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, Aostnacr ‘

Heavy oil displacement, using carbon dioxide, was
studied'in a high preSsure Scaledfmodel. Several
experiments were'repeated substitut%ng nitrogen fo% carhon
dioxide, in order to compare the two. It was found that the
basic mechanlsms pOStulated for carbon dioxide were absent
it

in the case of nltrogen Wthh gave 0il recoveries similar

to those obtained for-a waterflood.

In three experiments, there was an initial gas
saturation of about S%Zin"the model. However, it did not

affect the oillreCQvery by WAG(water-alternating—oasy~

displacement.’ ol . 7jr
. - o/ : B

ug sizes of 10, 20, and 40% HCPV

Carbon dlox1de,f
(hydrocarbon pore nolume) were emploved Oil recover}
»dropped to 35. 4% for the smallest slug, compared w1th 43.0%

for the 20% slug, and 43.7% for'the 40% slug. Results
‘showed that in the case of the 40% slug, much of the
v.1njected carbon dloxlde ‘was produced -and less eff1c1ent1y‘

“ut111zed.

Four experiments utilized two different types of model

eterogeneltles,_con51st1ng of a parallel high permeablllty

cha nel, and a hlgh permeablllty streak 01l recovery

' dropped in: both cases, the decrease belng 10 to 15 percent.



Two runs employing lower pressures showed that a

" reductionsin -the carbon dioxide pressure from 5.5 to< 2.5

MPa, resulted in an B%CQrop in recovery in the case of the

*20%_qar@on dioxide slug.
T . o
) ‘ R ' .
The carbon dioxide requirement was less than 100

-

sm®/sm® in all but the continuous’ injection runs. This is

far below the requirement for miscible carbon diexide

A -
displacement, as well as the air requirement in ih situ
A [}

combustion.
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1. Introduction

" In Alberta and Saskatchewan, large heavy o1l deposits
) 4

occur in formations that are unsuitable for thermél

recovery techniques, because they are too thin (less than

10m), heterogeneous, or otherwise marginal. The search for
- !

“a non-thermal recovery method for such formatiofs has “led

sy

to the immiscible carbon dioxide flooding process. This
process, when optimized for a given resemybir’and‘fluid
N St A . LI

system, can yield considerable incremental ojl.recovery

beyond that for a waterflood. .

) fhe iﬁmiscible.carbon dioxide flooding proc¢s§?.
involves injection of a relatively small slug gf'carbon
dioxide followed bX water. The process gives highegt oil
recovery when the carbon dioxide slug is broken into a’“
number of smal;er slugs, and alternated w}th water .slugs,
with a givéﬁ WAG (water—to-gas) ratio. In‘fhe previous
investigation®?, the optimal WAG ratio was found'to be 4:1.

The previous fesearch on the immisciblg carbon dioxide
flooding process';;s'Cﬁrried out by Rojas and Faroug Ali®?,

who developed the scaling criteria for this'ppocess; and

“who used a scaled model. The experimental runs were carried

out under a narrow range of conditions. The greater

emphasis was placed on the WAG ratio. . »



. /
The present study is devpted;ﬁﬁ a broader examination
of the carbon dioxide flooding process;,-in order to
determine the effects of!seVveral variables not studied in
the previous work on oil recovery, and the sénsitivity éf
the process to heterogeneity. In pérticular; a series of
runs were carried out usiﬁg'nitroéen in place of carbon
dioXide to determine if the mechanisms postulated for
carbon dioxide arehiﬁdeed valid. Other than ‘that, the
" effects of an initial gaé saturation,' slug size,
;heterogeneities, and operating pressure were invéstigated.
+The results of this-work fprther démonstrate the value of
the carbon dioxide flooding process, and point to
directions for future studies. These ;ill include :
operation at low pressures, use of fqam for mobility

.4
control, and use of other materials in place of carbon

dioxide. !



2. Literature Review -

. Work in the early 1960ﬁs“by Beeson and Ortloff’',
Holm?, and Welker and Dunlop’ identified the potential for
using‘carbon dioxide’as an enhanced_oil recovery agent. In
the laboratory’, using carbon,dioxide to displace 0il under
miscible conditions, oil recovery as h&gh"as 95 percent_sas
obtained. However, during those early years, there was
little interest in exploiting the heavy otl, and the cost
of carbon dioxide usually was greater than the price of
'cruae 013' Hencejnmost of the developmental work in the

past years was focussed on other miscible displagement

processes. ' ' ~ | S

There®” are many reservoirs, moStly those containing
o 5 -

viscous' 0il, which are not amenable to the miscible
~displacement processes because of unfavoprable crude oil

properties and reservoir depth The laboratory results of
-4

carbon dioxide displacing -heavy 0il’ under immiscible

oonditions &w Welker.and“Dunlop‘, and Dickerson and
'Crayﬁord“have been enlighting. Beeson anderthff"fouhd

thai the‘additional heavy oil recovery per unit of carbon %Qﬁj
‘dioxide,injected {on a mass basis) vas higher when‘ajslug e
ofgiarbon dioxide drlven by water was 1njected as a gas |

phase: rather than as a llqpld phase. Recent laboratory —

/ .
a

exper1ments" seem to conflrm these earller results. The .

field projects 1nvolv1ng 1mmrsc1ble-carbonwd1ox1de<floo¢s
_ Y . v a

y ) . .- . ] . o

S - . . L —



‘cohducted by the U.S. 0il Refining Co. in Arkansas in 1969°®
.and by:Champlin Petroleum Co. in the Wilmington Field in
Calfornia in 1983¢ are dramatic proof that immiscible
carbon dioxide flooding offers an opportunity to enhance

the production of viscous crudes.
£

Nitrogen,_much cheaper than carbon dioxide and natural
gas{and more readily ava%labie,‘is becoming"an increasihgly
é; ractive material for economically enhancing 0il
E covery. In the laboratory the light 6il and condensate
recovery has eXceeded 90 percent of the o1l in place when
high pressure nitrogen was used. Nothing has heeh published

on the use of nitrogen for heavy oil recovery.

2.1. Mechanisms of 0il_Displacement by CO, and N;

\

e 7

Y

2.1.1. Mechaniéms of Qil Displacement by CO.

. } 4 c -
Two types of displacements are involved~in carbon p
A

dioxide displaoing 0il:: miscible carbon dioxide floodg and
immiscible ca;bon dioxide floods. Holm and Josendal’x? have
given a comprehen51ve dlscu551on of the mechanlsm of 011
dlsplacement by carbon c10x1de in the miscible dlsplacement
process. In carbon d10x1de mlsc1ble dlsplgcement |
mlsc1b111ty develops w1th two types of mass transfer :
extractlon of hydrocarbon from the in- placé 0il to the

~

_dlsplacxng carbon dioxide, and_condensatlon of carbon



' .

dioxide in o the in-place oil. Misc’ible displ§::§ent takes

place only abqve a certain pressure. The pressure rangé for
tﬁis type of displacement is 7.5 MPa to 20.5 MPa. However,

the conditiéns_éxisting ih most heavy ©0il reservoirs, such

as reservoir depth and high‘miscibiiity pressure for héévy

oils, would make this process impractical.

)
?
¥l

For the émmiscible displacement process, there are

five types of forces which control the displacement of

heavy o1l by carbon dioxide, vr ._viscous,‘capillary,_sﬁ;

s

gravitational, diffusive, and inertial forces. In
~ ¢

unconsolidated sand reservoirs, laminar flow of carbon

dioxide is likely to occur at low<or moderate superficial

velocities. Therefore, sthe inf;uence‘of inertial forces is

AT

not significant. Also, in‘deéling' -ﬁ'highly viscous oil

.

displacement from unconsolidated sands, Flock and Peterst'® .

pointed out that the oil recovery is only a weak function

-

of’the capillary forcég;{Thus, the capillary forces may be

neglected, Therefore,.fhg“immiscible displacement of heavy

oil by ca boﬁ dioxide is mainly controlled'by viscous,

"'—":w‘ - /. - - " . .
- gravitational, and diffusive forces.
o Although, it is well known that gravitational
segregation occurs in a horizontal reservoir, it has been
-shoﬁn by Craig} Sanderlin, Moore, and Geffen'" that for-

"high mobility-ratios the volumetric sweepvefficfehcy is low

- T—— .

~and xafies‘veryflittle with the ratio of gravitational to



viscous forces. Recently, Rdjés and Faroug Ali'? found that
while molecular diffusion of carbon dioxide in oil was
high, it'wes not high enough to mobilize appreciable
amounts of oi} from uninvaded zones. So, it seems that the
viscous forces eompletely dominate carbon dioxide ra
injection. For immiscible c;rbon dioxide flooding, four -
mechanisms have been recentl documented‘by Rojas and
Faroug Ali'? which contribured to incréasedvaerfeldy'oil
recovery~from unconsolidated sands. They aré : viscosity
reduction, o1l expansion, intepfacial tension reduction
leading to the formation of water*in—oii emulsions, and

/

blowdown recovery. . ' 7

2.1.2. Mechanisms of.0i] ‘Displacement by N,

.For nitrogen floods, miscible displecement oan be
obtained byAdisplacing light e;ude at high pressure:eUpon‘
injection, pure high pressure nitrogen gas will become
suffiéieotly>enriched with light and intermediate |
hydrocarbons for m15c1b111ty to occur. In the laboratory’
recé/;;les as.hlgh as 90 percent were obta{ned,by the
nitrogen miscible displacement'process.‘Hoﬁeber;ooil
'recovery oy nrﬂrogen injection is a different-type of -
_process than that by carbon oioxide ihjection. fh~nit ogen
miscible diSplacement pure nitrogen is 1njected 1nto the
'reserv01r to strlp the reserv01r 011 of 1es llght ends{\ "f;,

»
3
K

As the l1ght hydrocarbons are absorbed, a. two phase S

’. 3

4



equilibriuT point 1s established between the reservoir oil
and hitroéén at a location near the injection well. The
liguid phase 1s composed initially of significant
guantities of light aﬁd heavy residual hydrocarbons,
whereas the gas phase 1is comprised!primarily of nitrogen
and light hydrocarbons. Because the gas phase.has a higher
mobility within the reservoir, }z.moves ahead of the liquid
phase té contact additional }esézvoirdoil. As nitrogen
injection ;ontinues, fhe liquia phase 1is contacted with
additional nitrogen with an-éccompanying decrease in the
concgntratioh of light hydrocé{bon; in the liquid phase

until ultimately the liquid phasé 1s reduced to the heavy

residual hydrocarbons.
( B

Usually, nitrogen will not develop miscibility with

crude oils except at very high pressures or with very high

_ 7 .
API gravity oils. However, even when nitrogen and reservoir

fluid are entirely immiscible, 'i.e. when no component
transfer between oil and gas phase is allowed, good

recovery efficiencies are still possible. .Slack and

Ehrlich?' indicated that at léssgfhan miscibility pressure,

: : . : . : . T
one would expect thar some of the *mechanisms reported for
NACH
1mm15c1ble ~carbon dioxide floodlng“

ﬂswelllng, v1scos1ty

reductlon, and extractlon of 1ntermed1a§es - would Stlll bg

P
.

operatlve. At still lower pressures, one would expect at

o .
‘1east a benefit from the immiscible dlsprgcement of oil by

A Y

A

‘gas. IR o \



Mobilization of watefflood residual oil by
simultaneous injection of water and nitrogen is.another
possibility in some;cases‘evén wﬁé%e nitrogen and oil are
immiscible and no swelling, viscosity reduction or
vaporization of oil occurs. ft has long been recognized
" that waterflood residual oil saturatiqn €an be reduced by

e .
the presence of a gas saturation. Slack and Ehrlich?®' found
that residual oil saturation reduction is strongly
dependent on three-phase teiative permeability
éharacteristics. In the laboratory?', residual oil

saturation reduction of up to 18 percent pore volume was

measured. s

2.2. Solubilijty of CO, in Reservoir Fluids and Fluids

Expansion

>

2.2.1. Solubility of CO, in 0il and 0il Expansion

Carbon dioxide is highly soluble in hydrocafbon oils.
In 1826, Beecher‘and Parkhu;st“~founditﬁat the solubilityi
of cérbon dioxide in crude oil was h%gher than ﬁhat of
, nétura%_ggs. For a particular crude oil of 30.2°API, a
| natural gas (82.5% CH,) was found to beﬂapprdximate;y four
timésfés soluble as air, but dnly;oﬁe-third as soluble.és~

: S . R
‘carbon dioxide on a molar basis. -



The eqlubility of carhen dioxide in crude oil is
governed hy the eaturation pressure, reservoir tempetature,
composition of the crude oil and contamination of gases. Up
to‘125 cubic meters of carben dioxide will dissolve in one"
c%bic meter of oil'®*, Miller and Jones'*‘ found that the
soluhi%ity of carbon dioxide gas increased with pressure
and dec?eased as the temperature and density of the oil

increased, with a sharp break in solubility at

approximately the condensation pressure of carbon dioxide. °

'Holm?.also found this sharp break in solubl}ity. The carbon
dioxide solubility_ihcreased sharply with ptessure up to
about 1600“pei (10.9 MPa) and then remained at a constant
value as pressure was ihcfeased above 1600 psi (10.9‘MPaL:
Holm explained that at‘thie point the crede—oiﬂ—richzliquid
phase, which increased in volume as carbon dqoxide'\ l

I R . AY ,
‘dissolved into oil, began to shrink due to the extraction

or retrograde vaporization of lighter hydrocarbons’into the -

J

carbon dioxide-rich gaseous phase. "' h .
The swelling of the oil accompanying dissolution of

‘carbon dxoxlde in. the crude depends on. the pressure,7
ra

"temperature, crude oil comp051t10n, and the mole fractzon
.of carbon d1ox1de in the oil. This swelllng effect is very
‘1mportant because the stock tank volume of res1dual o11
left in the reservo1r after flood1ng is 1nversely f

‘ 3

proportlonal to the swelllng factor, f}--~tne greatet-the

. swelllng, the smaller the ‘amount of stock tank 0il left 1n"

R -~

o
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’&@ number ofﬂresearchers3 12.1% have shown tﬁat the

i

"14 - ]7°API) at moderate pressures.(4 - 6 MPa) and

tgg?eratures (20 - 25°C) is of the order of 50 - 100 sm?
L g

-4 y .

per cubic metre of o0il, yielding a 10 to 20 percent

‘:' ) .

increase "in volyne. Rojas and Farouq Ali" obtained

solubflitig; of 86 ané 76 sm? carbon d10x1¢e per cubic
metre of o11 for Abgrfeldy oil samples at 5.5 MPa and
21 - 21.5° C,nWICQﬁthe correspondlng swelling factors of
1;17 and l.i4, fespectivel;; < ~J | |

]
r

. ) . A% “3 " Lo
2:2.2. Solubility of CO, in Brine and Brine -
Expansion - | ”

~ Carbon dioxidé also has a swelling effect on the water
or brine that is present in the reservoir during
disg;a;ement. Holm and Josendal’ indicated thaé,there is"
Sohéﬁéxpansiﬁn of water when carbon dioxide"ﬁﬁpinto

'solution (2 to 7 percent) and the water den51g;“decreases.
Consquently, when carbon ledee is injected, lthe densities
of the oil and,wate; become closer.to each other whiéh
bles$ehs fhe chancés-fbr gravity segregafion'of these fluids:
and xhe{resultant'ovefridiﬁg of the carbon dioxide-water

mixtures. =

:'//’
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The solubility of carbon dioxide in déxer depends on

salinity, témperature, and pressure. Several

researchers'’ '8 19

have given extensive data for the
'sdlubility of ;arbon dioxide in)water, e.g. the data of
Doddé et al'’ shows that in the-temperature range of

20 = 70°C and for pressures bel&w 100 atmospheres, the
soiubility of carbon dioxide in fresh ‘water is less than 6
percent by weight. Mungan?® indicated that themchange 1n
viscésity, denéity, and formation volume factor of water at
thg§e low solubiligiés can be shown to be less than one
percent, and ‘therefore these changes are not signﬁficant

and may be ignored.

2.3. Viscosity Reduction of 0il Due to CO,; Solution

i
The }afge feduction in visgosity of heavy oils
saturated Qith carbon dioxide is the main mechanism of the
immiscible carbon dioxide - flooding process. Vidcosity
reducfibns greater than 90 perFent can_be obtained by

saturating heavy oil with carbon dioxide at 5.5 MPég and

reservoir temperature® ??,
. ‘ 8

The viscosity 5{ oil saturated wiph carbon dioxideﬁis
_gove;nea by temperature, pteséure,'and the coh?entrétion of
dissolved carboﬁ dioxﬁde. Jacobs et al?’ measured the
viscosity of bitumen saturated with carbon dioxide. Their

results demonstrate a dramatic decrease -in viscosity of



bitumen as the saturation pressure 1s increased. Also ;t
was found that the effect of dissolved carbon dioxide gas
on viscosity is less sign{figant as temperature increases.
Dickerson and Crawford* also reported’ that a greater
percentage reduction'in viscosity occurs af a 1ower
operating temperature than at a higher temperéture.
éenerally spea?ing; a large percentage of the total
viscosity reduction by carbonation is obtained in the low

pressure'rangé (below 2 MPag) and at low operating

temperatures (below ]OO“C).

. Several researchers'® *°-?% have indicated that the
higher therinitial 0il viscosity the greater is. the
percentage reduction in viscosity upon carbonation of the
oil. Thus, viscosity reduction is greater and more
sighificant with medium and heavy oils and nét as large
with light oils. The recent work by Rojas.and Faroug Ali'?
confirmed the above result. They found that when two

Aberfeldy heavy oil samples were saturated by carbon

12

-dioxide the viscosity decreased éonsiderably‘froﬁ 1080 and

4900 mPa.s for the gas-free oil samples at 21 - 21.5°C to

47 and 82 mPa.s respectively when these two heavy oils were

saturated at the same temperature with subcritical carbon

dioxide at 5.5 MPa, which represents a 95.6 and a 98.3

percent reduction in viscosity, respectively.



13

Another factor that affects the viscbsity of heavy oil
- carbon dioxide mixtures is the time to achieve
equllibrium (meaning no change of viscosity with time)
between the two fluids. At times lower than the equilibrium
time, the viscosity of the mixture decreases with time.
Goss and Exall’? showéd an example of the viscosity
behaviour of a bitumen saﬁple exposed to a 6.8 MPag carbon
dioxide pressﬁre at 50°C. Equilibrium was achieved in 12.5 '
days and the bitumen viscosity decreased from 18000 mPa.s
to 8000 mPa.s during that period of time.

r

2.4. Diffusion of CO, int® Heavy 0il and Water

Diffusion is the process b;,which matter 1is
tfansported fromuone part of a system to another as a
result of random molecular motion?*. Diffusion helps carbon
dioxide to penetrate into heavy oil and may slightly reduce
viscous and gravitational instabilities. The pfocess of
diffusion.is different from that of solution because
~diffusion is not related to attractive forées as measured
by soiubility*’. Tﬁe effect df temperature on solution and
diffusion of gases into liquias is diffe:ent.‘Diffusion
increases with increasing temperatufe, while‘soldbilipy
‘decreases with temperaiure. ’ |

.,

In the literature?® 2 -Qény experiments have been

"performed at atmospheric pressure. Davies et al** found

' Py
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that hydrodynamic theories and absolute rate theories which
predict that the diffusivity is an inverse function of the
solvent viscosity did not fit their eXperimental data. The
diffusion coefficients reported by Davies et al" range
from 6.03 E-5 cm?/s to 0.728 E-5 cm?/s at 25°C and 0 MPag
for solvent viscosities ranging from 0.411 éPa.s to 26.5
mPa.s. Rajan and Goren?’ found diffusion coefficients lower
than 7.0 E-5 cm?/s at atmespheric pressure for hydfocarbon

0ils with viscosities greater than_SO mPa.s.

In 1973, McManamey and Woolen’® proposed the following
equatibn for the diffusion coefficient of carbon dioxide in
organic liguids at atmospheric pressure.

\

D= 1.41 x 10-'° y-° 87

where

o
n

diffusivity, cm?/s

:~
0o

dynamic viscosity, mPa.s

Dennoyelle and Bardon®' recently found.thaL the -

diffusivity of eqﬁbon dioxidé increases with increasing

‘pressure. At 15 MPa, diffusion coefficients. were fcund to

be more than five times higher than those calculated from-
Equatidn (1) for a 570 mPa.s vigcous oil. Rojas and Faroug

Ali'* also found high veiues'of carbon'dioxide diffusiyity

in Aberfeldy heavy 01ls. They found that molecular

.

!

dlffu51on coeff1c1ents for Samples 1 and 2 were 3. 59 E-5 .



and 2.56 E-5 cm?/s, respectively. These results are of the
same order of magnitude as the molecular diffusion
coefficient of carbon dioxide in heavy oils at high
pressure reported by Dennoyelle and Bardon’'. However,
Rojas and Faroug Ali'? concluded that although the o
diffusion of carbon dioxide in heavy ©0ils &t reservoir
éonditions is high, the amount of diffused carbon dioxidel
is not enough to produce a'large reduction |in oil viscoéity
because the mole fraction of carbon dioxide in Aberfeldy
0il samples obtained by diffusion represented.less than 20.
percent of that obtain%% by solution with mechanical

agitation under the same subcritical carbon dioxide

conditions.

Water 1s not as good a solvent as oil for carbon
dioxide. Mungan?® indicated that the solubility of carbon
dioxide in water at a,preséure of'150»atmo§pﬁeres and in
the tempefature“rangg of 40 - 70°C 1is apb}oximately 5
percent by weight.fAt these low solubilities, the change in
viscosity, density and forﬁaf&on volume. factor of rvater can
Vbe shown to be less than one percent and therefore %these
cpanges‘aré not significant at reservoir coqditions..

ﬁshever;'literatufe'data’f indicate that diffusion of .

' carbdn'dibxide'in water at 75°C is fastgr'thaﬁ‘difquibn of
carbon diéxide in oil if the oil viséosity is above-O}Sﬁ

‘LﬁPa;s; but still the m6lecular'dif%usionhcoéfficieﬁ@?gfLPv

carbon diqxidé in bdtg liquids‘isrof the same magnitﬁde?

-
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’

2.5. Solubility of 0ils in Compressed CO, and N,

The solubility of oil in compressed carbonAdioxide"or{
nitrogen fs an importani mechanism for miscible
displacement of 01l by carbon dioxide'or-nitrogen.pln 1959,
Prausnitz‘and Benson” reported data on the solubiligy of

-’iiquid hydrocarbons in compressed hydrogen, nitrogen, and
carbon dioxide. They found that af the same temperature and
total pressure, a liguid hydrocarbon is more soluble inf
nitrogen than in hydrogen and more soluble in carbon
dioxide than in nitrogen. Tney concluded that this result
is caused by rhe differences in-physical prooerties. Such
differences between hyorogen<(Tc = 33°K) and a typical

" liquid hydrocarbonb(Tc = 500°K) are certainly larger than

' those betneen the physieal properties  of nitrogen (Tc =
526°K) or carbon dioxide (Tc = 304°K) and a typical'%iquid'

‘ ‘ @
hydrocarbon. The literature data’-®® indicated that
nitrogen preferentially extracts light hydrocarbon and
intermediates (C, - Cg) while carbon dioxide extracts the
mid-range i(C,; - Cao)rfraotions. The solvent power of carbon

"dioxide or nitrogen'increases with pressure: whicn.is_
associated with increased carbon dioxide7density or .
nltrogen den51ty For heavy 0115 with very small amounts of

. ga;pllne and gas-— 0il range hydrocarbons, v%;y hlgh pressure

‘is requ1red to compress carbon d10x1de or. n1trogen to a’

more dense 11qu1d and to promOte greater solublllty

s



2.6. 0il Property Changes Due to N,

Very -little information is avdilable on the
solubility, swelliﬁg,'and viscosity changes in
nitrogen*séturated heavy ¢il. In 195&, Jolley and
Hiidebrand" found that for a given gas at 1 atmosphere and
25°C, dissolving in a series of solvents, log x, (x, = moie
fraction of gas) decreased with the increasing solubility
parameter of the solvent; and for different gases‘in the
‘same'solvent, log x, increased linearly with increasing
Lennard - Jones force constant of the gas. Theif‘data shows
that the solubility of nitrogen in solvent is much lower
than that of carbon‘dioxiée, being. approximately 10 percent

of that of carbon dioxide.

Recently, Svrcek and Mehrotra’® repor;ed data for £he
solubilit§ bf'nitrégen in. bitumen. They found that the
volumetric solubility of nitrogen in bitumen isvonly 3.38
cm"/cmJ aﬁ 6.02 MPa and 33.9°C. Tﬁis could be attributed to
thelnqn—polar natdre of nitrogen, which yields a much lgwer
solubility of nitrogen in;bituTen cgmpared gith'cafbon/
dioxide. They élso'found'ﬁhat at each temperatqre level,
the solubility of‘nitfbgen incréaséa'élmostaliaea;fy with
%éressufé-td about fOur'to,fiQe’M?agq Beyona thislpresSufe,
v,thé cUFves éppéér“to §pproach ésymbtotic values..Althéugh
‘there was é ;gdﬁctibn in nitfogen s6lubilit¥ with .

H ) A

temperature, the change was quite small, i.e. the effect of
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temperature on the solubility 9f nitrogen is minimal.

No viscosity data on nitrogen saturated headvy oil is’
"available in the literature. In 1980, Jacohs et al??
measured the viscosity of nitrogen—saturated~Bitumen. They
found that the effect of dissolved nitrogen on bitumen

viscosity 1s very small. Later, Svrcek and Mehrotra’® also

o o

i

. reported tha£ nitrogen has a minimal effect on bitumen
viscosity and the reduction ih viscosity for
nitrogen-saturated bitumen with increasing p;essurebis_much
smaller than for the case of carbon dioxide. As mentioned
before;‘the larger reduction in viscosity’by‘saturating -
nitrogen or carbon-dioxide is obtained for the heavier
crudes with higher initial viscésities.»The effect of
dissoived nitrogeq on heavy oil viscosity, with lower

initial viscosity than that of bitumen, is negligible.

The swelling factor of heavy oil saturated by nitrog%ﬁ\

under ‘reservoir conditions ,is also negligible. Peterson?®*

.

~ indicated that swelling of oil with nitrogen varies from

near zero to two percent‘and'probébly would not play.a role

. 'in reservoir performance.
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'2.7. Interfacial Tension Reduqfion
\

have reported that the

Several researchers'? ?’

j re@uction in interfacialltensibn between displacing and
displaced phases by carbon dioxide 1s an effective recovery
mechanism because this reduction causes a decrease in
'capiilary pressure so that a significant reduction in the
residual oil saturation-may be achieved. In 1956, Moore and
Slobod®* discussed the role of capillaty forces and the oil
trapping mechanism. They co ”luded that the capillary
pressure difference between the two arms of the "doublet™
was the dominant factor in the trappéné mechanism, an? that
the efficiency of the trepping mechanism decreased as the
viscous to capillary force ratio increased. In other words,
the displacement efficiency would be expected to incfea;e

as interfacial tension decreases. ' .

Rosman and Zana®’ examined the relat10nsh1p between
1nterfac1al tension and oil recovery by carbon dioxide.
= They reported that the 1nterfac2al-ten51ons (0.1 - 0,03
mN/m) between carbon dioxide (dﬁsplacing phese in gaseous
state) and a mixture of carbon direxide and.crude oil
A(dlcplaced phase 1n llquld state) }n a carbon digxide flood
1s lower than that between water and oil" (24 8 mN/m) in a-
waterflood, and a reductlon of 34 - 39% in waterflood

residual oil saturation was achieved by low interfacial

tehsionvCafbon dioxide flooding at 15 - 16 MPa and 54.4°C.
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Recently, Rojas and Faroug Ali'?’ measured the
interfacial tension between Aberfeldy heavy oil and
carbonated brine with increasing carbonation pressure of
b;ine. They found that the interfacial tension reduces from
25 mN/m to 16 mN/m when the pressure increases from 0.1 MPa
to 5.5 MPa. They indicated that the posiﬁively charged
nitrogen compouﬁds resulting from the actibn of carbgnic
acid.on the nitrogen bases of Aberfeldy heavy oil may cause
formation bf surfactants which concentrate at the oil-water
" interface and producg khe reduction in interfacial tension,
This reduction in interfacial tension may lead to thep
in-situ formation of brine-in-o0il emulsions, which enhance
oil recovery by éarbon dioxide/brine iﬁjection.

;everal researchers have noticed the reduction in
interfacial tension between crude oil and water under
acidic conditions, Scott et al®’ reported that the
interfacia} tension test results shoy that_any change‘ih pH
from heutfgﬁ decr%a§es‘interfacial tension for the tested
crudes. Farouq Aﬁ?iet al+*e presented curves of.ihterfacial

' > ) . .
tension of Lléydhinstef crude ‘oils as a fQ?ct;onhbf pH ‘
~ showing feductions of integfacial Eens}bn at bofh low §;d
high pH values. ﬁféStqn and ﬁacfarlané‘* also'showéd that
the interfacial fension betweeh.Bfadford crude and wafer |

can be reduced from 28.8 to 18.1 mN/m by carbonation at 5.2

. MPag.
| >
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2.8. Permeability Changes Caused by Carbon Diox ide

§

2.8.1. Rock Dissolution and ﬁrecipitation by

Carbonic Acid

AN

The’aciaic effect of carbon dioxide on the rock matrix
hés been shown to increase injéctivity by direct .action on
the carbonate poftions of the rock’ and by a_stabilizing.r
action on clays in the rock*?. In 1959, Holm*’ reported a
study in which the permeability of a dolomite core
increased three fold after about nine pore volumes of
carbon dioxide slug.énd»carbonated water had been injected
through the core. It was concluded thaf in field
applications of carbon dioxide, the)increaée.in

permeability would occur primarily in the immediate

vicinity of injection well.
- - - - ~

Carbon dioxide dissolves in water to form carbonic

E-=

acid accordiné to the following reversible reactiopn :
A - = .
H;0 + €0, = H,CO,

(2)

Dolémitié rocks or Earbonaté~rbcks contaid‘mainiy
CaCo, ana MgCO;. The metal éarbbnates‘will;feaét §1£h"
'éarboanioxide in thé pfesence of water to fofm.watef
soluble biparbqnates} The étbichiémetrié equatiohs of the

reactions are as follows*? :

w1
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/

HZO + CQZ ‘F CaCO3

Ca(HC03)2 . -

H,O0 + CO, + MgCO, Mg (HCO; ),

The factors that affect the equilibrium in the above

~reactions are changes in the concentratidns o6f the ' \\

reactants and thf/prdducts, pressure, and temperature**.

w
The solubility of carbon dioxide in water and hence its
concentration increases with an inFrease in pressure*?, and

{

decreases with an increase in temperature*®.

The results of the laboratory study by Omole and
Osoba*’ showed that carbon dioxide would dissolve some of
the rock around an injection well in a field application,~
and dissolved carbonate was found to be precipitated along
the flow path as the pressure Qropped in the laboratory “'
experiments. It was concluded that the higher the injection
pressure, the mere pronounced would be such dissolution of
rock. It wasSralso found that the prec1p1tate reduced
permeab1l1ty The amount of carbonate precipitated was
dependent on the magnitude of the pressure drop. The larger
the pressureAdrop, the greater’vas the carbonate
precipitation and the reduction intpermeability;
f(In‘5952;~Breston and Macfarlane*' reported that in the
ekperiments for determining'the‘effectiVe permeabflity of -

‘the fresh sand samples to. carbonated water, when switching

Frnm hr1hp fn rarhnn:fnﬂ water fhnrn wae nA ciAni Fi~ant
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change in effective perméability. However, Graue and
Blevins** later reported that small channels of high
permeability produced by rock dissolution in a tertiary
ca;bon dioxide - waterflood pilot in the Sacroc unit caused
early breakthrough of carbon dioxide (7 days) in one of the
producers. Because of carbon dioxide éhanneling; thg

volumetric sweep efficiency was estimated to be as low as

33%.

2.8.2. Asphaltene Deposition by CO,

It is a well known fact that some acids when in

contact with crude oil may precipitate asphaltenes, thus

plugging the pore space*’. Strausz*® describes aspﬁaltenes

as high molecular weight materials which, on solvent -

N

fractiona(;on, appear as a dark coloured amerphousvsolids

ept‘in colloidal suspension in the bitumen by-

“the lower molecular weight polar'materialé. Asphaltene

précipitation occurs when the hydrocarbons and polar oil

- fraction lose their abi}ity to disperse colloidally Ehe

asphaltene .fraction. When carbon dioxide and light-oil mix

_at high]pressufe; multiple liguid phéSes may occlr in’

'mutual equilibrium. The heavy ends of a.light ol -

precipitate- Sut with the addition of carbon dioxide. !

Holmz 1ndlcated that phase behav10ur studles of carbon"

ledee and’ crudes conta1n1ng asphalt showed that an .
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’

.\asphalt rich phase was formed at high pressures and at

temperatures above 100 F, but there was no evidence of
asphalt precipitation in the experiments. Graue ang Zana*’
+also observed a dark solid precipitation at carbon.dioxide‘
concentrations of 44% molel or highef, in carbon
dioxiﬁe—light.oil s?stems. The solid preCipftation‘was
estimateg to be 2. - 5% volume of the original reservoir
oil. They conciuded that it is possiblé that such '
precipﬁ%atlon\jn the reservoir would cause a reduction in

,L\

rock permeablllpy However, some researcherss°'5‘

indicated
that the precipitation of solid phases in the carbon

dfbx1de 011 tran51t10n zohe mxght reduce carbon d10x1de
- Y

mobility below the level anticipated from normal viscosity
{0 ‘ ’ '

and relative permeability relations, which could increase
' !

recovery.

2.9. Laboratory lInvestigations on Heavy 0il Recover;)‘/
by CO, ' '
' ' ' alat

b

_ Basically fbur:different immissible carbon-

dioxide/water displacement processes caa'be used for

recovering héavy oil. They areCh stralght or continuous
_carbon dloxldb 1nject10n, carbon dlox1de slug process, 
1njec%£on of alternate slugs of carbon d10x1de and water
(WAG . p#ocess) ‘and 51multaneous injection of carbon d10x1de

a

and water.



2.9.1. Continuous CO, Injection

In this pfocess, carbon dioxide is injected
continuously up to a high producing GOR (gas/oil ratio) of

53

the order of 4500 sm’/m*. Several researchers®? have

reported that the continuous carbon dioxide process is an.

0
inefficient strategy for heavy oil recovery.

\

In 1983, Sayegh et al®’ repogted that the recovery of
aged Lloydminster crude oil (23700 mPé.s at 20°C) by carbon
dioxide continuous injection at 3.45 MPa and 20°C up to gas
brgakfhrodgh was less than thr;; percent of pore volume in
411 runs. The tests were‘carfied out in a core of 0.44 m
length and 2.8 cm diameter. Very high oil viscosity, low
back pressure, "and rapid injection-rate ofbthe carbon
dioxide may be ﬁhe geasons for that low recerry

efficiency.

Recently, Rojas and Farouqg Ali'’® reported that upon
the injection of 20% HCPV (hydrocarbon pore volume) pf
carbon dioxide, only 3% &f the original oil (1032 mPa.s at

23?C)rin placé was recovered. They found that high
production of carbon dioxide occdrred after carbon dioxide
breakth:dugh{ and the oil pfoduceﬂ-fluid injection ratio
(OPEIR) was'less than 0;25. The same éu;hOrs‘z indicated
that results'éf tests showed‘tﬁat‘the continuéﬁs’carbon
dioxide injectidn process ﬁndér subcriticél conditions was

_nop'applicable to heavy oils)of the Aberfeldy Lloydminster
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. 4
type because the immiscible displacement of these viscous
oils by carbon dioxide is completely dominated by viscous
forces, and mass transfer between carbon dioxide and crude

oil does not appear to enhance appreciably the recovery.

2.9.2. CO, Slug Process

In thié case, carbon dioxide is injected from the ’,
stért of the process until the desired éarbon.dioxide slug
has been injected. Then water is injected continuously
until the process is terminated at a producing WOR

(water/oil ratio) higher than 20 m’/m’.

In 1959, Beeson and Ortloff' investigated the use of
water-driven carbon dioxide slugs to recover viscous crude
oil (20°API, 400 mPa.s at 21.1°C) from small diameter
models at low flow rates with thé carbon dioxide slugs in
the liquid (at 6.9 MPa and 21,1°C) and gas (at 6.9 MPa and
54.4°C) states. In both cases, the oil recovery was
‘approximately 50% of ﬁhe original oil in>blace, much higher
than that obtained by watérflood 029%): The authors
reported that the additionai’oil recovgiy per Qnit mass of
carbon dioxide injected was higher in the carbon dioxide
xgagggiﬁg;flooés than in the.c;rbéh dioxide'liquid slug
-floods. - | | o |

- Holm?*' reported‘ﬁﬁe results of laboratory studies on a
stcous 0il (90 mPa.s at 21:1°C), diS%l%ced”by a carbon

—a—

2



dioxide slug (44.5 sm’/m’> of oil in place), followed by
water. An 80% increase in o1l recovery over a conventional
waterflood was achieved by Holm®'. However, Faroug Ali and
Rojas®? recently pointed out that the subcritical carbon
dioxide slug (20% HCPV) process for seéondary heavy oil
recovery had three disadvantages‘with respect to the WAG
process. They are :

1. Undue o1l production delay and high production

of free carb%; dioxide during slug injection.

2. Lower overall recovery.

3. Higher carbon dioxide requirement.

2.9.3. Simultaneous Injection of CO, and Water

<

In this process, carbon diogide and water ?re injected
simultaneously uqtil the totél dgsired‘amount of carbon
di&xide has been Enjected. Then, water is injected
continuously untilﬁphe process 1is terminated at a producing
WOR higher than 20\m“/m1.'The main difference betwéen
simultaneous injectfon*of carbon dioxidé;and water and the
carbon dioxide slué ﬁ;océés is the aCces;ibiiity~df'oilvto
carbon -dioxide. As‘a‘ﬁlug; carbon dioxide é;feétly contacts

. R . . : .
the oil. For simulténeéus carbon‘didxide and water

\ v
\ . . } '
injection, CO, is largely dissolved in the water and. must

2

transfer from the water to the oil.

\
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In 1969, Holm®® indicated that a much lower residual
0il saturation was obtained with a carbon dioxide slug.
flood than with a carbonated @aterflood. Holm®*' also
pointed out the three disaévantages of using carbonated
water : ‘

1. Carbonated water is not as effective as carbon
dioxide in reducing 0il saturation
) 2. For the same amount of carbon dioxide, a
carbonated waterflood recovers less oil than the
slug process ;
3. The additional 0il recovered by a carbon

dioxide slug flood is produced more rapidly than

the cil recovered by a carbonated waterflood..
.

.Récently, Faroug Ali and Rojas®? reported that the
simultaneous injection of carb§n dioxide aqd‘water process'
had not been used in field applicatfons becausé of two
pdtential‘problems : |

1. Severe corrosion»of injectiqn wells by%he
mixture of carbon dioxide and water at high

‘ ' pressure, |
2. Injectivity reduction when injecting two’

phases simultaneously.
R N
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2.9.4. Injection of Alternate Slugs of CO, and
Water (WAG)

In this case, small slugs of carbon dioxide and water
are injected alternately until‘the total desired amount of
carbon dioxide gas been injected. Then, water is injected
continuously until the process is terminated at a producing

WOR higher than 20 m®/m’.

53

As several researchers®?: have indicated, the

injection ofAsubcritigal carbon dioxide alone without water
is unable to displace efficiently a viscous 6;1, and thus
immiscihle carbon dioxide displacement needs to be
supplemented with carbon dioxide mobilify control. Holm*:* -
recently indicated that alternate injection of water with
carbon dioxidé (the WAG process) has been the most widely

usedvmobilf€y control metHod:

EEERN \i‘

- ——\\—\_/
In 1958, Caudle and Dyes®* proposed theé‘:control of gas '

- mobility in a gas-driven displacement by iniecting watéx\
along with the gai, thus visuaiizihg\gﬁé main meChanish o}\f’AN\‘
the WAG process. The authors®* explained the carbon

dioxide/brine injéctionvprocess gs follows. The pfeseﬁce of
1briné'in the carboﬁ dioxide invaded zone lowers the
relative pe:meabi1ity to earbonvdioxide,}decreasing its

ﬁobility. Iﬁ;this way, the inje@ted brine iﬁterferes with

the row’of.Carboh'dioxidé to decfease:its_ragid -

‘ production. -
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Carbon dioxide mobility depends on the brlne slug
volsmes and carbon dioxide slug volumes. Caudle and Dyes®*
pointed out that if too chh gas.is lnjected the process
can only approach the mechanism of the gas-driven
displacement, and if too little gas is injected the worst

that can happen is that the reservoir will be subjected to

a waten\arive. : '

" Recently, Ko and Stanton®’ indicated that in the
presence of trapped light oil saturation (i.e. in tertiary
recovery) larger carbon dioxide slugs are required in a
WAG process for more. efficient displacement. Conversely,’inv
the absence of light oil trapping (i.e.. in secondsry
recovery), smaller carbon dioxidé slugs are required to

A

maintain good mobility control.

Very little information on laboratory studies of
injection of alternate slugs_of carbon dioxide and water
for heavy o1l recovery has been published. Farouqg Ali and
Rojas®? recently indicatea ﬁhat the WAG ratio had a |
considerable effect ‘on the‘sscbndary recsvery for modérase
"viscosiﬁy oils. They reported that if the brine slugs aref

. of equal or less volume than the carbon d1ox1de slugs,

“ 'brlne is unable to control effectlvely carbon dlox1ae

' moblllty in heavy oil reserv01rs w1th concomltant excessive
' product1on of carbon d10x1é@ Thus, they concluded that a

VWAG;ratlo ‘of 4;1 was the best'among‘thé_five.tésted fsr

‘\J
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recovering the heavy oil of Aberfeldy reservoirs in

Lloydminster.

In field applications, the WAG process as a secondary
recovery process is being used with encouraging results in
the thffd'phase oé the Lick Creek Meakin Sand Unit
immiscible carbon dioxide/waterflood broject,fwhich is the
largest field application of carbon dioxide in recovering

heavy o0il (17°API, 160 mPa.s at 48°C)>°.

2.10. Heavy 0il Recovery by N,

Very little information is available in the literature
on the use of nitrogen for heavy oil recovery. However,
because nitrogen is muchjchéaper and more readily

! .
available, it 1is beéoming‘gn increasingly attractive

material for economically enhancing oil recovery.-

It has long been recognized that waterflood residual
o1l saturation can be reduced by the presence of a:gas
saturatidn: Craig®’ reviewed literature '‘on the effect of an
initial free gés saturation formed by primary depletioh
below the bubblé point pressu;e on waterflood residual oil.
Depending on the magnitudé_pf‘the‘gas sa;uratioﬁ also
“trépped by.the wéterflood, regidual oil ééturation‘ink
wa;erfwég qonsolidated %ocks'was'génerally lowered by up.té_

10% PV.
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In 1981, Slack et al?' proposed a method of immisciple
dispiacement of oil by simultaneou; injection of water and
nitrogen. They found that residual o1l saturation reduction
strongly depends on threq-phaée relative permeability
characteristics. Reductions of up to 18% PV were ﬁeasured
for a mineral pil at 50 psig by Slack et al?’', using
gimultaneous injection of water and nitrogen in Berea‘
sanéstone. They concluded that despite gravity segregation,
immis&ible water-nitrogen flooding is capable of recovering
an appréciable fraction of waterflood residual‘oil at

reasonable -nitrogen-o0il ratios and in reasonable times. But

@

o

the experiments?' with high permeability unconsolidated
sands showed only a very small residual oil saturation
reduction with simultaneous water-nitrogen flow. Slack et
al?' pointed out that the gas-water immiscible displacemeni

would be most effective in consolidated rocks.

’

Howevertvthe effect of gas or simqltaneous gas-water
iqﬁectiéh on a waterflood residual oil saturation
establisbed hith nQ;gas present is poténtionally different,
than the effect of an initiél‘gas saturation because of the
different saturation histéries involved (gas displacing
watér‘displacing;oil’in the former case and water
displacing gééfdisplacing.oil'in the 1atter)"}'Sévera1

3reseér¢hers°°'?‘ suggest that the.effect of gas-watér -

inje;tibn will increase production ranging upward from two

“Fpercent of waterflood recovery.
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In 1983, Sayegh and Maini®’ conducted experiments
using nitrogen to continuously displace a heavy oil (10531
mPa.s at 0 MPag and 2t.0°C) at 3.45 MPa and 20°C. As
expected, they found that‘the recovery by nitrogen
injection was very inefficient and only resulted in 4.5% PV

01l production.
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Several researchers®?: have indicated that a slug of

carbon dioxide pushed by nitrogen can reduce the amount ofh
carbon dioxide required and hence redUcé.the cost. In 1979,
03L83f9 et al*? injected a slug of pure cérbon dioxide
pushed by nitrogen to displace a WesF Texas crude oil of
approximafely 34°API gravity at 1250 psi (8.5 MPa) and
107°F (41.7°C) in 100 feet long cores. The 074 recovery
varied from 90 to 98 percent Qhen the carbon’dioxide slug
size varied from 5 to 25 percent of hydfocarbén pore volume
(HCPV).Awithout éarbon dioxide, an bil recovery close to 60
percent .0of the o1l in place was obtained. No information is

available in the literatures for heavy oil recovered by a

nitrogen-driven carbon dioxide slug procéss. . {
¢ : ‘

In oil field applications, ni;rogén injectioh-has been
used in at least 7 field tests that include : pressure |
‘ymaintehance, enhanced gravity‘ér#inage, attic oil réco@ery;
gas‘cap.displacement%ldriVing a miscible‘carboh‘dioxide

slug, miscible displacement, and cycling of condensate

resérvoirs**.



Another nitrogen injection field application is
exhaust gas (consisting of about 87% nitrogen, 11% to 13%
'
carbon dioxide, and inert gas?*?®) stimulation. In this case,
the mixture of carbon dioxide, and nitrogen is injected
into viscous crude resérvoiréﬂ The cquon dioxide dissolves
readily in the cyude, increasing its voluéé and reducing

1ts viscosity?*. The nitrogen is displaced back into the

formation as a gas under pressure. Whed#a well is opened,

energy from the éompressed nitrogen charge helps move the
thinned, expanded oil to the wellbore. This type of process

has been applied in several oil fields to stimulate heavy

oils*3, g
gi)




3. Statement of the Problem

The previous res\earch52 on the immiscible carbon 3
dioxide flooding process employed a constant slué size, and
a constant pressure, with emphasis on the WAG ratio. This
inveétigation attempts to extend the previous work, and

also to examine several new areas, with the following

objectives:

1. To repeat a series of runs using nitrogen in
place of carbon dioxide, to determine if the
mechanisms postulated for carbon dicxide are
indeed vatid.

-

2. To evaluate the effect of an initial gas

saturation, using nitrogen or carbon dioxide as

P

the gas, followed by a WAG displacement.

3. To investigate the effect of slug si

4, To evaluate the effect of two types of sand

pack heterogeneities on the process efficiency.

»

5. To -investigate the effect of the operating

e

pressure.

@



4. Experimental Apparatus, Procedure, and Materials

A LS s
4.1. High RQeSSUPE Physical Model

The high pressure physical model is designed to
simulate a shallow, thin,\horizontal, unconsolidated
sandstone reservoir rock containing fluid with properties

similar to the average properties of the Aberfeldy field in

o«

the Lloydminster area. A schematic diagram of the physical
model is shown in Figure 1. The main components of the

model are the pressure vessel, the fluid injection and

S
“;,

production systems, and the dat&\polleétion system.
| AN A
_ |
4.1.1. Pressure Vessel N

- - )
N - T
é- N\ . o
\ >
. o

\
The basic structural element of~the physical model is

a steel flanged rectangular pressure vessel The\vessel can

‘e

withstand pressures up to 10 MPa at 100° C\\ch the maximum

deflection of the walls being less than 0.01\<n. Figure 2
. s \ ,

shows cross-sections of the vessel. Table 1 sths thetmain
. , . \

&
v

characteristics of the high pressure vessel.

The model . is operated to 51mulate a horlzontal

five- spot pattern. The flu1d is 1n@icted at one well 1n the

corner of the vessel and produced from another well 1n the
: opp051te corner. Flgure 3 shows the locat1on of - the welfs
in the pattern. The wells were made of 1/8 1nch (3 mm) !
sta1nless steel tublng w1th small hg;es (O 055 mm in

N 36
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diameter) perforated along a length of éﬁéroximately one
B &

inch from the bottom.

The model-is provided with another well with a
thermistor inserted to measure the temperature’of thg
porous medium! A thermistor is basically a'semiéonductor,
which exhib{ts rapid, extremely large changes in resistance
as a resdlt'of.relativeiy‘small changes 1in témpecatufe,,
Thermiséofs are more accurate than thermocouples for
temperatures below 100°C. The position of the thermistor is

shown in Figure 3.
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e

Injection Wel,

Production Well

Dumnmy Well

Well with a thermistor inserted

to measure the temperature of
the porous medium

3

Figure 3 5—spot pattern for horizontal floods.



Table 1

Characteristics of the High Pressure Vessel

- Rectangular shape 45.7 cm x 45.7.pm X 2.2 cm

- Three reinfo;cing memberé

- Maximum interqal pressure : 10 MPa

- Maximum deflectiéﬁs 'of walls at 10 MPa less than 0.01mm
- Weight about 1 Tonpe

~ Number of weils available : 9

- Possible patterns to simulate : S5-spot, 9-spot, line

drive . ' . /

’

- The central well permits the simulation of cyclic
injection ' %

- The model can be rotated for horizontal, inclined, or

-

vertical floodsﬂ

41



4.1.2. Fluid Injection and P)bduétjon gystems ‘
. \\//' .
u) The brine and oil were injected by a Milroyal postive
°/éisplacement pump for saturating the porous medium. A
filter block located upstream of the model was used to

t —

filter the brine and oil.

Two dGal, constant rate, screw-type, high pressure
_piston pumps were used to inject the carbon dioxide,
nitrogen, and brine into the porous meduim, according to
the type of run. The injection rate could be controlled by

varying the pump speed. Carbon dioxide was injected

directly by the constant rate piston pump into the model
k-] - ’

because dry carbon dioxide is not corrosive. However, as

brine is very corrosive, it was injected into the model

from a high pressure steel cylinder with a floating piston,
1

which was actuated by the constant rate pump.

The effluents from the moael were seéarated in a glass
seperator operatiﬁg at atmospheric ppeseure. The top of the
separetoy.was connected to a dry test meter (DTM) to
measure the amount of gas produced. Liquidsvwere_collected

in gfaduated cyfihders.from~the separator.
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4.1.3. Data Collection System

The production pressure was controlled by an automatic
back pressure regulator (BPR), which was located upstream
" from the separator. Two Heise pressure gauges were used to
measure the production and injection pressures, and two
pressure transducers, connected to a portable hybrid
recorder, recorded the injection an -producfipn‘pressu}e

histories every five seconds for each run.

-~ 1

The temperature of the porous medium was measured with
a thermistor. It was both displaced by an Omega temperature
controller and recorded every five seconds by a portable

recorder.

The cumulative volume of the gas prééﬂ?éa was measured

by a dry test meter (DTM) with an accuracy of 10 cm® at s

-y

room conditions. . s

—

4.2. Materials

4.2.1. Fluids

'Commeréial gtgdé carboh}éidxide~(99.5%,purity) and

nitrogen.(99,95%>puritY) were used in all diéplacemen@

ekpériments{.The.displacement experiments employed
reservoir water to create an irreducible water saturation.

‘Fibe,different‘viSCQSity crude oil sémbles from the
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Aberfeldy field in the Lloydminster area were used in the
'displacement tests. Reéerxoir water (jointly with carbon

dioxide and/or nitrogen) was used to recover oil from the

porous medium. &

In order to compare the heterogeneous pack runs and
low preseure (2.5 MPag) runs with the homogeneous pack high
pressnre (5.5 MPag) runs, it was necessary to have similar
viscosities for crude oile in those different runs. Crude
01l sample No, 10, with a viscosity of 1101 mPa;S which was,
closezte the viseosity of 0il sample No. 8 (1116 mPa.s),
wes a mixture of oil sample No. 9 (2107 mPa.s at 0 MPag,and
23°C) and a refined oil (198 mPa.s at 23°C). The/mixture,
oil sample No. 10, was composed of 77.8 percent of crude
oilisamgle No. 9 and 22.2 percent of refined oil. The

properties of this oil sample are shown in Table 2.

It was necessary to dehydrate the‘oil received from
the fieid'beceusevit contained more than.10% bf volume'of
water. A demulsifier (used by Husky 0Oil Company in the
Lloydmlnster area) was added to the oil sample in a.
concent;atlon of 0.01% of eemple yolume..Then the'watet was
separated from the oil in an oil dryer by gravity at a
constant temperature (40°C) for nearly six ‘months. The
water was. dralned from the 011 dryer da11y at the beglnnlng
’and weekly near the -end until no more free watet was

*

,produced,vAt thIS point, a eample of the oil was,analyzed



Table 2

Properties of 0il andlWater in the Exper iment

Reservoir Water:

Density, kg/m? at 23°C C 7 Toeg
‘ /
. /
Viscosity, mPa.s at_ 23°C s 1.14
R T e L~ . .
pH at 23°C S } 7.5 - 8.1

Water Analysis:

Total solids, ppm 77200

Hardneés, ppm " 8997
Sulphates, ppm 41122
Alkalinity, ppm 60
Iron, ppm . . 67.5
Calciﬁm, ppm 1971
Magnesium, ppm 990
Sodium, ppm ’ 19850
Potassium, ppm 3610
~. Salf; §pm‘ - 67851

N
. \

A

Nature of Alkalinity: Bicarbonate of Calcium and
Magnesium. ' ‘ :

45
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/ o
l
Table 2 (Continued)
=1
PROPERTIES Sample Sample Sample Sample Sample
2 7 . 8 9 10

Density, kg/m® at 0 MPag 970.2 952.8 960.4- 966 Y. 946
and 23°C

Viscosity, mPa.s at 0 3897 1032 1116 2107 1101
MPag and 23°C,
Water Content, % Weight 0.0 below below 2.5 2.0
0.1 0.1
Sand Content, % Weight 1.0 1.0 2.0 0.5 'below
' 0.1

—_——— e .- _— - — - e ————— _———— = e T e e e

i
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for water and sand content. A summary of the average
properties of the dried oil and brine samples 1s given in

Table 2.

4.2.2. Unconsol idated Sand

- The sand used for the experiments was Ottawa Silica
Sand, from Ottawa, Michigan. It was analyzed by x-ray
»

analysis to determine the bulk ﬁﬁneralogy. Table 3 shows

the bulk mineralogy of this sand.

4.3. Packing, Saturation, and:Model Cleaning

\

Procedures

Twodpacking technigues, wet pécking and dry packing,
were used for the experiments. The wet .packing technique.
was used to obtain eonsistent properties in the homogeneous
displacement tests, while the dry packing technique was
used to obtain heterogeneous properties in the
ﬁete:qgeneous‘displacement runs. For wet packing (Figure
4), the model box was filled with distilled.water to a
helght‘ff 10 cm with the model in the vertlcal p051t10n

Then fhe model was fllled by sand and was vibrated with an

'éir wbrator. During the pack1ng process, a constant 10 cm
] ths !

head of "distilled waterJWas'keptvabove the sand. A 10 cm

“tall filling 1id was used gb~malﬁtaln the same head of.

dlstllled water at the end)of the pack1ng process after the

P
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’ Table 3

Bulk Minerology of Ottawa Silica Sand *

Qz OR C ! Type of Clay
- M - t Possibly Illite/Smect%te )
4

Note : QZ = Quartz
OR = Orthoclase
C = Clays ,
M = Majof
t = .trace

<

Where M 1s greater than t

'

'* Determined by the Department of Geology, University of
Alberta.



E A
1 teel Watl

4 -;,/ .

. Y

b ‘1

| S s

- ——————-—--——-——-—11110.cm Head of Water

K 4

PR e e Do i tio L Distitled Water

§ and Sand

Figure 4 Wet packing metHod

49



‘1/

50

model had been filled with sand. The model was vibrated for
about 20 - 30 minutes after it was filled with sand.
Following this, the packing lid was replaced by the flange
plate and the model was reéady for the next step. The wet
packing pfocess took approximatély three hours. The model
vibration during and after packing eliminéted the trapping

of air by sand. e

For dry packing (Figure 5), the model was filled with
the Ottawa Silica Sand and glass beads as well as being
vibrated with an air vibrator. After the model had been
filled with the sand and glass beads, the distilled water
was added to the model cavity and tﬁe model was vibrated
for several.-hours. Then the flange plate was put in placé.

After this, the model was evacuated with a vacuum pump and

\

* vibrated with an -air vibrapér for about 72 hours. The

purpose of the vacuum and vibration was to eliminate the
. ! .

trapped air during the packing process. The dry packing

progesé took approximately four days.

: After packing the model with sand, or sand ahd gléss

beads, the model was tested for leaks at a pressure of 7 .

Mpa. Tﬁép the distilled watef was‘displaéed hiscibly by

reservoir water from the bottom to the top in order to

determine the pore volume. (as shown in Figure 6). After the -

absolute permeability was determined, oil was injected .

 using theithree wells at top of the vertically positioned
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model to create an irreducible water saturation iﬁ the
porous medium (Figure 6). Following this, the model was
'fepressurized at 3145 MPag with 0il to simulate th& initidl
reservoir pressure of the Aberfeldy feservoirs in the |
Lloydmiﬁster area and up to 2.5 MPag to simulate the
declined préessure of the same reservoir. At this poing® t%e

‘'model was ready for brine injection with either carbon

dioxide or nitrogen.

The following cleaning procedure was employed at the
end of each run. The oil, brine, and sand in the vessel's
. : . .2 .
cavity were removed with a metal scraper. The interior
. . L
walls of the cavity were cleaned with Varsol. The vessel's
cavity was then dried using compressed air. All the wells

and the flange plate were cleaned with Varsol and toluene.

Great care was taken to enSdre the cleanliness of the wells

o

so that the well perforations would not become plugged.

-2

<

4.4. Porosity and Permeabil ity Measurements

The miscible displacement method was employed to
k ]

detefmine the pore volume ané porosity of fhe‘porous
medium, In .this methéd, the distilled water used for
packing Was‘displaced véftically‘by reservoir water flowing
- from the bottom to the top. The samples of all effluents

. were colléétg& and thgirlrefractiie indices,wgre'measufed

3

-using a refractometer. The refractive indices of pure

-



distilled water and pure reservoir water were measured for
each run and a plot of refractive index versus percentage
of reservoir water in the mixture was also constructed
(shown in Figure 7). Using this‘plot of refractive index
versus percentage of reservoir water, the percentage of
reservoir water in each samplé was determined and é graph
of percent displacing fluid in the effluent versus |
cumulative volume produced was then plotted (Figure 8). The
areas above apd below the S-shaped curve were balanéed and
the pore volume was defermined. The porosity was calculated
by dividing the pore volume by the volume of the vessel's
cavity. For reliable results of porosity calculation, it
was necessary to measure the volume of the‘qavitylrather
"than calculéting its vélume according to its dimensions.
The measured volume of the cavity was 4871 cé; while the
calculated volume was 4594.7 cc. In this displacement
method, viscous and gravitational instapilities do not
occur duting.the displacemeht because the heavier reéeryéir
water was injected from the bottom to the top énd the

mobility ratio of distilled water to reservoir water was

=
-

LY

~.

AN

slightly less than one. -~

The absolute permeability of the porous medium was
determlned by plac1ng the model in a horizontal position
and flow1ng reserv01r water at various flb& rates. ‘The
pre55ure drop.between injection well and production'well

was kept constant and recorded with a Heise pressure gauge.

.
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[IGURE 8 . Determination of pore volume by Miscible Displacement (run 12)

100

o -

o]
601
S50
40
304

201

A=B

POREL VOLUME = 1972 CM>

‘ZéUJf
;gﬁ

/', |

-’500"1000_ 1500

ZOOO 2500

B S
3000 -

3500

CUMULATIVE VOLUME PRODUCED, CM*.

-



56 :

A flow equation derived for a five-spot pattern accprding

to the conductivity theory was used to calculate the
absolute permeability. After that, the moﬁfg was placed in

a vertical position and oil was injected into the model

from top to bottom to create an irréducible water ’
saturation in the porous medium., More o0il was then injected~
to pressurize the model to 3.45 MPag to‘simulate'the actuel
pressure of the Aberfeldy reservoirs of the Lloydminster
area 1n/the first 21 runs and up to 2.5 Mpag to simulate

the declined pressure of the same reservoir infthe last two

runs.’

4.5. Experimental Procedure

qustprt a run, the model pressure was increased to
the te§£$§fessufé by injecting"earbon dioxide or nitrogen
with the production well closed. Once the run pressure was
reached in the model, carbon dioxide (or nitiégen) and .
brine were 1n]ected into the model at a constant flow rate
from the screw-driven pumps and the ‘pressure of’ the
productlon well was controlled by the back pressure
regulator. The pressure was controlled at>5,5’MPag>for'the
first 21 runs and at 2.5 MPag‘for the last 2 runs. The run
temperature was 21 - 22°C. In all runs, the produced fluids
.went dlrectly to the low pressure separator because at low
productlon rates 1t‘yas'not necessary to use the;h;gh
pressure separator‘anéithe'productidu fluids'were‘bypaSSed

o

@
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to the atmospheric separator.**

Carbon dioxide breakthrough was detected by observing
the first production of carbon dioxide in the separator and
‘the initial hovement of the gas meter needle. Brine
breakthrough was detected by anélyzing emulsion effluent
samples for brine content because free brine did not
breakthrough at the‘beginning. The brine éontent of the
emulsion was determined by adding an equal volume of
toluene, and shaking the sample. Then the free water was
separated from the mixture by centrifuging it at 3000 rpm

for 20 minutes. t
. J (“)\
Durihg the runs, the produced liguids weré collected
from the s%parator and the volume of gas produced was
measured by a dry test meter. The pressures of injection

and production as well as the temperature of the model were

recorded by a hybrid recorder.

4.5.1. Brine - Alternating - Gas (Carbon Dioxide

bn Nitrogen) Slugs (WAG Process)

- ¢

B

In this process; small slugs of gas (carbon ledee or
nltrogen) -and brine were injected alternately unt11 a total o
‘amount of 20% HCPV (Hydrocarbon Pore Volume) . of gds was V
injected. Brlne,was “then 1njected contlnuously until the
pboéeSs"was terminated at a produqinQ:WOR of appro#imately

20 m*/m*. The amount of gas injected was calculated at 5.5



MPag and 21°C. The WAG ratios (brine slug volume to carbon
dioxide slug volume) for secondary and tertiary recovery of
Aberfeldy - Lloydminster heAvY oil were fixed at 4 : 1, the
| 4 : 1 WAG ratio was the best one among five tested‘‘. Runs

‘4,5,6,7,8, and 16 were conducted using this procedure.
) .

4.5.2. Carbon Dioxide Sldgﬁggocess

In this case, a carbon dioxide slug of 20% HCPV was
injected at a constant flow rate; Following the caqbon
dioxide siug, brine was injected continuously until a water
- oil ratio of approximately 20 m*/m’> was attained. One of |
the runs (Run 12) using this process was conducted with the
porous medium at irreducible water saturation) Another run
(Run 2) was carried out by injecting the slug of carbon

dioxide after a brineflood.

4.5.3. Bnineflood

ThreeAbrihefloods»(Runs 2, 3, and 8) were conducted .in
order to determine,wﬁether the carbon dioxide-* brine
vlnjectlon processes or nltrogen - brlne 1n3ect10n processes
vere able to recover addltlonal 011 w1th respect to that

recovered by the br1ne alone. In this process, brine was

1n]ected continuously at the beglnning, and at a constant /)

"flow rate unt11 a WOR of approx1mate1y 20 m*/m®> was

attalned Breakthrough was detected by analyz1ng samplej}
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explained above.

4.5.4. Special Processes

Beside the above processes, several other procésses
were investigatea. These were-: gas flooding prior to
carbon dioxide WAG process, contilnuous éarbon dioxidé flood
prior to carbon dioxide WAG process, composite carbon
dioxide and ﬁitrogen\slugs driveﬂ by brine, héterogeneous
packs and_carbon‘ﬁioxidé WAG runs at low pressures. The
objective of these eiperjments was to 1investigate the_
-effect of initial gas saﬁurationh carbon dioxide slug size,

heterogeneous reservoirs, and reservoir pressure.

4.5.4.1. Gas Flood Prior to Carbon Dioxide

WAG Process SR

In this process nitrogen was injected'éontinuousiy
until the process was terminated at a.producing GOR'(gés -
oil ratié):o appfoximately 10000 sm®/m*. Then the WAG
process with a ;aﬁio of 4 { 1 was é;}ried'out: until. a
total amount of 20% HCPV of carbon. dioxide was injected.
After thﬁs, brine’was/injected’continu0uslgluhtil a WOR of
apprOXimateli'ZOLm’/m5vwas_obtained._One gas:floodrbefore
the éérbqh dioxide WAéAprqcéss'(Run.g)”iﬁgestiééted the
_effect OQVrécovery dpé to initial gas_éaturation prior- to

thefcarbon,dioxide"WAQ process.

-
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4.5.4.2. Cont inuous Capbon Dioxide Flood

. Prior to Carbon Dioxide WAG Process

This process was similar to the gas flood priér to
carbon dioxide WAG process. Instead of injecting nitrogen
in the aforementioned process, carbon dioxide was injected
until a GOR of app;oximately 10000 sm?>/m® was achieved.
After this, the WAG process, using a (20% HCPV) total slug
of carbon dioxide, was carried out. Then brine kas injected
continuously until the process was terminated at a
producing WOR of approximately 26 m?>/m?, Ruhs‘10 and 11

‘ . . . |
were carried out using this process.

~

\

. \
4.5.4.3. Composite Carbon Dioxide- and

Nitrogen Slugs Driven by Brine

Thisﬁp;ocess was sihila% to the carbon dioxide slug
proCess except that a carbon dib{Tae slug of 10% HCPV,
followed by a nitrogen slug of 10% HCPV, was injécted,
rather than a 20% HCPV slug of/carﬁon dioxide; The
qomposite'c;rbdn dioxide - ni?roggn slugs were then.driven
. by‘brine to a WOR of approxim telyv20 mi/m’. One run (Run
‘45) using‘this process was ¢ nducﬁed with the porous @edium

at irreducible water saturathon.
' "y

i
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4.5.4.4. Heterogeneous Packs

Four runs (Runs 18, 19, 20, and 21) were carried out
to examine the effect of heterogeneity on the carbon

dioxide flood process.

A heterogeneous packing technique was used to obtain
patks with heterpgeneous p;opertdes in one or two
dimensions? but still with homogeneohs properties in the
other dimensions. Two types of heterogeneous packs were
obtained by using this packing technique (i.e. two parallel
layers, which consisted of an Ottawa S111ca Sand layer on
ﬁﬁ% top and a glass beads layer on the bottom, when the
model was in the horizontal position; and diagonal glass

bead layers which consisted of one diagonal glass bead

layer-and two triangular Ottawa Silica Sand layers on each

Pside of a glass bead layer). These heterogeneous packs are

shown in Figures 9 and 10, respectively.
B3 I - . #
To obtain two parallel layegs; with‘the modeltinvthe
vertical position,ba thin steel plate was inserted into the
vessel's cavity and kept in the middle of the cavity during
‘the packing process. Thenfthe model was filled with ‘
dlStllled water to a helght of 10 cm. The dlsbllled water
was followed by sand on . oge 51de oi’the thin steel platevb
and by glass beads on the other 51de. Durlng th ck1ng

t
process, the modei was v1brated w1th an a1r v1brator and a

10 cm q§§d of dlStllled %;ter was kept above the sand and
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Injection Well

l | .

Sand
,
g ) / ‘
© -Glass
- Beads
E Vel
B " pa, ; //
—_—— e— il . —
- S T N S \
g b . N \\\\
A aad ' l
Production-Well

. . N ) »
Figure 9 Heterogeneous model consisting of two parallel layers.
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~Figure 10 Heteyogeneous Model consisting of a diagonal

Mgh permeability streak.




64

glass beads, while the thin steel plate was moved up
gradyally.'in order to maintain the same head of distiiled
water at the end of the packing process, a 10 cm tall
filling 1id with a shape similar to that of the cavity was
placed on top of the model after it had been filled with
sand and glass beads. Then the model was vibrated for
several hours. Egllowing this, the packing 1id was replaced
by the flange plate, and the model was evacuated and
vibrated forﬁabout 72 hours. The evacuation and vibration
of the model after packing eliminated the air trdpped by
the sand ahd'glass beads. After evacuation;_more distilled

water was drawn into the model.

For the diagonal glass beads layer packing process,
the model was placed in a vertlcal p051t10n and a plate,
with bent edges, shown in Figure 5, was inserted into the
vessel's cavity. The lower triangle was then fil;ed with
Ottaya Silica Sand and the model was vibrated (as shkown in
Figute 5, step 1). After filling the lower triangle wfth
) sand,‘the distilled water was added to the model and the

model'was v1brated for about one hour. Then the dlStllled

;a,qﬁag} p051t1on and the model was fllled w1th glass beads

' dlagonally (as shown 1n Flgure 5, step 2) Then the modeltv

- was f1lled with distilled water agaln and vibrated for an

- hour. Follow1ng this, the dlstllled water was drawn out

'fagaln and the plate was removed from the model In the
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third step, the upper triangle was filled with sand and the
packing 1id was placed on top of the model. The model was
again filled with distilled water and vibrated with an air
vibrator for several hours. DuringAthe vibration,'the 10 cm
head of distilled water was main;a{hed. Afte{?this, the
packing lid was removed and the flange plate was’placeﬁ on
top of the model. The model was evacuated with a vacuum
pump and vibrated for 72 hours. After evacuation, &
aéditional distllled water was drawn into the model to

replace the evacuated space.

B

«
Capd

4.5.4.5. Carbon Dioxide STug WAG Runs at Low

Pressure

4
“~

This process was similar to the bténe~alternating-gas
slugs (WAG) process except that the runé*werelcarriedvouti
.atb2.5 MPag in this case rather than at they5.5 MPag used
in all the other rune. A total amount equiQ%%ent to a 20%
HCPV of carbon d’ioxe‘ slu.g at 5.5' MPag- and 21;C was |
injected for the purpose of comparlng the. results of runs

A

at 2.5 MPag with those at 535 MPag The Starl1ng equatlon‘
. of State was employed to calculate the amount(cf carbon
,d10x1de 1n3ected When the number of moles of 20% HCPV

{tcarbon d10x1de at 5. 5 MPag and 21°C" were calculated the

| volume of the same'number of moles at-2'5 MPag and 21°C

’COUld then be obtalned u51ng the Starl1ng equat1on. Two

runs (Runs 22 and 23) were carrled out u51ng thls pro;ess.vf'
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4.6. 0il - Water Separation

4

. The‘emulrions produced during the displacement test
were broken by‘adding one drop-of demulsifier (used by
Huaky 0il Company in Lloydminster) per 100 cm?® (about
0. 01%) of sample and leaving the mixture in a thermostatlc
‘bath at 70*C for 24 hours, The pure water was removed from
sample. Then 30 - 50 ‘cm’ of toluene was added to the
fremaining-samplef which still contained a emall amount of

water 'in oil, and'ihe_mixture was centrifuged at 3000 rpm
Y . SN

for 20 minuﬁee;

c

4.7. Da#a.PPoceSSing ‘ ‘ ‘ o
P _ 4 )
! i - NN -

4

- l‘, - N
The experimental data was processed‘USing a computer

’ . . PO

proiram; This program was baé@d'bn”the material balance of

oil,-water, and carbon d10x1de or nltrogen. The amount of

.
'

fluids injected was calculated from this program. It also

>

bfcalculated the w%ﬁer - oil ratfos.&WOR) gas -A01l"ratlos
(GOR), ©oil recovery (R) the’ total volnme of 011 produced

A

(NP), oil produced - flu1d 1n3ected ratlo (OPFIR) Carbon

d1ox1de retentlon ‘and carbon dlok1de requ1red to produce a.

¥ I . ] N
. B o : e . ,-n L0 N .
'junlt volume of 011 oE o

\ 2

T I ..
. Y R

The Star11ng equatlon oF ﬁtate*’“for carbon leXIde

- -
s ®

and nltrogen was. usea for materlal balance to calculate the

'moles of carbon drox1de 1njected and produced as well as

. g .
: the moles of nltrogen 1n3ected and produced ThlS equatlon

.
2o N PG
r A . - (’ P EN

R : L . , R
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of state has the following general form.

L4
I'e

P = pRT + (BoRT + Ay - Co/T? + Do/T* - Eo/T*)p?* + (bRT
- a - 3/T)p> + Bla + d/T)p* + (cp®/T*) (1 + yp?)

expl(~-vp?)

Where : P - pressure
T - tg@perature

p - density .

Two new sets of the constants were derived to, use the
equation iﬁ'SI un{ts because the constants in the original
paper were in British units. for pressure (P) in MPa,
temperature (T) in K and density (p) in kg-mole/m>, the
constants for carbon dioxide are:

Bo = 0.024588

A, = 0.176976

Co = 2.451876 x 10° ¥

‘Do = 1.883482 x 10° n o
Eo = 2.631556 x 10° T
b = 0.003781

& = 0.009434
3= 0.055761 | |
5 = 0.0000961229 | o L

¢ = 1.4197888 x 10°

"4 % 0.006421

‘R_:‘ = 0_9083 1 4 ’
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The constants for nitrogen are:

Bo = 0.0422649 .
Ao, = 0.112428

Co = 1143.6859

Do = 8.9909 x 10*

Eo = 3.11307 x 10*

b = 0.00324822
a = 0.00235560

d = 0.0290594 - N

p = 0.0000736446 /

c = 43.793149 |

v = 0.00428738 | C

R = 0.008314

<
-

‘A trial and error procedure with an acceleration
‘\approach was used for thg‘above eqhat&on tordetefmine the
molar densities of carbon dioxide and nitrogen. Acgqrding .
™&a Starling*’, the above equatipn predéété experimental
density data with én‘aQefage uncéftainty of 1% for carbon
'dibxidé and less than 0:5%“}or nitrogen. L . |

B ’ - . -‘ . —“ * V N
The-calculétlons of the carbon d10x1de-and'ndtrogen .

a4

retentlon in the. comp051te carbon ledee - nltrogen slugs

&,

(driven: by water) process were dlfferent from those .
calculatlons in other processes. First, a retentlon of 20%

‘ total n1trogen 1njected Was estimated accordlng to the

Kl

-
~

. prev1ous_exper1ments- Then the,volﬂme of-carbon dioxide
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produced and the volume of nitrogen produced was
determined. Thus, the retention of carbon dioxide was
calculated by subtracting carbon dioxide produced from the

carbon dioxide injected.

In order to determine the permeability for the glass
bead layer and the sand_layeg[inlthe heterogeneous pa&king,
individual permeabilities for glass beads and sand were
measured in a tube .that was 61 cm in length and 4.8 cm in
diameter. The permeabilftdes érev28.4 darcies for glaés
beads and 11.2 daréies for sand, respectively. Then the’
ratio ofvpermeabiliéy'for glass beads to sand was
calculated. The following equation then is used to ‘
caléulate the individual layer permeability :

‘

K( A' = K| A] + Kz Az '\“
/
I
. ’ ' ‘ )
Where: K, - Total permeability for two parallel layers
: . 0 :
A, - Total cross-sectional area
K, - Glass bead layer pefmeabili;y

Ld

A, -"Glass bead layer crogs-sectional aréa R

T
[

.- Sand i{a\.yér permeabilify = .

Az - Sand layer cross-sectional area -

.t

Kz,

and,. . k Aga; A, = A}/Q
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K, = (28.4/11.2) K, = 2.53 K,

»

Flow velocities in a five-spot pattern vary \\\

significantly from near the, wellbore to midway bejfween

wells. The following formula suggested.by Stalkup*® is used
? A \

. ' o . \
for calculating the appropriate superficial velocity:

]

v (5 Q)/(1.4142 H L)

Where: V s Superficial velocity (cm/s) >

Q - Injection rate (cm,/s)
H - Thickness (cm)

L - Length of the model (cm)

¢
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5. Discussion of Results

-

5.1. Presentation of the Experimental Results

In this.stud}, a total of 23 experimental runs were
carried out. Résults of Runs 2'to g} are preseﬂted in Table’
4, which summariZes the basic_data. Detailed.‘ .
injection/production data are given in Tables A1 to A22 for
Runs é to 23, respectively. The run histor}es are plaffed
7in Figs. 11 to 37, respectively. All oflthe imgortant run.

parameters are indicated in the figures for cOdveniencéﬁig¢"

v s

5.2. Types of Ruhs Conducted

As noted in the chapter on experimental results,
sevefal types of runs were carried out, in ordef to test
~ the hypotheses regarding the process mechanisn, aﬁé arﬁd“gé; '
examihe a wide.raﬁge of operating coﬁditfons. The run typés
are indicated in. Table 4, and are also.,summarized below for

refereﬁce: P
C ‘ | ;o ‘
Nitrogen in p}a¢e>of CO, :.Runs.4-to 8

(3
.

Effect of ‘an Initial Gas Saturation, Uéing‘Nitrogen‘f
Run 9 :
BT Efféct\qf,an Initial-Gas Satdration, Ugingxcafbon

poxide : RuQ d01aqd‘11‘j,-

Effect.of Slug Size ': Runs 14, 16, and 17
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Composite Carbon Dioxide and Nitrogen Slugs : Run 15
‘ , 3

Heterogeneous Sand Packs T Runs 18 to 21
' | n
Low Pressure Runs : Runs 22 and 23

In addition, Runs 2, 3, and 8 were carried out with

the sand pack 1initially waterflooded. In all other runs,
7

the sand pack was initially saturated with o0il and

irreducible water saturation. Run 13, for which the
productlon history is shown in F1gure 11, was primarily

f‘a
conflucted to reproduce the results of the previous work byL

Rojas and Farougq Ali:z. The average velocity in the moded
«in most runs was 1.552 m/day; in several runs it was varied
to assess the effect of velocity (Please referlto«{he
‘Chapter 4 Section 4.%. "Data Processinéh-for ealculation of .
the average superfigial_velocfty). In Runs 2 and 12, a

- Sing;e slug_of‘earbon dioxide wé&s driven‘by Pbrine, and in
Run 15 a cpmposipe”ea%hon dioxide and nitregen slué was
driven'hy,brine. In all othef runs, a WAQ -t ype dlsplacement
was emploYed In all runs (e&cept @Runs 22 and 23), as was

the case in the previous work by ROjaS and ?greuq Ali*?, a

constant operatlon pressure of 5 5 MPa was employed
- E

Q, - . ‘ '

K 5.3. Commenfs'on' Table and Graph Erdfr*ies

Tables 4 and Al ‘to A%&‘ist the typer of . run, the WAG |

ratlo (ratld of the total volume of water 1njected to the |

N
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K, = 11!6 mPo s @ 23°C & O Mpag,
Run CondlhOn 21~22°C & 5.5 Mpog

20% Co, WAG process Homogeneous Pack, .

FIGURE 11, Production History of Run 13
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total volume of carbon dﬁoxide injected), the total humber

of slugs (the number of slugs into which the total volume‘ -
of carbon dioxide or water is‘split'for the WAG

diSpiacemeht); the superfﬁcial’velocities for the caroon
dioxide slug (gas) Injection and brine injection, and oil

recovery. The total oil recovery is made up of oil recovery
- M- . ) .

by waterflood (using brine), where applicable, by the -

injected gas (carbon dioxide and/or nitrog%ﬁ) and brine

AY

(single slug or WAG) , ahd by blowdown at the end of a run. _
. These recovery fxgures are 1nd1cated separately Also shown o

;Q’the carbon dlpx¥kerequ1rement defined as the volume of

carbon dlox1de requi’red to produce a unlt,volume of oi1l, in

‘~sm?/sm . Note that the volume of carbon dioxide recovered

L I

oat the end of a run is not subtracted from ﬁhe carbon
. .

dioxide injected in calculating the requirement-. ,U'

-'Figures 11 to 37 show run historieQVhy means of six
plots, each. on the basis of cumulative f1u1d 1n3ected
which is the absc1ssa. The top two plots in each flgure are
the produc1ng _gas- oil ratlo (GOR) and water 011 ratro (WOR)-
' graphs, in sm?/sm?. The two plots 1mmed1ately below are forv
.the 1nject10n pressure, and the back pressure at the ..
productaon end respectlvely The bottom two plots are, forl
.cumulatlve oil recovery,ras percent of the hydrocarbon pore ‘
'volume, and the 1nstantaneous 011 produced to- flu1d .

vlnjected ratlo, in m‘/ml' ThlS ratlo re‘lects the relatlve '

‘011 productzon rates, 1f one cons1ders that the flu1d

N h .. S L
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injected %ill have approximately the same incgemental
B A < «
volumg. ‘Points of carbon dioxide and water breakthrough are

- .

, indicated (Please refer to the chapter on Experimental

'Details for dstermination of the point of carbon dioxide

‘g J . N

breakth?oudh).

®

e
I Y . »

S 5,,§ - Waterf ]ood- Recovery

. As"noted above, in three out of the 23 runs conducted,

-

the sand pack was first waterflooded. In other runs, the

initial oil saturation corresponded tq~irreducible water

sag¥ration, It is important to examine waterflood recovery
S .

in order to show the effectlveness of a carbon d10x1de

flooda\Runs 2, 3, and 8 employed a waterflood prior to the
carbon dioxide flood. Qil,recovery in these was 32.5, 29.6,

and 25.3% of the original oil in place, respectgwvely, for
3 B . . )
» an initial oil saturation of approximately 90% pore’volumeI

(as.shown.dn.éigores {2} 13, and 1%).rThese figures are for
. Oil Sampié Nds.‘? and 8, with-viscosities of‘10§2‘and 1116
! mPa\s, respective1y. breviouslyf Rojas and c‘arou'q Kii",r
. found waterflood reéovehges of . 32,to 36% for a S1m11ar 011
.and sand ThlS waterfloodtrecovery 1s clearly hlgher than

Ry

rec0ver1es normally observed 1n Saskatchewan 011 :gf.~ F

- 4

a reservours, whlch are apprOXLmately one half (o thesel

,—‘ ~ .-

Avalues.vThe main reason for the h1ghet model recoverles is
3 ‘
the hbmogenelty of‘the sand pack “In contrast heavy oxl

reserv01rs 1n Saskatchewan are rather heterogeneous, w1th

LN
r__ s

T
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FIGURE 12, Production History of Run 2
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Composite Carbonh Dioxide and Nitrogen Slugs : Run 15
. .' ) " -' . N ‘ \
Heterogeneous Sand Packs : Runs 18 to-21

3

Low Pressure Runs : Runs 22 and 23
Iin addition,"RUﬁs 2, 3,'and-8-were-cérfied.out‘with
the sand pack initially Qaberf;oodgd.~ln all other runs,
the sand_péck_was Qn?ti;ll&”saturated with o}i‘and
ir;edncible water sa#u?étion; Run f3, for which»the
production“hiStovy iﬁ showh ih.FJgure 11, was primarily
conducted to reproduce the results of the previous work by
Rojas and Faroug Alié’. The .average velocity in the model
in most runs was 1.552 m/day; in several runs it ‘was varied
to assess the effect of velocity (Please refer to thg
Chapter 4 Section 4.7. "Data Pfdcessiné" for céiculaéion of
the average superficial velocity). In Rﬁns 2 and 12{-a
"singfe slug of carbon dioxide was driven by brine, and in
Run 15 a.¢omposite carbon dioxide and nitrogeh slug;@as
driven by b;ine.‘Ih all other runé, é WAG-type displacemeﬁt
was emplqyed. ;n allvrunsviexcepé Runs 22 and 23), ashwasl
the case jin thg,gﬁevious work by Rojas and Férouq Ali",’é

constant operétidn~pressure of 5.5 MPa waﬁwffpléyed.

o

5.3. Comments on Table and Graph Entries '

'Tables 4 and Al to A22 list .the type of rup, the WAG

“ Xatio (ratio of the togal volume of water injected to the .
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total volume oﬁiga:bon dioxide injected), the total nuhber
of slugs (the~§§é§£r of slugs 1nto whlch the total volume
of carbon dloxﬁéﬁjvr witer is split- for the WAG \1
dlsplacement),‘the superf1c1al@veloc1t1esrfor the carbon
'_dioxide slug (gas) injection and brine‘ﬁnaection, and 511
recovery. The total oil recovery.iS‘mede'up ofkoil ;ecovery
by waterflood (using Srine),'where applicable, by the
injected gas (carbon dioxide and/or nitrogen) and brine
(single slug oerAG), and by blowdown at the ena,of a run.
Theée‘recove}y figures.are indicated separeﬁely. Also shown
. ) 4
is the carbon dioxide requirement, defined as-the volumeaef
"carbon dioxide‘required»ﬁo pgoduce'a unit yolume of dil,[in
sm’/sm5}{Nete that the volume éf cafboﬁ didxide recovered

at the end of a run 1s not subtracted from the carbon

dioxide injected in calculating the requirement.

ngures”11_to 37 show run histofies byvmeans‘of six
plots, each on the basie of cumulaeiVe fluid injéeted,
which 1s the absc}ssa. The top eho plots in each figure-are
. the producing gas-oil ratio (GOd) and water—eil ratie (WOR)
_graphs, in em’/sh°. The two plots iamediately beiqw are for
the injection pressure, and the back pfeSsure atvthe
bfoduction end, respectively. The bottom two'pldts are for
:;_cumulatlve oil recovery, as. percent of the hydro§>rb@n pore
volume, and the 1nstantaneous oil. produced to-fluid
1n3ected ratlo, in m*/m>. Thgsﬁratlo reflects the relatiée,;

'0il production rétes,qif one considefs‘that the fluid

A ‘“1.;A o ,R



injected will have approximately the same incremental

volume. Points of carbon diocxide and waper breakthrough are

-

indioatédv(Please refer to the chapter on Ekperimental

Details for determination of the point of carbon dioxide

breakthrough).

5.4. Waterflocod Recovery

As noted above, in three out of the 23 runs conducted,
the sand pack was first waterflooded. In other runs, the
initial oil saturation correSponded to irredocible,water
saturation. It is important to examine waterflood recovery '
in order to show the effectiveness of a carbon dioxide
flood.fRuns 2,,3, and 8 employed a waterfl&od prior to the
carbon dioxfde flood. dil recovery in these was 32. 5, 29.6,
and 25.3% of the or1glnal 011 in place, respectlvely, for
fan 1n1t1al oil saturatlon of approximately 90% pore volume
(as snown in Figures' 12, 13,.and 14)., Thgse figdres,are for
Oil Sample Nos. 7 aha B, with viscosifies of TOBé and 1i16
nPa.s;'sespectivelf. Previously, Rojas andJFarouq Alis®
found naterflood'secoveries of 32 to‘36% for a similar oil -
and sand. This waterflood recovery 1s clearly higher than
recoveries normally observed in Saskatchewan oil
'reserv01rs which are approx1mately one-half of these y
values. The main reason for the hlgher ‘model recoverles ‘is
the homogenelty of the sand pack In contrast,.heavy oil

W

reservoirs in Saskatchewan are,ratner heterogeneous, with
+ : . ' LS : : .
. / - . ‘

o P;.



FIGURE 12, Production History of Run 2
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- \\
considerable sand production, which causes formation of

-

microchannels ("wormholes") and leads to a low waterflood
efficiency. &?ditionally, the¢modelryas éonfined, and the
fiboéing rafesfwere relati%ely'high,,so that the effect of
gradity:yasfless than.that in the field. One hay ask how

[ ] 4 .
far‘éhé,field 0i]l recoveries.would be lower than the model

~"values for the carbon dibxidé'flooding process, because of ~
[ . . - - yl . -

.gormation heterogeneities. Runs 18 to 21 were designed to

~ -answer this guestion for two types'of heterogeneitie%, and

will be discussed later. Oil recovery was found to be

‘relatively insensitive to heterogeneity.



5.5. Reproducigg the Previous, Work

Runs 3 and 12 closely reprdduced the conditions¥ct

82

Runs, 19 and 8, respectrvely, reported %y-Rojas and Faroug

[
Ali®*?,

‘Run 3 employ'ed a 4:1 WAG ratio, with a 20.3%~car’boh“
dioride slug,'with the model initialln waterflooded. In
‘this run the recovery was 36.3%, while the recovery
_“regorted previously was 48.7%. One difference between Run_
and the previous work ‘was thevsuperficial'velocity, which
was 0.776 m/day for both the slug ahdfwater injeotion
phases. In the previous work, the velocity was ﬁt44‘m7day.
Figure 14 gives the production historf for Run‘3v while
Fig. 15 glves a 51m11ar plot for Run—9 in the prev1ous
work, Although the recovery flgures dlffer substantlélly,
the productlon curves are remarkably 51m11ar. For example
the p01nts of carbon dioxide breakthrough are almost
‘1dent1calr,The GOR and WOR gurves have very 51m11ar
variations. Notlce that the oil productlon curve (OPFIR) 1

the prev1ous work shows a continuing hlgh 011 rate,

3

n

p0551bly because of the higher 1n3ectlon rate. It was shown.

~

in the prev1ous work that a high water 1njectlon rate 1is

'cruc1al for a high dlsplacement ef%}c1ency in the carbon

)

d10x1de process.
‘ : e - ¢

[}

Run 12 in the present workgpurports‘to;reproauce.the-4

oohditiohsfof'Rojas and Faroug Ali¥s Run 8. In both cases,

3:
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" “Figure 15 ,Proddf‘étibn_-Histrnyf Run 19 (by Rdja‘s‘ andFarouq/g\ll)
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. . \
a single slug of carbon dioxide was driven b(.a brine

flood.

Tﬁe total‘oil'fecovery in the two cases was 33.0% and-
‘38.3%, fespectively. Fiéﬁres'16‘and 17 show the production
fhistories of thé two runs, respectively. Again, very_close‘
agréement 1s evident. The blowdown recoveries in the two

runs were considerably differeﬁt; iéading'to somewhat
rdiffereﬁt toﬂal récovénies. On the whole, it can be
conciuded that the present experimental results appear to
-be close to those obtained/p;eviougly,'aﬁd thé observed

differences can be attributed to somewhat different

operating condjtions, such as velocities.
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FIGURE 16, Production History of Run 12
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5:6. Nitrogen Floods - . =~ o

Buns 4 through 8 were ca?ried out to assess the

_ mechanisms attrlbuted t% carbon dioxide as the dlsplac1ng
Ty
agent’. Thls was accompllshed by subst1tut1ng niteogen in

v - -

place of carbon dlox1de in WAG type runs. All five runs

employed a nitrogen slug of 20% HCPV (hydrdcarbon: pore
,_ﬁ'.- ‘) o : . - . o - } : b
volume); in Run 8, the model was previously waterflooded.

Run 4 uti}iéeg”a 3897 mPa.s oil, while in the remaining :
runs, a 1146 mPa. s'oilﬂwas employed. The production

hlstorles ofx these runs are shown 1n Fags 18 to 22. It is

G

clear ghat in all cases nitrogen breakthrough occurred
almost. 1mmed1ately upon 1n3ectlon. Water breakthrough
occurred aJ approx1mately 0 2 pore volumes, except in Run
'8, - where there was mobile water to begin‘with. Water
breakthrough ocCurred at almost the”same point in;the
:waterfloods also (Runsv2;~3;‘and 8). ﬁecoveriee.in Runs 4

to 7 were 33.0, 32.4, 31.6, and 32.7%, respectively. The

w

waterflood recoveries dlscussed in the brev1ous section,

averaged about 29% Also Table 4 shovs that.the blowdoWn

L3

recoverles for these four runs vere 4.1, 3.0, 2.4, and

2:6%, respettlver Tﬁus 1f°we do not.consider blowdown,

theyrecoyer;es average~at.29 4%' almost the same as the

A

‘a

waterflood recovery It can therefore be concluded that

1

K

n1trogen acgompllshed llttle moreethan water as a flood;ng

agent The’ add1t1ona1 Pbcovery dur1ng gas blowdowm _
- « . vy L
essentlally pr0v1ded the 1ncremental retovery Run 8 in: -

T - : x
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FIGURE 18 , Production History.of Run 4
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FIGURE 19, Production History of Run 5
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K, = 1116 mpa.s @ 23°C & O Mpag, ¢ =40.40%, S0=92. 987 K= 11 988 Darcies,
Run Condmon 21~22°C & 5.5 Mpog ,



90

FIGURE 20, Production History of Run 6
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which the nitrogen displacement was cqnducted fdollowing a
waterflood, sths a total recoyery}gé 31.6%, altﬁough the
waterflood ;eeovery in this case was lerf. However, this

- was compensated by the subsequent gas{drive effects. Again,
it is clear that no gain was made by nitrogen, except for
the blowdéwn. It should be noted that unlike blowdown in
the case of‘carbon dioxide, which ié a éolution gas drive
effect’, blowdown in the casé‘of nitrogen 1s essentially a
gas drive by included, rather than dissolved Qitroéen. An
examination of Fig. 22 shows the intaréstingffeature that
gas breakthrough did not occur immediately as xoulé\be
expected because the model was initiaily waterflooded.
"Rather ﬁhé injection of the first small slug of nitrogen

‘ ' . 4
delayed the breakthrough to about 0.1 pore volume, pfobably

due to gas permeability hysteresis effects.

! /
/

‘\It should be noteq that neither oil viscos%ty (Run 4.
versﬁs Run 5), nor the WAG rat;o (4:1 in Run 5 vérsu5‘3:1
in Run 7), nor the number of slugs into which the main slug
waS-sbiit-(lO in RunAS versus 18 in Run 6) made mﬁchu
éiffefeﬁﬁe to o0il recovery. It‘is‘particularly femarkable‘
forwRun_4,-iﬁ‘which the oil viscosity was four times higher
‘thah that-in'Run 5, ahd_yet‘the oil recdveries for the»two{
fruns.weré a1most ﬁhe samé, This reflécps thé ef tivenesév
of_the WAG prbgess,_evennih the case of aa;ihé'luble gaé.‘

such as nitrogen. ' R 4 |
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- ,
liguid state in Runs 10 and 11). It is to be noted that in
these runs, over one pore volume of either gas- was

e ' °

injected.

*

Table A8 shows that prior to carbon dioxide slug
injection, 5;67% of the oil was produced by the nitrogen -
preflush. Similarly, Tables A9 and A10 show that the carbon
dioxide pret}ush produced 32.0 and 27.6% of the oil in
place. Thus the high recoveries ohtained are due to the
large volume of the preflush g?§ Even so, it is _
interesting that the presence of a gas saturation had only?
a very g@ell effect on the subseguent carbon dioxide WAG

process.

- s
o

Referring to Figs. 23, 24, and 25, for the aforesaid

runs, it is evident that the oil pro@u ton behaviour was

very different in the case of. the nif gen and carbon
L] . .

dioxide preflushes. In the case of nitrogen (Fig. 23);
there is an initial peri@d ©of very low oil production rates

\

to about 0.2 pore volume, follow1ng which there 1s

essentlally o oi} produot1on This behav1our 1s typical
of#a gas drlve under a very unfavourable mobility ratlo of

the order of 30000. At approximately 1.2 pore volumes, the

“ carbon dioxide WAG process is started, and thé*subsequent-"

1».produetion behaviopr‘is typical of a carbon dioxide WAG

displacément. 0il recovery in this portion of the :

) diSplacement;wéév43.67~— 5.67 = 38%.
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FIGURE 23 , Production History of Run 9
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FIGURE 25 Produchon History of Run 11
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In the case of carbon dioxide, the production
" behaviour is' guite different, as Figs. 24 and 25 show. It
is seen thaf oil 'was produced throughout the injection §f
carbon dioxide. The additional recovery due to the WAG
displacement after the preflush was 58.2 - 32.0 = 26.2%vih‘_
Run 10, and 61.2 - 27.6 = 33.6% in Run 11. The most.
important}difference in this case 1s that the carbon
(dioxide uséd-for the preflush lowered the model oil
viscosity to approximately 47 mPa.s, as a result of which
the gas'drive by carbon dioxide was rather effective. In
both cases, a sharp'increase'in‘the oil-prJduction féte is
evident at approximately 4 pore volumes, which is the point
at which the ca;bon dioxide WAG process was started. In all
cases the producedvGOﬁ“is véry high, i;dicating inefficient{
utilization of carbon dioxide of nitrogen. The high values
of gas requirement in‘Table 4 support this. §uﬁharizi;g, it -
can be said that an initial'gaé saturation in the'fangp'of
'5% does not appear to have an appreciable effect on the
carbon dioxide WAG process. Tﬁe carbon dioxide prB8flush
runs further show the interesting efgeCt of'saturaffng'the

crude oil with carbon dioxide prior to WAG displacement,
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5.8. Effeot -of Carbon Dioxide Slug Size

i3

R T e o P . .
-~ waIn all runs carried out in thid investigation, the
bon dioxide Slug size was kept constant at;?O% HCPY.. In

, Runs 141and 17, slug sizes of 40 %nd 10% were

the;s}ug 51z€i The total oil recoverles for t?e three slugs
use&ﬁ%Pe,plotted in Fig. 26. It is evident that the oil

recovery for'a 209 slug (43f0% in Run 16) was close to that
for the 40% sﬁug 43 7% in Run 14), but appre%iably‘higher‘

than for the 10% slug (35 4% in Run 17). It prears that a

7 . A

larger carbon d1ox1deislug 1s less efficiently utiliged, \\
'and the 011 recovery is’ onlyqsllghtly higher. Flgures 27, '
28 and 29 show the productlon hlStOfleS for the 10} 20,
and 40% carbon dioxide slugs, respectlvely} The {nitial
OPFIR in the case‘of thef40 and 20% slugs is»approxim;tely
90% ih the oil benk. In contrast, it is about 100% for the
10% slug. The oil production in the declining OPFlR period
is.hiéher in the case of the 40% slug than .in the ether

two. The_hlowdown recoveries ate nearly the same ;n all
casesfﬁfhese results have an impertant practic"f??
1mp11cat10n,.vlz. a relatively 'small slug (20% hé;V in this
'worh) is adequate for oil recovery by the 1mmlsc1ble carbon’
dloxfhe WAG process, and a larger slug provides only a
-small 1mprovement The optlmal nature of the 20% slug is
'further 1ndlcated by the GOR curves in Flgs 27, 28, ‘and

29. In the case of both the 10 and 40% slugs, ‘the GOR rises
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rapidly,‘khile in the case Of the 20% slug\iﬁ is
considerably lower. The effect of slug sizexgn gas-o1l

ratio is also plotted in Figure 30.
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FIGURE 27, Production History of Run 17
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Flﬁ'EURE 28 , Production History of Run 16
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FIGURE 29, Production History of Run 14
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HGURE 30 - Fffect o of Slug Size on Gas-0il Ratio
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© 5.9. Composite Carbon Dioxide - Nitrogen -Slugs

The nitrogen WAG runs discussed pfoviously showed that
njtrogén érov}des little improvement over a waterflood.
‘This concept was further tested in an interesting composite
slug fun (Run.15), in which a single 10% slug of carbon
dioxide was followed by a 10% slug of nitrogen , which was
driven by brine. The recovery in th;s run was 35.4%, which
is identiéal to the -35.4% recovery obtained in Run 17,
employing a 10% carbon dioxide slug. In other words, the ¢
additional slug of nitrogen did‘not improve oil recovery at
all. The run histories for these two runs are shown in
Figs. 31 and 27, respecpively. The two production histories
for these runs are remarkably similar;'the 0il production
in the composite slug case (Run 15) is es§entially delayed
by approximéfely 0.2 pore volume. Thus the effect of
- nitrogen was td,delay oil pfoductidn. Notice that carbon
dioxide was injected first; Also,'Run 17 was a WAG run,

which explains oil production from the start.
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FIGURE 31 , Production History of Run 15
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5.10. Heterogeneous Sand Packs

yAn 1mportant gquestion that may b4/asked is : what is
the sensitivi;y of the carbon dioxidé WAG process to
formation heterogeneities? It was decided to examine this
problem for two types 'of heterogeneities, employing a 20%
carbon dioxidé slug apd a 4:1 WAG ratio. Oils with
.viscosfties of 1101 and 2107 mPa.s were employed for each

type of heterogeneity.

Runs 18 and 21 employed the model with a high
‘permeability channel packed along the diagonal connecting
the injéction'and production wells, as shown in Figj 10.
The approximate bermeabilitx of the channel was 25 darci's,
as compared to the pack permeability of 16.969 darcies
(average) (Please refer to the Chapter 4, Section 4.7. "Data
Processing" for calculating ﬁhe permeability of the glass
beads laye[)\‘The oil feéovery in Run 18 was‘30.3% for the
more v1scous oil, while it was 28.8% in an 21 for the less
viscous oil, Thls somewhat unexpected<fecovery mlght be due

to the nonun1form1ty of the heteroaneous pack. The latter

can bevbompared with the figure of 4§%~/Dptained in Run 16.

/
t

The run h1stor1es for Runs 18 and 21 ar? shown in Flgs $ 32
| and 33. A compar51on of Runs, 21 and 16 (Figs. 33 @and 28)
clearly shows thatuln‘the‘heterogenequs model,.cafbon
dioxidé bréakthrough occurred considerably earlier, and-

. most important, the’producing gas-o0il ratio«was much -
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FIGURE 33, Production History of Run 21
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higher. Although the ihiéial OPFIR was relatively lower, a
high value was sustained for a much longer time thdn in the
case of the homogeneous model. The high gas-o0il ratio is

»

even more apparent in Fig. 32 for Run 18 (2107 mPa.s oil).

»

In Runs 19 and 20, the model was packéd ;ith-two
communicating, pifallelnequal th}ckness layers, as shown in
Fig. 9. The approximate permeabilities of the two layers
were 25 and 10 darcies, for the glass bead layer and the
sand layer, reépectively.‘Run 20, utilizing the 1101 mPa.s
o1l yielded a recoverg of 30.3%, while Run 19, employing
the 2107 mPa.s o0il gave a recovery of 22.8%. The 30.3%
recovery for Run 20 can‘be'compared with 43.0% for Run 16,
as before. The production‘histories for Runs 19 and 20 are
‘shown in Figs.- 34 and 35, respectively. In both caéés, it
is clear‘that gas-oil ratios were .very high as comparkd to
the homogeneous pack (Fig. 28), indicating inefficient

utilization of the injected carbon dioxide.

It is interesting to note that'in all heterogeneoué
p;ck runs, the producing water—oii ratio was close to that
- Sbtainéd for the hdmogeheoUs packs, as shown b} Figs. 32,
'33, 34, 35 cpmpérea with Fig. 28. ' |

. S S
~ Summarizing, it.iSfCIéar-that thevpfesence of a
Hétérogeneity-fn the sand- pack causes é.decreasé in oil -
pecovéry,_early gas breakthrou§ﬁ;'High gas¥di1';étibs,vénd
hiqefficignt utilizaﬁion of cafbon'dioiiae, A§'the same

- " Y

I



114

time, the decrease in recovery is not as drastic és ‘the
permeability contrast would seem to indicate. Only two
fypes of heterogeneities were examined in this wsfk,.with a
relatively small permeability contrast (about 2 to 1).
Other types of more severe heterogeneities will be

simulated in the next phase of this research.

-
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FIGURE 34, Production History of Run 19
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FIGURE 35, Production History of Run 20
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5.11. Low Pressure Carbon Dioxide WAG Runs

A

In all of the previous work, the operating pressure
fwas kept constant at 5.5 MPag. In a waterflooded reservéir;
(s the abandonment pressure is often much lower, and it is
impractical to pressurize the reservoir to 5.5 MPag. It
Qas, therefore, decided té carry out two runs at an
operating pressure of 2.5 MPag, this pressure being
representative of a typical watered-out Saskatchewan
reservoit. Runs 22 and 23 employed 10 and 20% HCPV slugs
J(eduivalent to.those at 5.5 MPagl in terms of total number
of moles) of carbon dioxide in a 4:1 WAG process. The oil
recoveries for these runs were 25,7 and 54.9%, respectively
(as shown in Figures 36 and 37), and can be compared with
the recoveries of 35.4 and 43.0%, for similar high pressure
tuns, Runs 17 and 16, respectively. Cleatly, thére is a
considerable drop in oil recovery in ghe case of the 1b%.
slug, but the recovery is approx1mately eight percentiles
lower 1in. the case of the 20% slug.’'This is significant, if
one considers the solubility of carbon dioxide in o0il at
S.SVMPag (86 sm*/sm®) and 2;5 MPa§ (}3 smﬂ/sm‘). It can be
concluded that a_decrease in tﬂe operating pressure causes
a drop in oil recovery, which was rélatively small for some
optimal caern dioxide slug 51ze, which- was 20% HCPV (at

5.5 MPag) in tﬁ}s study

~
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FIGURE 36 , Production History of Run 22
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FIGURE 377, Production History of Run 23
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5.12. 0il Recovery and Carbon Dioxide Requirements

Figure 38 summarizes the oil recovery‘for selected
rﬁns by means of a bar graph. Waterflood recovery is also
shown for comparison. The results are'for runs in which the
0il viscosity was approximately 1000 mPa.s. It isvseen that
the highest recovery was 61.2% in Run 11,'where a carbon
dioxide preflush was usea prior to the WAG process -
{clearly a-very inefficient use of carbon dioxide. The
lowest recovery was obtained in Run 22, which utiliied a
10% slug at the lower pressure of 2.5 MPag.

-

?igure‘39 shows the carbon dioxide requirement, which

—is defined as the sm’ df carbon dioxide injectea to produce
one sm® of oil. The highest vélue"among the carboﬁ dibxidé
runs is 759 (Run 10), for a carbon dioxide preflush, while
‘the loweﬁt value is 28 (Run 17) for a 10% slug. Almost all
values are'ﬁéiow 100, which is very. significant,
conéideringcihat the carbon dioxiae requiremenf'in the éése
_-of miséible carbon dioxide floods is 1500 to 3000 sm’/sm?.
Thus the immiSciblemcarbon dioxide WAG process 1s Vefy4
efficient. It'iS'id;élly suited for moderately viscous o{lé
(1000 to 2000 mPa;s) occurring in . oil reservoirs that are
Unsuitabie for the abpliéatioh’of_thermal méfhods( or wher;‘
vsuchbméfhods (eSpecialiyniﬁ_sitg'combuStionf havé failed.
Mahyvothéf‘factofs, sdch‘as 0il viscosify, reéervoir depth  .

and bottom water, must be congidered inkthe‘field'
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application of this process.
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6. Conclusjons

This investigation wés designed fo examine a variety
of operating conditions for the immiscible carbon dioxide
WAG process, in order to judge itg sensitivity to some of
the field conditions. In addition, it was intended to study
the effect of using nitrogen - a noncondensable gas - in .
place of carbon dioxidé. With this end in view, a serieé of
experimental runs were carried out in a scaled high

pressure model, the results of which are summarized in

~ S

Table 4, on page 72. Within the framework of this study,
~ ' '

the following conclusions are derived: { ¢

1. Substitution of nitrogen for carbon dioxide yieldé
neariy the same 01l recovery as a waterflood in a WAG
type process. It is therefore concluded that thg
méchaniSms postulated fpf the carbon dioxide WAG
process gre valid, i.e. carbon d',x;de leads to oil
viscosity reduction, volume increase, and lowering bf

oill-water IFT.

{

2. A small initial gas saturation, of the order of 5%
pore volume, whether it is free nitrogen or carbon
dioxide, has an insignificant*effect on total oil

P

recovery. i S j/>'

e

3. The carbon dioxige WAG process depends on the slug

size, the o0il recovery decreasing considerably over

124



the 10 to 20% HC slug size range, and increasing

only slightly over the)20 to 40% HCPV range.

-

4. Oil recovery decreased by approximately 13 to 15
percentiles when one of the two sevVere reservoir-scale
heterogeneities tested was present. Based upon the
comparison with homogeneous pack runs, édssibly the

process 1s relatively insensitive to heterogeneities.

Yo
Fiif
o]

5.MOil recovery decreased by apprOfoately 8~ p
percentiles, when a pressure of 2.5 MPag was employed
in place of 5.5 MPag, for the 20% slug.

6. The carbohhdgg#ﬁde requirement in the runs
conducted wééXQé;i Eelow 100 sm?’/sm?*, in nearly all
runs. This compares favourébly with the carbon dioxide
or air requirementé of 1500 to 3000 sm?®/sm’ in the
miscible carbon dioxide process or in‘in situ

combustion.



Nomenclature .

Cross-Sectional Area (cm?)
Diffusivity (cm?*/s)

Thickness (cm)

Permeability (darcy)

Length (;m)

Pressure (MPa)

Injec;ign Flow Rate (ecm®/s)

= Initial 0il Satﬁration (%)
Tem;eratdre (°C or K)

Superficial Velocity (cm/s or m/d)

Molar Density (kg-mole/m?®)

- Viscosity (mPa.s)
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