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Abstract

The formalism of variations of local systems is applied in a geometric setting to define a

notion of geometric variation of local systems ; this provides a natural framework with which

to study families of fibrations of Kähler manifolds. We apply this formalism in various

contexts, starting with an examination of the moduli space of rational elliptic surfaces with

four singular fibres. From there, we use the quadratic twist operation to construct families of

K3 surfaces and examine the resulting geometric variations of local systems. We then proceed

to study families of K3 surface fibrations. Specifically, we study families of M -polarized

K3 surface fibrations and Mn-polarized K3 surface fibrations in the context of geometric

variations of local systems; in particular, we are able to show how to obtain the fourteenth-

case of integral variation of Hodge structures from the Doran-Morgan classification in this

setting. Finally, we explain the connection to geometric isomononodromic deformations and,

more generally, to solutions of the Schlesinger equations.
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Chapter 1

Introduction

In his own thesis [21], Doran described a class of isomonodromic deformations of Fuchsian

equations coming from geometry and named them geometric isomonodromic deformations.

His interest at the time was in finding interesting algebraic solutions to the Schlesinger

equations, of which the sixth Painlevé equation is a special case. By examining the kinds

of geometric isomonodromic deformations that arise from Herfurtner’s classification of the

moduli space of rational elliptic surfaces with four singular fibres [23], Doran was able to

determine the totality of geometric isomonodromic deformations that gave rise to solutions to

Painlevé VI—there were essentially only five of them. The perspective taken in [21], and the

follow-up article [15] was tailored to the period map associated to the differential equation.

This has the effect of inducing an equivalence relation, known as projective equivalence on

the kinds of differential equations in consideration. Such an equivalence relation is also

natural from the standpoint of isomonodromy, but it is not so well-behaved geometrically.

For example, it is possible for two elliptic surfaces to have projectively equivalent Picard-

Fuchs equations without themselves being isomorphic. Indeed, consider any elliptic surface

and apply a quadratic twist.

The goal of this thesis is to refine the notion of geometric isomonodromic deformations

in such a way that we remain sensitive to the underlying geometric structures involved.

This is accomplished in the following manner. Dettweiler-Wewers in [12] have developed a

formalism for studying variations of local systems of R-modules where R is a ring with unit.

Roughly speaking, a variation of local systems is a family of local systems Va parameterized

by a topological space A where each Va is a local system on a punctured sphere. The

sheaf of R-modules on A whose stalks are equal to the parabolic cohomology groups of

the local systems Va is a local system on A that captures information about the variation.

1



CHAPTER 1. INTRODUCTION 2

In the setting where f : X → A is a family of Kähler manifolds for which each Xa itself

admits a fibration of Kähler manifolds, we then imagine the local systems Va as describing

structures related to the “internal” fibration on each Xa and then the parabolic cohomology

local system W on A is a local system capturing information about the “external” fibration

f : X → A. These parabolic cohomology groups have already proved useful in studying

K3 surface-fibred Calabi-Yau threefolds. Indeed, the article [18] explains how the parabolic

cohomology of a single K3 surface fibration can be used to compute the hodge numbers

of the total-space threefold. A key component in these computations was the fact that

the parabolic cohomology groups involved admitted polarizable Hodge structures, thanks to

results of Zucker [45]. While it was observed in [18] that several of these K3 fibrations move

in families, the investigation of the corresponding family of parabolic cohomology groups

was left open. Zucker’s results are quite general and equip the parabolic cohomology groups

of “geometric” local systems with Hodge structures in a general setting. By combining these

results with the variation of local system formalism, we are led to the notion of geometric

variation of local systems. In short, this is a family of variations of Hodge structures whose

parabolic cohomology local system is itself a variation of Hodge structure. This is the natural

successor the notion of geometric isomonodromic deformations and allows us to capture more

of the underlying geometric structures.

Just as important to the subject as the formalism are the algorithms developed in [12]

to compute the corresponding parabolic cohomology groups and the monodromy represen-

tations for the corresponding local systems. By implementing these algorithms in sage, we

are able use these algorithms to compute monodromy representations for many interesting

variations of local systems. Since the algorithms developed in [12] are valid for rings with

unit, we are able to work with Z-bases of parabolic cohomology and obtain Z-valued mon-

odromy matrices. In this way, we remain sensitive to the integral structure underlying the

geometry.

Chapter 2 of the thesis is devoted to recalling and developing the formalism needed to

introduce geometric variations of local systems. In Chapter 3 we explore many of the geo-

metric variations of local systems that come from Herfurtner’s list. As it turns out, there

is a whole array of interesting geometric variations of local systems that can be found in

Herfurtner’s list, despite the fact that it led to so few interesting geometric isomonodromic

deformations. From the Herfurtner list we consider families of K3 surfaces that are obtained

by applying quadratic twists. By computing the monodromy representations of the corre-

sponding parabolic cohomology groups, we are able to compute the Picard number for many

of these families by deciding whether or not the representation is irreducible.

Chapter 4 moves up a dimension and considers geometric variations of local systems
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corresponding to K3 surface fibrations. Specifically, we study manifolds that are fibred by

M -polarized K3 surfaces, where M is the rank eighteen unimodular lattice H ⊕E8 ⊕E8, as

well as Mn-polarized K3 surfaces, where Mn = M ⊕ 〈−2n〉. Starting with the two generic

fibration structures on the family of M -polarized K3 surfaces, we show that that the parabolic

cohomology of the corresponding geometric variations of local systems gives rise to the rank

four two-parameter transcendental lattice local system on the M -polarized moduli space

MM . By restricting to a special “σ = 1” sub-locus, we are able to apply the Dettweiler-

Wewers algorithm to compute the monodromy representation in two different ways. In turn,

we show how to obtain the fourteenth case of integral variations of Hodge structure classified

in [20] by constructing a one-parameter geometric variation of local systems corresponding

to a family of Calabi-Yau threefolds fibred by M -polarized K3 surfaces in the σ = 1 locus.

After constructing the fourteenth case variation, we examine Mn-polarized K3 surfaces.

We state a definition of generalized “K-equation” that captures the structure of the kinds

of differential equations that arise from studying the corresponding mirror-map and prove

a similar structural result to the result of Stiller [42]. We then consider the Dwork pencil

of mirror hypersurfaces and the “iterative” geometric variations of local systems therein.

Starting with the family of mirror cubic elliptic curves, we are able to construct the variation

of Hodge structure on the family of mirror quartic surfaces using our techniques; in turn,

we construct the variation of Hodge structure on the family of mirror quintic hypersurfaces

from this.

Chapter 5 brings us back to Doran’s original motivations: the Schlesinger equations.

We explain precisely the close relationship between isomonodromy and variations of local

systems. By considering the Schlesinger equations, we use results of [27] and [32] to show that

geometric variations of local systems will always give rise to “Schlesinger” deformations, as

opposed to “non-Schlesinger.” We end the thesis by noting that associating to each solution

of the Schlesinger equations its parabolic cohomology may be an interesting invariant to

study from the point of view of the classification problem of the algebraic solutions. It is

shown by example how this can be implemented for solutions to Painlevé VI, which now has

a complete classification of solutions [33].

Finally, Chapter 6 describes some of the various directions in which we will continue to

apply the tools developed in this thesis.



Chapter 2

Geometric Variations of Local

Systems

In this chapter, we review the necessary prerequisite material to develop the notion of ge-

ometric variations of local systems. We start with Fuchsian differential equations, local

systems and flat connections, and then review the theory of variations of local systems as

discussed in [12], going over in some details their algorithm that will be used extensively in

this thesis. After reviewing local systems and their variations, we discuss Hodge structure,

their variations, and the result of Zucker that allow us to endow our parabolic cohomology

groups with a Hodge structure. Finally, we combine these notions and define geometric

variations of local systems in an abstract setting, laying the groundwork for the rest of the

thesis.

2.1 Variations of Local Systems and Parabolic Coho-

mology

Here we review local systems and differential equations. Our conventions on the fundamental

group of a topological space are the following: the product of two loops α ·β denotes the loop

obtained by first traveling along α, and then along β, i.e., we read loops from the left to the

right. With this convention on the fundamental group, it is most natural to consider right

actions when speaking about group actions, and we do this for most of the thesis, pointing

out when/if we stray from this. These are the conventions that are used by Dettweiler-

Wewers in their papers on the subject, making it easier for the reader to transition between

our work and theirs.

4
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2.1.1 Fuchsian Differential Equations

We begin with a quick discussion of the necessary background of Fuchsian differential equa-

tions and differential systems. For references, the reader is encouraged to consult [26] for a

careful treatment of the subject. Consider the n-th order differential equation

dnf

dtn
+ a1(t)

dn−1f

dtn−1
+ · · ·+ an(t)f = 0. (2.1)

The singular points of equation (2.1) are the points at which the coefficients ai(t) fail to

be holomorphic. We say that (2.1) is Fuchsian, or is in the Fuchsian class if each singular

point of (2.1) is regular. This means that solutions to (2.1) obey certain growth conditions

near each singular point. In turn, this condition is equivalent to growth conditions on the

coefficients: equation (2.1) is Fuchsian with regular singularities at t1, . . . , tm+1 = ∞ if and

only if the coefficients are of the form

ak(t) =
pk(t)∏m

i=1(t− ti)k
,

where each pk(t) is a polynomial of degree at most k(m− 1).

The solution space in a neighbourhood of each regular point to (2.1) is a complex vector

space of dimension n. A basis {f1, . . . , fn} of solutions is known as a fundamental set

of solutions to (2.1). Two differential equations of the form (2.1) are called projectively

equivalent if there is function λ(t) for which the map f 7→ λ · f maps the solution space of

the first equation to the other. In particular, if we scale by the n-th root of the Wronskian,

which is defined to be the determinant of the matrix whose columns consist of the first n−1

derivatives of a fundamental set of solutions, then we obtain the projective normal form of

(2.1)—this is the unique n-th order Fuchsian equation that is projectively equivalent to (2.1)

for which the coefficient a1 vanishes.

Suppose now that {f1, . . . , fn} is a fundamental set of solutions defined in a neighbour-

hood of t0, and let S = P1
t − {t1, . . . , tm,∞}, and G = π1(S, t0) be the fundamental group.

The solutions fi are functions on the universal cover S̃ and G acts as deck transformations.

For each solution f of (2.1), the function fγ is also a solution. If we fix a fundamental set

{f1, . . . , fn} of solutions and write them as a column vector, then for each γ ∈ G, there is a

uniquely determined matrix ρ(γ) ∈ GLn(C) satisfying




f1

...

fn




γ

= ρ(γ)




f1

...

fn


 ,
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known as the monodromy matrix. The map ρ : G → GLn(C) is a homomorphism and is

called the monodromy representation of (2.1) with respect to the basis {f1, . . . , fn}.
Suppose that t = 0 is a regular singular point of the differential equation (2.1) and

introduce the operator

δ := t
d

dt
.

Using the fact that tk d
k

dtk
= δ(δ − 1) · · · (δ − k + 1), we can re-write (2.1) as

L(f) = 0, L =
n∑

i=0

bi(t)δ
n−i,

where b0(t) = 1 and the other bi are convergent power series in t. The polynomial g :=∑n
i=0 bi(0)sn−i is called the characteristic equation of (2.1) at t = 0 and its roots are called

the characteristic exponents at t = 0. We define the characteristic equations and exponents

for an arbitrary point t ∈ C by making the appropriate change of variable.

The data of the characteristic exponents and the singular points of a differential equations

is typically tabulated as follows, in a table known as the Riemann-scheme:

t1 · · · tm+1

s1
1 · · · sm+1

1

...
...

...

s1
n · · · sm+1

n

The Riemann-scheme tells us information about the local solutions near each singular

point. One can use the Fröbenius method to find power-series solutions to (2.1) near each

singular point and determine the local monodromy transformation [26]. If s1, . . . , sn are the

characteristic exponents of (2.1) at the singular point t = ti, then the eigenvalues of the

monodromy transformation along a small loop around ti are equal to e2πis1 , . . . e2πisn [26].

Thus, the determinant and trace of each monodromy transformation is determined by the

Riemann-scheme. In particular, if the exponent differences si − sj are all non-integers, the

monodromy transformation is diagonalizable.

If the exponent differences are all integers, then many things can happen. First, we may

have a so-called logarithmic singularity, in which case the monodromy transformation for a

loop near this point will have infinite-order. It may also be the case that the singular point is

an apparent singular point, which, by definition, means that the corresponding monodromy

transformation is trivial. That is, an apparent singularity is a singularity of the equation

(2.1) that nonetheless admits a basis of single-valued (but possibly meromorphic) solutions
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near the singularity.

We will also consider linear systems of differential equations of rank n. These are linear

differential equations for the form
dy

dx
= A(t)y, (2.2)

where y = (y1, . . . , yn) is a vector-valued function of t and A(t) is a matrix. A matrix

Y (t) whose columns solve the Fuchsian system (2.2) is known as a fundamental matrix of

solutions. Starting with the rank n Fuchsian differential equation (2.1) in the unknown y,

then setting yi = di−1y
dti−1 , we can express equation (2.1) as a Fuchsian system.

Just like for Fuchsian differential equations, the system above is called Fuchsian if each

singular point is regular. If A(t) has at worst poles of order one, then the system is Fuchsian

[26], but the converse is not true: there are Fuchsian systems that may have worse polls.

While it will not be needed for us, there is analogue of the Fröbenius method that tells us

what the local solutions to the system (2.2) are. The analogue of the characteristic exponents

are the eigenvalues of the residue matrices rest=tiA(t) at the singular point t = ti. If Y is a

fundamental matrix for (2.2), then we can write

Y σ = ρ(σ)Y,

where ρ(σ) ∈ GLn(C); this is what we mean when we say monodromy representation in the

case of differential systems.

2.1.2 Local Systems and Parabolic Cohomology

Next we recall some of the theory of local systems, parabolic cohomology, and variations

of local systems, following the treatment in [12]. We start with a connected and locally

contractible topological space X, and let R be a commutative ring with unit; for all of our

applications, we will take R = Z,Q or C.

Definition 1. A local system of R-modules on X is a locally constant sheaf V on X, the

stalks of which are free R-modules of finite rank p.

The stalk of V at a point x ∈ X will be denoted by Vx. Once we fix a base point

x0 ∈ X, the fundamental group π1(X, x0) acts on the stalk Vx0 , which we will denote by V ;

the following theorem of Deligne characterizes the structure of local systems in terms of this

action:

Theorem ((2.5.2) in [11]). The fundamental group π1(X, x0) acts on the stalk Vx0, and

the functor V 7→ Vx0 induces an equivalence of categories between local systems on X and

representations of the fundamental group into GL(V ).
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Definition 2. The representation ρ : π1(X, x0) → GL(V ) associated to a local system will

be called the monodromy representation associated to the local system.

Remark 1. We will use the convention that the fundamental group acts on V on the right. Af-

ter picking a basis for V , we may represent elements of V as row vectors and the monodromy

representation

ρ : π1(X, x0)→ GLp(R)

is given by right-multiplication:

vγ = v · ρ(γ).

These conventions are the same as those that appear in [12], and will allow us to most easily

implement their algorithms.

Remark 2. We consider two representations ρ1, ρ2 to be isomorphic if they are related by a

change of basis.

We now focus on the case where X ∼= P1
C is the Riemann sphere. Let D = {x1, . . . , xr} ⊆

X be a subset of r pairwise distinct points, and denote by U the compliment U = X −D.

Then, one can choose simple loops γi ∈ π1(U, x0) that go around xi counter-clockwise in

such a way that

γ1 · · · γr = 1.

This gives us a presentation of π1(U, x0) as a free group on r− 1 generators. A local system

of R-modules on U corresponds to a representation ρ : π1(U, x0) → GL(V ) which, in turn,

corresponds to an r-tuple of transformations gi = ρ(γi) satisfying

g1 · · · gr = 1.

Conversely, if we are given an r-tuple of transformations g = (g1, . . . , gr) whose product is

trivial, then the categorical equivalence discussed above gives rise to a local system V with

this monodromy representation.

Let j : U → X denote the inclusion map.

Definition 3. The (first) parabolic cohomology of the local system V is the sheaf cohomology

of j∗V and will be denoted by

H1
p (U,V) := H1(X, j∗V).

According to [12], this cohomology group is a subgroup of H1(π1(U, x0), V ), computed using

group cohomology.
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In concrete terms, a cocycle for π1(U, x0) with values in V is a map δ : π1(U, x0) → V

satisfying δ(αβ) = δ(α) · ρ(β) + δ(β). If we set vi = δ(γi), then since δ(1) = 0, we find the

following relation among the vi:

v1 · g2 · · · gr + v2 · g3 · · · gr + · · ·+ vr = 0. (2.3)

Conversely, if we have an r-tuple of vectors (v1, . . . , vr) ∈ V r that satisfy relation (2.3), then

we obtain a unique cocycle by setting δ(γi) = vi and extending to the rest of the fundamental

group using the cocycle condition. The cocycle is a coboundary if and only if we can find a

vector v ∈ V for which vi = v · (gi − 1) holds for all i.

The parabolic cohomology group H1
p (U,V) is a subgroup of H1(U,V) = H1(π1(U, x0), V )

and we call such cocycles parabolic cocycles. This subgroup is characterized by the following

condition:

Lemma (Lemma 1.2 [12]). The cocycle δ is a parabolic cocycle if and only if vi lies in the

image of (gi − 1) for all i.

Define the following subspaces of V r:

Hg = {(v1, . . . , vr)| vi ∈ image(gi − 1), and condition (2.3) holds}

and

Eg = {(v · (g1 − 1), · · · , v · (gr − 1))| v ∈ V }.

Then, the association δ 7→ (v1, . . . , vr) is an isomorphism

H1
p (U,V) ∼= Wg := Hg/Eg

by the previous lemma.

If the stabilizer V π1(U,0) is trivial, then this description of the parabolic cohomology group

allows us to compute the rank in the case R = K is a field:

dimK H
1
p (U,V) = (r − 2) · dimK V −

r∑

i=1

dimK ker(gi − 1). (2.4)

The differential equations that we considered in the previous section give rise to complex

local systems. Let V be a quasi-coherent sheaf of OX-modules. A connection on V is a

C-linear homomorphism

∇ : V → Ω1
X ⊗OX V := Ω1

X(V)
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that satisfies the Leibniz identity:

∇(gs) = dg ⊗ s+ g∇s.

Given a connection ∇ = ∇0 : V → Ω1
X ⊗ V , it can be extended to a C-linear map

∇i : Ωi ⊗ V → Ωi+1 ⊗ V

via

∇i(ω ⊗ s) := dω ⊗ s+ (−1)iω ∧∇0(s).

The composition R = ∇1∇0 is called the curvature of the connection ∇; a connection ∇ is

flat, or integrable if R = 0.

Suppose now that E is a complex local system on X, and let E = OX ⊗E. Then we can

give E a natural connection ∇ for which E = ker∇ by setting

∇(gs) = dgs,

where g ∈ OX and s ∈ E. This connection is flat and known as the Gauss-Manin connection

associated to the local system E. Conversely, we have the following theorem of Deligne:

Theorem (Deligne [11]). Let ∇ be a connection on a locally free sheaf E over a connected

domain X. Set E = ker∇. If ∇ is flat, then E is a local system on X and E = OX ⊗ E.

2.1.3 Variations of Local Systems

In this section, we introduce the notion of a variation of local systems.

Definition 4. Let A be a connected complex manifold and r ≥ 3. An r-configuration over

A consists of a smooth and proper morphism π : X → A of complex manifolds together with

a smooth relative divisor D ⊆ X for which the fibres Xa are isomorphic to P1
C and D ∩Xa

consists of r pairwise distinct points.

Fix an r-configuration (X,D) over A, let U = X − D, and denote by j : U → X the

inclusion and π : U → A the projection. Choose a base point a0 ∈ A and set X0 = π−1(a0),

D0 = X0 ∩D = {x1, . . . , xr}, and U0 = X0−D0. Let x0 ∈ U0 be a base point. The fibration

π : U → A gives rise to a short exact sequence of fundamental groups [12]:

1 // π1(U0, x0) // π1(U, x0) // π1(A, a0) // 1. (2.5)
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Let V0 be a local system ofR-modules on U0 corresponding to a representation ρ0 : π1(U0, x0)→
GL(V ).

Definition 5. A variation of the local system V0 over A is a local system V of R-modules

on U whose restriction to U0 is identified with V0.

The parabolic cohomology of the variation V is the higher direct image sheaf

W = R1π∗(j∗V).

By definition, the parabolic cohomology of the variation is a sheaf of R-modules on A.

Locally on A, the configuration (X,D) is topologically trivial, and it follows thatW is locally

constant with fibre

W = H1
p (U0,V0).

Therefore, W is itself a local system of R-modules. Let η : π1(A, a0) → GL(W ) denote its

corresponding monodromy representation. The following lemma describes the monodromy

representation for this new local system:

Lemma (Lemma 2.2 [12]). Let β ∈ π1(A) and δ : π1(U0)→ V be a parabolic cocycle, with [δ]

the corresponding equivalence class. Let β̃ ∈ π1(U) be a lift of β. Then [δ]η(β) = [δ′], where

δ′ : π1(U0)→ V is the cocycle

α 7→ δ(β̃αβ̃−1) · ρ(β̃), α ∈ π1(U0).

Remark 3. While it is not emphasized in [12], it should be noted that the sheaf W may not,

in general, be free—there may be torsion. We obtain a local system of R-modules, in the

sense of [12], by dividing out by the torsion subgroup. The braid companion quotient Wg

that one works with when implementing the algorithms in [12] is equal to the intersection

of parabolic cohomology tensored with the field of fractions and the R-valued cohomology

group, i.e., is identified with parabolic cohomology modulo torsion. This is not an issue for

us because we divide out by the torsion anyway when working with Hodge structures, but

we point it out because some of the parabolic cohomology groups we will work with are not

torsion-free, as we will see in the next Chapter.

2.1.4 Computing the Monodromy Representation of Parabolic Co-

homology

Given a variation of local systems V , the monodromy representation η of the parabolic

cohomology can be computed explicitly under some mild assumptions. In order to describe
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the algorithm, we introduce a few more preliminaries.

Let

Or−1 = {D′ ⊆ C| |D′| = r − 1} = {D ⊆ P1
C| |D| = r, ∞ ∈ D}

be the configuration space of r− 1 points in the plane, or of r points on the Riemann sphere

with one of the points at ∞. The fundamental group π1(Or−1, D0) is known as the Artin

braid group on r− 1 strands. The braid group admits standard generators β1, . . . , βr−2 that

exchange the position of xi, xi+1 by rotating counterclockwise [2]. These generators satisfy

the relations

βiβi+1βi = βi+1βiβi+1, βiβj = βjβi |i− j| > 1.

Let

Er(V ) = {g = (g1, . . . , gr)| gi ∈ GL(V ), g1 . . . gr = 1}.

Then, Ar−1 acts on Er(V ) from the right via

gβi = (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gr).

If Hg, Eg denote the vector spaces introduced earlier, then we define an R-linear isomorphism

Φ(g, β) : Hg → Hgβ ,

by declaring

(v1, . . . , vr)
Φ(g,βi) = (v1, . . . , vi+1, vi+1(1− g−1

i+1gigi+1) + vigi+1, · · · , vr), (2.6)

and extending to all of the braid group using the “cocycle” rule:

Φ(g, β)Φ(gβ, β′) = Φ(g, ββ′).

These maps act appropriately on the submodules Eg and therefore induce an isomorphism

Φ(g, β) : Wg → Wgβ .

On the other hand, given h ∈ GL(V ), we define isomorphisms

Ψ(g, h) :

{
Hgh → Hg

(v1, . . . , vr) 7→ (v1 · h, · · · , vr · h)
,
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where gh = (h−1g1h, . . . , h
−1grh). The maps Ψ(g, h) induce isomorphisms

Ψ(g, h) : Wgh → Wg.

For the rest of this section, we make the following assumptions:

• X = P1
A is the relative projective line over A;

• the divisor D contains {∞} × A ⊆ P1
A;

• there exists a point a0 ∈ A such that D0 is contained in the real-line.

Remark 4. These assumptions are only to make computations more feasible in [12]. As they

will hold in all applications in this thesis, we choose to make these assumptions ourselves for

clarity of exposition.

Since ∞×A ⊆ D, we can use D0 as a base point for the configuration space Or−1. The

divisor D ⊆ P1
A gives rise to a holomorphic map A→ Or−1 by sending each a ∈ A to D∩Xa.

Let Ar−1 = π1(Or, D0) be the fundamental group—it is more commonly known as the Artin

braid group.

Definition 6. Notation as above, let ϕ : π1(A, a0) → Ar−1 be the corresponding push-

forward homomorphism on fundamental groups. The map ϕ is called the braiding map

induced by the configuration (X,D).

The variation V corresponds to a monodromy representation ρ : π1(U) → GL(V ). Let

ρ0 : π1(U0) → GL(V ) denote its restriction, via the exact sequence (2.5). As explained in

[12], the short exact sequence is split, so that ρ is determined by ρ0 and a representation

χ : π1(A) → GL(V ). A loop γ ∈ π1(A) acts on the initial representation ρ0 in two different

ways. First, we can lift the loop γ to a loop in π1(U) and act by conjugation; this has the

effect of conjugating the representation ρ0 by χ(γ)−1. On the other hand, ϕ(γ) ∈ Ar−1 acts

via the braid action defined above. These actions are compatible:

gϕ(γ) = gχ(γ)−1

.

We then have the following theorem proved in [12]:

Theorem (Theorem 2.5 [12]). Let W be the parabolic cohomology of V and η : π1(A, a0)→
GL(W ) the monodromy representation. For all γ ∈ π1(A, a0), we have

η(γ) = Φ(g, ϕ(γ)) ·Ψ(g, χ(γ)).
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Remark 5. As is pointed out in [12], if R is a field and the local system is irreducible, then

the homomorphism χ is determined up to scalar multiples by the braiding map because

of Schur’s lemma. It follows that the braiding map is enough to determine the projective

monodromy representation. In many of the examples we discuss, we can use other knowledge

of the parabolic cohomology local system, such as the Picard-Fuchs equation, to pin down

the representation precisely.

This theorem, together with the preceding discussion, describes an algorithm to com-

pute the monodromy representation of the parabolic cohomology of a variation of local

systems, which we now summarize. Start with a variation of local systems defined on an

r-configuration and fix a base point a0 ∈ A, and the initial monodromy representation ρ0,

which corresponds to an r-tuple of matrix g. Further, suppose that γ1, . . . , γs are generators

for π1(A, a0). Then, the following steps compute the projective monodromy representation

for the parabolic cohomology local system on A:

1. construct the spaces Hg, Eg,Wg;

2. for each i = 1, . . . , s, find matrices hi ∈ GLr(C) for which

gϕ(γi) = gh
−1
i ;

3. compute the transformations Φ(g, ϕ(γi)) and Ψ(g, hi);

4. the projective monodromy is given by η(γi) = Φ(g, ϕ(γi)) ·Ψ(g, hi)

Thus, in order to compute the monodromy representation, we must know the braiding

map ϕ and the representation χ. In practice, it is the description of the braiding map that

is the most complicated part of the algorithm.

2.2 Variations of Hodge Structures

The local systems that will play the central role of this thesis are ones arising from geom-

etry. Specifically, we will be studying variations of Hodge structures. We begin with some

preliminaries on the subject, following the treatment found in the very-well written survey

paper [44] and text [6].
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2.2.1 Hodge structures

Definition 7. A (pure) Hodge structure of weight n ∈ Z, denoted by (HZ, H
p,q) is a finitely

generated abelian group HZ together with a decomposition of the complexification:

HC =
⊕

p+q=n

Hp,q

satisfying Hp,q = Hq,p.

We will also be interested in rational Hodge structures, but we always want to be sensitive

to the integral story in our work. Equivalent to the above Hodge decomposition is the Hodge

filtration. This is a finite decreasing filtration {F p} of HC

HC ⊃ · · · ⊃ F p ⊃ F p+1 ⊃ · · · ,

such that

HC
∼= F p ⊕ F n−p+1.

Given the hodge decomposition, we obtain the filtration by setting

F p :=
⊕

i≥p
H i,n−i;

given the filtration, we recover the decomposition by setting

Hp,q := F p ∩ F q.

The filtration perspective is a useful reformulation as it varies holomorphically in families

[44].

Let us briefly recall the Hodge decomposition associate to a Kähler manifold. Start with

an m-dimensional Riemannian manifold. Let AnX be the sheaf of smooth n-forms and let

d : A → An+1 denote the exterior derivative. The laplacian is given by

∆d = dδ + δd,

where δ : An → An−1 is the codifferential given by δ = (−1)nm+m+1∗d∗ where ∗ is the Hodge

star operator. Let Hn(X) denote the set of harmonic forms of degree n:

Hn(X) := {α ∈ An|∆α = 0}.
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Then, Hodge’s theorem states that

Hn(X) ∼= Hn(X,R).

Now suppose X is a complex manifold with Hermitian metric. Then, the sheaf An splits as

a direct sum

AnX =
⊕

p+q=n

Ap,q,

where the sheaves on the right-hand side are the sheaves of (p, q) forms. The differential

d decomposes as d = ∂ + ∂, the so-called Dolbeault operators. We have ∂ : Ap,q → Ap+1,q

and ∂ : Ap,q → Ap,q+1. This allows to defined operators ∆∂ and ∆∂, which preserve the

bidegree. Note that for an arbitrary complex manifold, these operators may not be related

to the regular laplacian and the laplacian need not preserve bidgree.

This is why we restrict to Kähler manifolds, those for which the imaginary part ω of the

hermitian metric (a (1, 1) form) is closed. For such manifolds, we call ω the Kähler form.

Under this assumption, we have

∆d = 2∆∂ = 2∆∂.

This allows us to decompose

Hn(X) =
⊕
Hp,q(X),

where Hp,q(X) is the space of harmonic forms of type (p, q); this decomposition satisfies the

conjugacy conditions. If we further assume that X is compact, we have Hn(X) ∼= Hn(X,C),

and so we get a decomposition of complex cohomology. By Dolbeault’s isomorphism, one can

show that Hp,q ∼= Hq(X,Ωp
X), where Ωp

X is the sheaf of holomorphic p-forms on X. Thus, to

each Kähler manifold, we have an integral Hodge structure of weight n on Hn(X,Z)/torsion.

We will be interested in Hodge structures with an additional structure known as a po-

larization. Notation as above, consider the Hodge structure of weight n attached to the

cohomology of a Käher manifold X. The Kähler form ω allows us to define a non-degenerate

bilinear form Q : HZ ×HZ → Z by the formula

Q(ξ, η) :=

∫

X

ξ ∧ η ∧ ωdimX−n.

This form extends by C-linearity to HC on which it enjoys the following properties:

• Q is (−1)n-symmetric;

• Q(ξ, η) = 0 for ξ ∈ Hp,q and η ∈ Hp′,q′ with p 6= q′;
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• (−1)
n(n−1)

2 ip−qQ(ξ, ξ) > 0 for ξ 6= 0 ∈ Hp,q.

Definition 8. A polarized hodge structure of weight n consists of an (integral) hodge struc-

ture of weight n together with a non-degenerate bilinear form on HZ which extends to HC

and enjoys the above properties.

2.2.2 Variation of Hodge Structure and Parabolic Cohomology

Given a family of Kähler manifolds, we now wish to consider the way in which the Hodge

structures vary. More precisely, consider f : X → ∆, a proper smooth surjective morphism

onto a complex polydisc and assume that the fibres Xb are all compact Kähler manifolds.

Further assume that there exists ω ∈ H2(X ,Z) for which we have ω|Xb is a Kähler class.

We then have polarized hodge structures of weight n on each Hn(Xb,Z) that varies with b.

Under this set-up, there is a unique isomorphism Hn(Xb,Z) ∼= Hn(Xb′ ,Z) for each b, b′ ∈ ∆

and so there is no ambiguity in us setting HZ := Hn(Xb,Z) and HC = Hn(Xb,C) since

these don’t depend on b. These isomorphisms do not preserve the Hodge decomposition as

b varies, rather it varies in such a way that the hodge numbers are preserved.

Definition 9. Let D be the set of collections of subspaces {Hp,q} of HC for which HC =⊕
Hp,q and dim(Hp,q) = hp,q, on which Q satisfies the conditions we need. Alternatively, we

may define D to be the set of all filtrations {F p} for which dimF p = hn,0 + · · ·+ hp,n−p and

Q satisfies the Hodge-Riemann relations.

The space D is called the local period domain and is actually a real manifold. Moreover,

we can enhance D to a complex manifold. The point is that we obtain a map φ : ∆ → D
defined by associating the Hodge-filtration to each point b ∈ ∆; this is called the local period

mapping.

In terms of the filtration, we find that the following two properties hold:

∂F p
b

∂b
⊆ F p

b

∂F p
b

∂b
⊆ F p−1

b .

The first is called holomorphicity and implies that φ is holomorphic and the second is known

as Griffiths transversality.

Of course, we want to study families over non-contractible domains. In this case, the

isomorphisms of the cohomology groups are no longer unique and we will have to quotient
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out by monodromy. To this end, set

Aut(HZ, Q) := {g : HZ → HZ|Q(ξg, ηg) = Q(ξ, η)}.

This group acts on the period domain in the natural manner. Gluing isomorphisms Hn(Xb,Z) ∼=
Hn(Xb′ ,Z) for b, b′ close together, we find that Hn(Xb,Z) may not return itself when con-

tinued along a path. Instead, for each γ ∈ π1(B, b), there is an automorphism ρ(γ) ∈
Aut(HZ, Q) for which analytic continuation is given by multiplication-by-ρ(γ). If Γ is a sub-

group containing the image of this monodromy representation, then we obtain a well-defined

period map

φ : B → Γ\D,

which we call the global period mapping. The quotient is called the period domain.

Now let D be a local period domain classifying Hodge structures of weight n on HC

polarized by Q, let Γ ⊆ Aut(HZ, Q) as above and B a complex manifold.

Definition 10. A map φ : B → Γ\D defines a polarized variation of Hodge structure of

weight n on B if

• for each b ∈ B, the map φ lifts a holomorphic map φ̃b : ∆→ D;

• the locals lifts satisfy Griffiths transversality.

We can express this in the language of flat connections and local systems as follows. Let

B be a complex manifold and let EZ be a locally constant system of finitely generated free

Z-modules on B. Set E := EZ ⊗ OB. Then E is a complex vector bundle and is equipped

with the Gauss-Manin connection ∇ : E → E ⊗Ω1
B induced by d : OB → Ω1

B. Let {Fp} be a

filtration by subbundles.

Definition 11. The data (EZ,F) defines a variation of Hodge structure of weight n on B if

• {Fp} induces Hodge structures on weight n on the fibres of E ;

• if s is a section of Fp and ζ is a vector field of type (1, 0), then ∇ζs is a section of Fp−1

(Griffiths transversality).

Furthermore, if EZ carries a non-degenerate bilinear form Q : EZ × EZ → Z, we have a

polarized variation of hodge structures if

• Q defines a polarized Hodge structure on each fibre;
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• Q is flat with respect to ∇; that is, we have

dQ(s, s′) = Q(∇s, s′) +Q(s,∇s′).

In particular, a variation of Hodge structure is an integral local system; we may therefore

consider the associated parabolic cohomology. Results of Zucker show that this group can be

given a Hodge structure in the case where the base of the family is a curve. More precisely,

he proves the following theorem

Theorem (Theorem 7.12 [45]). Let S be a non-singular algebraic curve over C, S its smooth

completion, j : S → S, and V a local system of complex vector spaces underlying a polarizable

variation of Hodge structure of weight m. Then, there is a natural polarizable Hodge structure

of weight m+ i on H i(S, j∗V ) associated to the variation of Hodge structure.

As Zucker explains, when V = Rmf∗C, j∗V is the sheaf of local invariant “cycles” and

the Hodge structure is most interesting when i = 1. A Hodge structure can always be placed

extrinsically on H1(S, j∗Rmf∗C) using the Leray spectral sequence for f ; one of the main

results of [45] is that these two Hodge structures coincide:

Theorem (Theorem 15.5 [45]). The Hodge structure on H1(S,Rif∗C) is induced by that of

H i+1(X).

That is, there is an inclusion of H1(S,Rif∗Q) inside H i+1(X,Q) for which the Hodge

structure on H1(S,Rif∗C) agrees with the one it inherits from the Hodge structure on

H i+1(X,C).

2.2.3 Geometric Variations of Local Systems

Here, we combine the notions of variations of local systems and variations of Hodge structures

and introduce the main subject of this thesis: geometric variations of local systems.

Let π : X → A be an r-configuration. That is, we consider a proper morphism of complex

manifolds π : X → A, together with a smooth relative divisor D ⊆ X for which each fibre Xa

is isomorphic to P1
C, and Da = D∩Xa consists of r pairwise-distinct points; let U = X −D

and set Ua = Xa −Da for each a ∈ A.

Theorem/Definition 1. A geometric variation of local systems is a variation of local sys-

tems V satisfying the following conditions:

1. the local system V is a polarized variation of Hodge structures of weight n over A;
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2. for each a ∈ A, the restriction Va is itself a polarized variation of Hodge structures of

weight n over Ua;

3. the parabolic cohomologyW is a polarized variation of Hodge structures of weight n+1.

Let f : X → U ⊆ X be a family of Kähler manifolds, and let V = Rnf∗Z be the po-

larized variation of Hodge structure of weight n on U corresponding to the n-th cohomology

groups, equipped with the Gauss-Manin connection. For each a ∈ A, let fa : Xa → Ua be the

restriction of f to the fibre Xa over a ∈ A of the composition π ◦ f , and let Va,∇a denote

the restrictions of V ,∇ to the fibre Ua ⊆ Xa
∼= P1. Then V defines a geometric variation of

local systems.

Remark 6. In the above definition, conditions (1) and (2) imply that each stalk Wa carries

a polarized Hodge structure by the results of Zucker [45]. The additional condition being

imposed in this definition is that the Gauss-Manin connection on W gives rise to a vari-

ation of Hodge structures. In practice, the only condition that needs checking is Griffiths

transversality.

Proof. For each a ∈ A, the local system Va is equal to the local system Rn
fa,∗

Z on Ua ⊆
Xa
∼= P1, where fa : Xa → Ua is the restriction of f to the fibre over a ∈ A. The local

system W := R1π∗j∗V on A is the local system whose stalk at each a ∈ A is the parabolic

cohomology of Va. That is, Wa
∼= R1

ja,∗Va. Each Wa carries a Hodge structure of weight

n + 1 by [45]. On the other hand, the local system W is contained in Rn+1(π ◦ f)∗Z, the

local system whose stalks are the cohomology groups Hn+1(Xa,Z), and the Hodge structure

on Wa is the same as the one induced by this inclusion. Since Rn+1(π ◦ f)∗Z is a variation

of Hodge structure, its restriction to W is also a variation of Hodge structure. Therefore, V
defines a geometric variation of local systems in the sense of Definition 1.



Chapter 3

Elliptic Fibrations

In this this chapter we explore the geometric variations of local systems that come from

families of elliptic fibrations. We start by reviewing some of the basic theory of elliptic

surfaces and describing in some detail the structure of the parabolic cohomology groups.

After discussing these foundations, we explore the geometric variations of local systems

that arise from studying the moduli space of rational elliptic surfaces with four singular

fibres that was completely described by Herfurtner [23]. The Herfurtner list was already

examined by Doran in [15] with a view towards finding examples of geometric isomonodromic

deformations. From this perspective, there are only five interesting examples that come from

this moduli space. In contrast, we show that the the seven “omitted” families of elliptic

surfaces with four singular fibres do give rise to interesting geometric variations of local

systems. For each of these variations, we determine the monodromy representation of the

corresponding parabolic cohomology in Propositions 2, 3, and 4.

Next, we consider families of K3 surfaces that can be constructed out of the Herfutner

list by applying quadratic twists. By considering the most general quadratic twist (twisting

two smooth points), we obtain two-parameter families of K3 surfaces from the thirty-eight

rigid entries on Herfurtner’s list. Thus, all elliptic surfaces on this list give rise to geometric

variations of local systems. Since the deformation spaces for the geometric variations of local

systems that are obtained in this way are so simple, we are able to run the Dettweiler-Wewers

algorithm to compute the monodromy of parabolic cohomology for all of these local systems.

Propositions 5-11 summarize the computations that we performed and detail some of the

interesting phenomena that occur. In particular, we are able to determine the Picard number

for these families of K3 surfaces by proving that the corresponding parabolic cohomology

local systems are irreducible.

21
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3.1 Elliptic Surfaces and Parabolic Cohomology

We begin by reviewing some of the main features of elliptic surfaces and prove a structural

theorem about their parabolic cohomology groups. Good references for the material here

are the original papers by Kodaira [29, 30, 31], several of the papers by Stiller [42, 41], and

the survey paper [40] by Schütt-Shioda [40], to name a few.

3.1.1 Geometry of Elliptic Surfaces

In this section we will briefly review the geometry of elliptic surfaces.

Definition 12. An elliptic surface E over S is a smooth projective surface E with an elliptic

fibration over S, i.e., a surjective map

f : E → S

for which

• all but finitely many fibres are smooth curves of genus 1;

• no fibre contains an exceptional curve of the first kind.

A section of an elliptic surface f : E → S is a morphism

σ : S → E, for which f ◦ σ = idS.

An elliptic surface with section will be called a basic elliptic surface.

Remark 7. All of the elliptic surfaces in this thesis will be assumed to have a section.

Since we are only dealing with complex basic elliptic surfaces, we can always choose a

Weierstrass presentation of E:

y2 = 4x3 − g2(t)x− g3(t), g2, g3 ∈ K(S). (3.1)

The fibres of (3.1) are smooth elliptic curves as long as the discriminant ∆ = g3
2 − 27g2

3 does

not vanish. For each t ∈ S such that ∆(t) = 0, the fibre is either a cuspidal or nodal rational

curve, and the singular point of the curve may or may not be a surface singularities of (3.1).

If the singular point of the fibre is a surface singularity, then we perform a sequence of

blow-ups to resolve the singularity. Doing this for each singular fibre, we arrive at the Néron

model, which is a smooth surface with elliptic fibration whose singular fibres are chains of

rational curves.
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In order to classify the the kinds of chains of rational curves that occur, i.e., classify

the kinds of singular fibres that can occur, Kodaira considered the following two invariants

associated to an elliptic surface [29]:

Definition 13. Let E → S be an elliptic surface, Σ the support of the singular fibres, and

S0 = S − Σ. The functional invariant J is the rational function on S whose value at t ∈ S0

is the J-invariant of the fibre Et at t. In terms of the Weierstrass form (3.1), we have

J =
g3

2

g3
2 − 27g2

3

.

The sheaf G := R1f∗Z|S0 , which is the Z-local system on S0 whose stalks are given by the

first cohomology groups H1(Et,Z), is called the homological invariant ; it is characterized by

its monodromy representation

ρ : π1(X0)→ SL2(Z),

and we will often refer to the representation as the homological invariant.

The dual local system G∨, whose stalks are given by the homology groups H1(Et,Z), is

called the geometric homological invariant and its monodromy representation is called the

geometric monodromy representation.

The classification of Kodaira is described in terms of the possible local geometric mon-

odromy transformation around the singular fibre. In order to compute the type of singular

fibre, we only need to know the order of vanishing of g2, g3, and ∆ at the singular fibre. The

classification is tabulated in Table 3.1. Of the possible singular fibre types on an elliptic

surface, those of type IN are called multiplicative fibres, while all other singular fibre types

are called additive (the terminology comes from the kind of singular curve obtained at this

particular point).

Let us now consider the weight one integral variation of Hodge structure on the elliptic

surface f : E → S associated to the homological invariant G. The polarization on G is induced

by the cup-product and if we choose a basis α∗, β∗ ∈ H1(Et,Z) that is Poincaré-dual to the

standard cycles α, β ∈ H1(Et,Z), then the matrix of the polarization with respect to this

basis is given by (
0 1

−1 0

)
. (3.2)

The Hodge filtration on H1(Et,C) is determined by a non-zero ω ∈ H1(Et,C) that spans

the filtrant F 1. If we write ω = z1α
∗ + z2β

∗ in terms of the standard basis for H1(Et,Z),

then the Hodge-Riemann relations imply that z2
z1
∈ h, and conversely.
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Type ν(g2) ν(g3) ν(∆) Graph Monodromy

I0 a ≥ 0 b ≥ 0 0 −
(

1 0
0 1

)

IN 0 0 N ≥ 1 ÃN

(
1 N
0 1

)

II a ≥ 1 1 2 −
(

1 1
−1 0

)

III 1 b ≥ 1 3 Ã1

(
0 1
−1 0

)

IV a ≥ 2 2 4 Ã2

(
0 1
−1 −1

)

I0 a ≥ 2 b ≥ 3 6 D̃4

(
−1 0
0 −1

)

I∗N 2 3 N + 6 ≥ 7 D̃N+4

(
−1 −N
0 −1

)

IV∗ a ≥ 3 4 8 Ẽ6

(
−1 −1
1 0

)

III∗ 3 b ≥ 5 9 Ẽ7

(
0 −1
1 0

)

II∗ a ≥ 4 5 10 Ẽ8

(
0 −1
1 1

)

Table 3.1: Kodaira’s Classification
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One can associate to this variation of Hodge structure a Fuchsian differential equation

known as the Picard-Fuchs equation as follows. Let ω = dx
y

be the usual global holomorphic

1-form on the elliptic surface E, and let ∇ denote the Gauss-Manin connection on GC. Since

the rank of GC is equal to 2, there is a linear relation amongst ω,∇ d
dt
ω,∇2

d
dt

ω and so we may

write:

a(t)∇2
d
dt

ω + b(t)∇ d
dt
ω + c(t)ω = 0, (3.3)

for rational functions a, b, c. If γ ∈ H1(Et,Z) is a cycle, and fγ(t) :=
∫
γ
ω, then the function

fγ(t) satisfies the differential equation:

a(t)
d2f

dt2
+ b(t)

df

dt
+ c(t)f(t) = 0, (3.4)

which is known as the Picard-Fuchs equation. According to [22], this differential equation

is a Fuchsian differential equation. As γ varies over all the cycles in G∨, the 2-dimensional

space of function fγ(t) spans the solution space to (3.4).

Remark 8. Given a cycle γ, the analytic continuation of fγ(t) along a loop σ ∈ π1(S0) satisfies

fσγ (t) = fγσ(t).

It follows that the monodromy representation for the Picard-Fuchs equation (3.4) can be

identified with the geometric monodromy representation of the elliptic surface.

Remark 9. The formulation of Hodge structures is most natural for the cohomology groups

because of the naturally defined cup-product on cohomology, which induces the polariza-

tion. However, in practice, one often works directly with the Picard-Fuchs equation and the

geometric homological invariant. The reason for this stems from the period map associated

to the variation of Hodge structure. In the setting of the elliptic surfaces, the period map is

the map

per : S → P(H1
C)

t 7→ ω(t).
(3.5)

If we fix the basis α∗, β∗ of the homological invariant, then period map is given explicitly via

per(t) = fα(t)α∗ + fβ(t)β∗.

Thus, the variation of Hodge structure on the homological invariant is described, via the

period map, in terms of properties of the geometric homological invariant. For this reason, we

will often use the term homological invariant to describe the geometric homological invariant,

as in the literature, and clarify when any confusion arises.
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Given the Weierstrass form (3.1), there are a number of methods one can use to compute

the Picard-Fuchs equations, such as the Griffiths-Dwork algorithm. This calculation was

carried out in [7] for example, where it is shown that the Picard-Fuchs equation is

d2f

dt2
+ P

df

dt
+Qf = 0, (3.6)

where

P =
dg3
dt

g3

−
dg2
dt

g2

+
dJ
J −

d2J
dt2

dJ
dt

,

Q =

(
dJ
dt

)2

144J (J − 1)
+

d∆
dt

12∆

(
P +

d2∆
dt2

d∆
dt

− 13

12

d∆
dt

∆

)
.

More than just being a Fuchsian differential equation, the Picard-Fuchs equations arising

from elliptic surfaces are K-equations, a term coined by Stiller [42].

Definition 14. A second order Fuchsian ODE is called a K-equation if it possesses two

solutions ω1, ω2 which are holomorphic non-vanishing multivalued functions on a Zariski

open subset S0 ⊆ S satisfying the following conditions:

(i) ω1, ω2 form a basis of solutions;

(ii) the monodromy representation of the differential equation with respect to this basis

takes values in SL2(Z);

(iii) im(ω2

ω1
) > 0 on S0 (positivity);

(iv) the Wronskian lies in K(S).

The pair ω1, ω2 is called a K-basis.

The solutions ω1 = fα, ω2 = fβ to the Picard-Fuchs equation (3.4) form a K-basis thanks

to the Hodge-Riemann relations. Therefore, the Picard-Fuchs equation of an elliptic surface

is a K-equation. Conversely, as his article shows, every K-equation can be realized as the

Picard-Fuchs equation associated to an elliptic surface [42][Theorem II.2.5].

Let us briefly go over some of the details of how this works. Stiller starts by considering

the elliptic surface E → P1
t given by the Weierstrass presentation

y2 = 4x3 − 27t

t− 1
x− 27t

t− 1
. (3.7)
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Figure 3.1: Branch cuts and transformations for Φ.

Then, the functional invariant in this case is J = t. The Picard-Fuchs equation associated

to this elliptic surface is given by

d2f

dt2
+

1

t

df

dt
+

31
144
t− 1

36

t2(t− 1)2
f = 0, (3.8)

as can be computed using Equation (3.6), for example.

An explicit K-basis Φ1,Φ2 for (3.7) is constructed in [42]. The quotient of these solutions

Φ = Φ1

Φ2
induces a holomorphic multivalued map

P1
t − {0, 1,∞} Φ // h , (3.9)

because of the positivity condition of a K-basis. In fact, Φ is an inverse to the classical

modular J-function. If one makes a branch cut on P1
t joining ∞ to 0 along the negative

real-axis and another branch cut along the interval [0, 1], then one can choose a single-valued

branch of Φ on the slit-sphere that takes values in the usual fundamental domain for the

SL2(Z)-action on h:

{τ ∈ h| − 1

2
< Re(τ) <

1

2
, |τ | > 1}.

Continuation along these slits in the directions indicated leads to monodromy transforma-

tions as shown in Figure 3.1 up to sign:

Choosing loops γ0, γ1, based at i looping around 0 and 1 once, and setting γ∞ = (γ0γ1)−1,

we can determine the monodromy transformations from these branch cuts up to sign. By

analyzing the characteristic exponents of the differential equation (3.8), we can pin down

the monodromy representation precisely. We find that

γ0 7→
(

1 1

−1 0

)

γ1 7→
(

0 −1

1 0

)

γ∞ 7→
(

1 1

0 1

)
.

(3.10)
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In particular, we see that the elliptic surface defined by (3.7) has singular fibres of type III∗

at t = 0, II at t = 1 and I1 at t =∞ by consulting Table 3.1.

Next, suppose we have an arbitrary K-equation

d2f

dt2
+ P

df

dt
Q+Rf = 0, (3.11)

and let ω1, ω2 be a K-basis. Then, the ratio of these two solutions gives rise to a multivalued

map to h and the composition J := J ◦ ω2

ω1
is a rational function from S0 to P1 [42], called

the functional invariant of the K-equation.

We then have the following structural results about K-equations:

Proposition. [[42]] Given the K-equation (3.11), there exists an algebraic function λ sat-

isfying λ2 ∈ K(S) for which the original K-equation is obtained by pulling back (3.8) by the

functional invariant J and then scaling by λ. Explicitly, we have

P =

(
dJ
dt

)2 − J d2J
dt2

J dJ
dt

− d

dt
log λ2,

Q =

(
dJ
dt

)2 ( 31
144
J − 1

36

)

J 2(J − 1)2
−
((

dJ
dt

)2 − J d2J
dt2

J dJ
dt

)
d

dt
log λ−

d2λ
dt2

λ
+ 2

(
dλ
dt

λ

)2

,

In particular, the Picard-Fuchs equation of an arbitrary elliptic surface can be computed

this way by taking λ2 = g2
g3

.

Finally, every K-equation is the Picard-Fuchs equation of an elliptic surface.

One the reasons why a result like Proposition 3.1.1 is so useful is that it helps us compute

the homological invariant of an arbitrary elliptic surface in terms of the homological invari-

ant of the well-understood elliptic surface given by (3.7), if we understand the functional

invariant. Indeed, the monodromy representation of the Picard-Fuchs equation is obtained

as follows. First, the functional invariant induces a push-forward map

J∗ : π1(X0)→ π1(P1 − {0, 1,∞}).

Composing this map with the monodromy representation (3.10), we obtain the monodromy

representation for the pull back of (3.8) by J . Scaling the solutions by λ =
√

g2
g3

has the

effect of multiplying the monodromy transformations by −1 at the positions where λ has a

pole or zero. Thus, if we understand the push-forward map J∗, as well as where the poles

and zeroes of λ lie, we can compute the homological invariant precisely.
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3.1.2 The Structure of H2(E,Z) and Parabolic Cohomology

In this section, we will describe in some detail the lattice H2(E,Z) and its weight two integral

Hodge structure. A good reference for this section is

citeschuettEllipticSurfaces2010. The Néron-Severi group, which is the group of divisors

modulo algebraic equivalence, embeds in H2(E,Z) modulo via the cycle-map and is denoted

NS(E). If we assume the curve S is genus 0, as is the case for all examples in this thesis, then

NS(E) is torsion-free. The cup-product on H2(E,Z) coincides with the intersection pairing

on NS(E), and makes NS(E) a sublattice; its rank is called the Picard number, which we

denote ρ(E). According to the Hodge index theorem, NS(E) has signature (1, ρ − 1). The

orthogonal compliment of NS(E) in H2(E,Z) is called the transcendental lattice and is

denote by T(E). The Hodge decomposition of H2(E,Z) induces weight 2 Hodge structures

on both the Néron-Severi lattice and the transcendental lattice. However, by the Lefschetz

(1, 1)-theorem, we have

H2(E,Z) ∩H1,1 = NS(E), (3.12)

from which it follows that the h2,0(NS(E)) = 0. Typically, we are most interested in the

Hodge structure on the transcendental lattice.

Each section σ of the elliptic surface E → S corresponds to a K(S)-rational point on the

generic fibre, making the generic fibre an elliptic surface over the function field K(S). If we

fix one section σ0 as an origin, then the group law on the generic fibre induces a group law

on the set of sections.

Definition 15. The group of sections of an elliptic surface f : E → S is called the Mordell-

Weil group of E → S and is denoted MW(E). The narrow Mordell-Weil group, denote

by MW0(E) is the subgroup of sections that meet the zero component of every fibre. The

narrow Mordell-Weil group is torsion-free and has finite-index in the full Mordell-Weil group

citeschuettEllipticSurfaces2010.

Definition 16. The subgroup of NS(E) generated by the zero section, general fibre, and

the components of the bad fibres is called the trivial lattice, denote by T .

The trivial lattice can be decomposed as follows. First, introduce the following notations:

• F is a general fibre;

• Ft is the fibre over t;

• mt is the number of components of Ft;

• Σ is the set of singular points;
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• R ⊆ Σ is the subset of singular points lying under additive fibres;

• Θt,0 is the component of Ft met by the zero section;

• Θt,i for i = 1, . . . ,mt − 1 are the other components;

• Tt is the lattice generated by the fibre components not meeting the zero-section;

• O is the class of the zero-section.

Then we have:

T = 〈O, F 〉 ⊕
⊕

t∈R
Tt. (3.13)

Thus, the rank of the trivial lattice is

rank(T ) = 2 +
∑

t∈R
(mt − 1).

Since each section corresponds to a divisor on E, we obtain a map from the Mordell-Weil

group to the Néron-Severi group. The induced map P 7→ P mod T induces an isomorphism

citeschuettEllipticSurfaces2010

MW(E) ∼= NS(E)/T. (3.14)

This allows us to compute the rank of MW(E):

rank(MW(E)) = ρ− 2−
∑

t∈R
(mt − 1).

The trivial lattice does not embed primitively inside NS(E), the cokernel is isomorphic to

the torsion subgroup of MW(E).

Definition 17. The essential lattice L(E) is the orthogonal compliment of the trivial lattice

inside NS(E).

The essential lattice is even and negative-definite of rank equal to r − 2−∑x(mx − 1),

i.e., has rank equal to the Mordell-Weil group. Orthogonal projection with respect to the

trivial lattice defines a map

ϕ : NSQ(E) // L(E)Q . (3.15)

This map is characterized by the universal properties:

ϕ(D) ⊥ T (E)Q, ϕ(D) ≡ D mod T (E)Q.
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By restricting to MW(E), we obtain a well-defined map from the Mordell-Weil group MW(E)→
L(E)Q, the kernel of which is the torsion subgroup. Thus, MW(E)/{torsion} sits inside

L(E)Q.

Remark 10. In general, if a section σ hits a non-zero fibre component, then its image in

L(E)Q will not lie in the integral part; that is, tensoring with Q is necessary to define the

above homomorphism.

This map can be used to give the Mordell-Weil group the structure of a positive-definite

lattice by setting

〈σ1, σ2〉 := −ϕ(σ1) · ϕ(σ2).

Definition 18. The lattice MW(E)/{torsion} is called the Mordell-Weil lattice. The sub-

lattice MW0(E) is called the narrow Mordell-Weil lattice.

Remark 11. The lattice structure on MW(E) was first discovered by Cox-Zucker in [46]; this

is simply a more modern perspective on their approach.

Each torsion section must hit a non-zero fibre component

citeschuettEllipticSurfaces2010. It follows that the restriction of the orthogonal projection

map to the narrow Mordell-Weil lattice is injective. The image of the the narrow Mordell-

Weil group lies in the integral part, and if we flip the sign on the bilinear form on L(E), then

the essential lattice and narrow Mordell-Weil lattices are isomorphic

citeschuettEllipticSurfaces2010. The full Mordell-Weil lattice embeds in the dual of the

essential lattice and is isomorphic to it if NS(E) is unimodular.

Let us now consider the parabolic cohomology of the homological invariant H1(S, j∗G)

and its Hodge structure. The torsion on H1(S, j ∗ G) is isomorphic to the torsions subgroup

of the Mordell-Weil group, according to [46]. Modulo torsion, the parabolic cohomology

group sits inside H2(E,Z), and its Hodge structure agrees with the one that is induced from

this embedding, as discussed in Chapter 2. As described in [46], the parabolic cohomology

group can be computed as follows. Consider the Leray filtration on H2(E,Z), given by

L1 = ker (H2(E,Z)→ H0(S,R2f∗Z))

L1/L2 ∼= H1(S, j∗G)

L2 = image (H2(S,Z)→ H2(E,Z)) ∼= Z[F ].

(3.16)

Using this, we can prove the following structural results:

Proposition 1. The transcendental lattice T (E) is contained in H1(S, j∗G). Over Q, we

have the following orthogonal decomposition of H1(S, j∗G)Q:

H1(S, j∗G) = L(E)Q ⊕ T(E)Q. (3.17)
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If the transcendental lattice is unimodular, then the above splitting holds over Z.

Proof. The first statement follows from the fact that L1/L2 ∼= H1(S, j∗G), that the transcen-

dental lattice is contained in L1, and that the transcendental lattice has trivial intersection

with Z[F ]. Tensoring with Q, the kernel the map H2(E,Q) → H0(S,R2f∗Q), which sends

each divisor to its restriction to each fibre, is precisely

L(E)Q ⊕ T(E)Q ⊕Q · [F ].

Thus, the second result follows by taking the quotient by L2.

If the transcendental lattice is unimodular, we argue as follows. The discussion that pre-

ceded the proposition shows that the essential lattice is contained in parabolic cohomology.

The discriminant of the essential lattice is equal to disc(T )/n2 [39]. On the other hand, this

is also the discriminant of the cup-product on parabolic cohomology, as was calculated in

[46]. Thus, the quotient of parabolic cohomology by the transcendental lattice is a lattice of

the same discriminant (by unimodularity), from which it follows that the quotient is equal

to the essential lattice. Therefore, we have the splitting over Z.

In particular, if E is a rational elliptic surface with homological invariant G, then the

group H1(E, j∗G), modulo torsion, is identified with the narrow Mordell-Weil group.

Remark 12. While all of the ingredients required to prove this result are in [46] and

citeschuettEllipticSurfaces2010, I have not seen this formulation in the literature.

Remark 13. From this decomposition, we see that the parabolic cohomology group over Q

breaks into one piece that does not depend on the fibration structure, the transcendental

lattice, and another that does, the Mordell-Weil lattice. When we study these in families, the

corresponding parabolic cohomology local systems therefore decompose into one “extrinsic”

local system, capturing information about the transcendental data and one “intrinsic” local

system, telling us information about the varying internal fibration structure.

3.2 Elliptic Surfaces with Four Singular Fibres

In this section, we consider the geometric variations of local systems coming from the moduli

space of rational elliptic surfaces with four singular fibres that was studied in [23]. For ratio-

nal elliptic surfaces, the transcendental lattices are trivial and the corresponding parabolic

cohomology local systems are related to the Mordell-Weil group as described in the previous

section. By applying a quadratic twist to the elliptic surfaces on Herfurtner’s list, we are

able to produce families of K3 surfaces and compute the monodromy representations of the
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corresponding parabolic cohomology local systems. We provide many examples for which

we are able to determine that the monodromy representation is irreducible which, in turn,

allows us to compute the Picard rank for these families of K3 surfaces.

3.2.1 Families of Rational Elliptic Surfaces

In his article [23], Herfurtner classified the all elliptic surfaces with four singular fibres and

tabulated them in what is known as Herfurtner’s list. The classification consists of twelve

one-parameter families of elliptic surfaces and thirty-eight isolated, rigid, elliptic surfaces.

Of the twelve families, seven of them posses I∗0 fibres and this means, in particular, that the

corresponding family of Picard-Fuchs equations are all projectively equivalent to each other.

For this reason, these seven families were considered uninteresting to Doran in [15] for the

purpose of finding solutions to the sixth Painlevé equation.

We begin our exploration of Herfurtner’s list by considering the five families that Doran

studied in [15]. The Weierstrass invariants and singular fibre types are indicated in Table 3.2.

In each case, we have a one-parameter family of rational elliptic surfaces with four singular

fibres parameterized by a ∈ A = P1−Σ, where Σ is the finite set of points that corresponds

to the collision of these singular fibres. Let X = P1
t × A, D ⊆ X be the divisor that cuts

out the four singular points, and U = X −D. We consider the local system V on U whose

stalk at each (t, a) is the first cohomology group

V(t,a) = H1(Et,a,Z).

If we fix a base point a0 ∈ A, the restricted local system V0 is the local system on P1
t −D0

that corresponds to the elliptic surface Ea0 .
The local system V satisfies the conditions of Theorem/Definition 1, so we have a ge-

ometric variation local systems V over A and (X,D) is a 4-configuration that satisfies the

computational assumptions described in Chapter 2. Thus, we can use the Dettweiler-Wewers

algorithm described earlier to compute the monodromy representation of the parabolic co-

homology. By our earlier structural result, we know that the parabolic cohomology local

system for each of these rational elliptic surface can be identified with the narrow Mordell-

Weil group.

Since these local systems are irreducible, the rank formula (2.4) allows us to compute

the ranks of the integral parabolic cohomology. For singular fibres of type Ib, b > 0, the

monodromy matrices have one-dimensional stabilizers. All other kinds of singular fibres have

trivial stabilizers. It follows that the parabolic cohomology of the variation of local system

in family 1 is a rank two local system, while the other four families have rank one parabolic
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Family Sing. Fibre Types Weierstrass Presentation

1 I1, I1, II, IV
∗ g2(t, a) = 3(t− 1)(t− a2)3

(0,∞, 1, a2) g3(t, a) = (t− 1)(t− a2)4(t+ a)

2 I1, I1, I2, I
∗
2 g2(t, a) = 12t2(t2 + at+ 1)

(ω1, ω2,∞, 0) g3(t, a) = 4t3(2t3 + 3at2 + 3at+ 2)

3 I1, I1, I1, I
∗
3 g2(t, a) = 12t2(t2 + 2at+ 1)

(ω1, ω2,∞, 0) g3(t, a) = 4t3(2t3 + 3(a2 + 1)t2 + 6at+ 2)

4 I1, I1, I1, III
∗ g2(t, a) = 3t3(t+ 1)

(ω1, ω1,∞, 0) g3(t, a) = t5(t+ 1)

5 I1, I1, I2, IV
∗ g2(t, a) = 3t3(t+ 2a)

(ω1, ω2,∞, 0) g3(t, a) = t4(t2 + 3at+ 1)

Table 3.2: The five families.

cohomologies. We now compute the monodromy representations of these local systems.

Family 1: For this family of elliptic surface, the functional invariant is

J (t, a) =
1

(a+ 1)2

(t− 1)(a2 − t)
t

.

This allows us to determine the global monodromy representation for the elliptic surface Ea
for any a. To do this, we draw a figure that describes the cover J (t, a). This is done by

drawing a graph on P1 with red vertices corresponding to the pre-images of 0, blue vertices

corresponding to the pre-images of 1, yellow vertices corresponding to the pre-images of ∞,

and brown vertices that correspond to ramification points other than {0, 1,∞}. Further, we

draw coloured arcs for the fibres between vertices: purple arcs map to [0, 1], green arcs map

to [1,∞], and orange arcs to [−∞, 0]. By drawing loops on such graphs that correspond

to the generators of the relevant fundamental group, it is possible to determine the images

under the push-forward. For this family of covers, we obtain the graph in Figure 3.2.

As long as a /∈ {0,±1,∞}, the elliptic surface has four singular fibres as shown in Table

3.2. Let us choose a = −2 as a base point on A = P1
a − {−1, 0, 1,∞}. The corresponding

elliptic surface has singular fibres at t = {0, 1, 4,∞} and if we choose a basis of loops

γ1, . . . , γ4 as indicated above, then E−2 has the following monodromy representation:

g1 =

(
1 1

0 1

)
, g2 =

(
1 1

−1 0

)
, g3 =

(
0 −1

1 −1

)
, g4 =

(
1 1

0 1

)
.

Next, we must determining the braiding map ϕ : π1(A,−2) → A3. Choose standard

generators σ1, σ2, σ3 for π1(A,−2) around −1, 0, 1 respectively, as depicted in Figure 3.3.

As a moves around σ1, the point a2 starts at 4 and moves around 1 in a counter clockwise
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a 0 1 −a a2

γ1 γ2 γ3

Figure 3.2: Initial configuration for Family 1.

fashion, returning to its starting point; we see that

ϕ(σ1) = β2
2 .

By considering the motions of the poles carefully, which is depicted in Figure 3.3, we find

that

ϕ(σ2) = β−1
2 β4

1β2, ϕ(σ3) = β−1
2 β−2

1 β2
2β

2
1β2.

One computes the following:

((
1 1

0 −1

)
,

(
1 1

−1 0

)
,

(
0 −1

1 −1

)
,

(
1 1

0 1

))ϕ(σ1)

=

((
1 1

0 −1

)
,

(
−1 3

−1 2

)
,

(
2 −7

1 −3

)
,

(
1 1

0 1

))
.

Next, we check that this is also equal to gh
−1

, where

h =

(
1 2

0 1

)
.

It follows that χ(σ1), is determined up to scalars, where χ : π1(A,−2) → SL2(C) is

the auxiliary monodromy representation as described in the Dettweiler-Wewers algorithm in

Chapter 2. Since we are working integral local systems, we have thus determined χ(σ1) up

to multiplication by ±1. The braids ϕ(σ2) and ϕ(σ3) act trivially on g and so χ(σ2), χ(σ3)

are equal to ±1; χ(σ4) is determined by the other three since σ1σ2σ3σ4 = 1.

We have now determined the braid map and the representation χ. Computing the mon-

odromy representation is now simply a matter of running the algorithm outlined in the

previous section. In this example, a convenient computational basis for the parabolic co-
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a = �2 �1 0 1

a 0 1 �a a2

off

t.FI

Figure 3.3: The braiding action for Family 1.

homology group is obtained by taking the “characteristic” vectors associated to the two

unipotent monodromy transformations g2 and g4; that is, let v2 be a basis for image(g2 − 1)

and similarly, let v4 be a basis for image(g4 − 1). Then let

v2 = (0, v2, ∗, 0), v4 = (0, 0, ∗, v4),

where the third entry is determined by relation (2.3). The results of running the Dettweiler-

Wewers algorithm are summarized below.

Proposition 2. With respect to the basis v2,v4, the monodromy of the parabolic cohomology

local system is given as follows:

η(σ1) =

(
1 0

0 1

)
, η(σ2) =

(
−1 0

1 1

)
, η(σ3) =

(
1 1

−1 0

)
, η(σ4) =

(
−1 −1

0 1

)
.

We have the following relations:

η(σ2)2 = 1, η(σ3)3 = −1, η(σ2)η(σ3)η(σ2)−1 = η(σ3)−1.

Thus, the projective monodromy group is isomorphic to the dihedral group of order 6.

Since we are working with rational elliptic surfaces, the fact that the parabolic cohomol-
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ogy has rank 2 implies that the Mordell-Weil rank is equal to 2. With a little bit of algebraic

manipulations, one can find the following infinite order sections on this family of elliptic

surfaces:

x = C(t− a2)2, y =
1

2
√
A

(t− a2)2(2At+B)

where C is root of

δ = 16a(a− 1)C3 + 9(a− 1)2C2 − 6(a− 1)C + 1,

A = (C − 1)(2C + 1)2, B = −8a2C3 + 3a2C − a+ 3C + 1.

Since each elliptic surface in the family has a fibre of type II, there is no torsion in the

Mordell-Weil group

citeschuettEllipticSurfaces2010. A basis for the Mordell-Weil group can be chosen by tak-

ing two sections of the above form corresponding to two different choices of roots C of δ.

By examining these sections closely, the results of our monodromy computation are not

surprising—these sections can be defined over an algebraic extension of the function field of

degree 6.

Remark 14. We will be examining many different kinds of covers in this thesis and often

represent them by drawing graphs such as the one in Figure 3.2. We will consistently use

red dots to denote points above 0, blue dots to denote points above 1, and yellow dots above

∞ (when considered thrice-punctured spheres whose punctures are at 0, p,∞ for p 6= 1, the

fibre over p will also be coloured blue). Similarly, green arcs denote pre-images of the line

segment joining the blue and yellow dot, purple arcs join red and blue dots, and orange arcs

join red and yellow dots. Black dots will denote base points and another coloured point

will denote a point of excess ramification—a ramified point not lying over one of the three

punctures.

Families 2-5: For the other families considered in [15], three of the monodromy transfor-

mations are unipotent and the remaining transformation has no fixed vectors. It follows that

the corresponding parabolic cohomology groups are rank 1 and the associated monodromy

representations will correspond to characters χ : π1(A)→ {±1}. Thus, each projective mon-

odromy representation is trivial in this case and applying the Dettweiler-Wewers algorithm in

these four cases would be uninteresting. Rather, to close the discussion of these five families

for the time being, we compute the Mordell-Weil group for the remaining cases.

Proposition 3. The Mordell-Weil group for the elliptic surfaces in Families 3,4,5 in Table

3.2 are free of rank 1. The Mordell-Weil group for the surfaces in Family 2 have rank 1 and
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Family x-coordinate y-coordinate

2 t(2− t) 6i
√
a+ 1 · t2

3 −t(at+ 1)
√
−4a3 + 12a− 8 · t3

4 − t2

3a
i3a−2

3a

√
3a+1

3a
· t3

5 4−9a2

4
· t2 − i

4
t2 (9a(3a2 − 2)t− 4)

Table 3.3: Generating sections for Mordell-Weil of Families 2-4.

torsion subgroup isomorphic to Z/2Z. Moreover, the x-coordinate of each of the sections

that generate the free part of the Mordell-Weil group are rational functions of t and a.

Proof. We have already remarked that the Mordell-Weil rank is equal to 1. It therefore

remains to find a generating section of the free part and to determine the torsion subgroups.

Generating sections for the free part are tabulated in Table 3.3. We can determine the

torsion subgroup with the help of [39] in which the complete structure of the Mordell-Weil

group for rational elliptic surfaces is determined.

We find that Family 2 has torsion subgroup isomorphic to Z/2Z, and the other families

have no non-trivial torsion sections. The 2-torsion section on the elliptic surfaces in Family

2 is given by

(x, y) = (−t(t+ 1), 0) .

We can see by looking at the sections that there is non-trivial monodromy as a varies in

A. So, even though the projective monodromy representations associated to the parabolic

cohomology local systems were trivial, this allows us to see that the “honest” monodromy

representation are not.

Despite the fact that the seven families with I∗0 singular fibres were not useful to Doran

in [15], they still provide interesting examples of geometric variations of local systems. The

seven I∗0 families and their Weierstrass presentations are tabulated in Table 3.4. Note that

the functional invariants for each of these families do not depend on a, which shows that the

projective normal forms of the Picard-Fuchs equations are also independent of a.

We can examine the parabolic cohomology local system attached to these families in a

uniform manner. Let A = P1
a−{0, 1,∞}, X = P1

t ×A, D = {(0, a), (1, a), (∞, a), (a, a)| a ∈
A} and U = X−D. Use a = −1 as a base point and let U−1 = X−1∩D = P1−{−1, 0, 1,∞}.
Using similar methods to what we did in the five families calculation, we can easily write

down the global monodromy representations for these examples. We do this with respect to
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Name Sing. Fibre Types Weierstrass Presentation

1 I4, I1, I1, I
∗
0 g2(t, a) = 3(t− a)2(t2 + 14t+ 1)

(1,∞, 0, a) g3(t, a) = (t− a)3(t3 − 33t2 − 33t+ 1)

2 I2, I2, I2, I
∗
0 g2(t, a) = 12(t− a)2(t2 − t+ 1)

(1,∞, 0, a) g3(t, a) = 4(t− a)3(2t3 − 3t2 − 3t+ 2)

3 I3, I1, II, I
∗
0 g2(t, a) = 3(t− a)2(t− 1)(t− 9)

(0,∞, 1, a) g3(t, a) = (t− a)3(t− 1)(t2 + 18t− 27)

4 I2, I1, III, I
∗
0 g2(t, a) = 3(t− a)2(t− 1)(t− 4)

(0,∞, 1, a) g3(t, a) = (t− a)3(t− 1)2(t+ 8)

5 I1, I1, IV, I
∗
0 g2(t, a) = 3(t− a)2(t− 1)2

(0,∞, 1, a) g3(t, a) = (t− a)3(t− 1)2(t+ 1)

6 I1, II, III, I
∗
0 g2(t, a) = 3t(t− a)2(t− 1)

(∞, 0, 1, a) g3(t, a) = t(t− a)3(t− 1)2

7 I2, II, II, I
∗
0 g2(t, a) = 12t(t− a)2(t− 1)

(∞, 0, 1, a) g3(t, a) = 4t(t− a)3(t− 1)(2t− 1)

Table 3.4: The seven families with I∗0 fibres.

loops γ1, γ2, γ3, γ4 around −1, 0, 1,∞ respectively. The rank of the parabolic cohomology is

easily calculated using (2.4).

In order to compute the monodromy representation of the parabolic cohomology local

system, we need to determine the braiding map ϕ : π1(A,−1) → A3. Let σ0, σ1 be loops

based at a = −1 wrapping once around 0 and 1 respectively in the upper half-plane. Then

we have

ϕ(σ0) = β2
1 , ϕ(σ0) = β−1

1 β2
2β1.

We now apply the Dettweiler-Wewers algorithm to compute the monodromy representations

of the parabolic cohomology groups.

Proposition 4. For each of the seven families in Table 3.4, the parabolic cohomology local

system on P1 − {0, 1,∞} is irreducible and has finite monodromy group.

Proof. The monodromy representations are tabulated in Table 3.5. For each representation,

we check that the group generated by η(σ0) and η(σ1) is finite of the indicated order. It

is straight forward to check that in each case, the matrices η(σ0) and η(σ1) do not have a

common eigenvector, which establishes irreducibility.

Thus, we see that even though these seven families were not interesting from the per-

spective of [15], we see that there is non-trivial information captured by the corresponding

variations of local systems. In these examples, the local system on the base P1 − {0, 1,∞}
is describing how the narrow Mordell-Weil group varies with the deformation parameter.
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Name η(σ0) η(σ1) Size

1 −1 −1 2

2 −1 −1 2

3

(
−1 3
0 1

) (
1 −3
1 −2

)
6

4

(
−1 2
0 1

) (
1 −2
1 −1

)
8

5

(
−1 3
0 1

) (
2 −3
1 −1

)
12

6



−1 −1 0
−1 0 1
−4 −2 1






−2 −1 1
3 2 −1
−2 0 1


 24

7




1 1 1
−1 −2 −1
2 4 1






−2 −3 −1
1 1 0
0 0 1


 12

Table 3.5: Monodromies for the seven I∗0 families.

3.2.2 Families of K3 Surfaces from Herfurtner’s List

In this section we consider some families of K3 surfaces that can be constructed from Her-

furtner’s list and study their associated variations of homological invariants. Given any of

the rational elliptic surfaces on Herfurtner’s list, we construct a K3 surface by performing

a quadratic twist at the points t = a1, t = a2, for smooth points a1, a2. This results in a

two-parameter family of K3 surfaces with six singular fibres. In particular, we can do this

for the thirty-eight isolated cases to produce geometric variations of local systems.

Proposition 5. Let E be an elliptic surface with four singular fibres, A = {(a1, a2) ∈
O2| a1, a2 /∈ Σ}, and E → A be the family of elliptic K3 surfaces obtained by applying a

quadratic twist at the points t = a1 and t = a2. Let ν = ν(E) denote the number of Ib-fibres

in E with b > 0. The rank of the parabolic cohomology local system on A is

rE = 8− ν.

As E varies over Herfurtner’s list, the rank rE takes on the values {4, 5, 6, 7}.

Proof. This follows from the rank formula (2.4). Each K3 surface in the family is an elliptic

surface with six singular fibres. The only types of singular fibres that unipotent monodromy

are the Ib fibres; every other kind of singular fibre has no fixed-vectors. It follows that

rE = (6− 2) · 2− ν = 8− ν.
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a1 a2 0 1

Figure 3.4: The loops γ1, . . . , γ5.

By inspection, as E varies in Herfurtner’s list, ν takes on the values {1, 2, 3, 4}.

We can use the Dettweiler-Wewers algorithm to compute the monodromy representation

of the corresponding two-parameter local system of parabolic cohomology groups. Let us

normalize the singular fibres to to be located at t = a1, a2, 0, 1,∞, so that we can identify

the relevant subspace of the configuration space with A = {(a1, a2) ∈ C2| a1 6= a2, ai /∈ Σ},
and choose (a1, a2) = (−2,−1) as a base point for A. As explained in [12], the fundamental

group of A is generated by five elements γ1, γ2, γ3, γ4, γ5 as depicted in Figure 3.4. Their

images under the braiding map ϕ : π1(A, (−2,−1))→ A5 are as follows:

ϕ(γ1) = β2
1

ϕ(γ2) = β−1
1 β2

2β1

ϕ(γ3) = β−1
1 β−1

2 β2
3

ϕ(γ4) = β2
2

ϕ(γ5) = β−1
2 β2

3β2.

Once we determine the initial homological invariant, we can then run the Dettweiler-

Wewers algorithm to compute the monodromy representation for the parabolic cohomology

groups.

To demonstrate the technique, let us examine the eleven isolated examples on Herfurtner’s

list for which there is exactly one additive fibre. These are tabulated in Table 3.6. By

examining the functional invariants in each case, we can determine the homological invariant

for each of the eleven examples. The homological invariants for the twists are obtained by

adding −1 monodromies at t = a1, a2. Let

d2f

dt2
+ P

df

dt
+Qf = 0

be the Picard-Fuchs equation for one of these elliptic surfaces. The quadratic twist is obtained

by setting λ = (t − a1)(t − a2) and scaling g2 by λ2 and g3 by λ3. The a-dependent family
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Name Sing. Fibre Type Weierstrass Presentation

1 I1, I1, I8, II g2(t) = 12t(t3 − 6t2 + 15t− 12)
(δ+, δ−,∞, 0) g3(t) = 4t(2t5 − 18t4 + 72t3 − 144t2 + 135t− 27)

2 I1, I2, I7, II g2(t) = 12t(9t3 + 36t2 + 42t+ 14)
(−9

4
, −8

9
,∞, 0) g3(t) = 12t(18t5 + 108t4 + 234t3 + 222t2 + 87t+ 8)

3 I1, I4, I5, II g2(t) = 3(8t− 1)(8t3 + 87t2 + 96t− 64)
(−10, 0,∞, 1

8
) g3(t) = (8t− 1)(64t5 + 24 · 5 · 13t4 + 52 · 157t3 + 100t2 + 27 · 52t− 29)

4 I2, I3, I5, II g2(t) = 3(t− 3)(81t3 − 9t2 − 53t− 27)
(−5

9
, 0,∞, 3) g3(t) = (t− 3)(36t5 − 355t4 − 23352t3 − 350t2 − 3352t− 243)

5 I1, I1, I7, III g2(t) = 12t(t3 + 4t2 + 10t+ 6)
(ω1, ω2,∞, 0) g3(t) = 4t2(2t4 + 12t3 + 42t2 + 70t+ 63)

6 I1, I2, I6, III g2(t) = 12t(t3 − 6t2 + 9t− 3)
(4, 1,∞, 0) g3(t) = 4t2(2t4 − 18t3 + 54t2 − 63t+ 27)

7 I1, I3, I5, III g2(t) = 75(5t− 1)(5t3 + 45t2 + 39t− 25)
(−25

3
, 0,∞, 1

5
) g3(t) = 25(5t− 1)2(25t4 + 340t3 + 2 ∗ 3 ∗ 181t2 + 100t+ 54)

8 I2, I3, I4, III g2(t) = 3(t− 1)(16t3 − 3t− 1)
(−1

3
, 0,∞, 1) g3(t) = (t− 1)2(64t4 + 32t3 + 6t2 + 5t+ 1)

9 I1, I1, I6, IV g2(t) = 3t2(9t2 − 8)
(1,−1,∞, 0) g3(t) = s2(27s4 − 36s2 + 8)

10 I1, I2, I5, IV g2(t) = 12t2(t2 + 8t+ 10)
(−27

4
, −1

2
,∞, 0) g3(t) = 4s2(2t4 + 24t3 + 78t2 + 56t+ 27)

11 I3, I3, I2, IV g2(t) = 3(t− 1)2(9t2 + 14t+ 9)
(∞, 0,−1, 1) g3(t) = (t− 1)2(27t4 + 36t3 + 2t2 + 36t+ 27)

Table 3.6: The 11 examples with one additive fibre.

of Picard-Fuchs equations for the twists is therefore

d2f

dt2
+

(
P +

2t− a1 − a2

(t− a1)(t− a2)

)
df

dt
+

(
Q+ P · 2t− a1 − a2

2(t− a1)(t− a2)
− (a1 − a2)2

4(t− a1)2(t− a2)2

)
f = 0.

(3.18)

Proposition 6. Let E → A be the two-parameter family of K3 surfaces obtained by starting

with an elliptic surface in Table 3.6 and applying a quadratic twist at t = a1, a2. Then,

the monodromy representation for the parabolic cohomology local system is irreducible. The

family E → A is a family of Picard-rank seventeen K3 surfaces.

Proof. One applies the Dettweiler-Wewers algorithm in each case to compute the monodromy

representation for the parabolic cohomology local system. Since each of these families origi-

nates from a rigid elliptic surface with one additive fibre, the rank of parabolic cohomology

is equal to five. These monodromy representations are tabulated in Table B.1, located in
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the appendix.

Irreducibility is argued as follows. For each of the eleven monodromy representations, at

least one the transformations is diagonalizable; call this transformation T . It follows that

any subspace that is left invariant by all monodromy transformations is a direct sum of the

eigenspaces T . One then checks by brute force that for each subspace W constructed as the

direct sum of eigenspaces of T that some other monodromy transformation does not leave

W invariant. Thus, the monodromy representation is irreducible.

On the other hand, the parabolic cohomology local system always contains the transcen-

dental lattice local system and so these two are equal by irreducibility. It follows that the

Mordell-Weil rank is equal to zero for these surfaces and, therefore, the Picard-rank is equal

to seventeen.

Rather than consider the most general kind of quadratic twist, we can instead consider

quadratic twists in which we twist one mobile smooth fibre t = a and one of the fixed singular

fibres t = s for some s ∈ Σ. This produces a one-parameter family of elliptic K3 surfaces

with five singular fibres, and we can compute the ranks of the parabolic cohomology group in

the same manner as earlier, taking into account a “correction” factor depending on whether

we twist at an additive or multiplicative fibre.

Proposition 7. Let E be an elliptic surface with four singular fibres, one of which is at

∞, A = P1 − Σ, and E → A be the family of elliptic K3 surfaces obtained by performing a

quadratic twist at a and the singular fibre t = s. Let ν denote the number of Ib-fibres in E

with b > 0. Let δs = 0 if s is an additive fibre, and let δs = 1 if s is an Ib fibre. Then, the

rank of the parabolic cohomology local system on A is

rE = 6− ν + δs.

The a-dependent family of Picard-Fuchs equations are obtained from (3.18) by setting

a1 = s, a2 = a where s ∈ Σ is the fixed singular fibre we are twisting. By choosing a = −1

as a base point, the braiding map used in the Dettweiler-Wewers algorithm is determined by

ϕ(σ1) = β2
1 , ϕ(σ2) = β−1

1 β2
2β1, ϕ(σ3) = β−1

1 β−1
2 β2

3β
−1
2 β−1

1 .

Applying the algorithm to the eleven examples in Table 3.6 where the unique additive fibre

is twisted, we obtain the following results:

Proposition 8. Let E → A be the one-parameter family of K3 surfaces obtained by starting

with an elliptic surface in Table 3.6 and applying a quadratic twist at the unique additive fibre
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and at t = a for a /∈ Σ. Then, the monodromy representation for the parabolic cohomology

local system is irreducible. The family E → A is a family of Picard-rank nineteen K3 surfaces.

Proof. By our rank formula, we know parabolic cohomology will be rank three. The mon-

odromy representations are tabulated in Table 3.7. Since we have a family of K3 surfaces,

we know that that the smallest the rank of the transcendental lattice can be is three, and so

we are guaranteed the fact that the parabolic cohomology local system and transcendental

lattice local system agree. Irreducibility follows, as does the fact that these K3 surfaces have

Picard-rank nineteen.

Remark 15. These eleven one-parameter family of K3 surfaces were considered by Besser-

Livné in [1] in which they show that these families are closely related to certain Shimura

curves. In their work, they compute the Picard-Fuchs equations for these eleven families.

Therefore, the monodromy representations in Table 3.7 are the monodromy representations

for the eleven Picard-Fuchs equations computed in [1]. The connection to the kinds of

Shimura curves considered in [1] explains the orders of the monodromy transformations

computed above.

Note that we may of course apply this quadratic twist construction to the families of

solutions on Herfurtner’s list as well. If we start with the seven I∗0 families in Table 3.4, and

apply the general quadratic twist at t = a1, a2 for ai /∈ {0, 1, a,∞}, then we obtain a three-

parameter family of K3 surfaces with six singular fibres. Here, we have a three-parameter

variation of local systems with deformation space equal to

A = {(a1, a2, a3) ∈ C3| ai 6= aj, ai /∈ {0, 1,∞}.

As earlier, the fundamental group is generated by nine elements γi and the braiding map is
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Name η(σ1) η(σ2) η(σ3) Orders

1




1 3 −2
−3 −8 5
−8 −16 9






−1 −3 2

0 1 0
0 0 1







1 0 0
−3 −1 1

0 0 1


 (6, 2, 2, 2)

2



−1 −2 1

0 1 0
0 0 1







1 0 0
−4 −1 2

0 0 1






−6 −5 1
10 7 −2
−7 −7 1


 (2,2,6,2)

3



−1 −2 1

0 1 0
0 0 1







1 0 0
−8 −1 4

0 0 1






−4 −3 1
12 5 −4
−5 −5 1


 (2, 2, 6, 2)

4




1 3 −3
−2 −5 4
−5 −10 6






−1 −3 3

0 1 0
0 0 1







1 0 0
−2 −1 2

0 0 1


 (6, 2, 2, 2)

5



−1 −3 1

0 1 0
0 0 1







1 0 0
−3 −1 2

0 0 1






−6 −11 1

4 6 −1
−7 −14 1


 (2, 2, 4, 2)

6



−1 −2 1

0 1 0
0 0 1







1 0 0
−4 −1 2

0 0 1






−5 −4 1

8 5 −2
−6 −6 1


 (2, 2, 4, 2)

7



−1 −2 1

0 1 0
0 0 1







1 0 0
−6 −1 3

0 0 1






−4 −3 1

9 4 −3
−5 −5 1


 (2, 2, 4, 2)

8



−1 −2 2

0 1 0
0 0 1







1 0 0
−3 −1 3

0 0 1






−7 −6 2

9 7 −3
−4 −4 1


 (2, 2, 4, 2)

9



−1 −3 1

0 1 0
0 0 1







4 3 −2
3 1 −1

12 6 −5







1 0 0
−3 −1 1

0 0 1


 (2, 3, 2, 2)

10




1 4 −2
−2 −7 3
−5 −15 6






−1 −4 2

0 1 0
0 0 1







1 0 0
−2 −1 1

0 0 1


 (3, 2, 2, 2)

11




1 3 −3
−2 −5 4
−3 −6 4






−1 −3 3

0 1 0
0 0 1







1 0 0
−2 −1 2

0 0 1


 (3, 2, 2, 2)

Table 3.7: Monodromy representations associated to examples in Table 3.6
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determined by

ϕ(γ1) = β2
1

ϕ(γ2) = β−1
1 β2

2β1

ϕ(γ3) = β−1
1 β−1

2 β2
3β2β1

ϕ(γ4) = β−1
1 β−1

2 β−1
3 β2

4β3β2β1

ϕ(γ5) = β2
2

ϕ(γ6) = β−1
2 β2

3β2

ϕ(γ7) = β−1
2 β−1

3 β2
4β3β2

ϕ(γ8) = β2
3

ϕ(γ9) = β−1
3 β2

4β3,

and we can then apply the Dettweiler-Wewers algorithm to compute the monodromy repre-

sentations for the parabolic cohomology groups.

Proposition 9. Let E → A be a three-parameter family of K3 surfaces with six singular

fibres obtained by starting with an elliptic surface E in Table 3.4 and applying a quadratic

twist at t = a2, a3 /∈ {0, 1, a1,∞}. Then, the monodromy representation for the parabolic

cohomology local system is irreducible. The family E → A is a family of Picard-rank 22− rE
K3 surfaces where rE is computed as in Proposition 5.

Proof. This is argued similarly to the previous propositions. We apply the Dettweiler-Wewers

algorithm to compute the monodromy representations. These are tabulated in Table B.3 in

the appendix. For each representation, at least one of the monodromy transformations is

diagonalizable and a case-by-case analysis tells us that each monodromy representation is

irreducible.

For the twelve families of surfaces in Hefurtner’s classification, we can also produce one-

parameter families of K3 surfaces by taking quadratic twists at two of the singular fibres not

of type I∗0. We summarize the results of these computations below, starting with the five

families studied by Doran.

Proposition 10. Let E1 be the first elliptic surface in Table 3.2. A K3 surface is produced

by quadratic twisting two singular fibres if and only if we twist both the I1 fibres or twist one

I1 fibre and the type II fibre. In the first case, the corresponding one-parameter family of

K3 surfaces has Picard rank eighteen; in the second case, the corresponding one-parameter

family of K3 surfaces has Picard rank nineteen.
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If E is any other elliptic surface in Table 3.2, then a K3 surface is produced by quadratic

twisting two singular fibres if and only if we do not twist the unique additive fibre. The

resulting family of K3 surfaces has Picard rank nineteen.

Proof. Whether or not we obtain we obtain K3 surfaces is determined by the euler charac-

teristics of the singular fibres, as described in [37]. A case-by-case analysis shows us that the

only possibilities are as stated above.

If we take E1 and twist at the two I1 fibres, then the rank of the parabolic cohomology

local system is equal to four. Applying the Dettweiler-Wewers algorithm to compute the

monodromy representation of the parabolic cohomology, we see that it is irreducible, which

shows that the K3 surfaces has Picard-rank eighteen. In all other cases, parabolic cohomology

is of rank three, and so irreducibility and the statement about the Picard follows from the

fact that the K3 surfaces are not rigid.

γ1 7→




1 2 0 0

0 1 0 0

0 2 1 0

−2 −3 0 1




γ2 7→




−9 −10 1 4

4 3 −1 −2

−8 −4 3 4

−8 −14 −1 3




γ3 7→




3 9 4 0

−4 −5 −1 2

10 9 0 −6

−4 6 6 5




γ4 7→




3 2 0 −2

−2 0 1 2

2 −1 −2 −2

2 3 1 −1




(3.19)

Next, we summarize the results for the seven I∗0 families.

Proposition 11. For each family of elliptic surface in Table 3.4, quadratic twisting any

two singular fibres not of type I∗0 produce a one-parameter family of K3 surfaces whose

transcendental lattices have rank equal to three or four depending on the number of surviving

multiplicative fibres.

Proof. One applies the Dettweiler-Wewers algorithm to compute the monodromy represen-

tations. The only thing left to check is that the cases for which parabolic cohomology has

rank four have irreducible representations and this is checked the same way as before. The

monodromy representation are located in Table B.4 in the appendix.

Remark 16. Completely mapping out the families of K3 surfaces that can be constructed

from Herfurtner’s list constitutes work in progress. The above illustrates both the method

and some interesting phenomena.
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Remark 17. In general, it is not an easy problem to determine the Picard-rank of a K3

surface, or, equivalently, the Mordell-Weil rank. Stiller was able to find an interesting series

of examples in which he could compute these ranks by taking advantage of automorphisms

of fibration [43] and their induced action on the parabolic cohomology groups. However,

these kinds of useful automorphisms rarely occur in families and would not help us here.

In contrast, our ability to use the Dettweiler-Wewers algorithm to compute the mon-

odromy representation of parabolic cohomology allows us to make statements about the

Picard-rank of K3 surfaces moving in families by analyzing the representations.

Remark 18. Note that the number of parameters for these families of K3 surfaces does not

always agree with the dimension of the corresponding moduli space as lattice-polarized K3

surfaces. For example, if we twist the two I1-fibres in the first family considered by Doran, we

obtain a one-parameter family of rank eighteen K3 surfaces, from which it follows that the

corresponding period map is not surjective. One may therefore reasonably ask: are we getting

interesting sub-loci when this happens. This is analogous to the situation of M -polarized K3

surfaces, whose moduli space is two-dimensional, but possesses a one-dimensional sub-locus

(the σ = 1 locus that we will discuss in detail shortly) on which the Picard-rank of each

K3 surfaces cannot jump to twenty. Investigating the special properties of the families that

we are obtaining in this, such as the Picard-rank jumping, is another direction of future

research.



Chapter 4

K3 Surface Fibrations

In this section, we study some interesting geometric variations of local systems coming from

families of K3 surfaces—that is, we are moving up a dimension. We begin by studying a

certain family of K3 surfaces for which the Néron-Severi group is isomorphic to the rank

eighteen lattice H ⊕ E8 ⊕ E8. The moduli space of M -polarized K3 surfaces MM was de-

scribed in [8]. It is a two-dimensional variety for which the generic K3 surface admits exactly

two elliptic fibration structures. We show that each of these fibration structures leads to

a geometric variation of local systems parameterized by MM whose parabolic cohomology

is the rank four transcendental lattice local system on MM . By restricting to a particu-

larly interesting one-dimensional sub-loci, the so-called σ = 1 locus, we are able to apply

the Dettweiler-Wewers algorithm to compute the corresponding monodromy representation.

That is, we compute the monodromy representation for the Picard-Fuchs differential equa-

tion describing the periods of the K3 surfaces in this locus, and we are able to do this for

each of the two fibration structures.

In [9], the “fourteenth case” of integral variations of Hodge structures of weight three

underlying the thrice-punctured sphere, classified in [20], was constructed by considering

a particular one-parameter family of Calabi-Yau threefolds admitting an M -polarization.

We show that this local system is realized as the parabolic cohomology associated to the

geometric variation of local systems induced by the M -polarized K3 surface fibration. This

is done by explicitly writing out the variation of local systems and applying the Dettweiler-

Wewers algorithm.

We then discuss Mn-polarized K3 surfaces and threefolds admitting fibrations by such

surfaces. It is observed that the Picard-Fuchs equations that govern Mn-polarized K3 sur-

faces share much of the same structure as Stiller’s K-equations, which describe the kinds of

differential equations that occur as Picard-Fuchs equations for elliptic surfaces.

Finally, we consider two examples of interesting geometric variations of local systems

49
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that arise naturally from Mn-polarized K3 surfaces. One example is the Dwork-pencil of

mirror hypersurfaces. Starting with the family of mirror cubic elliptic curves, we construct

a geometric of variation of local systems whose parabolic cohomology corresponds to the

variation of Hodge structure on the mirror quartic family of K3 surfaces. In turn, we con-

struct a geometric variation of local systems whose parabolic cohomology corresponds to the

variation of Hodge structure on the quintic mirror family of Calabi-Yau threefolds. We also

discuss an interesting example found in [38] that showcases some of the subtleties of the

subject.

4.1 The 14th Case VHS of Doran-Morgan

4.1.1 M-polarized K3-surfaces

In this section, we review the necessary details of the theory of M -polarized K3-surfaces,

where M denotes the rank-eighteen even lattice

M = H ⊕ E8 ⊕ E8,

with H being the standard rank-two hyperbolic lattice and E8 is the unique even, negative-

definite, unimodular lattice of rank of eight. More generally, we start by considering L-

polarized K3 surfaces where L is an even lattice of signature (1, r), r ≥ 0. We follow the

treatment found in [16].

Consider a family of K3 surfaces, which we will take to mean a variety X together with a

flat and surjective morphism π : X → U onto a smooth, irreducible, quasiprojective variety

U for which each fibre Xp is a smooth K3 surface. It is also assumed that there is a line

bundle L for which the restriction to each fibre is ample and primitive in Pic(Xp) for each

p ∈ U . We consider the integral local system R2π∗Z, whose fibres above p are isomorphic

to the second cohomology group H2(Xp,Z), together with the Gauss-Manin connection ∇.

The cup-product pairing on the stalks extend to produce a bilinear pairing of sheaves

R2π∗Z×R2π∗Z→ R4π∗Z ∼= Z. (4.1)

Now consider the Hodge filtration on R2π∗Z⊗OU . Since each fibre is a K3-surface, the filtrant

F2 = F 2(R2π∗Z ⊗ OU) is given by a rank one local subsystem of R2π∗C. Let ωX be a flat

local section of F2. Since the pairing is Z-linear and ωX is flat, the orthogonal compliment

ω⊥X is well-defined on U ; we call this local system NS(X ). Note that NS(X )p ∼= NS(Xp) for

each fibre. Let T (X) be the integral orthogonal compliment of NS(X). Then, we have an
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orthogonal decomposition of the Q-local system:

R2π∗Q = (T (X )⊕NS(X ))⊗Z Q.

Let N be a local subsystem of NS(X ) for which the restriction of the bilinear form to

the fibre Np gives Np the structure of a non-degenerate integral lattice of signature (1, n−1),

which is isomorphic to a lattice N , embedded in H2(Xp,Z).

Definition 19. The family X is N-polarized if the local system N is a trivial local system.

Now suppose X → U is an M -polarized family of K3 surfaces in this sense. The

corresponding transcendental lattice is isomorphic to the rank-four lattice H ⊕ H. Let

{x1, x2, y1, y2} be a basis of the local system T (X ) for which the intersection matrix is




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



.

Then, the section ωX can be expressed as

ωX = f1(p)x1 + f2(p)x2 + g1(p)y1 + g2(p)y2,

where the fi, and gi are the periods of ω, the integrals being defined on the 2-cycles dual

to the xi and yi via Poincaré duality. The filtrant F2 is determined by ω up to non-zero

scaling, and we see that the corresponding period map can be realized as the map

U → P(H ⊕H)

p 7→ f1(p)x1 + f2(p)x2 + g1(p)y1 + g2(p)y2

. (4.2)

Remark 19. Similar to elliptic surfaces, we see that the period map can be concretely realized,

after fixing the basis {x1, x2, y1, y2}, in terms of the dual local system (R2π∗C)
∨
. This local

system is identified with the solution sheaf of rank four differential operator on U known as

the Picard-Fuchs operator. The monodromy of (R2π∗Z)
∨

is identified with the monodromy

of the associated Picard-Fuchs equation, and we often work with this local system, rather

than R2π∗Z. This will be the case for the examples considered in this thesis.

The Hodge-Riemann relations imply that we may normalize the image of the period map

as follows:

τx1 + x2 + uy1 + (−τu)y2,
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where τ, u are uniquely defined elements of h (that depend on the basis we started with)[8].

Definition 20. The modular invariants of the M -polarized K3 surface X are

σ = J(τ) + J(u)

π = J(τ) · J(u),

where J is the classical modular function.

It follows that the classifying space of these Hodge structures can be identified with

H1 = G\h× h,

where

G = (PSL2(Z)× PSL2(Z)) o Z/2Z.

Here, PSL2(Z) acts on each factor of h in the standard way, while the Z/2Z factor exchanges

the two copies; the invariants σ, π are natural coordinates on the spaceH1. The spaceH1 also

classifies Hodge structures corresponding to products of elliptic curves. A precise relationship

between M -polarized K3 surfaces and products elliptic curves by way of a canonical Shioda-

Inose structure is described further in [8].

A complete classification of M -polarized K3 surfaces was presented by Clingher-Doran

in [8]. We summarize some some of the important features.

Proposition. Let X be an M-polarized K3 surface. Then, there is a triple (a, b, d) ∈ C3

with d 6= 0 such that X is isomorphic to the minimal resolution of the quartic surface:

Qa,b,d : y2zw − 4x3z + 3axzw2 + bzw3 − 1

2
(dz2w2 + w4) = 0. (4.3)

Two quartics Qa1,b1,d1 and Qa2,b2,d2 correspond to isomorphic M-polarized K3 surfaces if and

only if

(a2, b2, d2) = (λ2a1, λ
3b1, λ

6d1),

for some λ ∈ C×.

A coarse moduli space for M -polarized K3 surfaces is thus given by an open sub-variety

of weighted projective space:

MM = {[a : b : d] ∈WP(2, 3, 6)| d 6= 0},



CHAPTER 4. K3 SURFACE FIBRATIONS 53

and the following invariants are known as the fundamental W-invariants :

W1 =
a3

d
, W2 =

b2

d
.

The inverse of the period map per−1 : H1 →MM is given by

per−1 =
[
π

1
3 , (π − σ + 1)

1
2 , 1
]

;

that is, we have

W1 = π, W2 = π − σ + 1.

Let X → MM denote the M -polarized family of K3 surfaces described above. As de-

scribed earlier, the rank four local system T (X ) is determined by the Picard-Fuchs differen-

tial system on the space MM . By applying the Griffiths-Dwork algorithm to the family of

quartic surfaces (4.3), the associated Picard-Fuchs system was computed in [7]. In the affine

chart corresponding to a = 1, the result is the following rank-four differential system in b, d:

∂2f
∂b2
− 4

(
d∂

2f
∂d2

+ ∂f
∂d

)
= 0

(b2 + d− 1)∂
2f
∂b2

+ 2b∂f
∂b

+ 4bd∂
2f
∂bd

+ 2d∂f
∂d

+ 5
36
f = 0.

(4.4)

The local system T (X ) arises as the parabolic cohomology local system associated to el-

liptic fibrations in two different ways. Generically, an M -polarized K3 surface admits exactly

two elliptic fibrations [8]. As [a : b : d] ∈ MM varies we obtain a variation of local systems

parameterized by a Zariski-open subset ofMM , namely, the variation of homological invari-

ants of the elliptic fibrations. By our consideration in section Chapter 2, the local system

of parabolic cohomology groups will be contained in the local system R2π∗Z and carries a

weight two integral Hodge structure that agrees with the one inherited by the embedding in

R2π∗Z. Moreover, V will necessarily contain the local system T (X ) by Proposition 1.

Let us make this explicit for each of the two fibration structures. First consider the

so-called standard fibration on an M -polarized K3 surface X, given by the vanishing of

Qa,b,d = y2zw − 4x3z + 3axzw2 + bzw3 − 1

2
(dz2w2 + w4).

This is obtained by noting that for each fixed w, the resulting curve is an elliptic curve.

Since we have typically been using t to denote the fibration parameter on an elliptic surface,

we will rename variables t = w. Scaling variables via (x, y) 7→ (tx, ty), and considering the
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affine piece z = 1, we obtain the model

Q̃a,b,d = y2 − 4x3 + 3ax+ b− 1

2t
(d+ t2).

This is a Weierstrass equation of the sort we are used to, but it is not minimal at t =∞; we

scale (x, y) 7→ (t−2x, t−3y) to produce the following minimal model:

Qstandard
a,b,d = y2 − 4x3 + 3at4x− 1

2
t5(t2 − 2bt+ d). (4.5)

The standard fibration on the M -polarized K3 surface is then described by the following

Weierstrass presentation:

g2(t; a, b, d) = 3aw4, g3(t; a, b, d) = −1

2
t5(t2 − 2bt+ d).

The discriminant is

∆(t; a, b, d) = −27

4
· t10 · (t4 − 4bt3 +

(
−4a3 + 4b2 + 2d

)
t2 − 4bdt+ d2).

From this, we see that there are singular fibres of type II∗ at t = 0,∞ and four I1 fibres

located at the four roots of the quartic polynomial appearing in the discriminant. The

discriminant of this quartic is

δ = 212a6d2 · (a6 − 2a3b2 + b4 − 2a3d− 2b2d+ d2). (4.6)

The functional invariant is

J = −4a3 t2

t4 − 4bt3 + (−4a3 + 4b2 + 2d) t2 − 4bdt+ d2
.

We see that J is a degree-four cover of the projective line. The fibre over 0 is t = 0,∞,

which corresponds to the two II∗-fibres; the fibre over ∞ consists of the four I1-fibres; the

fibre over 1 consists of the two roots of t2 − 2bt + d, each ramified to order two. From the

Weierstrass presentation above, we can compute the internal Picard-Fuchs equation for the

elliptic fibrations; we compute the following expressions for [a : b : d]-dependant family of

Picard-Fuchs equations:

d2f

dt2
+ Pstandard

df

dt
+Qstandardf = 0, (4.7)
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�1 ↵� 1 ↵+0oooo
Figure 4.1: The standard fibration when [a : b : d] = [1 : 1 : −1].

where

Pstandard = 2
2t6−6bt5+(−4a3+4b2−d)t4+8bdt3+(8a3d−8b2d−4d2)t2+6bd2t−d3

t(t2−d)(t4−4bt3+(−4a3+4b2+2d)t2−4bdt+d2)

Qstandard =
77t6−144bt5−159dt4+576bdt3+(288a3d−288b2d−201d2)t2+144bd2t−5d3

36t2(t2−d)(t4−4bt3+(−4a3+4b2+2d)t2−4bdt+d2)

(4.8)

Note that the singular points t2 = d are apparent singularities of this family of Picard-Fuchs

equations and do not correspond to singular fibres, but rather points at which the functional

invariant J is ramified over points other than {0, 1,∞}.
We now choose [a : b : d] = [1 : 1 : −1] as a base point and determine the homological

invariant of the corresponding local system. The functional invariant simplifies to

J = −4
t2

(t2 − 1)(t2 − 4t− 1)
,

and the I1-fibres are located at t = −1, 1 and t = 2 ±
√

5. The Picard-Fuchs equation for

this fibration is

d2f

dt2
+

4t6 − 12t5 + 2t4 − 16t3 − 8t2 + 12t+ 2

t(t2 − 1)(t2 + 1)(t2 − 4t− 1)

df

dt
+

77t6 − 144t5 + 159t4 − 576t3 − 201t2 + 144t+ 5

36t2(t2 − 1)(t2 + 1)(t2 − 4t− 1)
f = 0 (4.9)

Note that the singularities of the Picard-Fuchs equation above at t = ±i are the apparent

singularities. We draw the graph on P1 that represents this cover and use it to help write

down the functional invariant; see Figure 4.1.

We label the points

(t1, t2, t3, t4, t5, t6) = (−1, α−, 0, 1, α+,∞),
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and choose loops γ1, . . . , γ6 as indicated. The resulting monodromy representation is

M1 =

(
1 0

−1 1

)
M2 =

(
1 1

0 1

)
M3 =

(
0 −1

1 1

)

M4 =

(
1 0

−1 1

)
M5 =

(
1 1

0 1

)
M6 =

(
0 −1

1 1

)
.

(4.10)

As [a : b : d] varies in M0
M := M − {δ = 0}, we obtain a two-parameter variation of

local systems. The rank of the parabolic cohomology local system V on A can be easily

computed using our formula (2.4). We have six singular points in total, four of which are

unipotent and so we conclude that the rank of V is four. On the other hand, we know that

the transcendental lattices of the generic member of this family have rank four, and so we

conclude that V is equal to transcendental lattice local system, i.e., the Mordell-Weil rank

is equal to zero.

Next we consider the “alternate fibration” structure. This fibration is obtained by con-

sidering the projection map from the quartic surface model (4.3) to P1
[x:w]. The fibre over a

point [t : 1] = [tw : w] is

y2zw − 4t3zw3 + 3atzw3 + bzw3 − 1

2
(dz2w2 + w4). (4.11)

Set p(t; a, b, d) = 4t3−3at−b. Then, after making a change of variable of the form z 7→ z− 2p
3d

,

one derives the following Weierstrass presentation for the alternate fibration:

y2 = 4z3 − g2(t; a, b, d)z − g3(t; a, b, d)

g2(t; a, b, d) = 4(4p2−3d)
3d2

g3(t; a, b, d) = −8p(8p2−9d)
27d3

.

(4.12)

The discriminant and functional invariant take the following form:

∆ = 64(p2−d)
d4

J = (4p2−3d)3

27d2(p2−d)

J − 1 = p2(8p2−9d)2

27d2(p2−d)
.

(4.13)

By consulting Table 3.1, we see that the six roots of p2 − d are I1 singular fibres and that

∞ is a type I∗12 fibre. By computing the discriminant of p2 − d, one sees that that collisions

of singular fibres occur if and only if [a : b : d] ∈ {δ = 0}, where δ is given by (4.6). While

one can compute the family of internal Picard-Fuchs equations for this family in the exact

same manner as we did earlier, the equation is quite complicated and hard to display. Note
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p2

p3

p1

p4

p6

p5

Figure 4.2: The alternate fibration when [a : b : d] = [1 : 1 : −1].

that the degree of the functional invariant in this case is eighteen, rather than four for the

standard fibration.

Using [a : b : d] = [1 : 1 : −1] as a base point (the same base point we considered for the

standard fibration), the six I1 fibres are located at the roots of p2 + 1 = (4x3 − 3x− 1)2 + 1.

The Picard-Fuchs equation corresponding to this fibration is

d2f
dt2

+
2 (128 t7−144 t5−16 t4+48 t3−17 t−3)
(16 t6−24 t4−8 t3+9 t2+6 t+2)(4 t2−1)

f + 9(4t2−1)2

4 (16 t6−24 t4−8 t3+9 t2+6 t+2)
f = 0 (4.14)

The singular points t = ±1
2

of this equation are apparent singularities and once again corre-

spond to excess ramification of the functional invariant.

In figure 4.2, we have marked these poles and drawn the graph that describes the corre-

sponding cover. We take 0 as a base point for the initial local system and choose loops γi

around the pi as indicated. This allows to determine the initial monodromy representation:

γ1 7→
(

2 1

−1 0

)
γ2 7→

(
0 1

−1 2

)
γ3 7→

(
2 1

−1 0

)

γ4 7→
(

0 1

−1 2

)
γ5 7→

(
2 1

−1 0

)
γ6 7→

(
0 1

−1 2

)

γ7 7→
(
−1 −12

0 −1

)
(4.15)

The first six monodromy transformations are unipotent and the the last does not have

any fixed vectors. It follows from our rank formula (2.4) that the parabolic cohomology
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group corresponding to this representation has rank given by:

(7− 2) · 2− (1 + 1 + 1 + 1 + 1 + 1) = 4,

from which it follows that the parabolic cohomology local system is identified with the

transcendental lattice local system on MM .

Proposition 12. LetM0
M ⊆MM be the compliment of {δ = 0} where δ is as in (4.6). Both

the standard and alternate fibration structures on the K3 surfaces parameterized by M0
M , as

described in [8], give rise to geometric variations of local systems whose local system of

parabolic cohomology groups agree with the rank four local system of transcendental lattices.

Remark 20. The significance of the above example is that we are able to access information

about the local system T (X ) in two different ways, corresponding to the two different fibra-

tion structures. The fibration structures are quite different from each other: the number of

singular fibres is different in each fibration, in addition to certain types of fibres only being

found in one fibration. Nonetheless, the parabolic cohomology local system corresponding

to the two different fibrations agree with each other in this case.

In general, this need not happen. While the transcendental lattice local system will

always be contained as an irreducible piece of the parabolic cohomology local system, it

is possible that two different fibration structures will have different Mordell-Weil lattices,

which will correspond to different parabolic cohomologies.

Remark 21. In principle, if we had a good understanding of the fundamental group of A =

MM − {δ = 0}, then we could apply the Dettweiler-Wewers algorithm to compute the

corresponding monodromy matrices. In the next section, we will look a certain sub-locus on

which we will be able to implement the algorithm.

4.1.2 The σ = 1 Locus

In this section, we consider the sub-locus of the M -polarized moduli space cut out by setting

σ = 1. In the affine chart defined by a = 1, this corresponds to setting [a : b : d] = [1, 1, 1
π
];

the K3-surfaces in this family are the minimal resolutions of the surfaces cut out by

Qa,b,d : y2zw − 4x3z + 3xzw2 + zw3 − 1

2π
(z2w2 + πw4) = 0. (4.16)

We start by computing the “external” Picard-Fuchs equation—the π-dependent Picard-

Fuchs equation that corresponds to the periods of the K3 surfaces in this family. Applying

the Griffiths-Dwork algorithm to the family of hypersurfaces defined in (4.18), we obtain the
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following Picard-Fuchs equation:

d4f

dπ4
+

13
2
π − 1

π(π − 1
4
)

d3f

dπ3
+

17
2
π − 167

288

π2(π − 1
4
)

d2f

dπ2
+

3
2

π2(π − 1
4
)

df

dπ
−

385
82944

π4(π − 1
4
)
f = 0 (4.17)

On the other hand, we also have two internal fibration structures coming from the stan-

dard and alternate fibrations. We first consider the standard fibration for the K3 surfaces

in this sub-locus given by the Weierstrass presentation:

y2 = 4x3 − 3t4x+
1

2π
t5(πt2 − 2π3t+ 1) (4.18)

The corresponding π-dependent family of Picard-Fuchs equations is

d2f

dt2
+ 2

2π3t6 − 6π3t5 − π2t4 + 8π2t3 − 4πt2 + 6πt− 1

t(πt2 − 1)(πt2 + 1)(πt2 − 4πt+ 1)

df

dt
(4.19)

+
77π3t6 − 144π3t5 − 159π2t4 + 576π2t3 − 201πt2 + 144πt− 5)

36t2(πt2 − 1)(πt2 + 1)(πt2 − 4πt+ 1)
f = 0 (4.20)

Note that the singularities located at the roots of πt2 + 1 are apparent singularities, while

the poles correspond to the I1 singular fibres.

The discriminant of this fibration is

∆ = − 27

4π2
t10(πt2 + 1)(πt2 − 4πt+ 1),

and the discriminant of the right-most quadratic term is equal to 4
π
(4π − 1). Identifying

the σ = 1 locus with P1
π, it follows that the standard fibration gives rise to a variation of

local systems over P1
π − {0, 1

4
,∞}. Using π = −1 as a base point, the initial local system

is exactly the one we used as a base point when we studied the full M -polarized locus; the

monodromy representation is therefore given by (4.10).

Let σ0, σ 1
4

denote the loops around 0 and 1
4

based at π = −1 as indicated in Figure 4.3.

By carefully analyzing the motion of the singular points as π moves in these loops, we can

determine the braiding map ϕ : π1(P1
π − {0, 1

4
,∞},−1)→ A5:

ϕ(σ0) = β−1
2 β−1

1 β−1
3 β−1

2 β−1
1 β−1

4 β−1
3 β−1

2

ϕ(σ 1
4
) = β−1

2 β−1
3 β4β3β2.

(4.21)

We now apply the Dettweiler-Wewers algorithm to compute the monodromy representation

of the corresponding parabolic cohomology local system.

Proposition 13. The monodromy representation of the parabolic cohomology local system
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�1 ↵� 1 ↵+0oooo
(a) The standard fibration when π = −1.

�1 ↵� 1 ↵+0For

(b) The braid ϕ(σ0).

�1 ↵� 1 ↵+0

(c) The braid ϕ(σ 1
4
).

Figure 4.3: The standard fibration variation.
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associated to the standard fibration over the σ = 1 locus is given by the matrices:

η(σ0) =




−1 1 0 −1

−1 0 1 0

0 1 0 −1

−1 0 1 1



, η(σ 1

4
)




1 0 0 0

1 −1 1 1

0 0 1 0

0 0 0 1



, η(σ∞) =




−1 0 1 0

−2 1 1 0

−1 1 1 0

0 −1 0 1



.

Their Jordan canonical forms are as follows:

J0 =




ω 0 0 0

0 ω5 0 0

0 0 ω7 0

0 0 0 ω11



, J 1

4
=




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, J∞ =




−1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1



.

Proof. The matrices above are obtained by applying the Dettweiler-Wewers algorithm with

the initial monodromy representation (4.10) with the braiding map determined as above.

These monodromy matrices are equal to the monodromy matrices of the parabolic cohomol-

ogy local system up to a sign ambiguity. To eliminate the ambiguity, we can compute the

Picard-Fuchs differential equation for this family of K3 surfaces.

The characteristic exponents of the Picard-Fuchs equation (4.17) at π = 1
4

are 0, 1
2
, 1, 2,

which means that the corresponding monodromy transformation has 1 and −1 for eigen-

values, with −1 appearing with algebraic multiplicity one. The characteristic exponents at

π = ∞ are 0, with multiplicity three, and 1
2

with multiplicity one, which means that the

corresponding monodromy transformation has 1 as an eigenvalue with algebraic multiplicity

three, and eigenvalue −1 with multiplicity one. Since the monodromy matrices written above

have the correct multiplicities of eigenvalues, we have resolved the sign ambiguity.

We now perform the same computation using the alternate fibration. The π-dependent

family of Picard-Fuchs equations corresponding to the alternate fibration is by

d2f

dt2
+ 2

128πt7 − 144πt5 − 16πt4 + 48πt3 − 13πt− 3π + 4t

(4t2 − 1)(πp2 − 1)

df

dt
+

9(4t2 − 1)2

4(πp2 − 1)
. (4.22)

Using π = −1 as a base point, the initial homological invariant was computed earlier in

(4.15). If σ0, σ 1
4

are the same loops from the earlier, then Figure 4.4 describe the motion of

the singular points and allow us to determine the braiding morphism. We determine that

ϕ(σ0) = β−1
1 β−1

2 β−1
3 β−1

4 β−1
5

ϕ(σ 1
4
) = β5β4β

−1
5 .

(4.23)
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Using these braids, we run the Dettweiler-Wewers algorithm to compute the monodromy

representation, using the structure of the external Picard-Fuchs equation to eliminate the

sign ambiguity.

4.1.3 A New Perspective on the 14th Case

In this section, we demonstrate how the fourteenth case of integral variation of Hodge struc-

ture constructed in [9] arises from geometric variations local systems. This variation of

Hodge structure corresponds to a one-parameter family Y of Calabi-Yau threefolds admit-

ting fibrations by M -polarized K3 surfaces lying in the σ = 1 locus. As described in [9], the

fibration is described by a map α : Y → C ∼= P1
t , and each fibre α−1(t) is an M -polarized

K3-surface [9]. The M -polarization structure is described in terms of its modular invariants

as follows:

πY =
1

126ξ
· t

(t+ 1)2
(4.24)

σY = 1, (4.25)

where ξ ∈ C denotes the parameter for the family Y . The ξ-dependent family of degree-two

covers of P1
π defined above are generalized functional invariant maps to the σ = 1 locus that

determine the internal M -polarized K3 surface-fibration on each Yξ.
Let V denote the rank-four local system of transcendental lattices on the σ = 1 locus

whose monodromy was computed in Proposition 13. Then, the family of pull-back local

systems p∗ξV defines a variation of local systems that describe the internal M -polarized K3

surface-fibration structure. For each ξ /∈ {0,∞}, we have

p−1
ξ (0) = {0,∞}, p−1

ξ (∞) = {−1}, p−1
ξ (

1

4
) := {α+, α−}.

The map pξ is ramified at t = 1, which lies over 1
4·126ξ

; this branch point is equal to 1
4

only

if ξ = 1
126

. Therefore, the local systems p∗ξV form a variation of local systems parameterized

by P1
ξ − {0, 1

126
,∞}.

Remark 22. When ξ = 1
126

, the threefold Y1
1

126
is still fibred by M -polarized K3 surfaces, but

the number of singular points in the corresponding local system is less than the generic one.

This is why, from the perspective of variations of local systems, we omit ξ = 1
126

.

The ξ-dependent family of Picard-Fuchs equation is given by

d4f

dt4
+ Pξ

d3f

dt3
+Qξ

d2f

dt2
+Rξ

df

dt
+ Sξf = 0, (4.26)
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p2

p3

p1

p4

p6

p5

(a) The alternate fibration when π = −1.

p2

p3

p1

p4

p6

p5

(b) The braid ϕ(σ0).

p2

p3

p1

p4

p6

p5

(c) The braid ϕ(σ 1
4
).

Figure 4.4: The alternate fibration variation.
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where

Pξ = 6
ξt4− 7

8957952
t3+(−4ξ+ 7

4478976)t2+(−4ξ+ 17
8957952)t−ξ

ξt(t2−1)(t2+
(

2− 4
126ξ

)
t+1)

Qξ =
491(ξt6+(−2ξ− 7

20362752)t5+(− 1355
491

ξ+ 7
5090688)t4+( 5420

491
ξ− 1

377088)t3+( 9013
491

ξ− 35
5090688)t2+( 4202

491
ξ− 67

20362752)t+ξ)
72ξt2(t2−1)2(t2+

(
2− 4

126ξ

)
t+1)

Rξ = 59
ξt8+(−4ξ+ 1

4893696)t7+(2ξ− 1
815616)t6+(− 1256

59
ξ+ 67

4893696)t5

72ξt3(t2−1)3(t2+
(

2− 4
126ξ

)
t+1)

+ 59
+(− 9112

59
ξ+ 17

407808)t4+(− 14060
59

ξ+ 47
543744)t3+(− 8286

59
ξ+ 109

2446848)t2+(− 1728
59

ξ+ 53
4893696)t−ξ

72ξt3(t2−1)3(t2+
(

2− 4
126ξ

)
t+1)

Sξ =
25(ξt2+(2ξ− 1

7200)t+ξ)
20736ξt4(t2−1)4(t2+

(
2− 4

126ξ

)
t+1)

(4.27)

Note that t = 1 is an apparent singularity of these equations, corresponding to the excess

ramification of the degree-two covers.

The monodromy representation for each p∗ξV is determined in the usual manner by ex-

amining the push-forward homomorphism, using the monodromy representation for V that

was computed in 13. Choosing ξ = 1
2·126

as a base point on, we determine the monodromy

representation of the pull-back by drawing the graph in Figure 4.5. Let τ1, τ2, τ3, τ4, τ5 be

the loops indicated in the figure. Then, we determine their images under the push-forward

map p 1
2·126

,∗ as follows:

τ1 7→ σ2
∞

τ2 7→ σ0

τ3 7→ σ1

τ4 7→ σ1

τ5 7→ σ−2
1 σ−1

0 σ−2
∞ .

(4.28)
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�1 0 ↵� ↵+

 

(a) The degree-two cover when ξ = 1
2·126

.

�1 0 ↵� ↵+

(b) The braid ϕ(σ0). The numbers indicated the order in which the cor-
responding motion happens.

�1 0 ↵� ↵+

(c) The braid ϕ(σ 1
126

).

Figure 4.5: The M -polarized fibration variation.
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It follows that the monodromy representation of p∗ 1
2·126
V is given by

τ1 7→




0 1 0 0

−1 2 0 0

−2 2 1 0

2 −2 −1 1




τ2 7→




−1 1 0 −1

−1 0 1 0

0 1 0 −1

−1 0 1 1




τ3 7→




1 0 0 0

1 −1 1 1

0 0 1 0

0 0 0 1




τ4 7→




1 0 0 0

1 −1 1 1

0 0 1 0

0 0 0 1




τ5 7→




0 −1 1 0

1 −2 2 1

1 −1 1 0

−1 0 1 1




(4.29)

Let σ0, σ 1
126
, σ∞ be the usual generators of P1

ξ − {0, 1
126
,∞} based at 1

2·126
. Then, the

braiding map ϕ is determined by

ϕ(σ0) = β−1
3 β−1

2 β−1
1 β3β

−1
1 β−1

2 β−1
3 β2, ϕ(σ 1

126
) = β3. (4.30)

Applying the Dettweiler-Wewers algorithm, we compute the monodromy representation for

the parabolic cohomology local system W on P1
ξ − {0, 1

126
,∞}).

Proposition 14. The local system W has the following monodromy representation:

σ0 7→




−2 1 −1 1

−4 2 −1 1

−5 1 −1 2

−10 3 −4 5



, σ 1

126
7→




1 0 0 0

0 1 0 0

0 0 1 0

−3 1 −1 1



, σ∞ 7→




4 −1 1 −1

7 −1 2 −2

9 −2 4 −3

25 −7 9 −7



.

(4.31)

This is exactly the representation corresponding the 14th case in the Doran-Morgan classifi-

cation of variations of integral Hodge structures corresponding to one-parameter families of

Calabi-Yau threefold over thrice-punctured spheres.

Proof. The monodromy matrices above are found by applying the Dettweiler-Wewers algo-

rithm with braiding map determined as above. We can verify that we have computed the

correct representation by using the fact the 14th case monodromy representation is uniquely

characterized by the the fact that the monodromy at 0 is maximally unipotent, and that the
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characteristic polynomial of the monodromy at ∞ is x4 − x2 + 1 [20].

The Picard-Fuchs equation for the family Yξ is equal to the generalized hypergeometric

equation 4F3( 1
12
, 5

12
, 7

12
, 11

12
), after the change of variable t = 126ξ, which can be written as

θ4f −
(
θ +

1

12

)(
θ +

5

12

)(
θ +

7

12

)(
θ +

11

12

)
f = 0, (4.32)

where θ denotes the differential operator t d
dt

.

4.2 Mn-Polarized K3 Surface-Fibrations

In this section, we will examine Mn-polarized K3 surface-fibrations, where Mn is the rank

nineteen lattice

Mn = H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉,

for n ≥ 2.

4.2.1 General Theory

We begin by describing the moduli space Mn of Mn-polarized K3 surfaces. Since each Mn-

polarized K3 surface is M -polarized, there is a morphism Mn → MM . The image of this

map consists of the pairs τ, u ∈ h2 for which the elliptic curves Eτ and Eu are joined by

a cyclic n-isogeny. Thus, the image of Mn inside M is identified with the modular curve

X0(n)+, which is the quotient of the upper half-plane h by the group

Γ0(n)+ = Γ0(N) ∪ τnΓ0(N), τm =

(
0 − 1√

n√
n 0

)
.

In fact, the map Mn →M is an isomorphism onto its image [17].

Now suppose π : X → U is an Mn-polarized family in the sense of Definition 19.

Definition 21. The generalized functional invariant of X → U is the map g : U → Mn

defined by sending each fibre Xp to its corresponding point in moduli.

For families ofMn-polarized K3 surfaces, the functional invariant is enough to characterize

the family up to isomorphism:

Theorem. [Theorem 2.2 [17]] The family π : X → U is uniquely determined by its functional

invariant g : U →Mn.
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It follows that any Mn-polarized family of K3 surfaces π : X → U is the pull-back of a

fundamental modular family Xn →Mn by the functional invariant. In general, computing

explicit models for the families Xn is difficult, but for low values of n, models are tabulated

in [17]. As an example, the modular family X2 is given by

λw4 + xyz(x+ y + z − w) = 0, (4.33)

where λ is the coordinate on X0(2)+ for which the orbifold points of orders (2, 4,∞) are

located at λ = 1
44
,∞, 0 respectively.

We are interested in the variation of Hodge structure on U given by the local system

T (X ); we begin by describing the period domain, following the treatment of Dolgachev [13].

Start by choosing a basis (e, f, g) for M⊥
n = H ⊕ 〈2n〉, where e is a generator of 2n, and

(f, g) is a standard basis for H. The period domain Dn is defined as

Dn = {z ∈ P(M⊥
n ⊗C)| 〈z, z〉 = 0, 〈z, z〉 > 0}.

The group O(M⊥
n )∗, defined to be the kernel of the morphism O(M⊥

n )→ Aut(AM⊥n ), where

AM⊥n is the discriminant lattice, acts on the space Dn, and is generated by SO(M⊥
n )∗ :=

O(M⊥
n )∗ ∩ SO(M⊥

n ) and the involution

ι =




0 0 1

0 1 0

1 0 0


 .

Dolgachev shows that there is an isomorphism between the compactification of the quotient

Dn/O(M⊥
n )∗ and the moduli space Mn.

As explained in [17], we can construct Hodge structures on the quotients as follows. Let

F2 be the line bundle OP2(−1) restricted to Dn, which is a sub-bundle of F0 := (M⊥
n ⊗

OP2)|Dn on Dn. This defines a weight two integral variation of Hodge structure which de-

scends to Hodge structures Vn and V+
n on the quotientsDn/SO(M⊥

n )∗ andDn/O(M⊥
n )∗. The

local system Vn is the pull-back of V+
n via the double cover Dn/SO(M⊥

n )∗ → Dn/O(M⊥
n )∗.

Moreover, the Hodge-theoretic analogue of Theorem 4.2.1 holds:

Proposition (Proposition 2.6 [17]). The variation of Hodge structure T (X ) is the pull-back

of V+
n by the functional invariant.

Thus, from the perspective of local systems and variations of Hodge structures, we are

reduced to studying the local systems that arise by pulling back V+
n along rational functions.

This is not dissimilar to the situation of elliptic surfaces in which Stiller showed, among
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other things, that the Picard-Fuchs equation of an elliptic surface is projectively equivalent

to the pull-back differential equation of a specific hypergeometric function via the functional

invariant. Following the ideas of Stiller, we can attempt to categorize the types of differential

equations that can occur in this setting and prove similar structural results.

To motivate the next definition, suppose that π : X → U is an Mn-polarized family of

K3 surfaces, and fix a choice of holomorphic non-vanishing section ωX that generates the

flitrant F2. Choosing a basis (f, e, g) for M⊥
n for which the pairing is given by




0 0 1

0 2n 0

1 0 0


 ,

we may write ωX = ηe+ζf+ξg, for holomorphic functions η, ζ, ξ on U . The functions η, ζ, ξ

are the periods of ωX and satisfy the corresponding rank three Picarc-Fuchs differential

equation. The condition that 〈ω, ω〉 = 0 implies that

nη2 + ζξ = 0.

Scaling ω by η, and using ξ = −ζ/n, we find that

Q(ω, ω) = 2− (w + w),

where w = ζ

ζ
. This quantity is always non-negative and is equal to 0 precisely when ζ ∈ R.

It follows that the period domain Dn splits into two connected components, each isomorphic

to the upper half-plane, say D±n and ζ
η

will stay in one component. By changing basis to

(−η,−ζ, ξ) if needed, we will assume that ζ
η
∈ h. Finally, the monodromy representation of

the Picard-Fuchs equation with respect to the basis (η, ζ, ξ) will take values in O(M⊥
n )+, the

subgroup that fixes the component D+
n .

This prompts the following definition:

Definition 22. A rank three K-equation for O(M⊥
n )∗ is a Fuchsian differential equation of

the form

Λf =
d3f

du3
+ P

d2f

du2
+Q

df

du
+Rf = 0,

where P,Q,R ∈ K(U), together with three non-vanishing holomorphic, multivalued solutions

η, ζ, ξ satisfying:

1. nη2 + ζξ = 0;

2. im( ζ
η
) > 0;
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3. the monodromy representation takes values in O(M⊥
n )∗;

4. the Wronskian W = e−
∫
Pdx ∈ K(U)

Given a rank 3 K-equation for O(M⊥
n )∗ as above, it follows that we have a multi-valued

map

U0 V D+
n ,

defined on a Zarsiki-open subset of U . Composing this map with the map

D+
n → O(M⊥

n )+\D+
n
∼= X0(n)+,

we obtain a single-valued function G : U → X0(n)+; the fact that we have a Fuchsian equation

and properties of the quotient map above imply that G is meromorphic, much in the same

as is argued in [21].

Definition 23. Given a K equation as above, the rational function G : U → X0(n)+ is called

the functional invariant of the K-equation.

Proposition 15. For each n, the Picard-Fuchs equation for the family Xn → X0(n)+ is a

K-equation for O(M⊥
n )+. We denote this equation by Kn.

Proof. This is just by definition of K-equations. The K-basis is given, after fixing the form

ωXn , by the periods of ω along the cycles that are Poincaré dual to e, f, g.

Remark 23. Note that for the equation Kn, the map u 7→ η(u)e+ζ(u)f +ξ(u)g from X0(n)+

to D+
n is a local single-valued inverse to the quotient map D+

n → X0(n)+, the same way that

the K-basis for the Picard-Fuchs equation corresponding to J = t defines a local inverse to

the modular J-map. In particular, the functional invariant for each Kn is the identity map.

By using the Griffiths-Dwork algorithm to the family X2 in (4.33), we find that K2 is

equal to
d3f

dλ3
+

9
2
λ− 3

256

λ(λ− 1
256

)

d2f

dλ2
+

51
16
λ− 1

256

λ2(λ− 1
256

)

df

dλ
+

3
32

λ2(λ− 1
256

)
f = 0. (4.34)

After changing variables t = 44λ, this equation is the generalized hypergeometric equation

3F2(1
4
, 1

2
, 3

4
).

Proposition 16. Each K-equation for O(M⊥
n )+ is projectively equivalent to the pull-back of

Kn by the functional invariant G. More precisely, let

d3f

du3
+ P

d2f

du2
+Q

df

du
+Rf = 0
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be the K-equation Kn. Then any other K-equation is obtained by pulling back by the func-

tional invariant G and then scaling the solutions by some algebraic function µ satisfying

µ3 ∈ K(U).

Proof. Let G : U → X0(n)+ be the functional invariant for K and let λn : D+
n → X0(n)+ be

the quotient map. The period-map associated to K is the multi-valued map λ−1
n ◦G. On the

other hand, this is also the period-map associated to G∗Kn, the pull-back of Kn of by G with

respect to the pull-back K-basis. Since the two period maps agree, we deduce that there is

an overall scaling function µ that relates the differential equations, i.e., they are projectively

equivalent. One sees by expanding the resulting formulae that µ3 must be a rational function

for the Wronskian of the scaled equation to be rational.

Given a K-basis for the K-equation K, we can construct a variation of Hodge structure

over U by setting ω = η(u)e + ζ(u)f + ξ(u)g, which determines a Hodge structure. Scaling

ω by a function λ(u) will not change the Hodge structure, but it will scale each of the period

functions η, ζ, ξ. Thus, the projective equivalence class of the K-equation is completely

determined by the functional invariant G, and fixing a choice of section ωX corresponds to

fixing a particular K-equation in the equivalence class.

4.2.2 The Dwork Pencil

In this section, we will consider the Dwork pencil of Calabi-Yau manifolds given in affine

coordinates by

x1 · · · xn(x1 + · · ·+ xn + 1) +
(−1)n+1tn−1

(n+ 1)n+1
= 0. (4.35)

For each n, this defines a smooth family of n − 1-dimensional Calabi-Yau hypersurfaces

Y
(n−1)
tn−1

. As described in [19], the family Y
(n−1)
tn−1

admits a fibration by hypersurfaces Y
(n−2)
tn−2

.

We consider this family for n = 2, 3, 4.

When n = 2, the pencil (4.35) defines a family of 1-dimensional Calabi-Yau manifolds,

i.e., defines an elliptic surface, known as the cubic mirror family of hypersurfaces. This

fibration can be described in terms of our usual Weierstrass invariants by setting

g2 =
16

3
− 4t, g3 = −64

27
+

8

3
t; (4.36)

one computes that the functional invariant is J = 1
27

(3t−4)3

t2(t−1)
. There are singular fibres of type

I2 at t = 0, type I1 at t = 1, and type III∗ at t = ∞. The rational map J is described in

Figure 4.6 and we determine the homological invariant to be
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Figure 4.6: The graph representing the functional invariant for the elliptic fibration (4.36).

Oooo
Figure 4.7: The graph representing the initial elliptic fibration (4.38) on the quartic mirror
family.

(
1 0

−2 1

)
,

(
1 1

0 1

)
,

(
−1 −1

2 1

)
. (4.37)

When n = 3, the Dwork pencil (4.35) is the family of K3 surfaces cut out by

x1x2x3(x+ y + z + 1) +
t2
44

= 0,

which is exactly the family X2 described above in (4.33) if we look at the affine chart w = −1

and set λ = t
44

. The pencil Y 2
t2

admits a fibration by cubic mirror elliptic curves. In fact, for

each t2, the fibration is the pull-back of (4.36) by the rational function

g(t; t2) : u 7→ −t2
4t(t+ 1)

.

Thus, the fibration of the quartic mirror family gives rise to a variation of local systems

corresponding to the varying elliptic curve fibrations.

If t2 /∈ {0, 1∞}, the rational function g(t; t2) satisfies

g(t; t2)−1(0) = {t =∞}, g(t; t2)−1(∞) = {t = 0, t = −1},
g(t; t2)−1(1) = {t = −1

2
±
√

1−t2
2
}.

(4.38)
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GO
Figure 4.8: The braid ϕ(σ0).

or
Figure 4.9: The braid ϕ(σ1).

It follows that for each t2 /∈ {0, 1,∞}, the corresponding elliptic fibration has two III∗-

fibres at t = 0,−1, one I4-fibre at t = ∞, and two I1-fibres at t = −1
2
±
√

1−t
2

. Choosing

t2 = 1
2

as a base point, the degree two cover g(t; 1
2
) can be represented by the graph in Figure

4.7, from which we compute the homological invariant for t2 = 1
2

to be

γ1 7→
(

1 −1

2 −1

)
γ2 7→

(
1 1

0 1

)
γ3 7→

(
1 1

0 1

)

γ4 7→
(
−1 −1

2 1

)
γ5 7→

(
1 0

−4 1

)
,

(4.39)

for the loops indicated in the figure.

Let σ0, σ1 be the loops based at t2 = 1
2

around 0 and 1 in the usual manner. Then,

the braiding map ϕ : π1(P1
t − {0, 1,∞})→ A4 is determined by the motion of the poles, as

indicated in Figures 4.9. We see that the braiding map is given as follows:

ϕ(σ0) = β2
1β

2
3

ϕ(σ1) = β2.
(4.40)

Applying the Dettweiler-Wewers algorithm with the above input produces the following

monodromy representation for the rank three parabolic cohomology:

σ0 7→



−3 1 3

−4 1 4

−4 0 5


 , σ1 7→




1 0 0

0 1 0

−2 3 −1


 , σ∞ 7→




5 −5 1

4 −3 0

−2 5 −3


 (4.41)
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p1 p2 p4 p6

p5

p3
aggro

(a) The initial K3 surface-fibration for the quintic mirror family.

p1 p2 p4 p6

p5

p3

(b) The braid ϕ(σ 1
55

).

p1 p2 p4 p6

p5

p3

(c) The braid ϕ(σ1).

Figure 4.10: The quintic mirror fibration

The corresponding Jordan normal forms of these matrices are




1 1 0

0 1 1

0 0 1


 ,



−1 0 0

0 1 0

0 0 1


 ,



−1 0 0

0 i 0

0 0 −i


 . (4.42)

We have thus computed the monodromy representation for the Picard-Fuchs equation of the

family X2, once we change the variables λ = t
44

.

When n = 4, the Dwork pencil is given by

x1x2x3x4(x1 + x2 + x3 + x4 + 1)− t3
55

= 0. (4.43)
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This is a family of Calabi-Yau manifolds known in the literature as the quintic mirror family.

As described in [14], the quintic mirror family (4.43) is fibred by quartic mirror K3

surfaces, i.e, M2-polarized K3-surfaces. This fibration is induced by a family of rational

functions from P1 to X0(2)+, so that each quintic mirror surface is an M2-polarized family

of K3 surfaces in the sense of the previous section. The family of functional invariants that

produces this fibration structure is, according to [14]:

t2 = g(t; t3) =
44

55
t3

t5

(t− 1)4
. (4.44)

For t3 /∈ {0, 1,∞}, the maps g(t; t3) are totally ramified (to degree 5) at t = 0, unramified

over t3 = 1, and have one simple pole at t =∞, and an order four pole at t = 1. The maps

g(t; t3) are ramified at t = 5 which lies over t2 = t3. The fibre over t3 = 1 consists of the five

roots of the following quintic polynomial:

w(t; t3) = 256t3t
5 − 3125t4 + 12500t3 − 18750t2 + 12500t− 3125. (4.45)

The discriminant of w(t; t3) is 232525t33(t3 − 1).

The t3-dependent family of Picard-Fuchs equations that describes the internal fibration

structures is obtained by pulling back the hypergeometric equation 3F2(1
4
, 1

2
, 3

4
) along the

family of rational maps g(t; t3). We compute the following expressions:

d3f

dt3
+ Pt3

d2f

dt2
+Qt3

df

dt
+Rt3f = 0,

where

Pt3 =
1152t3t

7 + (−11520t3 − 9375) t6 + (13440t3 + 131250) t5 − 478125t4

t(t− 1)(t− 5)w(t; t3)

+
787500t3 − 665625t2 + 281250t− 46875

t(t− 1)(t− 5)w(t; t3)

Qt3 =
816t3t

9 + (−16320t3 − 3125) t8 + (114720t3 + 75000) t7 + (−239040t3 − 737500) t6

t2(t− 1)2(t− 5)2w(t; t3)

+
(164400t3 + 2700000) t5 − 4893750t4 + 4875000t3 − 2687500t2 + 750000t− 78125

t2(t− 1)2(t− 5)2w(t; t3)

Rt3 =
24t3t

2(t− 5)3

(t− 1)3w(t; t3)

The monodromy representation for each of these Picard-Fuchs equations is obtained by

analyzing the push-forward map induced by g(t; t3) and using the monodromy representation
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we computed earlier. Since the original local system on P1
t2

has order four monodromy at

t2 =∞, the pull-back local system will have trivial monodromy at t = 1, the order-four pole.

Therefore, the points t = 1 and t = 5 are apparent singularities and we have non-identity

monodromy transformations at the five roots of w(t; t3), t = 0 and t = ∞. By choosing a

t3 = 1
2

as a base point, we can describe the degree five cover graphically and then compute

the corresponding monodromy representation; see Figure 4.10.

If we label the singular points p1, . . . , p7 as indicated in Figure 4.10, we can work out the

braiding map by keeping track of the motion of these points as t3 moves through the usual

loops σ0, σ1 around 0 and 1. These motions are described in Figure 4.10, and we find that

the braiding map is determined by

ϕ(σ0) = β−1
5 β−1

4 β−1
3 β−1

2 β−1
1 β5β4β3β

−1
1 β−1

2 β−1
3 β−1

4 β−1
5

ϕ(σ 1
55

) = β4β5β
−1
4 .

(4.46)

With the braiding action determined, we now run the Dettweiler-Wewers algorithm to

compute the monodromy representation of the parabolic cohomology local system. By choos-

ing bases appropriately, we can conjugate the representation to the following:

σ0 7→




1 1 0 0

0 1 5 0

0 0 1 1

0 0 0 1




σ1 7→




1 0 0 0

−5 1 0 0

−1 0 1 0

−1 0 0 1




σ∞ 7→




1 −1 5 −5

5 −4 20 −20

1 −1 6 −6

1 −1 5 −4




(4.47)

The Picard-Fuchs equation for the quintic mirror is the generalized hypergeometric equation

4F3(1
5
, 2

5
, 3

5
, 4

5
); thus, we have computed the monodromy representation for this differential

equation with respect to an integral basis.

4.2.3 An Interesting Example

We close this chapter by examining an example closely related to the quartic mirror family

that was previously studied by Narumiya-Shiga in [38]. This example illuminates a number

of the subtleties of the subject and showcases how we can use the variation of local systems

and parabolic cohomology to capture many interesting phenomena.
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Let V (a) denote the following elliptic surface over P1
t :

V (t) : y2 = x(x2 + (t+
1

t
+ a)x+ 1). (4.48)

As is shown in [38], for a /∈ {0,±4,∞}, the elliptic fibration (4.48) has six singular fibres:

there are four fibres of type I1 located at

t1,2 =
1

2

(
2− a±

√
a2 − 4a

)
, t4,5 =

1

2

(
−2− a±

√
a2 + 4a

)
,

and two fibres of type I∗4 at t3 = 0 and t6 =∞. Based on the singular fibre types, it follows

that each V (a) is an elliptic K3 surface and that the trivial lattice has rank eighteen.

The authors proceed to compute monodromy matrices for the rank-four local system

obtained by taking the orthogonal compliment of the trivial lattice in H2(V (a),Z). This is

done by choosing a basis of cycles for the complement and analyzing how they deform as

a varies in loops. Of course, this is very closely related to variations of local systems and

parabolic cohomology even though the authors do not make use of these notions. After they

compute their 4× 4 monodromy matrices, they observe that the representation is reducible:

there is a one-dimensional invariant submodule that corresponds to a section of the fibration

(4.48). It follows that each V (a) is in fact a rank nineteen K3 surface and the authors show

further that V (a) is an M2-polarized K3 surface. We will reproduce these matrices and make

some important comments using the variations of local systems framework developed in this

thesis.

Choosing a = 2 as a base point for the deformation parameter and t = −1 as a base

point on P1
t , the authors of [38] pin down precisely the homological invariant with respect

to the basis of loops indicated in Figure 4.11. We have

γ1, γ2 7→
(

0 −1

1 2

)
, γ3 7→

(
−1 4

0 −1

)
, γ4, γ5 7→

(
2 −1

1 0

)
, γ6 7→

(
−1 0

−4 −1

)
.

(4.49)

As a varies in P1
a − {0,±4,∞}, we consider the corresponding variation of this local

system. Using the loops δ1, δ2, δ3, δ4 as indicated in Figure 4.11, we once again carefully

work out the braiding map. The motion of the poles is described in Figure 4.12. We see that

ϕ(δ1) =
(
β−1

1 β−1
2 β−1

3 β1β2

)
β3

(
β−1

1 β−1
2 β−1

3 β1β2

)−1
(4.50)

ϕ(δ2) = β1β4 (4.51)

ϕ(δ3) =
(
β−1

3 β−1
2 β4β3

)
β−1

2

(
β−1

3 β−1
2 β4β3

)−1
(4.52)
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t6 t5 t0 t4 t3

t1

t2

(a) The loops γi.

2 40�4

(b) The loops δi.

Figure 4.11: The initial configuration.

Running the Dettweiler-Wewers algorithm, we obtain the following monodromy repre-

sentation:

δ1 7→=




0 1 0 −2

1 0 0 2

2 −2 1 4

0 0 0 1




δ2 7→=




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




δ3 7→=




1 0 0 0

4 1 −2 2

2 0 0 1

−2 0 1 0




δ4 7→=




1 0 0 2

8 −3 2 12

4 −2 1 8

−2 0 0 −3




(4.53)

If we conjugate these monodromy matrices by the matrix

L =




0 0 1 −1

−1 −1 −1 1

−1 0 −1 0

1 −1 0 0



,

then we obtain the four monodromy matrices (more precisely, their transposes) that appear

in [38].
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t6 t5 t0 t4 t3

t1

t2

(a) The braid ϕ(δ1).

t6 t5 t0 t4 t3

t1

t2

(b) The braid ϕ(δ2).

t6 t5 t0 t4 t3

t1

t2

(c) The braid ϕ(δ3).

Figure 4.12: The motion of poles.
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This monodromy representation is not irreducible. Indeed, the vector v = (1,−1, 1,−1)

is fixed by the monodromy transformations corresponding to δ1, δ3 and it is sent to −v by

the other two transformations. Thus, the parabolic cohomology local systems decomposes

into the sum of a one-dimensional representation and an irreducible rank-three local system.

From this, we deduce the existence of an infinite-order section to the fibration (4.48), and

that the K3-surfaces have Picard rank nineteen. The fact that each V (a) is in fact M2-

polarized is shown in [38]. The 3 × 3 monodromy transformations corresponding to the

transcendental lattices are as follows:

δ1 7→



−2 3 −2

3 −2 2

6 −6 5


 δ2 7→




0 1 0

1 0 0

1 −1 1




δ3 7→




1 0 0

6 −1 0

3 −1 1


 δ4 7→




3 −2 2

20 −15 14

12 −10 9




(4.54)

Remark 24. Note that the rank one local system corresponding to the infinite-order section

is not the trivial local system since δ2, δ4 acted non-trivially. It follows that the family V (a)

is a family of M2-polarized K3 surfaces that is not an M2-polarized family as defined in the

previous section.

Remark 25. As is explained in [38], the elliptic surface V (a) and V (−a) are isomorphic via

an explicit birational map. Using this, they produce an elliptic fibration structure on the

family X2 for which there is an infinite-order section. Comparing this fibration with the

fibration on X2 described in the previous section, we have an explicit example of two elliptic

fibration structures for which the parabolic cohomology groups are different. Specifically,

the parabolic cohomology local system induced by this quotient will have rank four, but will

be reducible—the one-dimensional piece corresponding to the section will be the trivial local

system. Nonetheless, they both contain the same irreducible rank three piece corresponding

to the transcendental lattice.



Chapter 5

Isomonodromic Deformations

The original motivation of this thesis was to enhance the notion of Doran’s geometric isomon-

odromic deformations to a structure that was more sensitive to some of integral structures

involved. Chapters 3 and 4 have demonstrated that the notion of geometric variations of

local systems is a powerful tool that allows us to “replace” a family of fibrations by a family

of local systems, but retain much of the structures we care about. In this chapter, we discuss

the theory of isomonodromic deformations and describe how they tie in to the variation of

local systems framework. We begin by discussing isomonodromy in general, and then the

Schlesinger equations, which describe a particular kind of isomonodromic deformation. It

is shown that geometric variations of local systems give rise to solutions of the Schlesinger

equations; this solidifies the fact that geometric variations of local systems are the true

“successor” to the notion of geometric isomonodromic deformations.

5.1 Isomonodromy

We begin by reviewing some of the formalism of isomonodromic deformations, specifically

the Malgrange formalism discussed in [15][35]. We start with some local theory; consider a

family of Fuchsian systems

dy

dx
=

(
m∑

i=1

Ai(t)

x− ti

)
y,

m∑

i=1

Bi(t) = 0

depending holomorphically on the parameter t = (t1, . . . , tm) in a small disk around t0 =

(t01, · · · , t0m). The family is called isomonodromic if the monodromy representation does not

depend on the deformation parameter t. Thus, for each t there is a fundamental matrix

Y (x, t) that solves the corresponding system and the monodromy matrices do not vary as

81
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we vary t. Such a family is called an isomonodromic family of matrices. Set

S = P1 ×D(t0)− ∪{(x− ti) = 0}.

Then, a solution to such a system is a matrix Y (x, t) depending holomorphically on both

arguments. Such a solution will define a monodromy representation

π1(S, (x0, t
0))→ GLp(C).

If we let

ω =
dY (x, t)

Y (x, a)
,

then ω is a single-valued 1-form and so we may consider it as a 1-form on S. For each

g ∈ π1(S, (x0, t
0)), we find

g∗ω = dg∗Y (X, t)g∗Y −1(x, t) = ω.

Then, the Pfaffian system dy = ωy on S is completely integrable and, for each fixed t ∈ D(t0),

it agrees with Fuchsian system. We have the following result:

Theorem ([5], Theorem 2). The family of Fuchsian systems is isomonodromic if and only

if there exists a matrix differential 1-form ω on S such that:

1. The 1-form can be expressed as

ω =
m∑

i=1

Bi(t)

x− ti
dx,

for each fixed t ∈ D(t0);

2. dω = ω ∧ ω.

More generally, we will consider meromorphic connections with logarithmic poles. Let X

be a complex manifold, let Y be a smooth codimenion one sub-manifold, and let E be a rank

n holomorphic vector bundle over X and ∇ a flat connection on X−Y . The connection ∇ is

called meromorphic over Y if there exists for each y ∈ Y a neighbourhood Y of y such that

E|U it trivial and the connection form of ∇ with respect to a basis of sections is meromorphic

on U . Further, the connection is said to have a logarithmic pole along Y if, in a coordinate

chart (t1, . . . , tr) with Y = {t1 = 0}, the connection form is given by

Ω = A1
dt1
t1

+ A2dt2 + · · ·+ Ardtr,
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with the Ai holomorphic.

The primary case we consider is when X = P1 and Y = {t01, . . . , t0m−1,∞}. Use x as

parameter on P1 and consider a differential equation over X with regular singularities, i.e.,

a holomorphic vector bundle E0 over X with a flat connection ∇0 of E|X−Y meromorphic

over Y . If the differential equation is given by

dy

dx
=

(
m∑

i=1

Ai(t)

x− ti

)
y,

then the connection ∇0 is defined by

∇(y) = dy −
(

m∑

i=1

Ai(t)

x− ti

)
ydx.

We see that this has logarithmic poles at each x = ti and also at ∞.

Now we want to consider a global picture of isomonodromic deformations of flat connec-

tions. Let S be a connection complex variety, and consider deformation functions

ti : S → C, 1 ≤ i ≤ m− 1

that describe the motion of the mobile poles. Fixing a base point s0 ∈ S, set t0i = ti(s0). We

will assume that the values of the ti are pair-wise distinct complex numbers.

Let X = P1 × S and Y ⊆ X be the smooth codimenion one sub-manifold given by

Y = Y1 ∪ · · · ∪ Ym−1 ∪ Y∞},

where

Yi = {(x, s)| (x, s) ∈ X, x = ti(s)},

and

Y∞ = {∞} × S.

Definition 24. An isomonodromic deformation

(E,∇) of the pair (E0,∇0)

with deformation space S, deformation functions ti and base point s0 is given by

1. a holomorphic vector bundle E over X = P1 × S of rank n;

2. an integrable connection ∇ of E|X−Y , meromorphic over Y for which the restriction
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to P1 × {s0} is our initial system

Remark 26. From this definition, it is clear that an isomonodromic deformation gives rise

to a variation of local systems in the sense of [12] by considering the local system naturally

attached to the flat connection.

5.2 The Schlesinger Equations

In this section, we consider a particular class of isomonodromic deformations known as

Schlesinger deformations. Consider an isomonodromic deformation of the initial rank m

Fuchsian system

dy

dx
=

(
r∑

i=1

A0
i

x− t0i

)
y, A0

i = Ai(t
0), (5.1)

given by the 1-form

ωS =
r∑

i=1

Ai(t)

x− ti
d(x− ti),

and assume the systems are non-resonant, which means that the eigenvalue differences of

the matrices Ai are non-integers. We will say more about this condition later. As t varies,

the isomonodromy condition, dωS = ωS ∧ ωS, comes down to

dAi(t) = −
r∑

j 6=i,j=1

[Ai(t), Aj(t)]

ti − tj
d(ti − tj).

Expanding this out, we obtain an equivalent system of non-linear partial differential equa-

tions, known as the Schlesinger equations :

∂Ai
∂tj

=
[Ai, Aj]

ti − tj
,
∂Ai
∂ti

= −
r∑

i 6=j,j=1

[Ai, Aj]

ti − tj
. (5.2)

Here, the variable t varies in Or, the configuration space of r points on the Riemann sphere.

Note the difference from Or, which classifies subsets of r distinct points on the Riemann

sphere. In the literature, it is common to fix tr = ∞, in which case we instead work with

Cr−1 −∆, the configuration space of r − 1 points in the plane.

Because the Schlesinger equations enjoy the Painlevé property, any solution to (5.2) in

a neighbourhood of the initial point t0 = (t01, · · · , t0m) admits an analytic continuation to a

holomorphic function on the universal cover [26]. Concretely, a solution to the Schlesinger

equations is a collection of matrices Ai(t̃) depending on t̃ ∈ S̃ for which the corresponding

family of Fuchsian systems (5.1) is an isomonodromic deformation of the initial system with
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deformation space equal to S̃.

The fundamental group π1(Or, t0) ∼= Pr, which is the pure Hurwitz braid group, acts on

Õr by deck-transformations, and thus acts on the set of matrices as well. Let Γ be the kernel

of this action so that for each γ ∈ Γ, we have

Aγi (t̃) = Ai(t̃), i = 1, . . . , r.

Then, the functions Ai can be viewed as functions on the quotient OΓ := Γ\Õr, and we have

a global isomonodromic deformation with deformation space OΓ and deformation functions

ti : ÕΓ → Or → C. We refer to the cover OΓ → Or as the Schlesinger cover associated to

the solution. If Γ is a subgroup of finite-index, then we call the solution a finite-branching

solution. If the Ai are algebraic functions of t ∈ Or, then it is clear that the Ai analytically

continue to produce a finite-branching solution. Results of Cousin [10] show that the converse

is true: if we have a finite branching solution, then the matrices Ai are algebraic functions

of t. We summarize this discussion as follows:

Proposition 17. Solutions to the Schlesinger equations (5.2) with initial system (5.1) are

in one-to-one correspondence with variations of the initial local system parameterized by the

universal cover of the configuration space Or for which the divisor D(t) is given by (t1, . . . , tr).

Algebraic solutions to the Schlesinger equations are in one-to-one correspondence with

variations of the above form that factor through a finite sub-cover of the universal cover of

Or.

In the beginning of this section, we assumed that the Fuchsian systems were non-resonant.

This is an important condition in the theory of isomonodromic deformations. Indeed, there

exist resonant isomonodromic deformations that do not solve the Schlesinger equations—

such deformations are known as non-Schlesinger deformations. In order to account for this,

a stronger notion of isomonodromy known as isoprincipality was developed in [27]. Ev-

ery isoprincipal deformation of Fuchsian systems is isomonodromic, but not conversely; in

the non-resonant case, the two notions agree with each other. Solutions to the Schlesinger

equations correspond precisely to isoprincipal deformations. Thus, an isomonodromic defor-

mation of Fuchsian systems is either isoprincipal, or else it is a non-Schlesinger deformation.

This subtle distinction is important to us because the isomonodromic deformations that

come from our geometric setting are resonant systems in general.

The original intent of Doran’s work in [15] was to construct interesting solutions to the

Schlesinger equations in the form of geometric isomonodromic deformations. As has been

demonstrated in this thesis, considering the differential equations coming from periods up to

projective normal form has the effect of eliminating a lot of interesting geometric information.
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In contrast, the formalism of variation of local systems applied to families of fibred manifolds

is sensitive enough to capture much of the interesting structures that vary in the family. Thus,

the variations of geometric local systems considered in this thesis should be considered as a

natural successor to the geometric isomonodromic deformations considered by Doran.

As far as finding interesting solutions to the Schlesinger is concerned, the framework

developed in this thesis is sufficient for these purposes. Concretely, if V is a variation of

geometric local systems corresponding to a family of Picard-Fuchs equations, then, more

than being an isomonodromic family of differential equations, the family is isoprincipal, in

the sense of [27], as was shown in [32]. It follows that V describes a solution to a particular

Schlesinger equation due to the results in [27].

To be more precise, it is not, in general, the Schlesinger equations that will be relevant,

but rather a system of differential equations that are derived from the Schlesinger equations.

Indeed, given a variation of geometric local systems, one needs to write down the deformation

functions that describe the motion of each pole, rather than work with the description of the

divisor, as we have done throughout this work. Even after this is done, the number of poles

may disagree with the number of deformation parameters in the Schlesinger equations, and

so we may have to consider a pull-back of the Schlesinger equations.

For example, consider the variation of geometric local systems corresponding to the M2-

polarized K3 surface-fibration on the quintic mirror family considered in Chapter 4. The

corresponding isoprincipal deformation of Fuchsian systems has seven singularities, but the

motion of the poles is described only in terms of one parameter. Therefore, rather than

solving the Schlesinger equations for rank three Fuchsian systems with seven singular points,

the relevant system of differential equations is the pull back of the Schlesinger equations along

the map that sends the deformation parameter to the ordered 7-tuple of singular points. Since

the five mobile poles in this example were roots of a quintic, we cannot really hope to do

this explicitly, but this is enough for our purposes.

The following summarizes the above discussion:

Proposition 18. Let V be a geometric variation of local systems. Then V gives rise to a

solution to an isomonodromic deformation equation derived from the Schlesinger system. In

particular, isomonodromic deformations arising from geometry are Schlesinger deformations.

5.3 The Sixth Painlevé Equation

Over the course of this thesis, we have seen many different examples of geometric variations of

local systems and each of them gives rise to solutions to different isomonodromic deformation

equations. We end the thesis by discussing one particularly well-known isomonodromic
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deformation equation derived from the Schlesinger equations known as the sixth Painlevé

equation. This equation arises by considering isomonodromic deformations of rank two

Fuchsian systems for which the poles are normalized to be located at (0, t, 1,∞) for t /∈
{0, 1,∞}:

dy

dx
=

(
A0

x
+

At
x− t +

A1

x− 1

)
y = A(x, t)y, (5.3)

and for which A0, At, A1 and A∞ = −(A0 + At + A1) are all traceless.

As explained in [34], if the top-right entry of A(t) has a unique zero λ that depends on

t. It can be shown that solving the Schlesinger equations subject to these normalizations is

equivalent to solving the following differential equation for λ and t:

d2λ

dt2
=

1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(

1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+
λ(λ− 1)(λ− t)

t2(t− 1)2

(
α + β

t

λ2
+ γ

t− 1

(λ− 1)2
+ δ

t(t− 1)

(λ− t)2

)
,

where α, β, γ, δ are parameters that depend on the eigenvalues θi of the residues Ai.

By fixing a particular isomonodromic deformation equation, like the one above, it is a

reasonable question to ask: what is the totality of solutions that come from geometry? The

answer to this question was answered by Doran in [21], in which he shows that the only solu-

tions that come from geometry are the ones derived from the five families of rational elliptic

surfaces in Herfurtner’s classification that do not have I∗0 fibres. If we relax the condition

that the residue matrices Ai must be traceless, which amounts to considering their projective

normal forms, then we obtain a whole slew of solutions to corresponding Schlesinger equation

from all twelve of the families of rational elliptic surfaces found by Herfurtner. Combining

the structural results on Stiller’s K-equations with Doran’s classification of geometric so-

lutions to Painlevé VI, we conclude that the only solutions coming from geometry to this

slightly less constrained problem are still the ones that we can derive from Herfurtner’s list.

There are lots of algebraic solutions to Painlevé VI that do not come from geometry. In

fact, the problem of classifying all the algebraic solutions to Painlevé VI is one that inspired

many bodies of work, most notably the works of Iwasaki et. al. [25, 24], Boalch [?, 3, 4],

Dubrovin-Mazzocco [?, 36], Hitchin [?], Kitaev [28], and Doran [15], to name a few, with

a complete classification of the solutions, up to birational symmetries of the Painlevé VI

equation, being obtained by Lissovy-Tyhky in [33]. The classification naturally breaks into

one discrete family of so-called Cayley solutions, three families of solutions (solutions that

solve Painlevé VI for a continuous deformation of the (α, β, γ, δ) parameters), and forty-

five exceptional solutions. An interesting fact that appears by looking at the classification
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is that even though the solutions coming from geometry are relatively few, the solutions

derived in this manner all lied in one of the continuous families of solutions. So, while

the classification of geometric isomonodromic deformations may not shed light on the full

classification problem of algebraic solutions to Schlesinger equations, it may well be the case

that the solutions coming from geometry will generate interesting sub-classes of solutions,

as is what happened for Painlevé VI.

To the authors knowledge, the formalism of variation of local systems has not yet been

applied to solutions of isomonodromic deformations. For example, we have already described

how algebraic solutions to the Schlesinger equations correspond to variations of local systems

parameterized by finite covers of the configuration space. One may therefore ask: what is

the structure of the parabolic cohomology of the variation on the corresponding Schlesinger

cover? In the context of Painlevé VI, the Schlesinger cover reduces to a finite covering

t : S → P1−{0, 1,∞}, i.e., a Belyi map; in this case, we refer to the curve S as the Painlevé

curve associated to the solution. Since a complete classification of algebraic solutions to

Painlevé VI is known, an interesting problem would be to determine to what extent the

parabolic cohomology of a solution classifies the solution. As we saw with the five families

on Herfurtners list, the parabolic cohomology changes quite a bit if we modify the projective

equivalence class of the initial monodromy representation. Indeed, we observed that for each

of the five families, applying a quadratic twist at two of the monodromies increased the rank

of parabolic cohomology. It follows already that parabolic cohomology is therefore more

sensitive than the equivalence relation that is defined in terms of birational symmetries of

the Painlevé equation.

We close this section by working out one example of computing the parabolic cohomology

of an algebraic Painlevé solution to demonstrate the method. We consider the first excep-

tional solution to Painlevé VI, using notation in [33]. This solution was originally constructed

by Boalch in [4]. The corresponding Painlevé curve has genus 0 and the corresponding Belyi

map is

t = 27
(5s− 2)2

(s+ 5)(4s2 − 5s+ 10)2
, t− 1 = − (s+ 2)3(4s− 7)2

(s+ 5)(4s2 − 5s+ 10)2
.

By setting

λ = 2
(s2 + s+ 7)(5s− 2)

s(s+ 5)(4s2 − 5s+ 10)
,

one can check explicitly that λ = λ(t) solve Painlevé VI for parameters (α, β, γ, δ) =

( 2
18
,− 2

25
, 1

50
, 4

9
). The initial monodromy representation can be calculated from the data in

[33] to produce the 4-tuple of 2 × 2 monodromy matrices g = (g0, gt, g1, g∞); each matrix

lies in SL2(Q(ζ)) where ζ is a primitive 30-th root of unity; we do not display the tuple
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here. We do note that each of the transformations is diagonalizable and does not have 1 as

eigenvalue, from which it follows that the rank of the corresponding parabolic cohomology

group is equal to four.

By using the techniques found in [4] and the explicit description of the Belyi-map, it is not

difficult to find generators for the corresponding fundamental group and their images under

the braiding map. In this case, S = P1 − {2
5
,−2, 7

4
,−5, 1

8
(5 ± 3i

√
15),∞} is the Riemann

sphere minus 7 points. For an appropriate choice of generating loops γ1, . . . , γ7, the braiding

map is computed to be

γ1 7→ β−2
2 β−1

1

γ2 7→ β6
2

γ3 7→ β2
2β

4
1β
−2
2

γ4 7→ β2
2β

2
1(β−2

2 β−2
1 )2β−2

1 β−1
2

γ5 7→ β2
2β

2
1β

4
2β
−2
1 β−2

2

γ6 7→ β2
2(β−2

2 β−2
1 )2β

Applying the Dettweiler-Wewers algorithm to compute the monodromy representation for

parabolic cohomology, we obtain a representation for which γ1 corresponds to an order six

transformation and the other generators map to involutions. They generate an infinite group

of transformations in SL4(C).

If we apply birational symmetries of Painlevé VI, the rank of parabolic cohomology does

not change, but the corresponding monodromy representations are not globally conjugate to

each other (though the tuple of transformations obtained behaves similarly to that described

above). So, while the rank is invariant under the birational transformations, parabolic

cohomology appears to be sensitive enough to distinguish the solutions.

The purpose of this example was simply to demonstrate some of the things that can

happen, as well as to illustrate the fact that the methods of Dettweiler-Wewers are easily

applicable in this situation. A complete investigation of the parabolic cohomology local

systems corresponding to algebraic solutions to Painlevé VI constitutes work in progress.



Chapter 6

Conclusion/Future Work

Throughout this thesis we have demonstrated that the formalism of geometric variations

of local systems is the natural framework with which to study varying “internal” fibration

structures on a family of algebraic varieties equipped with an “external” fibration. Such vari-

ations of local systems are the natural generalization of Doran’s geometric isomonodromic

deformations tuned to a setting in which we wish to remain sensitive to the underlying

integral structures of our geometric families. More than just developing formalism, this the-

sis has demonstrated that it is possible to implement the Dettweiler-Wewers algorithm for

many interesting families of internal fibration structures in order to compute, in a tractable

manner, the monodromy representation of the corresponding local system of parabolic co-

homology groups which, in turn, gives us information about the external fibration. Because

the algorithm is not tethered to local systems defined over fields, we are able to work with

the Z-modules of cohomology groups and produce the corresponding Z-valued monodromy

matrices.

The next natural step is to layer on the additional structure induced by the polarizations

of the variations of Hodge structures that we are studying. That is, given the lattice structure

on each of the varying internal variations of Hodge structure, we would like to produce the

lattice structure on the associated parabolic cohomology groups. Techniques to do this are

described in a follow-up paper by Dettweiler-Wewers [?] and applying this in our geometric

setting constitutes work in-progress.

In addition to the full exploration of the K3 surface families that one can derive from Her-

furtner’s list by quadratic twist and the examination of the parabolic cohomology invariant

in the context of the classification of algebraic solutions to the sixth Painlevé equation, there

are two other immediate applications of the techniques developed here that will be worked

on in the near future. Firstly, it is natural to continue the study of Calabi-Yau threefolds

fibred by Mn-polarized K3 surfaces that served to motivate this thesis. The authors of [17]
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indicated that there are many interesting families of such threefolds and indicated that cer-

tain Hurwitz curves will play a central role in the moduli-theory of such threefolds. The

geometric variation of local systems framework that we developed in this thesis is that natu-

ral formalism to investigate the properties of these families. Since the families considered in

[17] are all determined by families of functional invariants, it is evident that the techniques

used in this thesis will allow us to perform concrete computations in this context in order to

help inform the general theory. Secondly, we will take a closer look at the Dwork pencil and

the iterative construction used in [19] to produce the Picard-Fuchs equation for the family of

Calabi-Yau n-folds from the family of Calabi-Yau n− 1-folds. In each step of their iterative

construction, the internal fibration structures are determined by functional invariants of very

special forms. Our hope is that we can provide an iterative construction that computes the

integral monodromy matrices for each step in the Dwork-family.
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Appendix A

Sage Code

This appendix contains the sage code used for the computations in this thesis. Specifically,

the code for the following algorithms is included, where g denotes an r-tuple of m × m

monodromy matrices:

• implementation of the braiding action—given g and a braid β, expressed as a word in

β±1
i , compute the r-tuple gβ;

• constructions of the subspaces Hg, Eg,Wg;

• implementation of the maps Φ(g, β) and Ψ(g, h).

Also included in this appendix are dictionaries of the following monodromy representa-

tions:

• the monodromy representations for the eleven rigid elliptic surfaces on Herfurtner’s list

with exactly one additive fibre;

• the monodromy representations for the seven families of rational elliptic surfaces with

an I∗0 fibres.
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Dettweiler-Wewers Algorithm
###In the following, the input g is an r-tuple of mxm matrices---a 
monodromy representation
#Here, K is a field or ring
#This is the function phi(Beta_j,g)
def phi(j,g):
    r=len(g)
    m=g[0].nrows()
    V=K^(r*m)
    U=K^m
    Ubasis=U.basis()
    Vbasis=V.basis()
    e={}
    for i in [1..r*m]:
        e[i]=Vbasis[i-1]
    f={}
    for i in [1..m]:
        f[i]=Ubasis[i-1]
    #j will take values in 1 to r-1
    a={}
    for i in [0..r-1]:
        a[i+1]=g[i]
    #so a1 is the first monodromy matrix, etc.    
    I1=[]
    I2=[]
    I3=[]
    for i in [1..m*(j-1)]:
        I1.append(list(e[i]))
    for i in [1..m]:    
        I2.append(m*j*[0]+list(f[i]*a[j+1])+(r*m-m*j-m)*[0])
    
    for i in [1..m]:
        I2.append(m*(j-1)*[0]+list(f[i])+list(f[i]*(1-
a[j+1].inverse()*a[j]*a[j+1]))+(r*m-m*j-m)*[0])
    
    for i in [(m*(j+1)+1)..r*m]:
        I3.append(list(e[i]))
    return Matrix(K,I1+I2+I3)
    
def Psi(g,h):
    r=len(g)
    m=g[0].nrows()
    s=r*m
    U=K^m



    Ubasis=U.basis()
    f={}
    for i in [1..m]:
        f[i]=Ubasis[i-1]
    I={}
    for i in [1..r]:
        I[i]=[]
    for i in [1..r]:
        for j in [1..m]:
            I[i].append(m*(i-1)*[0]+list(f[j]*h)+(s-m*i)*[0])
    J=[]
    for i in [1..r]:
        J=J+I[i]
    return Matrix(K,J)

#This is the "characteristic" vector that has b in the "i" position, 
and solves for the last position using relation (2). So, here i in 
[1..r-1]. 
#Caution, this assumes that we are solving for the last entry

def Chi(i,g,b):
    r=len(g)
    m=g[0].nrows()
    s=r*m
    a=1
    for j in [i..r-1]:
        a=a*g[j]
    return vector(K,m*(i-1)*[0]+list(b)+(s-m*i-m)*[0]+list(-b*a))

#for this guy, i in [2..r]
def ChiFirst(i,g,b):
    r=len(g)
    m=g[0].nrows()
    s=r*m
    a=identity_matrix(m)
    for j in [1..i-1]:
        a=a*g[j]
    return vector(K,list(-b*a.inverse())+m*(i-2)*[0]+list(b)+(s-
m*i+m)*[0])

def Diag(g,b):
    r=len(g)
    m=g[0].nrows()
    s=r*m
    I=[]
    for i in [0..r-1]:



        I=I+list(b*(g[i]-1))
    return vector(K,I)
    
def E_Basis(g):
    m=g[0].nrows()
    U=K^m
    Ubasis=U.basis()
    f={}
    for i in [1..m]:
        f[i]=Ubasis[i-1]
    A=[]
    for i in [1..m]:
        A.append(Diag(g,f[i]))
    return A
    
def H_Basis(g):
    r=len(g)
    m=g[0].nrows()
    s=r*m
    B={}
    C={}
    for i in [0..r-2]:
        B[i]=(g[i]-1).image().basis()
    for i in [0..r-2]:
        C[i]=[]
        for j in B[i]:
            C[i].append(Chi(i+1,g,j))
    D=[]
    for i in [0..r-2]:
        D=D+C[i]
    return D
    
#These are the brainding maps
#here, i in [1..r-1]
def beta(i,g):
    r=len(g)
    m=g[0].nrows()
    s=r*m
 
    if i in [1..r-1]:
        A=[]
        B=[]
        C=[]
        for j in [1..i-1]:
            A.append(g[j-1])
        B=[g[i],g[i].inverse()*g[i-1]*g[i]]
        for j in [i+1..r-1]:
            C.append(g[j])



        return A+B+C
    if i in [-(r-1)..-1]:
        k=i.abs()
        A=[]
        B=[]
        C=[]
        for j in [1..k-1]:
            A.append(g[j-1])
        B=[g[k-1]*g[k]*g[k-1].inverse(),g[k-1]]
        for j in [k+1..r-1]:
            C.append(g[j])
        return A+B+C

##These functions take as input a word in the braid generators. Input 
the braid from left to right. For example, I=[1,-2,3] acts as 
Beta1*Beta2^{-1}*Beta3
def Beta(I,g):
    a=g
    for i in I:
        a=beta(i,a)
    return a

def Phi(I,g):
    M=1
    a=g
    for i in I:
        if i>0:
            M=M*phi(i,a)
            a=beta(i,a)
        if i<0:
            M=M*phi(-i,beta(i,a)).inverse()
            a=beta(i,a)
    return M
#This conjugates a tripe. 
def Conjugation_Action(g,h):
    r=len(g)
    A=[]
    for i in [0..r-1]:
        A.append(h.inverse()*g[i]*h)
    return A 
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Representation Dictionaries
#Below are the 11 monodromy representations corresponding to the 11 
examples on Herfurtner's list with only one additive fibre
 
Representations={}
Representations[1]=[Matrix(ZZ,[[1,1],[-1,0]]),Matrix(ZZ,[[-1,1],
[-4,3]]),Matrix(ZZ,[[-1,4],[-1,3]]),Matrix(ZZ,[[1,8],[0,1]])]
Representations[2]=[Matrix(ZZ,[[2,1],[-1,0]]),Matrix(ZZ,[[-1,2],
[-2,3]]),Matrix(ZZ,[[-2,7],[-1,3]]),Matrix(ZZ,[[1,7],[0,1]])]
Representations[3]=[Matrix(ZZ,[[2,1],[-1,0]]),Matrix(ZZ,[[-3,4],
[-4,5]]),Matrix(ZZ,[[-4,7],[-3,5]]),Matrix(ZZ,[[1,5],[0,1]])]
Representations[4]=[Matrix(ZZ,[[1,1],[-1,0]]),Matrix(ZZ,[[-2,3],
[-3,4]]),Matrix(ZZ,[[-3,8],[-2,5]]),Matrix(ZZ,[[1,5],[0,1]])]
Representations[5]=[Matrix(ZZ,[[3,4],[-1,-1]]),Matrix(ZZ,[[3,1],
[-4,-1]]),Matrix(ZZ,[[0,1],[-1,0]]),Matrix(ZZ,[[1,7],[0,1]])]
Representations[6]=[Matrix(ZZ,[[4,9],[-1,-2]]),Matrix(ZZ,[[3,2],
[-2,-1]]),Matrix(ZZ,[[0,1],[-1,0]]),Matrix(ZZ,[[1,6],[0,1]])]
Representations[7]=[Matrix(ZZ,[[3,4],[-1,-1]]),Matrix(ZZ,[[1,0],
[-3,1]]),Matrix(ZZ,[[-1,1],[-2,1]]),Matrix(ZZ,[[1,5],[0,1]])]
Representations[8]=[Matrix(ZZ,[[5,8],[-2,-3]]),Matrix(ZZ,[[4,3],
[-3,-2]]),Matrix(ZZ,[[0,1],[-1,0]]),Matrix(ZZ,[[1,4],[0,1]])]
Representations[9]=[Matrix(ZZ,[[3,4],[-1,-1]]),Matrix(ZZ,[[0,1],
[-1,-1]]),Matrix(ZZ,[[0,1],[-1,2]]),Matrix(ZZ,[[1,6],[0,1]])]
Representations[10]=[Matrix(ZZ,[[0,1],[-1,-1]]),Matrix(ZZ,[[1,0],
[-2,1]]),Matrix(ZZ,[[-1,4],[-1,3]]),Matrix(ZZ,[[1,5],[0,1]])]
Representations[11]=[Matrix(ZZ,[[0,1],[-1,-1]]),Matrix(ZZ,[[1,0],
[-3,1]]),Matrix(ZZ,[[-1,2],[-2,3]]),Matrix(ZZ,[[1,3],[0,1]])]

#Here, we've twisted the additive fibre
ModReps={}
ModReps[1]=[-Matrix(ZZ,[[1,1],[-1,0]]),Matrix(ZZ,[[-1,1],
[-4,3]]),Matrix(ZZ,[[-1,4],[-1,3]]),Matrix(ZZ,[[1,8],[0,1]])]
ModReps[2]=[Matrix(ZZ,[[2,1],[-1,0]]),Matrix(ZZ,[[-1,2],[-2,3]]),-
Matrix(ZZ,[[-2,7],[-1,3]]),Matrix(ZZ,[[1,7],[0,1]])]
ModReps[3]=[Matrix(ZZ,[[2,1],[-1,0]]),Matrix(ZZ,[[-3,4],[-4,5]]),-
Matrix(ZZ,[[-4,7],[-3,5]]),Matrix(ZZ,[[1,5],[0,1]])]
ModReps[4]=[-Matrix(ZZ,[[1,1],[-1,0]]),Matrix(ZZ,[[-2,3],
[-3,4]]),Matrix(ZZ,[[-3,8],[-2,5]]),Matrix(ZZ,[[1,5],[0,1]])]
ModReps[5]=[Matrix(ZZ,[[3,4],[-1,-1]]),Matrix(ZZ,[[3,1],[-4,-1]]),-
Matrix(ZZ,[[0,1],[-1,0]]),Matrix(ZZ,[[1,7],[0,1]])]
ModReps[6]=[Matrix(ZZ,[[4,9],[-1,-2]]),Matrix(ZZ,[[3,2],[-2,-1]]),-
Matrix(ZZ,[[0,1],[-1,0]]),Matrix(ZZ,[[1,6],[0,1]])]
ModReps[7]=[Matrix(ZZ,[[3,4],[-1,-1]]),Matrix(ZZ,[[1,0],[-3,1]]),-



Matrix(ZZ,[[-1,1],[-2,1]]),Matrix(ZZ,[[1,5],[0,1]])]
ModReps[8]=[Matrix(ZZ,[[5,8],[-2,-3]]),Matrix(ZZ,[[4,3],[-3,-2]]),-
Matrix(ZZ,[[0,1],[-1,0]]),Matrix(ZZ,[[1,4],[0,1]])]
ModReps[9]=[Matrix(ZZ,[[3,4],[-1,-1]]),-Matrix(ZZ,[[0,1],
[-1,-1]]),Matrix(ZZ,[[0,1],[-1,2]]),Matrix(ZZ,[[1,6],[0,1]])]
ModReps[10]=[-Matrix(ZZ,[[0,1],[-1,-1]]),Matrix(ZZ,[[1,0],
[-2,1]]),Matrix(ZZ,[[-1,4],[-1,3]]),Matrix(ZZ,[[1,5],[0,1]])]
ModReps[11]=[-Matrix(ZZ,[[0,1],[-1,-1]]),Matrix(ZZ,[[1,0],
[-3,1]]),Matrix(ZZ,[[-1,2],[-2,3]]),Matrix(ZZ,[[1,3],[0,1]])]

##This creates the dictionary for the monodromy representations giving 
rise to 
TwistRep={}
for i in [1..11]:
    TwistRep[i]=[Matrix(ZZ,[[-1,0],[0,-1]])]+ModReps[i]
    
    
Morange=Matrix(ZZ,[[1,1],[0,1]])
Mpurple=Matrix(ZZ,[[0,1],[-1,0]])
Minus=[Matrix(ZZ,[[-1,0],[0,-1]])]

#Reps[i] produces the 4-tuple of monodromy matrices representing the 
homological invariant for the i-th I0^* family in Herfurtners list. -1 
will alway be the first entry.

Reps={}
Reps[1]=Minus+[Matrix(ZZ,[[1,0],[-1,1]]),Matrix(ZZ,[[1,4],
[0,1]]),Matrix(ZZ,[[3,4],[-1,-1]])]
Reps[2]=Minus+[Matrix(ZZ,[[1,0],[-2,1]]),Matrix(ZZ,[[1,2],[0,1]]),-
Matrix(ZZ,[[-3,-2],[2,1]])]
Reps[3]=Minus+[Matrix(ZZ,[[1,3],[0,1]]),Matrix(ZZ,[[1,1],[-1,0]]),-
Matrix(ZZ,[[0,-1],[1,-2]])]
Reps[4]=Minus+[Matrix(ZZ,[[1,2],[0,1]]),-Matrix(ZZ,[[-1,-2],
[1,1]]),Matrix(ZZ,[[1,0],[-1,1]])]
Reps[5]=Minus+[Matrix(ZZ,[[1,1],[0,1]]),Matrix(ZZ,[[0,1],[-1,-1]]),-
Matrix(ZZ,[[-1,0],[1,-1]])]
Reps[6]=Minus+[Matrix(ZZ,[[1,1],[-1,0]]),-Matrix(ZZ,[[0,-1],
[1,0]]),Matrix(ZZ,[[1,1],[0,1]])]
Reps[7]=Minus+[Matrix(ZZ,[[1,1],[-1,0]]),Matrix(ZZ,[[0,1],[-1,1]]),-
Matrix(ZZ,[[-1,-2],[0,-1]])] 

       Loading [MathJax]/extensions/jsMath2jax.js



Appendix B

Monodromy Representations

This appendix contains tables of monodromy representations for the parabolic cohomology

associated to the families of K3 surfaces computing in Chapter 2.

• Tables B.1 and B.2 tabulate the monodromy representations for the two-parameter

family of K3 surfaces obtained by performing a quadratic twist at two points smooth

points a1, a2;

• table B.3 tabulate the monodromy representations for the three-parameter family of

K3 surfaces obtained by performing a quadratic twist at two smooth points for each

of the seven families already containing an I∗0 fibre;

• table B.4 shows the monodromy representations for the one-parameter families of K3

surfaces obtained by twisting two of the three non-I∗0 fibres in the seven I∗0 families.

Column A corresponds to twisting the second and third fibre; column B corresponds

to twisting the first and third; column C corresponds to twisting the first and second.
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