ be as above. S’ is a standard Borel space by Fact A.48
(a). Then, E' = f'(S’) is separable and second-countable by (a) (with £ = 5,
S = F and f = f’) and Proposition A.6 (c). O

Proof of Proposition A.53. ((a) — (b)) E is separable by Lemma A.54 (b). E
is a dense subspace of some Polish space S’ by Corollary A.30 (a, e). There
exist a Polish space S and an f € biso(S; E) by Proposition A.52 (a, e).
E = f(5) € #(5) follows by Lemma A.50 (b) (with £ = 5" and S = B = E).
Thus, E is a Lusin space by Proposition A.49 (a, d).

((b) — (c)) Let f be the identity mapping on E. FE admits a Polish
refinement (K, %) by Proposition A.49 (a, b), so f € M((FE,% ); E). 1t then
follows by Lemma A.50 (c) (with S = (E,%)) that f € biso((E, % ); F) and
B(E)=0(U).

((c) — (a)) is immediate by Fact A.48 (a). O

Corollary A.55. P(E) is a metrizable standard Borel space whenever E' is.

Proof. E admits a Polish refinement (E, %) with o(% ) = %(F) by Proposi-
tion A.53 (a, ¢). P(E,% ) is a Polish refinement of P(FE) by Fact B.26 (a) and
Theorem A.44 (b). P(E) is a metrizable Lusin space by Corollary A.43 and
Corollary A.51. Thus, P(F) is standard Borel by Proposition A.53 (a, b). O
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The next proposition compares standard Borel substes and Borel subsets

which are likely to be different in general topological spaces.

Proposition A.56. Let E be a topological space. Then, the following state-

ments are true:

(a) If A € B5(E), then Bp(A) C B°(FE). In particular, if E is a standard
Borel space, then B(FE) C %°(E).

(b) If E is a metrizable standard Borel space, especially if E is a Polish
space, then B(E) = $B°(E).

Proof. (a) There exist Polish space S and f € biso(A;.S) by Proposition A.52
(a, e) (with £ = (A, Or(A))). Any B € ABr(A) satisifes f(B) € A(S) and
f|s € biso(B; f(B)), so B € #°(E).

(b) Let A € #°(F). There exist a Polish space S and an f € biso(S; A) by
Proposition A.52 (a, e¢). A= f(S) € Z(F) by Lemma A.50 (b) (with B = 5).
Now, (b) follows by (a). O

Recall that if £ is compact and S is Hausdorff, then any bijective f €
C(E;S) belongs to hom(F; S) and S is also compact (see [Munkres, 2000,
Theorem 26.6]). One of Kuratowski’s theorems provides a similar identifica-
tion for bijective Borel measurable mappings from standard Borel spaces to

metrizable spaces. Herein, we give a short proof for integrity.

Proposition A.57. Let E be a topological space, A € B%(FE), S be a metriz-
able space and f € M(E;S) be injective. Then, f(A) € %°(S) and fla €
biso(A4; f(A)).

Proof. There exist a Polish space S" and an f’ € biso(S’;A). f(A) is a
metrizable subspace of S by Proposition A.6 (b). Observing that f|4 o f' €
M (S'; S) is injective, we have that f(A) = f|ao f/(S’) is a separable subspace
of S by Fact A.48 (a) and Lemma A.54 (b) (with £ = 5" and f = f|lao f).
f(A) is a dense subspace of some Polish space S” by Corollary A.30 (a, e).
Observing that f|4 o f' € M(S’;S”) is injective, one finds by Lemma A.50 (b,
c) (with £ =5"and S = B =95") that f(A) = f|ao f'(S’) is a Borel subspace
of Polish space S” and f|4 o f' € biso(S’; f(A)). Hence, f(A) € %°(S) by
Fact A.48 (a) and f|a = (flao f') o (f')~! € biso(A; f(A)). O
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Remark A.58. The E in Lemma A.50 (b, ¢) is standard Borel by Proposition
A.53 (a, b) and the Polish space S in Lemma A.50 satisfies Z(S) = %°(S) by
Proposition A.56 (b). Hence, Proposition A.57 truly generalizes Lemma A.50
(b, ).

The next result treats standard Borel property of countable Cartesian prod-

uct.

Proposition A.59. Let I be a countable index set, {S;}ic1 be topological
spaces, (S,47) be as in (2.7.22) and A € P°%(S). Then, the following state-

ments are true:

(a) If {{z} : x € S;} T B(S;) for all i € 1, then p;(A) € B°(S;) for all
1€l

(b) If {S;}ier are standard Borel spaces, and if B(S) = o/ (especially

{Si}ier are all metrizable), then S is a standard Borel space.

Proof. (a) We fix i € I and x € A. For each B € #(S5;) and j # i, we define
Bf = B, z; = p;(v), Bf = {z;} and B* = [, Bf. Since I is countable and
{z;} € B(S;) for all j € I, we have that

B"=p;'(B)n () »;'({z;}) € ., VB € B(S3)). (A.5.2)
Jen{i}

Observing that

ﬁS(Sf) = {Slx N [m pjl(Oj)] : Oj € ﬁ(Sj),Io S c@o(l)}

j€lo (A.5.3)
={0":0€e0(5)}.
we have by (A.5.2) that
Bs(S7) =0 ({0": 0 € 0(5,)}) C #. (A.5.4)
It follows that
Bs(ANS]) = | ansz C Bs(A) C P(S) (A.5.5)
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by Proposition B.46 (a) and Proposition A.56 (a). One further finds
Pilanse € biso[ANS), Bs(ANST);pi(A), Bs, [pi(A)]] (A.5.6)

by (A.5.5) and Fact 2.3 (a). Hence, p;(A) € #°(S;) by (A.5.5), (A.5.6) and
Fact A.48 (a).

(b) If {S;}icr are all metrizable, then #(S) = & holds by Lemma A.54
(b) and Proposition B.46 (d). For each i € I, there exist a Polish space S, and
an f; € biso(S}; 5;) by Proposition A.52 (a, e). ], S} is a Polish space by
Proposition A.11 (f). B([[;e1 S7) = @1 #(S;) by Proposition B.46 (d). It
then follows that @),y fi o p; € biso(][,.; Si;S) by #(S) = & and Fact 2.3
(b), thus proving S € #3(S). O

The next proposition is about the functional separabilities of points and

probability measures on standard Borel spaces.

Proposition A.60. Let E be a standard Borel space. Then, the following

statements are true:

(a) There exists a countable susbet of My(E;R) that separates points on
E.

(b) If D C RF satisfies Bp(F) = B(E), then D separates points on E.

(¢c) If D C M(FE;R) is countable and separates points on E, then (D) =
PBp(E) = B(E).

(d) If D C My(E;R) is countable, is closed under multiplication and sep-

arates points on E, then D* separates points on P(E).

Proof. (a) There exist a Polish space S and an f € biso(F;S) by Proposi-
tion A.52 (a, e). There exist {g,}nen C Cp(S;R) separating points on S by
Corollary A.30 (a, b). Hence, {g, o f}nen C My(E;R) separates points on FE.

(b) Let S and f be as in (a). It follows by [Bogachev, 2007, Vol. II,
Example 6.5.2] that Z(S) has a countable subcollection % such that for any
distinet z,y € A, there exists an B,, € % containing f~*(z) but excluding
/71 (y). Tt follows by the fact f € biso(S; E) that {z,y}\f(B.,) = {y} and
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f(Bey) € {f(B): Be %} C B(F) = Pp(E). Hence, D separate points on
A by [Bogachev, 2007, Vol. II, Lemma 6.5.3].

(c) ®D € M(E;R>®) by Fact 2.3 (b). @D € biso(E£;QRQD(F)) and
QR D(E) € B(R*>) by the injectiveness of &) D and Proposition A.57 (with
A= F and S = R®). Z(R®) = Z(R)*N by Proposition B.46 (d). It then
follows that

B(E) =0 H (@ D)_l (B): B € B(R®) = %’(R)®NH
=o({f'(B): Be BR), f € D}) = o(D).

(A5.7)

Now, (c) follows by (A.5.7) and Fact B.5 (with § = A= F and £ =R).
(d) follows by (c¢) and Lemma A.35 (a) (with F = (E, Op(F))). O

We end this section with a lemma about existence of conditional distribu-
tion. Preciously, such existence is known on Polish spaces. Now, we extend it

to a fairly mild setting.

Lemma A.61. Let E be a topological space, X € M(Q, .7, E), A € #(F)
and 4 be a sub-o-algebra of F. If P(X € A) =1, then:

(a) P(E[l{xea|9] =1) = 1.

(b) The conditional distribution Pxy of X given¥ (see e.g. [Dudley, 2002,
§10.2, p.342]) exists as a member of M(Q), %, P(E)). In particular,

P({weQ:Pyy(w)(4) =1}) =1. (A.5.8)

Proof. (a) follows by the fact
E[l1-E|[lixea)|9]] =1-P(X € A) =0=P (E [1{xea|¥] > 1). (A5.9)

(b) There exist a Polish space S and an f € biso(S; A, Og(A)) since A €
P°(F). We fix an arbitrary yo € A and find

Y = fovar (X;Q, X7H(A),y) € M(Q, 7;5) (A.5.10)
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by Lemma B.31 (c) (with Sp = S = A, % = B(E) and %' = $r(A)). We
let Py|y denote the conditional distribution of Y given ¢, which is well-known
to exist on the Polish space S (see [Dudley, 2002, Theorem 10.2.2]). Now, we
define

Py g H(BNA4), ifwe X 1(A),
Pyg(w)(B)={ " w)e I b Hw () Yw € 0, B € B(E),
P(X € B), otherwise,

(A.5.11)
and check that: (1) Pyy satisfies the definition of X’s conditional distribution
given ¢, and (2) (A.5.8) holds and Pxiy € M(Q, .7;P(F)).

Regarding claim (1), we observe that
Pxjs(w) = Pyg(w) o f77, Yw € X71(A) (A.5.12)

and
Pyg(w)o f~H € P(A, Op(4)), Yw e X '(A) (A.5.13)

from (A.5.11) and properties of Py4*’. Thus,
Pxiy(w) € P(E), Yw € Q (A.5.14)

by (A.5.12), (A.5.13), Fact 2.1 (b) (with % = #A(F), p = Pxjg(-,w) and
v="Pyg(-,w)o f71) and (A.5.11). Next, we fix B € #(E) and find that

P({w € Q:Pxy(w)(B) =E [Liyeqrmnap| 9] (@)}) =1 (A5.15)
by (A.5.11) and properties of Pyy. We find that
P(E [1yer1mnay| 9] = E [Lxen|9]) =1 (A.5.16)
by A.5.10 and (a). Tt follows by (A.5.15) and (A.5.16) that
P({we Q:Pyy(w)(B) =E[1ixep|¥9]}) = 1. (A.5.17)

Therefore, Px»(-)(B) € M(Q,9;[0,1]) by the fact E[1;xepy|¥9] € M(Q,%;]0,1])

30Py‘g is sometimes defined to take values almost surely in P(S). In this case, one can
use the argument of [Dudley, 2002, §10.2, p.341, Notes| to remove the null set of exception.
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and Lemma B.31 (a) (with £ = S =[0,1], = B(F), X = Pxy(-)(B) and
Z = E[li{xepy|9]). So far, our claim (1) above is justified.

Regarding claim (2), we fix f € Cy(E;R) and o € P(E). Since Pxy is the
desired conditional distribution, one finds by [Dudley, 2002, Theorem 10.2.5]
that

P({weQ: ffoPxy(w) =E[foX|¥] (w)}) =1 (A.5.18)

and
P({weQ:Pxy(w)(A) =E[1iyveny| 9] (w)}) = 1. (A.5.19)

Since E[f o X|9] € M(Q, Z;R),
{weQ:E[foX|¥](w) - f'(u)| <€} € Z. (A.5.20)
It then follows that
{weQ:|foPxy(w)— f*(u)| <e} € F (A.5.21)

by (A.5.18), (A.5.20) and the P-completeness of .#. Thus, claim (2) follows
by (A.5.19), (a), (A.5.14), (A.5.21) and the definition of &(P(F)). O

A.6 Skorokhod ¢#;-space

This section contains necessary materials about Skorokhod _#;-space for
the developments in Chapter 6 - Chapter 8. We start with several most essen-
tial properties of D(R™; E).

Proposition A.62. Let E and S be Tychonoff spaces and D C C(E;R).

Then, the following statements are true:

(a) If D strongly separates points on E (especially D = C(FE;R)), then
{w(f): f €ae(D)} € D(RT;R)PRTEIZ sqtisfies’

wlae(D)] € imb (D(R'; E); DRT; R)™P) (A.6.1)

31The notations “w(f)” and “w(D)” were defined in §2.2.1. The notation “ae(-)” was
defined in §2.2.3.
32 7 (F) denotes the Skorokhod _#;-topology of D(R™; E).
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and
S (B) = Oy seacmyy (DR E)) . (A.6.2)

(b) If D C Cy(E;R) separates points on E, then {afm feD,teQt,ne
N} is a subset of C(D(R"; E);R) separating points on D(R™; E)
with each a{n defined as in (3.3.8).

(¢) D(R"; E) is a Tychonoff space.

(d) If f € D C C(S; E), then
w(f) € C(DR*Y;S); D(RY; E)) (A.6.3)

and
@(D) C C (DR";S); D(RT; E)P). (A.6.4)

(e) If E is a topological coarsening of S, then D(R*;S) C D(R"™; E) and

Note A.63. For any index set I, R! is a Tychonoff space by Proposition
A.26 (¢). So, D(RT;R)! and D(R™;R") are well-defined Tychonoff spaces
by Proposition A.62 (c¢) and Proposition A.26 (c).

Proof of Proposition A.62. (a) If D = C(FE;R), then D strongly separates
points on E by Proposition A.25 (a, b). @(f) € DR*;R)PR5E) for all
f € C(E;R) and wlae(D)] € D(R*;R)™*(®) by Fact B.14 (b). [Blount and
Kouritzin, 2010, Theorem 5] clarified that (A.6.1) follows from the proof of
[Jakubowski, 1986, Theorem 1.7 and Theorems 4.3 (ii)] for E being a metric
space. An inspection of the details justifies this conclusion for the general
Tychonoff space case. D separates points on E by the Hausdorff property of
E and Proposition A.17 (a), so wae(D)] is injective by Fact B.20 (with A = E
and D = ae(D)). Then, (A.6.2) follows by (A.6.1) and Lemma B.7 (b) (with
E = D(R*:E), § = DR R) and D = {=(f)} reae):

(b) The integral in (3.3.8) is well-defined by Fact B.14 (a) and each oz,fi n
is continuous by the argument establishing [Ethier and Kurtz, 1986, §3.7,
Proposition 7.1). If z,y € D(R™; E) satisfies a{in(x) = a{n(y) for all f € D,

33Q* denotes non-negative rational numbers.
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t € Q" and n € N, then f(z(t)) = lim,, 0 a{in(x) = lim,, o a{n(y) = f(y(t))
for all f € D and t € Q. This implies z(t) = y(¢t) for all t € QT as D
separates points on E. Hence, x = y by their right-continuities.

(c) follows by (a) and Proposition A.25 (a, b).

(d) @w(C(£;R)) € imb(D(R*; E); D(RT; R)“®R)) by (a). For each g €
C(F;R), it follows by go f € C(S;R) and (a) that w(g) cw(f) =w(go f) €
C(D(R*;S); D(RT;R)). Hence, we have by Fact 2.4 (b) that

w(f) =w(C(E;R)) "o

X (wly)o w(f))]

9eC(E:R) (A.6.5)
€ C (D(R*;S); D(R; E)).
Moreover, (A.6.4) follows by (A.6.5) and Fact 2.4 (b).
(e) follows by the fact C(E;R) C C(S;R) and (a). O

Note A.64. Proposition A.62 (a) confirms that _# (£) is uniquely determined
by O(F) and does not depend on the choice of the pseudometrics in its defi-

nition.

Corollary A.65. Let E be a Tychonoff space. Then, D(RT; A, Og(A)) is a
topological subspace of D(R™; E) for any non-empty A C E.

Proof. (A, Og(A)) = (A, Ocgr)(A)) is a Tychonoff space by Proposition A.25
(a, b). We then have by Proposition A.62 (a) that

ﬁD(RﬁE) [D(R+; A, ﬁE(A))}

(A.6.6)
= Ola(fla)secEmy [DRY; A, Op(A)] = 7 (A, Op(A)).

O
Corollary A.66. The one-dimensional projections J = {p;}icr on RY satisfy
@ [ae(J)] € imb (D(RT;RY); D(RT; R)™V)) (A.6.7)

and

w [@ ae(j)} € C (DR RY; D (RT;R*V)) . (A.6.8)
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Proof. ae(J) is a subset of C(RY;R) and strongly separates points on R!
since O(RY) = 047(RY). @ ae(J) € C(RL R*\Y)) by Fact 2.4 (b). Hence,
(A.6.7) follows by Proposition A.62 (a) (with £ = R! and D = {p;}ien),
and (A.6.8) follows by Proposition A.62 (d) (with S = R!, E = R*(Y) and
f=Qae(J)) O

Below is a well-known property of compact subsets of D(R"; E).

Proposition A.67. Let E be a Tychonoff space and K € # (DR'; E)).
Then, there exist { K, }nen C A (E) such that

Kc () {reDR"E):x(t) € K, Vt€[0,n)}. (A.6.9)

neN

Proof. This result follows by the argument of [Ethier and Kurtz, 1986, §3.6,
Theorem 3.6.3 and Remark 3.6.4]. O

The next proposition discusses finite-dimensional projections on D(R™; E).

Proposition A.68. Let E be a Tychonoff space and Ty € Po(RY). Then,

the following statements are true:
(a) px, € M(D(R; E); E™, B(E)®T0)*,
(b) (2.3.8) and (2.3.9) hold.

c¢) pr, is continuous at x € D(R™; E) whenever To C RT\.J(z).
0

Proof. (a) We fix f € C,(E;R) and t € R, let afm be as in (3.3.8) for each
n € N, observe lim,,_, a{n = fop;so fop, € M(D(RT; E);R).
)Cb(E§R)

Q) (fom)eM (DR E):R

fECH(ESR)

(A.6.10)

by Fact 2.3 (b). We have by Proposition A.25 (a, ¢) and Lemma A.28 (a, ¢)
(with D = Cy(F;R)) that

X) C(E;R) € imb (E; R*(FR)) . (A.6.11)

34Herein, pr, denotes the projection on ER' for Ty C R restricted to D(RT; E).
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Now, (a) follows by (A.6.10), the fact

P = (@ Cb(E§R)>_1 o ® (fop,)|, VteRT, (A.6.12)

feCy(E;R)

(A.6.11) and Fact 2.3 (b).

(b) follows by (a) and the definition of Z(E)*R".

(c) Let p; and p; denote the one-dimensional projections for ¢ > 0 on
D(R*; E) and D(R*;R) repectively. Fixing t € Ty and f € C(E;R), we
have by Proposition A.62 (d) (with S = £ and £ = R) and [Munkres, 2000,
Theorem 18.1] that @w(f) is continuous at x* and so t ¢ J[w(f)(x)]. Then,
p} is continuous at w(f)(z) by [Ethier and Kurtz, 1986, §3.6, Proposition 6.5
(a)] (with F = R and ¢, = t) and so f op; = p, o w(f) is continuous at x.
Now, the continuity of p; at = follows by (A.6.12), Fact 2.4 (¢) and (A.6.11).
The continuity of pr, at = follows by that of p; for each ¢t € T and Fact 2.4
(c). O

Corollary A.69. Let E be a Tychonoff space. Then, popy. is a member of

0

M+ (ETo, B(E)®T0) for all p € M (D(RY; E), B(E)*R" | pr+.;)) (especially
we MY (DR E))) and Ty € Zy(R7T).

Proof. This result is immediate by Proposition A.68 (a, b). O
We now look at measurability of the modulus of continuity wy s - on D(R™; E).

Proposition A.70. Let E be a Tychonoff space and 6, T € (0,00). Then, the

following statements are true:
(a) w5, € M(DR"; E);R)* if E allows a metrization (E, t).
(b) w61 € M(DR*; E);R) for all f € C(E;R).

Proof. (a) was proved in [Ethier and Kurtz, 1986, §3.6, Lemma 6.2 (c)].
(b) {pir1}recer) induces O(E) by Proposition A.25 (a, b) and Proposi-
tion A.17 (d, e) (with A = F and D = C(E;R)). Hence, O(D(R*; E)) by

35The notion of continuity at a point was specified at [Munkres, 2000, §18, p.104].
36The notation “wi 5" was defined in §2.2.1. “w;{f}757T” (resp. “wll-laﬁ,T”) is defined by
(2.2.3) with v = pysy (resp. £ =R and t = |-|).
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definition is induced by pseudometrics {0”( } tec(pr)*". Now, (b) follows by
applying the argument establishing (a) to each pysy. O

The next fact clarifies the measurability issue about (2.3.10).

Fact A.71. Let E be a Tychonoff space. If M(E;R) has a countable subset

separating points on E, then

{r e DRYE):t€ J(2)} € BE)™ |pmem), V¥t € RT (A.6.13)
and J(p)*® is well-defined for all p € M+ (D(R*; E), B(E)* R |pr+.m)) (e5-
pecially . € MT(D(RY; E))).

Proof. This fact follows by Lemma B.50 (a) (with V' = D(R™; E)) and Propo-
sition A.68 (b). O

The next proposition discusses the metrizability of D(R™; E).

Proposition A.72. Let E be a metrizable space. Then, the following state-

ments are true:
(a) If (E,¢) is a metrization of E, then D(R™; E) is metrized by o.

(b) If E is separable (espeically a Polish space), then D(R™'; E) is also
separable and B(D(R*; E)) = B(E)*R" | pw+.pm).

(c¢) If a metric v completely metrizes E, then o completely metrizes D(R™; E).
(d) If E is a Polish space, then D(R™; E) is also.

Proof. (a) was shown in [Ethier and Kurtz, 1986, §3.5, p.117 - 118]. (b) was
proved in [Ethier and Kurtz, 1986, §3.5, Theorem 5.6 and §3.7, Proposition
7.1]. (c¢) was proved in [Ethier and Kurtz, 1986, §3.5, Theorem 5.6]. (d) follows
by (c). O

The following three results relate convergence in D(R™; E) and that in
the Skorokhod _#;-space D([0,u]; E)* with finite time horizon. These results

37The pseudometric g?1/} is defined by (2.2.8) with v = p .

38 J(u), the set of fixed left-jump times of y was defined in (2.3.10).

39 As aforementioned in §2.2.2, D([0,u]; E) denotes the Skorokhod _#;-space of all cadlag
mappings from [0,u] to E.
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are contained explicitly or implicitly in standard references like Jacod and
Shiryaev [2003] and Jakubowski [1986]. Herein, we clarify these fundamental

facts for readers’ convenience.

Proposition A.73. Let E be a metrizable space, {yi}ren, C D(RT; E)*,

and
yp = var (y; [0,u + 1], [0, u], yx(u)) , Vk € No,u € (0, 00). (A.6.14)
Then for each u € R\ J(yo),
yr — Yo as kI oo in D(R"; E) (A.6.15)

implies
Yy — yy as k1 oo in D([0,u + 1]; E). (A.6.16)

Proof. Let (E,t) be a metrization of E. of, ;"' by definition metrizes the

Skorokhod _¢#;-topology of D([0,u + 1]; E). So, we prove (A.6.16) by estab-
lishing
T oy () < T [V Forn (5 0 Mw§) = 0. (A6.17)
— 00 k—o0

For each A € TC(R™)* with |||A]|| < 1,

C A, if t € [0, u],
(L) = (A.6.18)
AMu)+ (u+1—=Aw)(t —w), ifteuu+l]

defines a member of TC([0, v + 1]). By [Ethier and Kurtz, 1986, §3.5, Propo-
sition 5.3 (b)], there exist { A\ }ren € TC(R™) such that

lim vp (Yk © Ak, o) = lim [||Ag]|| = 0. (A.6.19)
k—o00 k—o0

We fix € € (0,1). By yo's left-continuity at u, there exists a ., € (0,00) such

40Nj denotes the non-negative integers. Our notation y¥ = var(x; [0,u + 1], [0, u], z(u))
represents the function y}(t) = yx(¢) for all ¢t € [0, u] and y}(¢) = yx(u) for all t € (u,u+1].

1 yg,u41)” is defined by (2.2.4) with [a,b] = [0,u + 1] and “of, ;" is defined by (2.2.7)
with [a,b] = [0,u + 1]

42The notations “TC(R*)”, “TC([0,u + 1])” and “||| - |||” were defined in §2.2.2.
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that
t(yo(t). yo(u)) <€, Vt € (u—bye u). (A.6.20)

By (A.6.19), there exists an N, . € N such that

Al < 1A (—1og

1- MD L Vk > N, (A.6.21)
u

and
t0,u] (yk o A, yO) <€ Vk> Nu,e- (A622)

Fixing £ > N, ., we have by (A.6.21) that

sup ARt Au—ul < [Ag(u) — vl
te(u,u+1] (A623)
< (1- e"”m”) U< dyeN(ef—1)

and
AU < log (u+ 1 — Ag(u)) < e (A.6.24)

If t € [0, u], we have by (A.6.22) that
v (g 0 Ak(), 4o (1)) = © (g 0 A1), 90(1)) < €. (A.6.25)

If t € (u,u+ 1], we have by (A.6.22), (A.6.23) and (A.6.20) that

v (g5 0 AR (), 4 (1) = ¢ [y (AR () Aw) o (u)]

(A.6.26)
<ty ML) A ),y (NE(E) Au)] + v (yo (ML) Au),yo(u)) < 2e.
Now, the desired (A.6.17) follows by (A.6.24), (A.6.25) and (A.6.26). O

Lemma A.74. Let E be a Tychonoff space, D C C(E;R) strongly separate
points on E, ¥ = wlae(D)], {yr}tren, € D(RT; E) and {y;}ren, be as in
(A.6.14). Then for each u € R\ J(yo),

T (yr) — U(yo) as k T oo in D(RT; R)™P) (A.6.27)

implies (A.6.16). In particular, (A.6.15) implies (A.6.16).
Proof. (A.6.15) implies (A.6.27) by Proposition A.62 (a). We now suppose
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(A.6.27) holds and fix f € ae(D). It follows by Fact B.11 and Proposition
A.62 (d) (with S = F and F = R) that w(f)(yx) — @(f)(v) as k 1 oo
in D(R";R) and v € R"\J[w(f)(yo)]. It follows by Proposition A.73 (with
F =R and y, = @(f)(y)) that*®

@1 (/) (W) — @ur1(f)(y5) as k T oo in D([0,u+1[;R).  (A.6.28)
It follows by (A.6.28) and Fact B.11 that
Uyt (YY) — Uorr (y2) as k1 oo in D([0,u + 1]; R)*P), (A.6.29)
where

Vi1 = @y (ae(D)) € imb (D ([0,u+1]; E) ; D([0, u + 1J; R)ae(D))

(A.6.30)
by [Kouritzin, 2016, Theorem 22| (with S = F, [a,b] = [0,u+ 1], H' = D and
H = ae(D)). Hence, (A.6.16) follows by (A.6.29) and (A.6.30). O

Lemma A.75. Let E be a Tychonoff space, {yx}ren, C D(RY; E) and {y} bren,
be as in (A.6.14). If R™\J(yo) is dense in R, and if (A.6.16) holds for all
u € R\ J(yo), then (A.6.15) holds.

Proof. We show (A.6.15) by verifying that every subsequence of {yx}ren has
a sub-subsequence {y, },en converging to yo as p 1 oo in D(R*; E). With-
out loss of generality, we let the subsequence be {yj}ren itself. Letting
f € C(E;R), p € N and t temporarily denoting the Euclidean metric, we
find that

lim 0fy 1) (@1 () (WE), @usa () (96)] = 0, Vu € R"\J (o) ~ (A.6.31)

k—oo

by (A.6.16) and [Jakubowski, 1986, Theorem 1.7]. R*\J(yo) is dense by our
hypothesis, so there exist u, € (p,0)\J (o), k, € N and A\, € TC([0, u, + 1])
such that

Y S0 [Zu () (052 0 X ) Baia (N3] <27 (A6:32)

43The notation “zz,41(-)” was defined in §2.2.1.
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We define

e {)\p(t), if ¢ € [0,u+1], )

t, ift € (u+1,00)
for each p € N and find by (A.6.32) that

A< AR <277 (A.6.34)

and

sup v, [@(f) (Yr, 0 ) @ () (Wo)]

u€(0,up]

< o, [@(f) (yk, © X)) @ (f)(yo)] (A.6.35)
< W) [y 1 () (557 00 ) @y (1) )] < 277

It follows by (A.6.34), (A.6.35) and the fact u, € (p, c0) that

¢ [w(f) (i, ) () (90)]
S [[PAIIRY / e e [®(F) ) 0 Ny @ (W) du (5 6.36)

Ugp 0o
< 2_”/ e “du +/ e du < 27P +e7P,
0 Up

0" metrizes the Skorokhod _#i-topology of D([0, u+1]; R) by Proposition A.72
(a) (with E'= R). From (A.6.36) it follows that

@ (f)(yr,) — @(f)(0) as p 1 oo in D(RT;R). (A.6.37)

The f € C(E;R) above is arbitrary, so we have by (A.6.37) and Fact B.11
that

= (R CER)) (1)

(A.6.38)
— @ <® C(F; R)) (o) as p T oo in D(RF; R)“ER),

Now, yx, — %o as p T oo in D(R™; E) by (A.6.38) and Proposition A.62
(a). O
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A.7 Cadlag process

The following are two well-known facts about the relationship between

E-valued cadlag processes and D(R™; E)-valued random variables.

Fact A.76. Let E be a Tychonoff space and p € M*T(D(R™; E)) be the distri-
bution of D(R™; E)-valued random variable X. Then, the following statements

are true:

(a) X is an E-valued cadlag process
(b) p equals the restriction of pd(X)|pm+:x) to o( 7 (E))*.

(c) The finite-dimensional distribution of X for each Ty € Po(RT) is
j10 Py -

Proof. This fact follows by Proposition A.68 (b), Fact 2.26 (a) and Corollary
A.69. O

Fact A.77. Let E be a metrizable and separable space and (Q,.%,P; X)* be

an E-valued process. Then, the following statements are true:
(a) If all paths of X lie in D(RT; E), then X € M(Q), #; D(RT; E)).

(b) If X is cadlag, then there exists a Y € M(Q,.%; D(RT; E)) that is
indistinguishable from X.

In particular, the above statements are true when E is a Polish space.

Proof. This fact follows by Proposition A.11 (c¢), Proposition A.72 (b) and
Lemma B.70 (b) (with Ey = F and Sy = D(RT; E)). O

The set of fixed left-jump times of an FE-valued cadlag process is well-

defined for fairly general E.

44 Restriction of measure to sub-o-algebra and X’s process distribution pd(X) were spec-
ified in §2.1.2 and §2.5 respectively.

45Please be reminded that (Q,.7,P) and {(QF, .7 P!)},c1 are complete probability spaces
as arranged in §2.6. Completeness of measure space was specified in 2.1.2.
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Fact A.78. Let E be a topological space and X be an E-valued cadlag process.
If there exists a countable subset of M(FE;R) that separates points on E, then
J(X)* is well-defined.

Proof. This result follows by Lemma B.50 (a). O

The next lemma solves the measurability issue in (6.4.2) under mild con-

ditions.

Lemma A.79. Let E be a Hausdorff space, V' be the family of all cadlag mem-
bers of ER™T(Q, Z,P; X) be an E-valued cudlug process and T € (0, 00).
Then, Moy X, ' (A) € F for all A € €(E), especially for all A € # (E)

when E is a Hausdorff space.

Proof. When FE is Hausdorff, J#(F) C € (F) by Proposition A.12 (a). Let
F=Niciom X;Y(A). There exists B € B(E)®®" such that BNV = {z € V :
zljor) € AL} by Lemma (B.50) (b). X~ *(V) and F\X (V) both belong to
Z by the fact P(X € V) = 1 and the completeness of (Q2,.#,P). X.'(A) € F
by the fact A € € (F) C #(F) and act 2.24 (a). Hence,

M X7HA) = X7 (A) N [(FXT(V) U (XI(B) N XT(V))] € 7.
te[0,T

(A7.1)
O

The next lemma treats the measurability issue in (6.4.5).

Lemma A.80. Let E be a topological space, (2, % ,P;X) be an E-valued
cadlag process, ¢t be a pseudometric on E and §,T € (0,00). Then, wi,&ToX €
M(Q,.Z;R) in each of the following settings:

(a) (E,t) is a metric space and X € M(Q, #; D(RT; E)).
(b) (E,t) is a separable metric space.

(c) v = pyy with f € C(E;R).

16, 7(X), the set of fixed left-jump times of X was defined in (2.5.8).
47F need not be a Tychonoff space, so we avoid the notation D(R™T; E) for clarity.
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(d) v = pp with D C C(E;R) being countable and separating points on
B,

Proof. (a) is immediate by Proposition A.70 (a).

(b) X is indistinguishabe from some Y € M(,.%; D(R"; E)) by Fact
ATT (b). wisp oY € M(Q,7;R) by (a). Now, (b) follows by the fact
Plwisr 0 X = w57 0Y) =1and Lemma B.31 (a) (with (£, %) = S = R,
X=wsroXand Z=w;z,70Y).

(¢) w(f)o X is a cadlag process by Fact B.34 (a) (with S = R). It follows
by (b) (with X = @w(f) o X and (F,tr) = (R, |-])) that

wlﬂ{f}ﬁ»T o X =wj;ro(@(f)oX)eM(QFR). (A.7.2)

(d) (E, pp) is a separable metric space and is a topological coarsening of
E by D C C(F;R) and Proposition A.17 (d, e) (with A = F). So, X is an
(E, pp)-valued cadlag process by Fact B.34 (c¢). Now, (d) follows by (b) (with
t=pp). O

The following five results discuss the relationship among t-MCC*’, MCC,
D-FMCC and WMCC for cadlag processes.

Fact A.81. Let E be a topological space, D C M(E;R) and {X'}ic1 be E-
valued processes such that {w(f)o X"} tep i1 are all cudlag. Then, the follow-

g statements are true:

(a) {X"}iex satisfies pgpy-MCC for all f € D if and only if {w(f) o X' }iex
satisfies |-|-MCC for all f € D.

(b) {X'}icx satisfies D-FMCC if and only if {w(f) o X'}ic1 satisfies ||-
MCC for all f € ae(D).

In particular, the two statements above are true when D C C(E;R) and
{X"}ic1 are all cudlug.

48The E in (d) is a D-baseable space.
9-MCC, MCC, D-FMCC and WMCC were introduced in Definition 6.36.
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Proof. If X" is cadlag and f € C(E;R), then @(f) o X' is cadlag by Fact
B.34 (a) (with X = X" and S = R). If @(f) o X' is cadlag, then it is
indistinguishable from any of its cadlag modification by Proposition B.33 (h).
Now, the result follows by the fact that

w;{f}’&ToX" = w( | srow(f)oX’, Vf e M(E;R),i € 1,6,T € (0,00). (A.7.3)

O

The following proposition is a version of [Kouritzin, 2016, Proposition 14]

on infinite time horizon.

Proposition A.82. Let E be a Hausdorff space and {(Q', F*,P"; X*)}ic1 be

E-valued cadlag processes. Then, the following statements are equivalent:
(a) {X"}ic1 satisfies MCC.

(b) There exist a Dy C C(E;R) and a Dy C Cy(E;R) such that: (1)
{X}icx satisfies D1-FMCC, (2) Dy = ac(D3)*° strongly separates points
on E, and (3) for any g € Dy and €, T > 0, there exists an fy .1 € D;
satisfying

sup P’ ( sup | feero Xy —go X;i| > e) <e. (A.7.4)

iel te[0,T]

(c) There exist D C Cy(E;R) and {(Q, F4 P ) bier reperso such
that: (1) D = ac(D) strongly separates points on E, and (2) for each
f € ae(D) and ¢, T > 0, R-valued processes {(4/<T}cr satisfy |-
MCC and

sup P* ( sup ‘f o X} — ti,f@T‘ > e) <e. (A.7.5)

i€l t€[0,T

(d) There exists an D C C(FE;R) such that: (1) D strongly separates points
on E, and (2) {z(Q Do) o X'}icxr satisfies |-|-MCC and MCCC? for

50D, = ac(Dy) means Dy is closed under multiplication.
51.]-MCC means MCC for the Euclidean norm metric |-|.
52The notion of MCCC was specified in Definition 6.36.
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all D() S c@O(D)

(e) There exists a D C C(E;R) such that: (1) D strongly separates points
on E, and (2) {w(g) o X'}icx satisfies |-|-MCC and MCCC for all
g€ ac({af: f €D,a € R}).

Proof. The proof is almost the same as that of [Kouritzin, 2016, Proposition

14] and we omit it herein to avoid redundancy. O

Corollary A.83. Let E be a Hausdorff space and {(QV', F',P; X?)}ier be E-

valued cadlag processes. Then, the following statements are equivalent:

(a) {X'}ic1 satisfies MCC.

(b) {X'}ia1 satisfies D-FMCC for some D = ac(D) C Cy(E;R) and D

strongly separates points on E.

(c) {X'}iar satisfies D-FMCC' for some D = ac(D) C C(E;R) and D

strongly separates points on E.

(d) {X}icx satisfies D-FMCC for some D C C(E;R) and D strongly sep-

arates points on E.

Proof. ((a) — (b)) If Proposition A.82 (c) holds, by observing that

<lgo Xy =GP +lgo Xy = QP+ QT =GP (e
<2 sup ‘g o XtZ — ti,f,e,T‘ + ‘djf,e,T _ Cf;’f’e’T|
t€[0,T

for all g € D, u,v € RY, 6,7 € (0,00) and ¢ € I we conclude {w(f) o X'};ex
satisfies |-|-MCC for all f € D. Thus, (b) follows by Proposition A.82 (a, c).
((b) = (c)) and ((c) — (d)) are automatic.
((d) = (a)) {pgs1} sep generates the Hausdorff topology of £ by Proposition
A.17 (d, e) (with A = E). Then, (a) follows by Fact A.81. O

53The notation “ac(-)” was defined in §2.2.3.
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Proposition A.84. Let E be a topological space, {X'}ic1 be E-valued pro-
cesses and D C M(E;R) be countable and separate points on E. If {w(f) o
X'} tep et are all cudlug, especially if { X" }ier are all cudlug and D C C(E;R),
then { X" }iar satisfying pp-MCC' is equivalent to {w(f) o X'}ier satisfying |-|-
MCC for all f € D.

Proof. Necessity is straightforward by the definition of pp. Sufficiency was
proved in the argument establishing [Kouritzin, 2016, Theorem 15]. For brevity,

we do not duplicate this small technicality herein. O

Fact A.85. Let E be a Hausdorff space. If E-valued cudlug processes {X"'}ic1
satisfy MCC, then {X'};c1 satisfies WMCC.

Proof. This fact is immediate by Corollary A.83 (a, ¢) and Proposition A.17
(a) (with A = F). O

Corollary A.86. Let E be a metrizable space and {X"};c1 be E-valued cudlug

processes. Then, the following statements are true:

(a) If (E,t) is a metrization of E and { X' }er satisfies t-MCC, then { X' }icx
satisfies MCC.

(b) If E is separable and {X'}ic1 satisfies MCC, then {X'}ic1 satisfies D-
FMCC for some countable D = ac(D) C Cy(E;R) and D strongly
separates points on E. Moreover, {X'}ic1 satisfies t-MCC' for some
metrization (K, t) of E.

Proof. (a) is automatic by definition. Regarding (b), we have by Corollary
A.83 (a, b) that {X"},c satisfies G-FMCC for some G = ac(G) C Cy(E;R)
and G strongly separates points on E. There exists a countable G, C G such
that Gy strongly separates points on E by Proposition A.6 (c¢) and Proposition
A.24 (b). D = ac(Gy) is a countable subset of G by Fact B.15 (with D = Gy),
50 {X"}e1 satisfies D-measurable or %;-progressive process, then w(f) o X is
an S-valued process with the corresponding measurability. FMCC. D separates
points on F and t = pp metrizes E by Proposition A.6 (a) and Proposition
A.17 (a, d, e) (with A = E). Now, (b) follows by Fact A.81 (b) and Proposition
A.84. O
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For readers’ convenience, we quote from Ethier and Kurtz [1986] the follow-

ing two classical result about Skorokhod- _¢;-spaces-valued random variables.

Theorem A.87 ([Ethier and Kurtz, 1986, §3.7, Theorem 7.8]). Let E be
a metrizable and separable space and {X"},en U {X} be D(RT; E)-valued

random variables. Then, the following statements are true:

(a) (1.6)* implies

X" DR\J(X))

> X asn T oo. (A.7.7)

(b) If {X"}nen is relatively compact in D(RT; E) and (6.2.1) holds for
some dense T C R*, then (1.6) holds.

Theorem A.88. Let (E,t) be a complete separable metric space and {X"}icx
be D(R™; E)-valued random variables. Then, {X'}ier is tight in D(RY; E)
if and only if { X }ier satisfies MCCC and v-MCC.

Proof. As E is a Polish space, tightness is equivalent to relative compactness
in D(R™; E) by Proposition A.72 (d) and the Prokhorov’s Theorem (Theorem
2.22 (a)). Hence, the result is equivalent to [Ethier and Kurtz, 1986, §3.7,
Theorem 7.2 and Remark 7.3]. O

54Weak convergence and relative compactness of random variables were specified in §2.4.
55Tightness of random variables was specified in §2.4.
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Appendix B

Miscellaneous

This chapter consists of auxiliary results related to all aspects of this work.
In view of clarity and self-containment, we collect in §B.1 a set of basic and
general technicalities. §B.2 supplements a few results that involves the topics
or developments of Appendix A. §B.3 houses several auxiliary lemmas about
replication which is used in Chapter 3 - Chapter 8 and the companion papers
Dong and Kouritzin [2017a,b,c,d]. All notations, terminologies and conven-

tions introduced before apply to this appendix.

B.1 General technicalities

Fact B.1. Let E be the union of non-empty sets {Ay,}nen. If o-algebras %
and Y on E satisfy A,, € U and U | a, = Us|a, for alln € N, then 2 C Us.

Proof. We observe that

%1:{UBmAn:Be%1}C{UBn:Bne%1|An,VneN}

neN neN (Bll)
= { U Bn: B € %|a,.Vn € N} Co (U 02/2|An> C .
nelN neN
O

Fact B.2. Let (E, %) be a measurable space, A € % and k € N. If f € (RF)E
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satisfies fla € M(A, % |4;RF), then f1, € M(E, % ;RF)!.

Proof. We observe for each B € Z(RF) that

(ﬂmlgn{umlﬁne%uc@g By
(fla) " (B)U (E\A) € %, otherwise.

O

Fact B.3. Let E and S be non-empty sets, yo € A C E, f € E° and g =
vac(f; S, f 1 (A),y0). Then, the following statements are true:

(a){x € S: f(x) =g(x)} D f7(A).

(b) If (E, %) and (S, /) are measurable spaces, f € M(S, o/, E, %), A €
U and {yo} € U, then g € M(S, o, A, %|a) C M(S,o/;E,%).

Proof. (a) is immediate by the definition of vat(f; S, f~'(A),vo)-
(b) We find for each B € % that

g%B{f(Bmﬂeﬂ, T B

FHBN Ayl U (S\fTH(A) € &, ifyo € B.
O

Fact B.4. Let E and S be topological space, yp € MT(E) and A denote the
set of discontinuity points® of f € SE. If (B, % ,v) is the completion® of
(E, B(E),u) and A € N (u), then f € M(E, %} S).

Proof. Fixing O € 0'(S), we have that
(fTHONA) = (fleva) (0) € Op(ENA) C Zp(E\A) C % (B.14)

and

froOnAeV(wcw (B.1.5)

by the continuity of f|g\ 4 and the fact A € A (u) C %, s0 f7(O) e %. O

11 4 denotes the indicator function of A.
2The notion of set of discontinuity points was mentioned in the proof of Lemma 8.11.
3The notation “.# (u)” and completion of measure space were specified in §2.1.2.
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The fact below confirms that o(C(E;R)), the Baire o-algebra on E is
generally smaller than #(E).

Fact B.5. Let E be a topological space, S be a mon-empty set and A C S.
Then, o(D)|a C PBp(A) for any D C E° and the equality holds if E is a

second-countable space and D is countable.
Proof. In any case, we have that

Bp(A) Do (U {/7H0)nA:0¢€ ﬁ(E)})

feD

s [U c({/0)na:0e B}

feD

=0 ({f‘l(B) NA:Beo(OF)=AB(E),f¢c D}) = o(D)|,-
(B.1.6)
If {O,}nen is a countable topological basis of E and D is countable, then
every member of 0p(A) is a union of members of the countable topological
basis
{ () f'(O)NA:neND, € 3”0(1))} (B.1.7)
f€Do

by [Munkres, 2000, Lemma 13.1]. As a result,

Op(A) Co ({ () f(0)NA:neND, € %(D)})

f€Do

Co({f'(B)NA:Bec B(E),f € D}) =0(D)|,.

(B.1.8)

O

Fact B.6. Let E be a topological space and {x,}nen C E. If every convergent
subsequence of {x,}nen must converge to x asn 1 oo, and if any infinite subset

of {zn}nen has a convergent subsequence, then x, — x asn T oo in E.

Proof. Suppose {z,}n,en does not converge to z as n T co. Then, there exist
an O, € O(F) containing x and {z,, }yex C E\O, with n; 1 co. However,
{Zn, }ren has a convergent subsequence which must converge to  and stay in

O, with finite exception. Contradiction! (I
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Lemma B.7. Let E and S be topological spaces, D C S¥ and equip V =
QR D(E) with the subspace topology Ogo(V'). Then, the following statements

are true:

(a) (Q@D)™' € C(V;E) if and only if O(E) C Op(E) and QD is injec-

tive.
(b) QD € hom(E;V) if and only if O(E) = Op(E) and @Q D is injective.

Proof. (a) We find by Fact 2.4 (b) that QD € imb(FE, Op(FE); V) if and only
if @D is injective. Given the injectiveness of @D, (QD) ' € C(V;E)
precisely when O'(F) is coarser than Op(F).

(b) is immediate by (a). d

Lemma B.8. Let E and S be topological spaces, f € E° and %; be defined

as in (A.5.1). Then, the following statements are true:

(a) If f is bijective, then f € hom(S; (E, %)).

(b) If f € biso(S; E), then B(E) = o(%).
Proof. (a) %y is well-known to be a topology. f € C(S; E, %) is immediate
by (A.5.1). The bijectiveness of f implies that

U = {f(B): Be 0(S)}, (B.1.9)

thus proving f~! € C(E, %; S).
(b) f € biso(S; E) satisfies (B.1.9) and further satisfies

B(E) = {f(B): Be B(S)} = o ({f(B): Be O(S)}) =a(%). (B.110)

O

Remark B.9. The lemma above shows that a Borel isomorphism can always
be turned into a homeomorphism by changing the generating topology of the

underlying Borel o-algebra.

Fact B.10. Let1, E and S be non-empty sets and f € S¥. Then, the following

statements are true:
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(a) If f is injective or surjective, then wi(f) is also.

(b) If (E, %) and (S, <) are measurable spaces and f € M(E, %S, <),
then wy(f) € M(EY, % ®Y;, ST, o7 ®1).

(c) If E and S are topological spaces and f € C(E;S), then wi(f) €
C(EY; Sh.

Proof. This result is immediate by Fact 2.3 and Fact 2.4. O

Fact B.11. Let {S;}ic1 be topological spaces. Then, xp — x as k T oo in
[Le1 Si if and only if pi(xx) — pi(x) as k1T oo in S; for alli € L.

Proof. This fact was justified in [Munkres, 2000, §19, Exercise 6. O

Fact B.12. Let I be an arbitrary index set and {a;,b;} C R satisfy a; < b; for
all i € I. Then, J;c1las, bs) € B(R).

Proof. For each {iy, i} C I, we define i; ~ iy if there exist some {c,d} C R
with ¢ < d and Iy C I such that

[c.d) = U [ai, b;). (B.1.11)

iEIou{il ,ig}

It is not difficult to see “~” defines an equivalence relation on I. Let {I; : j €
J} be the “~” equivalence classes of the members of I. Then for each j € J,
there exist {¢;,d;} C R such that ¢; < d; and

Ulai. ) = [c;. d)). (B.1.12)

i€l

{lej,dj) = j € J} are pairwisely disjoint by the definition of “~", so J is
countable by [Munkres, 2000, §30, Exercise 13]. Hence,

Ul b)) = Jles, d)) € BR). (B.1.13)

i€l jed
O

Fact B.13. Let the x-convergence in R be defined in Example 2.15 and A C R
be x-closed if and only if {z,}nen C A x-converging to x € R implies x € A.
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Then, A C R is x-closed if and only it is closed with respect to the Euclidean
topology.

Proof. x-convergence is stronger than the Euclidean one, so every Euclidean
closed A is immediately x-closed. Conversely, suppose A # & is x-closed and x
is an Euclidean limit point of A. We show x € A by constructing {x,, },en C A
that x-converges to x. For n = 1, let x; € A be arbitrary. For n > 1, we let

o

€p —

Tpor — x| A107" so {ap}i<ken € R\(z — €,,2 + €,). Since z is an
Euclidean limit point of A, AN (x — €,,r + €,) # @ and we pick an arbitrary
z, from this set. By induction, we obtain distinct points {z, },en C A such
that |z, — x| < 107 < 27" for all n € N. Hence, {x,},en *-converges to
T. O

Fact B.14. Let E, S and {S;}ic1 be topological spaces and f € C(E;S). Then,

the following statements are true:
(a) If z € E®" is right-continuous, then © € M(R*; E).

(b) If v € ER" is cudlug and f € C(E;S), then w(f)(z) € S’ is also
cadlag.

(¢c) Q.1 fi - E— S is cadlug if and only if f; : E — S; is cadlag for all
1€ L.

Proof. (a) Note that

n2m

21’L on
=1

and z, — = as n 1 oo in ER". Then, z € M(R*; E) as pointwise convergence

preserves measurability.
(b) and (c) are immediate by the definitions of @w(f), @),y O(S;) and
product topology. O

1€l

Fact B.15. Let E be a non-empty set, d,k € N and D C (R*)¥ be a countable
collection. Then, ae(D) and ac(D) are countable collections. When k = 1,

mc(D) and agq(D) are also countable collections.
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Proof. Let D = {fu}nen. For each m € N, we observe that > ", f,, —
(N1, ....,ny) defines an injective mapping from D, = {> 7" fo, t N1,y Ny €
N} to the countable set N™, so D,, is countable. As a result, ae(D) = D, and
ac(D) = |U,,en Pm are both countable.

Next, we let & = 1 and observe that [\~ fn, — (n1,.....1,) defines an
injective mapping from D/, = {[["; fn, : 71, ..., nm € N} to the countable set
N™, so D/, is countable. As a result, me(D) =

Furthermore, we ndex me¢(D) by N as {g,};en and observe that ag; —

meN D, 1s also countable.

(4,a) defines an injective mapping from Dq = {ag; : j € N,a € Q} to the
countable set N x Q, so Dq is countable. As a result, agg(D) = ac(Dq) is

also countable by our conclusion about additive closure®. O

Fact B.16. Let E be a non-empty set, d € N and D C RF. Then, the

following statements are true:
(a) 114(D) is a countable collection whenever D is. Moreover,

1 (ac(D)) C ac (14(D)),
1 (me(D)) = me (I1(D))
17 (agq(D)) C ag ( D)),

11 (ag(D)) C

(B.1.15)

(b) If the members of D are bounded, then those of 114(D) are also. More-
over,
I (¢(D)) C ¢l (TIYD)) ,

(B.1.16)
1 (ca(D)) C ca (II4(D)).

Proof. (a) If D = {f,}nen is countable, we observe for each k € {1,...,d} that
Hle fn;0pi = (nq,...,ny) defines an injective mapping from Dy, = {Hle fn; 0
p; :n; € N} C RE’ to the countable set N* and so Dy, is countable. As a
result, I1%(D) = |JI_, Dy is also a countable set.

Letting k € {1,...,d}, ny,.....np € N and {f; j }1<j<n,1<i<k C D, we observe

4Recall that “ac(-)” stands for additive closure.
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H<Zf> -y Z(wa )eacmd(m), (B.1.17)

a=l  je=1 \i=l

H (H fiJ) °pi = H fijop; € me (II4(D)). (B.1.18)

1<j<ng,1<i<k

Letting N € N, ky,....kx € {1,...,d} and {fi;}1<i<k;1<j<n C D, we observe
that

j=1 i=1 \jeJ;

H (f[ fi,j Opi) = H (H fm’) op; € Hd (mc(D)), (B.1.19)

where k* = max{ki,....,ky} and J; = {j € {1,...,n} : k; > i} for each
1 <4 < k*. Then, the first two lines of (B.1.15) follow by (B.1.17), (B.1.18)
and (B.1.19).

Using the second line of (B.1.15), we have that

1 ({af : f €me(D),a € Q}) = {af: f € 1 (me(D)),a € Q}

(B.1.20)
—{af : f e me (N%(D)) ,a € Q}.

Using (B.1.20) and the first two lines of (B.1.15), we have that

I (agQ(D)) =T1"[ac ({af : f € mc(D),a € Q)]
Cac[II*({af : f € me(D),a € Q})]

=ac({af : f € me (IID)) ,a € Q}) = agq (II(D)),
(B.1.21)
which proves the third line of (B.1.15). The fourth line of (B.1.15) follows by
a similar argument with Q replaced by R.

(b) We fix 1 < k < d. If all members of D are bounded, then

; O Pi

k K
< fopilloe =] Ifilloe < o0 (B.1.22)
i=1 i=1
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for all f1,..., fx € D. Next, we suppose {f1, ..., fr} C cl(D). By Fact A.9 (with
E = (c[(D),] - |lo) and A = D), there exist {f;n}1<i<knen C D such that
fin— fasntooforall<i<k Weletc= (supjccq||filloc)* " and find
that

k k
H.fi °opi — Hfzn o pi
i=1 i=1

thus proving the first line of (B.1.16). The second line of (B.1.16) is immediate
by the first line (with D = ag(D)). O

k
< 3 . —
_cnlggoz;n,n finllo =0, (B.1.23)

lim
n—oo

Lemma B.17. Let E be an open subspace of S and f € C(E;RF). If for any
€ € (0,00), there exists an A C E such that A. € €(S) and ||f|a]lw < €

then g = var(f; S, F,0)° is a continuous extension of f on S.

Proof. We need only prove the case of £ =1 and the general result follows by

Fact 2.4 (b). Let e € R\{0} and A, C E satisfy A. € €'(S) and || f|4. |l < |€]-
From the facts
- S\A. € 0(S), ife>0,
9 (=00, )]\ A = (B.1.24)

a, if e <0

and F € 0(S) it follows that

(oo, 6)] f:l [(—o0,€)] U (S\A) € O(S), ?f e>0, (B.1.25)
[ (—o0,€)l € O(FE) C 0(S), ife<,

thus proving the continuity of g. O

Fact B.18. Let E be a non-empty set and { fn}nen, C RE. Then, the follow-

g statements are true:

(a) If | o — fol <€, then |f,f — fo| < 3e.

(b) If fo = fo asn 1 oo, then fi7 = fif asn T occ.

>“par(-)” was defined in Notation 4.1.
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Proof. (a) For each z € E, from the fact

f,:z_(l") = fn(x)v if fO(x) > €, (B.1.26)

€ [0,3¢), if fo(x) <e

' 2
it follows that
= |fu(®) = fo(z)] <277, if f(z) >,

|1 (@) = fif ()] o (B.1.27)
U @)+ 17 @) < e, if fl@) < e

(b) follows immediately by (a). O

Fact B.19. Let {A,}nen be nested® non-empty subsets of E and D,, C RF

separate points on A, for each n € N. Then, |J, . Dn separates points on

UnEN An

Proof. For any distinct 21,25 € J, o An, there exist ny,ny, N € N such that
x; € Ap, C Ay for each i = 1,2. Then, @ D(x1) # Q D(x2) since U, Pn

contains Dy and separates points on Ay. O

Fact B.20. Let A be a non-empty subset of E and D C R¥ separate points
on A C E. Then, w(® D) and w (D) are both injective restricted to AR".

Proof. The injectiveness of w(® D) on AR" is immediate by Fact B.10 (a)
(with E = A, I=R" S =RP and f = ®D|4). Furthermore, we note that
@(D)(x) = w(D)(y) in (AR")? implies @ D[z(t)] = @ D[y(t)] for all t € R™.
This indicates x(t) = y(t) for all t € RT, i.e. z =y. O

Fact B.21. Let E be a topological space. Then, the following statements are

true:

(a) p1 = po in MF(E) if and only if ju /11 (E) = po/pe(E) in P(E) and
m(E) = po(E).

(b) (2.3.4) holds if and only if lim,_, p,(F) = p(E) and

_Hn _— P asn T oo in P(E). (B.1.28)

pn(E) ()

6We explained the meaning of “nested” in Fact 3.36.
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Proof. (a) Note that p(A) = w(E)[p/w(E)](A) for all A € B(E) and p €
MT(E).
(b - Necessity) 1 € Cp(E£; R) implies
lim u,(E) = lim : Ly (dz) = /E lu(dz) = p(FE). (B.1.29)

n—oo n— oo

Then,

i () = i = = () o0

follows immediately for all f € Cy(F;R)".
(b- Sufficiency) We observe for each f € Cp(E; R) that

Tim f*(pn) = lim g, (E) f* (&b) = u(E) f* (ﬁ) = f*(n)
(B.1.31)

O

Fact B.22. Let E be a topological space and 1 € D C M,(E;R). Then, the

following statements are true:
(a) D is separating on E if and only if D* separates points on P(FE).

(b) D is convergence determining on E if and only if D* determines point

convergence on P(E).

Proof. This result is immediate by Fact B.21. O
Fact B.23. Let E be a topological space. Then, P(E) € €M™ (E)].

Proof. Let u be a limit point® of P(F) in M*(F). For any p € N, there exists
a i, € P(E) such that |u(E) — u,(E)| = |w(E) — 1] < 27P. Hence, u(F) =1
as pT0. O

Fact B.24. If x,, = x as n 1 oo in topological space E, then 6., = J, as
n 1 oo in P(E).

"The notation “f*” was specified in §2.3.
8 MT(E) as aforementioned is not necessarily first-countable. So, y being a limit point
of P(E) does not necessarily imply a subsequence of P(FE) converging weakly to .
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Proof. This fact follows by the integral convergence test

lim f*(d,,) = lim f(z,) = f(x) = f*(0.), Vf € Co(E; R). (B.1.32)

n—oo n—oo
O

The generalized Portmanteau’s Theorem helps to establish the Continuous

Mapping Theorem on fairly general topological spaces.

Theorem B.25 (Continuous Mapping Theorem). Let E and S be topo-

logical spaces. Then, the following statements are true:
(a) If [ € C(E;S), then (2.53.4) implies

pno fr = poftasntooin MH(S). (B.1.33)

(b) If E is a Tychonoff space and the set of discontinuity points of f €
M(FE;S) has zero measure under u, then (2.5.4) implies (B.1.33).

Proof. (a) follows by the fact that

lim ¢* (fno f71) = Tim (g © f)"(pn)

(B.1.34)
=(go f) (W) =g (no ), Vg € Cy(S;R).

(b) Let O € €0(S) and A C E be the set of discontinuity points of f. If
r € [T O)\A, then there exists an O, € O(F) such that x € O, C f~}(0),
i.e. z is an interior point of f~1(0). So, f~*(O)\A € O(FE). Then, it follows
by the Tychonoff property of F and Theorem 2.17 (a, c) that

po f7HO0) =pu(f(O)\A)

o B o B (B.1.35)
< liminf y1,, (f'(O\A)) < liminf p1, o f71(0).

Now, (b) follows by (B.1.35) and Theorem 2.17 (a, c). O

Fact B.26. Let E be a topological space, (E, %) be a topological coarsening
of E and S = MT(E,%). Then, the following statements are true:
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(a) (MT(E), Os|[MT(E)]) and (P(E), Os[P(E)]) are topological coarsen-
ings of M*(E) and P(E) respectively.

(b) If p, = p as n T oo in MY(E), then p, = p asn 1 oo in S.

Proof. (a) % C O(F) implies B(E, %) C AB(E), so every p € M*H(E) is
naturally a member of S. % C O(F) implies Cy,(E, % ;R) C Cy(E;R). Then,
(a) follows by the fact that

0 [M*(E)] = O,y [M"(E)]

(B.1.36)
D Ogypamy [MT(E)] = Os [MT(E)].

(b) is immediate by (a). O

Fact B.27. Let E be a topological space, p, = po as n T oo in MT(E)
and (E, %,,vy,) be the completion of (E,B(E), i) for each n € Ny. Then,

Vp = Vg asn T oo in MY(E).

Proof. {vn}nen, € MT(E) since %, D HB(E) for all n € Ny. Then, the
result follows by the apparent fact that f*(v,) = f*(u,) for all n € Ny and
f € Cy(E;R). O

Fact B.28. Let E be a topological space and p be the unique weak limit point
of {ttntnen in MT(E). If {u}nen is relatively compact, then (2.3.5) holds.

Proof. The fact follows by Fact B.6 (with (E,z,,z) = (MT(E), ttn, ). O

Fact B.29. Let E be a topological space and % be a o-algebra on E. If
L COMY(E, %) is sequentially tight in A C E, then there exists a Ty € Py(T)

such that A is a common support of all members of T'\I'y.

Proof. Suppose none of {u,}n,en C T is supported on A. The sequential
tightness of I' implies a subsequence { i, ren being tight in A. In other words,
{1tn, tren are all supported on some B € J;(F) with B C A. Contradiction!

O

Fact B.30. Let % and &/ be o-algebras on topological spaces E and S re-
spectively. If T C MY (E, %) is tight in A C E°, and if f € M(E,%;S, <)

9Please be reminded that we generalized the definition of tightness and m-tightness to
possibly non-Borel measures in Definition 2.18.
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satisfies f(K) € A (S)N for all K € H (E)NU, then {po f~'}er is tight
(resp. m-tight) in f(A). This implication is also true if tightness, # (S) and
H(S) are replaced by m-tightness, & ™(FE) and ™ (S), respectively.

Proof. Tt suffices to note that f(K) C f(A) and K C f~1(f(K)). O

Lemma B.31. Let (E, %) be a measurable space, Sy C S C E, yo € S, X
be a mapping from (Q,.7,P) to E and Y = var(X;Q, X1(S),v0). Then, the

following statements are true:
(a) IfP(X = Z) =1 forsome Z € M(Q,.%;5,%|s), then X € M(Q, F,E, U ).

(b) If X € M(Q), F; E, %) satisfies P(X € Sp) =1, thenP(X =Y € §) =
1.

(¢) If, in addition to the condition of (b), (S,%') is a measurable space
satisfying U'\s, = U |s,, then Y € M(Q, . F;S,%’).

Proof. (a) Let Qy = {w € Q: X(w) = Z(w)}. It follows by P(X = Z) =1 and
the completeness of (Q,.%#,P)!° that Qy € . and X 1(A)\Qy € A/ (P) C F
for all A € % . Hence, we have that

X'A)=[ZHANS)NQ U (X (A\Q) € F,VAe¥. (B.1.37)

(b) We find P(X =Y € §) > P(X € Sy) = 1 by Fact B.3 (a) (with
(S,4) = (Q,F#) and A = S) and the completeness of (2,.7,P).

(c) We fix A € %' and find ANSy € |s, by U'|s, = %|s,- 1t follows
by P(X € Sp) = 1 and the completeness of (2,.%,P) that X~ !(Sy) € & and
Y HANSO\X(Sy) € A (P) C #. Hence, we have that

YHANS) = [X N ANX(S)]UY HANSH\X ' (S)] € Z. (B.1.38)

O

Fact B.32. Let E and S be topological spaces, {X"}ier and X be E-valued pro-
cesses defined on stochastic basis (0, F,{%}i>0,P) and f € M(E;S). Then,

the following statements are true:

10Completeness of measure space was specified in 2.1.2.
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(a) If X is a general, 9;-adapted, measurable or ,-progressive process, then

w(f)o X is an S-valued process with the corresponding measurability.

(b) If {X}ic1 are general, % -adapted, measurable or %;-progressive pro-
cesses, then {Q)

ing measurability.

i1 Xt Feso 15 an EM-valued process with the correspond-

Proof. This result follows straightforwardly by Fact B.10 (b), Fact 2.3 (b), Fact
2.24 (b) and the definitions of measurable processes, ¥,-progressive processes

and product topology. O

Proposition B.33. Let E be a topological space and X and Y be E-valued
processes defined on stochastic basis (Q, F,{%,}i>0,P)"'. Then, the following

statements are true:

(a) If X has cadlag paths (resp. is a cadlag process), then it is (resp. is

indistinguishable from) an E-valued progressive process.
(b) If X is progressive and 9;-adapted, then it is 4,;-progressive.
(c) If X is 9,-progressive, then it is 9,-adapted and measurable.
(d) If X is measurable, then X (w) € M(R*; E) for all w € Q.
(e) If X and Y are modifications of each other, then FX = FY12,

(f) If X and Y are indistinguishable, then they are modifications of each
other. If, in addition, X is a measurable, ¥,-progressive, progressive or

cadlag process, then Y s also.

(g9) If infyer P(Xy = Y;) = 1 for some dense T C R*, and if X and Y are
cadlag, then X and Y are indistinguishable.

(h) If X is cadlag, then it is indistinguishable from any of its cadlag modi-
fications and such modification is at most unique up to indistinguisha-
bility.

1The notion of stochastic basis was specified in §2.5.
12The filtrations .Z X and .#Y were defined in §2.5.
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Proof. The well-known facts above are treated in standard texts like [Ethier
and Kurtz, 1986, Chapter 2], [Protter, 1990, Chapter 1] and Nikeghbali [2006]
for E being a Euclidean or metric space. An inspection into their proofs shows

that there is no problem to make F a general topological space. O

Fact B.34. Let E and S be topological spaces, {X'}ic1 and X be E-valued
cadlag processes defined on (0, %, P) and f € C(FE;S). Then, the following

statements are true:
(a) w(f) o X is an S-valued cadlag process.

b) If I is countable, then XiYiso is an EY-valued cadlug process.
tJji=

i€l

(c) If S is a topological coarsening of E, then X is an S-valued cudlag

process.

Proof. Y = w(f) o X and Z = {Q), ; X} }+>0 are processes by Fact B.32. We

note by Fact B.14 (b, c) that .
{w e Q:Y(w)is cadlag} D {w € O : X(w) is cadlag} (B.1.39)
and
{weQ: Z(w) is cadlag) D [ {w € Q: X'(w) is cadlag} . (B.1.40)
i€l

Now, (a) follows by (B.1.39). (b) follows by (B.1.40) and the countability of
I. Moreover, (c) is immediate by (a) (with f being the identity mapping on
E). O

Fact B.35. Let E be a topological space, T C RT and {(Q", F",P"; X™)}en
and (2, 7 ,P; X) be E-valued processes. Then, the following statements are

true:

(a) If {X"}nen is (T,D)-FDC, then {E"[f o X} |}nex is a convergent
sequence in R for all f € mc[IIT(D)] and Ty € P,(T).

(b) If {X"}nen is (T, D)-AS, then

lim E" [fo X3 — foXf,.]=0 (B.1.41)

n—o0
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for all c € (0,00), f € mc[IT*(D)] and Ty € Zy(T).

Proof. This result is immediate by the Bolzano-Weierstrass Theorem and Fact
B.6 (with E = R and x,, = E"[f o Xg ] or E"[f o X3 — fo X7 ..). O
Fact B.36. Let E be a topological space, T C RT and {(Q', F',P'; X*) }ier be
E-valued processes. If for each Ty € Py(T), there exists some It, € Py(I)
such that {pm,; = be(P o (Xg)™") bieny, has at most one weak limit point,
then flpp({X'}ier)'® is at most a singleton.

Proof. Without loss of generality, we suppose (2, #,P;Y7) € flpp({X }ier)
for each j = 1,2. Fixing Ty € Zy(T), there exist {v; € be(Po (Y{O)_l)}jzlyg
such that 1, and v, are both weak limit points of {MTo,z‘}ieI\ITO- So, we must
have 14 = 1, and hence Po (Yq, )™' =Po (YZ )" O
Fact B.37. Let E be a topological space, (2,.%,P; X) be an E-valued process
and T C R*. If there exists an RP-valued cudlug process (0, . F,P;() such
that

inf]P(@DoXt :gt> _ 1, (B.1.42)

teT

then X is (T, D)-cadlug. The converse is true when D is a countable collection.

Proof. {¢/ = w(ps) o (}ep' are R-valued cadlag processes satisfying

inf P (proG=¢ = foX,=p;o@DoX,,Vf D)
:22£P<Ct:®DoXt) —1

by Fact 2.4 (a) and Fact B.34 (a) (with £ = RP? and f = py).

Conversely, we suppose D is countable and R-valued cadlag processes
{¢T} ep satisfy (6.3.1). Letting ¢, = Qe ¢/ for each t € R*, we find that
{G }i>0 is an R*®-valued cadlag process satisfying (B.1.43) by the countability
of D, Fact B.34 (b) (with I =D, i = f and X’ = ¢/) and (6.3.1). O

Fact B.38. Let E be a topological space, A C E and T C R™ be countable.
If E-valued processes { X} }icr is sequentially tight in A for all t € T (resp.
satisfies T-PSMTC in A'), then there exist {in }ner C I such that { X" }nen

13The notation “flpp({X"}nen)” was introduced in §6.2 and stands for the family of all
equivalence classes of finite-dimensional limit points of {X"},cn along T.

1Recall that pf denotes the projection on R? for f € D.
15The notions of T-PMTC and T-PSMTC were introduced in Definition 6.36.

(B.1.43)

286



APPENDIX B. MISCELLANEOUS 287

is tight in A for all t € T (resp. satisfies T-PMTC in A).
Proof. This result follows immediately by a triangular array argument. O

Lemma B.39. Let E be a topological space, {(Q, F', P X")}ier be E-valued
measurable processes, Ty, 1 0o, {A,}pen C B(E) and (QF, F1 PiTs; X0Tr) =
vapy, (X°)' for each i € T and k € N. If
. 7,1}, 1,1} >1_9P
_inf P (XO c Ap) >1-27 VpeN, (B.1.44)
then for each To € Zy(R") with d = X(Ty), there exist {Nt,,}pen C N such
that
: i vinTk d\ > 1_ —p
i, (XTO e Ap) >1-(d+1)27”, ¥p e N. (B.1.45)

Proof. Let Tg = {t1,...,ta), t = 30 t;, Ny, = 0 and T,,; , = 0. Define
{Nr,p}pen inductively by

Nrop =min{k € N: T} > (2°*'td) v TNTM_l} . Vp € N. (B.1.46)
For each p € N, it follows by (B.1.44) and (B.1.46) that

inf P (X e A7)

i€Lk>Nr,,p

d
>1— sup Y P (XZT’“ ¢ A,,)

i€Lk>Nry , S5

>1-d sup P (Xg;Tk ¢ Ap) (B.1.47)

i€LE>N p
d
i€Lk>Nrg p Ty, [0,8]U[T, T +1]
2td
2r+1td

P (XI ¢ A,)dr

>1-—d2?— —1—(d+1)27".

O

Lemma B.40. Let E be a topological space, (Q2,.%,P; X) be an FE-valued
cadlug process, €,0,T,c € (0,00) and (@,iPT;XT) = vapy(X). Then, the

16Randomly advanced process and related notations were introduced in §7.3.
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following statements are true:

(a) & = { X 110 well defines an E-valued cadlug process for all T € R*.
(b) XT is an E-valued cadlug process.

(c) If (E,¢) is a separable metric space, then

1 T
T/o P (w,s.0& > ¢€)dr = PT (wige0 X" >e). (B.1.48)
Proof. {{" };er+ are E-valued processes by Fact 2.24 (b). Letting 2y = {w €
Q: X(w) is cadlag}, we find that

{weQ:(w)is cadlag) D Q, V7 € RY (B.1.49)

and
{(T,w) e XT(r,0) is cadlag} SRY % . (B.1.50)

Then, (a, b) follows by (B.1.49), (B.1.50) and the fact PT (R x Q) = P(Qy) =
1.
(c) It follows by (a), (b) and Lemma A.80 (b) (with X = ¢ or X7)

that w5 o0& € M(Q,.7;R) for all 7 € R" and w.;, o XT € M(Q,.%#;R).

t,&,c né’c
Hence, both sides of (B.1.48) are all well-defined and (B.1.48) is true since
£ (w) = XT(r,w) for all (1,w) € Q. O

Fact B.41. Let (E,t) be a metric space, (Q, F,P; X) be an E-valued cadlag
process, Tj, 1 oo and (€2, F Pl XTk) = vapy, (X) for each k € N. If for any
e,T € (0,00), there exists a o, € (0,00) satisfying

1 [T
sup 7 [P (w;&e,TvT 0™ > e) dr < ¢ (B.1.51)
€ 0

with &7 = { X, 1t }so, then { Xk }en is a family of E-valued cadlag processes
satisfying t-MCC.

Proof. This fact follows by Lemma B.40 (¢) (with T =T} and ¢ =T). O
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Lemma B.42. Let E be a topological space, A C E, D C My(E;R) and
(Q, #,P; X) be an E-valued measurable process, Ty 1 oo and ((~2, F Ple; XTr) =
vapy, (X) for each k € N. Then, the following statements are true:

(a) X satisfies Ty-LMTC in A if and only if {X(* Ynen is m-tight in A.

(b) If {X*}nen is m-tight in A, then {XT¥}ren satisfies RT-PSMTC in
A.

(c) {XT}ren is (RT, My(E; R))-AS.
(d) If { X" }yenis (T, D)-FDC, then it is (T+c,D)-FDC for all ¢ € (0, 00).

Proof. (a) is automatic by the definition of {X7*},cn.
(b) follows by (a) and Lemma B.39 (with {X}.c1 = {X}).
(c) and (d) follow immediately by the fact that

Jim [E% 70 3 = 70 X3
L e 2l (B.1.52)
< lim —/ E[|foXr, — foXryirir,|]dr < lim ——— =0
k—oo Ty /o k—oo k

for all ¢ € (0,00), f € ITT(M,(E;R)) and Ty € Zy(R"), where E?+ denotes
the expectation operator of (fl, ,;25, P7k) for each k € N. O

B.2 Supplementary results for Appendix A

Fact B.43. Let E be a topological space and k € N. Then, C.(E;RF) C
Co(E;RF) C Cy(E; RY) and they are indifferent if E is compact.

Proof. This result follows by [Munkres, 2000, Theorem 27.4]. O

Proposition B.44. Let E be a Hausdorff space. Then, the following state-

ments are true:
(a) C.(E;R) is a subalgebra of Cp(E; R) and is a function lattice.

(b) C.(E;R) C Co(E;R) C cl(C.(E;R)).

"The terminology “X satisfying Tx-LMTC in A” was specified in Definition 6.36 and
Note 6.37.
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Proof. (a) C.(E;R) C Cy(E;R) by Fact B.43. 0 € C.(F;R) since & is com-
pact. Fixing f,g € C.(F;R) and a € R\{0}, we observe that

(f +9) ' (R\{0}) € f7H(R\{0}) Ug " (R\{0}), (B.2.1)
that
(af) H(R\{0}) = f(R\{0}), (B.2.2)
and that
(fg) ' (R\{0}) = fTH(R\{0}) N g~ (R\{0}). (B.2.3)

Let K denote the compact closure of f~*(R\{0}) for each f € C.(E;R).
We have K;, C (K;UK,), K,y = Ky and Ky, C (KN K,) by (B.2.1),
(B.2.2) and (B.2.3), respectively. It then follows that

{(K; UKy, Koy Kop, Ky} C 2 (E) (B.2.4)

by the fact {K;, K,} € 2 (F), the Hausdorff property of £ and Proposition
A.12 (a, b). Hence, C.(E;R) is an algebra.
From the fact

FI7H({0}) = f71({0}), Vf € C(E;R) (B.2.5)
it follows that
|fl € C.(E;R), Vf € C.(E;R), (B.2.6)
that
fVg=3(f+a)+51f ~ol €CABR), Vig € C(ER),  (B2T)
and that
fAg=5(+9)—51f — gl € C.ABR), Vg € CER), (B2

thus proving C.(E;R) is a function lattice.
(b) The first inclusion is automatic and we prove the second one. We
fix f € Co(E;R), p € N and a K, € #(E) such that ||f|pk, |l < 277
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The case where K, = E is trivial. Otherwise, we define A = f~1((277, 0)),
B = f7!(—o00,—277)] and

foz (ff@)—2)" = (f(x) —277)". (B.2.9)
A and B are disjoint subsets of K. The fact

flx)—=27>0, ifzxeA,
fo(@) =X f(z)+27 <0, ifzeB, (B.2.10)
0, if 2 € E\(AU B)

implies AU B = E\f'({0}). Letting F' be the closure of AU B in E, we
have by Proposition A.12 (a) that K, € €(£), F' C K, and F' € J# (FE), thus
proving f, € C.(E;R). Furthermore, from the fact

—27P, if z € A,
fo(@) = f(z) = 4277, if r € B, (B.2.11)
—f(x) e (—277,27P)), ifzx e E\(AUDB)

it follows that || f, — fl|lec < 277. O

Fact B.45. Let E be a topological space, f € C(E;R) and A be a dense subset
of E with E\A # @. If E is a first-countable space and (A\B) C f~'({0})
for some B € €(E) with B C A, then f|pa = 0. In particular, this is true
when E is a metrizable space and f € C.(A, Og(A)).

Proof. For each x € FE\A, the first-countability of E implies a sequence
{Z, }nen C A converging to z as n T co. As xz € F\B and E\B € O(F),
there exists an N € N such that z,, € A\K and f(z,) = 0 for all n > N.
Hence, the continuity of f implies f(x) = lim,, o f(z,) = 0.

If £/ is a metrizable space, then it is first-countable by Fact A.9. If, in
addition, f € C.(A, Og(A)), then we let B be the closure of A\f~!({0}) and
B € €(F) by Proposition A.6 (a) and Proposition A.12 (a). O

Proposition B.46. Let {S;}ic1 be topological spaces and (S, /) be defined as
in (2.7.22). Then, the following statements are true:
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(a) B(S) D .
(b) If 1 is countable and S is hereditary Lindelof, then B(S) = < .
(c) If 1 is countable and {S;}ic1 are all second-countable, then B(S) = .

(d) If 1 is countable and {S;}ic1 are all metrizable and separable spaces
(especially Polish spaces), then B(S) = <.

Note B.47. As arranged in §2.6, the Cartesian product S = [[.
is equipped with the product topology €(S) = &),; €(S;) and its Borel o-
algebra is A(S) = o[0(9)].

S; above

Proof of Proposition B./6. (a) follows by the argument establishing [Bogachev,
2007, Vol. 1I, Lemma 6.4.1].
(b) and (c) were proved in [Bogachev, 2007, Vol. II, Lemma 6.4.2 (ii)].
(d) follows by (c), Proposition A.6 (c) and Proposition A.11 (c). O

Lemma B.48. Let {S;}ic1 be topological spaces, (S, <) be as in (2.7.22),
Ac o, {Anen C A and pp € MT(S, 7). Then, the following statements

are true:
(a) If S = U,en An and |4, = Bs(Ay) for all n € N, then B(S) = .

(b) If w is supported on A and be(u|a)™ is a singleton, then be(n) is a

singleton.

(¢c) If 1 is supported on A and Bs(A) = o |4, then be(u) is a singleton.

Proof. (a) follows by Proposition B.46 (a) and Fact B.1 (with £ = S, 2 =
B(S) and % = o).

(b) Let v = be(u|a)™. w = v € M*(S) by Fact 2.1 (b) (with £ = S
and % = %(F)). Since A € o, we have that

BNAed|sC Bs(A), VB e . (B.2.12)

184,14” and v|F denote the concentration of  on A and the expansion of v onto E.

“be(|a)” denotes the Borel extension(s) of p.
194y = be(u|4)” means v is the unique Borel extension of y/4.
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Note that v and p]4 are identical restricted to 7| 4. It then follows by (B.2.12)
that
pla(BNA)=v(BNA)=m(B), VBe 4. (B.2.13)

It follows by the fact u(A) =1, the fact A € & and (B.2.13) that
u(B) =pu(BNA)=pla(BNA)=u(B), VB € o, (B.2.14)
thus proving p; € be(u). If o € be(u), then we have that
pala = be(ula) =v et (A Os(A)). (B.2.15)
It follows that

pa = (nala)[¥ = v|” = (B.2.16)

by (B.2.15) and Fact 2.1 (a, ¢) (with E =S, Z = A(E) and u = ps).
(c) Bs(A) = /|4 immediately implies p|a = be(u|a). Then, (c) follows
by (b). O

Lemma B.49. Let E and S be measurable spaces and f,g € M(S;E). If
there exists a countable subset of M(E;R) separating points on E, then {x €
S f(z) =g(x)} is a measurable subset of S. In particular, this is true when

E is baseable.

Proof. Let {hy,}nen C M(E;R) separate points on E. B(R?) = Z(R)%? by
Proposition B.46 (d) (with S; = R).

on = (hno fhnog) € M (S;R* B(R?)), Vn e N (B.2.17)

by Fact 2.3 (b). The diagonal line A = {(y,y) : v € R} € ¥(R?*) C B(R?)
by [Munkres, 2000, §17, Exercise 13]. Hence,

{res: flr)=gx)}
={zxeS:h,of(x)=h,og(x), Vn e N} = ﬂ o1 (A)

neN

(B.2.18)

is a measurable subset of S. O
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Lemma B.50. Let E be a topological space, V' be the family of all cadlag
members of ER20 t € Rt and T € (0,00). Then, the following statements

are true:

(a) If M(E;R) has a countable subset separating points on E, then {z €
ViteJ(x)} e BE)SR,.

(b) {x €V :2|pr € AP} € B(E)R' |y for all A € C(F), especially
for all A € # (E) when E is a Hausdorff space.

Proof. (a) We fix t € R", let p,_ denote the mapping associating each = € V
to its left limit at ¢ and find by Fact 2.3 (a) that

plA) = ) U »'(4) e B(E)*™ |y, VA€ 0(E), (B.2.19)

peQ+N[0,t) gcQ+N(p,t)

so pr_ € M(V, B(E)®R"|y; E). Tt then follows by Lemma B.49 (with S =V,
f=p: and g = p;) that

{zeV:itedJa)={zeV p_(z)=p(x)} € BE)R |, (B.2.20)

(b) When E is Hausdorff, # (F) C € (F) by Proposition A.12 (a). It
follows by the closedness of A and the right-continuity of each = that

{zeV x| € A[O’T)} = ﬂ Vnp ! (B.2.21)

t€QN[0,T)
It follows by the fact A € €(F) C A(F) and Fact 2.3 (a) that
VNp H(A) € BE)*R|,, vt e RT. (B.2.22)

Now, (b) follows by (B.2.21), (B.2.22) and the countability of QN [0,7). O

Fact B.51. Let E is a topological space and K € J (E). Then, the following

statements are true:

(o) K € H(E,%) for any topological coarsening (E, %) of E.

20F need not be a Tychonoff space, so we avoid the notation D(R™; E) for clarity.
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(b) If D C C(E;R) separate points on K, then Og(K) = Op(K) and
K e X (E,0p(E)) C €(E, Op(E)).

Proof. (a) is immediate by the definition of compactness.

(b) Og(K) = Op(K) is a Hausdorff topology by Lemma A.20 (with £ = K
and D = D|) and Proposition A.17 (¢) (with A = E). Now, (b) follows by
Proposition A.12 (a). O

Lemma B.52. Let E be a non-empty set, G C R¥ and H C R¥. Suppose
that for any g € G and n € N, there exists a bounded function f,, € H such
that

Ajn={zeFE:|gx) <n}={x € E:|fy.(v)] <n} (B.2.23)

and
g]-Ag,n = fg,nlAgyn- (B224>

Then, there exists a subset F C H such that:

(a) The members of F are all bounded and include all the bounded members

of G. In particular, F = G when the members of G are all bounded.
(b) F is countable if G is.

(¢c) Og(E) C Ox(E). Moreover, if G separates points on E, or if E is a
topological space and G strongly separates points on E, then F has the

same property.

Proof. (a, b) Let Gy be the family of all bounded members of G. For each
g € G\Gy (if any), we take a bounded f,, € H satistying (B.2.24) for all
n € N. For each g € Gy (if any), we let

ng=min{n € N:n> g/}, (B.2.25)
and find an f,,, € H satisfying
Agn, = E and fo,, = fynla,, = 9la,, = 9. (B.2.26)
Now, we define F = {f,, :g € G,n € N}.
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(c) It follows by (B.2.23) and (B.2.24) that

{:L‘EE’:g(:):)<a}:U{xEE:g(az)<a,|g(w)|<n}

=z € E: fonla) < a,|fyn(x)| < n} (B.2.27)
=|J{z€E:—n< fyu(x) <a} € O£(E), Vac R, g €G,

thus proving Og(E) C Ox(E).

The Hausdorff property of 0g(FE) implies that of O'z(F) by Fact A.1. So,
G separating points on F implies F separating points on E by Proposition
A7 (c).

If G strongly separates points on topological space E, then O(F) C Og(E) C
Ox(F) and so F strongly separates points on E. O

Corollary B.53. Let E be a topological space. Then, C(E;R) separates points
(resp. strongly separates points) on E if and only if Cy(E;R) does.

Proof. Sufficiency is immediate. Necessity follows by Lemma B.52 (with G =
C(E;R) and H = C,(E; R)). O

Fact B.54. Let E be a topological space, u € M (EL, B(E)®Y), vy € be(u),
X e M(Q, Z P, EY, B(E)®) and v, € be(Po X ). Then, [, [(x)u(dz) =
J*() and E[f o X] = () for all | € calI(My(F; R))].

Proof. This result follows by Proposition A.21 (a) (with D = M,(E;R)) and
the fact that v, (resp. 15) and p (resp. Po X~!) are the same measures on
(E?, B(E)). O

Lemma B.55. Let E be a topological space and A C E. Then,
pn = asn oo in M (A, Og(A)) (B.2.28)

implies
pin|® = p|¥ asn 1 oo in MT(E). (B.2.29)

The converse is true when E is a Tychonoff space.
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Proof. Tt follows by (B.2.28) and C,(E;R)|a C Cy(A, Or(A); R) that

i [ fGahal2(de) = lim [ flat@(de) = [ flantao

n—o0

(B.2.30)
_ /Ef(a:)u|E(d$), Vf € G(E:R),

thus proving (B.2.29). Conversely, if £ is a Tychonoff space, then (B.2.29)

implies

lim sup g, (F N A) = limsup p,|¥(F) < ul*(F) = w(F N A), YF € €(E)
H’O H’O (B.2.31)
by Theorem 2.17 (a, b) (with u, = u,|? and u = pl?). (A, Op(A)) is a
Hausdorff subspace by Proposition A.26 (b). Now, (B.2.28) follows by (B.2.31)
and Theorem 2.17 (a, b). O

Fact B.56. Let E be a topological space and A C E. IfT' C MT(A, Op(A))

is relatively compact, then {u|¥}er is relatively compact in M*(E).
Proof. This result is immediate by Lemma B.55. O

Corollary B.57. Let E be a topological space, A € B(F) be a Hausdorff
subspace of E and { i, }nen be sequentially tight in A and satisfy { g (E) bnen C

la,b] for some 0 < a < b. If u is the unique weak limit point of {iin}nen in
MT(E), then (2.3.5) holds.

Proof. {ji,}nen are all supported on A with finite exception by Fact B.29
(with Z = Z(F) and T' = {, fnen) and {p,]abnen is relatively compact in
MT(A, Og(A)) by Lemma A.46 (with E = (A, Og(A)) and T' = {ptn]a}tnen)-
Then, {fn}nen is relatively compact in M*(E) by Fact 2.1 (¢) (with Z =
PB(FE) and v = pu|4) and Fact B.56. Now, the corollary follows by Fact B.28.

O

Lemma B.58. Let E be a Hausdorff space. Then, the following statements

are equivalent:
(a) E is a Tychonoff space.
(b) 0z, = 8, as n T 0o in P(E) implies x,, — x asn T oo in E.
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(c) Convergence determining implies determining point convergence on E.

Proof. ((a) — (b)) d,, = 6, as n T oo in P(F) implies

n—o0 n—0o0

for all f € Cy,(E;R). Cy(E;R) determines point convergence on E by Propo-
sition A.25 (a, c¢) and Proposition A.17 (b). Hence, (B.2.32) implies z,, — =
as n T oo.

((b) = (c¢)) If D C M,(E;R) satisfies Q D(x,,) — Q D(x) as n 1 0o, then
(B.2.32) holds for all f € D. This implies §,, = J, as n 1 oo since D is
convergence determining on FE. Now, we have x, — = as n 1 oo by (b).

((c) — (a)) Cy(E; R) determines point convergence on E by (c). It strongly
separates points and separates points on E by Proposition A.17 (a, b). Now,
(a) follows by Proposition A.25 (a, c). O

Lemma B.59. Let E be a topological space, D C Cy(E;R) separate points on
E and d € N. Then, the following statements are true:

(a) If each of uy, o € MT(E) is tight and D is closed under multiplication,
then f*(u1) = f*(u2) for all f € DU{1} implies g = ps.

(b) If each of pu, po € M*(EY, B(E)*?) is m-tight, then f*(1n) = f*(12)
for all f € mc[lI%(D)| U {1} implies j11 = pia.

Proof. (a) Let a = 1 (E) = po(F) and v; = p;/a for each i € {1,2}. Each of
vy and vy is a tight member of P(F) and they satisfy f*(v1) = f*(v») for all
f € D. Then, v, = vy by [Blount and Kouritzin, 2010, Theorem 11 (d)] and
S0 J1 = Ha.

(b) E is a Hausdorff space by Proposition A.17 (e) (with A = F). For
each j = 1,2, there exists an m-tight u; = be(p;) by Proposition 3.57 (with
I={1,..,d}, Si=FE, A= E*and I' = {y;}). mc[lI*(D)] separates points
on E? by Proposition A.21 (b). Now, (b) follows by (a) (with F = E<,
D = mc[lI%(D)] and p; = p}). O

Fact B.60. Let E be a topological space and S be a Hausdorff space. If " C
M (E) is tight in A C E and f € C(E;S), then {po f~': p € T'} is tight in
f(A).
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Proof. f(K) € #(S) C A(S) for all K € # (F) by Proposition A.12 (a, e).
Now, the result follows by Fact B.30 (with % = #(F) and &« = %#(S)). O

Lemma B.61. Let I be a countable index set, {S;}ic1 be topological spaces,
(S, o) be as in (2.7.22), T C M*(S, o), A; C S; for eachi € T and A =

[Lici Ai- Then, the following statements are true:

(a) If {p o p; ' }er is tight (resp. m-tight) in A; for all i € 1, then T is
tight (resp. m-tight) in A. The converse is true when (A;, Os,(A;)) is
a Hausdorff subspace of S; and A; € AB(S;).

(b) If {1 o p; '} er is sequentially tight (resp. m-tight) in A; for all i €1,
then T is sequentially tight (resp. m-tight) in A. The converse is true
when (A;, Os,(A;)) is a Hausdorff subspace of S; and A; € AB(S;).

Proof. (a) Without loss of generality, we suppose I = N. Each A; is equipped
with the subspace topology Os,(4;) throughout the proof. If {g o p;'},ecr is
tight in A; for all ¢ € I, then there exist

such that
sup o p; (Si\pi(K,)) <2777 Vi,p e N. (B.2.34)
pel
It follows that
AD [ Kpi€ # ()N, ¥peN (B.2.35)
iEN

by Proposition A.12 (b), Fact 2.4 (a) and the fact [],.; Kpi = ;e Pi ' (Kpi)-
Now, we conclude the tightness of I' in A by observing that

sup (S\ H Km) < Zsupu (Si\K,;) <277, VpeN. (B.2.36)

pel iEN i—1 HEl

If {pop; '} er is m-tight in A; for all i € I, then we retake each K,; above
from ™ (S;) N A(S;), find [[,.y Kpi € £ ™(S) by Lemma 3.55 (a) (with
A, = K,,;) and verify the m-tightness of I' by a similar argument.

i€l
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Next, we suppose A; € HB(S;) is a Hausdorff subspace for all i € I and

justify the converse statement. We have that
pi(K) e #(A;) C B(A;) C B(S;), VK € (9),i €1 (B.2.37)
and
pi(K) e #™(A;) C B(A;) C B(S;), VK € ™(9),i el (B.2.38)

by Corollary A.13 (b) (with A = K and S; = A;), Lemma 3.55 (b) (with
A = K and S; = A;) and the fact A; € A(5;). If T is tight (resp. m-tight) in
A, then for each i € I, the tightness (resp. m-tightness) of {gop;'},cr in 4;
follows by (B.2.37), (B.2.38), the fact A; = p(A), Fact 2.3 (a) and Fact B.30
(with (E, %) = (5,4), (S, &) = (Si, #(5:)) and [ = p;).

(b) follows immediately by (a) and a triangular array argument. O

Lemma B.62. Let E be a Tychonoff space and (D(R™; E),.%,v) be the com-
pletion of (D(RT; E),o(_Z(E)), w)*. If M(E;R) has a countable subset sep-
arating points on E, especially if E is baseable, then v o pr}é € MF(ET0) s
a Borel extension of p o pr}é € MH(ET, B(E)®T) for all non-empty Ty €
Po(R\JT ().

Proof. o py! is a member of MT(ETe, B(E)¥T0) by Proposition A.68 (a).
pr, € M[D(RT; E),.7; ET, (E™)] by Proposition A.68 (c), the definition
of J(u) and Fact B.4 (with £ = D(R™; F), % = ., S = ET and f = pr,).

Hence, v o py, € be(popyp,) as v is an extension® of y to .. O

Lemma B.63. Let E be a Tychonoff space, D C C(E;R) be countable and
{iitiet T MT(D(RT; E)). Then, the following statements are true:

(a) If {p; o w(f) t}iex is tight in D(RT;R) for all f € D, then {u; o
@ (D) }ier is tight in D(RT; R)P.

2B (DR E)) = ol Z(E)], so  the  measure space  mnotation
“DRY;E),B(DRT;E)),pn)” implies p € MT(D(RT; E)).

22The J(p) herein is well-defined by Proposition A.68 (b) and Fact A.71.

ZExtension of measure was specified in §2.1.2.
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(b) If D strongly separates points on E and {p; o w(f) ' }ier is tight in
D(R*;R) for all f € ae(D), then {u; o w[Q ae(D)] ' }icr is tight in
D(R*; R*®),

Note B.64. When D is countable, ae(D) is also by Fact B.15. Then, R*(®),
D(R*;R), D(R*;R*(®)) and D(R*;R)*(®) are all Polish spaces by Propo-
sition A.11 (f) and Proposition A.72 (d).

Proof of Lemma B.63. (a) follows by the fact
(,u,z- o w(’D)_l) o p;l =pow(f) e M* (D(R+; R)) , VfeD (B.2.39)

and Lemma B.61 (a) (with I = D, S; = A, = D(RT;R) and ' = {y; o
@ (D)~ }ier)-

(b) {piow(ae(D)) }ier is tight in D(R*; R)*®) by (a) (with D = ae(D)).
Let ¢ = @[@ ae(T)], J = {ps} sep be the one-dimensional projections on R
and v; = p; 0o ¢! for each i € I. From Corollary A.66 (with T = D) it follows
that

¢pow(ae(J)) " € C[DRT;R)*P); D (RT;R*™P)]. (B.2.40)
Observing that
vi = [ ow (ae(D)) ] o [pow (ae(T)) '], VieT, (B.2.41)

we conclude the desired tightness of {v; };e1 by (B.2.40), (B.2.41) and Fact B.60
(with £ = D(RT;R)*®) § = D(R";R*®) and f = ¢pow (ae(J)) ). O

Lemma B.65. Let E be a Tychonoff space, D C C(E;R) be countable, ¥ =
wlae(D)], V. C D(RT; E) and {Ap}tpen C B(E). If A, C Api1, D strongly
separates points on A, and x|y € Aéo’p) forallz €V and p € N, then

U|y € imb (V, Opw+,p)(V); D(RTR)*P)) (B.2.42)

and
«%D(RﬁE)(V) = %(E)®R+

o (B.2.43)
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Proof. Step 1: Show ¥|y is injective. Ey =] . Ap € B(E) satisfies

peN

V C D (R*; By, On(Ey)) . (B.2.44)

ae(D) separates points on FEy by the Hausdorff property of E, Proposition
A.17 (a) and Fact B.19 (with n = p and D,, = ae(D)). So, ¥|y is injective by
(B.2.44) and Fact B.20 (with A = E; and D = ae(D)).

Step 2: Show the continuity of ¥|y. We have by Fact B.15 and Proposition
A.17 (d) (with A = Ey) that (Eo, pp) is a separable metric space, ae(D) is
a countable subset of C(FEy, pp;R) and ae(D) strongly separates points on
(Eo, pp)- It follows that

Y| p(+:m,0p) € imb (D (RT; Eo, pp) ; DRT;R)™P)) (B.2.45)

by Proposition A.62 (a) (with D = ae(D)). (Eo,pp) = (Eo, Op(Ep)) is a
topological coarsening of (Ey, Or(Ey)) since D C C(E;R™). So,

V| pRe+m0,0m(50)) € C (D (R By, Op(Ey)) ; D(RT; R)™™P)) (B.2.46)

by (B.2.45) and Proposition A.62 (e) (with E = (Eqy, pp) and S = (Ey, Or(E)))).
Hence, we have by (B.2.44) and (B.2.46) that

Ul € C(V, Opw+.m)(V); DRT; R)*P)) . (B.2.47)

Step 3: Show the continuity of (¥|y,)~". We aforementioned that D(R*; R)®*(®)
is a Polish space, so its subspace (V') is metrizable by Proposition A.6
(b). According to [Munkres, 2000, Theorem 21.3], showing the continuity
of (¥|y)™! is equivalent to showing that (A.6.27) implies (A.6.15) for all

{yntren, C V.
We suppose (A.6.27) holds, fix u € R"\J(yo) and define p, = min{p € N :
p > u+ 1}. Observing that

{velowit }pen U 0lowsn } € D(0,u+ 1] 45, O5(4,,)),  (B.2.48)
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we have
yp — yy as ktooin D([0,u+1];A,,, Op(A,,)) (B.2.49)
by Lemma A.74 (with £ = (A,,, Og(A,,)) and D = D|y,, ). This implies
yr — yy as kT oo in D ([0,u + 1]; Ey, Or(Ey)) (B.2.50)

by Corollary A.65 (with B = (Ey, Og(Ep)) and A = A,,). We aforemen-
tioned that the countable collection D C C'(£;R) separates points on Ey, so
(Eo, Op(Ep)) is a baseable space. Hence, it follows by (B.2.50) and Lemma
A.75 (with E = (Ey, Og(Ep))) that

Ye — Yo as kT oo in D (RT; Ey, Op(Ep)) . (B.2.51)

Now, the desired (A.6.15) follows by Corollary A.65 (with A = Ej).
Step 4: Show (B.2.43). The three steps above established (B.2.42).

o(f) e M (ER*,@(E)@R*; RR*,@(R)gR*) V[ cae(D)  (B.2.52)

by D C C(E;R) and Fact B.10 (b) (with I = R™). D(R';R) is a Polish

space, S0

]

= o[ Z(R)*™P =g [ 7(R)*P)] (B.2.53)

by Proposition A.72 (b) (with £ = R) and Proposition (B.46) (d) (with

Ul e M (V, B(E)*R'

YW o SR ) (B2

by (B.2.52), Fact 2.3 (b) and (B.2.53).

Zomen) (V) =0 ({(Ty) 7 (0): 0 € 7R}
= {(W) ' (B): Beo (FR™P)} C BB
(B.2.55)
by (B.2.42) and (B.2.54). Now, (B.2.43) follows by Proposition A.68 (b). O
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Lemma B.66. Let E be a Tychonoff space, D C C(E;R) be countable, ¥ =
wlae(D)], ¢ = @ ae(D), {Ap}pen C HB(E) and

V= () {r e DR"E): x|y, € AP} (B.2.56)

peEN

If A, C A,1, D strongly separates points on A, and p(4,) € €(R*P)) for
all p € N, then U(V) € €(DRT; R)*D).

Proof. D(R*; R®(®)) is a Polish space, so ¥(V) as a subspace is metrizable
by Proposition A.6 (b). Hence, showing the closeness of W(V') is reduced by
Fact A.9 (with £ = D(R*;R)*®) and A = ¥(V)) to showing that

U(yp) — z as k1 oo in D(RY; R)*P) (B.2.57)

imply z € ¥(V) for any {yx}ren C V.

Let {p;}sep be the one-dimensional projections on D(R*; R)®®),

dt)= Q) pr(2)(t), VEERT (B.2.58)

f€ae(D)

defines a member of D(R™; R*(P)) by Fact B.14 (c).

T= (] R\J(ps(2)) (B.2.59)

f€ae(D)

is cocountable by Proposition 3.62 (b) (with £ = R and = = py(2)).
pouyp(t) — 2 (t) as kt oo in R*P) vt T (B.2.60)

by (B.2.57), Fact B.11 and Proposition A.68 (c). It then follows that
2 (t) € p(A4,), Yt €10,p),p €N (B.2.61)

by (B.2.60), the closedness of each ¢(A,) in R*®) the denseness of T in R*

and the right-continuity of 2’.

¢la, €1imb (A, Op(4,);R*P), ¥pe N (B.2.62)
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by Lemma A.28 (a, ¢). So, (¢]a,) " © 2’|, is a cadlag mapping from [0, p) to
(A, Or(Ap)) for all p € N and, hence,

y(t) = (ola,) (1), Yt € [0,p),p N (B.2.63)
well defines a member of V. Now, one observes ¥(y) = z from (B.2.58),
(B.2.63) and the definitions of ¥ and ¢. O

The next lemma is adapted from Kouritzin [2016] and restated befittingly.

Lemma B.67. Let E and S be topological spaces, {A,}pen C B(E) and
[ € SE satisfy {f(A,) }pen C €(S) and

fla, € hom [4,. Ou(A,): F(A). 05 (F(A)]. Vpe N, (B2:64)
Ey = U en Ap satisfy f € M(Ey, Op(Eo); S) and {i}icr C P(E) satisfy

inf 11;(A,) >1—277, Vp e N, (B.2.65)

iel
Then, tightness of {u; o f~*}ier tmplies that of {u;}iex in Ey.
Proof. We refer the proof to [Kouritzin, 2016, Lemma 24]. O

Lemma B.68. Let E be a Tychonoff space, T C R* be dense, d € N and
f € Cy(E%R). Then, the following statements are true:

(a) For each Ty = {t1,...,ta} € Po(RY), there exists a T, = {tp1,...,tpa} €
Py(T) for each p € N such that**

lim f(x)po pr__ri(d:l:) = () 0 ppy (dax). (B.2.66)

n—oo ETo ETo
for all p € M (D(RY; E), B(E)*R" | pr+.:))-

(b) If v, 7% € MH(D(RY; E), B(E)*R" | pmerm)) satisfy (8.2.12) for all
To = {t1,....ta} € Po(T), then they satisfy

(z)7" o p, (da) = (2)7* o pa, (da) (B.2.67)

ETo ETo

24Recall that Corollary A.69 verified ,uopr}; € M (ETo, B(E)?To) for all Ty € Zy(RT)
and yi € MH(D(RY; E), B(E)*R | pr+,p))-
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for all Tog = {t1,....tq} € Zo(RT).

Proof. (a) For ease of notation, we define ¢g = f o pg for each S € ZH(R™").
The denseness of T in R" allows us to take T), = {{,1, ..., tpa} € Po(T) for
each p € N such that

lim sup |t; —t,:| =0. (B.2.68)
P—=X0 1<i<d
It follows that
lim |¢,(2) — ¢, (2)| =0, Vo € DR E) (B.2.69)
p—r00

by (B.2.68), the right-continuity of z € S, Fact B.11 and the continuity of f.

The boundeness of f implies
sup [|ér, ||, < I1flle < co. (B.2.70)
peEN

Now, we have by (B.2.69), (B.2.70) and the Dominated Convergence Theorem
that

lim flz )MOPT = lim /Qpr
n—oo [ pTg n—00
- / o, ()n(dy) = / (o pa (),
ETo
(B.2.71)
(b) follows immediately by (a) (with p =~ or +?). O

Lemma B.69. Let E be a Tychonoff space, S*, S? and S be dense subsets of
R, D C Cy(E;R) and {1, }nenU{7", 72} C M (D(RT; E), B(E)*® | pm+.p)
satisfy (8.2.12) for each f € mc[lI™(D)] U {1}, Ty € Py(S) and i = 1,2.

Then, the following statements are true:

(a) If D strongly separates points on E, then (8.2.13) holds.

(b) If D separates points on E, and if each of v o pr__r(l) and 72 o pr__r(l) 15
m-tight for all Ty € Py(S), then (8.2.13) holds.

Proof. For ease of notation, we define ¢p = f o pr for each T € ZH(R™) and
f € My(ET;R). The proof is divided into four steps.
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Step 1: We show (B.2.67) for each f € mc[lI™(D)] U {1} and T, =
{t1,....,ta} € Py(S'). Note 5.6 argued that f € Cy(E%R). By Lemma B.68
(a) (with T = S?), there exists a T = {{,1, ..., {pa} € FPo(S?) for each p € N
such that

lim [ (¢, — om,) (2)7°(da)
PIRSE) (B.2.72)
= lim (¢1, — o1,) (€)pin(dx) = 0, ¥Yn € N.
P20 J D(R+;E)
From (8.2.12) we get
lim om @) = [ omy (o) (B.2.73)
n—= JD(R+;E) D(R+;E)

and

lim o, (2) pn(dx) = / ¢, (x)7*(dz), Vp e N.  (B.2.74)
D(R*;E) DRTE)

n— oo

Let ¢ € (0,00) be arbitrary and ny = 1. By (B.2.73) and (B.2.74), we
inductively choose an n, € N N (n,_;,00) for each p € N such that

V

/D g, Ol (00) = / b () (d)

D(R*;E)

(B.2.75)
<

/D gy P Oiny (d2) = / e (2)72(d)

D(R*;E)

DO |

From Triangle Inequality and (B.2.75) it follows that

(2)7" 0 poy (da) — (2)7* © ppy (dz)

ETo ETo

/Z;(RJr;E) o1y ()7 (de) —/ by ()7 (de)

D(R+;E)

(B.2.76)
<

/ (6my — db,) (2)72(dx)
D(R+:E)

L / (6r, — bny) (2)pin, ()| + ¢, Vp € N.
D(R+E)

Now, (B.2.67) follows by (B.2.72), letting p 1 oo in (B.2.76) and then letting
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€l 0.

Step 2: We show (B.2.67) for each f € wme[lI™(D)] U {1} and Ty =
{t1,....,ta} € Po(R"). This step follows by Step 1, the denseness of S! in R*
and Lemma B.68 (b) (with T = S!).

Step 3: Verify v opyl = y*opg, for each Ty € P,(RT) in (a). For eachi =
1,2, we let (D(RY; E), @, ") be the completion of (D(R"; E), o[ # (E)|,~")
and find by Lemma B.62 (with p = 4" and v = v7) that v’ o py! is a Borel

extension of 7' o pyl. It follows that

(@t opg(dn) = [ f@)? o pgl(da) (B.2.77)
ETo ETo

for all f € me[lT™(D)] U {1} by Step 2 and Fact B.54 (with d = R(Ty), u =
fy"op,}é and v, = yiopr__r(l)). Then, v! op,}é =12 opr__r(l) by Lemma A.35 (a) (with
d = X(Ty)) and Fact B.22 (a) (with £ = ET0 and D = mc[[IT0(D)] U {1}),

which of course implies 7' o pp! =% o pl.
Step 4: Verify v' o p,}é =120 pil) for each Ty € Po(R7T) in (b). When
Ty € P(S), v o prt = 7' o pgl by Step 2 and Lemma B.59 (b) (with
d = N(Ty)) and so (B.2.67) holds for all f € mc[[IT°(Cy(E;R))]. For general
Ty € Zy(R"), the key equality (B.2.67) holds for all f € me¢[lI™(Cy(E;R))]
by (5.1.3) (with D = C,(E;R) and d = R(Ty)), the denseness of S in R*
and Lemma B.68 (b) (with T = S). Cy(E;R) strongly separates points on
Proposition A.25 (a, c¢). Then, one follows the argument of Step 3 (with
D = Cy(E;R)) to show 7! o p,}(l) =~20 p,}é O

Lemma B.70. Let E be a topological space, (Ey, Op(Ey)) be a Tychonoff
subspace of E, yo € Sy C Dy = D(R*; Ey, Og(Ey)), % = B(E)*R®" and X be
a mapping from (Q, %, P) to ER". Then, the following statements are true:

(a) If P(X = Z) =1 for some Z € M(Q2,.%#;Dy), then X is an E-valued

cadlag process.

(b) If X is an E-valued process, P(X € Sy) = 1 and Sy satisfies B(Dy)|s, =
U|s,, then

Y = var (X;Q,X71(S0),90) € M (Q, .75, Opy(So))  (B.2.78)
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and P(X =Y € Sp) = 1.

Proof. (a) follows by Proposition A.68 (b) (with £ = (Ey, Og(Fy))) and
Lemma B.31 (a) (with £ = FR" and S = D).

(b) follows by Lemma B.31 (b, ¢) (with (E, S, %"') = (ER", Sy, Bp,(S0))).

O

Proposition B.71. Let E be a topological space, (2, .F,{%}+>0,P) be a stochas-
tic basis, k € N, £ € M(Q, F; MT(E)) and (0, #,P; X) be an M™*(E)-valued

process. In addition, suppose either of the following hypotheses is true:
(i) f e Cy(E;RF).
(i) E is a perfectly normal?® (especially metrizable or Polish) space and

f € My(E;RY).

Then, f*o& € M(Q,.Z;RF) and w(f*) o X is an R*-valued process. If, in
addition, X is a 9,-adapted, measurable or 4,-progressive process, then w(f*)o

X also has the corresponding measurability.

Proof. Under the hypothesis (i), f* € Cy(MT(FE); R*) by the definition of
weak topology and Fact 2.4 (b). Under the hypothesis (i), f* € My(M™*(E); R¥)
by Lemma A.47 and Fact 2.4 (b). Now, the result follows by Fact B.32 (a)
(with £ = MT(F), S=R" and f = f*). O

B.3 Auxiliary results about replication

Lemma B.72. Let E be a topological space, (Ey, F; E,]?) be base over E and
d,k € N. If f € C(E%RF) has a replica }‘A', then the following statements are

true:

(@) | fllse = If1malloc < [1Flloc-
(b) f*=F* and f~=f~.

25The notion of perfectly normal space was mentioned in §A.47.
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Proof. (a) follows by the fact f[gs = 7l pd, the denseness of Ej in E and the
continuities of f and f.

(b) follows by the fact fr= fA+| pd, the fact =7 | g¢ and the continuities
of f* and f~. O

Lemma B.73. Let E be a topological space, (Ey, F; E, .7?) be base over F,
d € N and {ji, fnen C MT(EY, B(E)®Y). Then, (5.2.30) implies

v (Ed\K> <liminfp, (E\K), VK € # (E§, 0s(Ey)").  (B3.1)
Proof. We have that
K € #(E% c €(EY) c #(E?) (B.3.2)
by Corollary 3.15. It then follows that?
v (Ed\K) < liminf i, (Ed\K) = lim inf 1, (E{\K) (B.3.3)
by (5.2.30), (B.3.2), Theorem 2.17 (a, b) (with E = F%, F = K, u, = 7, and
u = v) and Proposition 5.15 (a). O

Lemma B.74. Let F be a topological space, D C C(E;R) separate points
on E, d € N, I be a countable index set and T'; C M (E, B(E)*?) be m-
tight for each i € 1. Then, there exists a base (Ey, F; E, .7?) over E such that
Ey € Z™(E) and T; is tight in (EJ, Op(Ey)?) for all i € 1. In particular, F
can be taken within D U {1} when D C Cy(E;R).

Proof. Without loss of generality, we let I = N. By the m-tightness of each
[y, there exist {K,;}pien C H™(EY) satisfying

sup u(ENK,;) >1—277 Vp,i € N. (B.3.4)

el

E is a Hausdorff space by Proposition A.17 (e) (with A = F).

{Kpij = p;(K,y:):1<j<dpieN}CH™E)CBE) (B.3.5)

267, denotes the replica measure of y,, which was introduced in §5.2.
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by Proposition A.2 (c¢) and Lemma 3.55 (b) (with A = K,,;). So,

Ey = |J | Kpis € #(E). (B.3.6)

i€N peN j=1

We have by Corollary A.13 (a) and (B.3.4) that

d
[ %pis € # (ES, Op(Eo)"), VpieN (B.3.7)

j=1
and
d
WEg) > 1 (H Kp,z',j) > p(Kp;) =2 1=2°, VueTlypieN.  (B38)
j=1

thus proving the tightness of each I'; in (EY, Op(Ey)?). Fy is a D-baseable
subset of E by (B.3.6) and Proposition 3.58 (b, e) (with A = Ej). Now, the
result follows by Lemma 3.39 (a, ¢) (with Dy = ©@). O

Lemma B.75. Let E be a topological space, (Ey, F; E, .7?) be base over F,
(Q, 7 ,P; X) be an E-valued process, (Q, F,P;Y) be an E-valued process and
T C R. If X satisfies (6.1.9), and if

P(@foxt:(g)ﬁoyt) 2P<®.7—'0Xt e @ﬁ(ﬁ)), VieT,

(B.3.9)
then X and 'Y satisfy (6.2.9).
Proof. Tt follows by (B.3.9), (3.1.1) and (3.1.3) that
1 - P (Xt € Eo)
:P(®]?o)/t:®}"oXt6®f(§),Xt€EO) (B.3.10)
-1
gIP(Yt: (@f) oQ)FoX, =X, €E0> , VteT.
]

Fact B.76. Let E be a topological space, (Eqy, F; E, .7?) be a base over E and
{(Q, Z P X9 }ier be E-valued processes satisfying T-PSMTC in Ey. Then,
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the following statements are true for each To € Py(T):
(a) { X% }ier is sequentially m-tight in Ej° and P'(X%y, € E°) = 1.
(b) {p" = be(P' o X 1) bieny, exists for some Ix, € P(T).

Proof. Let I' = {P'o X3!}y and A = ET°. Then, (a) follows by Lemma B.61
(b) (with I = Ty, S; = F and A; = Ey) and Fact B.29 (with £ = ET° and
U = B(F)®T0). (b) follows by Lemma 3.3 (e) (with A = Ej) and Proposition
5.3 (with I =Ty and S; = E). O

Lemma B.77. Let E be a topological space, (Ey, F; E,]?) be a base over F,
T C R*, (Q,F,P; X) be E-valued process and (2, F,P;Y) be an E-valued

process. Then, the following statements are true:

(a) If
nf P (f oX,=fo Yt) _1, (B.3.11)
then
P (f o Xp, = fo YTO) =1, Vf € ca [II™(F)] , Ty € Z(T)
(B.3.12)
and

E[f o Xp,] =E [fo YTO] L Vf € ca [II™(F)], Ty € Z,(T). (B.3.13)

Moreover, (6.2.9) implies (B.3.11).

(b) If (B.3.11) holds (especially (6.2.9) holds) and Y is cadlag, then X is
(T, F)-cadlag.

(¢c) If T = R*Y, (B.3.13) holds (especially (B.3.11) or (6.2.9) holds) and

X 1is stationary, then Y is also stationary.

(d) If (B.3.13) holds (especially (B.3.11) or (6.2.9) holds), T is conull, X

15 stationary and Y is cadlag, then Y is also stationary.

(e) If A € PB°(E) (especially A € #,(F)) satisfies A C Ey and (6.2.29)
holds, then FX = .FY . If, in addition, Y is stationary, then X is also

stationary.
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(f) If (6.2.9) holds, and if f € My(ET;R) and Ty € P(T) satisfy f €
M,(ET0;R) (especially if ETo € $5(E™)), then

P(foXr,=foYr,) =1 (B.3.14)

and
E[f o Xy, =E[foYr,]. (B.3.15)

Proof. (a) (B.3.11) implies (B.3.12) by properties of uniform convergence.
(B.3.13) is immediate by (B.3.12). Moreover, (6.2.9) implies (B.3.11) by
(3.1.1).

(b) {w(f) oY} ter are all cadlag processes by Fact B.34 (a) (with E = E,
S =R and X =Y). Then, (b) follows by (a).

(c) Fixing Ty € Zo(R ), one finds by (a) (with T = R™) and the station-
arity of X that

E [fo Y, — fo YTO+C] —E[foXr, — foXnyid =0 (B.3.16)

for all ¢ € (0,00). Then, (c) follows by Corollary 3.11 (a) (with d = R(T))
and A = E9).

(d) Fixing Ty € Z,(R*), one finds by (a) and the stationarity of X that
(B.3.16) holds for all ¢ in the conull set

St, = [ {c€(0,00) i t+ceT}. (B.3.17)

teTo

Then, (d) follows by a similar argument to the proof of Proposition 6.49 (c).

(e) Any A € #,(F) satisfying A C Ej belongs to #°(FE) by Corollary 3.15
(b) (with d = 1). For each fixed ¢t € R", we let Q) = {w € 2 : X3(w) =
Y;(w) € A} and find by (6.2.29), the P-completeness of .%?" and Lemma 3.14
(a) (with d = 1) that Q\Q) € A4 (P) C Z,

X' (BN =X"YBnA)NQ

_ (B.3.18)
€ {Y;I(V) NQY. Ve %’(E)} . VB € B(E)

2"Completeness of measure space was specified in 2.1.2. Completeness of filtration was
specified in §2.5.
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and

YV, V)N =y (VNnA)nQ

. (B.3.19)
e{X,'(B)N :Be B(E)}, VV € B(E).

Thus, .#X = #" by their P-completeness. When Y is stationary, we fix
Ty € Z(R7') and find by Lemma 3.14 (d) (with d = ®(Ty)) and (6.2.29)
that

P (X1, € B) =P (Yp, € BN A™)

(B.3.20)
=P (YT()—I—C € BN ATO) = IP)(‘XT()+C S B)

for all B € Z(F)®T and ¢ € (0, 00), which gives the stationarity of X.
(f) follows by the definition of f and Proposition 4.6 (b) (with d = X(Tj)).
O

Lemma B.78. Let E be a topological space, (Ey, F; E,]?) be a base over F,
T C R*, Gp, = mc[IIT(F\{1})] for each Ty € P(T), {(Q", F™,P"; X™) }en
be E-valued processes satisfying (6.4.34), X" e vep(X™; Ey, F) for eachn € N,
(Q, .7, P;Y) be an E-valued process, (2, Z,P; X) be an E-valued process sat-
isfying (6.1.14) and X € tep(X; Eg, F). Then, the following statements are

true:

(a) {X"}nen is (T, F\{1})-FDC if and only if {X™}nen is (T, F\{1})-
FDC.

(b) If {X"}pen is (T, F\{1})-AS, then

lim E [fo Xn —fo X;W] =0 (B.3.21)

n—o0

for all f € Gr,, To € Po(T) and c (if any) in the set St, defined in
(B.3.17).

(c) (6.2.5) is equivalent to

Tim B [f()?;go)} ~E [f(YTO)] (B.3.22)

for all f € Gr, and Ty € Po(T).
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(d) If (B.3.12) holds (especially (6.2.9) holds), then (6.2.5) is equivalent to
(B.3.22) for all f € Gr, and Ty € Zy(T).

(e) (6.2.12) holds if and only if (B.3.22) holds for all f € Gr, and Ty €
P(T).

(f) (6.2.2) holds for all f € Gr, and Ty € Po(T) if and only if

Xr PO % usn T o0. (B.3.23)

(g9) (6.2.1) implies (B.3.23).

In particular, the above conclusions are when if {X"},en (resp. X ) satisfies
the stronger condition® (6.5.7) (resp. (6.1.9)) than (6.4.34) (resp. (6.1.14)).

Proof. (a) - (c) follow by Fact B.35 (b) and Proposition 6.8 (a).
(d) follows by Proposition 6.8 (a) (with X = X™) and Lemma B.77 (a).
(e) follows by (3.1.16) and Corollary 3.11 (a) (with (d, A) = (X(Ty), E%)).
(f) follows by Proposition 6.8 (a) and (d, €) (with ¥ = X).
(g) follows by F C Cy(E;R), Fact 6.19 and (f). O

Lemma B.79. Let E be a topological space, {(Q', ", P X")}ier be E-valued
processes, (Fo, F; E,]?) be base over E and X' € vep. (X% By, F) for each
i€ L. If (6.4.7) holds for some conull T C RT, and if {X'}ier is (T, F\{1})-
FDC, then {X'}icr has at most one weak limit point on D(R*; E)2.

Proof. Suppose Xin = Y7 asn 1 0o on D(R*; E) for each j = 1,2. Without
loss of generality, we suppose Y! and Y? are both defined on (Q,.%,P). It
follows by Proposition 6.49 (a) (with n =4;, and Y = Y7) and Lemma B.78
(a, e) (with n = 4;,,) that

E [fo Y%O] = lim E"*n [fo )A(%O”]

n—oo

e o (B.3.24)
— lim Ei2n [foXT(’)]:E[onTO]

n—oo

28We compared these conditions in Fact 6.9 and Fact 6.52.

29Cadlag replicas are D(R*; E)-valued random variables. Weak limit point of random
variables was interpreted in §2.4.
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for all f € mc[II™(F\{1})] and Ty € Z[T\(J(Y') U J(Y?))]. T\(J(Y') U
J(Y?)) is conull by Note 6.50. It then follows that

E [fo y;o] —F [fo ygo] Vf € me [I™(F\{1})] . To € Zo(R*) (B.3.25)

by the continuity of f, the cadlag property of Y7 and the Dominated Conver-

gence Theorem. It follows that
Po (Yg,) ' =Po(Yg,) ", VT, € Zy(RY) (B.3.26)

by (B.3.25) and Corollary 3.11 (a) (with d = R(Ty) and A = Ed). Now,
the result follows by (B.3.26), Lemma 3.3 (¢) and Proposition A.72 (b) (with
E = E). O

Lemma B.80. Let E be a topological space, (2, F,P; X) be an E-valued mea-
surable process, (Eo, F: E, F) be a base over E, T € (0, 00) and (Q, F,PT; XT) =

tapp(X). Then, the following statements are true:

(a) If (6.1.14) or (6.1.9) holds for some conull T C R*, then X7 satisfies

: T T (7)) —
inf P (®J—"0Xt e ®]—"(E)) —1 (B.3.27)
or
inf P (X! € Ey) = 1. B.3.28
Sl P (X0 € ) (B.3.26)
respectively.

3.1 olds for Sg C , then
(b) If (6.3.15) holds for Sy C ER", th

p7 (XT €Sy C E(f”) _ 1 (B.3.29)

(¢) If X € vep,,(X; Eo, F), then XT = vap,(X) € vep, (X7 Ey. F).

(d) If X € vep.(X; Ey, F), then X7 = vap,(X) € vep (XT; Ey, F).
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Proof. (a) One finds by the conullity of T that

s (@7 < @E)

1 A (B.3.30)
> — P FolX, € F(E))dr=1
T ™ (7X@ F(E)
and
1
inf P* (X € Ey) > —/ P(X, € Ey)dr = 1. (B.3.31)
teR* [t,T+t)NT

(b) follows by the fact that (X7)7!(Sp) D RT x X (Sp).
(c) follows by Proposition 7.20 (with X = X), (6.1.1) and the fact that

I ~ o
?/0 P(QFoXow = QF oK) dr
2%/OTIP(®}"OXTHE®]?(E)> dr, V¥t € R™.

(d) follows by (c), Fact 6.24 and Lemma B.40 (b) (with X = X). O

(B.3.32)

Lemma B.81. Let E be a topological space, (Ey,F; E, .7?) be a base over
E, T C R, {(Q", 7" P"; X")},en be E-valued processes satisfying (6.4.34)
(especially (6.5.7)), Xn e tep(X™; Eo, F) for each n € N and (Q, %, P;Y) be
an E-valued process. Then, (6.2.12) implies w(@ F) oY = flp({w(Q F) o
X"} en)-

Proof. We prove the result with (6.4.34) which is weaker than (6.5.7) by Fact
6.52 (with I = N). We define Z = Q FoY, Z" = ®F o X" and (" =
Q@ F o X" for each n € N. One finds that

inf P('=2") =1 (B.3.33)

teT neN

by Proposition 6.8 (a). We fix Ty € Z(T) and put d = X(Ty). As men-
tioned in Note 6.5, {)?}neN, {C"}nen, {Z"}nen, Y and Z all have Borel finite-

dimensional distributions, so (6.2.12) implies
X# = Y, as k1 oo on R% (B.3.34)
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One finds that
v = (®f> op, €C [Ed; (R“)d] (B.3.35)

teTo

by (3.1.3) and Fact 2.4 (a, b). Hence, it follows by (B.3.35), (B.3.34) and
Continuous Mapping Theorem (Theorem B.25 (a)) that

ZE =ypo X’{io — po Yy, = Zy, as k 1 oo on (R®)<. (B.3.36)

(R>*)? and P((R>)?) are Polish spaces by Proposition A.11 (f) and Theorem
A.44 (b) (with E = (R*)9). Now, the result follows by (B.3.36), (B.3.33) and
Fact B.36 (with £ = R>® and X' = ("). O

B.4 Auxiliary results for companion papers

Fact B.82. Let E be a topological space, L be a linear operator on Cy(E;R),
(Eo, F; E. F) be a base over E for £, i € {0,1} and i € MT(E) satisfy
wW(E\Ey) = 0. Then, the following statements are true:

-~

(a) W(Lf) = WL for each | € D(L)™.
(b) If Ey € %(E), then w(Lf) = a(Lf)* for all f € D(L).

Proof. (a) follows by Proposition 4.25 and Proposition 5.15 (a, e) (with d = 1).
(b) follows by Proposition 4.6 (a, b) (with d = k = 1) and Proposition 5.15
(a, d) (with d =1). O

Fact B.83. Let E be a topological space, L be a linear operator on Cy(E;R),
(Eo, F;E.F) be a base over E with Ey € %%(E) and F C D(L), and the
operator L be defined by Lf = Lf for each f € D (L) Nca(F). Then, L is a
linear operator on My(E:R).

Proof. F C D(L) implies D(L£) Nca(F) # @. f’s replica f exists and Lf €
My(E;R) for all f € D(L)Nca(F) by Proposition 4.6 (a, b, f) (withd = k = 1).

30The notions of base for £ and the replica operators Eo and 21 of £ were introduced in
§4.2.
31Recall that i denotes the replica of p.

329 (L;) denotes the domain of operator L;.
33L f was defined in Notation 4.1 and Notation 4.5.
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Then, the result follows by the linearity of £ and Proposition 4.6 (d) (with
d=k=1). O

Lemma B.84. Let E be a topological space, L be a linear operator on Cy(E; R),
(Eo, F; E\]?) be a base over E, (Q, F#,P; X) be an E-valued measurable pro-
cess, (2, F,P;Y) be an E-valued measurable process, T C Rt be conull and

i €{0,1}. Then, the following statements are true:

(a) If (B.5.11) (especially (6.2.9)) holds and (Eo, F; E, F) is a base for L,
then

E[foXigo Xr,] — E | foYijo ¥,

:EK/S EfoXudu>goXTO] —EK/S [,Aionudu>§oYT01 :(;

(B.4.1
foralls <t in'T, f € D(L;)*, g € ca[ll™(F)] and Ty € P,(T).

(b) If (6.2.9) holds, Ey € %5(E) and F C D(L)*, then

E[f 0 Xigo Xn,| ~E[foYigoVa,]

(/tﬁf oXudu> gOXT0:| —E |:</t£_fo Yudu) jq\o YT0:|
’ ’ (B4.2)
foralls <tin'T, f € ca(F)ND(L), g € ca[lI™(F)] and Ty € Py(T).

=K

Remark B.85. One always has £f € Co(E;R) and L;f € Cy(E;R). If Ey €
%°(E), then Lf € My(E;R) by Fact B.83. Hence, the integrals fot LfoX,du
and fot L;f o Yydu in (B.4.1) and fot[,_f o Y,du in (B.4.2) are well-defined for
measurable processes X and Y by Proposition B.33 (d).

Proof of Lemma B.84. We fix t,u € T, g € ca[ll™(F)] and Ty € Z,(T).
Under the hypothesis of (a), we have

E[f o X.g0 Xn,] — E [fo ytgoyTo]
T (B.4.3)
—E[Lf o Xugo X, — E [LfoyugjoyTo] —0

34The operators Ly and £; were defined in Notation 4.11.

#5As mentioned in the proof of Fact B.83, F C D(L) ensures D(L£) N ca(F) # @ and 7,
Lf and Lf are well-defined for each f € ca(F) N D(L).
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for all f € ®(L;) by Proposition 4.25 and Lemma B.77 (a). Under the hy-
pothesis of (b), we have

E[f o Xigo Xn,] —E[[oYijoYn,|

(B.4.4)
:E[‘CfoXugoXTg)] —-E [*C_fo u/g\oYTo] =0

for all f € ca(F)ND(L) by Lemma B.77 (a, f). Now, the result follows by
Fubini’s Theorem and the conullity of T. O

Lemma B.86. Let E be a topological space, L be a linear operator on Cy(E; R),
(EO,}";E\,]?) be a base over E for L, i € {0,1}, T C R* and (,.7,P; X)
be an E-valued measurable process satisfying (6.1.14). Then, the following

statements are true:

(a) If T is conull, then there exists an X € vep,, (X; Eo, F)* satisfying®”

E l(foXt—foXs—/tﬁfoXudu)goXTO]
s (B.4.5)

t
=E KfoXt—fOXs—/ CifOXudU>§OXTo]
foralls <t in'T, f €D(L;), g€ ca[ll™(F)] and Ty € P,(T).
(b) If X is (R*,F)-cudlug and T is dense, then there exists an X =

vep (X Eo, F) satisfying

inf P (@]—"oXt - ®ﬁo)?t) —1 (B.4.6)

teR*

and (B.4.5) for all s < t in R, f € D(L;), g € ca[ll™(F)] and
Ty € Z5(RT).

In particular, if X satisfies (6.1.9) instead of (6.1.14), then the conclusions
above are true and (6.1.10) holds.

36vep,, (X; Eo, F) and vep (X; Eo, F) were introduced in Notation 6.3 and stand for all

equivalence classes of measurable and cadlag replicas of X with respect to (Ey, F; E\,]? )
respectively.

37]5 EAion X,du in (B.4.5) is well-defined for Xe€ vep,, (X; Eo, F) as explained in Remark
B.85. It is well-defined for X € vep (X; Eo, F) by Fact 6.24.
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Proof. (a) follows by Proposition 6.6 (b), Proposition 6.8 (a) and Lemma B.84
(a) (with Y = X).
(b) There exists an X = vep.(X; Ey, F) satisfying (B.4.6) by Proposition
6.28 (a). Then, (b) follows Lemma B.84 (a) (with T = R* and Y = X).
Moreover, if (6.1.9) holds, then (6.1.14) holds by Fact 6.9 and (6.1.10) holds
by Proposition 6.7 (a). O

Lemma B.87. Let E be a topological space, L be a linear operator on Cy(E; R),
(Eo, F; E, .7?) be a base over E with Ey € #°(E) and F C ©(L), T C R* be
conull and (§2,.7,P; X) be an E-valued measurable process satisfying (6.1.9).

Then, the following statements are true:

(a) There exists an X € vep, (X; Eo, F) satisfying (6.1.10) and®

E [(foXt—foXs—/tﬁfOXudU>gOXTo]
. (B.4.7)

t
:E{(foXt—foXs—/E_foXudu>fq‘oXT01
foralls <tin'T, f € ca(F)ND(L), g € ca[lI™(F)] and Ty € Py(T).

(b) If X is (R, F)-cudlug, then there exists an X = vep,(X; Eo, F) satisfy-
ing (6.1.10), (B.4.6) and (B.4.7) for all s < t inR", f € ca(F)ND(L),
g € ca[IllI™(F)] and Ty € ZH(RT).

Proof. (a) follows by Proposition 6.6 (b), Proposition 6.7 (a) and Lemma B.84
(b) (with Y = X).

(b) The conull set T is certainly dense in R™. Then, there exists an
X = vep, (X Ey, F) satisfying (B.4.6) and (6.1.10) by Fact 6.9, Proposition
6.28 (a) and Proposition 6.7 (a). Fixing f € ca(F) ND(L), we have

E[f o X9 0 Xn,] = E [fo )?tgo)?To] (B.4.8)

for all t € RT, g € ca[ll™*(F)] and Ty € Z(R") by (B.4.6) and Lemma B.77

38f0t£_fo X, du in (B.4.7) is well-defined for X € vep,,(X; Eo, F) as explained in Remark
B.85. It is well-defined for X € vep.(X; Eo, F) by Fact 6.24.

321



APPENDIX B. MISCELLANEOUS 322

(a) (with T=R* and Y = X). We have

E [(/tﬁfoXudu> goXTO} =E l(/tﬁ_fo)?udu> go )?T0:| (B.4.9)

for all s < ¢t in R, g € ca[lI™(F)] and Ty € ZH(R") by Lemma B.84 (b)
(with YV = X ), the cadlag properties of X , the continuity of g, the absolute
continuity of Lebesgue integral, the boundedness of £f and g, the denseness

of T in R and Dominated Convergence Theorem. O

Fact B.88. Let E be a topological space, (Ey,F; E,]?) be a base over FE,
pu € P(E) be supported on Eq, {(2",.F™,P"; X")},en be E-valued processes
satisfying

inf P (@fo X e (X)ﬁ(E)) ~1 (B.4.10)

neN

and X" € vep(X™; Eo, F) for each n € N. If lim, o E" [f o X{| = f*(u) for
all f € me(F\{1}), then Po (X2)™* = 7 as n 1 0o in P(E). In particular,
this 1s true when

inf P" (Xg' € Eo) = 1. (B.4.11)
ne

Proof. (B.4.11) implies (B.4.10) by Fact 6.52 (with T = {0}). It follows by
the fact u(Ey) = 1, Proposition 6.8 (a) (with X = X™ and T = {0}) and
Proposition 5.15 (a, b, €) (with d = 1) that z € P(E) and

lim E" [fo )?g] — P(m), Vf € me(F\{1}). (B.4.12)

n— oo

Now, the result follows by Corollary 3.11 (a) (with d = 1 and A = E). O

Lemma B.89. Let E be a topological space, (Ey, F; E,]?) be a base over F,
deN, X € My(Q, Z;R)® and Y € M(Q, .F,EY). IfE[XfoY] =0 for all
f € me[l4(F)], then E[X|Y] =0.

Proof. We fix h € My(E%;R) and ¢ > 0. E[Xfo Y] =0 for all fe ag[Hd(]?)]
by linearity of expectation. Eis a compact Polish space by Lemma 3.9 (c), so

PoY ~! is automatically a regular Borel measure. ag[II%(F)] is uniformly dense
in Cb(Ed; R) by Corollary 3.10. Then, there exists a ]?h,e € ag[Hd(]?)] and a

39Recall that X € My(Q2,.%; R) means X is a bounded R-valued random variable defined
on probability space (Q, %, P).
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K, € 2 (EY) such that fulr,. = bli, ., [[frclloo < [|B]lec and B(Y € Kj) >
1 — € by Lusin’s Theorem ([Dudley, 2002, Theorem 7.5.2]), Tietz Extension
Theorem ([Munkres, 2000, Theorem 35.1 (b)]) and the denseness of ag[TI%(F)]
in C’b(Ed; R). Using Jensen’s Inequality, we have that

IE[XhoY]| <E [Hym,e} ‘X(h o YH < 2Bl oI X e, (B.4.13)

Letting € | 0, we have E[XhoY] = 0 by and the boundedness of h and X.
Now, the result follows by [Dudley, 2002, Theorem 4.2.8]. O

Lemma B.90. Let E be a topological space, (Fq, F; E, .7?) be a base over E
and X, Y and Z be E-valued, E-valued and R-valued processes defined on
the same probability space (Q, F,P), respectively. In addition, suppose that
Zy — Zs € Myp(Q, F;R) for all s < t in RY. Then, the following statements

are true:

o~

(a) If Z is F) -adapted and E[(Z; — Z,)f o Yp,] = 0 for all t > s in RT,
fe mc[[I™(F)] and Ty € Po([0,s]), then Z is an FY -martingale.

(b) If Z is F -adapted, E[(Z; — Z,)f o Xp,] = 0 for all t > s in RT,
e me[IIT(F)] and Ty € Z([0,s]), and

inf P(X, € A) =1 (B.4.14)

teR+
for some A € $°(E) with A C FEy, then Z is an F;X -martingale.

Proof. (a) Fixing t > s in R™, f € mc[IIT(F)] and Ty € ([0, s]), we
have E[Z; — Zs|Yr,] = 0 by Lemma B.89 (with X = Z, — Z, Y = Y, and
d = N(Ty)). Letting Ty € Py([0, s]) be arbitrary, we have E[Z; — Z,|.ZY]| = 0.

(b) There exists an X € tep(X; Ey, F) satisfying (6.3.18) by Proposition
6.6 (a) and Proposition 6.7 (a) (with T = R™). It follows by (6.3.18), (B.4.14),
the fact A C Ey and Lemma B.77 (a, e) (with Y = X) that .#X = X and
E[(Z, — Z)f o X1,] = B[(Z — Z,)f o Xg,] = 0 for all t > s in RT, f €
me[[IT0(F)] and Ty € Z(]0,s]). Now, (b) follows by (a) (with Y = X). O

Lemma B.91. Let (Ey, F; E,]?) be a base over E, (Q, F ,{%}i>0,P) be a
stochastic basis and (0, %, P; X) be an E-valued, 9;-adapted, measurable pro-

cess. Then, the following statements are true:
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(a) If (6.1.14) holds with T = R, then there exists an X = vep, (X; Eo, F)
that is 9,-adapted and satisfies (B.4.6) and

E[fo X,[4)] =E [fo X’Ms] (B.4.15)

forall s <t in RT and f € ca(F). In particular, if (6.1.9) holds, then
(6.3.18) holds.

(b) If X satisfies (B.4.14) for some A € %%(F) with A C Ey, then then
there exists an X = vep,, (X Fo, F) that is 9;-adapted and satisfies
(B.4.6), (6.3.18), (B.4.15) and"

P (h o X, =hlso )?t) —1 (B.4.16)

for all s < t in RT, f € ca(F), h € My(E;R*) and k € N. In

particular,

(c) If X is (RY, F)-cadlug and satisfies (6.1.14) for some dense T C RT,
then there exists an X = vep,(X; Eo, F) that is 9,-adapted and satisfies
(B.4.6) and (B.4.15) for all s <t in R™ and f € ca(F). In particular,
if X satisfies (6.1.9), then (6.1.10) holds.

Proof. (a) There exists an X € tep,, (X; Ey, F) satisfying (B.4.6) by Proposi-
tion 6.6 (b) and Proposition 6.8 (a). For each fixed ¢t € R*, (B.4.6) implies
P(X,=2)=1with Z = (QF) 'oQFoX, ZeME,Y:E) by the fact
X, € M(Q,%,: E) and Lemma 3.3 (a, ¢). X, € M(Q,%,; E) by Lemma B.31 (a)
(withE =S =FE, F =%, % = B(E) and X = X,). Hence, X is %-adapted.
(B.4.15) follows by (B.4.6) and Lemma B.77 (a) (with Y = X, Ty = {t} and
T = R™). Now, (a) follows by Proposition 6.7 (a) (with T = R™).

(b) Let X be as in (a) and fix h € M,(E;R*). hl, € My(E;R*) by
Proposition 4.6 (b) (with f = hly4). It then follows by (B.4.14) and Lemma
B.77 (f) (with Y = X, f = hl4, Ty = {t} and T = R*) that

P(hoXt — hlaoX; :mo)@) — 1. (B.4.17)

40h1 4 denotes the function var(hla; E, A, 0).
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(c) One establishes X by Proposition 6.28 (a), then (c) follows by a similar
argument to (a). O

Lemma B.92. Let E be a topological space, (Eqy, F; E, .7?) be a base over E
and (Q, F,P; X) be an M™(E)-valued process satisfying (6.1.34). In addition,
suppose that w(f*) o X has a measurable modification ¢/ for all f € mc(F).
Then, there exists an M*(E)—valued FX -progressive process (0, F,P;Y) sat-
isfying Corollary 6.12 (a) - (d).

Proof. We set ¢, @, yo and ¥ as in Lemma 6.10, define Sy € B(R*>) as in
the proof of Corollary 6.12 and let Y = w(W o ¢) o X. Then, from the proof
of Corollary 6.12 we know that Y is an M*(E)-valued .ZX-adapted process
satisfying Corollary 6.12 (a) - (d). Then, w(p) oY is an Sy-valued process by
(6.1.20).

¢/ is a modification of w(fA'*) oY by Corollary 6.12 (a). mc(F) is a
countable collection as mentioned in the proof of Lemma 6.10, hence ( =
{®fcmer) ¢/ }i>0 is a measurable modification of w($) o Y by Fact B.32 (b)
(with i = f and X® = ¢/) and so

So € B(R*) N % (R*) by the fact Sy € ZA(R>), Note 6.5 and Proposi-
tion A.56 (b) (with £ = R*). Therefore, the ¢ above admits an Sy-valued
progressive modification ¢’ by (B.4.18) and Corollary 7.10 (with £ = R*>,
EO = Sp and X = (). Recall that $ satisfies (6.1.26). Thus, w(p ') o (' is an

—pI()}DI(JSSiV(J 111()diﬁ(:ati()n of Y by Fact B.32 (a) (with £ = (Sp, Or=(5)),
S=MHE), f=¢"1, X = and ¥ = .ZX). Now, we retake Y as @ (p!)o(’
and observe that: (1) Corollary 6.12 (a, b, d) are preservable among and still
hold, (2) If (6.1.35) holds, then the Sy above is P[P(E)] and so @w(3 1) o ¢’
will be a desired P(E)-valued process. O
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