University of Alberta

LEARNING ACCURATE REGRESSORS FOR PREDICTING SURVIVAL TIMES OF
INDIVIDUAL CANCER PATIENTS

by

Hsiu-Chin Lin

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©Hsiu-Chin Lin
Spring 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is
converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatever without the author’s prior written permission.



Examining Committee

Russell Greiner, Computing Science

Vickie Baracos, Oncology

Joerg Sander, Computing Science



Abstract

Survival prediction is the task of predicting the length of time that an individual patient will survive;
accurate predictions can give doctors better guidelines on selecting treatments and planning futures.
This differs from the standard survival analysis, which focuses on population-based studies and tries
to discover the prognostic factors and/or analyze the median survival times of different groups of
patients.

The objective of our work, survival prediction, is different: to find the most accurate model
for predicting the survival times for each individual patient. We view this as a regression problem,
where we try to map the features for each patient to his/her survival time. As the relationship between
features and survival time is still not understood, we consider various ways to learn these models
from historical patient records. This is challenging in medical/clinical data due to the presence of
irrelevant features, outliers, and missing class labels. This dissertation describes our approach for
overcoming these, and other challenges, producing techniques that can predict survival times.

We focus our experiments on a data set of 2402 patients, including 1260 censored patients (i.e.,
whose survival time is not known). Our approach consists of two major steps. In the first step,
we apply various grouping methods to divide the data set into smaller populations. In the second
step, we apply different regression models to each sub-group we obtained from the first step. Our
experiments show that the linear regression, the support vector regression, and the gating regression
are effective: each predictor can obtain an average cross validated relative absolute error lower
than 0.54 (where the average relative absolute error of a regressor is E/ [%] where ¢t is the true
survival time and p is our prediction for each patient). We also use our regressors to classify each
patient into “long survivor” versus “short survivor” where the classification boundary is the median
survival time of the entire population; here, we show that several regressors can achieve at least 70%
accuracy. These experimental results verify that we can effectively predict patients’ survival times

with a combination of statistical and machine learning approaches.
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Chapter 1

Introduction



1.1 The Problem

Imagine if you are diagnosed with a terminal illness. Here, it is clearly useful to know how much
time you have left to spend with your loving families and friends.

Survival Prediction is the task of predicting the length of time that a patient will survive. This
task is difficult in general due to the complicated relationship between genetic, biological, and envi-
ronmental factors in the human body. Furthermore, no one knows which features affect survivability.

Most research on this topic has focused on population-based studies, which try to discover the
prognostic factors and/or analyze the probability distributions over the survival times of different
groups of patients. This problem has been studied within the field of statistics for decades, and
there exist some standard methodologies to estimate survival distributions, such as the Kaplan-Meier
estimator, the Cox Proportional Hazard Model, and the logistic regression model. (Details can be
found in Section 2.3.) While these models are powerful, they are not designed to make predictions
for individuals. Knowing only that a patient belongs to a specified distribution, the best we can do is
return the mean/median survival time. However, as this analysis applies to a large group, it usually
has huge variance (e.g., 19 months £ 30 months). Recalling the question we asked above, we would
prefer a more detailed response — i.e., one with tighter variance.

This motivates our work, which has this objective: to find the most accurate model for predicting
the survival times for each individual patient. We view this as a regression problem, where we try to
map the features for each patient to his/her survival time. As the relationship between features and
survival time is still not understood, we consider various ways to learn these models from existing
historical patients. This is challenging in medical/clinical data due to the presence of irrelevant fea-
tures, outliers, and missing class labels. In this thesis, we describe our approach and framework for
handling these, and other challenges, producing techniques that can group patients, and regression

methods for predicting survival times.

1.2 Motivation

Thousands of people suffer or die from cancers each day. Medical doctors still cannot make accurate
prognosis since the relationship between health conditions and survivability is still unknown. When
patients consult doctors regarding their survival time, the doctors make predictions based on their
medical knowledge and previous observations. On the other hand, past experiences are not always
reliable — e. g., prognoses from different doctors are often inconsistent [7]. A system that can use
medical observations to produce accurate survival times has immediate application in real world.
We list several below.

Most cancer patients have to decide whether they want to receive treatments, such as chemother-
apy or radiation therapy. However, these treatments are invasive and carry the potential for severe

side effects, indeed, many patients die from the therapies rather than the cancer itself [18]. Patients



with mild outlooks may not need to undergo aggressive treatments. Patients with severe outlooks
may find it more prudent to focus their energies on getting their affairs in order and spending time
with their families rather than subjecting themselves to painful treatments. In all cases, accurate
prognosis can give doctors better guidelines on selecting treatments and planning futures. Providing
patients with an accurate prognosis allows them to make informed choices about whether to accept
painful or risky treatments.

There are also other ways that an effective prognostic system will be able to improve the quality
of health care. The relationship between health conditions and survivability is still unknown. If
we can show which features are more dominant in determining the survival time, it could help the

medical doctors understand why certain phenomenon happens.

1.3 Challenges

Survival prediction is challenging for several reasons. This is difficult in general due to the com-
plicated relationship between genetic, biological, and environmental factors in the human body,
especially as it is not clear which variable affects survivability. For each patient, we can collect
many factors from the medical records, such as his/her age, gender, blood test results, weight loss,
etc. However, irrelevant features solely contribute more noise to the data and degrade the quality of
the regression model.

Also, working with survival data is challenging as the information is often incomplete. This
is especially problematic when the class labels (survival times) are missing, because supervised
learning algorithms rely on these labels for training a predictor. The survival data that we analyze
in this work contains 2402 patients, including 1260 censored — i.e., patients whose survival time is
unknown. (Details of missing class labels can be found in Section 2.1.) However, we cannot simply
eliminate these 1260 patients from our experiment since they contribute important information .

The third challenge in processing medical data is the the presence of outliers— that is, patients
who are extremely different from the rest of the populations. Among all stage IV lung cancer patients
in our data set, the median survival time is 11.20 = 12.89 months, but 4 out of 389 patients have
survived more than 5 years (more than 3 standard deviations away from the mean). Additionally,
patients could die from unexpected external factors that are not correlated to their diseases. Imagine
a group of patients, whose medical conditions are similar, normally survive more than 2 years, but
one patient passed away from a car accident 1 week after his/her diagnosis. We certainly cannot
anticipate this patient’s death because it is caused by an accident. Outliers often exert problematic
influence on the parameters and should to be excluded before training the model.

Another challenge is that patients are heterogeneous, with different survival patterns for different
subgroups of patients. For instance, the variable “cigarette smoking” may be important for lung
cancer patient but perhaps not as critical as for colon-rectum cancer patients. In order to overcome

this non-linear relations between features and survival time, we attempt to model each risk group



separately. Unfortunately, it is not known which group of patients share the same survival pattern.
Therefore, in this thesis, a major task is to design an appropriate method that can segregate patients

with different survival distributions.

1.4 Contributions

My thesis claim is that we are able to learn a model from historical patient data that can effectively
predict survival times for novel patients. We build this model from a data set of patients’ historical
records, including personal attributes, diagnostic assessments, and blood test results. We develop
a framework for processing censored information, segregating populations, and predicting survival
time for each individual patients. We define the measurements to evaluate the quality of survival
predictions, an assessment that verifies that a model built upon a combination of machine learning
and statistical methodologies can make decent survival predictions.

We consider survival prediction as a regression problem and base our solution on a combination
of unsupervised and supervised learning. One issue we need to address is the missing class labels
in the training samples; here, we propose several methodologies to approximate the class labels
and a weighting strategy to lower the significance of these incomplete instances. Our approach to
this problem involves two phases, the learning phase and the performance phase. The learning
phase has two steps. In the first step, we apply various grouping methods to segregate patients into
smaller populations. In the second step, we apply different regression models to each sub-group we
obtained from the first step. Then, we pick the most accurate combination as our final model. In the
performance phase, we can predict a specific value for each novel patient by using the final model

we produce from the learning phase.

1.5 Outline

We briefly provide some background information in the next chapter. Section 2.1 introduces the
basic concept and terminologies of survival analysis. Section 2.2 describes the definition and the
formulation of survival data. Section 2.3 shows several classical models and evaluation methods that
have been used in survival analysis. We will discuss how this differs from our survival prediction
task. Although there is no standard methodology to predict survival, Section 2.4 will briefly review
some historical and related work in prognosis using statistical models, artificial intelligence, and
machine learning.

In Chapter 3, we describe the validation and evaluation methods of our framework. We describe
the notion of cross-validation in Section 3.1. The evaluation methods for uncensored and censored
data are explained in Section 3.2.

Chapter 4 explains our framework and methodologies in detail. Section 4.1 introduces our ideas

of handling censoring observations. We propose several techniques to approximate survival times for



censored patients, and we discuss the details in Section 4.1.1. Our attempts to weight the censored
observations are described in Section 4.1.2.

In Section 4.2, we review the methodologies and background theories of regression models. In
Section 4.2.1, we describe the general ideas of the linear regression, the support vector regression,
and the regression trees. In Section 4.2.2, we illustrate some variations of regression models that
are customized to handle censored observations. As mentioned above, our approach first divides
patients into smaller population; in the last section, we describe the ideas of automatically select a
good regressor for each population.

Section 4.3 describes our methodologies for grouping patients, which are based on two primary
methods, tree and clustering. Section 4.3.1 describes our ideas of applying the classification and
regression trees to discriminate patients, and Section 4.3.2 describes the clustering methods. Details
of splitting, pruning, and parameters setup can be found in this chapter.

In Section 4.4, we discuss some issues of outliers and our methods on eliminating them from the
data set. Section 4.4.1 provides a detailed explanation on Mahalanobis distance, and Section 4.4.2
provides information on applying the minimum covariance estimator in outlier detection.

Section 4.5 describes our methods for manipulating data. As our data is a mixture of discrete
and continuous variables, Section 4.5.1 explains our reasons and methods for expanding the discrete
features. In Section 4.5.2, we describe ways to eliminate irrelevant features using subset selection
by backward wrapper and variable ranking by mutual information. In Section 4.5.3, we discuss the
technique of log-space transformation.

Chapter 5 summarizes the experiment setup and outcomes. The result of censored data handling,
outlier detections, grouping methods, and regression algorithms can be found in Section 5.2, and

detailed results are provided in Appendix B. Finally, we conclude our work in Chapter 6.



Chapter 2

Background



In this chapter, we briefly describe the basic concept and related work on survival analysis. Sec-
tion 2.1 explains some frequently used terminologies and equations on medical prognosis and sur-
vival analysis. Section 2.2 describes the definition and the formulation of survival data. Section 2.3
discusses common research methods in survival analysis, and Section 2.4 reviews some relevant

work in prognosis using survival analysis, artificial intelligence, and machine learning approaches.

2.1 Survival Analysis

The goal of survival analysis is to examine and model the time of an event of interest, which has
been broadly applied in medicine, reliability study, financial insurance, etc. For instance, in clinical
research, some typical events are death or recurrence of a phenomenon. Notice that survival analysis
is different from survival prediction in that survival analysis models the probability distribution of
this phenomenon within a population, which is typically used to discover the prognostic factors (i.e.,
factors that affect survivability) or estimate the median survival time of this population. In contrast,
the goal of survival prediction is to accurately predict the remaining time to this phenomenon for
each individual within a population.

Let T be a non-negative random variable that represents survival time. In medical prognosis, for
instance, 71" generally refers to how much longer a patient will remain alive, after the diagnosis of
the disease. The probability of 71" can be specified in three ways: the survival function, the density
function, and the hazard function. Here is a list of terminologies and frequently used functions.

The survival function is the probability that an event will occur later than a specified time ¢. The

survival function is a non-increasing function, which is defined as
St)=Pr(T >t)=1—Pr(T <t) 2.1)

where S(0) = 1 and S(c0) =0

The cumulative density function of T is defined as
Fit)=Pr(T <t)=1-S5()

By definition, the probability density function of 7" can be calculated by

dF(t)  dS(t)

IO="a ="a

The hazard function of 7" measures the instantaneous decline in survival at 7' = ¢, given that the
patient has survived until ¢.
f@)

hit) = Pr(t <T <t+diT 2 ¢) = gos

The cumulative hazard function is related to the survival function by

H(t) = /0 h(u)du = —1n S(t)



S(t) = e H® (2.2)

After acquiring the survival function of a population, many medical researchers are interested in
looking at the median survival time. This median survival time divides the samples into two equal
halves, so that half the patients die before this time and the other half survive longer than this time.
Some follow a variant: take the median survival time within the 95% confidence interval—i.e., after

eliminating the most extreme five-percent of patients [39].

2.1.1 Medical Prognosis

Medical prognosis studies the challenge of estimating the recurrence of disease and predicting sur-
vivability of patients [15]. Much medical and clinical reasoning takes the hypothetico-deductive
method as a procedure in scientific research. A hypothesis is a statement or explanation about some
medical observations that is either true or false, and the hypothetical-deductive approach is the pro-
cedure of testing the hypothesis to deduce a consequence of the explanation. For example, consider
the assumption that females have longer survival time than males among lung cancer patients. To
verify this assumption, experiments are carried out to test the difference on survival distributions
of females and males. The result is usually verified with some statistical methods; if the statistical
result is significant, then this hypothesis is supported.

A randomized clinical trial (RCT) is a common method to verify a hypothesis through experi-
ment. This process randomly chooses patients belonging to various predefined groups (e.g., men vs.
Women or men under 25 vs. Women over 50) to receive treatments. We record the relevant char-
acteristics of each patient, such as age, gender, etc. After completing the experiments (often taking
years), researchers ask whether there is a statistical difference among different groups; such result
may provide useful information in designing procedures for the treatment and the development of
drugs [40].

As described above, studies of medical prognosis normally begin with one or more assumptions
and involve performing experiments to support some given hypotheses. However, it is usually not
proven that these assumptions are relevant and unbiased. Besides, it is relatively harder to analyze
high dimensional data set with hypothesis (e.g., consider micro-array data that includes thousands
of features). For these reasons, our approach is to develop models solely from a data set of patients’

records without any prior grouping in our work.

2.2 Survival Data

In this section, we will introduce the notion of censoring and our formulation of survival data. We
will provide a simple example of survival data, which will be used to demonstrate examples through

out this paper.



2.2.1 Censored Observations

A major difference between survival data and a standard machine learning data is that some patients
may not have event-times, that is, we do not know when these patients experience the event. Such
omissions are their label — that is called censoring [10]. Type I censoring occurs when the patients
are still alive when the data is collected, so we only know the time of their last visit. Censoring
can also happen when a patient failed to follow up after a certain time, and this is called Type II
censoring. In either case, the censored value is a lower bound on the patient’s actual survival time.

In survival analysis, censored data can provide valuable information even though the actual
event time is unknown [51]. Missing survival times is dissimilar to missing values in the features
because the censored time provides the lower bound on the actual survival time. Simply eliminating
censored observations or treating them as uncensored samples (i.e., pretend that the censored time
is the time of the actual event) would bias the predictor and so should be avoided. For instance,
consider a group of patients that were studied over a fixed period of 3 months, and imagine that 10%
of patients died within 3 months while the remaining 90% survived at the end of study. If we simply
omit all censored observations, the remaining data would suggest that all patients will die within this
fixed period of 3 months.

Given the difficulties of obtaining and collecting information from patients’ records, the number
of patients in the data set is often insufficient. Although the actual survival times of censored data
are unknown, Shivaswamy et al. suggests that we should utilize a censored observation when there
is complete information [51]. For example, assume that our goal is to predict whether a patient can
survive more than 2 years versus less than 2 years. It is correct to include all censored patients who
survive at least 2 years since we know that they belong to the categories of long survivors. (If a
censored patient whose censor time is shorter than 2 years, we choose to discard this sample since

we are not sure whether or not this patient can survive longer than 2 years.)

2.2.2 Formulation of Survival Data

Given a set of survival data D = (X, T), where X represents the feature values (characteristics of
patients) and 7T represents the class label (survival time or censored time), our goal is to predict a
survival time P for each patient. Table 2.1 is a list of symbols/variables that we use through out this
paper.

Table 2.2 and Table 2.3 shows an example of survival data. Throughout this paper, we will use
this imaginary data set to demonstrate examples of different models and algorithms. Table 2.2 lists
some features of this example data, which are either nominal (e.g., Yes/No, Censored/Uncensored,

etc) or numerical (i.e., real numbers). Table 2.3 is an imaginary data set of 6 patients.



Symbols | Description
D Survival data set
n Number of instances (patients)
m Number of features
A m-dimensional vector of features in D
X n x m feature matrix of D
X; m-dimensional vector of feature values of the i* patient in D
X n-dimensional vector of feature values of the jt* feature of n patients in D
) Feature value of the j*" feature of the i*” patient in D
T n-dimensional vector of class labels (survival time or censored time) of D
t; Class label of the 7" patientin D and ¢t; € R
C n-dimensional vector of censored flags of n patients in D
¢ Censored flag of the i'" patient in D and ¢; € {0,1}
P n-dimensional vector of predicted survival times of n patients in D
i Predicted survival time for the i*” patient in D and p; € R
R; Risk set at time ¢; such that R; = {Patient; € D|t; > t;}
Table 2.1: The formulations and notations of survival data
Feature Name \ Variable Name \ Data Type \ Range
Patient Name Patient; String Unique Identifier
Gender X gender Nominal 0: Male, 1: Female
Age Xa9¢ Numerical
Lung Cancer Xlung Nominal 0: No, 1: Yes
Pancreas Cancer XPpancreas Nominal 0: No, 1: Yes
Performance Status XPs Nominal 1,2,3,4
Albumin X elbumin Numerical
Time (Event or Censored) | t; Numerical
Censored Flag C Nominal 0: Uncensored, 1: Censored

Table 2.2: An example of the feature set

2.3 Modelling Survival Distribution

Survival analysis traditionally focuses on analyzing prognostic factor and/or modelling the survival
distribution of a population [52]. Here is an imaginary scenario: we would like to know if cigarette
smoking is a good prognostic factor for lung cancer. We study the populations of lung cancer
patients with versus without cigarette smoking, and we try to prove or disprove that people who
smoke and have lung cancer are more likely to die earlier than those who do not. There are several
well-established methods on modelling such survival distribution, which we briefly describe them

in the following section. We conclude this section by relating these approaches to our goal.

2.3.1 Kaplan-Meier Estimator

Kaplan-Meier analysis [27] is one of the most widely used tools for analyzing survival distributions
of different populations. The basic idea of Kaplan-Meier is to examine the proportion of events that

occur at each distinct time point. Assuming there are r distinct event times, (¢1, to, ..., ¢,.), and R; is
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Patienti Xgender X age Xlung X pancreas Xps Xalbumin t;

Ci
Patienty | O 80 0 1 1 33.5 o |1 0
Patient; | 1 70 0 1 3 30.7 v | 8 0
Patienty | 1 65 1 0 4 25.2 .. | 10 1
Patients | O 25 1 0 1 50.3 | 13 0
Patienty | 1 65 0 1 2 27.4 o | 18 1
Patients | 1 60 0 1 1 26.7 .. | 120 | 0

Table 2.3: An example of a data set

the risk set , which is the set of patients who are still alive at time ¢;, let

n; = |R;| be the size of the risk set at time ¢;

d; be the number of events that occur at time ¢;

Oéi:P(T>ti|T>ti_1):n

i
More precisely, «; is the probability of survival in [¢;_1,¢;) given that a person has survived until at

least ¢;_1. The Kaplan-Meier estimator of the probability of survival at time ¢; is calculated by:

S(tl) = S(ti_l) X o = H Qg

t;<t;

For the first 5 patients in our imaginary data set in Table 2.3, there are 3 events in this data set,
at time ¢t =1, 8, and 13. (Censored observations are not considered as events.) At each distinct
event time ¢, we can calculate the number of events, the size of the risk set, and the probability of
survival, as shown in Table 2.4. Figure 2.1 plots the probability distribution of the survival function

we calculated in the second table.

ti n; Clz (677 S(tl)

0 5 10 |5/5]10

1 5 1 |4/5]1.0x4/5=0.8
8 | 4 1 |3/4]08x3/4=0.6
13 | 2 1 1/2 06 x1/2=03

Table 2.4: An example of using the Kaplan-Meier estimator

Kaplan-Meier is one of the standard methods in survival analysis. One advantage is that this
model effectively incorporates censored observations since the estimator only requires the informa-
tion on the size of the risk set and number of events at each distinct time. Notice that the final product
of Kaplan-Meier estimator is a survival distribution not a survival time, which is different from our
primary goal. Since this model is one of the most common tool in survival analysis, we will later try
this for our prediction task: after placing a patient into a particular Kaplan-Meier distribution, we
will then use the mean/median survival time from this KM distribution as a predicted survival time

for that patient.
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Figure 2.1: An example of a Kaplan-Meier curve extracted from [42]

2.3.2 Cox Proportional Hazard Model

Cox Proportional Hazard Model [9] is a multivariate regression method in survival analysis that
incorporates the ideas of the Kaplan-Meier estimator and the effect of features. A proportional
hazard model assumes that the hazard (see Section 2.1 for definition) between different risk groups
are proportional, and all features are time independent. This model consists of (1) a function that
models the effect of features, and (2) a baseline hazard, an arbitrary and unspecified function that

models the risk over time. In general, any hazard function can be written as

h(t|X) = ho(t)g(X)

where hg(t) is the baseline hazard function
X is a vector of features

g(X) is a function that models the effect of features

Since each instance is proportional to the baseline, the hazard ratio (HR), or the ratio between a

risk group and the baseline, can be calculated by:

_ h@X) _
= ho(t) =9(%)

One of the benefits of the proportional model is that we can leave the baseline function unspecified

if we are interested in the the hazard ratio between the two groups.

Cox proportional hazard model is a type of proportional hazard model, which assumes that the
effect of features is an exponential function of a linear combination of the features. More precisely,
this model defines g(X) = e?(X~%X0) where 3 is a vector of parameters for the feature and Xy is a

vector of features of the baseline. The hazard function of a Cox proportional hazard model can be

12



written as:

h(t|X) = ho(t)e? X =)

We will demonstrate how to estimate the hazard function of a patient using the same imaginary
scenario from the last section (see Table 2.3). Assuming that for each patient, we are only given
his/her age = X9, gender = X% (0 indicates Male and 1 indicates Female), and event time
t;. Let’s use Patienty as the baseline in this example and assume that we know the hazard function
of Patienty — that is, the baseline hazard function hg(t), which models the instantaneous risk of
Patient, over time, as previously described in Section 2.1. (Recall that the baseline hazard function
is an arbitrary and unspecified function. In this example, our aim is to show the process of calculating
the hazard function of a patient from the baseline hazard function, and so we will leave this function
unspecified.) Assuming that we had fit a Cox model and obtained two parameters: 3%9¢ = 0.01

for the age feature and 39°"9¢" = 1 for the gender feature, we can estimate the hazard function of

Patient; by

hl(t) _ ho(t)e[ﬁage(X;lge_Xg.ge)_"_ﬁgender(annder_chnder)]

— R (t)el(O-0D(70-80)+(1) (1-0)]

~ ho(t) x 2.4596

The above result shows that Patient; is approximately two to three times more risky (i.e., more
likely to have an event) than Patienty. Notice that it does not matter which patient was selected as
the baseline, since the hazard function only measures the ratios between the patients. It is common
to choose the average of each feature px as the baseline and then normalize the features of each
patient. Letting X’ = X — ux be a vector of normalized features, we can rewrite the hazard
function of the Cox model as:

h(t|X) = ho(t)e?X’

The parameter 3 can be estimated using partial likelihood maximization, and the baseline hazard
function can be estimated by Kalbfleisch-Prentice Estimator [25]. Detail of calculations can be
found in the work of [25] and is omitted here. Once we have the baseline hazard function, we can
estimate the baseline survival function Sy (¢) (by Equation 2.2). Then, the survival function for each
individual patient is

’
eﬁx

S(t) = So(t)

Similar to the KM estimator, the Cox proportional hazard model is one of the standard method-
ologies in survival analysis, but it is not designed to produce survival time. In our work, we attempt
to evaluate the effectiveness of Cox model for individual prediction by using the median survival

time generated from a Cox model as the predicted survival time for each patient.
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2.3.3 Logistic Regression

Logistic Regression is a popular methodology for predicting the posterior probabilities of an indi-
vidual belonging to some classes, when there are two or more classes [35]. In survival analysis, if
we are only concerned with the likelihood of an event, we can apply logistic regression to estimate
the probability of this event. For example, to predict whether or not a patient will experience a
recurrence, the logistic regression is employed to estimate the probability of “recurrence” (positive

class) versus “no recurrence” (negative class). Let

X be a vector of features of the patient

(3 be the vector of coefficient for positive class

(° be the intercept or noise variable for positive class

C = Positive denotes that the patient belongs to the positive class

C = Negative denotes that the patient belongs to the negative class

The probability that the patient belongs to the positive class and the negative class are estimated
by:

1
Pr(C = Positive| X = X;) = 1 4 eB°+8x
e xT

Pr(C = Negative| X = X;) =1 — Pr(C = Positive| X = X)

Suppose now we are interested to know the likelihood of 1 year survival of each patient in the
data set from Table 2.3. Without loss of generality, we can define Long_Survival (survive more
than 1 year) as the positive class and Short_Survival as the negative class (survive less than 1
year). Imagine that we fit a logistic regression model and obtain three parameters b° = —0.5,
b®9¢ = 0.01, and b9°"%" = 1. The process of estimating the probability that Patienty belongs to
the longer survival group versus the shorter survival group is shown below. Table 2.5 shows the
predicted probabilities for the first five patients in the data set in Table 2.3.

1
1 + e[BO+BageX(‘)"Qe_;’_ﬁgende'r'xgﬁndcr]
1
1 4 ¢l(=0.5)+(0.01)(80)+(1)(0)]
1

1—|—80'1
~ 0.43

Pr(Long_Survival| X = Xy) =

Pr(Short_Survival| X = Xo) = 1 — P(Long_Survival| X = Xj)
~1-0.43
~ 0.57
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Patient | Time (Month) | Event | Pr(Long_Survival) | Pr(Short_Survival)
Patienty | 1 Death | 0.43 0.53
Patient; | 8 Death 0.23 0.77
Patients | 10 Censor | 0.24 0.76
Patients | 13 Death 0.56 0.44
Patienty | 18 Censor | 0.24 0.76
Patients | 120 Death | 0.15 0.85

Table 2.5: An example of result from the Logistic Regression

If there are more than two classes, we need to estimate the posterior probability that a patient

belongs to each class. Let

X be a vector of features of the patient
(1. be the vector of coefficient for class k
/3 be the intercept or noise variable for class k

C = k denotes that the patient belongs to class k

BB X
1+ 3 epiaxs
1
14+ Zlf;l eBY+B1 X

Pr(C=kX=X;) = fork=1,.,K—-1

Pr(C=K|X = X;) =

Logistic Regression is another dominant method in survival analysis; unfortunately, this model
is not sufficient for predicting individual survival times. Logistic Regression produce the probability
that a patient belongs to a class but not the remaining time of survival. Again, although it is different
from our primary objective, we will test its effectiveness in classifying patients into long survivors

and short survivors.

2.3.4 Evaluation and Validation

Much research on survival analysis focuses on finding the prognostic factors that can segregate
patients and/or produce a survival distribution for a population. The effectiveness of a prognostic
factor and the predictability of a survival function is usually evaluated via statistical methods and/or

graphical visualization. We discuss some general methods here.

Evaluating Prognostic Factor

How well a feature can discriminate populations is usually measured by some statistical test such
as the p-value from the log-rank statistics, which uses an hypothesis-test to compare the difference
between two survival distributions. For instance, to determine whether gender is an effective fea-
ture on discriminating patients, one could test the difference between the survival distributions of
men and women. If their survival distributions are significantly different, gender is considered an

effective prognostic factor.
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Here is the basic procedure of log-rank statistical test. Suppose we are given two populations,
(G1 and G,. For each patient, we are given his/her survival time (if the patient is already dead) or
censored time (if the patient is still alive or has left the study prior to death). This statistic will

measure the likelihood that G; and G5 are identical (the null hypothesis).

Let ¢; be distinct event times in either group
d1; and d; be the number of observed events of group 1 and group 2 at ¢;
d; = dy; + do; be the number of observed events at ¢;
nq; and no; be size of the risk set of group 1 and group 2 at ¢;
n; = Ni; + no; be size of the risk set at ¢;
Tzdzz be the expected value of group ¢

di(nz/ni)(1 —naz/ni)(n; — di)
le —1

dy
B = did

V; = be the empirical variance

The Z score of the log-rank statistic is calculated by

S dibBy
iz Vi

=1

7 =

Finally, the p-value is obtained by applying the chi-square statistic to the Z score shown above.
A large p-value (close to 1) indicates that these two populations are similar, while smaller p-value
(close to 0) suggests they are not. Typically, a p-value < 0.05 is considered significant. That is, this
value allows us to claim that the null hypothesis does not hold here — i.e., the two populations are

not drawn from the same distribution.

S(t)

.. KMcurve of G,

.,
Tk

\"“4-7. .
s T KM Curve of G,

—
e

s
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Time (Month)

Figure 2.2: An example of visualizing the performance of a prognostic factor

Another typical way to evaluate the performance of a prognostic factor is to visualize at the

Kaplan-Meier curves of the different sub-populations (differing only in the value of this single fac-
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tor) in the same plot [27]. For example, Figure 2.2 shows the Kaplan-Meier curves of two risk
groups such that these two groups do not have the same survival distributions.

The p-value and the graphical visualization are two common tools in evaluating the effective-
ness of prognostic factor. Notice this is different with our primary interest of predicting individual
survival times. However, the p-value of the log-rank statistic can help us quantify the difference
between two groups of patients. In our work, we use this measurement to evaluate how well a fea-
ture can segregate patients into small sub-populations. (See Section 4.3.1 for more details on how

p-value is used when splitting a classification and regression tree.)

Evaluating Predictability

The concordance index(ClI) is a standard metric for evaluating the correctness of a survival distribu-
tion by measuring the proportion of all comparable patient pairs in which the predicted and actual
survival time are ranked in the correct order [20]. Imagine that our goal is to predict whether or not
a patient can survival until a specific time ¢ (e.g., 1 year, 2 years, 5 years), and our model predicts

the probability that a patient will live longer than ¢. For all possible pairs of patients ¢ and j, let:

t;,t; be the survival time of patient ¢, j

D;, p; be the predicted probability of survival until a specific time ¢ for patient ¢, j

A pair ¢ and j is “comparable” if we can determine whether ¢; > t; or vice versa. (If Patient;
is censored at ¢; and ¢; < t; , we cannot compare the survival time of these two patients since the
actual survival time of Patient; could be longer than ¢;.) For all comparable pairs of ¢ and j, the

relationship between them is defined (disjointly) as:

t; > t; and p; > p; or

Concordant if
t; <ty and p; < Pj
. t; >t;and p; = p; or
If not Concordant , then Tieif { *~ 7 Pi=Pj
t; < tj andpi =Dpj

. t; >t;and p; < p; or
If not Concordant nor Tie , then Discordantif { *~ 7 Pi=Ppj
t; < tj and p; > Dy

The concordance index is then calculated by:

Cf — number of concordance + 0.5 x number of ties

number of comparable pairs
Table 2.6 shows the result from Logistic Regression model (Table 2.5) and a few examples of
determining concordant relationship between pairs of patients. In order to calculate the concordance
index , we need know the number of concordant pairs among all pairs of comparable patients. Notice
that Patient, and Patients are not comparable since Patient, is censored and may survive longer than
Patients, and we cannot determine their concordant relationship. Here, of the 15 pairs of patients,

11 pairs are comparable.
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Patient | Time (Month) | Event | Pr(Long_Survival)
Patienty | 1 Death 0.43
Patient; | 8 Death 0.23
Patienty | 10 Censor | 0.24
Patients | 13 Death 0.56
Patienty | 18 Censor | 0.24
Patients | 120 Death | 0.15
\

; Result

8 0.43 | 0.23 | Discordant
>10 | 0.43 | 0.24 | Discordant
13 0.43 | 0.56 | Concordant
0.43 | 0.24 | Discordant
120 | 0.43 | 0.15 | Discordant
>10 | 0.23 | 0.24 | Concordant
13 0.23 | 0.56 | Concordant

Patient; | Patient;
Patienty | Patienty
Patienty | Patient,
Patient, | Patients
Patienty | Patienty
Patienty | Patients
Patient; | Patienty
Patient; | Patients

~+
N
~
<
i~
T
3
S

0 00 M = = = | S
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Table 2.6: An example of using the concordance index

The CI is then the ratio between number of concordant pairs to the number of all possible pairs.
This number range from O to 1, with 0.5 indicates no correlation, and 1 indicates perfect prediction.
A difference of 0.02 or larger is typically considered to be significant. In the above example, the C/
is % ~ 0.73.

In survival analysis, the Concordance Index is typically applied to evaluate models that produce
probability distributions (such as the proportional hazard models) or probability of different survival
classes (such as Logistic Regression models). In our work, we define Concordance Index differently
than the example above since our models produce survival times instead of survival probabilities.
We will reintroduce this idea again in Section 3.2.3.

Besides concordance index , it is also typical to measure accuracy, sensitivity, specificity. re-
ceiver operating characteristic curve (ROC) and/or the area under a receiver operating character-
istic curve (AUC). Assume that the actual outcomes and the predicted outcomes are either positive
or negative (e.g. survive longer than 1 years), we can visualize the relationships from a confusion

matrix, which is defined in Table 2.7.

Actual Outcome
Positive Negative
Positive | True Positive (TP) False Positive (FP)

Predicted Out
redicted Lutcome Negative | False Negative (FN) True Negative (TN)

Sensitivity Specificity

Table 2.7: The definition of confusion matrix
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Table 2.8 shows an example of predicted results from Logistic Regression model and confusion
matrix from these predictions. Recall that Long_Survival represents the group of patients who sur-
vive longer than 1 year (the positive class) and Short_Survival represents the group of patients who
survive shorter than 1 year (the negative class). Pr(Long_Survival) is the predicted probability that
a patient belongs to the positive class (i.e., survive longer than 1 year) and Pr(Short_Survival) is
the predicted probability that the patient belongs to the negative class (i.e., survive less than 1 year).
If Pr(Long-Survival) > Pr(Long_Survival), the patient is more likely to be in the positive
class, or the predicted class for this patient is Long_Survival. From the results of predictions in the

first table, we can determine each component of a confusion matrix as shown in the second table.

Patient; | Pr(Long-Survival) | Pr(Short_Survival) | Actual Class Predicted Class
Patienty | 0.43 0.57 Short_Survival | Short_Survival
Patient; | 0.23 0.77 Short_Survival | Short_Survival
Patienty | 0.24 0.76 Short_Survival | Short_Survival
Patients | 0.56 0.44 Long_Survival | Long_Survival
Patienty | 0.24 0.76 Long_Survival | Short_Survival
Patients | 0.15 0.85 Long_Survival | Short_Survival
\
Actual Outcome
Positive Negative
Positive | TP: 1 FP: 0
Predicted Outcome .
' " Negative | FN: 2 TN: 3
Sensitivity ~ Specificity

Table 2.8: An example of the confusion matrix

The most naive measurement is the accuracy, which is the percentage of correct predictions.
Sensitivity measures the percentage of true positive that are correctly predicted as positive, and

specificity measures the percentage of negatives that are correctly predicted as negative, that is, use:

TP + TN
accuracy = —m—m/m——————————
Y = TP+TN+EP+FN
o TP
senstthlty = m
o TN
specificity = T Fp

From the same example of confusion matrix above, we can calculate:

1+3

Trason2 = 007

accuracy =

1
sensitivity = T2 ~ 0.33

3

specificity = 350 - 1

If the class labels are real numbers (e.g., in our case, the survival times), the regression results

can be estimated by determining a threshold value to create a classification boundary between two
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classes. (In the example above, the classification boundary is 1 year.) Assuming that ¢ is the actual
output and p is the predicted output, where both ¢ and p are real number, we can define a threshold
value ¢, so that all values larger than ¢ belong to one class and all values less than ¢ belong to another

class. sensitivity and specificity can be calculated by:

sensitivity = Pr(p > c|t > ¢)

specificity = Pr(p < c|t < ¢)

While these measurement are often adapted for model assessment, they are problematic if the
classes are imbalanced (i.e., the majority belong to one class) which is often the case in medical
data [36]. An alternative method is to inspect the receiver operating characteristic (ROC) [16],
which measures classifier performance over the whole range of possible frequencies and tradeoff.
A ROC curve has two dimension: the sensitivity on the x-coordinate and (/-specificity) on the y-
coordinate. One point in an ROC dominates another if it is above and left to another (higher true
positive and lower false positive). The ROC curves display the relationship of predictions and out-
comes by plotting the estimates of sensitivity versus (I-specificity) for all possible threshold values.
In the previous example, we used 1 year as the classification boundary. For this particular time-
threshold, the classification results are sensitivity = 0.5 and [-specificity= 0, which yields a single
point (0.5,0) in a two-dimensional graph.

We can define multiple classification boundaries (e.g., | months, 6 months, 1 year, 2 years, etc.)
and repeat the same calculation for each boundary. The results will be multiple pairs of (sensitivity,
[-specificity), or multiple ROC points. Plotting these points on the same figure and connecting
them together will give us a ROC curve. Figure 2.3 illustrates an example of ROC curves from two
classifiers A and B.

Another way to evaluate a classifier or regressor is to estimate the area under the ROC curve
(AUC), which reduces multiple ROC points to a single scalar number. From Figure 2.3, we can also
visualize that Classifier B has larger area under its ROC curve, and therefore is a better classifier.

Survival analysis tells us the probability distribution of survival times, from which we can com-
pute the average or the median survival time. However, this statistic is usually with large variance
since it is an average estimation for a population. Recalling our motivating example, we want to
be able to anticipate how long an individual patient will survive. The methods we reviewed in this
section are powerful in producing and evaluating survival distributions; nevertheless, these methods
are not precise enough to predict an accurate survival time for individuals. Hence, in this work, we

have to consider alternative methods for our purpose.

2.4 Related Work

While survival analysis is primarily studied by statisticians and bio-statisticians, many computer sci-

entists have attempted to utilize artificial intelligence and machine learning techniques for medical
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True positive rate

(a) False positive rate

Figure 2.3: An example of ROC curves and AUC extracted from [16]

diagnosis and prognosis. Early applications of artificial intelligence in medicine focuses on mod-
elling the knowledge of experts, but today, much research adapts machine learning algorithms to
solve binary or multi-class classification problems. In this section, we review some relevant work in

prognosis using survival analysis, artificial intelligence, or machine learning approach.

2.4.1 Previous Work in Survival Analysis

A large number of research projects are working on discovering the prognostic factors or deter-
mining the relationship between features and survival. Seve et al. use uni-variate Cox proportional
hazard model to determine the significance of each variable to overall survival, and found that low
serum albumin levels and liver metastasis (both prognostic factor have p-value < 0.0001) are pow-
erful prognostic markers for carcinomas cancer patients [49]. But notice that knowing the relevant
prognostic markers is not sufficient to predict individual survival times.

Predicting the probability of survival is another focal point in survival analysis. One example is
the commercial APACHE III [29], a proprietary database and decision support system that estimates
the probability of death in intensive care units. Luaces et al. also predict the probability of survival in
intensive care unit but with different approach: the authors apply support vector machine where the
model is built by optimizing the area under the ROC curve [33]. Notice that this method produces
the probability (that the patient will survive in ICU), which is different from our goal of predicting
the remaining time of survival.

Beer et al. use gene-expression to identify whether a patient with lung adenocarcinomas belongs

to the low risk group or the high risk group [1]. This work use uni-variate analysis to find the
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prognostic factor that can best identify risk groups. Log-rank statistics was applied to quantify the
differences among these groups, and the top 50 genes correctly identified low and the high risk group
within the hold-out set (p = 0.024). Again, this is not sufficient to predict individual survival times.

Another research subject in survival analysis is to develop scoring system for prognosis of spe-
cific diseases or events. For example, the Model for End-Stage Liver Disease (MELD) is used to
determine the priority of liver transplant candidates [26]. This system predicts the mortality in pa-
tients with end-stage liver disease and quantified the assessment as a numerical score from 6 to
40. The quality of this scoring system is evaluated using 95% concordance index , and the best
model achieved 0.87% concordance. Again, developing a scoring system is not our objective, but

concordance index will be applied in our evaluation criteria.

2.4.2 Previous Research in Artificial Intelligence

Since the 1960s, several artificial intelligence projects involved in medical diagnosis or prognosis,
most focusing on modelling large scale domain-specific knowledge [48]. The first successful rule-
based expert system, MYCIN, was designed to identify bacteria and recommend antibiotics for
treatments. The system was a simple inference engine with a knowledge base of if-then rules. After
posing a sequence of yes/no questions, it then provided a list of plausible diagnoses. However, the
development of this type of expert system fell out of favour due to difficulty in translating medical
knowledge into logical statements as required by such rule-based models.

In the early 1980s, probability and decision theory were introduced to the Al community, lead
by Pearl who started the Bayesian networks to encode the inherent uncertainty [38]. This proba-
bilistic approach resolved the difficulties of rule-based system and became the dominant models of
representing uncertainty in medical expert system [22]. Figure 2.4 shows a simple example of a
probabilistic graphical model. It is known that asthma can cause cough and wheeze, and flu can
cause fever and cough. Given the presence of fever, cough, and wheeze, the model can derive the
probability of flu and probability of asthma. One downside of this approach is the challenge in
constructing a correct structure since the causality between features and outcomes is still unknown.
Even though the structure and parameters can be acquired using machine learning methods, the large

number of features often makes the training process, and hence this approach, ineffective.

2.4.3 Previous Work in Machine Learning

Data-driven approach plays a major role in medical diagnosis/prognosis research today [6]. One of
the advantages of machine learning approach is that most algorithms could build a model using only
raw data —i.e., without prior medical or biological knowledge. Various machine learning techniques
have been used in classifying patients into groups of different survival times; for example, predicting
whether or not a patient will survive more than two year or less than two years. We briefly review

some representative work here.
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Figure 2.4: An example of a probabilistic graphical model

Delen et al. [12] try to predict whether a breast cancer patient will still be alive after 5 years from
the date of diagnosis. Artificial neural network, decision trees, and logistic regression were applied
in this project, and the performances were evaluated by their accuracy, sensitivity, and specificity.
Their experiments show that decision tree outperforms other models with a classification accuracy
of 93.6%. Decision tree seems like a potential solution, but this algorithm predicts a survival class
rather then a survival time. In our work, we apply regression trees, a variation of decision trees,
which predicts a real number for each individual; see Section 4.2.1.

Jayasurya et al. [23] employ Bayesian network and support vector machine for two-year sur-
vival prediction in lung cancer patients. Their results show that Bayesian network outperformed
support vector machine with AUC' = 0.77 versus AUC = 0.71 respectively. These two models are
originally designed for classification purpose, which is different with our primary goal. This work
has shown the effectiveness of these two algorithms; hence, we will evaluate their performance on
classifying patients using the median survival time as the classification boundary.

Other applications including variations of neural networks. For example, Dybowski et al. [14]
predict systemic inflammatory response syndrome and show that neural network is more accurate
than logistic regression (AUC = 0.863 vs AUC = 0.753). One advantage of neural network is the
ability to model nonlinear relationship, but it is often challenging to train such a model. Again, we
will test the effectiveness of Neural Network for classification in our experiments.

Leel et al. [30] also try to predict a category for each breast cancer patient, but their work
categorizes patients into three risk groups: good, intermediate, and poor. The goal of their work is
to find a linear combination of features that can segregate the populations. (Notice that their work is
different from conventional survival analysis, which tests how well a single feature can discriminate
different populations.) The authors consider this task as a multi-class classification problem, that

is, classifying patients into more than two categories. Their approach is to apply Support Vector
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Machine (SVM) with Gaussian Kernel to classify patients into these three categories. Experiments
are performed on a set of 253 breast cancer patients, and the performance of this model is evaluated
by calculating the p-values of log-rank statistics between all pairs of categories. In their experiments,
(a linear combination of) all prognostic factors have p-value < 0.05, and therefore these separations
are significant. We applies SVM for both regression and classification, and we provide basic concept
and our approach of SVM in Section 4.2.1.

Aside from predicting how long a patient can survival, medical doctors are interested in pre-
dicting the recurrence of a disease or cancer. This is crucial because the physicians can use this
prediction to decide whether to perform a surgery on a patient or not. Zupan et al. consider this
problem as a binary classification task, and they attempt to predict the probability that a patient will
have recurrence within 7 years [57]. Unfortunately, the difficulty of applying machine learning to
this task was due to the large amount of censoring in their testing data. (Whether the prostate cancer
recurs after 7 years was unknown for 73% of the patients because the 7 years period had not been
reached.) The authors used a weighted example technique to handle censored data and applied dif-
ferent statistical and classification models to find the probability of recurrence. They claimed that
Naive Bayes and the Cox model perform better than other predictors by evaluating their accuracy,
sensitivity, specificity, and concordance index. In our work, we consider similar type of weighted
method to handle censored observations (see Section 4.1.2 for more details).

There are several machine learning projects that segregate patients via classification and regres-
sion trees. To determine recurrence of breast cancer patients, Ture et al. incorporate a decision tree
with Kaplan-Meier estimator to segregate patients into small categories [54]. Experiment results
suggest that C4.5 performs better than other models by evaluating their sensitivity, specificity, etc.

We use a similar approach in this work, and we describe our solution in detail in Section 4.3.1.
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Chapter 3

Evaluation
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This chapter summarizes our methods on validations and evaluation. Section 3.1 discusses the
reasons of incorporating verification methods and the k-fold cross-validation. We followed the stan-
dard machine learning approach of evaluating the quality of a predictor by the average loss over the
set of independent testing cases, but we found it challenging to define the term “loss” in predicting
survival times. In Section 3.2, we will explain why conventional approaches are not sufficient in sur-
vival predictions and how our models are evaluated with alternative measurements for uncensored

and censored observations.

3.1 Cross-Validation

As described in section 2.3.4, much research on survival analysis has focused on finding prognostic
factors of some specific events for a population. In our work, our goal is to make predictions for
new patients — i.e., it is more crucial that our models perform well on novel data that was not used
for training the model.

In machine learning, we typically evaluate a predictor by measuring its performance on a holdout
set— that is, a set of data that is not used for training the predictor. We will use a learning algorithm
L(.) to build a predictor f = L(D) using a given training data set D. To evaluate the quality
of that predictor f, D is partitioned into a training set Dy,qining and a testing set Dycgiing, such
that Dy, qining is for building the predictor f' = L(Dyrgining) and Dyesting is for evaluating this
learned f’. (The purpose of f’ is to rate the effectiveness of L(.); recall the actual f is based on
all of D.) How D is divided into Dy,gining and Dyegring Will affect the results of assessment. It is
common to incorporate a k-fold cross-validation to obtain the best estimate of the effectiveness of
the predictor [41].

Given a data set D, a learning algorithm L(.), and a constant k (e.g., k = 5 or k = 10 are

common choices for k), the process of the k-fold cross-validation is as follows:

Algorithm 1 The k-fold cross-validation algorithm
Input:
D: adata set
L(.): alearning algorithm
k: a constant that specifies the number of divisions for cross-validation
Qutput:
Errcy (L, D): the average cross-validation error of the algorithm L(.) on the data set D
1: Randomly divide D into & disjoint subsets of equal size D = U{Dy, Da, ..., Dy}
2: fori =1tok do
3 Diesting < Ds
4: Dtraining — D - Dz
5. fi = L(Dtraining) be the predictor based on Dyyqining
6
7
8

E; « evaluation result of f; based on Dycgting
. Errov(L,D) «— L0 B,
: return Errcy (L, D)

The k-fold cross-validation effectively uses all data for both training and testing, without reusing
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any instance for testing. After k iteration (with different D; in each iteration), each D; is used for
both training (k — 1 times) and testing (once). We evaluate the performance of each f; and the
average performance from these f; (see the next section for evaluation methods).

Figure 3.1 illustrates an example of a 3-fold cross-validation. Suppose that we have a set of
patients who are either in class A or class B. We begin by randomly dividing our data into 3 sets: the
red set, the blue set, and the grey set. As shown in the figure, the rightmost classifier is trained using
the red set and the blue set, and it is evaluated using the grey set. We repeat the same process 3 times
(with different testing set), so we have 3 predictors and 3 evaluations. Finally, we can estimate the

average results from these 3 experiments.

Training set
&7 Test set
| X

Figure 3.1: An example of 3-fold cross-validation extracted from [11]

3.2 Evaluating Predictions

Ideally, the regression models should give a prediction p; for each patient Patient; that is a reasonable
approximation of the patient’s true survival time ¢;. In the following section, we will discuss our

evaluation methods and how to interpret them in our experiments.

3.2.1 L1andL2Error

In machine learning community, typical methods for evaluating regression models include:

e The average mean absolute error, or the average L1 error, measures the magnitude of differ-

ence between the true survival time and the estimated survival time.

1 n
average L1 error = o z; |t: — pil
=
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e The average root-mean-squared error, or the average L2 error, measures the average root

squared errors between actual survival time and the predicted survival time.

average L2 error =

Table 3.1 shows an example using the average LI error and the average L2 error on our imag-
inary data in Table 2.3. Notice that censored patients are not included in this example since we do

not know their actual survival times and so we cannot evaluate their predictions using L1 nor L2.

3.2.2 Relative Absolute Error

However, the performance of a predictor cannot be fairly evaluated using L/ or L2 error. From the
example in Table 3.1, the true survival time of Patient is 1 month, and the model predicts 6 months.
Consider another case, Patients, whose true survival time is 10 years, and the model predicts 10
years + 5 months. The absolute L1 error (resp., squared L2 error) for Patient, and Patients are both
5 months (resp. 25 months?) respectively; while this is a rather good prediction for Patients, it is
less adequate for Patienty.

For this reason, we consider evaluating our model using the average relative absolute error
(RAE); more precisely, for each patient, we measure the difference between the true survival time
t; and the predicted survival time p; over the magnitude of the prediction p;. The RAE of the i*"
patient is calculated by:

RaE, — =Pl
b

The average relative absolute error is then calculated by:
1 1=t — pi
RAE = ~RAE; = 727| i i
n n i—1 Di

Table 3.1 shows an example of different evaluation method on the same data set in Table 2.3.
We predict that Patients; will survive 10 years + 5 months, which differs from Patients’s true survival
time by a factor of 4%. Although Patients and Patient, have the same L1 and L2 error, the relative
absolute error for Patienty was 83%, while the relative absolute error for Patients was 4%. The
relative absolute error is consistent with our assessment that the prediction for Patients is better
than the prediction for Patient.

Notice that we have chosen the absolute error relative to the predicted survival time but not rel-
ative to the true survival time since the prediction is known at the time of prognosis while the actual
survival time is not. We want to estimate, in average, how much our predictions may be off from
the patient’s actual survival time, and we consider this quantity will provide a useful information
for our patients. For instance, in the example in Table 3.1, the average relative absolute error of

our predictor is 0.5. Suppose we have a new patient, Patients, whose predicted survival time is 8
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Patient Actual Survival (Month) | Predicted Survival (Month) | L1 L2 RAE
Patienty | 1 6 5 25 0.83

Patient; | 8 4 4 16 1.00

Patient; | 13 15 2 4 0.13

Patient; | 120 125 5 25 0.04

Average | 35.50 37.75 4.00 | =4.18 | 0.5

Table 3.1: An example of using the LI, the L2, and the relative absolute error

months. We can inform Patientg that he/she will probably survive 8 months, but this prediction may
be different from his/her true survival time by 4 months (i.e., 50% of 8 months).

Notice that the relative absolute error is not a completely fair measurement. If p; > ¢; , then
RAE;~ 1. In contrast, if p; < t;, then RAE; will be relatively large since the absolute error is
divided by a small number. Consider the example in Table 3.2. Here, as we predict Patienty will
survive 11 month, but the actual survival time is 1 month, the relative absolute error for Patient is
10. We predict that Patient; will survive 100000 months while the actual survival time is 8 months,
the relative absolute error for Patient; is approximately 1. However, we consider the prediction for

Patient is better since the prediction for Patient; is unreasonable and unrealistic.

Patient | Actual Survival (Month) | Predicted Survival (Month) | RAE
Patienty | 1 11 10
Patient; | 8 100000 ~1

Table 3.2: Examples of extreme cases in calculating the relative absolute error

Although there is no standard definition on what a “bad” RAE is, in our work, we consider lim-
iting the RAE of our models under 1. For instance, if the RAE of a predictor is higher than one, we

do not consider using this predictor.

3.2.3 Concordance Index

The Concordance Index (CI), described in Section 2.3.4, is one of the most common evaluation
methods for survival models; it measures the portion of all pairs of patients whose predicted survival
probability are correctly ordered among all “‘comparable” pairs of patients. In this work, we also use
the CI to evaluate our predictors, but we measure the portion of correctly ordered predicted survival

times instead.

Let ¢;,t; be the actual survival times of patient 4, j

pi, p; be the predicted survival times of patient 4, j

Recall that a pair ¢ and j is “comparable” if we can determine whether ¢; > t; or vise versa. (If

Patient; is censored at ¢; and ¢; < ¢; , we cannot compare the survival time of these two patients
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since the actual survival time of Patient; could be longer than ¢;.) For all comparable pairs of 7 and

J, the relationship between them is defined (disjointly) as:

. t; >t;and p; > p; or
Concordant if { " J pi = Pj
t; < tj and p; < pj

. t; >t;and p; —p; < 1lor
If not Concordant, then Tie if { *~ 7 Pj =P
t; < tj and p; —p; < 1

If not Concordant nor Tie, then Discordant

Notice that the p; and p; above are different from the p; and p; in Section 2.3.4, as here, our re-
gressors are generating survival times instead of survival probabilities (e.g., the results from Logistic

Regression or Cox proportional hazard models). Recall that the concordance index is calculated by:

i number of concordant pairs + 0.5 X number of ties

number of comparable pairs
Similar to the previous definition, the concordance index ranges from O to 1; a value of 1 indi-
cates perfect ordering, a value of 0.5 indicates that the predictor is not better than random guessing,
and a value of 0 indicates complete disagreement.
Table 3.3 shows an example of estimating CI from our data in Table 2.3 and imaginary predicted
survival times. In this example, 6 out of 11 pairs of comparable patients are concordant, so the CI in

this example is 0.55.

Patient Actual Survival | Censored Time | Predicted Survival
Patienty | 1 - 10
Patient; | 8 - 3
Patienty | - 10 5
Patientg | 13 - 15
Patienty | - 18 9
Patients | 120 - 125
I

Patient; | Patient;
Patienty | Patienty
Patienty | Patient,
Patienty | Patients
Patienty | Patienty
Patienty | Patients
Patient; | Patients
Patient; | Patients

~
N
~
<.

Di | pj Result

8 10 | 3 Discordant
>10| 10 | 5 Discordant
13 10 | 15 Concordant
>18 | 10 | 9 Discordant
10 | 125 | Concordant
>10 | 3 5 Concordant
13 3 15 Concordant

OO0 00 M= b= = = | S
[
[\
(e

Table 3.3: An example of using concordance index

3.2.4 Correlation Coefficient

Another useful measurement between predictions and survival times is the Pearson correlation co-

efficient, which measures the covariance of 7" and P divided by the product of their standard devia-
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tions.

Let Cov(T, P) = covariance of T and P
wr, up = mean of T'and P

or,op = standard deviation of T" and P

The correlation coefficient is calculated by

Corn(r, p) = ST D) _ B )P —pe)

One issue in calculating correlation coefficient is that 7" is unknown for censored data, and there-
fore, we calculate the correlation coefficient on uncensored patients only. In general, we anticipate
that an efficient predictor (i.e., with low RAE and high CI) should have high correlation coefficient
as well. Although we do not use correlation coefficient as our main criteria in evaluating predictor,

we consider this measurement as an extra criteria to assess our predictors.

3.2.5 Combinations and Interpretations

The average relative absolute error and the concordance index have their own strengthes and weak-
nesses, and we consider interpreting the combination of these two measurements. Imagine two
predictors f4 and fp such that their survival predictions rank patients in the same order, yet fp
over-estimates survival times for ALL patients. These two predictors will have the same concor-
dance index but f 4 will have smaller RAE. Figure 3.2 shows the visualization of f 4 in the left figure

and fp in the right figure.

Time
(Month)

Time
(Month)

Figure 3.2: Visualizations of two predictors with the same concordance index but different average
relative absolute error

Considering another situation where f4 and fp have the same RAE, but fp tends to over-
estimate survival times for short survivors and under-estimate survival times for long survivors (i.e.,
consider fp makes the same prediction for each individual patient). We prefer f4 over the f5 since
fa is better in descriminating short survivors versus long survivors. Figure 3.3 shows the visualiza-
tion of f4 in the left figure and fp in the right figure. For example, imagine a patient whose actual

survival time is 6 months, f4 predicts 4 months and fp predicts 12 months. The RAE for these

31



two predictors are both 0.5, but we prefer under-estimate rather than over-estimate. The reason is
that, if a patient is dying, we would rather give the patient a warning ahead of time. Image another
patient whose actual survival time is 24 months, f4 predicts 48 months and fp predicts 12 months.
The RAE for these two predictors are both 0.5 again, but f4 can predict that this patient will survive

longer.

Time
(Month)

Time
(Month)

Figure 3.3: Visualizations of two predictors with the same average relative absolute error but dif-
ferent concordance index

In our work, we define the best model as the one that achieves the minimum average relative
absolute error. If the RAE of two models are equivalent or the difference between them is not
statistically significant, we will seek the model that is higher in its concordance index. (Although CI
does not provide more information for individual patients, we will select the predictor that is more
capable in ranking patients.)

Besides the RAE and the CI, we also examine the RAE?®, which measures the relative absolute
error on the testing cases that lie within the 95% confidence interval. Recall that survival prediction
problems suffer from the presence of outliers. It would be nicer if we knew which ones were outliers,
but it is generally difficult. Our studies evaluate all patients in the unseen data set. We found,
however, that a few outliers can skew our statistical analysis. In order to determine whether a
predictor is significantly affected by the outliers, we consider evaluating the subset of “presumably
normal” patients. It is a common practice in survival analysis to look at statistics within the 95%
confidence interval [39]; here, we are “borrowing” their ideas — i.e., assuming that 5% are potential
outliers and evaluating the performance of our predictors on the remaining 95% cases. Figure 3.4
illustrates the idea of eliminating the 5% of worst cases. That is, we make predictions for all patients,
but our evaluation removes the worst 5% of them (the 5% with the highest relative absolute error).

For example, assuming that we have 40 patients in our testing data. After making predictions
for each patient, we divide the testing data into the subset of under-estimated predictions (p; < t;)
versus the subset of over-estimated predictions (p; > ¢;). Then, we sort the patients within each
subset by their relative absolute error. For each subset, we will remove 40 x 0.25 = 1 patient.

How else can we evaluate a predictor? We can look at different variations of evaluation meth-

ods that we discussed in this section. In Section 3.2.2, we mentioned that the average relative
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2.5% of the worst
under-estimations, 2.5% of the worst
over-estimations
are removed

/

’R RAE=0 N
Lower Limit Upper Limit

Figure 3.4: An illustration of 95% confidence interval

absolute error is not totally fair since it exerts large penalty for smaller predictions (see Table 3.2
for examples). Therefore, we consider evaluating the results of smaller predictions separately. In
our experiment, we also estimate the average L1 error for predictions less than 12 months and the
average relative absolute error for predictions greater or equal to 12 months.

Here is the list of statistics that we consider in evaluating survival predictors.
e Primary criteria (used to comparing different models)

— RAE: the average relative absolute error

— CI: the concordance index
e Secondary criteria

— RAE®®: the average relative absolute error within the 95% confidence interval
— LI, <12: the average L1 error of predictions less than 12 months
— RAE,>12: the average relative absolute error of predictions greater than or equal to 12

months

e Other interesting measurements

CC: the correlation coefficient

Accuracy: the accuracy of classification

Sensitivity: the sensitivity of classification

Specificity: the specificity of classification

3.3 Visualization

Another evaluation method is through visualization of some plots. For instance, Figure 3.5 shows a
plot of true survival times and the predictions over a set of test cases. The blue line indicates the true
survival times and the red points are the predicted survival times. The points will lie on the survival
curve if the predictions are perfect. Our idea is that a reasonable approximation should predict a
survival time for each patient that is not too far away from the patient’s true survival time. Notice
that this plot requires the true survival times (not available for censored patients), and therefore, we

only plot the results of uncensored patients.
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Figure 3.5: A visualization of actual survival times versus estimated survival times
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Chapter 4

Methodology
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In this work, our goal is to learn a model from historical patient data that can effectively predict
survival times for novel patients. We build this model from a database of historical records of n
patients D = (X, T') where X = { X, X, ..., X, } represents the feature values of these n patients,
including personal attributes, diagnostic assessments, and blood test results, and T = [t1, ta, ..., ]
represents the actual survival times or censored times of these n patients. Then, for each new patient
with feature values X,.,,, we use the resulting model to predict a survival time p,,,, for this patient.
We consider the task of survival prediction as a regression problem and base our solution on a
combination of unsupervised and supervised learning.

Given a set of historical data D, our proposed framework of predicting survival times for in-
dividual patients is sketched in Figure 4.1. Our approach to this problem involves two phases, the
learning phase and the performance phase. The learning phase has two primary steps. In the first
step, we apply various grouping methods to find a set of partition rules R that segregates D into
k smaller populations D = U{Dy, D3, ..., D }. In the second step, we learn a set of predictors
F = {f1, f2, ..., f} from different regression methods — one for each sub-group such that pre-
dictor f; is for the sub-population D;. Then, we pick the most accurate combination of a grouping
method and a regression algorithm as our final model. Algorithm 2 summarizes the procedure of the

learning phase. Our methodologies include:

e Processing Features (Section 4.5): Medical data involves many features of the patients. We
need to appropriately represent patients’ information and identify the most characterizing fea-

tures.

e Segregating Patients (Section 4.3): Different groups of patients may have different survival
patterns. We try to segregate patients into smaller groups such that the differences between
patients within the same group are minimized and the differences between patients across

different groups are maximized.

e Eliminating Outliers (Section 4.4): Here, outliers are patients who are extremely different
from the majority of patients, so outliers often exert problematic influence on the parameters

of the learned models. We therefore attempt to eliminate them from our data.

e Handling Censoring (Section 4.1): supervised learning algorithms rely on class labels for
training a predictor, but the class label of a censored patient is not the actual survival time
of this patient but a lower bound of the actual survival time (see Section 2.2.1 for informa-
tion about censoring). In order to use supervised learning algorithms, we propose several

techniques to handle censored observations.

e Learning predictors (Section 4.2): As the relationship between features and survival time is
still not understood, we consider various regression methods to learn a predictor from existing

historical patients.
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Algorithm 2 Learning a Survival Prediction Model
Input:
D: a set of patients’ historical records
QOutput:
R: a set of partition rules that segregate patients into & sub-populations
F ={f1, fa, ..., fr}: aset of k predictors for each sub-population
: Pre-process D
: Learn a set of partition rules R
: Partition D into D = U{D1, D>, ..., D} } according to R
: for all D; in D do
D] «— D;— outliers
D}’ — Dj with treated censored data
Learn a predictor f; from D}’
: return R, F'

In the performance phase, we can predict a specific value for each unseen patient with feature
values X, by using the final model (i.e., a set of partition rules R for grouping patients into sub-
populations and a set of predictors F', one for each sub-population) we obtained from the learning
phase. We can assign this new patient into one of the sub-population in D according to the set of
partition rules R. Then, if this patient is not an outlier (i.e., this patient is not too different from the
majority of patient in the same sub-population), we can predict a survival time ppe, = f1(Xnew)-

Our procedure of the performance phase is summarized in Algorithm 3.

Algorithm 3 Using a Survival Prediction Model
Input:
Xpew: feature values of a new patient
R: a set of partition rules that segregate patients into k sub-populations
F: aset of k predictors for each sub-population
Qutput:
Prew: the predicted survival time or -1 if unpredictable
1: Pre-process X ew
2: | « sub-population assignment, according to R
3: if X,,c. 18 an outlier of D; then
4:  return -1 —unpredictable
5
6
7

: else

Prnew < fl(Xnew)
return p,eq
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Figure 4.1: A framework of survival predictions
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4.1 Censoring

Working with survival data is challenging as the data set is often incomplete. This is especially
problematic when the class labels (survival times) are missing since supervised learning algorithms
rely on these labels for training a predictor.

In survival analysis, missing survival times are called censoring. Even though the survival time
is unknown for a censored patient, the censored time of this patient provides us important infor-
mation about this censored patient — namely, a lower bound of the patient’s actual survival time.
Simply eliminating censored patients or treating the censored time as a survival time would bias our
predictors.

Alternatively, we could just eliminate the censored patients. However, the quality of a predictor
is highly correlated to the size of the data set, and survival data is usually insufficient for training an
accurate predictor. To minimize the amount of lost information, the censored observations should
not be eliminated.

In our framework, we apply several supervised learning algorithms. In order to use these algo-
rithms, we need to include the survival times as the class label for both censored and uncensored
patients. How could we utilize censored information effectively? We consider several approach to

handle censored observations including:
e Approximate event times for censored observations (Section 4.1.1)

e Consider censored observations are uncensored, but with “lower weights” than uncensored

observations (Section 4.1.2)

Recall our formulations of survival data in Table 2.1, we define ¢; to be the class label (survival
time or censored time) of the 7*" patient, ¢; to be the censored flag of the i* patient where 0 indicates

uncensored and 1 indicates censored, and ®; = {Patient;|t; > ¢;} to be the risk set at time ;.

4.1.1 Approximation of Survival Time

One approach to handle censoring is to impute a survival time #; for each censored observation. We
consider the following three techniques: (1) adding a constant to the class label of each censored
patient, (2) taking the average survival time of uncensored patients in the risk set, or (3) taking the

average survival time of all patients in the risk set.

Approximation by Adding Constant Time

A naive approach is to add an expected residual time on top of the censored time for each censored
patient, and consider this resulting observation as uncensored. For example, we can approximate
a survival time for a censored patient by adding 12 months to the patient’s censored time and then
treating this patient as uncensored. Table 4.1 shows the result of this approach on our example data

in Table 2.3.
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Patient | t; |¢; | t¢

Patient; | 1 0 |-

Patienty | 8 0 |-

Patients | 10 1 | 10+12=22

Patient, | 13 0 |-

Patients | 18 1 | 18+12=30
0

Patientg | 120

Table 4.1: An example of approximating event times by adding a constant

Approximation by Averaging over Uncensored Observations

However, approximating event times by adding a constant is not completely appropriate. Assuming
that we have a population of patients such that lots of patients die at 5 years. Imagine that we
have a patient censored at 4 years, we anticipate that this patient will survive approximately 1 year
more. Therefore, we assume that the remaining time of a censored patient is somehow related to the
survival times of the rest of the population, and we should treat each censored patient differently.
One of our approaches to approximating an event time for a censored patient is to take the
average survival time of all uncensored patients who had survived longer than this patient’s censored
time. For each censored patient Patient; who censored at time ¢;, the estimated survival time fg is

computed as the average time, over all uncensored times longer than the censored time ¢;:

. 1
VS e sy, 2 "
{ile;=0,t;>t:}

Table 4.2 is an example of approximating event time from uncensored observations for the same
data set in Table 2.3. Patients is censored at time ¢; = 10, and the survival times of Patient, and
Patients are longer than Patients, so we approximate the survival time of Patients by taking the
average survival time of Patient, and Patients. As another example, Patients is censored at time

¢; = 18, and Patientg is the only uncensored patient who survived longer than Patients; hence, the

approximated survival time for Patients is 120.

Patient | ; tY
Patient; | 1 -
Patienty | 8

Patients | 10 (13+120)/2 =66.5
Patient, | 13
Patients | 18

Patientg | 120

120/1 =120

S N =R=]Is)

Table 4.2: An example of approximating event times by averaging over uncensored patients in the
risk set
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Approximation by Averaging over All Observations

Another approach is to approximate an event time by taking the average survival time of all patients
in the risk set. This is different from the last technique in that this approach includes censored pa-
tients when computing the average survival time and the class label ¢; of a censored patient Patient;
in the risk set is replaced by the patient’s approximated survival time f}-“. For each censored patient
Patient; who censored at time ¢;, the estimated survival time f{‘ is computed as the average time,

over the survival times longer than the censored time ¢;:

“ 1 R
R t i
sl D DR R DR

{ile;=0,t;>t:} {dlej=1,t;>t:}

Table 4.3 is an example of approximating event time from both censored and uncensored obser-
vations for our example data in Table 2.3. As the same example above, Patients is censored at time
¢; = 10, but now the approximated time is the average over both censored and uncensored patients
who were still alive. In this example, Patient, , Patients, and Patients survived longer than 10, we

approximate the survival time of Patients to be the average survival time of Patient, , Patients , and

Patientg.
Patient | ¢; 4
Patient; | 1 -
Patienty | 8

Patients | 10 (13+120+120)/3 =~ 84.33
Patienty | 13
Patients | 18

Patientg | 120

120/1 = 120

N N = E=[s

Table 4.3: An example of approximating event times by averaging over the risk set

4.1.2 Weighting Censoring

Another approach on handling censored information is to consider the censored observations as un-
censored data, but with “lower weights” than the uncensored observations. The basic concept is to
consider censored observations as unreliable information, so the effect of censored data should be
slightly smaller. Here, we assign a constant weight to each censored patient. We perform experi-
ments with different constants, including 0.1, 0.2, and 0.5, and we use the experimental results to

determine the most appropriate weight for censored data.
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4.2 Regression

In our work, our objective is to find the best predictor for each individual patient. Recall our for-
mulation in Table 2.1, given a set of n training data D = (X, T) where X = {X1, X5,..., X,,}
represents feature values of these n patients, and T' = [ty, ¢, ..., ;] represents the class labels of
these n patients, our goal is to apply a learning algorithm L(.) on the data D to produce a predictor
f = L(D). For each individual patient with feature values X,..,, the predictor f returns a survival
time ppew = f(Xnew) for this patient.

Supervised learning builds regression models given a set of feature values X and class labels
T. As mentioned before, survival data suffers from the presence of censored observations, which
should be handled differently — i.e., it is problematic to simply treat them as uncensored data. We

utilize censored data in the training phase in two ways:

1. Approximate event times for censored observations (Section 4.1) and then apply regular re-

gression algorithms (will be discussed in Section 4.2.1)

2. Modify regression algorithms to accommodate censored observations (will be discussed in

Section 4.2.2)

As the relationship between features and survival time is still not understood, we consider var-
ious algorithms to learn these models from existing historical patients. We select both linear and
nonlinear regression algorithms, including the linear regression, the support vector regression, the
regression trees, and some variations of the above. In our work, we consider the following 6 learning

algorithms and we will discuss each of them in this section:

e LIN: linear regression

SVR: support vector regression

e RT: regression trees

LINc: linear regression for censored targets

SVRc: support vector regression for censored targets
o GAT: gating regression

Recall our formulation in Table 2.1, given a data set D = (X,T) of n instances each with m
features, we define X to be a n x m feature matrix, X7 to be the feature values of the J th feature,
X; to be the features values of the i*" patients, xf to be the feature value of the j th feature of the
it" patients, T' = [t1,t2, ..., tn] to be a n-dimensional vector representing the class labels of these n
patients, P = [p1, pa, ..., pn] to be a n-dimensional vector representing the predicted survival time of
these n patients, and C' = [¢y, ca, ..., ¢,,] to be a n-dimensional vector representing the censored flag

of these n patients where 0 indicates uncensored and 1 indicates censored. Also, we use (X;, X;)

to denote the dot product of two vectors X; and X;.
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4.2.1 Regression Algorithms

This section covers the basic theory of the regression algorithms we considered, including the linear
regression, the support vector regression, and the regression trees. Recall that our input data contains
censored observations (i.e., the class label of a patient is a lower bound of the patient’s actual survival
time), but these learning algorithms require class labels for training a predictor. To apply these
algorithms, we first approximate class labels for censored observations using the techniques we
discussed in Section 4.1 and then uses these revised values as labels (i.e., then threat these instances

as uncensored).

Linear Regression

The linear regression method assumes that the class labels 7' is nicely approximated as a linear
combination of the features X. Let 3% € R and 3 € R™ be the parameters of a predictor f (i.e.,
a linear function of features X) learned from the linear regression algorithm. Here, the parameters
8= [61, 82, ..., ﬂm} are coefficients for feature values of each corresponding feature in X (i.e., 5*
for the feature values of the 1°¢ feature X!, 32 for the feature values of the 2" feature X2, etc.),
and the parameter 3 is the intercept of this linear function. Given a m-dimensional feature vector
X;, the predictor f returns a prediction p; = f(X;) = 8% + (8, X,).

A typical method of estimating the parameters 3° and (3 is to minimize the residual sum of
squares (RSS) of the prediction P from T'. The RSS is calculated by:

n

RSS = " (t; —pi)® @.1)

i=1

In practice, it is more convenient to use matrix operations to express this process [21]. Recall that
X is an x m matrix, we can add a n-dimensional column vector of 1’s to X, such that X' = [1 : X
isan x (m+ 1) matrix. Then, we can combine 3° and 3 so that ' = [3°, 3, ..., 3™]. Givena
m-dimensional feature values of a patient X, the output of f can be calculated as f(X;) = (X/3),

and Equation 4.1 can be rewrite as:
RSS = (T - X'8)(T - X'B) 4.2)

To minimize the residual sum of squares, we set the derivative of Equation 4.2 equal to zero and
solve for 3’ to obtain

/6/ — (X/TX/)—IX/TT
Support Vector Regression

The support vector regression (SVR) aims to find a function f such that the estimated class label
f(X;) of a sample X; has at most € deviation from the class labels ¢; for all training instances, and
the parameters are as small as possible [55]. Here, € is a control variable that determines the margin

of acceptable error. For example, in the left figure of Figure 4.2, the greyed-out region is called the
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e-tube. Each point (the %) is an instance, and the distance between each x and the middle line is the
prediction error of that instance. The goal of SVR is to find a function f such that all x fall within

this e-tube.

—€ +£

Figure 4.2: A visualization of the support vector regression with soft margin, extracted from [55].

This optimization problem might not be feasible (i.e., there exists no f such that all instances
satisfy these constraints), and we may want to allow some errors; hence, Cortes and Vapnik intro-
duced the slack variables &; and £ to cope with infeasible constraints [8]. Figure 4.2 illustrates the
support vector regression with soft margin. In the left figure, a point x outside of the e-fube is now
acceptable but will be penalized by a loss function. The right figure shows the loss function where
the x-axis is the prediction error |¢; — p;|, and the y-axis is the amount of loss contributed by X;. If
[ti — pi] < e, the loss is 0; otherwise, the loss is the deviation of the prediction error |¢; — p;| from

€. More precisely, the slack variables are characterized by the loss function such that

g o Olftlfngtf
L t; — p; — € otherwise

6*— Oifpi—tige
" \p; —t; — € otherwise

Similar to the linear regression, we define parameters 3 = [ﬂl, B2, ..., 5’”} € R™ as the vector
of coefficients for feature values of each corresponding feature in X and 3° € R as the intercept of

the resulting predictor. Given a m-dimensional feature vector X;, the SVR estimates class label by:

F(X3) = (8, X3) + °

The goal of the SVR with soft margin is to minimize the magnitude of the parameters (3 and the
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sum of losses over all instances, which can be described as a convex optimization problem:

min 3 (5,6) + O3 (6 +€)

i=1
ti — (0, Xi) =B < e+ &
subjectto ¢ (B, X;) + 3% —t; < e+ &
&, =0
Here, C'is a single regularization parameter that controls the trade-off between the smoothness
of f and the amount of tolerable error larger than e. The SVR can be solved by its dual formulation,
which will reduce the complexity of this optimization problem. Letting c; and o be the Lagrange

multipliers, the dual optimization problem becomes:

. 1 n . n . n .
min 35 _Zl (i — o) (o — a;%)(Xi, X;) + GZ (ai +o7) — Zti(ai — o)
i,j= 4 i

Z?:l (i —af) =0

subject to
o, af €10,C)

The next step is to estimate the parameter «;, of and 3°. The optimization process of SVR are
not discussed here, as the details can be found in [53]. Smola and Scholkopf also proposed the
sequential minimal optimization algorithm for optimizing the support vector regression by using
a single threshold value [53]. Shevade et al. extends the work of Smola and Scholkopf to a more
efficient implementation [50]. In our work, we use the Shevade et al.’s method to learned the SVR
predictor. Once the parameters are solved, the predicted survival time of an individual patient with

feature value X, can be estimated by:

Pnew = f(Xnew) = Z (ai - az)<Xi7Xnew> + 60

i=1

The linear regression and the SVR that we just discussed assume that the class labels can be
approximated as a linear combination of the features. However, it is never been proven that the sur-
vival times can be described as a linear combination of the feature values. To address the potential
problem of this assumption, the SVR algorithm can be nonlinear by incorporating a kernel method;
that is, a function that maps each training instance from m-dimensional space to a higher dimen-
sional space. (There is a large literature on the kernel method; cf. [2].) In our work, we test our SVR

with the following kernel functions:

Polynomial of degree 2 : Ko(X;, X;) = (1 + (X;, X;))?

Gaussian Radial Basis : Kapp(X;, X;j) = e~ 2k=1 (X7 =X})?

The learning process of the kernelized SVR is similar to that of the original SVR, except that the
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dot-product is replaced by the kernel function.

n n n

1
min o ‘Zl (ai = o) (o — a; %) K (Xi, X;) + GZ (ai +af) — Zti(ai - a;)
i,j= i i

E?:l (i —af) =0

subject to
a;,af €[0,C)

where K (, ) is a kernel function

Once the parameter 39, ov;, and o} are solved, the predicted survival time of an individual patient

with feature value X,,.,, can be estimated by:

n

Prnew = f(Xnew) = Z (ai - a:)K(Xthew) + 50

i=1
Regression Trees

The Classification and Regression Trees (CART) is an algorithm that generates a decision tree [4],
and the regression trees is a type of CART, which generates a decision tree and then applies regres-
sion method on the decision tree for predicting continuous class labels [44].

Given a data set D, we aim to partition D into a tree of k leaf nodes (i.e., D is divided into &k
subsets {D1, D, ..., Dy }) and train a predictor using the linear regression algorithm (as discussed
in Section 4.2.1) on each subset D;. The learning process of the regression tree consists of the
following components: (1) A set of partition rules, (2) a splitting criterion, (3) a stopping criterion,
(4) alearning algorithm, and (5) a pruning criterion. We will discuss our components in this section.

Here is a brief summary of the learning steps. This learning system produces the tree node by
node; on the root of the tree, we seek a partition rule R, that splits D into Dy, _ and Dg, 4. In this
splitting process, the challenge is finding the “best” partition rule, where the goodness is evaluated
by the splitting criterion. We can repeat this process recursively on each subset of D (i.e., seek
a partition rule R to split Dg, _ and another partition rule R3 to split Dy, 1) until the stopping
criterion is met. After this recursively splitting process, the partitions will form a tree-like structure.
Algorithm 4 shows the general framework of growing a tree. Then, the pruning criterion is applied
to remove some previous defined partition rules that do not contribute to regression accuracy on
unseen data. Finally, a predictor is trained using the linear regression on the subset of data within
each corresponding node.

Figure 4.3 shows an example of splitting a tree. The input data D is divided into 5 groups
D = U{D1, Dy, D3, D4, D5} in this example. The left figure shows the partitions of the data in two
dimensional representation, and the right figure shows the tree representation. In the right figure,
each internal node is associated with a partition rule that divides the input data of that node into two
subsets. For example, at the root of the tree, the data D is divided into two subsets D_ and D by
the partition rule R;. At the end of the splitting process, the tree has 5 leaf-nodes, each represents

the corresponding subset { D1, Da, D3, Dy, Ds}.
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Algorithm 4 TREE-SPLIT (D)

Input:
D: the input data set
Output:
Tree
if stopping criterion are met then
Tree «— LEAF-NODE (D)
else
for R; < all possible partition rules R do
score; «— Eval(D, R;)
i* «— arg max{score; }
Partition D into Dy, _ and Dg,,  according to I%;,
Tree «+ INTERNAL-NODE (R)
Tree.TrueBranch <+ TREE-SPLIT(Dg,. )
Tree.FalseBranch « TREE-SPLIT(Dg,. _)
: return Tree

R A A R ol

_._.
- e

Nodey
Ry
i
Nodesy Nodes
D Ry
Dy 7y
D3
I Dy
Ry
D, Nodey Nodes Nodeg
D, D, D5

Nodes Nodeg

Dy Ds

Figure 4.3: An example of tree splitting

Here, we will describe each component of the regression trees learning mechanism:

1. Partition Rules

A partition rule R is a question of the form “Is X7 < 27 ?” where the superscript j specifies

the j*" feature of an instance X. Here, the j** feature is called the splitting feature, and 27 is

called the splitting value.

In our data sample D = (X,T), X contains a mixture of discrete and continuous features.

If X7 is a discrete variable, then the splitting value 27 can be an outcome of X7. Otherwise,

a partition rule can be a binary test based on comparing the value of X7 against a threshold

value 27.

At each node Node,, a partition rule R; : X7 < 277 divides the data D; into subsets by using
X7 at 27 — that is, D; is divided into D, — and Dpg, ; such that D, — = {(X;,t;) €
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Dylz? < 27} and D, = {(X;,t;) € Dol > 27}. Thatis, Dg, _ contains all instances
€ D; whose feature value of the jth feature < 27, and Dg, + contains all instances whose

feature value of the j*" feature > 27.

. Splitting Criterion

A splitting criterion is designed to evaluate a partition rule. Recall that the regression trees
learning system produces the tree node by node. At each node N ode;, given a training sample
D;, we seek the “best” partition rule R; to split D; into Dg, — and Dpg, . The challenge
is to find the “best” R; and determine whether it is “worthwhile” to split D;. We have some
liberties in how we define “best” and “worthwhile”. The splitting criterion is designed to

evaluate each R; at Node;.

In our work, we used the expected reduction in error introduced by Quinlan as the splitting
criterion for our regression trees algorithm [44]. The goal of this splitting criterion is to
maximize the similarity between patients within the same subset, where “similarity” of a
group is measured by the standard deviation of the class labels in that group. At each node,
the partition rule with the highest expected reduction in error among all possible partition rules
in that node is selected. More precisely, given a data set D, we first compute o, the standard
deviation of class labels 7" in D;. For each possible partition rule that splits D into Dg, _
and Dg , we then calculate o7, _ and oy, , (i.€., the standard deviation of class labels of
Dg _ and Dpg 4 respectively). The expected reduction in error, denoted by Verror(D, R),

is defined as

Verror(D,R) = op — <|D|ZR)|| X o, + |Dg+| X JTR#)

. Learning Algorithm

A learning algorithm L(.) can be applied at each node of the tree. Here, L(.) could be any
standard regression methods, and the linear regression method (Section 4.2.1) is used in our
work. Given a training data D; and a learning algorithm L(.) at each node Node; of the tree, a
linear predictor f; = L(D;) is constructed. Given a new patient with feature values X, ¢y, this
patient is assigned to one of the leaf nodes according to the set of partition rules R. Assuming
that this patient is assigned to Node;, the predicted survival time p,,.,, for this patient is the

output of the corresponding predictor f;(X e, ) in Node;.

How good is our linear model? We are often interested in the expected prediction error of a
predictor f on unseen data. Given a training set Dy,qining and a testing set Dyegting, a typical
way to evaluate the performance of a predictor f = L(Dyrqining) i8 to calculate the average
L1 error (Section 3.2), which measures the average magnitude of difference between actual
class label ¢; and estimated class label p;. Quinlan states that the average LI error usually

underestimates the expected prediction error of f when the number of instances in Dyyaining
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is small and the number of parameters in f is relatively large [44]. One way to address this
potential problem is to penalize linear models with large number of parameters constructed
from small training samples. Letting n be the number of instances in Dyyqining and v be the

number of parameters in f, assuming that all models are restricted to n > v, we multiply

the average L1 error by ”fz Given a testing set Dycg1ing, the expected prediction error of a

n

predictor f is evaluated by

[Diestingl
n+v 1
Eval s Diesting) = e h
RT(f test g) n—uv ‘Dtesting‘ ; | ! ‘ ( )

Imagine two linear models f; and f, are constructed from the same number of training sam-
ples n such that fi has vy parameters and f, has v, parameters. If v; > vq, then f; will be

penalized more (by Z—J_“;) than fo, which indicates that f5 is a better predictor.

4. Pruning Criterion
The pruning criterion is designed to evaluate a partition. The pruning process removes splits
from the initial tree that does not contribute to better regression results. This is accomplished

by comparing the performance of the linear model at each node.

In more detail, each node Node; is associated with a data set D;, and we want to measure
the similarity of D; in Node;. A 3-fold cross-validation (Section 3.1) is applied to evaluate
the performance of the linear regression learner L(.) (Section 4.2.1) on the data set D;, and
the quality of L(.) on D, is measured by Errcy (L, D;) — i.e., the average cross-validation
error. A k-fold cross-validation learns k linear predictors, and the performance of each pre-
dictor f; on each hold out set Dj po1dous in the cross-validation process is calculated using
Equation 4.3, the expected prediction error Evalrr(fi, Di hotdout)- The pruning step takes
the bottom-up approach, in which the process starts from the bottommost leaf and works to-
ward to the root. If the average CV error of an internal node is smaller than the sum of the
average CV errors of its descendent nodes (i.e., the quality of L(.) is better before splitting),
then this split will be pruned away and this internal node is turned into a leaf node. That

is, if Errey (L, Dy) < (‘Dlgl'l_lErrcv(L,DRl,,) T ‘D‘Igl'l”Errcv(L,DRth), the split at

Node; will be removed.

Figure 4.4 shows an example of the regression trees model. This example regression tree consists
of a set of 4 partition rules R = { Ry, Ra, R3, R4} and a set of 5 predictors F' = { f1, fa, f3, f4, f5}-
The partition rules R divide the data D into 5 regions { Dy, Do, D3, D4, D5}. Each region D; in
D is associated with a corresponding predictor f; in F' which is learned using the linear regression

algorithm on the data D;.
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Figure 4.4: An example of using the regression trees

4.2.2 Regression Algorithms for Censored data

Survival data suffers from the presence of censored observations, but most supervised learning meth-
ods require class labels for learning a predictor. Simply eliminate censored observations from our
data set or treat them as uncensored data will bias the resulting predictors. The previous section
(Section 4.2.1) discusses our approach of imputing a survival time for each censored patient before
learning a predictor. In this section, we will discuss our approach of modifying the linear regression

and the support vector regression to utilize censored data.

Linear Regression for Censored Targets

In Section 4.2.1, we discussed the linear regression method, which used predictors that estimate
the class label p; = f(X;) = B° + (B3, X;), based on parameters 3° and 3 that are estimated
by minimizing the residual sum of squared error RSS = """ | (t; — p;)?. Buckley and James
introduce a method to train a linear predictor that allows the class labels to be unspecified — by
eliminating the penalty on overestimating the prediction for censored data during training phase [5].

That is, the parameters 3° and 3 are estimated by minimizing

RSSBuckley == Z (tz - pz)2

{il(ei=0)or(c1=1,pi<t:)}
We also show how to express the RSS using matrix format, such that RSS = (T — X'3")T(T —
X'f") (Equation 4.2), which meant the parameters 3’ = [3°, 8%, ..., 3] can be solved by 3’ =
(X'TX")"1X'TT. Orbe et al. [37] introduce a method of learning the parameters (3’ by weighted
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RSS. Their work assumes that there exist a linear relationship between the feature values X and
the logarithm of class labels In(7") and tries to minimize the weighted residual sum of squares
RSSore = W(In(T) — X'8)T (In(T) — X'/3’") where W is a n x n diagonal matrix formed with

the weights of each instance. The parameter 3’ can be solved by:
B =XTWX) ' XTW In(T)

In our work, we incorporate the ideas of Buckley and James and Orbe et al. on learning a pre-
dictor with censored data. Recall that P = [py, pa, ..., p,] denotes the predicted survival times such
that p; = X/f’and C = [c1, ¢, ..., ¢, denotes the censored flag where the subscript ¢ specifies the

it" patient. We employ a n x n diagonal matrix W such that

0, ifc; =1and p; > ¢;
Wi = .
1, otherwise

That is, if the prediction for a censored patient is longer than the patient’s censored time, we

consider this prediction to be correct. The parameters 3’ can be estimated by
6/ _ (X/TWX/)le/TWY
Support Vector Regression for Censored Targets

In Section 4.2.1, we discuss the support vector regression, which aims to minimize the training error
controlled by the error margin parameter € and the regularization parameter C'. The SVR has proven
to be a robust and powerful algorithm in various applications. However, the conventional SVR cannot
handle the difference between censored and uncensored observations. Khan and Zubek introduce
a variation of the SVR, the support vector regression for censored targets (SVRc) to account this
problem [28].

First, the parameters € and C' for censored data and uncensored data are separated. Recall that
€ defines the acceptable margin of error, and C' controls the amount of loss in the SVR. Khan and
Zubek asymmetrically modify the loss function by introducing new parameters to replace € and C'
in the original SVR. The SVRc uses subscript n to denote uncensored data and subscript ¢ to denote
censored data. For example, ¢,, defines the acceptable margin of error for uncensored data, and €.
defines the acceptable margin for censored data.

Secondly, the SVRc introduces separated parameters for underestimation and overestimation and
uses the superscript * to indicate overestimation. In case of censored data, € is replaced by € and
€. where € defines the acceptable margin when prediction is greater than the actual survival time,
and €. defines the acceptable margin when prediction is less than the actual survival time. Similarly,
C is replaced by C and C, where C controls the penalty of overestimation and C,. controls the
penalty of underestimation.

The censored observations are handled by setting C* to be smaller than C. and €} to be larger

than €., so the penalty is smaller when the prediction is longer than the censored time. Figure 4.5
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illustrates the modifications and parameters in the loss function of SVRec.

Loss/Penalty

3
—e— | el

Figure 4.5: A visualization of the loss function of the SVRc (extracted from [28])

The objective function has become:

n

mjn SU8.5)+ 3 (it + CrE)
=1

ti— (8. Xs) — 8" <e+&
subjectto ¢ (8, X;) +3° —t; < ef + &
&,& =20
Ci=c¢Ce+ (1—¢)Cp
Cr=c¢Cl+(1—¢)C
€ = ciec+ (1 —¢;)en

e =cier + (1 —¢)el

where

4.2.3 Gating Regression

Since the relationship between features and survival time is still not well understood, we consider
learning several predictors from existing historical patients and selecting the best algorithm for our
task of survival prediction. Here, we assume that some learning algorithms are better for some input
data but not the others.

Therefore, the gating regression approach will learn a set of candidate predictors from a set
of learning algorithms L (including all learning algorithms that we described in the previous two
sections) and automatically select the “best” algorithm among all candidate algorithms in L for a
given data set.

First of all, we needs to define an evaluation criterion to determine the notion of the “best”
regressor. Given a data set Dy qining and a set of learning algorithm L, we perform experiments
with a 3-folds cross-validation (Section 3.1) on each learning algorithm L;(.) in L, and use the

average cross validation error Errcy (Li, Diraining) to rank each L;(.). Since there is no single
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best way to evaluate survival predictors on the hold-out set, we also try different measurements in
our experiments. The candidate evaluation methods include average LI error, average L2 error,
average relative absolute error, and correlation coefficient (see Section 3.2 for details on these error
functions).

Figure 4.6 illustrates the process of the gating regression. Given an input data set Dy,.qipning, and
a set of candidate learning algorithms L = {L1(.), L2(.), ..., L5(.) }, the gating regression finds the

learning algorithm with the lowest average CV error and returns a predictor fpes: constructed from

that algorithm. Algorithm 5 shows the pseudo-code of the gating regression

lraining’
L
6
training training training training training
L wée L wée L %1‘2 Lo :‘2 L o :‘2
22 220 $o¢ 29 29
> S ¥ ¥ ¥
ErrC V(Ll’Dtrainin EVVC V( LZ’ Dtruininz ErrC V(L3’ Dtmin[ng ErrC V(L4’Dlrain[)zé) ErrC V(L5’Dzrain[né)
i*=argmin EWCV(Ll’Dmm-n /
fl;est:Li*(Drraining)

v
/,

best

Figure 4.6: The gating regression algorithm
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Algorithm 5 The gating regression

Input:
Dyygining: data set
L ={L:(.), L2(.), ..., Lp(.) }: a set of p learning algorithms
k: the number k of folds in a k-fold cross-validation
Output:
frest: the best predictor

1: Divide Dtraining into k folds Dtraininy = U{Dl, Do, ..., Dk}
2: for all L;(.) in L do

3: forall D; in Dyygining do

4: Dtesting,j — Dj

RE Dtraining,j — Dtraining - Dj

6: f — Li(Dtraining,j)

7: score; j < eval(f, Diesting,j)

1 k

8: Errcv (Li7 Dtraim'ng) % Zj:l SCOT €4 5
9: ¢* «— argmin; Errcv (Li, Dirgining)
10: fbest — Lz* (Dtraining)
11: return fpeq
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4.3 Grouping

One of the challenges in survival prediction is that patients are heterogeneous, with different survival
patterns for different subgroups of patients. For example, the variable cigarette smoking may be an
important factor for lung cancer patient but perhaps not as critical as for pancreas cancer patients.
In order to overcome this issue of different dependency relations, we attempt to learn a predictor
for each risk group. Unfortunately, it is not known which group of patients share the same survival
pattern. Therefore, in this thesis, a major task is to design an appropriate method that can effectively
“group” patients — i.e., segregate patients with different survival distributions.

Givenadataset D = (X, T'), where X is the feature matrix and 7' is the vector of class labels, we
define (in Table 2.1) X7 represents the feature values of the j* feature over patients, X; represents
the set of feature values of the i** patient, :1:3 represents the feature value of the ;' feature of the
it" patient, and ¢; represents the class label of the i*" patient. The goal of segregating patients is to
partition D into k subsets { D1, Da, ..., Dy} such that the difference between patients in the same
subset is minimized, and also the difference between patients across different subsets are maximized.
This section summarizes our methods on grouping D into subcategories. We consider two types of

grouping mechanisms:

e The Classification and Regression Trees (CART), which is dependent to the class labels, will

be discussed in Section 4.3.1
o The clustering, which is independent to the class labels, will be discussed in Section 4.3.2

Recall that some patients do not have their event time (i.e., for a censored patient, the class
label is a lower bound on the patient’s actual survival time), and these censored data may bias the
result of grouping. In order to see if the presence of censored observations will affect the grouping
mechanism, we have chosen two approaches, where one requires class labels (CART) and the other

does not (clustering).

4.3.1 Classification and Regression Tree

The Classification and Regression Trees (CART) is an algorithm that generates a decision tree [4].
Given a data set D, we aim to partition D into a tree of k leaf nodes (i.e., D is divided into k subsets
{D1, Da, ..., Di}).

In Section 4.2.1, we discussed the regression trees algorithm, a type of CART that is designed
for predicting continuous class labels. Similar to the learning process of the regression trees, the
learning process of the CART requires (1) a set of partition rules, (2) a splitting criterion, (3) a
stopping criterion, and (4) a pruning criterion. The CART is different with the regression tree in
that the CART is a generalization of the regression trees and the CART does not necessarily apply any
regression models. Here, our goal of using CART is to partition D into & subsets {D1, D, ..., Dy},

and our target is to obtain the set of partition rules R to partition D.
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Splitting Criterion

Recall that the CART recursively splits the data node by node. At each node Node;, D is divided
into two subsets Dg, _ and Dg, 4 by the best partition rule 2; among all possible partition rules
in that node. (In fact, we can partition D into more than two subsets at each node, but we consider
only binary split in our work.) The challenge is to find the “best” I; and determine whether it is
“worthwhile” to split D;. We have some liberties in how we define “best” and “worthwhile”. The
splitting criterion is designed to evaluate each R; at Node;. In our work, we test two types of

splitting criteria, including the log-rank statistics and the gain-ratio.

o Log-rank statistics
As described in Section 2.3, the Log-rank test is a hypothesis test in survival analysis method
that can quantify the difference between two risk groups. Given two populations, the null
hypothesis of Log-rank test is that these two groups are drawn from a common distribution.
A p-value close to 1 indicates that the hypothesis is likely to be true, whereas a p-value close

to 0 indicates that the hypothesis is unlikely (i.e., these two risk groups are dissimilar).

Radespiel-Troger et al. [46] use several types of measurements from the log-rank statistic as
splitting criteria for their decision trees learning algorithm. In our work, we applied their
idea and use the p-value from the log-rank test test as our splitting criterion for segregating
patients. More precisely, given data D at each node, there exists a set of different partition
rules R (i.e., different pairs of splitting attribute X7 and splitting value 27). Each R; in R
divides D into Dg, _ and Dg, 4, and then, each R; is evaluated by the p-value between the
associated pair of Dg, _ and Dpg, . Their algorithm then selects the I?; with the smallest

p-value (i.e., Dr, — and Dpg, 1 are most heterogeneous) among all .

Recall that the p-value of a prognostic factor less than 0.05 is considered to be significant.
Therefore, we terminate the splitting process when the p-values of all possible partition rules
are larger than 0.05, which indicates that no partition rule can effectively divide this population

into smaller homogeneous groups.

Consider our imaginary survival data that we introduced in Table 2.2 and Table 2.3 and sup-
pose that we group patients use the CART with log-rank statistic as the splitting criterion on
this data, Figure 4.7 shows an example result of segregation. The first table shows partial
estimated p-values from the first split. When we group patients D by their X??, such that
patients in group D_ have their XP° < 3.5 and patients in another group D, have their
XP% > 3.5, the p-value between these two sub-groups is the smallest (0.02) among all splits,
which indicates that these two sub-populations are most diverse. Assuming that we repeat
the same splitting process for its descendant nodes (i.e., each internal node carries out similar
tasks to find the best partition rule with the smallest p-value), in this example, these patients

are segregated into 4 disjoint subsets.
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X Z P-value
Xegender 0.5 | 0.35
Xage 45 | 0.89
Jelung 0.5 | 0.22
Xpanereas | ()5 | (.13
Xps 1.5 | 0.85
Xps 2.5 0.35
Xps 3.5 | 0.02

Figure 4.7: An example of using the log-rank statistics as the splitting criterion

e Gain-ratio
Gain-ratio criterion is based on the concept of entropy in information theory [45]. Here,
we want to use the gain-ratio to evaluate each possible partition rule. Given a data set of n
patients D, we define T = [t1, ta, ..., t,,] where each t; is the class label of the ith patient. In
information theory, the entropy of D measures the average amount of information needed to
identify the class label of an instance. Let Pr(t;) be the probability density of a class label ¢;,

the entropy is calculated by:

Entropy(D) = — i [Pr(t;) x logg (Pr(t:))]
i=1

In order to obtain entropy of a set of observations D, we need to know the probability of
a class label ¢; among T'. The class labels T is a continuous variable, and the probability
of T' cannot be easily calculated. Hence, we applied the Gaussian-kernel-density estimator
to approximate the probability density of 1" [43]. Letting h be a control parameter of the
estimator where h = 1 or h = 2 are common choices. (There are many literature discussing
the parameter h, cf. [43], so the detail is not discussed here.) The probability density of the
i" class label t; can be approximated by:

n

1
— V2mh?

Jj=

2
e~z (ti—ts)

PT(ti) =

S|

Consider D is partitioned into two subsets {Dg _, Dr + } by a partition rule R, the expected
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information needed can be calculated as the weighted sum over these two subsets:

D
x Entropy(Dr,—) + |g’+| x Entropy(Dg +)

|Dg,|
D

Entropyp(D) =

The information gain measures the information that we earn by partitioning D according to a

partition rule R.

Information Gain(D, R) = Entropy(D) — Entropyr(D)

We can use the information gain as our splitting criterion by taking the splitting rule that has
the maximum information gain. However, this measurement tends to be biased when there
are many distinct outcomes, which is often the case in medical data (e.g., consider patients’
identification number, weights, blood test results, or any feature that involves continuous mea-
surement or unique identifiers) For example, patients’ identification numbers are unique in the
data set. We can split on this attributes by grouping one patient into one subset and all other
patients into the other subset. In this case, Entropyr(D) = 0, and Information Gain(D, R)
is large. Nevertheless, using patients’ id numbers is unlikely to be a useful split. Quinlan sug-
gests that we normalize the information gain by the split information, which represents the

information generated by dividing D into {D_, D } [45].

- Dp, - Dgr Dp, D,
st fo (D, ) = D | Xlog?( D ) - |1F3|+| “Og?(I |1R)+|)

Finally, the gain ratio of the partition rule R is the normalized information gain:

Information Gain(D, R)
Split Info(D, R)

Gain Ratio (D, R) =

Pruning Criterion

Recall that the pruning process removes splits from the initial tree that does not contribute to better
classification or regression results (Section 4.2.1). This is accomplished by comparing the expected
prediction error of the unseen data that will be experienced at each node.

Similar to the pruning process of the regression trees (Section 4.2.1), this process takes a bottom-
up approach, in which the process starts from the bottommost leaf and works toward to the root. At
each Node;, we incorporate a 3-fold cross-validation to obtain the average cross-validation error
using an algorithm L(.) on the data D;, denoted by Errcy (L, D;) (see Algorithm 1 for details).
Here, L(.) can be any regression algorithms, and the linear regression (Section 4.2.1) is applied in
our work.

The cross-validation error of a predictor on each hold-out set is evaluated by the expected pre-
diction error. There are many ways to calculate the expected prediction error, and there is no single
best measurement for the pruning process. In our work, we tested several of them in our experi-
ments, including the average LI error, the average L2 error, and the average relative absolute error

(Section 3.2).
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We also make some minor modification on each of the conventional measurement when censored
observations are encountered. For a censored patient, since we only know a lower bound of this
patient’s survival time, we do not add any penalty to the error function if the predicted survival time
is longer than the patient’s censored time. Given a data sample D with n patients, we define that ¢;
to be the actual survival time of the i*” patient, p; to be the predicted survival time of the i*”* patient,
¢; to be the censored flag of the i*” patient where 0 indicates uncensored and 1 indicates censored.
The average L1 erroris defined as 2 37" | |p; — t;, and the modified average L1 error is calculated

by:

1
i — L i — Ui
il(c; = 0) o (s = Land pr < £)]] > bi-til+ > It

{i|c;=0} {i|lc;=1,pi<t;}
By using the same idea (no penalty for a censored data if p; > t;), the average L2 error and the
average relative absolute error can be modified similarly. Below is a list of our candidate functions

for expected prediction error.
e average LI error
e average L2 error
e average relative absolute error
e modified average LI error
e modified average L2 error
e modified average relative absolute error

Table 4.4 shows the result of using these measurements on our example data and predictions
(Table 2.3). Here, Patient, is a censored patient whose censored time is 18 and predicted survival
time is 27. Therefore, this patient contributes no error to the modified L1 error, the modified L2
error, and the modified relative absolute error. The last row of Table 4.4 shows the average LI
error, the average L2 error, the average RAE, the modified average LI error, the modified average

L2 error, and the modified average RAE.

Patient; | ¢; Ci | pi LI L2 RAE | modified L1 | modified L2 | modified RAE
Patienty | 1 0|10 |9 81 090 | 9 81 0.90
Patient; | 8 013 5 25 1.67 | 5 25 1.67
Patients | 10 1 |5 5 25 1.00 | 5 25 1.00
Patients | 13 |0 | 15 |2 4 0.13 | 2 4 0.13
Patient, | 18 1127 |9 81 1.00 | O 0 0.00
Patient; | 120 | 0 | 125 | 5 25 0.04 | 5 25 0.04
Average | - - |- 5.83 | 627 | 0.79 | 4.33 26.67 0.62

Table 4.4: An example of using candidate error functions
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4.3.2 Clustering

Clustering is an unsupervised learning algorithm, which is a common technique for grouping similar
objects into smaller subsets, where each subset is called a “cluster”. The goal of clustering is to
partition data such that instances within a cluster are closer to one another and instances across
clusters are far from each other. Several methods for clustering have been proposed, and we consider

the expectation-maximization clustering algorithm.

Expectation-Maximization

Expectation-Maximization (EM) method is a statistical method of maximum likelihood estima-
tion [13]. Here, we use EM to compute the probability density modelled as a mixture of multiple
Gaussian distributions, which is accomplished by finding parameters to optimize the log-likelihood
of this mixture model.

Let X be an x m matrix that represents a set of n data point in a m-dimensional space where X7
indicates the j th dimension of X and X indicates the it point of X, then the multivariate Gaussian
density function of X is calculated by:

Pr(Xoy %) = (- XeE )
[(2m)™]|Z]

where p is the m-dimensional mean vector of X
> is the m X m covariance matrix of X

|| is the determinant of ¥

Instead of modelling X using one multivariate Gaussian distribution, assuming that we can fit
X as a mixture of k£ multivariate Gaussian distributions, the probability density of X is a weighted
mixture of these k distributions:
k
Pr(X;;0) =Y WiPr(X; ju; %)
=1
where 6 is a set of parameters,

W is the weight of the [*" Gaussian distribution
including { i is the m-dimensional mean vector of the [** Gaussian distribution
¥, is the m x m covariance matrix of the I*" Gaussian distribution

Figure 4.8 is an example of a uni-variate mixture model. The left figure shows the histogram of
data points, which does not follow a single Gaussian distribution (indicated by the blue curve). In
the right figure, we can see that the data seems to fit better with two separate Gaussian distributions.

The quality of a mixture model is measured by the likelihood function — i.e., the probability

that the points X is generated from k£ Gaussian distributions:

n

L(9) = [[ Pr(x::0)

i=1

60



10
10

0.6

0.0

Figure 4.8: An example of a mixture model

In practice, it is more convenient to compute the logarithm of the likelihood function, log-

likelihood logL(#), calculated as:

logL(0) = > log(Pr(X;;0)) (4.4)

i=1

As logarithmic is monotonic, the parameter § that maximizes logL(#) will also maximize L(6).

EM Clustering

Given a data set D of n patients, each with m features (recall our formulation in Table 2.1), we
define X as a n x m feature matrix in D and X as the feature values of the ‘" patients in D, we
can consider X = {X1, X, ..., X,,} to be n data points in m-dimensional space. The goal of using
EM clustering is to group these n data points into k clusters (i.e., partition D into k subsets such

that D = UD;), where each cluster Cluster; is a multivariate Gaussian distribution:
Cluster; ~ N(u, %) forl € 1,2, ..., k

EM clustering optimizes the log-likelihood of this mixture model (Equation 4.4) and estimates the
mean ; and variance o; of each cluster Cluster;.

Figure 4.9 illustrates the concept of a mixture model. The left figure shows the data points in
2-dimensional space. The right figure shows 4 clusters where each red point indicate the centre of a

cluster. Each cluster Cluster; is a Gaussian distribution with mean y; and variance ¥;.

1. Determining the number of clusters &
In our work, EM is used to determine the number of clusters & for the data D. EM employes
a 5-fold cross-validation to maximize the log-likelihood. At each fold, we starts with a single
cluster and continues adding one cluster at a time until the log-likelihood of the mixture model

of the hold-out set decreases.
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Figure 4.9: An illustration of EM Clustering extracted from [31]

2. Calculating the probability of belonging to each cluster
Given a mixture model of k clusters {Clustery, Clusters, ..., Clustery } and a set of n data
points X = {X;, Xo, ..., X,,} in m-dimensional space where X; denotes the values of the
ith point in X, the result of this mixture model is a set of k¥ m-dimensional vectors of means,
k m X m covariance matrices, and k scalar weights for these k clusters. From this result
of the mixture model, we can then calculate a set of k£ probabilities for each point X;, each
measuring the likelihood that X; belongs to the corresponding cluster. More precisely, for
each X, the probability density under each cluster Cluster; is estimated by the Gaussian

density function of that cluster:

Pr(X; € Clustery) = Pr(X;; u1, 21)

Pr(X; € Clustery) = Pr(X;; ug, Xo)

Pr(X; € Clustery) = Pr(X;; pu, Xk)

3. Assigning Cluster

Finally, we can choose the most likely cluster assignment
g; = arg; max Pr(X; € Cluster;)
for each X; —i.e., g; = [ where Pr(X; € Cluster;) is the highest among k clusters).

Given a data set D of n patients each with m features where X is a n x m feature matrix,
X7 represents the feature values of the j*" feature, and X; represents the feature values of the

it" patient in D, EM clustering is applied to group patients with “similar” feature values — i.e.,
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patients whose feature values are similar have higher probability to be in the same cluster. Fig-
ure 4.10 shows an example of grouping patients using a EM mixture model for clustering. For ease
of visualization, assuming that we only have 2 features for each patient: age and albumin — i.e.,
X = (X9e, xalbuminy We use EM to find 4 clusters Clusterpyrpie, Clusteryeq, Cluster green,
and Clusteryqck (as indicated by different colours in the figure). Next, we use EM to learn a mix-
ture model of 4 multivariate Gaussian distributions, and then, we can use the result of this mixture
model to estimate the likelihood that a patient belonging to each of these 4 clusters. For patient
Patient; with features X, the probability estimates are: Pr(X, € Clusterpy pie) = 0.43, Pr(X,; €
Clusteryeq) = 0.30, Pr(X; € Clusteryqck) = 0.17, and Pr(X; € Clustergreen) = 0.10. In

this case, Patient; is more likely to be similar to patients in Clusteryyrpie.

30 T pr(X; c Cluster,.q) = 0.30 . “
L : Pr(X; € Clusteryreen) =0.10

4

usterpacr) =0.17
- > *
L) + @ - .

-
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Figure 4.10: An example of EM Clustering
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4.4 Outliers

Similar to many other machine learning problems, a challenge in this work is the presence of outliers
— i.e., patients who are extremely different from the rest of the population. Given a data set D =
(X, T) where X; denotes the feature values of i‘" patients and X7 denotes the feature values of the
j" feature, an outlier is a patient whose feature values X; are extremely different from the majority
of X. For example, consider our imaginary data in Table 2.3, assuming that only two features,
Xa9¢ and X @bumin are gyajlable, the feature values of Patients is much different with the feature
values of other 5 patients. Figure 4.11 shows a 2-dimensional visualization of this example. We
can consider the feature set of n patients each with m features, X = { Xy, X, ...., X, }, are n data
points in a m-dimensional space. (Here, we show only X %9¢ and X “/®“™" from the data set.) If we
plot X ®9¢ on the x-axis and X ®/?“™i" on the y-axis, we can see that Patients is isolated from the

rest of patients.

Albumin

Figure 4.11: A visualization of an outlier in a 2-dimensional space

In this m-dimensional space, an outlier can be characterized as a point far away from the centre
of X. Therefore, we try to detect outliers by measuring the distance between each data point X;
and the centre of X. In Figure 4.11, the red rhombus denotes the centre of X. We can see that
the distance between Patients and the centre is relatively longer than the distance between any other
patient and the centre.

Outliers often exert problematic influence on the parameters and so should be excluded before
training the model. For example, if we train a predictor f using the linear regression (Section 4.2.1)
on X, we get parameters 8 = [3°, 39¢, gelbumin] — [983 5865, —1.8807, —4.3604]. Assuming
that we eliminate Patients from our data and train another predictor f’, we get another parameters
4 =[308.1640, —10.7157, 15.7457]. How well do f and f’ perform? Table 4.5 shows the result of
predictions on the same training data. After eliminating Patients, the average relative absolute error

over the remaining patients drops from 4.14 to 2.98.
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X age Xalbumin t; f(Xz) f/(Xz) RAE(/B) RAE(ﬂ/)
Patienty | 80 335 1 0.50 0.50 1.00 1.00
Patient; | 70 30.7 8 18.07 | 41.46 0.56 0.81
Patienty | 65 25.2 10 5146 | 843 0.81 0.19
Patient, | 65 274 18 41.86 | 43.08 0.57 0.58
Patient; | 60 26.7 120 | 54.31 | 85.63 1.21 0.40
Average 4.14 2.98

Table 4.5: An example of experimental results with and without outliers

Detecting outliers in high-dimensional space is not trivial since one cannot rely on 2-dimensional
plots nor any other visualization methods. The complexity is magnified when there are multiple
outliers present because it will be harder to define “outliers” versus “majority”. In our work, we
attempt to eliminate outliers from our training and testing set, and we will discuss our approach
of applying the Mahalanobis distance and the minimum covariance determinant estimator in this

section.

4.4.1 Mahalanobis Distance

Our approach to handling outliers is to eliminate instances (patients) that are too far away from
the centre (average) of the data. We measure the distance between a point and the centre using
some distance-based methods such as the Euclidean distance (ED) and the Mahalanobis distance
(MD) [34]. Both methods measure the distance between two points, but the MD differs from the
ED in that it takes into account the correlations of the data. Given a set of n data points X =
{X1, X5, ..., X,,} in a m-dimensional space, the Euclidean distance and the Mahalanobis distance

of each point X to the centre of X, p1x (the m-dimensional mean vector of X), is calculated by:

EDx(X;) = \/(Xi — px)(Xi — px)T

MDx (X;) = \/(Xv: — p1x)S% (X — px)T

where Y x is a m X m covariance matrix of X

Using the same example (X #9¢ and X *»™" from Table 2.3), we can calculate:
e The arithmetic mean of X : px = [ p§® pgtemin | =1 60.8333 32.3000 |

e The covariance matrix of X : Xy = [ 354.1667  —136.4000 ]

—136.4000  86.7560

e The inverse covariance matrix of X : X' = [ 0.00720.0113 }

0.0113 0.0292

Consider Patienty whose Xo = [ Xg?¢ Xg'»min | = [ 80 33.5 ], we can calculate the

distance between X and the centre of X.
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MDx(Xo) = /(X0 — nx) 25 (Xo — px)T

0.0072 0.0113 ][ 80— 60.8333
- \/[ 80608333 33.5—32.3000 | | (4113 0.0202 } { 33.5 — 32.3000

= 1.7858

Table 4.6 shows the Mahalanobis distance of each patient from the data set in Table 2.3. Recall
that Patient; was an obvious outlier from 2-dimensional visualization (Figure 4.11); here, the result

of MD verifies that Patients is furthermost point from the centre.

xage | xalbumin MDx (Xz)
Patienty, | 80 335 1.7858
Patient; | 70 30.7 0.5883
Patienty | 65 25.2 0.9651
Patients | 25 50.3 2.0349
Patienty | 65 27.4 0.6052
Patient; | 60 26.7 1.0131

Table 4.6: An example of using the Mahalanobis estimator

4.4.2 Minimum Covariance Determinant Estimator

However, conventional Mahalanobis estimator suffers from masking effect, in which the mean and
covariance are affected by the outliers. Imagine a data set consisting of a small cluster and an
outlier that is far away from any other points; here, the outlier will drag the centre of the crowd
in its direction. As a result, the outlier does not necessarily to have a large MD, and a non-outlier
might have a large MD. For example, in Table 4.6, the MD of Patienty is relatively large and may be
considered as an outlier from this statistical result. The problem is that Patients drags the centre of
X in its direction (see the centre of X in Figure 4.11), so that Patient appears to be far away from
the centre. However, if Patients is excluded from the data set, Figure 4.12 shows that the centre of
the data (the red diamond) is in the middle of the five remaining points, and Patienty is not far from
the centre.

Rousseeuw and van Driessen proposed a robust method, the minimum covariance determinant
(MCD) estimator, to replace the formal Mahalanobis estimator [47]. Given a set of n data points
X = {Xy, X, ..., X,,}, recall that the Mahalanobis estimator omeasures the distance between a
data point X; and the centre of X. A key difference between these two estimators is that the MCD
estimator considers the centre of a subset of X. More precisely, the MCD estimator finds a subset

of h data points H C X and measures the distance between a data point X; and the centre of H.
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Albumin

Figure 4.12: A visualization of an outlier in a 2-dimensional space

This robust Mahalanobis distance of each point X is then calculated by:

MDpg(X;) = \/(Xi — 1) Sy (X — )T

g is a m-dimensional mean vector of H
where

Y g is am X m covariance matrix of H

Consider our example again and assuming that we can find a subset [ such that H = X — X3,

e The arithmetic mean of H : gy = [ 68.0000 28.7000 |

e The covariance matrix of H : Xy = { 575000 23.0000 ]

23.0000 11.2450

0.0956 —0.1956 }

e The inverse covariance matrix of H : E;{l = { 01956  0.4890

The robust Mahalanobis distance of each data point is shown in Table 4.7. The distance between
Patients and the centre is extremely large (27.7185), while the distances between rest of the data
points to the centre are relatively smaller ( < 2). The result supports our assumption that the MCD

estimator is more effective in differentiating outliers and non-outliers.

X age Xalbumln MDH (X’L)
Patienty | 80 335 1.5825
Patient; | 70 30.7 0.8796
Patienty | 65 25.2 1.6563
Patients | 25 50.3 27.7185
Patienty | 65 27.4 0.4018
Patient; | 60 26.7 1.3480

Table 4.7: An example of using the minimum covariance determinant estimator

The “optimal” subset H C X of size h is the set of data points whose covariance matrix has
the smallest determinant among all possible subsets of size h. This “optimal” H is difficult to com-

pute since it involves evaluating all (Z) subsets of size h. Therefore, Rousseeuw and van Driessen
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proposed an efficient method to approximate H, which starts from an initial subset and gradually
“improves” it (i.e., iteratively derives a new subset with a smaller determinant of covariance ma-
trix) [47].

Here is a brief description on the process of deriving a new subset H,,.,, from a subset H,;4.
Suppose we are given a set of data points X = {X;, Xo, ..., X;,} and the subset H,;4 C X, and we
want to compute a subset of h data points H,.,, C X such that the determinant of the covariance

matrix of H,.,, is smaller than the determinant of the covariance matrix of H;4.

1. Calculate mean and the covariance matrix of H,;q4
WH,,, = the m-dimensional mean vector of Hy;q

YH,,, = the m x m covariance matrix of H,jq

2. Calculate the Mahalanobis distance between each X; to the centre of H,;4

MDDy, (X:) = £/ (Xs = ) S (X = p) fori = 1,2,

3. Sort all X; by their Mahalanobis distance M Dy, ,(X;)
Let 7 = (1, 72, ..., T, ) be the permutation of sorting such that

MDHOM(WI) S MDH (71'2) S S MDH,,Ld(Wn)-

old

4. Let Hyep = {m1, 72, oy T}

(i.e., the set of the first h data points with the smallest Mahalanobis distance).

We can repeat the same process until H,;q and H,.,, converge. (det(Xp,..) < det(Zm,,,)
with equality if and only if pp, .., = pta,,, and Xg, .. = XH,,,- )

Rousseeuw and van Driessen also suggests a method to produce an initial subset H;. Let H; be
a set of j randomly-selected data points in X where j < h. Then H; is extended by sequentially
adding a randomly-selected observation, one at a time, until the determinant of the covariance matrix
of H; is strictly greater than 0.

Given a feature matrix X, Algorithm 6 shows the pseudocode for computing the subset I of the

MCD estimator:
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Algorithm 6 Subset H Approximation

Input: X: n x m feature matrix
Output: H: h x m feature matrix (subset of the rows of X)

k=1

2: Hj, « {j randomly-selected data points in X }

3: repeat

4. Hy <« Hyj U{ arandomly-selected point in X}

s: until det(Xpg,) >0

6: repeat

7. fori=1tondo

S MDu(X:) < \/(Xi = pn ) Sk (X — o)
9:  Sort X by M Dy, (X;) such that M Dy, (71) < M Dy, (m2) < ... < M Dy, (7p)
10: 7« (M1, 72, .., Tp)

11:  Hpyq — {m1, 72, ..., 7h}

12: until |det(Xp,) — det(Em,,,)| <€

—_
(95}

: return Hy
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4.5 Preprocessing

Medical data is a large set of real world information, which usually includes a mixture of binary, dis-
crete, and continuous variables. In many machine learning problems, how information is formulated
and what features are included are critical to the quality of the learned predictors.

Given a large set of medical records of patients’ personal attributes, clinical assessments, blood
test results, survival times, and censored times, we aim to process these records to produce a data
set D = (X, T) with feature values X and class labels T', such that X optimally characterizes 7.
Here, we will discuss our feature representation in Section 4.5.1, our feature selection methods in

Section 4.5.2, and our class label representation in Section 4.5.3.

4.5.1 Feature Representation

The task of survival prediction begins by pre-processing the original survival data, and our first step
is to design an appropriate data representation with some domain specific knowledge so that the pre-
processed data is usable for our prediction framework. Survival data usually contains categorical
features. For example, “Gender” is either “male” or “female”, and “Cancer Type” can be “lung can-
cer”, “pancreas cancer”, or “colon-rectal cancer” (see the top table in Table 4.8 ). For the algorithms
that we consider in this framework (e.g., regression methods, clustering methods, etc), it is relatively

easier to use only numerical features.

Patient; | Gender | Age | Cancer Type | ... | Event Time | Censored Flag

Patient;, | male 60 pancreas | 0

Patient; | female | 70 pancreas .| 8 0

Patient, | female | 65 lung .. | 10 1

Patients | male 35 lung e | 13 0

Patient, | female | 80 pancreas .| 18 1

Patient; | female | 75 pancreas .. | 120 0

Patientg | male 72 colon-rectal | ... | 125 1

U

Patienti Xgender X age Xlung X pancreas Xcolonfrectal t; i
Patienty | O 60 0 1 0 1 0
Patient; | 1 70 0 1 0 8 0
Patient, | 1 65 1 0 0 10 1
Patients | O 35 1 0 0 13 0
Patienty | 1 80 0 1 0 18 1
Patients | 1 75 0 1 0 120 | O
Patientg | O 72 0 0 1 125 | 1

Table 4.8: An example of pre-processed and post-processed survival data

If a categorical attribute has only two distinct categories, we can convert this categorical attribute
into a binary attribute by defining one category to be 0 and the other category to be 1. For example,
in Table 4.8, “Gender” is one of the characteristic of patients that contains two categories, “male”

and “female”. Without loss of generality, we can denote “male” as 0 and “female” as 1.
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If a categorical feature has more than 2 attribute values, this feature can be converted into mul-
tiple binary features. For instance, in Table 4.8, “Cancer Type” (feature values of the cancer types
of patients) has three attribute values: “pancreas”, “lung”, and “colon-rectal”. In our data represen-
tation, “Cancer Type” is expanded into three binary features X'un9, Xpancreas apd X colon—rectal

and “Cancer Type” is deleted from the data set.

4.5.2 Feature Selection

Some features may be irrelevant to survival times — e.g., we expect that toothache will not matter.
To improve the performance of our predictors, we attempt to eliminate irrelevant features from our
raw data. In machine learning, many sophisticated methods have been applied to identify irrelevant
features; here, we consider the following two representative feature selection approaches: subset

selection by backward wrapper and variable ranking by mutual information.

Subset Selection by Backward Wrapper

Given a data set D = (X, T') where X represents the feature values in D, letting A be the set of fea-
tures in X, the subset selection seeks the “best” subset of features A* C A over many combinations
of subsets from A [32].

The wrappers method is a subset selection method that finds A* by comparing the performance
of a predictor on different subsets of A. Given a learning algorithm L(.), we seek a subset A* C A
such that the average CV error (Section 3.1) of L(.) is minimized. Since it is computationally too
complicated to evaluate all combinations of subsets, the greedy search is incorporated to approx-
imate the optimal solution. This search algorithm iteratively generates a new candidate subset of
attributes A’ C A and evaluates the predictive power of L(.) on D’ = (X', T) where X' is the
feature values of attributes A’.

There are two “directions” on how to generate a new candidate subset: the backward elimination
and the forward selection. The backward elimination begins with the whole feature set A and se-
quentially excludes one feature at a time. At each iteration, we aim to eliminate the feature (among
all available features in that iteration) such that the average CV error is the lowest after removing
that feature. A similar approach is the forward selection, which attempts to select a subset of features
in an incremental manner. More details on these two approaches can be found in [24]. In our work,
we consider the backward elimination. Algorithm 7 shows the procedure of the subset selection by

backward wrapper algorithm.

Variable Ranking by Mutual Information

In variable ranking, the goal is to rank the “relevance” between each feature and the class label
and eliminate features that are low in their “rankings” [17]. Here, we need to define a ranking

criterion to evaluate the “relevance” between each pair of feature and class label. In our work, we
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Algorithm 7 Subset Selection by Backward Wrapper Algorithm
Input:
D: a data set with a set of features A, feature values X, and class labels T’
L(.): alearning algorithm
Qutput:
Ay the approximated optimal subset of features
k—1
Ay — A
Xk. — X
scorey, «— Errcy (L, (Xg,T))
repeat
for i = 1to |Ag| do
X, «— X, with the i*" feature values removed
score; — Errev (L, (X;,T))
1* « argmin Erroy {score; }
if score;« < score; then
Ag41 — A with the ¢* feature removed
Xi4+1 «— X} with the ¢* feature values removed
SCOT€) 41 “— SCOTE;
14: Increment &
15: until stopping criterion is met
16: return A

R A A S ol S

—_ e
w2

consider using the mutual information, which measures the information that two variables share, as
our ranking criterion.

Recall our formulation in Table 2.1, given a data set D = (X, T) of n observations each with m
features where X is the n x m feature matrix, 7" is the n-dimensional vector of the class labels, X7
denotes the j*" feature in X, xi denotes the feature value of the j*” feature of the i*" patient, and ¢;

denotes the class label of the i*" patient, the mutual information between X7 and T is defined as

MI(X?),T)y=Y "> Pr(z,t)log (M)

zeXi teT
where Pr(x,t) is the joint probability density of = and ¢
Pr(z) is the marginal probability density of x

Pr(t) is the marginal probability density of ¢

The mutual information quantifies the dependence between X7 and 7. If X7 and T are indepen-
dent, their joint probability density Pr(X7,T) = Pr(X?)Pr(T), and so their mutual information
MI(X7,T)=0

This quantity is hard to compute when one of the variables is continuous; in our survival data, the
class labels 7T is a continuous variable and the feature values X7 is either a discrete or a continuous
variable. Here, we apply some density estimation methods to approximate the marginal probability
densities.

Similar to the idea that we used to approximate the probability density of the class labels 7" when
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calculating the entropy in Section 4.3.1, the marginal probability density and the joint probability
density can be approximated by the Gaussian kernel estimator [43] . Given a data set D = (X, T)

of n patients, we approximate the marginal probability density of = by

=2 T L - shr(a—al)
27Th2

k=1

—_

3

Here, h is a control variable of this estimator (see [43]). Similarly, the marginal probability

density of the class label of the k' patient can be approximated by

JES S R
P V2rh2

3

The joint probability density of the feature value x and the survival time ¢ can be estimated by:

n

1 1 ;
Pr(z,t) = Z 27Th26 — gz [(@=a])? +(t—t1)?]

After simplification, the mutual information can be approximated by:

nS_ e mrlEl e )

— 1 &
MI(X7,T) = — Zlog —ry
i=1 :

2 1 (. 2
Sige w D T et

4.5.3 Log-Space Transformation

In survival analysis, an accelerated failure time (AFT) model is a parametric model that assumes
that the the effect of a variable is linearly related to the logarithm of the survival time [3]. More
precisely, given a data set of n patients each with m features, let T" be the n-dimensional vector of

survival times and X be the n x m feature matrix, the AFT model assumes that
log(T) = Bo + BX

where ( is a m-dimensional vector of parameters and (3 is a scalar parameter. Ying et al. [56]
applied the linear regression to learned the parameters  and 3, for their AFT model that predicts
the probability of survival for individual patients.

In our work, we apply the ideas of the AFT and the above work to our survival prediction prob-
lem. Here, we simply transform 7" into logarithmic space — i.e., use log (T') as the class labels
for training our predictors. To test the effectiveness of this logarithmic assumption, we experimen-
tally compare the performance of predictors before and after this log-space transformation. That is,
for each learning algorithm that we discussed in Section 4.2, we will compare the performance of
using 7" versus using log (7T') as the class labels. To distinguish these cases, we refer the resulting

predictors as the regular (REG) predictor and the logarithmic (LOG) predictor.
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Chapter 5

Experiments
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In this work, we aim to find the best combination of techniques that we discussed in the previous
chapter (Chapter 4) for our survival prediction system. This chapter summarizes our experiments
on applying these methodologies to various prediction tasks on real data. In Section 5.1, we will
describe our experimental setups, including our data set, our implementations, and our evaluation
methods. In Section 5.2, we will list some experimental outcomes that we obtained with our survival
prediction system. (Detailed experimental results are provided in Appendix B.) In Section 5.3, we

will discuss what we learned from our experimental results.

5.1 Experimental Setups

In this section, we will describe our experimental setups, including the description of our testing

data, the methods on examining our approaches, and the evaluation of our experimental results.

5.1.1 Data Set

Our data set was based on data generously provided by the Cross Cancer Institute. This data set
contains 2402 patients, in which 1142 patients were uncensored and 1260 were censored. (See
Section 2.2.1 for information about censoring) The event times (survival times or censored times)
of these patients range from 0.03 to 71.95 months. The average event time among all patients (both
censored and uncensored) is 25.74 4+ 19.10 months.

For each patient, we have three broad categories of data, which we refer to as the personal
attributes, clinical assessments, and blood test results. The personal attributes include gender, BMI,
date of birth, date of death, date of reference, etc. The clinical assessments include fifteen diagnosis
results such as whether the patient feels full, has no appetite, experiences problem with swallowing,
etc. The clinical assessments also include a measurement called the physician global assessment
(PGA), which is a widely used guideline in clinical trials. The PGA of a patient measures the
overall performance status of this patient, and this measurement is scored by a physician (based
on his/her impression after inspecting this patient). The blood test results include nine numerical
measurements, such as LDH serum, white blood cell counts, etc. The list of features in the raw data
is provided in Appendix A.1

However, this data set is missing numerous entries, so we selected only the attributes that are
missing relatively few values for incorporation into our data set. Also, we perform some pre-
processing work on the raw data so it is usable for our framework (Section 4.5). The resulting
pre-processed data contains 46 features; Appendix A.1 provides a list of descriptions and the his-

tograms for these features.

5.1.2 Methods

Our survival prediction system is implemented using the Java programming language on the devel-

opmental software Eclipse. We incorporate Waikato Environment for Knowledge Analysis (Weka),

75



a machine learning framework developed by the University of Waikato, into our implementation [19].
Weka contains a collection of machine learning algorithms for data mining tasks, and many algo-
rithms can be applied and modified directly from Eclipse platform.

Recall that our learning phase has two major steps. In the first step, we apply various grouping
methods to segregate patients into smaller populations. In the second step, we apply different re-
gression models to each sub-population that we obtained from the first step. Besides these two steps,
we also analyze several minor techniques that we discussed in Chapter 4, such as outlier detection
methods, imputation methods, and log-space transformation methods. We use experiments to select
the best combination of techniques as our final model.

For the convenience of identifying each model, we refer these models by the mechanisms applied
on them such that each name is formatted as AA-BBB-CCC-DDDDDD-EEFEE. For each model, AA
€ {NG, LR, GR, EC } indicates its grouping method (here, NG means no grouping), BBB € { REG,
LOG } indicates whether log-space transformation is applied, CCC € { ALL, MCD } indicates
whether outliers are eliminated, DDDDDD € { AVE050, AVE100, CEN050, CEN100 } shows the
methods on handling censored data, and EEEE € { MED, AVE, LIN, SVR, RT, LINc, SVRc, GAT }
specifies the learning algorithm. For example, LR-REG-MCD-AVEQ50-LINc refers to the learning
system that (1) segmented the patients using CART with log-rank statistics as the splitting criterion,
(2) used the original data (not the log-transformed version), (3) eliminated the potential outliers
using the MCD estimator, (4) set the class labels of censored data to be the average survival times of
uncensored patients in the risk set, (5) weighted each censored patient as 50% of uncensored patient,
and (6) return a predictor learned using the linear regression for censored targets. The definition of
each combination can be found in Appendix B.1.

In our work, our goal is to make predictions for new patients — i.e., it is crucial that our models
perform well on novel data. To approximate the performance of each model on such unseen data,
we run 5-fold cross-validation in each experiment, and report the average (and variance) of these

five folds to analyze their performance.

5.1.3 Evaluation

In Section 3.2, we discussed several methods for evaluating the performance of a model and how to
estimate these measurements. In Section 3.2.5, we define the best model to be the combination of
techniques that achieves the minimum average relative absolute error. If the RAE of two models
are equivalent (i.e., the difference is not statistically significant), we seek the model that has higher
concordance index.

We also examine the relative absolute error within 95% confidence interval (see Section 3.2.5
for details and examples). Our studies evaluate all patients in the unseen data set; we found, however,
that the presence of a few outliers could skew our statistical analysis. In order to determine whether

or not a predictor is significantly affected by the outliers, we also consider the RAE®® score, which
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examines the testing cases lie within the 95% confidence interval.

In addition, we can also separate the evaluation of small predicted times versus large predicted
times. Recall that the relative error is not completely fair since it exerts large penalty to smaller
predictions (see Section 3.2.2 for details and examples). Therefore, for each experiment, we also
look at the average L1 error of predictions less than 12 months and the average relative absolute
error of predictions greater than or equal to 12 months

Through out this section, we will use the following statistics to interpret our experimental results:
e RAE: the average relative absolute error

e CI. the concordance index

RAE®5: the average relative absolute error within the 95% confidence interval

L1,<12: the average LI error of predictions less than 12 months

RAE,>12: the average relative absolute error of predictions greater than or equal to 12 months

Also, recall that we need to know the actual survival times to calculate the RAE and the LI, and
plot the visualization, which are not available for censored data; and therefore, the RAE, the RAE®S,
the L1,<12, the RAE,>12, and the visualizations shown in this section apply to uncensored data
only. The concordance index considers all comparable pairs of patients, and therefore considers
both uncensored and censored data are included. (Although, of course, it ignores the incomparable
pairs — e.g., when both are censored, etc.). For most of the results, we will focus on the RAE score;
we will mention the other measures in Section 5.3.

Besides statistical results, we will also evaluate the outcomes by visualizing the plot of actual

survival times versus the predicted survival times over a set of test patients (Section 3.3).

5.2 Experimental Results

This section describes and summarizes our experimental results on different combinations of tech-
niques. The first objective is to test whether it is advantageous to segregate patients in predicting
survival times for cancer patients. The second goal is to discover which learning algorithms can
construct the best predictors for our data. Also, we test our approaches to handling censored data,
eliminating outliers, and log-space transformation. Finally, we will find the best combination of

methods that can best predict survival times for individual patients.

5.2.1 Baseline

The naive baseline is to take the median or the average of the class labels over the whole population
as the prediction for each individual patient. Recall that our data contains censored observations —
i.e., the class label of a censored patient is the lower bound of the patient’s actual survival time. In

this experiment, we simply treat censored patients as uncensored and use their censored times as
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survival times. Notice that this idea is problematic! Later on, we will use this baseline measurement
to test if our techniques can improve the performance of predictors. Table 5.1 shows the performance

of the baseline.

Grouping Patients: NG (no grouping)

Log-space transformation: No

Outlier Detection: None

Handling Censored Data: No

Regressor RAE CI RAE®® Lly<12 RAE,>12
NG-REG-ALL-CEN100-MED 0.589140.01 T | 0.500040.00 0.5638+0.01 | Undefined | 0.589140.01
NG-REG-ALL-CEN100-AVE 0.6081+0.00 0.5000=£0.00 0.5875+0.00 | Undefined | 0.6081+0.00

Table 5.1: Experimental results on the baseline

Although one can argue that the RAE is within reasonable range, the concordance index shows
that this model is not effective. (Recall that CI = 0.5 means the predictor is not better than random
guessing) Also, LI,<12 is undefined since these two models never predict a time shorter than 12
months. Figure 5.1 plots true survival times (blue) versus predicted survival times (red), which

shows that these predictions (the horizontal line) are not precise enough for individual patients.

Time
(Month)

Figure 5.1: A Visualization of true survival times versus predicted survival times

5.2.2 Handcrafted Tree

In Section 2.1, we discussed some general medical research methods. Many clinical research

projects analyzes two populations of patients, where the populations were split on one feature based

"Here and in subsequent tables, this value refers to the standard deviation of 5 folds (in a 5-fold cross-validation).
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on the researchers’ prior knowledge (NOT from learning). In Section 2.3.1, we also introduced the
most popular evaluation in survival analysis, the Kaplan-Meier estimator [27], which measures the
performance of a prognostic factor. How well do those methods work for our task, of estimating a
survival time for each individual patient?

Since we are not medical experts, we have no prior knowledge on how to split the populations.
Therefore, we decide to be generous by trying all features (with various splitting values if the fea-
ture is a continuous variable) and evaluating the resulting predictor using the best split. Notice
that this is “cheating” because we use testing data to determine the best feature (i.e., it is what an
all-knowledgeable person would do, if he/she was constrained to only one feature). Since prior
knowledge is not necessarily the best guide to segregate patients, the predictor in this experiment
should perform better or equivalent to the predictors built upon prior knowledge.

Table 5.2 shows the result of the best split, where patients with their physician global assessment
(PGA) = 4 are in one group, and the rest of patients are in another. We can see that the RAE and
concordance index both suggest that these predictions are no better than simply use the average of

the entire population.

Grouping Patients: Handcraft
Log-space transformation: No
Outlier Detection: None
Handling Censored Data: No

Regressor RAE CI RAEY Lly<12 RAE,>12
KM-REG-ALL-CEN100-MED || 0.5942+0.01 | 0.5090£0.01 || 0.5649+0.01 | 4.89674+1.08 | 0.586340.01
KM-REG-ALL-CEN100-AVE || 0.606740.00 | 0.509040.01 || 0.585940.00 | Undefined 0.6067-+0.00

Table 5.2: Experimental results on a handcrafted tree using the Kaplan-Meier estimator

5.2.3 Learning Algorithms
In Section 4.2.1, we discussed three basic regression methods:

LIN : the linear regression
SVR: the support vector regression

RT : the regression trees

Grouping Patients: NG (no grouping)

Log-space transformation: No

Outlier Detection: None

Handling Censored Data: CEN (Use censored times as the class labels)

Regressor RAE (9] RAEY Llip<12 RAE,>12

NG-REG-ALL-CENI00-LIN [ 0.559240.02 | 0.744240.01 || 0.5220£0.02 | 4.2071£0.25 | 0.5403+0.01
NG-REG-ALL-CEN100-SVR || 0.55824-0.03 | 0.74344-0.01 || 0.528740.03 | 4.95754£0.41 | 0.543440.02
NG-REG-ALL-CEN100-RT 0.560140.02 | 0.748340.02 || 0.5266+0.01 | 4.721240.81 | 0.5438+0.01

Table 5.3: Experimental results on conventional learning algorithms

In this experiment, the goal is to test the difference between conventional regression methods and

the models that simply use the median or mean survival time (such as our baseline models); no other
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techniques is applied and the class labels of censored data are the censored time. Table 5.3 shows
the result of each learning algorithm. The differences between each pair of learning algorithms are
not statistically significant, but there is a significant improvement on RAE and concordance index
when comparing each predictor to the baseline model (p < 0.05 by paired t-test).

Figure 5.2 shows the visualization of true survival times versus predicted survival times (over the
uncensored patients) of a predictor learned from the support vector regression. (Since the difference
between the results of these models are not statistically significant, and the visualization plots are

similar, we only display one of them)
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Figure 5.2: A Visualization of true survival times versus predicted survival times

5.2.4 Handling Censored Data

Recall that our data contains censored observations, where the class label of a censored patient is the
lower bound of the patient’s actual survival time. The result of the last experiment is problematic
since it simply treats the censored times as event times. In Section 4.1, we discussed three techniques
for approximating an event time for each censored patient. In this experiment, the estimated survival
time of each censored patient is approximated as the average survival time of all uncensored patients
in the risk set, and LIN, SVR, and RT use these revised labels for training its predictor.

We introduced two learning algorithms that were modified to accommodate censored data: LINc
(the linear regression for censored targets) and SVRc (the support vector regression for censored
targets) in Section 4.2.2. We also discuss a learning algorithm that automatically select the best

learning algorithm, the gating regression, in Section 4.2.3. From now on, we will include all six
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learning algorithms for each experiment.
Table 5.4 summarizes the results of our six learning algorithms after handling censored data.
Although there is no reduction in RAE,,,, RT and LINc have improved CI score (but not statistically

significant).

Grouping Patients: NG (No Grouping)

Log-space transformation: No

Outlier Detection: None

Censored Data: use estimated survival times, weight = 0.5

Regressor RAE CI RAE’® Llp<i2 RAEp~12

NG-REG-ALL-AVE(O50-LIN 0.552440.02 | 0.7498+0.01 0.5102£0.02 | 4.1004+0.22 | 0.5257+£0.01
NG-REG-ALL-AVEO050-SVR 0.5538+0.04 | 0.749340.01 0.4980+£0.02 | 4.1903£0.39 | 0.515240.02
NG-REG-ALL-AVEQ50-RT 0.5630+0.04 | 0.7517+0.01 0.5225+0.02 | 5.1055+1.06 | 0.5281£0.02
NG-REG-ALL-CEN100-LINc 0.5589£0.02 | 0.744540.01 0.5215£0.02 | 4.1591+0.29 | 0.5405+0.01
NG-REG-ALL-CEN100-SVRc 0.5751£0.03 | 0.74994-0.01 0.5409+£0.03 | 4.6095+0.54 | 0.559040.03
NG-REG-ALL-AVEO050-GAT 0.562240.02 | 0.7448+0.01 0.5152+0.02 | 4.5236+0.46 | 0.5274+0.02

Table 5.4: Experimental results on handling censored data

5.2.5 Grouping

We use three different grouping approaches in this work, including

LR: the CART with the log-rank statistics as its splitting criterion (Section 4.3.1)
GR: the CART with the gain-ratio as its splitting criterion (Section 4.3.1)

EC: the EM clustering (Section 4.3.2)

To evaluate the performance of our grouping approaches, we need to first consider how to predict
the survival time for each patient. Here, we first place the patient into a sub-population, then predict
that the patient will live the mean (or median) of that sub-population. More precisely, during the
training process, a subset of patients arrive at each leaf node; we then set the “label” of that node as
the mean (or median) of the survival values of those patients. Then, to predict the survival time for
a new patient, we first drop this patient into the tree to determine the relevant leaf node, and assign
that patient to the label of that node.

Figure 5.3 shows a resulting decision tree produced by the CART with the log-rank statistics as
the splitting criterion. Here, the population is divided into three sub-populations: Group 1, Group
2, and Group 3. The population is first divided by the physician global assessment (PGA) such that
patients whose PGA is 4 are one sub-population (Group 3). The rest of patients are further divided as
pancreas cancer patients (Group 2) versus other cancer patients (Group 1). For each sub-population,
the number of patients and the mean survival time is shown in its corresponding leaf node. More
resulting trees are provided in Table B.4 in Appdendix B.

Table 5.5 shows the results of the CART with the log-rank statistics and the gain-ratio as its
splitting criterion. Unfortunately, using this setting is not better than using regression algorithms

without grouping.
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=3.5

Figure 5.3: Examples of decision trees split by the CART with the log-rank statistics as the splitting
criterion

Log-space transformation: No
Outlier Detection: None
Censored Data: AVE(use estimated survival times), weight = 0.5

Regressor RAE [} RAE?® Lip<12 | RAE,>12

LR-REG-ALL-AVE(050-MED 0.6019+0.01 | 0.5251+0.01 0.5693+0.01 | - 0.6019+0.01
LR-REG-ALL-AVEO050-AVE 0.6120+0.01 0.525240.01 0.5887+0.01 - 0.6120+0.01
GR-REG-ALL-AVE050-MED 0.5897+0.00 | 0.5576+0.02 0.56424+0.00 | - 0.5897+0.00
GR-REG-ALL-AVE050-AVE 0.6075+£0.00 | 0.5823+0.01 0.5873+0.00 | - 0.6075+0.00

Table 5.5: Experimental results on grouping methods

5.2.6 Combination of CART and Regressions

In this experiment, we first group the patients using the classification and regression trees with the
log-rank statistics as the splitting criterion. At each node of the resulting decision tree, we consider
applying our six learning algorithms. Table 5.6 shows the result of each of these learners.

Again, there exists no statistical difference between different learning algorithms in this exper-
iment. After applying this grouping method, unfortunately, we did not get any improvement. On
the other hand, the result in this experiment is better than the predictor that simply uses the mean
survival time of a sub-population as a prediction for each patient in that sub-population. By using
paired t-test on each regressor against the predictors that use median survival time or average sur-
vival time, the models trained using the linear regression , regression trees, em linear regression for

censored targets, and gating regression are statistically better with p < 0.05.

5.2.7 Outliers Detection

Can we do better? Recall that outliers are patients who are extremely different from the majority;

these outliers often exert problematic affect on the resulting models. In this experiment, we applied

82



Grouping Patients: LR (CART with log-rank statistics)

Log-space transformation: No

Outlier Detection: None

Censored Data: AVE (use estimated survival times), weight = 0.5

Regressor RAE CI RAE® Llp<12 RAE,>12
LR-REG-ALL-AVEO050-LIN 0.5598+0.02 | 0.742140.01 0.5168+0.02 | 4.1554+0.32 | 0.530740.01
LR-REG-ALL-AVE050-SVR 0.5746+0.04 | 0.7400+£0.01 0.5107+£0.01 | 4.3420£0.19 | 0.515740.03
LR-REG-ALL-AVEOQ50-RT 0.5679+0.02 | 0.7470+0.02 0.5265+0.02 | 5.1883+0.60 | 0.529740.02
LR-REG-ALL-CEN100-LINc 0.5618+0.02 | 0.7410+£0.01 0.5252+0.02 | 3.9586£0.41 | 0.5480+0.01
LR-REG-ALL-CEN100-SVRc 0.5907+0.03 | 0.742440.01 0.5404+0.02 | 4.4074£0.40 | 0.546540.02
LR-REG-ALL-AVE050-GET 0.5705+0.01 | 0.7476+0.02 0.5213+0.01 | 4.6896£0.24 | 0.530040.02

Table 5.6: Experimental results on combining CART with log-rank statistics and regressions

the outlier detection and elimination techniques that we discussed in Section 4.4 to remove potential
outliers from both training and testing data. That is, we choose to tell some patients that he/she
cannot be evaluated. In average, this meant removing around 3% of the testing samples.

To estimate the RAE?®, we first eliminate 3% instances that have relatively larger Mahalanobis
distance and then remove 5% instances from the remaining 97% that have the worst relative ab-
solute error. Notice that this two mechanisms are different. We do not know whether or not the
removed outliers have higher prediction error (we could have made adequate predictions for them).
In contrast, we know that our predictor makes less decent predictions for the instances outside of
the confidence interval. Therefore, the removal process of confidence interval is not as practical as
that of the outlier detections since we do not know whether or not a new patient is in the confidence
interval at the time of prediction.

Table 5.7 summarizes the result after applying our six learning algorithms and eliminating out-
liers at each node of the decision tree. Even through the improvement is not statistically significant
when compared to the result that does not eliminate outliers, we will keep this setting (i.e., removing

outliers from both training data and testing data).

Grouping Patients: NG (No Grouping)

Log-space transformation: No

Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Data: AVE (use estimated survival times), weight = 0.5

Regressor RAE CI RAE®® Lly<12 RAEp>12

NG-REG-MCD-AVEO050-LIN 0.5506£0.03 | 0.7498+0.01 0.5085+0.02 | 4.1940+0.43 | 0.522740.02
NG-REG-MCD-AVEO050-SVR 0.5503£0.04 | 0.750140.01 0.4953£0.02 | 4.1312+0.40 | 0.5125+0.03
NG-REG-MCD-AVEO050-RT 0.5619+0.03 | 0.7552+0.01 0.5180+£0.02 | 5.2004+0.66 | 0.517540.02
NG-REG-MCD-CEN100-LINc 0.5506£0.02 | 0.751840.01 0.5191£0.01 | 4.1870+0.34 | 0.5355+£0.01
NG-REG-MCD-CEN100-SVRc 0.5766+£0.02 | 0.7530£0.01 0.5477£0.01 | 4.8107£0.38 | 0.562140.01
NG-REG-MCD-AVEO050-GET 0.5556£0.02 | 0.750240.01 0.5107£0.02 | 4.95584+0.31 | 0.512540.02

Table 5.7: Experimental results on regression methods, after eliminating 3% outliers

5.2.8 Log-space Transformation

In Section 4.5.3, we discussed the idea of log-space transformation, such that each class label ¢; is
replaced by logt;. Table 5.8 shows the results after using log-transformation, and here, we show

the results before and after grouping by CART with log-rank statistics. By comparing to Table 5.4
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and Table 5.6, there is a significant improvement on both the RAE and the CI after using log-space
transformation. The predictors learned using the linear regression, the support vector regression,
and the gating regression obtained a average relative absolute error around 0.53%, which is our
best result. Also, several predictors can achieve higher than 0.76 concordance index. The details of

the following models will be found in Appendix B.3.

Grouping Patients: NG (No Grouping)

Log-space transformation: Yes

Outliers Detection: Mahalanobis Distance with MCD estimator
Censored Data: AVE (use estimated survival times)

Model RAE CI RAE®® Lip<12 RAE,>12

NG-LOG-MCD-AVE100-LIN 0.5385+0.04 | 0.764940.01 0.4926£0.03 | 4.5260+0.46 | 0.5068+0.04
NG-LOG-MCD-AVE100-SVR 0.5376£0.03 | 0.76124+0.01 0.4955+0.03 | 4.3355+0.40 | 0.5064=+0.03
NG-LOG-MCD-AVE100-RT 0.5536£0.03 | 0.7536+0.01 0.5073+£0.02 | 4.6130+0.39 | 0.514040.02
NG-LOG-MCD-CEN100-LINc 0.5468+0.05 | 0.7650%0.01 0.4964£0.04 | 4.37291+0.53 | 0.5013£0.04
NG-LOG-MCD-CEN100-SVRc 0.5755+£0.04 | 0.7600+0.01 0.5347+£0.03 | 4.3591£0.41 | 0.555540.03
NG-LOG-MCD-AVE100-GAT 0.5376£0.03 | 0.761240.01 0.4955+0.03 | 4.335540.39 | 0.506340.03

Grouping Patients: LR (CART with log-rank statistics)

Log-space transformation: Yes

Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Weight: AVE (use estimated survival times)

Model RAE Ci RAEYS Llp<i2 RAEp>12

LR-LOG-MCD-AVEI100-LIN 0.5676+0.05 | 0.7650+0.01 || 0.5085+£0.04 | 4.5858+0.61 | 0.4992+0.04
LR-LOG-MCD-AVE100-SVR 0.572940.04 | 0.75824:0.01 || 0.512940.03 | 4.4462+0.37 | 0.5025+0.03
LR-LOG-MCD-AVE100-RT 0.5616+0.03 | 0.753340.01 || 0.5106£0.02 | 4.9125+0.52 | 0.5116+0.02

LR-LOG-MCD-CEN100-LINc 0.5601£0.04 | 0.760340.01 0.5058+0.03 | 4.4828+0.44 | 0.500740.04
LR-LOG-MCD-CEN100-SVRc 0.6044+0.04 | 0.7530+0.01 0.5507£0.02 | 4.6020+0.44 | 0.5563=+0.02
LR-LOG-MCD-AVE100-GAT 0.5533£0.03 | 0.757740.01 0.5043+0.02 | 4.52734+0.23 | 0.5098+0.03

Table 5.8: Experimental results on regression methods in logarithmic space

Table 5.9 shows the results (p-value) of paired-t test between each predictor and the baseline
methods (i.e., the models which simply use the median survival time or the average survival time
of the population as the prediction for each individual patient). The predictors trained using the
support vector regression, the regression trees, and the gating regression are statistically better than

both baseline models.

Model Median Survival Time | Average Survival Time
NG-LOG-MCD-AVE100-LIN 0.075 0.031 (<0.05)
NG-LOG-MCD-AVE100-SVR 0.038 (<0.05) 0.014 (<0.05)
NG-LOG-MCD-AVE100-RT 0.037 (<0.05) 0.017 (<0.05)
NG-LOG-MCD-CEN100-LINc || 0.159 0.068
NG-LOG-MCD-CEN100-SVRc || 0.515 0.152
NG-LOG-MCD-AVE100-GAT 0.038(<0.05) 0.014(<0.05)

Table 5.9: P-values of pair-t test

Also, Figure 5.4 plots true survival times versus predicted survival times for all patients using the

predictor learned using the linear regression. More resulting figures can be found in Appendix B.3.
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Figure 5.4: A Visualization of true survival times versus predicted survival times

5.2.9 C(lassification

As we mentioned in Section 2.3, many researchers in survival analysis are interested in looking at the
median survival time and determining whether a given patient will survive longer than the median.
We also use our predictors to classify each patient into “long survivor” versus “short survivor” where
the classification boundary is the median survival time of the whole population. Table 5.10 shows
the accuracy, sensitivity, and specificity of each classifier.

After log-space transformation, eliminating outliers, and handling censored data, most predictors
were able to achieve at least 70% accuracy. The gating regression, the support vector regression, the
support vector regression for censored target have slightly higher accuracy among our six learning
algorithms, but the differences are not statistically significant. We can see an improvement (statisti-
cally significant) as comparing to the baseline methods which simply use the median or the average
survival time. The confusion matrices of each classifier and other conventional classification meth-

ods are shown in Table B.8.
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Baseline

Model Accuracy | Sensitivity | Specificity
BASELINE-MED 0.5388 0.1954 0.7973
BASELINE-AVE 0.5705 0.0000 1.0000

Grouping Patients: NG (No Grouping)

Log-space transformation: Yes

Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Data: AVE (average survival time of uncensored data in the risk set)

Model Accuracy | Sensitivity | Specificity
NG-LOG-MCD-AVE100-LIN 0.7197 0.8146 0.6415
NG-LOG-MCD-AVE100-SVR 0.7387 0.7673 0.7153
NG-LOG-MCD-AVE100-RT 0.6955 0.8084 0.6025
NG-LOG-MCD-AVE100-LINc || 0.7150 0.8321 0.6186
NG-LOG-MCD-AVE100-SVRc || 0.7373 0.6406 0.8169
NG-LOG-MCD-AVE100-GAT 0.7392 0.7662 0.7169

Grouping Patients: LR (CART with log-rank statistics)

Log-space transformation: Yes

Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Data: AVE (average survival time of uncensored data in the risk set)

Model Accuracy | Sensitivity | Specificity
LR-LOG-MCD-AVE100-LIN 0.7215 0.8031 0.6553
LR-LOG-MCD-AVE100-SVR 0.7337 0.7550 0.7165
LR-LOG-MCD-AVE100-RT 0.7014 0.8199 0.6053

LR-LOG-MCD-AVE100-LINc 0.7154 0.8262 0.6256
LR-LOG-MCD-AVE100-SVRc || 0.7351 0.6524 0.8022
LR-LOG-MCD-AVE100-GAT 0.7337 0.7634 0.7097

Table 5.10: Experimental results on classification

5.3 Discussion

In this work, our goal is to learn a model from historical patient data that can effectively predict
survival times for novel patients. We build this model from a data set of patients historical records,
including personal attributes, diagnostic assessments, and blood test results. We consider survival
prediction as a regression problem and base our solution on a combination of unsupervised and
supervised learning. In Chapter 4, we introduced our survival prediction framework, which includes
the following steps: (1) processing data, (2) segregating populations, (3) eliminating outliers, (4)
handling censored information, and then at performance time, (5) predicting survival times for each
individual patients. In our experiments, we tested various combinations of approaches on these
steps, with the goal of selecting the best combination for our framework. In this section, we will
discuss the results on these approaches for each step.

In our experiments, the quality of each predictor was evaluated by its average relative absolute
error (primary) and its concordance index (secondary) where these measurements are the average
results of 5-fold cross-validation. Table 5.11 shows the top 10 best models. Here, the best model
obtains an average relative absolute error of 0.5376 £ 0.03 in predicting a survival time for each

individual (uncensored) patient. For classification task, several combinations can achieve at least
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Regressor RAE CI RAEY® Llp<i2 RAEp>12

NG-LOG-MCD-AVE100-GAT 0.5376£0.03 | 0.761240.01 0.4955+0.03 | 4.3355+0.39 | 0.5063+0.03
NG-LOG-MCD-AVE100-SVR 0.5376£0.03 | 0.761240.01 0.4955+0.03 | 4.335540.40 | 0.506440.03
NG-LOG-ALL-AVE100-LIN 0.5380+0.04 | 0.7679+0.01 0.4929+0.03 | 4.4588+0.42 | 0.4955+0.03
NG-LOG-MCD-AVE100-LIN 0.5385+0.04 | 0.764940.01 0.4926£0.03 | 4.5260+0.46 | 0.5068+0.04
NG-LOG-ALL-AVE100-GAT 0.539240.03 | 0.7640+0.01 0.4952+0.02 | 4.2810+0.32 | 0.5049+0.03
NG-LOG-ALL-AVE100-SVR 0.5393£0.03 | 0.764140.01 0.4967+£0.03 | 4.2782+0.32 | 0.5055+0.03
NG-LOG-ALL-AVE100-RT 0.5418+0.03 | 0.7580+0.01 0.4966£0.02 | 4.56251+0.36 | 0.5014+0.04
NG-LOG-ALL-CEN100-LINc 0.5462£0.04 | 0.7678+0.01 0.4968+0.03 | 4.4718+0.49 | 0.4909+0.04
NG-LOG-MCD-AVE100-LINc 0.5468+0.05 | 0.765040.01 0.4964£0.04 | 4.372940.53 | 0.501340.04
NG-REG-ALL-AVE100-SVR 0.5468+0.03 | 0.743240.01 0.5092£0.02 | 3.9596+0.47 | 0.5267+0.02

Table 5.11: Top 10 models

70% accuracy. The results presented in this chapter suggest that we can effectively predict patient’s

survival times by taking the following steps:

1. Processing Data: representing raw data using numerical attributes such that categorical at-
tributes are transformed into a binary attribute or multiple binary attributes and transforming

the class labels into logarithmic space.

2. Segregating Patients: no need to segregating patients if the target is to minimize the average

relative absolute error.

3. Handling Censoring: imputing a survival time for each censored patient by taking the average

survival time of uncensored patients in the risk set of that patient.

4. Eliminating Outliers: calculating the Mahalanobis distance using the minimum covariance

estimator for each patient and removing those who are relatively too far in their distances.

5. Learning Predictors: for each sub-population, learn a predictor using the linear regression,

the support vector regression, or the variations of them.

We will briefly discuss the results of each step above. There are a few approaches that we thought
should be effective, but experimental results did not support our ideas. Here, we will provide our

assumptions about their limitations.

5.3.1 Processing Features

In Section 4.5.2, we discussed two feature selection methods, the subset selection by backward
wrapper and the variable ranking by mutual information. These two methods appear to perform
similarly on the regression accuracy (i.e., not statistically significant). One potential reason is that,
in most cases, the evaluation scores for many features are very close. We performed several experi-
ments with different control parameters, and these methods either keep almost all features or remove
too many features. Another reason might be that these two methods are not appropriate for our data
set or for survival prediction problems. Therefore, a potential future work is to test different feature
selection methods or evaluation criteria (other than the mutual information or expected prediction

errors as in our work).
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5.3.2 Segregating Patients

We tested three grouping methods, including (1) the CART with the log-rank statistics, (2) the CART
with gain-ratio, and (3) EM clustering (Section 4.3). In most experiments, (1) was the most effective
grouping method and (3) was the worst. Unfortunately, we found that even the best grouping method,
the CART with the log-rank statistics, is very competitive to the predictors without using grouping
method. We therefore suggest that we choose the simpler one — no need to grouping patients.

On the other hand, predictors built with the CART with the log-rank statistics can have better
performance in predicting survival times for short survivors. In our experiments, LOG predictors
usually achieve lower relative absolute error; we found, however, that these LOG predictors often
have larger L1,.12. Table 5.12 shows the top 5 models with the lowest L1,.12. After segregat-
ing patients using the CART with the log-rank statistics, the linear regression for censored targets

obtains the lowest L/, 12 among all models in our experiment.

Regressor RAE CI RAE®® Llp<12 RAEp>12

LR-REG-ALL-CEN100-LINc 0.5618+0.02 | 0.74104£0.01 || 0.525240.02 | 3.958610.41 | 0.5480%0.01
NG-REG-ALL-AVE050-LIN 0.5524+0.02 | 0.749840.01 || 0.510240.02 | 4.100440.22 | 0.5257+0.01
NG-REG-MCD-AVE050-SVR || 0.550340.04 | 0.750140.01 || 0.495340.02 | 4.131240.40 | 0.512540.03
LR-REG-ALL-AVE050-LIN 0.5598+0.01 | 0.742140.01 || 0.516840.02 | 4.155440.32 | 0.530740.01
NG-REG-ALL-CEN100-LINc || 0.558940.02 | 0.744540.01 || 0.521540.02 | 4.159140.29 | 0.5405+0.01

Table 5.12: Top 5 models with the lowest L1, <12

In reality, it is somehow more crucial to make accurate predictions for short survivors. Standard
treatments for cancer patients usually take certain amount of time; for example, the duration of
treatment is three months for lung cancer [18]. If a patient is expected to die before the end of the
treatment, it is usually not recommend to undergo the treatment (these treatments could be risky and
reduce quality of life). Therefore, if the goal of a survival prediction system is to make predicts for
short survivors, we recommend that CART with the log-rank statistics should be applied without
log-space transformation.

Here are our thoughts on the reason that log-rank statistics outperforms the gain-ratio as the
splitting criterion in CART. The gain-ratio was based on the class labels, which are not the actual
survival times for all patients. For a censored patient, the class label is a lower bound (without im-
putation) or an approximation (with imputation) of the patient’s actual survival time. This problem
will probably bias the measurement of the gain-ratio. In contrast, log-rank statistics effectively in-
corporates censored observations since this method only requires the information on the size of the
risk set and the number of deaths and each distinct time point.

The EM clustering was unfortunately not very effective in our work — indeed, the results of
using this method are worse than the results of not using it. Recall that the EM clustering groups
patients with similar feature values (Section 4.3.2). The fact that this method does not depend
on class labels may be why this is not appropriate for survival prediction problems. There are

many other clustering methods that do not use labels; and one potential future work is to verify this
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assumption by testing other clustering approaches.

5.3.3 Learning Predictors

The support vector regression for censored targets (SVRc) was shown to be effective in [28], but
the performance on regression is not exceptional in our work. However, we notice that the SVRc’s
training error is lower than other learning algorithms, which suggests that the SVRc might have been
over-fitted to the training data. The predictor may be improved by changing the control parameters
or incorporating some regularization methods. (This is future work.) Aside from the regression
results, the SVRc usually achieves the highest accuracy in the classification task, which suggests that
this combination might be a possible solution if one is interested in differentiating long survivors
versus short survivors.

Previously, we assumed that the relationship between features and survival times is not linear,
and therefore, we attempted to address this problem by incorporating the kernel methods. We tested
two kernel functions, K2 and K¢rp (Section 4.2.1) for our SVR and SVRc, but their performance
are not better than those without kernels. Therefore, we assume that linear algorithms are adequate
for survival predictions.

Recall that one of our goal is to find the best learning algorithm among six algorithms (Sec-
tion 4.2) for our prediction framework. In many cases, we found that the results of several algorithms
very competitive. For example, in Table 5.11, NG-LOG-MCD-AVE100-GAT is lower in its rela-
tive error while NG-LOG-ALL-AVE100-LIN is higher in its concordance index, but the differences
between these measurements among different learning algorithms are not statistically significant
(by paired t-test). It is hard to determine which one is the best regression algorithm. Therefore,
we assume that most regression methods can be applied to obtain comparable outcome for survival

predictions.

5.3.4 Handling Censoring

In Section 4.1.1, we proposed three approaches to approximate an event time for each censored
patient, including (1) adding a constant, (2) taking the average survival time over uncensored patients
in the risk set, and (3) taking the average survival time over all patients in the risk set. Overall, we
found (1) is not as effective as (2), and (3) tends to over-estimate survival times. (Therefore, in this
section, we only show the results that use (2) to estimate survival time for censored data versus the
results that simply use censored time as the class labels.)

We also attempt to lower the “weights” of censored data (Section 4.1.2). In our experiments, we
tested two constant weights, 0.1 and 0.5, for each censored patient, and we did not see improvement
from this technique after log-space transformation. (However, we found improvement when using
regular predictors.) We can only assume that this approach was unfortunately ineffective in handling

censored observations for our best model.
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As we mentioned in Section 5.3.3, the learning algorithms that we tested are very comparable.
One interesting observation is that, the linear regression uses the estimated survival times while
the linear regression for censored targets uses the original censored times for training a predictor,
and their outcomes have no statistical difference. Hence, we assume that these two methods (either

changing the class labels or modifying the algorithm) for handling censored data are comparable.
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Chapter 6

Conclusion
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Survival prediction is the task of predicting the length of time that an individual patient will
survive; accurate predictions can give doctors better guidelines on selecting treatments and planning
futures. This differs from the standard survival analysis, which focuses on population-based studies
and tries to discover the prognostic factors and/or analyze the median survival times of different
groups of patients.

This work provides a system that predicts survival times for individual cancer patients based
on personal attributes, clinical assessments, and blood test results. We view the task of survival
predictions as a regression problem, which maps the characteristic of each patients to his/her survival
time. As the relationship between features and survival time is still not understood, we consider
various ways to learn these models from historical patient records. This is challenging due to the
presence of irrelevant features, outliers, and missing class labels in processing medical/clinical data.
This dissertation describes our approach for overcoming these, and other challenges, producing
techniques that can predicts survival times.

Our experiments show that the linear regression, the support vector regression, and the gating

regression are effective: each predictor can obtain an average relative absolute error lower than 0.54

2]

over all of the testing instances (where the average relative absolute error of a regressor is E| 5

where t is the true survival time and p is our prediction for each patient). We also use our regressors
to classify each patient into “long survivor” versus “short survivor” where the classification boundary
is the median survival time of the entire population; here, we show that several regressors can achieve
at least 70% accuracy. These experimental results verify that we can effectively predict patients’
survival times with a combination of statistical and machine learning approaches.

Many of these techniques involve first segregating patients into smaller sub-populations; we
had anticipated that this would improve the accuracy of our survival predictions; however, our ex-
perimental results did not support this expectation. Nevertheless, we found that two aspects that
we tested in this work, log-space transformation and outlier elimination by minimum covariance
estimation, could effectively improve the overall performance of our predictors.

There are several ways we might obtain more accurate results. One idea is to implement regu-
larization methods on the SVRc algorithm to address its problem of over-fitting the training samples.
Second, recalling that roughly 50% of our data set is censored, it might be useful to explore better
techniques for utilizing censored data.

Our current system, as is, is already effective. We expect that any further improvements on the
survival prediction research would pave the way towards the use of individual prognosis system in

an actual clinical setting.
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Data Set
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A.1 Attribute Descriptions

Table A.1: Raw Data

Feature Name | Data Type | Range
Personal Attributes

Date of Birth Date YYYY-MM-DD
Date of Reference Date YYYY-MM-DD
Date of Death Date YYYY-MM-DD
Gender Nominal {“Male”, “Female” }
Age Numerical | R
Age Older than 65 Nominal { “age < 657, “age > 65” }
BMI Numerical | R
Weight Change Numerical | R

Clinical Assessments
BOX 1 Score Numerical | R
BOX 2 Score Numerical | R
BOX 3 Score Numerical | R
BOX 4 Score Numerical | R
Food Intake Nominal {“normal”, “less”, “little”, “liquid” }
No Problem Nominal {*No”, “Yes”}
No Appetite Nominal {“No”, “Yes”}
Nausea Nominal {“No”, “Yes”}
Constipation Nominal {“No”, “Yes”}
Taste Funny Nominal {*No”, “Yes”}
Smelling Problem Nominal {*No”, “Yes”}
Swallowing Problem | Nominal {*No”, “Yes”}
Feel Full Nominal {“No”, “Yes”}
Feel Pain Nominal {“No”, “Yes”}
Dental Problem Nominal {*No”, “Yes"}
Vomitting Nominal {*No”, “Yes”}
Diarrhea Nominal {*No”, “Yes”}
Sore Mouth Nominal {“No”, “Yes”}
Dry Mouth Nominal {“No”, “Yes”}
Activity Nominal {0,1,2,3,4}
PS-PGA Nominal {0,1,2,3,4}
Cancer Stage Nominal {1,2,3,4}
Cancer Type Nominal {“Brunchus-Lung”, “Colon-Rectal”,“Esophagus”,

“Head/Neck’,“Pancrease’, “Stomach”, “Misc”}
Blood Test Results

Granulocytes Numerical | R
LDH Serum Numerical | R
Lymphocytes Numerical | R
Platelet Numerical | R
WBC Count Numerical | R
Calcium Serum Numerical | R
HGB Numerical | R
Creatinine Serum Numerical | R
Albumin Numerical | R
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Table A.2: Pre-processed Data

Feature Name

Variable Name | Data Type | Range

Personal Attributes

Gender X gender Binary 0: “Male”, 1: “Female”
Age Xa9¢ Numerical | R
Age Older than 65 Xag9e—65 Binary {0: age < 65 1: age > 65 }
BMI Xbmi Numerical | R
Weight Change Xt Numerical | R
BOX1 Xbor—1 Numerical | R
BOX2 Xboz—2 Numerical | R
Clinical Assessments
No Problem Xmo—prob Binary {0: “No”, 1: “Yes” }
No Appetite Xno—arp Binary {0: “No”, 1: “Yes” }
Nausea Xnausea Binary {0: “No”, 1: “Yes” }
Constipation X const Binary {0: “No”, 1: “Yes” }
Taste Funny Xtaste Binary {0: “No”, 1: “Yes” }
Smelling Problem X smell Binary {0: “No”, 1: “Yes” }
Swallowing Problem Xswallow Binary {0: “No”, 1: “Yes” }
Feel Full X full Binary {0: “No”, 1: “Yes” }
Feel Pain Xpain Binary {0: “No”, 1: “Yes” }
Dental Problem Xdental Binary {0: “No”, 1: “Yes” }
Vomitting X vomit Binary {0: “No”, 1: “Yes” }
Diarrhea X diarrhea Binary {0: “No”, 1: “Yes” }
Sore Mouth Xsore—mouth | Binary {0: “No”, 1: “Yes” }
Dry Mouth Xdry—mouth | Binary {0: “No”, 1: “Yes” }
Physician Global Assessments
PS-PGA (0) XPs=0 Binary {0: “No”, 1: “Yes” }
PS-PGA (1) Xps—1 Binary {0: “No”, 1: “Yes” }
PS-PGA (2) Xps—2 Binary {0: “No”, 1: “Yes” }
PS-PGA (3) Xps—3 Binary {0: “No”, 1: “Yes” }
PS-PGA (4) Xps—4 Binary {0: “No”, 1: “Yes” }
Tumour Sites and Stages
Brunchus-Lung Cancer X dz—lung Binary {0: “No”, 1: “Yes” }
Colon-rectal Cancer X dw—colon Binary {0: “No”, 1: “Yes” }
Esophagus Cancer Xdz—esop Binary {0: “No”, 1: “Yes” }
Head/Neck Cancer Xde—head Binary {0: “No”, 1: “Yes” }
Pancrease Cancer X dz—panc Binary {0: “No”, 1: “Yes” }
Stomach Cancer X dz—stom Binary {0: “No”, 1: “Yes” }
Misc Cancer Xde—mise Binary {0: “No”, 1: “Yes” }
Cancer Stage (1) Xstage—1 Binary {0: “No”, 1: “Yes” }
Cancer Stage (2) Xstage=2 Binary 0: “No”, 1: “Yes” }
Cancer Stage (3) X stage—3 Binary 0: “No”, 1: “Yes” }
Cancer Stage (4) Xstage—4 Binary 0: “No”, 1: “Yes” }
Blood Test Results
Granulocytes XPlood=gra Numerical | R
LDH Serum Xblood—ldh Numerical | R
Lymphocytes X blood=lym Numerical | R
Platelet Xblood—pla Numerical | R
WBC Count Xblood—wbe Numerical | R
Calcium Serum Xblood—cal Numerical | R

Continued on next page
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Table A.2 — continued from previous page

Feature Name

Variable Name

Data Type | Range

HGB
Creatinine Serum
Albumin

Xblood—hgb
Xblood—cre
Xblood—alb

R
R
R

Numerical
Numerical
Numerical

Labels

Time (Event or Censored)

Censored Flag

t;
C;

Numerical | R

Binary

{ 0: Uncensored, 1: Censored }
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Appendix B

Detailed Experimental Results
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B.1 Experiment Methods

Table B.1: A List of methods for predicting survival times

Method Name [ Descriptions
Grouping Patients
NG no grouping
LR classification and regression trees with log-rank statistics as the splitting criterion
GR classification and regression trees with gain-ratio as the splitting criterion
EC EM clustering
Log-space Transformation
REG regular space
LOG logarithmic space
Outlier Detection
ALL no outlier detection, keep all instances
MCD use Mahalanobis distance with MCD estimator
Handling Censored Data
CENI100 use censored time as the class label
CENO050 use censored time as the class label, and weight = 0.5
AVEI00 take the average survival time of uncensored patient in the risk set
AVEO050 take the average survival time of uncensored patient in the risk set, and weight = 0.5
Regression Algorithms
MED use median survival time of the population
AVE use average survival time of the population
LIN linear regression
SVR support vector regression
RT regression trees
LINc learner regression for censored targets
SVRc support vector regression for censored targets
GAT gating regression
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B.2 Detailed Experimental Results

Table B.2: Experimental Methods

Methods Log-space | Outlier Class label of Censored | Algorithm

Detection | censored data Weights
Baseline
BASELINE-MED No No Censored Time Use median survival time
BASELINE-AVE No No Censored Time Use average survival time
Grouping Method: Handcraft tree
HANDCRAFT-LIN No No Censored Time Use median survival time
HANDCRAFT-SVR No No Censored Time Use average survival time
Grouping Method: No grouping
NG-CEN100-ALL-REG-LIN No No Censored Time linear regression
NG-CEN100-ALL-REG-SVR No No Censored Time support vector regression
NG-CEN100-ALL-REG-RT No No Censored Time regression trees
NG-REG-ALL-AVEO050-MED No No Estimated time | 0.5 Use median survival time
NG-REG-ALL-AVEO050-AVE No No Estimated time | 0.5 Use average survival time
NG-REG-ALL-AVEO050-LIN No No Estimated time | 0.5 linear regression
NG-REG-ALL-AVEO050-SVR No No Estimated time | 0.5 support vector regression
NG-REG-ALL-AVEQ050-RT No No Estimated time | 0.5 regression trees
NG-REG-ALL-AVEQ050-GAT No No Estimated time | 0.5 gating regression
NG-REG-ALL-CENO050-LINc No No Censored Time | 0.5 linear regression for censored targets
NG-REG-ALL-CENO050-SVRc No No Censored Time | 0.5 support vector regression for censored targets
NG-REG-ALL-AVE100-MED No No Estimated time | 1 Use median survival time
NG-REG-ALL-AVE100-AVE No No Estimated time | 1 Use average survival time
NG-REG-ALL-AVE100-LIN No No Estimated time | 1 linear regression
NG-REG-ALL-AVE100-SVR No No Estimated time 1 support vector regression
NG-REG-ALL-AVE100-RT No No Estimated time 1 regression trees
NG-REG-ALL-AVE100-GAT No No Estimated time | 1 gating regression
NG-REG-ALL-CEN100-LINc No No Censored Time | 1 linear regression for censored targets
NG-REG-ALL-CEN100-SVRc No No Censored Time | 1 support vector regression for censored targets
NG-REG-MCD-AVE050-MED No Yes Estimated time | 0.5 Use median survival time
NG-REG-MCD-AVEO050-AVE No Yes Estimated time | 0.5 Use average survival time
NG-REG-MCD-AVEQ50-LIN No Yes Estimated time | 0.5 linear regression
NG-REG-MCD-AVEO050-SVR No Yes Estimated time | 0.5 support vector regression
NG-REG-MCD-AVEQ50-RT No Yes Estimated time | 0.5 regression trees
NG-REG-MCD-AVEQ050-GAT No Yes Estimated time | 0.5 gating regression
NG-REG-MCD-CENO050-LINc No Yes Censored Time | 0.5 linear regression for censored targets
NG-REG-MCD-CENO050-SVRc No Yes Censored Time | 0.5 support vector regression for censored targets
NG-REG-MCD-AVE100-MED No Yes Estimated time | 1 Use median survival time
NG-REG-MCD-AVE100-AVE No Yes Estimated time | 1 Use average survival time
NG-REG-MCD-AVE100-LIN No Yes Estimated time | 1 linear regression
NG-REG-MCD-AVE100-SVR No Yes Estimated time 1 support vector regression
NG-REG-MCD-AVE100-RT No Yes Estimated time | 1 regression trees
NG-REG-MCD-AVE100-GAT No Yes Estimated time 1 gating regression
NG-REG-MCD-CEN100-LINc No Yes Censored Time | 1 linear regression for censored targets
NG-REG-MCD-CEN100-SVRc No Yes Censored Time | 1 support vector regression for censored targets
NG-LOG-ALL-AVE(050-MED Yes No Estimated time | 0.5 Use median survival time
NG-LOG-ALL-AVE(050-AVE Yes No Estimated time | 0.5 Use average survival time
NG-LOG-ALL-AVEQO50-LIN Yes No Estimated time | 0.5 linear regression
NG-LOG-ALL-AVEO050-SVR Yes No Estimated time | 0.5 support vector regression
NG-LOG-ALL-AVEQ050-RT Yes No Estimated time | 0.5 regression trees
NG-LOG-ALL-AVEO050-GAT Yes No Estimated time | 0.5 gating regression
NG-LOG-ALL-CENO050-LINc Yes No Censored Time | 0.5 linear regression for censored targets
NG-LOG-ALL-CENO050-SVRc Yes No Censored Time | 0.5 support vector regression for censored targets
NG-LOG-ALL-AVE100-MED Yes No Estimated time | 1 Use median survival time
NG-LOG-ALL-AVE100-AVE Yes No Estimated time | 1 Use average survival time
NG-LOG-ALL-AVE100-LIN Yes No Estimated time | 1 linear regression
NG-LOG-ALL-AVE100-SVR Yes No Estimated time | 1 support vector regression
NG-LOG-ALL-AVE100-RT Yes No Estimated time | 1 regression trees
NG-LOG-ALL-AVE100-GAT Yes No Estimated time 1 gating regression
NG-LOG-ALL-CEN100-LINc Yes No Censored Time | 1 linear regression for censored targets
NG-LOG-ALL-CEN100-SVRc Yes No Censored Time | 1 support vector regression for censored targets

Continued on next page
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Table B.2 — continued from previous page

Methods Log-space | Outlier Class label of Censored | Algorithm

Detection | censored data Weights
NG-LOG-MCD-AVEO050-MED Yes Yes Estimated time | 0.5 Use median survival time
NG-LOG-MCD-AVEO050-AVE Yes Yes Estimated time | 0.5 Use average survival time
NG-LOG-MCD-AVEO050-LIN Yes Yes Estimated time | 0.5 linear regression
NG-LOG-MCD-AVE050-SVR Yes Yes Estimated time | 0.5 support vector regression
NG-LOG-MCD-AVEOQ50-RT Yes Yes Estimated time | 0.5 regression trees
NG-LOG-MCD-AVE050-GAT Yes Yes Estimated time | 0.5 gating regression
NG-LOG-MCD-CENO050-LINc Yes Yes Censored Time | 0.5 linear regression for censored targets
NG-LOG-MCD-CENO050-SVRc Yes Yes Censored Time | 0.5 support vector regression for censored targets
NG-LOG-MCD-AVE100-MED Yes Yes Estimated time | 1 Use median survival time
NG-LOG-MCD-AVE100-AVE Yes Yes Estimated time | 1 Use average survival time
NG-LOG-MCD-AVE100-LIN Yes Yes Estimated time | 1 linear regression
NG-LOG-MCD-AVE100-SVR Yes Yes Estimated time | 1 support vector regression
NG-LOG-MCD-AVE100-RT Yes Yes Estimated time | 1 regression trees
NG-LOG-MCD-AVE100-GAT Yes Yes Estimated time 1 gating regression
NG-LOG-MCD-CEN100-LINc Yes Yes Censored Time | 1 linear regression for censored targets
NG-LOG-MCD-CEN100-SVRc Yes Yes Censored Time | 1 support vector regression for censored targets
Grouping Method: CART with log-rank statistics as splitting criterion
LR-REG-ALL-AVE050-MED No No Estimated time | 0.5 Use median survival time
LR-REG-ALL-AVEO050-AVE No No Estimated time | 0.5 Use average survival time
LR-REG-ALL-AVEQ050-LIN No No Estimated time | 0.5 linear regression
LR-REG-ALL-AVE050-SVR No No Estimated time | 0.5 support vector regression
LR-REG-ALL-AVEO050-RT No No Estimated time | 0.5 regression trees
LR-REG-ALL-AVE050-GAT No No Estimated time | 0.5 gating regression
LR-REG-ALL-CENO50-LINc No No Censored Time | 0.5 linear regression for censored targets
LR-REG-ALL-CEN050-SVRc No No Censored Time | 0.5 support vector regression for censored targets
LR-REG-ALL-AVE100-MED No No Estimated time | 1 Use median survival time
LR-REG-ALL-AVE100-AVE No No Estimated time | 1 Use average survival time
LR-REG-ALL-AVEI100-LIN No No Estimated time 1 linear regression
LR-REG-ALL-AVE100-SVR No No Estimated time | 1 support vector regression
LR-REG-ALL-AVE100-RT No No Estimated time 1 regression trees
LR-REG-ALL-AVE100-GAT No No Estimated time | 1 gating regression
LR-REG-ALL-CEN100-LINc No No Censored Time | 1 linear regression for censored targets
LR-REG-ALL-CEN100-SVRc No No Censored Time | 1 support vector regression for censored targets
LR-REG-MCD-AVEO050-MED No Yes Estimated time | 0.5 Use median survival time
LR-REG-MCD-AVE050-AVE No Yes Estimated time | 0.5 Use average survival time
LR-REG-MCD-AVEO050-LIN No Yes Estimated time | 0.5 linear regression
LR-REG-MCD-AVE050-SVR No Yes Estimated time | 0.5 support vector regression
LR-REG-MCD-AVEO050-RT No Yes Estimated time | 0.5 regression trees
LR-REG-MCD-AVE050-GAT No Yes Estimated time | 0.5 gating regression
LR-REG-MCD-CENO050-LINc No Yes Censored Time | 0.5 linear regression for censored targets
LR-REG-MCD-CENO050-SVRc No Yes Censored Time | 0.5 support vector regression for censored targets
LR-REG-MCD-AVE100-MED No Yes Estimated time | 1 Use median survival time
LR-REG-MCD-AVE100-AVE No Yes Estimated time | 1 Use average survival time
LR-REG-MCD-AVE100-LIN No Yes Estimated time | 1 linear regression
LR-REG-MCD-AVE100-SVR No Yes Estimated time 1 support vector regression
LR-REG-MCD-AVE100-RT No Yes Estimated time | 1 regression trees
LR-REG-MCD-AVE100-GAT No Yes Estimated time | 1 gating regression
LR-REG-MCD-CEN100-LINc No Yes Censored Time | 1 linear regression for censored targets
LR-REG-MCD-CEN100-SVRc No Yes Censored Time | 1 support vector regression for censored targets
LR-LOG-ALL-AVEO050-MED Yes No Estimated time | 0.5 Use median survival time
LR-LOG-ALL-AVEO050-AVE Yes No Estimated time | 0.5 Use average survival time
LR-LOG-ALL-AVEQ50-LIN Yes No Estimated time | 0.5 linear regression
LR-LOG-ALL-AVE050-SVR Yes No Estimated time | 0.5 support vector regression
LR-LOG-ALL-AVEO050-RT Yes No Estimated time | 0.5 regression trees
LR-LOG-ALL-AVE050-GAT Yes No Estimated time | 0.5 gating regression
LR-LOG-ALL-CENO50-LINc Yes No Censored Time | 0.5 linear regression for censored targets
LR-LOG-ALL-CENO050-SVRc Yes No Censored Time | 0.5 support vector regression for censored targets
LR-LOG-ALL-AVE100-MED Yes No Estimated time | 1 Use median survival time
LR-LOG-ALL-AVE100-AVE Yes No Estimated time | 1 Use average survival time
LR-LOG-ALL-AVE100-LIN Yes No Estimated time | 1 linear regression
LR-LOG-ALL-AVE100-SVR Yes No Estimated time 1 support vector regression
LR-LOG-ALL-AVE100-RT Yes No Estimated time | 1 regression trees
LR-LOG-ALL-AVE100-GAT Yes No Estimated time 1 gating regression
LR-LOG-ALL-CEN100-LINc Yes No Censored Time | 1 linear regression for censored targets

Continued on next page
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Table B.2 — continued from previous page

Methods Log-space | Outlier Class label of Censored | Algorithm

Detection | censored data Weights
LR-LOG-ALL-CEN100-SVRc Yes No Censored Time | 1 support vector regression for censored targets
LR-LOG-MCD-AVE050-MED Yes Yes Estimated time | 0.5 Use median survival time
LR-LOG-MCD-AVE050-AVE Yes Yes Estimated time | 0.5 Use average survival time
LR-LOG-MCD-AVE050-LIN Yes Yes Estimated time | 0.5 linear regression
LR-LOG-MCD-AVE050-SVR Yes Yes Estimated time | 0.5 support vector regression
LR-LOG-MCD-AVEO050-RT Yes Yes Estimated time | 0.5 regression trees
LR-LOG-MCD-AVEO050-GAT Yes Yes Estimated time | 0.5 gating regression
LR-LOG-MCD-CENO050-LINc Yes Yes Censored Time | 0.5 linear regression for censored targets
LR-LOG-MCD-CENO050-SVRc Yes Yes Censored Time | 0.5 support vector regression for censored targets
LR-LOG-MCD-AVE100-MED Yes Yes Estimated time | 1 Use median survival time
LR-LOG-MCD-AVE100-AVE Yes Yes Estimated time | 1 Use average survival time
LR-LOG-MCD-AVE100-LIN Yes Yes Estimated time 1 linear regression
LR-LOG-MCD-AVE100-SVR Yes Yes Estimated time | 1 support vector regression
LR-LOG-MCD-AVE100-RT Yes Yes Estimated time 1 regression trees
LR-LOG-MCD-AVE100-GAT Yes Yes Estimated time | 1 gating regression
LR-LOG-MCD-CEN100-LINc Yes Yes Censored Time | 1 linear regression for censored targets
LR-LOG-MCD-CEN100-SVRc Yes Yes Censored Time | 1 support vector regression for censored targets
Grouping Method: CART with gain-ratio as splitting criterion
GR-REG-ALL-AVEO050-MED No No Estimated time | 0.5 Use median survival time
GR-REG-ALL-AVE050-AVE No No Estimated time | 0.5 Use average survival time
GR-REG-ALL-AVE050-LIN No No Estimated time | 0.5 linear regression
GR-REG-ALL-AVE050-SVR No No Estimated time | 0.5 support vector regression
GR-REG-ALL-AVEQ50-RT No No Estimated time | 0.5 regression trees
GR-REG-ALL-AVE050-GAT No No Estimated time | 0.5 gating regression
GR-REG-ALL-CENO050-LINc No No Censored Time | 0.5 linear regression for censored targets
GR-REG-ALL-CENO050-SVRc No No Censored Time | 0.5 support vector regression for censored targets
GR-REG-ALL-AVE100-MED No No Estimated time | 1 Use median survival time
GR-REG-ALL-AVE100-AVE No No Estimated time | 1 Use average survival time
GR-REG-ALL-AVE100-LIN No No Estimated time | 1 linear regression
GR-REG-ALL-AVE100-SVR No No Estimated time 1 support vector regression
GR-REG-ALL-AVE100-RT No No Estimated time 1 regression trees
GR-REG-ALL-AVE100-GAT No No Estimated time | 1 gating regression
GR-REG-ALL-CEN100-LINc No No Censored Time | 1 linear regression for censored targets
GR-REG-ALL-CEN100-SVRc No No Censored Time | 1 support vector regression for censored targets
GR-REG-MCD-AVEO050-MED No Yes Estimated time | 0.5 Use median survival time
GR-REG-MCD-AVE(050-AVE No Yes Estimated time | 0.5 Use average survival time
GR-REG-MCD-AVEO050-LIN No Yes Estimated time | 0.5 linear regression
GR-REG-MCD-AVEQ050-SVR No Yes Estimated time | 0.5 support vector regression
GR-REG-MCD-AVEQ50-RT No Yes Estimated time | 0.5 regression trees
GR-REG-MCD-AVEO050-GAT No Yes Estimated time | 0.5 gating regression
GR-REG-MCD-CENO050-LINc No Yes Censored Time | 0.5 linear regression for censored targets
GR-REG-MCD-CENO050-SVRc No Yes Censored Time | 0.5 support vector regression for censored targets
GR-REG-MCD-AVE100-MED No Yes Estimated time | 1 Use median survival time
GR-REG-MCD-AVE100-AVE No Yes Estimated time | 1 Use average survival time
GR-REG-MCD-AVE100-LIN No Yes Estimated time | 1 linear regression
GR-REG-MCD-AVE100-SVR No Yes Estimated time 1 support vector regression
GR-REG-MCD-AVE100-RT No Yes Estimated time | 1 regression trees
GR-REG-MCD-AVE100-GAT No Yes Estimated time 1 gating regression
GR-REG-MCD-CEN100-LINc No Yes Censored Time | 1 linear regression for censored targets
GR-REG-MCD-CEN100-SVRc No Yes Censored Time | 1 support vector regression for censored targets
GR-LOG-ALL-AVEO050-MED Yes No Estimated time | 0.5 Use median survival time
GR-LOG-ALL-AVE050-AVE Yes No Estimated time | 0.5 Use average survival time
GR-LOG-ALL-AVEO50-LIN Yes No Estimated time | 0.5 linear regression
GR-LOG-ALL-AVEO050-SVR Yes No Estimated time | 0.5 support vector regression
GR-LOG-ALL-AVEO050-RT Yes No Estimated time | 0.5 regression trees
GR-LOG-ALL-AVEO050-GAT Yes No Estimated time | 0.5 gating regression
GR-LOG-ALL-CENO050-LINc Yes No Censored Time | 0.5 linear regression for censored targets
GR-LOG-ALL-CENO050-SVRc Yes No Censored Time | 0.5 support vector regression for censored targets
GR-LOG-ALL-AVE100-MED Yes No Estimated time | 1 Use median survival time
GR-LOG-ALL-AVE100-AVE Yes No Estimated time | 1 Use average survival time
GR-LOG-ALL-AVE100-LIN Yes No Estimated time 1 linear regression
GR-LOG-ALL-AVE100-SVR Yes No Estimated time | 1 support vector regression
GR-LOG-ALL-AVE100-RT Yes No Estimated time 1 regression trees
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Methods Log-space | Outlier Class label of Censored | Algorithm

Detection | censored data Weights
GR-LOG-ALL-AVE100-GAT Yes No Estimated time 1 gating regression
GR-LOG-ALL-CEN100-LINc Yes No Censored Time | 1 linear regression for censored targets
GR-LOG-ALL-CEN100-SVRc Yes No Censored Time | 1 support vector regression for censored targets
GR-LOG-MCD-AVE050-MED Yes Yes Estimated time | 0.5 Use median survival time
GR-LOG-MCD-AVEO050-AVE Yes Yes Estimated time | 0.5 Use average survival time
GR-LOG-MCD-AVEO050-LIN Yes Yes Estimated time | 0.5 linear regression
GR-LOG-MCD-AVE050-SVR Yes Yes Estimated time | 0.5 support vector regression
GR-LOG-MCD-AVEOQ50-RT Yes Yes Estimated time | 0.5 regression trees
GR-LOG-MCD-AVEO050-GAT Yes Yes Estimated time | 0.5 gating regression
GR-LOG-MCD-CENO050-LINc Yes Yes Censored Time | 0.5 linear regression for censored targets
GR-LOG-MCD-CENO050-SVRc Yes Yes Censored Time | 0.5 support vector regression for censored targets
GR-LOG-MCD-AVE100-MED Yes Yes Estimated time | 1 Use median survival time
GR-LOG-MCD-AVE100-AVE Yes Yes Estimated time | 1 Use average survival time
GR-LOG-MCD-AVE100-LIN Yes Yes Estimated time 1 linear regression
GR-LOG-MCD-AVE100-SVR Yes Yes Estimated time | 1 support vector regression
GR-LOG-MCD-AVE100-RT Yes Yes Estimated time | 1 regression trees
GR-LOG-MCD-AVE100-GAT Yes Yes Estimated time 1 gating regression
GR-LOG-MCD-CEN100-LINc Yes Yes Censored Time | 1 linear regression for censored targets
GR-LOG-MCD-CEN100-SVRc Yes Yes Censored Time | 1 support vector regression for censored targets

Table B.3: Experimental Results

Methods RAE Cl RAE®® Li,<12 RAE,~12
BASELINE-MED 0.589140.01 | 0.5000+0.00 || 0.563840.01 | undefined undefined
BASELINE-AVE 0.608140.00 | 0.5000+0.00 || 0.587540.00 | undefined undefined
HANDCRAFT-LIN 0.594240.01 | 0.5090+0.01 || 0.5649+0.01 | 4.8967+1.08 0.5863+0.01
HANDCRAFT-SVR 0.606740.00 | 0.5090+0.01 || 0.585940.00 | 9.9984+4.00 9.723344.55
NG-CEN100-ALL-REG-LIN 0.559240.02 | 0.74424+0.01 || 0.5220+0.02 | 4.2071+£0.25 0.5403+0.01
NG-CEN100-ALL-REG-SVR 0.558240.03 | 0.7434£0.01 || 0.52874+0.03 | 4.9575+0.41 0.543440.02
NG-CEN100-ALL-REG-RT 0.560140.02 | 0.74834+0.02 || 0.5266+0.01 | 4.7212+0.81 0.543840.01
NG-REG-ALL-AVE050-LIN 0.552440.02 | 0.7498+0.01 || 0.51024+0.02 | 4.1004+0.22 0.5257+0.01
NG-REG-ALL-AVE(050-SVR 0.55384+0.04 | 0.7493+0.01 || 0.4980+0.02 | 4.1903+0.39 0.515240.02
NG-REG-ALL-AVE050-RT 0.56304+0.04 | 0.7517£0.01 || 0.522540.02 | 5.1055+1.06 0.528140.02
NG-REG-ALL-AVE050-MED 0.591240.01 | 0.5000£0.00 || 0.566740.01 | undefined undefined
NG-REG-ALL-CENO050-LINc 0.625240.04 | 0.74974+0.01 || 0.5526+0.03 | 4.0587+0.39 0.532140.02
NG-REG-ALL-CENO050-SVRc 0.58904+0.03 | 0.7499+0.01 || 0.55134+0.02 | 4.574340.35 0.566140.02
NG-REG-ALL-AVE(050-AVE 0.611440.00 | 0.5000£0.00 || 0.591440.01 | undefined undefined
NG-REG-ALL-AVE(Q50-GAT 0.562240.02 | 0.74484+0.01 || 0.51524+0.02 | 4.5236+0.46 0.5274+0.02
NG-REG-ALL-AVE100-LIN 0.562140.02 | 0.7446£0.01 || 0.52784+0.02 | 4.3505+0.20 0.542440.01
NG-REG-ALL-AVE100-SVR 0.54684+0.03 | 0.74324+0.01 || 0.5092+0.02 | 3.9596+0.47 0.526740.02
NG-REG-ALL-AVE100-RT 0.571740.03 | 0.7452+0.02 || 0.537740.02 | 5.0832+0.89 0.551040.02
NG-REG-ALL-AVE100-MED 0.591240.01 | 0.5000£0.00 || 0.566740.01 | undefined undefined
NG-REG-ALL-CEN100-LINc 0.558940.02 | 0.7445+0.01 || 0.52154+0.02 | 4.1591+0.29 0.540540.01
NG-REG-ALL-CEN100-SVRc 0.575140.03 | 0.7499+0.01 || 0.540940.03 | 4.6095+0.54 0.559040.03
NG-REG-ALL-AVE100-AVE 0.611440.00 | 0.5000£0.00 || 0.591440.01 | undefined undefined
NG-REG-ALL-AVE100-GAT 0.56694+0.01 | 0.7456+0.01 || 0.53154+0.01 | 4.5456+0.51 0.5470+0.01
NG-REG-MCD-AVEO050-LIN 0.55064+0.03 | 0.7498+0.01 || 0.508540.02 | 4.1940+0.43 0.522740.02
NG-REG-MCD-AVE050-SVR 0.55034+0.04 | 0.75014+0.01 || 0.4953+0.02 | 4.1312+0.40 0.5125+0.03
NG-REG-MCD-AVEO050-RT 0.561940.03 | 0.7552+0.01 || 0.518040.02 | 5.2004+0.66 0.517540.02
NG-REG-MCD-AVE050-MED 0.589340.00 | 0.5000£0.00 || 0.565040.00 | undefined undefined
NG-REG-MCD-CENO050-LINc 0.602640.04 | 0.75754+0.01 || 0.53574+0.03 | 4.0014+0.36 0.5169+0.03
NG-REG-MCD-CEN050-SVRc || 0.5510+£0.03 | 0.7547+0.01 || 0.5137+0.03 | 4.1875+0.47 0.523540.03
NG-REG-MCD-AVE050-AVE 0.609140.01 | 0.5000£0.00 || 0.588840.01 | undefined undefined
NG-REG-MCD-AVEOQ50-GAT 0.555640.02 | 0.75024+0.01 || 0.51074+0.02 | 4.9558+0.31 0.512540.02
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Methods RAE cl RAE®® Lly<12 RAE,>12

NG-REG-MCD-AVE100-LIN 0.5586+0.02 | 0.7421+0.01 || 0.5256+0.01 | 4.2028+0.38 | 0.5454+0.01
NG-REG-MCD-AVE100-SVR 0.547940.03 | 0.741840.01 || 0.5074+0.02 | 3.9782+0.43 | 0.5267+0.02
NG-REG-MCD-AVE100-RT 0.568840.03 | 0.745240.02 || 0.5348+0.02 | 4.5674+0.79 | 0.5545+0.02
NG-REG-MCD-AVE100-MED || 0.5900+0.01 | 0.5000+0.00 || 0.5654+0.01 | undefined undefined

NG-REG-MCD-CEN100-LINc || 0.550640.02 | 0.751840.01 || 0.5191+0.01 | 4.1870+£0.34 | 0.5355+0.01
NG-REG-MCD-CEN100-SVRc || 0.576640.02 | 0.753040.01 || 0.5477+0.01 | 4.8107+£0.38 | 0.5621+0.01
NG-REG-MCD-AVE100-AVE 0.6114+0.01 | 0.500040.00 || 0.591540.01 | undefined undefined

NG-REG-MCD-AVE100-GAT 0.561840.01 | 0.748340.02 || 0.5296+0.01 | 4.6106£0.59 | 0.5427+0.02
NG-LOG-ALL-AVE050-LIN 0.5568+0.05 | 0.7698+0.01 || 0.5010+£0.04 | 4.4688+0.51 | 0.4937+0.04
NG-LOG-ALL-AVE050-SVR 0.553540.04 | 0.765840.01 || 0.5001£0.03 | 4.3953+0.48 | 0.4904+0.03
NG-LOG-ALL-AVE050-RT 0.558740.04 | 0.759140.01 || 0.5039+0.03 | 4.4559+0.33 | 0.5064+0.05
NG-LOG-ALL-AVE050-MED 0.5956+0.00 | 0.500040.00 || 0.572740.00 | undefined undefined

NG-LOG-ALL-CEN050-LINc 0.690240.08 | 0.7666:0.01 || 0.5990+0.06 | 4.6232+0.68 | 0.5256+0.04
NG-LOG-ALL-CEN050-SVRc || 0.572540.03 | 0.76294+0.01 || 0.5329+0.02 | 4.3343+0.38 | 0.5506+0.03
NG-LOG-ALL-AVE050-AVE 0.584140.01 | 0.500040.00 || 0.5531+0.01 | undefined undefined

NG-LOG-ALL-AVE050-GAT 0.595640.00 | 0.500040.00 || 0.5727-+£0.00 | undefined undefined

NG-LOG-ALL-AVE100-LIN 0.5380+0.04 | 0.7679+0.01 || 0.4929+0.03 | 4.4588+0.42 | 0.4955+0.03
NG-LOG-ALL-AVE100-SVR 0.539340.03 | 0.764140.01 || 0.4967+0.03 | 4.2782+0.32 | 0.5055+0.03
NG-LOG-ALL-AVE100-RT 0.541840.03 | 0.758040.01 || 0.4966+0.02 | 4.5625+0.36 | 0.501440.04
NG-LOG-ALL-AVE100-MED 0.5956+0.00 | 0.500040.00 || 0.572740.00 | undefined undefined

NG-LOG-ALL-CEN100-LINc 0.546240.04 | 0.767840.01 || 0.4968+0.03 | 4.4718+£0.49 | 0.4909+0.04
NG-LOG-ALL-CEN100-SVRc || 0.575840.03 | 0.762440.01 || 0.5388-+0.02 | 4.3558+0.33 | 0.5580+0.03
NG-LOG-ALL-AVE100-AVE 0.584140.01 | 0.500040.00 || 0.5531+0.01 | undefined undefined

NG-LOG-ALL-AVE100-GAT 0.539240.03 | 0.764040.01 || 0.4952+0.02 | 4.2810+£0.32 | 0.5049+0.03
NG-LOG-MCD-AVE050-LIN 0.5548+0.05 | 0.7687+£0.01 || 0.5005+£0.04 | 4.4726+0.60 | 0.4988+0.04
NG-LOG-MCD-AVE050-SVR 0.551340.04 | 0.765040.01 || 0.4979+0.03 | 4.3860+0.62 | 0.4950+0.03
NG-LOG-MCD-AVE050-RT 0.568240.05 | 0.75954+0.01 || 0.5153+0.04 | 4.6984+0.64 | 0.5105+0.03
NG-LOG-MCD-AVE050-MED || 0.5939+0.01 | 0.5000-+0.00 || 0.5707+0.01 | undefined undefined

NG-LOG-MCD-CENO050-LINc || 0.687040.09 | 0.76454+0.01 || 0.5964-£0.07 | 4.6198+0.75 | 0.5329+0.05
NG-LOG-MCD-CEN050-SVRc || 0.575540.04 | 0.761440.01 || 0.5335+0.03 | 4.3568+0.40 | 0.553140.04
NG-LOG-MCD-AVE050-AVE 0.584340.01 | 0.500040.00 || 0.5530+0.01 | undefined undefined

NG-LOG-MCD-AVE050-GAT 0.593940.01 | 0.500040.00 || 0.5707-£0.01 | undefined undefined

NG-LOG-MCD-AVE100-LIN 0.5385+0.04 | 0.7649+0.01 || 0.4926+£0.03 | 4.5260+0.46 | 0.4968+0.04
NG-LOG-MCD-AVE100-SVR 0.537640.03 | 0.761240.01 || 0.4955+£0.03 | 4.3355+0.40 | 0.5064+0.03
NG-LOG-MCD-AVE100-RT 0.553640.03 | 0.753640.01 || 0.5073+0.02 | 4.6130+0.39 | 0.514040.02
NG-LOG-MCD-AVE100-MED || 0.595640.01 | 0.500040.00 || 0.5725+0.01 | undefined undefined

NG-LOG-MCD-CEN100-LINc || 0.5468-+0.05 | 0.7650+0.01 || 0.4964+0.04 | 4.3729+0.53 | 0.501340.04
NG-LOG-MCD-CEN100-SVRc || 0.575540.04 | 0.76004+0.01 || 0.5347+0.03 | 4.3591+0.41 | 0.5555+0.03
NG-LOG-MCD-AVE100-AVE 0.582840.01 | 0.500040.00 || 0.5522+0.01 | undefined undefined

NG-LOG-MCD-AVE100-GAT 0.537640.03 | 0.761240.01 || 0.4955+0.03 | 4.3355+0.39 | 0.5063+0.03
LR-REG-ALL-AVE050-LIN 0.5598+0.02 | 0.74214+0.01 [[ 0.5168+0.02 | 4.1554£0.32 | 0.5307+0.01
LR-REG-ALL-AVE050-SVR 0.574640.04 | 0.740040.01 || 0.5107£0.01 | 4.3420+0.19 | 0.5157+0.03
LR-REG-ALL-AVE050-RT 0.5679+0.02 | 0.74704+0.02 || 0.5265+£0.02 | 5.18834+0.60 | 0.529740.02
LR-REG-ALL-AVE050-MED 0.601940.01 | 0.525140.01 || 0.5693+0.01 | 6.1599+0.65 | 0.5871+0.01
LR-REG-ALL-CENO050-LINc 0.635940.02 | 0.745340.01 || 0.5650-£0.02 | 4.2453+0.43 | 0.5358+0.01
LR-REG-ALL-CENO050-SVRc 0.5801+0.02 | 0.742640.01 || 0.53074+0.01 | 4.2794+0.48 | 0.5378+0.03
LR-REG-ALL-AVE050-AVE 0.612040.01 | 0.525240.01 || 0.5887+£0.01 | 9.1863+3.76 | 7.4443+5.58
LR-REG-ALL-AVE050-GAT 0.570540.01 | 0.747640.02 || 0.5213+0.01 | 4.6896+0.24 | 0.530040.02
LR-REG-ALL-AVE100-LIN 0.5649+0.02 | 0.7378+0.02 || 0.5312+£0.02 | 4.0842+£0.35 | 0.5495+0.01
LR-REG-ALL-AVE100-SVR 0.567440.03 | 0.736040.01 || 0.5238+0.02 | 4.0757+£0.39 | 0.533740.02
LR-REG-ALL-AVE100-RT 0.576540.01 | 0.739340.02 || 0.5436+0.01 | 4.8189+0.39 | 0.5568+0.01
LR-REG-ALL-AVE100-MED 0.601940.01 | 0.525140.01 || 0.5693+0.01 | 6.1599+0.65 | 0.5871+0.01
LR-REG-ALL-CEN100-LINc 0.561840.02 | 0.741040.01 || 0.5252+0.02 | 3.9586+0.41 | 0.5480+0.01
LR-REG-ALL-CEN100-SVRc 0.5907+0.03 | 0.742440.01 || 0.5404+0.02 | 4.40744+0.40 | 0.546540.02
LR-REG-ALL-AVE100-AVE 0.612040.01 | 0.525240.01 || 0.5887+£0.01 | 9.1863+3.76 | 7.4443+5.58
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Methods RAE cl RAE®® Lly<12 RAE,>12

LR-REG-ALL-AVE100-GAT 0.5777+0.02 | 0.7462+0.02 || 0.5405+£0.02 | 4.8822+0.31 | 0.5475+0.01
LR-REG-MCD-AVEO050-LIN 0.557340.02 | 0.7408+0.01 || 0.5138+£0.01 | 4.1938+0.38 | 0.5312+0.01
LR-REG-MCD-AVE050-SVR 0.582340.04 | 0.7380+0.01 || 0.5135+0.02 | 4.3787+0.32 | 0.5204+0.02
LR-REG-MCD-AVE050-RT 0.565940.02 | 0.752740.01 || 0.5224+0.02 | 5.3885+0.82 | 0.5253+0.01
LR-REG-MCD-AVE050-MED || 0.596340.01 | 0.520340.01 || 0.5684+0.01 | 7.5716+£2.23 | 2.8711+4.56
LR-REG-MCD-CENO050-LINc 0.6248+0.03 | 0.74994+0.01 || 0.55004+0.02 | 4.1771+£0.43 | 0.5213+0.03
LR-REG-MCD-CEN050-SVRc || 0.591740.04 | 0.744740.01 || 0.5404£0.02 | 4.6512+0.52 | 0.5465+0.03
LR-REG-MCD-AVE050-AVE 0.609540.01 | 0.520340.01 || 0.5895+0.01 | undefined undefined

LR-REG-MCD-AVE050-GAT 0.5662+0.02 | 0.750440.02 || 0.5189+0.01 | 4.94264+0.41 | 0.526440.02
LR-REG-MCD-AVE100-LIN 0.566040.02 | 0.7380+0.01 || 0.5308-£0.02 | 4.1544+0.35 | 0.5469+0.01
LR-REG-MCD-AVE100-SVR 0.5675+0.04 | 0.735240.01 || 0.5179+0.02 | 4.06244+0.52 | 0.532840.02
LR-REG-MCD-AVE100-RT 0.570340.01 | 0.741240.02 || 0.5361+0.01 | 4.7079+£0.60 | 0.5526+0.01
LR-REG-MCD-AVE100-MED || 0.595540.01 | 0.51994+0.01 || 0.5670+£0.00 | 7.5588-+2.28 | 2.8694+4.57
LR-REG-MCD-CEN100-LINc 0.5595+0.02 | 0.7480+0.01 || 0.5223+0.01 | 4.1206+0.29 | 0.536440.01
LR-REG-MCD-CEN100-SVRc || 0.587940.04 | 0.74674+0.01 || 0.5408-+£0.03 | 4.5890+0.67 | 0.5545+0.03
LR-REG-MCD-AVE100-AVE 0.607840.01 | 0.519840.01 || 0.5871+0.01 | 11.51724+0.97 | 9.7198+4.56
LR-REG-MCD-AVE100-GAT 0.5660+0.01 | 0.74934+0.02 || 0.5321£0.01 | 4.59304+0.72 | 0.5448+0.02
LR-LOG-ALL-AVE050-LIN 0.567740.05 | 0.759640.01 || 0.5087+0.04 | 4.4999+0.49 | 0.5007+0.04
LR-LOG-ALL-AVE050-SVR 0.5709+0.04 | 0.754040.02 || 0.5126+0.03 | 4.38724+0.33 | 0.504240.04
LR-LOG-ALL-AVE(050-RT 0.583940.04 | 0.75754+0.01 || 0.5239+0.03 | 4.7084+0.52 | 0.5170+0.03
LR-LOG-ALL-AVE050-MED 0.605340.01 | 0.525140.01 || 0.5744+0.01 | 6.1516+0.66 | 0.592740.01
LR-LOG-ALL-CEN050-LINc 0.7093+0.08 | 0.762440.01 || 0.61354+0.07 | 4.7654+0.73 | 0.5297+0.03
LR-LOG-ALL-CENO050-SVRc 0.584440.03 | 0.754540.01 || 0.5400-£0.02 | 4.4038+0.31 | 0.5414+0.03
LR-LOG-ALL-AVE050-AVE 0.592540.01 | 0.525340.01 || 0.5560+0.01 | 5.8892+0.62 | 0.578440.01
LR-LOG-ALL-AVE050-GAT 0.6016+0.01 | 0.527140.01 || 0.57204£0.01 | 4.9960+1.36 | 0.592440.01
LR-LOG-ALL-AVE100-LIN 0.553240.04 | 0.7588+0.01 || 0.5032+£0.03 | 4.5052+0.44 | 0.5017+0.03
LR-LOG-ALL-AVE100-SVR 0.5607+0.03 | 0.753540.01 || 0.50954+0.02 | 4.3449+0.25 | 0.5158+0.03
LR-LOG-ALL-AVE100-RT 0.566640.03 | 0.755240.01 || 0.5145+£0.02 | 4.72314£0.49 | 0.5162+0.03
LR-LOG-ALL-AVE100-MED 0.605340.01 | 0.525140.01 || 0.5744+0.01 | 6.1516+£0.66 | 0.5927+0.01
LR-LOG-ALL-CEN100-LINc 0.5578+0.04 | 0.76354+0.01 || 0.5064+0.03 | 4.4927+0.47 | 0.4982+0.03
LR-LOG-ALL-CEN100-SVRc 0.583540.03 | 0.754740.01 || 0.5400-£0.02 | 4.3538-+0.28 | 0.5449+0.03
LR-LOG-ALL-AVE100-AVE 0.592540.01 | 0.525340.01 || 0.5560+0.01 | 5.8892+0.62 | 0.5784+0.01
LR-LOG-ALL-AVE100-GAT 0.5480+0.03 | 0.759140.01 || 0.504940.02 | 4.3366+0.25 | 0.5128+0.03
LR-LOG-MCD-AVE050-LIN 0.5676+0.05 | 0.7650+0.01 || 0.5085+0.04 | 4.5858+0.61 | 0.4992+0.04
LR-LOG-MCD-AVE050-SVR 0.5729+0.04 | 0.758240.01 || 0.51294+0.03 | 4.4462+0.37 | 0.5025+0.03
LR-LOG-MCD-AVEQ50-RT 0.574940.03 | 0.758340.01 || 0.5132+0.02 | 4.7314+0.29 | 0.5064+0.03
LR-LOG-MCD-AVEQ050-MED || 0.605440.01 | 0.518040.01 || 0.5746+0.01 | 8.4429+4.26 | 0.5936+0.01
LR-LOG-MCD-CENO050-LINc || 0.7219+0.08 | 0.7630+0.01 || 0.6175+£0.06 | 4.91324+0.94 | 0.528840.02
LR-LOG-MCD-CENO050-SVRc || 0.595240.04 | 0.756440.01 || 0.5486+0.04 | 4.3462+0.35 | 0.558440.04
LR-LOG-MCD-AVE050-AVE 0.592740.01 | 0.518040.01 || 0.5567+0.01 | 8.3889+4.48 | 0.5808+0.01
LR-LOG-MCD-AVEQ050-GAT 0.6006+0.01 | 0.51934+0.01 || 0.5700+0.01 | 7.8540+4.85 | 0.591440.01
LR-LOG-MCD-AVE100-LIN 0.5518+0.04 | 0.7581+0.01 || 0.4992+0.03 | 4.5228+0.49 | 0.4984+0.03
LR-LOG-MCD-AVE100-SVR 0.562640.04 | 0.754840.01 || 0.5057+£0.02 | 4.4316+0.28 | 0.5108+0.03
LR-LOG-MCD-AVE100-RT 0.561640.03 | 0.753340.01 || 0.5106+0.02 | 4.9125+0.52 | 0.511640.02
LR-LOG-MCD-AVE100-MED || 0.6007+0.01 | 0.5180+0.01 || 0.5721+0.01 | 7.84654+2.48 | 0.591740.00
LR-LOG-MCD-CEN100-LINc || 0.560140.04 | 0.760340.01 || 0.5058+0.03 | 4.4828+0.44 | 0.5007+0.04
LR-LOG-MCD-CEN100-SVRc || 0.6044-£0.04 | 0.753040.01 || 0.5507+0.02 | 4.6020+0.44 | 0.556340.02
LR-LOG-MCD-AVE100-AVE 0.5878+0.01 | 0.518240.01 || 0.5531+0.01 | 7.40404+2.70 | 0.577240.01
LR-LOG-MCD-AVE100-GAT 0.553340.03 | 0.757740.01 || 0.5043+£0.02 | 4.5273+£0.23 | 0.5098+0.03
GR-REG-ALL-AVEQ50-LIN 0.5874+0.04 | 0.7296+0.02 [[ 0.5389+0.03 | 4.32724+0.81 | 0.5423+0.02
GR-REG-ALL-AVE050-SVR 0.627740.06 | 0.723740.01 || 0.5518+0.03 | 4.6823+0.85 | 0.5327+0.01
GR-REG-ALL-AVE050-RT 0.568940.02 | 0.730540.01 || 0.5263+0.02 | 5.1001+£0.51 | 0.5312+0.01
GR-REG-ALL-AVE050-MED 0.5897+0.00 | 0.557640.02 || 0.564240.00 | undefined undefined

GR-REG-ALL-CEN050-LINc 0.682640.05 | 0.724940.02 || 0.5998+0.04 | 4.7162+0.70 | 0.5484+0.02
GR-REG-ALL-CEN050-SVRc || 0.6259-+0.07 | 0.718240.01 || 0.5665+0.04 | 4.6510+£0.90 | 0.5667+0.01
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Table B.3 — continued from previous page

Methods RAE cl RAE®® Lly<12 RAE,>12

GR-REG-ALL-AVE050-AVE 0.6075+0.00 | 0.582340.01 0.5873+£0.00 | undefined undefined

GR-REG-ALL-AVE050-GAT 0.5797+0.02 | 0.7266+0.02 0.53354+0.02 | 4.5583+0.44 0.5450+0.02
GR-REG-ALL-AVEI100-LIN 0.5848+0.02 | 0.7267+0.02 0.5467+£0.02 | 4.2784+0.54 0.5622+0.02
GR-REG-ALL-AVE100-SVR 0.6180+£0.04 | 0.7183+0.01 0.5546+0.02 | 4.5905+0.53 0.5555+0.01
GR-REG-ALL-AVEI100-RT 0.5827+0.01 | 0.730240.01 0.5464+0.01 | 5.21161+0.46 0.5554+0.01
GR-REG-ALL-AVE100-MED 0.5897+0.00 | 0.5576+0.02 0.5642+0.00 | undefined undefined

GR-REG-ALL-CEN100-LINc 0.5852+0.03 | 0.7269+0.02 0.5445+0.02 | 4.2130+0.71 0.5576+0.02
GR-REG-ALL-CEN100-SVRc 0.6240+0.05 | 0.719040.01 0.5570+0.02 | 4.6325+0.63 0.5506+0.01
GR-REG-ALL-AVE100-AVE 0.6075+£0.00 | 0.5823+0.01 0.5873+0.00 | undefined undefined

GR-REG-ALL-AVE100-GAT 0.5822+0.02 | 0.7252+0.01 0.5412+0.02 | 4.3555+0.51 0.5630+0.01
GR-REG-MCD-AVEQ50-LIN 0.5811+£0.03 | 0.7329+0.02 0.5341+£0.03 | 4.2990+0.60 0.5405+0.02
GR-REG-MCD-AVEO050-SVR 0.6260+£0.07 | 0.7262+0.01 0.5471£0.04 | 4.4300+0.67 0.5358+0.02
GR-REG-MCD-AVEQ50-RT 0.5700+0.03 | 0.730940.01 0.5281+0.03 | 5.0089+0.41 0.5318+0.02
GR-REG-MCD-AVEQ050-MED 0.5896+0.00 | 0.5599+0.02 0.5643+0.00 | undefined undefined

GR-REG-MCD-CENO050-LINc 0.6514+0.05 | 0.7356+0.02 0.5774+0.04 | 4.4634+0.65 0.5368+0.02
GR-REG-MCD-CENO050-SVRc 0.6122+0.05 | 0.724140.01 0.5619+0.03 | 4.71274+0.82 0.5564+0.02
GR-REG-MCD-AVEO050-AVE 0.6072+0.00 | 0.5737+0.02 0.5865+0.00 | undefined undefined

GR-REG-MCD-AVEO050-GAT 0.5983+0.02 | 0.7178+0.01 0.5424+0.01 | 4.5478+0.60 0.5553+0.01
GR-REG-MCD-AVE100-LIN 0.5863+£0.02 | 0.7247+0.01 0.5436+0.02 | 4.1399+0.60 0.5641+0.01
GR-REG-MCD-AVE100-SVR 0.6011£0.04 | 0.7194+0.01 0.5483+0.03 | 4.5700+0.76 0.5504+0.02
GR-REG-MCD-AVEI100-RT 0.5829+0.01 | 0.726340.01 0.5486+0.01 | 5.25694+0.59 0.5577+0.01
GR-REG-MCD-AVE100-MED 0.5902+0.00 | 0.5595+0.02 0.5648+0.00 | undefined undefined

GR-REG-MCD-CEN100-LINc 0.5859+0.04 | 0.7329+0.01 0.5381+£0.03 | 4.3004+0.88 0.5558+0.02
GR-REG-MCD-CEN100-SVRc 0.6303+0.10 | 0.721640.01 0.5565+0.07 | 4.41554+0.96 0.5482+0.02
GR-REG-MCD-AVEI100-AVE 0.6089+0.01 | 0.5783+0.02 0.5888+0.01 | undefined undefined

GR-REG-MCD-AVE100-GAT 0.5935+£0.02 | 0.7249+0.01 0.5485+0.01 | 4.4011+£0.51 0.5625+0.01
GR-LOG-ALL-AVEO050-LIN 0.5864+0.06 | 0.7545+0.02 0.5194+0.04 | 4.6709+0.50 0.5128+0.03
GR-LOG-ALL-AVE050-SVR 0.6022+0.07 | 0.7478+0.02 0.5325+0.04 | 4.7410+0.46 0.5132+0.03
GR-LOG-ALL-AVEOQ50-RT 0.5804+0.05 | 0.745240.02 0.5207+£0.04 | 4.64544+0.49 0.5170+0.03
GR-LOG-ALL-AVEQ050-MED 0.5918+0.00 | 0.5554+0.02 0.5679+0.00 | undefined undefined

GR-LOG-ALL-CENO050-LINc 0.7333+£0.09 | 0.7430+0.02 0.6355+0.07 | 4.9521+0.66 0.5530+0.04
GR-LOG-ALL-CENO050-SVRc 0.6470+£0.08 | 0.735740.02 0.5784+0.05 | 4.7968+0.73 0.5678+0.03
GR-LOG-ALL-AVEO050-AVE 0.5845+0.01 | 0.5863+0.03 0.5524+0.01 | undefined undefined

GR-LOG-ALL-AVEQ050-GAT 0.5918+0.00 | 0.555440.02 0.5679+0.00 | undefined undefined

GR-LOG-ALL-AVE100-LIN 0.5657+0.05 | 0.7535+0.02 0.5127+£0.04 | 4.5285+0.48 0.5178+0.03
GR-LOG-ALL-AVE100-SVR 0.5829+0.05 | 0.7458+0.02 0.5258+0.03 | 4.5575+0.51 0.5311+£0.03
GR-LOG-ALL-AVE100-RT 0.5697+0.03 | 0.7424+0.02 0.5179+0.03 | 4.7563+0.37 0.5134+0.02
GR-LOG-ALL-AVE100-MED 0.5918+0.00 | 0.5554+0.02 0.5679+0.00 | undefined undefined

GR-LOG-ALL-CEN100-LINc 0.5776+0.05 | 0.7532+0.02 0.5167+0.04 | 4.6082+0.46 0.5172+0.03
GR-LOG-ALL-CEN100-SVRc 0.5946+0.06 | 0.746010.02 0.5299+0.04 | 4.6517+0.59 0.5250+0.03
GR-LOG-ALL-AVE100-AVE 0.5845+0.01 | 0.5863+0.03 0.5524+0.01 | undefined undefined

GR-LOG-ALL-AVE100-GAT 0.6071+£0.03 | 0.6718+0.04 0.5528+0.01 | 5.0383+0.42 0.5631+£0.02
GR-LOG-MCD-AVEOQ50-LIN 0.5838+0.06 | 0.7561+0.02 0.5190+0.04 | 4.7824+0.72 0.5047+0.02
GR-LOG-MCD-AVEO50-SVR 0.5978+0.06 | 0.744940.01 0.5288+0.04 | 4.8247+0.50 0.5042+0.03
GR-LOG-MCD-AVEOQ50-RT 0.5872+0.04 | 0.743040.02 0.5241+£0.04 | 4.8171+0.54 0.5152+0.04
GR-LOG-MCD-AVE050-MED 0.5909+0.00 | 0.5596+0.02 0.5671£0.01 | undefined undefined

GR-LOG-MCD-CENO050-LINc 0.7387+0.09 | 0.7479+0.02 0.6375+£0.07 | 4.9236+0.83 0.5589+0.04
GR-LOG-MCD-CENO050-SVRc 0.6246+0.07 | 0.7387+0.02 0.5674+0.05 | 4.6752+0.55 0.5617+0.04
GR-LOG-MCD-AVEQ050-AVE 0.5826+0.01 | 0.5871+0.03 0.5504+0.01 | undefined undefined

GR-LOG-MCD-AVEO050-GAT 0.5909+0.00 | 0.5596+0.02 0.5671+£0.01 | undefined undefined

GR-LOG-MCD-AVEI100-LIN 0.5593+0.04 | 0.7460+0.02 0.5056+0.04 | 4.5079+0.65 0.5196+0.03
GR-LOG-MCD-AVE100-SVR 0.5751+£0.04 | 0.7388+0.02 0.5221+0.03 | 4.6645+0.64 0.5334+0.02
GR-LOG-MCD-AVE100-RT 0.5599+0.03 | 0.739040.02 0.5055+0.03 | 4.7115+0.47 0.5165+0.02
GR-LOG-MCD-AVE100-MED 0.5840+0.00 | 0.5629+0.03 0.5595+0.01 | undefined undefined

GR-LOG-MCD-CEN100-LINc 0.5709+0.05 | 0.7468+0.02 0.5085+0.04 | 4.7050+0.65 0.5139+0.02
GR-LOG-MCD-CEN100-SVRc 0.5890+0.05 | 0.7382+0.02 0.5274+0.04 | 4.63311+0.58 0.5324+0.03

Continued on next page
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Table B.3 — continued from previous page

Methods RAE cl RAE®® Lly<12 RAE,>12
GR-LOG-MCD-AVE100-AVE 0.5776+0.00 | 0.5989+0.04 || 0.5453+0.01 | undefined undefined
GR-LOG-MCD-AVE100-GAT 0.585640.03 | 0.6689+0.04 || 0.5419+0.02 | 4.7328+0.62 | 0.5582+0.02
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Table B.4: A Visualization of a decision tree
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Table B.4 — continued from previous page
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B.3 Best Results

Table B.5: Top 10 models

Statistical Results of the Top 10 models

Regressor RAE CI RAE"S Ll,c12 RAE,~ 12

NG-LOG-MCD-AVE100-GAT || 0.5376+0.03 | 0.7612+0.01 || 0.495540.03 | 4.3355+£0.39 | 0.5063+0.03
NG-LOG-MCD-AVE100-SVR || 0.5376+0.03 | 0.7612+0.01 || 0.49554+0.03 | 4.3355+£0.40 | 0.5064+0.03
NG-LOG-ALL-AVE100-LIN 0.5380+0.04 | 0.7679+0.01 || 0.4929+0.03 | 4.4588+0.42 | 0.4955+0.03
NG-LOG-MCD-AVE100-LIN 0.5385+0.04 | 0.7649+0.01 || 0.492640.03 | 4.5260+0.46 | 0.5068+0.04
NG-LOG-ALL-AVE100-GAT 0.5392+0.03 | 0.7640+0.01 || 0.495240.02 | 4.2810+£0.32 | 0.5049+0.03
NG-LOG-ALL-AVE100-SVR 0.5393+0.03 | 0.7641+0.01 || 0.496740.03 | 4.2782+0.32 | 0.5055+0.03
NG-LOG-ALL-AVE100-RT 0.5418+0.03 | 0.7580+0.01 || 0.4966+0.02 | 4.5625+0.36 | 0.5014+0.04
NG-LOG-ALL-CEN100-LINc 0.5462+0.04 | 0.7678+0.01 || 0.4968+0.03 | 4.4718+0.49 | 0.4909+0.04
NG-LOG-MCD-AVEI100-LINc || 0.54684+0.05 | 0.7650£0.01 || 0.496440.04 | 4.3729+0.53 | 0.501340.04
NG-REG-ALL-AVE100-SVR 0.5468+0.03 | 0.7432+0.01 || 0.509240.02 | 3.9596+0.47 | 0.5267+0.02

Generalization of the Best Combination

Grouping Method: No grouping
Log-space Transformation: Yes

Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Handling Censored Data: take average survival time of uncensored patients in the risk set
Learning Algorithm: gating regression, support vector regression, or linear regression
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Table B.7: Parameters

Fx

Linear Regression

2.34
0.65
-1.73
-2.87
-4.99
0.19
-1.46
1.5
1.64
2.19
-0.39
-8.68
2.52
2.56
-4.73
16.71
17.89
12.77
-0.13
-0.8

0.15
0.04
0.36
8.59

GENDER=FEMALE
BOX2-SCORE
PERFORMANCE-STATUS-2
PERFORMANCE-STATUS-3
PERFORMANCE-STATUS-4
BMI

NO-PROBLEM
NO-APPETITE

PAIN

DRY-MOUTH
WEIGHT-CHANGEPOINT
SITE-BRUNCHUS-LUNG
SITE-COLORECTAL
SITE-HEAD-AND-NECK
SITE-PANCREAS

STAGE-1

STAGE-2

STAGE-3

AGE

GRANULOCYTES
LDH-SERUM

WBC-COUNT

HGB

ALBUMIN

Support Vector Regression

0.08
-0.04
0.02
-0.02
-0.02
-0.05
-0.03
0.06
-0.06
0.06
-0.01
-0.03

0.03

-0.02
0.05
-0.01
0.01
0.01
0.04

(standardized) GENDER

(standardized) BOX1-SCORE

(standardized) BOX2-SCORE

(standardized) PERFORMANCE-STATUS-1
(standardized) PERFORMANCE-STATUS-2
(standardized) PERFORMANCE-STATUS-3
(standardized) PERFORMANCE-STATUS-4
(standardized) BMI

(standardized) NO-PROBLEM
(standardized) NO-APPETITE
(standardized) NAUSEA

(standardized) CONSTIPATION
(standardized) SORE-MOUTH
(standardized) TASTE-FUNNY
(standardized) SMELL

(standardized) SWALLOW

(standardized) FEEL-FULL

(standardized) PAIN

(standardized) OTHER

(standardized) VOMIT

(standardized) DIARRHEA

(standardized) DRY-MOUTH

Continued on next page
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Table B.7 — continued from previous page
6| X

0.04 | (standardized) DENTAL-PROBLEM
-0.01 | (standardized) AGE65
0.03 | (standardized) WEIGHT-CHANGEPOINT
-0.16 | (standardized) SITE-BRUNCHUS-LUNG
0.14 | (standardized) SITE-COLORECTAL
0.1 | (standardized) SITE-HEAD-AND-NECK
0 | (standardized) SITE-ESOPHAGUS
-0.07 | (standardized) SITE-PANCREAS
-0.01 | (standardized) SITE-STOMACH
0 | (standardized) SITE-OTHER-DIGESTIVE
0 | (standardized) MISC
0.15 | (standardized) STAGE-1
0.31 | (standardized) STAGE-2
0.25 | (standardized) STAGE-3
-0.07 | (standardized) AGE
-0.12 | (standardized) GRANULOCYTES
-0.09 | (standardized) LDH-SERUM
-0.02 | (standardized) LYMPHOCYTES
0.01 | (standardized) PLATELET
0.01 | (standardized) WBC-COUNT
-0.01 | (standardized) CALCIUM-SERUM
0.03 | (standardized) HGB
0 | (standardized) CREATININE-SERUM
0.09 | (standardized) ALBUMIN
-0.11

Regression Trees

G1: SITE-COLORECTAL ==

-0.47 | BOX1-SCORE
0.65 | BOX2-SCORE
0 | BMI
-3.53 | NO-PROBLEM
3.48 | DRY-MOUTH
-0.53 | WEIGHT-CHANGEPOINT
0.13 | SITE-COLORECTAL
6.34 | SITE-HEAD-AND-NECK
0.24 | STAGE-2
0.15 | STAGE-3
-0.13 | AGE
-0.7 | GRANULOCYTES
0 | LDH-SERUM
1.54 | LYMPHOCYTES
0.45 | ALBUMIN
10.71

G2: SITE-COLORECTAL ==1

-0.01 | BOX1-SCORE
-1.06 | BOX2-SCORE
0.34 | BMI
-0.05 | NO-PROBLEM
3.49 | FEEL-FULL
0.06 | DRY-MOUTH
0.18 | SITE-COLORECTAL

Continued on next page
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Table B.7 — continued from previous page
6| X

0.16 | SITE-HEAD-AND-NECK
23.03 | STAGE-2
22.32 | STAGE-3
-0.12 | AGE
-0.84 | GRANULOCYTES

0 | LDH-SERUM

0.01 | LYMPHOCYTES
-5.62 | CALCIUM-SERUM

0.05 | HGB

0.43 | ALBUMIN

15.8

Linear Regression for Censored Targets

3.91 | GENDER=FEMALE
-2.34 | PERFORMANCE-STATUS-2
-4.01 | PERFORMANCE-STATUS-3
0.15 | BMI
-2.99 | NO-PROBLEM
2.5 | PAIN
294 | DRY-MOUTH
3.21 | DENTAL-PROBLEM
-10.48 | SITE-BRUNCHUS-LUNG
2 | SITE-COLORECTAL
4.79 | SITE-HEAD-AND-NECK
-9.27 | SITE-PANCREAS
21.98 | STAGE-1
19.34 | STAGE-2
13.15 | STAGE-3
-0.18 | AGE +
-1.59 | GRANULOCYTES
0 | LDH-SERUM
0.46 | WBC-COUNT
0.07 | HGB
0.65 | ALBUMIN
0.03

Linear Regression for Censored Targets

0.11 | (standardized) GENDER
-0.09 | (standardized) BOX1-SCORE

0.01 | (standardized) BOX2-SCORE
-0.03 | (standardized) PERFORMANCE-STATUS-1
-0.03 | (standardized) PERFORMANCE-STATUS-2
-0.06 | (standardized) PERFORMANCE-STATUS-3
-0.02 | (standardized) PERFORMANCE-STATUS-4

0.08 | (standardized) BMI
-0.06 | (standardized) NO-PROBLEM

0.03 | (standardized) NO-APPETITE
-0.01 | (standardized) NAUSEA
-0.03 | (standardized) CONSTIPATION

0 | (standardized) SORE-MOUTH
0.01 | (standardized) TASTE-FUNNY
0.02 | (standardized) SMELL

Continued on next page
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Table B.7 — continued from previous page
6| X

-0.02 | (standardized) SWALLOW
-0.01 | (standardized) FEEL-FULL
0.07 | (standardized) PAIN
0 | (standardized) OTHER
-0.01 | (standardized) VOMIT
-0.01 | (standardized) DIARRHEA
0.04 | (standardized) DRY-MOUTH
0.03 | (standardized) DENTAL-PROBLEM
0 | (standardized) AGE65
0.08 | (standardized) WEIGHT-CHANGEPOINT
-0.17 | (standardized) SITE-BRUNCHUS-LUNG
0.12 | (standardized) SITE-COLORECTAL
0.13 | (standardized) SITE-HEAD-AND-NECK
0 | (standardized) SITE-ESOPHAGUS
-0.07 | (standardized) SITE-PANCREAS
-0.02 | (standardized) SITE-STOMACH
0 | (standardized) SITE-OTHER-DIGESTIVE
0.03 | (standardized) MISC
0.16 | (standardized) STAGE-1
0.35 | (standardized) STAGE-2
0.21 | (standardized) STAGE-3
-0.08 | (standardized) AGE
-0.13 | (standardized) GRANULOCYTES
-0.09 | (standardized) LDH-SERUM
-0.01 | (standardized) LYMPHOCYTES
-0.02 | (standardized) PLATELET
0.03 | (standardized) WBC-COUNT
0 | (standardized) CALCIUM-SERUM
0.04 | (standardized) HGB
-0.01 | (standardized) CREATININE-SERUM
0.12 | (standardized) ALBUMIN
0.41

Gating Regression (linear regression was selected

2.34 | GENDER=FEMALE
0.65 | BOX2-SCORE
-1.73 | PERFORMANCE-STATUS-2
-2.87 | PERFORMANCE-STATUS-3
-4.99 | PERFORMANCE-STATUS-4
0.19 | BMI
-1.46 | NO-PROBLEM
1.5 | NO-APPETITE
1.64 | PAIN
2.19 | DRY-MOUTH
-0.39 | WEIGHT-CHANGEPOINT
-8.68 | SITE-BRUNCHUS-LUNG
2.52 | SITE-COLORECTAL
2.56 | SITE-HEAD-AND-NECK
-4.73 | SITE-PANCREAS
16.71 | STAGE-1
17.89 | STAGE-2
12.77 | STAGE-3

Continued on next page
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Table B.7 — continued from previous page

g

X

-0.13
-0.8
0
0.15
0.04
0.36
8.59

AGE
GRANULOCYTES
LDH-SERUM
WBC-COUNT
HGB

ALBUMIN
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Table B.6: Visualizations of predicted survival time versus actual survival time of the final model

linear regression support vector regression

Time ' N R Time N K
(Month) - N o . N : (Month) - N N « 0t

regression trees linear regression for censored targets

Time Time

(Month) (Month)
support vector regression for censored targets gating regression
70 . . 70

Time Time

(Month) (Month)
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Table B.8: Confusion matrices of classification

H Methods H Confusion Matrix H
H Baseline H
Actual
< median > median
Method: Median survival time < median | 185 255
Predicted
e S median | 762 1033
Actual
< median > median
Method: Average survival time < median | 0 0
Predicted
eSS median | 947 1258
I Conventional Classification Methods |
Actual
< median > median
Method: Naive Bayesian Network < median | 522 185
Predicted
redieted S median | 438 1038
Actual
< median > median
Method: Bayesian Network < median | 598 257
Predicted
redieted S median | 362 966
Actual
< median > median
Method: Neural Network < median | 589 339
Predicted
redieted S median | 371 884
Actual
< median > median
Method: Decision Trees < median | 587 373
Predicted
redieted S median | 322 901
Actual
< median > median
Method: Logistic Regression < median | 632 237
Predicted
redieted S median | 328 986
H Our Final Models H
Actual
< median > median
Method: NG-LOG-MCD-AVE100-LIN < median 791 423
Predicted
FEAte® S median | 180 757
Actual
< median > median
Method: NG-LOG-MCD-AVE100-SVR < median | 745 336
Predicted
e S median | 226 844
Continued on next page
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Table B.8 — continued from previous page

H Methods H Confusion Matrix H
Actual
< median > median
Method: NG-LOG-MCD-AVE100-RT < median 785 469
Predicted
TS S median | 186 711
Actual
< median > median
Method: NG-LOG-MCD-AVE100-LINc < median 808 450
Predicted
e S median | 163 730
Actual
< median > median
Method: NG-LOG-MCD-AVE100-SVRc < median | 622 216
Predicted
At S median | 349 964
Actual
< median > median
Method: NG-LOG-MCD-AVE100-GAT < median 744 334
Predicted
eSS median | 227 846
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