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ABSTRACT

The objective of this PhD thesis is to develop, implement and verify a theoretical framework to
generate practical, achievable and robust uncertainty based short term plans meeting
operational objectives and short term planning targets. This thesis intends to develop a
mathematical optimization model as mine operational optimization tool (MOOT), a discrete
event simulation model of mine operations and in turn an integrated simulation optimization
model through an interaction mechanism that links the simulation model with MOOT as a mullti-
stage dispatching system for dynamic shovel and truck allocation optimization. The goal is to
develop a simulation optimization framework/tool which integrates simulation with MOOT for
dynamic operational decision making based on a feedback loop. This framework/tool must
capture the operational uncertainty, achieve operational objectives of production and grade
blend requirements, and project practical uncertainty based short term plans with a higher
confidence on the deliverability of operational targets and key performance indicators (KPIs) of

the system.

The MOOT is developed as a Mixed Integer Linear Goal Programming (MILGP) model in this
thesis. The MILGP model is a multi-period optimization tool to optimally allocate shovels to
available faces from strategic schedule and determine production targets and number of truck
trips from each shovel so that operational objectives of maximum production and plant
requirement of target tonnage and grade blend can be achieved. We showed the applicability of
MOOT as dynamic decision making tool in real mine operations, and in parallel with a
simulation model for dynamic shovel and truck allocation decision making. The MOOT is

analogues to a planner in real mine operations who provides shovel and truck allocation
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decisions based on operational objectives and schedule; and updates short term plans based on

current system state.

This thesis also presents the development of a discrete event simulation model of mine
operations, including loading, spotting, dumping, queuing, hauling, plant crushers and
equipment failures. Since truck haulage is a critical and limiting component in mine operation
systems, a microscopic modeling approach of truck haulage is presented in this thesis. This
approach captures the truck interactions and variable speeds along the haul road network of the
mine based on gradients and rolling resistances of roads, and rimpull curve characteristics of

the trucks, so that practical deliverables can be estimated.

This thesis finally presents the integration, implementation and verification of the simulation
optimization model with an iron ore mine case study. The 11 th year strategic schedule and the
designed haul road network of the mine, along with operational process distribution times are
used as inputs to the simulation optimization model. The detailed verification and
implementation through scenario analysis showed the strength of the model and the approach in
capturing the realistic operational behavior, along with practical operational decision making
leading to the development of confident, achievable and robust short term plans. The
implementation also shows the strength of the model for proactive decision making by analyzing
several desired scenarios for haulage planning and grade blending strategies. The proactive
decision making is made easy by this approach due to the increased confidence in the derived

plans through operational executions in simulation.

The main contributions of this thesis to the research community in mining applications are: i) a
novel simulation optimization approach for uncertainty based short term planning that captures

the deliverability of production and grade blend targets during practical operational executions,
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and accounts for the mine operational details, ii) The MOOT developed as a mixed integer linear
goal programming model for dynamic operational decision making with its applicability in real
mine operations and simulation for shovel and truck allocation decisions, iii) a discrete event
simulation model of mine operations that accounts for realistic truck travel behavior and
interactions on haul road network of the mine, and iv) a proactive decision making capability
because of the higher confidence in the achievability and practicality of the short term plans

developed.
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1. INTRODUCTION
1.1. Background

Mining is the process of extraction of ore from the ground and delivering it to processing plants,
to be processed and sold to generate revenue. Mining can be broadly classified into two main
categories: Open pit and underground mining. Open pit mining, with truck shovel operations, is
the most commonly used technique around the world responsible for bulk productions to satisfy
the market demand. Such open pit mining operations are usually large scale, involving a long
operating life and huge investments. Due to long life and huge capital involved, mining activities
are carried out following a systematically designed mine plan, so that economic objectives can
be realised over mine life. Mine planning has received sufficient attention of the researchers in
the field of mining, operations research, mathematics and computer algorithms. Many years of
research show that mine planning is usually carried out in stages, which can account for
uncertainties and unknowns at corresponding planning stages, which becomes knows as
operations continue. According to Hustrulid & Kuchta (2006), mine planning is generally carried
out in stages due to limitations of the computing power and complexity of the problem. Mine
planning activities are therefore divided into two main categories: Strategic and Tactical
planning based on the planning time horizon (Fig. 1.1). Strategic planning is further divided into
long term and medium term planning and serves as reference to the pit boundary and the
schedule of extraction and destination of blocks, mining panels or mining polygons which
eventually maximize the net present value (NPV) of the mine. Tactical planning, on the other
hand, involves short term and operational plans which consider operational activities in detail
and associated uncertainties to achieve the strategic targets. Mine planning literature does not
distinctly demarcate individual stages but clearly divides the planning stages into long term and

short term based on planning time horizon. Similarly, short term planning and operational
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planning do not find clearly defined boundaries in literature (Hartman & Mutmansky, 2002).
Hartman & Mutmansky (2002) try to distinguish the production schedule or operational plans as
the ones which are for periods of less than a month or so and looks in details at the hour-to-hour
or shift-to-shift basis constrained by short term plans and updated daily or more often. Long term
and medium term schedules are generated at the management level, whereas operating staff on
site remain responsible for meeting the medium and long term plans, by developing and
achieving short term and operational plans. Operational plans are then implemented within mine

operations by manual shovel allocations and real-time truck dispatching systems Fig. 1.1.

Long-term production plan
v > Strategic level

Medium-term production plan

v

Short-term production plan

\

J

Operational Plan > Tactical level
(Shovel — Truck allocations)

A

Production Planning Stages

Real Time Operations
(Dispatching system) J

Fig. 1.1. Mine production planning stages

In the whole mine planning process the short term mine plans remain weakly linked to
operational plans through planners on site, who provide shovel allocations and target productions
to be achieved by truck dispatching systems. Moreover, the short term production plans suffer
greatly from the uncertainty at the operational stage which leads to deviations from the short
term and eventually strategic plans. The grade blending is one of the important considerations at

the operational stage which can only be achieved by proper combination of ore faces being
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mined at that time in the operations; and optimal target productions from ore faces to ore

destinations.

B A _
: T=t+h

Fig. 1.2. Difference between the approaches of Micro and Macro-simulation

Discrete event simulation has also evolved as a powerful tool for decision making in mine
planning. Simulation models mimic the various processes involved in the mine operations and
provide a tool for understanding the impact of various scenarios on the key performance
indicators (KPIs) of the system and thus the operational objectives. A true representative
simulation model therefore becomes necessary to provide right and accurate predictions, which
is possible only if the individual processes and their distributions are modeled accurately. One
such major process is truck haulage. In the recent years micro-simulation has started to gain
attention of the researchers to study the interaction of trucks on the haul roads so as to predict the
travel times of the trucks accurately. Such micro-simulation models try to capture the effect
shown in Fig. 1.2, where, in the context of single lane traffic in mines, a truck with higher
velocity is forced to follow a slower truck, leading to platoon formations on the haul roads.
Micro-simulation, through capturing the behavior of trucks while traveling, may provide a robust
tool to predict the truck travel times and help developing more accurate macro-simulation

models of the entire system.
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1.2. Statement of the problem
1.2.1. Introduction

Based on the strategic plans, optimal number with required capacities of equipment is employed
in the mine for regular excavation and hauling operations. This optimality can only be realized
with efficient utilization of all the assets involved. Since truck and shovel operations account for
approximately 60% of total operating costs in open pit mines, optimal use of these equipment is
also essential for realizing the strategic objective of maximizing the NPV. The whole strategic
planning process to achieve organizational objectives may be moot if short term and operational

planning are inefficient to reflect back.

Short term plans must also be practical enough to predict a confident picture of the mine for
advance planning to mitigate long term effects. The practicality of short term plans here refers to
whether it accounts for shovel movement time between faces and production lost during these
movements, equipment failures and availabilities, real-time grade blending objectives and
changing rates of production of shovels based on their locations, trucks , haul road network and
truck dispatching efficiency. As short term and operational plans need to be updated very
frequently to reflect the state of the mining system, they remain constantly changing over time
and thus may be regarded as mere guidelines to follow which is hard to strictly adhere to. Instead
a dynamic Mine Operational Optimization Tool (MOOT), can be beneficial, which captures the
state of the mine using a dynamic feedback loop and provide shovel allocations based on
strategic schedules in real-time. The tool in conjunction with a simulation model may provide the
state of the system over the course of time, such as short term plans, with improved confidence
for better strategic decision making related to ramp designing, equipments or improvement to

any other system component. The MOOT tool can be implemented using the traditional top
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down approach by first creating a short term plan and then implementing it at the operational
level where MOOT provides dynamic shovel and truck allocations and target productions to the
dispatching system. This thesis focuses on developing short term plans using a bottom up
approach by implementing MOOT for real-time decision making within simulation, where
MOOT provides operational decisions based on strategic plans. Fig. 1.3 shows a representative
placement of MOOT in the production planning stages and the bottom up approach when

implemented with simulation of mine operations.

Long-term production plan
v > Strategic level

Medium-term production plan
T -/

Short-term plan

..... —

MOOT :
(Shovel — Truck allocations) >Tactica| level

Production Planning Stages

Operations/Simulation

(Dispatching system)

Multi-Stage Dispatching

Fig. 1.3. Proposed system in the production planning stages

Based on the literature reviewed very little work has been carried out in short term mine planning
and optimization, out of which only few approaches consider the operations in detail. The
problem addressed in this thesis is the short term and operational mine planning and scheduling

problem. The problem can be stated as:
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Can a simulation optimization model be developed which integrates simulation with a
dynamic Mine Operational Optimization Tool (MOOT), for operational decision
making, based on a feedback loop, which captures operational uncertainty, achieves
operational objectives, deliver realistic real-time grade blends, and can project practical
short term plans with a higher confidence on the deliverability of operational targets

and system KPIs?

1.2.2. Description

This research thesis is aimed at developing a tool for dynamic decision making at operational
stage and using it in conjunction with a discrete event simulation model, as a simulation
optimization tool, for developing uncertainty based short term production plans. The short term

plans developed must:

achieve operational objective of realizing strategic schedule

e achieve operational objective of maximum production

e achieve operational objective of feeding the plants at the desired rates

e achieve operational objective of grade blending requirements at ore destinations

e incorporate varying rates of shovel productions based on their locations, available trucks,

haulage route gradients and other associated uncertainties
e incorporate shovel movement times leading to production losses
e incorporate scheduled maintenance and unavailability of equipment, and
e incorporate uncertain failures of equipment

In this research, the development of dynamic decision making tool (MOQOT) and the short term

production plan is based on following assumptions:
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e Blocks, that are scheduled to be mined in the given period based on strategic plan, are

considered for shovel allocations.

e Blocks are aggregated together into reasonable sized clusters which serves as basic mining

units, here after referred to as faces.

e Vertical precedence of blocks are taken directly from the strategic schedule, which are
clubbed together for all the blocks within clusters to serve as vertical precedence for the

faces.

e Horizontal precedence of faces are manually defined based on the desired mining direction

and sequential availability of faces.

e Block attributes are averaged to calculate face attributes, such as grades of various elements
in the ore and coordinate location of faces. The homogeneity of blocks being clustered, in

terms of grades and rock types, is essential for reasonable solutions.

e The existing haul road network is used to determine the distance between faces and
destinations. This haulage distance is the sum of straight line distance to ramp access point
on the face bench and distance to destination from the ramp access point following the haul

road.

e Distance between faces, for shovel movements, is approximated as straight line distance, if
they are located on the same bench. If two faces lie on different benches, distance is
approximated as the sum of distances to ramp access points on the face benches and the haul

road distance between ramp access points.

e A shovel is not allowed to move to a different face until, the face it is assigned to, is
completely mined. Therefore, reasonable sized clusters need to be generated, which will be
blasted and mined as a whole. There is no other constraint put on the shovel movement.

Allocations are guided by the accessibility of the faces and objectives of the model.
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1.3. Summary of literature review

The mine planning literature broadly show three different approaches applied into mine planning
activities: Operations research, Queueing theory and Simulation. Operations research is the most
common approach which has found its applicability at all different stages of mine planning
process. Queuing theory is another approach which has been used by some researchers for
decision making at the dispatching stage. Linear queuing models have also been used by some
researchers within linear programming models. Simulation has started to gain increasing
attention from the researchers for its capability to capture highly uncertain aspects of the mining

environment.

1.3.1. Operations research

Although strategic mine planning has found sufficient attention using operations research, very
little is worked upon short term mine planning. Modeling the detailed mine operations over
multiple periods incorporating all the faces, shovel movements between faces, truck allocations
and plants, increases the problem size and poses limitation on the solvability of the model as
observed by L’Heureux, ef al. (2013). Similarly, Bjerndal, et al. (2012) observes that even state
of the art hardware and software cannot handle the size and complexity of such detailed
scheduling models. On the other hand, operational planning has not received sufficient attention
of the researchers, which finds most relevance in the literature related to multi-stage dispatching
in mining. Most researchers emphasize on a multi-stage optimization approach, where upper
stages provide optimal executable plans and the lower stage implements the plans through real-
time truck dispatching systems. In one of such approaches, Elbrond and Soumis (1987) presents
a three stage dispatching approach where the first stage provide shovel allocation decisions

through man-machine interaction. Researchers have proposed one or two stages for the upper
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stage, which provide decisions regarding optimal number of equipment and the target

productions from various production shovels to various destinations.

Following are the major limitations of the existing models, in short term and operational

planning, as reviewed in chapter 2:

e Very few models exist for operational planning that can provide shovel allocation decisions.

e A missing link is observed between short term plans and operational decision making, which
can be mitigated using a dynamic decision making system such as MOOT presented in this

study.

e Deterministic short term plans need constant updating due to operational uncertainties, and

thus may not be very helpful in confident strategic decision making.

e Most of the models in short term planning or dynamic models in multi-stage dispatching, do
not incorporate all or some of the major objectives of production planning, such as steady
desired feed to processing plants, minimize shovel movements to minimize production lost
and cost of movement, and minimizing the operating cost, apart from maximizing production

and grade blending.

e Most of the models, in multistage dispatching systems, do not incorporate mixed fleet

systems at the upper stage.

Shovel assignment is a major decision making problem which has not received sufficient
attention from the researchers, and has remained the task of the planner who manually creates
and updates the operational plans. Although the model of Gurgur, et al. (2011) provides shovel
assignments, it does so based only on the strategic considerations, which not necessarily will
provide optimal shovel allocations. To the best of author’s knowledge, model presented by
L’Heureux, et al. (2013) is the only one that presents a detailed model for short term planning

providing shovel assignments and incorporating their movement within the mine; and model
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presented by Fioroni, et al. (2008) is the only model in literature for dynamic shovel allocations
but fails to incorporate precedence amongst faces, and thus fails to link operations with short
term or strategic plans. For a detailed review of the existing models and their limitations see

chapter 2.

1.3.2. Simulation

The simulation models are primarily used for analyzing the impact of changes on the KPIs of the
system for strategic decision making. They are proven to be significantly helpful in determining
the applicability of various dispatching algorithms and the corresponding impact on the mining

system.

Simulation models are gaining the attention of researchers and industry recently, particularly due
to their capability to confidently predict the system performance and help in strategic decision
making. Such simulation models are usually case specific and are developed for specific
projects. In context to objectives of this study, following limitations are generally observed in the
simulation models, which will be accounted in this research:

e Simulation models generally remain very specific to the problem domain of a specific mining

site being analyzed, limiting their applicability to that mining system and problem domain.

e Most simulation models provide limited user flexibility towards various stochastic
parameters of the system. Selection of appropriate distributions and their parameters and

related user flexibility is necessary for practical and realistic models.

e Truck haulage time is a major part of the total production time, which is generally modeled
using probability distributions. The commonly used approach fail to model the truck
interactions on haul roads, which in reality leads to platoon formations and has significant

impact on production.
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e Models do not incorporate mining schedules, or do not model the unavailability of faces due
to precedence requirements and thus fail to analyze the operations in longer time frames;

mainly because of shovel allocation requirements.

1.4. Objectives of the study

In relation to the statement of the problem considered in this project, the objective of this study is
to develop and implement a simulation optimization framework that is capable of projecting
robust and practical uncertainty based short term plans and verify by varying the number of
trucks in single and mixed fleet systems. The framework/tool is required to account for mine
operational objectives of maximum production and, tonnage and grade requirements of the
plants. Moreover, the shovel allocation decisions must reflect the strategic plan, so that short

term plans thus developed are aligned with the strategic schedule.

Due to unavailability of relevant data and unique nature of the proposed approach, no validation
is proposed for the framework/tool in this research thesis, and only a verification study is carried
out. Three tasks are set for this study to address the problem statement and attain the objectives

of this study:
1. Develop a mine operational optimization tool (MOOT).

2. Develop a discrete event simulation model of mine operations and integrate the MOOT

as an external engine for dynamic decision making.

3. Develop a micro-simulation tool for truck haulage and integrate it with the simulation

model of mine operations.

The MOQOT as such is a dynamic decision making tool and its applicability will be verified with
a simulation model to develop uncertainty based short term production plans as shown in Fig. 1.3

and Fig. 1.4. The three objectives stated above are set to develop a simulation optimization
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model to solve the problem statement of this research thesis. The simulation optimization model

and interaction between the three objectives is presented in Fig. 1.4.

MOOT Micro-simulation of
(Operational Planning) truck haulage

x X

Fig. 1.4. Simulation optimization model and interaction between the objectives of this research

1.4.1. Objectives for MOOT

The main objectives set for the development of mine operational optimization tool (MOOT) are

to:
e Comply with the strategic schedules.
e Incorporate shovel movements and production lost during these movements.

e Be flexible to work as dynamic decision making tool with feedback logic to update changing

system states over time.

e Incorporate major operational objectives of maximizing production and constantly feeding

the plants with desired tonnage and grades of ore.

e Incorporate precedence constraints for face availabilities, face material tonnage and quality
constraints, grade blending constraints, processing rate and shovel mining rate constraints,

along with truck haulage capacity constraints.

1.4.2. Objectives for simulation model

The main objectives set for the simulation model are to:
e Model mine operational processes accurately.

e Provide flexibility to change the model inputs and process distributions externally.
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e Be general enough for wider applicability and over time in the same mining system without

changing the model as such.

e Incorporate multi-stage dispatching system using MOOT as external operational decision
making tool at the upper stage and a truck dispatching logic at the lower stage within

simulation.

e Incorporate a micro-simulation tuck haulage submodel to capture truck travel times on haul
road network based on exact location of shovels in the mine and truck interactions on haul

roads.

1.4.3. Objectives for micro-simulation of truck haulage

The main objectives for the micro-stimulation submodel of truck haulage systems are to:

e Models single lane traffic of trucks on the haul roads, i.e. no overtaking of trucks to capture

truck interactions and platoon formations leading to decreased productions.

e Captures truck velocities based on gradients and rolling resistances of haul roads and rimpull

characteristics of the trucks.

1.5. Scope and limitations of the research

This research study is aimed at developing a simulation optimization model for short term and
operational planning by developing a mine operational optimization tool (MOOT), a discrete
event simulation model of mine operations and a micro-simulation submodel for truck haulage.

The major limitations and scope of individual tools are summarized in this section.

1.5.1. Mine operational optimization tool (MOOT)

The MOOT is developed to optimize the existing state of the mining system and provide optimal
shovel allocation and target production decisions to achieve the operational objectives of the

mine.
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e MOQOT uses strategic schedule as an input for shovel allocation decisions. Development of

these strategic schedules is out of the scope of this research.

e A clustering algorithm, as block aggregation technique, is used to develop mining cuts or
faces out of the scheduled blocks in the strategic schedule. Any suited block aggregation
technique, which may maintain the homogeneity of the grades and rock types in the
aggregated blocks, can be used here. The development and details of the clustering technique

is out of the scope of this research.

e Face development activities such as drilling and blasting are not part of the MOOT, and it
assumes that the allocated face is ready for the shovel to start working. As MOOT is a multi-
period optimization model, the sequential allocations provided by MOOT are assumed to be

used for carrying out face development activities.

e Although vertical precedence among faces is taken directly from the strategic schedule,
horizontal precedence among faces is defined manually considering mining direction and

availability of faces.

e The shovel movement time between faces on the same bench is estimated for straight line
movement between faces. Although it is a reasonable assumption, it is not exact and can be
solved by creating a connection matrix between all adjacent faces. Due to increased resource
requirements, straight line movement assumption is used in this study. However shovel
movement time between faces on different benches are modeled as sum of movement time to

ramp access points on the benches and the movement time on the ramp between benches.

1.5.2. Discrete event simulation model

The discrete event simulation model of the mine operations is created to simulate the mine
operations and model the mine uncertainties related to equipment failures, truck travel times,

queues, real-time throughputs of processing plants and shovel movements.
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The model uses a heuristic logic as truck dispatching system within the simulation model to
attain the operational targets set by MOOT. The development of a truck dispatching system

is out of the scope of this research.

MOOT uses a deterministic value for the probability distributions used in the simulation.
Data fitting and computation of probability distribution functions is out of the scope of this

research.

The simulation model does not include the processing plant components, but to the extent of

rate of flow of ore out of hoppers to the downstream processes at the plants.

1.5.3. Micro-simulation of truck haulage

A separate study was conducted to verify the micro-simulation modeling of truck haulage

systems and its understanding was implemented using the existing features of the simulation

model.

Although truck movements are restricted on the haul roads to avoid any overtaking, no other
control is put during the interaction between trucks such as accelerations, decelerations or
driver factors to respond to situations. This is a reasonable assumption, because the overall
effect of such interactions is that the trailing truck slows down and follows with the same
speed as that of the leading truck. The detailed behavioural modeling is out of the scope of

this research.

No traffic flow logic is implemented at intersections and trucks move on the first come first

serve basis at the intersections.

1.6. Research methodology

This research is aimed at creating a simulation optimization model by developing and integrating

the mine operational optimization tool (MOOT), a discrete event simulation tool and a micro-

simulation framework for truck haulage. The discrete event simulation and micro-simulation of
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truck haulage are aimed at modeling the mining operations, whereas the MOOT is aimed at

modeling the decision making process of the planner.

The MOQOT is required to provide shovel allocation decisions to the available faces with the
similar considerations as by the planners. The major difference between the decisions is that
planners consider available faces in the short term schedule, whereas the MOOT looks at the
strategic schedule aimed at generating a short term schedule each time before making a shovel
allocation decision. Although it seems like a different approach, this is analogous to the periodic
updates made by the planners in the short term schedule to reflect the current mining system

state.

The MOOT is also required to take into consideration various mine operational objectives,
similar to planners, before making shovel and truck allocation decisions. As there are multiple
objectives to be considered, the operational decision making process is a multi-objective decision
making problem. The MOOT is thus developed following a goal programming approach. Goal
programming has also been used by researchers to tackle the operational decision making
problem in multi-stage dispatching systems. Major operating objectives, among others,
considered in this study are: maximizing production, minimizing the deviation in tonnage feed
rate requirements at processing plants, minimizing the deviation in grade feed requirements at
ore destinations and minimizing the shovel movements. These four operational objectives were
combined together using a weighted sum approach, developing a mixed integer linear goal
programming (MILGP) model, and solved using a non-preemptive goal programming approach.

The MOOT is developed in Matlab® and optimization is carried out using Cplex/ILOG solver.

A block clustering algorithm developed by Tabesh & Askari-Nasab (2013) is used for block

aggregation to develop mining cuts or faces, which are used as basic mining units in MOOT. The
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size of clusters and block aggregation technique is carefully chosen to maintain homogeniety in
grade and tonnage. As block aggregation determines the total number of faces and thus the
number of binary variables in the model, it affects the solution time as well as the overall
solution. The determination of the number of blocks per cluster (face) must be primarily made
based on equivalent drilling and blasting areas of the mine. For practicality of the generated
schedule a face will be drilled, blasted and mined as a whole. Horizontal precedence among
these faces is then defined manually to guide the direction of mining and feasible sequence of

extraction of faces.

MOOT was required to model the continuous nature of mining operation by modeling the shovel
movements over multiple faces in due course of time (optimization time frame), enabling the
model to provide decisions for the current state looking ahead in the future. This was required
based on the observations of an initial model developed (Upadhyay & Askari-Nasab, 2016). To
model it, optimization time frame was divided into multiple periods (equivalent to shifts), and at
maximum one shovel movement was allowed in any period. The decision for the first period
constitutes the optimal decision for the dynamic mining operation and the face assignments in

further periods may be used for face development activities.

Discrete event simulation model was then developed to mimic the mine production operations
with inherent uncertainties using Rockwell Automation’s Arena Simulation package. Simulation
includes loading, hauling, dumping and queuing of trucks at shovels and dumps; shovel loading,
idling and movement between faces, and crushers with fixed hopper capacities and flow rates to
processing plants. Model also includes maintenance schedules and failures of trucks and shovels.
Operations at processing plants are not modeled in the simulation model. The simulation model

is developed such that the distributions and parameters can be updated using an external Excel
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input interface. MOOT and Simulation models use the same input parameter file to maintain
consistency. The simulation model is integrated with MOOT using VBA. Each time the system
state changes, simulation calls MOOT which runs using MATLAB/CPLEX environment to write

the results in an output file, which is read back using VBA into the simulation model.

A small micro-simulation study was carried out in MATLAB® to model the truck velocities and
their interactions on haul roads and intersections; and validated against Talpac software results.
Based on the observations and requirements of this study, controlling the truck velocities during
interactions was deemed resource consuming and not necessary. As Arena provides a capability
to model AGVs (autonomous guided vehicles) which can model the required extent of
interaction between trucks, it was used to model the truck haulage. A MATLAB® application
based GUI was created to read the road network ‘dxf” files and generate input for Arena, which is
then used to create the road network within the simulation model using VBA. This capability
provides flexibility to update the road networks without touching the model. A submodel in
simulation was created to assign the truck velocities based on the gradients and rolling resistance
of the haul roads and rimpull characteristics of the trucks. This enables the simulation model to
accurately predict the truck cycle times based on shovel locations within the mine and thus

predict changes in rates of productions.

Finally, the simulation optimization model was developed by running the simulation model in
conjunction with MOOT as an external engine for operational decision making. Using a case
study, the simulation optimization model was first verified based on a deterministic simulation
model by removing all the uncertainty from the simulation model. This deterministic model
verified the application of MOOT for dynamic operational decision making. Multiple scenarios

were then run under full uncertainty to generate uncertainty based short term mining schedules
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and determine optimum number of trucks required in the system. The scenario analysis was also

run to predict the best strategy for the systems to achieve operational objectives.

1.7. Original scientific contribution and industrial significance of the study

The problem considered in this research is the short term and operational mine planning
problem. The goal is to develop a simulation optimization approach for short term production
planning and operational decision making under stochastic mining environment. This is a unique
approach which streamlines the mine production operations and provides confident predictions
over the course of time so that better strategic decisions can be made to improve the productivity

and efficiency of mining operations.

The main scientific contribution of this research is the new approach for tactical mine planning
by following a bottom up simulation optimization approach to develop uncertainty based short
term plans for strategic decision making. MOOT and the simulation optimization model bear a
great industrial potential to improve operational productivity and efficiency of mining
operations. The associated contributions of this research are given below.

e Simulation optimization framework provides a novel approach to mine planning at the

tactical stage.

e Shovel allocations, based on strategic schedules and operational objectives of grade blending,
tonnage feed rate requirements at plants and maximum production, provides great value to
this research. The MOOT can be implemented for real-time operational decision making for

shovel and truck allocations in actual mine operations.

e If MOOT is implemented for operational decision making in actual mining systems, the
parallel planning process using the simulation optimization approach would provide a close

imitation of the reality.
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e Inclusion of available truck fleet, haul road network and changing truck velocities with
gradient and rimpull characteristics of trucks, makes the operational decisions, and hence the
short term plans, practical. This allows the framework to capture the varying rates of

productions from shovels based on their locations within the mine.

e MOOT employs a goal programming approach which provides user with flexibility to guide
the operational decisions based on any specific requirement by changing weights of the

objectives. Model also provides flexibility to lock trucks to shovels and shovels to material

types.

e The simulation optimization tool can handle mixed fleet systems which makes it more

general to be implemented in most open pit mining systems having shovel-truck operations.

e The microscopic approach to truck operations in simulation models provides opportunity to
detect any increase in platoon formations and decrease in haulage capacities in the short term

plans to adopt the counter measures in a proactive approach.

1.8. Organization of thesis

Chapter 1 of this thesis gives the background and provides an introduction to the problem
considered in this research. It states the problem, associated objectives and brief summary of
literature reviewed in the relevant area. A summary of scope and limitations, research

methodology and contributions of this research are also provided in this chapter.

Chapter 2 reviews the research carried out in the relevant field by other researchers in the past.
This chapter first gives an overview of various techniques used by other researchers in mine
planning area. The subsequent sections review in detail the literature and their limitations with a

focus on short term and operational mine planning.

Chapter 3 provides a theoretical framework of this research. It details the development and

implementation of mine operational optimization tool (MOOT), the simulation model and the
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microscopic submodel for truck haulage. This chapter also details the integrated simulation

optimization model and how it can be implemented.

Chapter 4 presents the implementation of the simulation optimization approach using a case
study of an iron ore mine. This chapter presents the implementation results of the simulation
optimization model with single and mixed truck fleet mining systems. The implementation for
proactive decision making for haulage planning and optimal grade blending strategy is also
presented in this chapter. Finally, this chapter presents the developed short term plans for the

iron ore mine case study.

Chapter 5 provides conclusions of this research and associated future research possibilities. This
chapter also points out the limitations of the models developed by drawing a comparison with the

objectives of this study.
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LITERATURE REVIEW
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2. LITERATURE REVIEW
2.1. Background

Surface mining, employing shovel and trucks, is the most favored mining method nowadays.
About 85% of mineral production in North America comes from open pit mines (Hartman &
Mutmansky, 2002). Due to bulk production capacity coupled with high sensitivity of production
cost and increasing competition and demand, surface mining companies are forced to efficiently
use the available resources to sustain in the market. Mining companies are constantly striving to
adopt best practices to survive in the current market dynamics. But highly uncertain mining
operations impose a limitation on prediction, making the industry stubborn to changes; hence
efficient decision tools/frameworks have become imperative to measure the effect of proposed

technological and strategic decisions and assist in decision making and adopting to changes.

Literature show mainly three approaches to assist in decision making in mine operational
planning: Operations research, queuing theory and simulation. Topuz & Duan (1989) mention
some of the potential areas in mining such as equipment selection, production planning,
maintenance, mineral processing and ventilation, where operations research techniques can act as
a helping tool for decision making purposes. Newman et al. (2010) provides a comprehensive

review of the application of operations research in mining.

Mine production planning is one of the key areas affecting the profitability and sustainability of
the mine in long term. The first and foremost task in this planning process is to determine the
optimum pit limit (Lerchs & Grossmann, 1965; Shi, ef al., 1997) to maximize the NPV of the
mine for the life of the mine. After the ultimate pit limit is determined, production plans are
developed for the life of the mine. Production scheduling is thoroughly covered in literature both

for underground mines (Kuchta, et al., 2004; Topal, 2008) and open pit mines (Dimitrakopoulos
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& Ramazan, 2004; Eivazy & Askari-Nasab, 2012; L’Heureux, et al., 2013). Due to the
limitations of the computing power and complexity of the problem, production planning problem
is generally solved in stages (Hustrulid & Kuchta, 2006). Based on the period and planning time
horizon, production scheduling is achieved in three stages: long term, medium term and short
term (Osanloo, et al., 2008). Uncertainty and unavailability of certain data, which becomes
available only as mining operations continues, is another reason for this classification. Most of
the research in the mine production scheduling has remained confined to long term; and short
term production scheduling has seen very little development over the years (Eivazy & Askari-
Nasab, 2012). Henderson and Turek (2013) describe the systematic planning procedures in place
at Kinross Gold and stress the plans to be as realistic as possible so that expectations can be
delivered. In another paper Malhotra and List (1989) discusses the short term planning process at
Syncrude oil sand mine and describes the complexities and challenges faced by the planners.
They emphasize on the need of efficient computer based techniques to assist in short term

planning process to meet the increasing production demands.

Long and medium term strategic plans can only be realized with efficient short term and
operational production planning. Early researches were mostly using queuing theory for studying
and optimizing the shovel — truck systems, but due to limited scope, it finds less presence in
literature nowadays. With the evolution in computing capability and optimization techniques,
mathematical optimization models have started to gain more attention. Simulation is another
technique which has evolved over the years and is now frequently used for understanding the
behavior of the system and for decision making purposes. Jaoua et al. (2012) proposed a
simulation optimization approach to develop a simulation based real-time control (SRTC) tool

for truck dispatching, which dynamically determines the control law for the control horizon
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using an internal simulation model. Simulation optimization is a fairly new approach in the
industry, which bears great potential for developing robust tools for static or dynamic decision

making purposes.

This chapter reviews the existing approaches in short term and operational planning using
mathematical optimization techniques and the application of simulations in mining. The
approach proposed in this study is to develop the short term plans by optimizing mine operations
using a multi-stage dispatching approach hence multi-stage dispatching algorithms in operational
planning are discussed in detail. Truck haulage being a critical process in mining, micro-
simulation approach within simulation of mine operations is also discussed in detail apart from
simulation. Upadhyay and Askari-Nasab (2016) and Askari-Nasab et al. (2014) presents the
framework of the approach adopted in this study, which describes the use of combination of
micro-simulation of truck haulage, macro-simulation of mine operations and an operational
optimization decision making tool/framework to develop uncertainty based short term production

schedules.

2.2. Short term mine planning

Mine planning and scheduling has received sufficient attention of the researchers but has
remained limited to long term or operational planning through truck dispatching. Short term
planning and scheduling problem is addressed by very few researchers. Modeling the detailed
mining operations over multiple periods incorporating all the faces, shovel movements between
faces, truck allocations and plants increases the problem size and poses the limitation on the
solvability of the model as observed by L’Heureux et al. (2013). Bjorndal et al. (2012) observes
that even state of the art hardware and software cannot handle the size and complexity of such

detailed scheduling models. Smith (1998) describes the importance of mathematical modeling
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using AMPL in conjunction with a mine modeling package by presenting various examples
showing the strength of MIP methods and the strategies to deal with the limitations of algorithms

in these mine modeling packages.

In one of the very early works Wilke and Reimer (1979) describe the importance of grade
blending in short term production planning for a very irregular iron ore deposit where grades
changes within very short distances. The production schedule in such cases is very hard to satisfy
quality requirements, which, according to Wilke and Reimer (1979), also affects the operations
through variable equipment utilizations and deviations from prescribed mining sequence and in-
turn long term plans. Chanda and Wilke (1992) describe various objectives of the short term
production scheduling as:

e Determining ore and waste mining faces and the sequence of extraction within the planned

faces based on long term production schedule, the rates of ore and waste mining, stripping

ratios and composition of head grades,

e The schedule must minimize the absolute deviations in head grade delivered to plants, as it

may significantly affect the mill recovery,
e The schedule must provide detailed allocation of shovels and trucks for dispatching,

e Efficiently utilize the equipment and mining resources,

The schedule must be flexible and practically executable.

Chanda and Dagdelen (1995) emphasizes on the importance of grade blending to achieve
economic objectives and market requirements to meet the quality requirements of the customers.
They proposed a goal programming model for maximization of economic value of ore mined and
minimization of the grade and tonnage deviations of the plants from their target values. Chanda

and Wilke (1992) propose a model based on the combination of linear goal programming and
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deterministic simulation for short term production scheduling in strata-form ore bodies. The GP
model maximizes the metal content in the processed ore and minimizes the deviations in grade

and tonnage from the target values.

Gershon (1987) proposed two heuristic approaches to improve the mine production scheduling
process based on blending optimization and ranked positional weight. They describe the
practicality of the schedule as more important than finding the best schedule, as the schedule
must also meet the restrictions on the mobility of equipment, balance strip ratios and blending
requirements. Kim (1987) proposes the application of geostatistics for short term mine planning
and concludes economic and political motives as prime reason for its non-application in US at
that time. Fytas et al. (1993) describes the problems associated with long term and short term
planning and proposes a computer package to develop alternative short and long range
production schedule. They proposed simulation for long range and linear programming for short
range planning by maximizing revenue constrained by head grade, concentrate production and

stripping ratio targets.

Youdi et al. (1992) describe handling the relation between long term plan and short term plan to
realize the economic objectives as a major problem. Youdi proposes a two step procedure to
carry out short term planning in a large surface coal mine. The first step uses goal programming
for coal seam allocation and scheduling to carry out multi-objective optimization for coal quality
and production over a period of a year or a quarter. The second step generates detailed
arrangement of production and stripping schedule using graphic design system and systems

simulation.

Kumral and Dowd (2002) describe short term planning as a tool for quality control rather than

profit maximization, and describe the problem as the one with several competing objectives.
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Thus they propose the problem as a multi-criteria decision making problem, and solve it using
lagrangian parameterization and multi-objective simulated annealing (MOSA) to generate
optimal short term production schedules. Their proposition involves determining the pit-blend
limit using linear programming and Lerchs-Grossman algorithm (Lerchs & Grossmann, 1965),
solving the problem for the blocks within this pit limit to generate sub-optimal schedule using
Lagrangian parameterization, and finally applying multi objective simulated annealing (MOSA)

to improve the sub-optimal schedule to generate near optimal short term production schedule.

Samanta et al. (2005) proposed a genetic algorithm approach to solve the grade control problem
in a bauxite mine. Although the schedule generated is quite promising in terms of grade control
objectives, practicality of the schedule remains a problem as only precedence constraints are

considered.

Gurgur et al. (2011) proposed a LP model for short term planning, but do not consider mine
operations in detail. The model provided by Gurgur et al. (2011) uses an LP model for truck
allocation with a five dimensional continuous variable to determine the material flow rate from
the blocks by the shovels using the specific type of truck, and sent to the destinations for every
time period. The LP model minimizes the deviation of the mine progress from the target
provided by the MIP model. Although model provides shovel assignments in every time period,
it does so, based on the amount of material to be moved from the blocks in that time period,
given by the MIP model. The major drawback of this model is that the shovel movements may
not be optimal and realistic, as no other constraints related to shovel movement between blocks

have been incorporated.

Eivazi and Askari-Nasab (2012) proposed a multi-destination mixed integer linear programming

model to minimize the overall operating cost, including mining, processing, rehabilitation,
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rehandling and haulage cost, to generate short term production schedules. The MILP model
proposed allows choosing the direction of mining and haulage paths for mining blocks. One
major limitation of the model as observed is the missing horizontal precedence constraint, which

poses a serious limitation on the practicality of the generated schedule.

Gholamnejad (2008) proposes a binary integer programming model to solve the short term mine
scheduling problem. They emphasized on the practicality of the solution in terms of accessibility
of the blocks to be mined based on the precedence requirements, and proposed cone template for
vertical block precedence and horizontal cones in four directions of every block for horizontal
precedence on the same bench. They proposed a single objective approach to optimize a long

term goal or a goal programming approach to minimize the deviation variables from the targets.

Dimitrakopoulos and Ramazan (2004) emphasized on a risk based approach for long term
production scheduling. An uncertainty based production scheduling formulation is presented to
integrate uncertainties in grade, ore quality and quantity and risk quantification. They try to
capture the risk of not meeting production targets caused by uncertainty in estimated grades.
Dimitrakopoulos and Jewbali (2013) presented a joint stochastic optimization approach for short
and long term production scheduling using four stages and show significant gain in the NPV of a
gold mine. Although the uncertainty in grades at the short term planning horizon is very less, the
uncertainties related to realization of blending objectives in operations still remains a challenging
task. A predetermined sequence of extraction, which accounts for blending, may not be practical
to realize the blending objectives at the operations, as the combination of ore faces being mined

together may not be exactly same as determined by the short term plans.

L’Heureux et al. (2013) presents a detailed model for short term planning for a period of up to

three months, where they consider precedence among blocks, precedence among operational
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activities, drilling, blasting, transportation, processing, movement of shovels, drills and more in

detail as operating constraints.

Lestage et al. (1993) propose a computerized tool for daily operational decision making by
optimizing the system over a given time horizon. The proposition is similar to what is proposed
in this study in its approach to provide dynamic optimal operational decisions by optimizing the
system over a given period of time. Nehring et al. (2010) proposed a similar approach for short
term production scheduling in underground mines using dynamic machine allocation through

mathematical programming for sublevel stoping copper operation.

Caccetta and Hill (2003) propose a branch and cut strategy for solving the large scale scheduling
problem incorporating all the desired constraints and critically examines the existing approaches
and software in the industry to tackle scheduling problem. They describe the advantage of
heuristic based approach used in XPAC (Runge Pincock Minarco Ltd., 2015), which uses the
weighted function to determine the extraction sequence in each period, in terms of speed but
solutions may be far from optimal. MineSight (Huang, et al., 2009) is another commercial tool
for medium and short term production scheduling which formulates MILP model to solve the

multiple models, multiple processes, multiple destinations and grade blending requirements.

One major limitation of the existing approaches is that grade blending objectives optimized at the
short term planning stage are hard to achieve at the operational stage, due to the mismatch
between the planned and operating ore faces; and realized mainly through truck dispatching
systems. High grade variability in scheduled faces and mismatch between the scheduled and
operating faces at any time, also leads to decreased equipment utilizations due to poor
dispatching requirements for grade blending. Optimal truck allocation is another requirement

which must be provided by the short term schedules for optimal dispatching, which still lakes
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from most short term plans. Another major drawback of the existing models is that they fail to
consider the dynamic nature of the mining operations leading to frequent updates of the
operational plans as well as short term plans. The dynamic components of the system which must
be accounted at this stage include equipment availabilities due to failures, changing rates of
production from shovels based on their location, haulage capacities, and unavailability of faces
due to precedence requirements. The capturing of dynamic nature of the mining systems may
provide opportunities to develop more robust mine plans and thus support an opportunistic

proactive planning framework by determining the bottlenecks of the mining operation.

2.3. Operational planning

Dispatching by definition tries to allocate trucks to source and destinations in real-time so that
operating efficiency of the trucks and associated equipments (loaders, plants etc.) can be
maximized and short term production schedule can be realized. Apart from mining industry,
cement industry requires similar application of truck dispatching for ready mixed concrete
supply (Yan & Lai, 2007; Yan, ef al., 2008). The problem in mining becomes slightly deviated
when many other objectives gets associated with dispatching decisions, such as grade blending
objectives, varying and multiple source and destinations and respective flow requirements and
handling mixed fleet systems. At this stage dispatching algorithms finds a shift from simple truck

dispatching systems to operational planning and execution tools.

Queueing theory is a robust theoretical tool for modeling simple truck shovel operations.
Koenigsberg (1958) can be considered as the first person who applied queuing theory in mining.
Carmichael (1986, 1987) provide queueing models based on steady state assumptions of shovel
truck operations and emphasized on the use of finite source queuing model with erlang

distributions for loading and backcycle times. Similarly Kappas and Yegulalp (1991), Muduli
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and Yegulalp (1996) and Trivedi et al. (1999) used closed queueing network theory to minimize
the error of performance parameters, for mixed truck fleet operational analysis and optimizing
truck shovel capacities to minimize equipment idle times respectively. Alkass et al. (2003) used
queueing theory to develop a computer model for optimum equipment fleet selection in mining
operations. Ta et al. (2010) used linearized queueing models within linear integer programming
for optimal truck allocations in open pit mines. Due to limited scope of queuing theory and wide
scope provided by other techniques, it does not find most applicability nowadays, but instead it is
used in conjunction with other techniques for developing robust models (Ercelebi & Bascetin,

2009; Ta, et al., 2010).

Major research in the area of computer based operational planning and dispatching in mining
started in 1980’s. Elbrond and Soumis (1987) emphasize on a two-step optimization proposed by
White and Olson (1986). The first stage chooses the shovels, the sites and the production rates.
The second stage also determines the rates of the shovels but this time it considers the operation
in more detail. Soumis et al. (1989) proposed a three stage dispatching procedure, namely
equipment plan, operational plan and dispatching plan. Based on the overall approach, similar

procedures have evolved as multi-stage dispatching systems.

White and Olson (1986) describes the limitations of the then existing dispatching models and
concludes the need of a model which could concurrently maximize the production, minimize the
re-handle, meet blending limits and feed the plant. The major limitation of their model is that LP
models do not take into account the mixed fleet, which poses a limitation on the solution
provided by the model and its applicability in mixed fleet systems. For the dynamic allocation of
trucks, their model finds out the path requiring a truck allocation soonest, and assigns the closest

truck to that path. The dynamic dispatching model also does not account for the sizes of the
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trucks, and thus cannot provide optimal allocation solutions for the mixed fleet systems. White
and Olson (1993) also reviewed the then existing dispatching algorithms and proved the need of
efficient dispatching systems by reviewing the significant productivity improvement in various

mines.

The three stage model proposed by Soumis et al. (1989) uses man — machine interaction in the
first stage. Authors describe the mixed integer programming in the first stage for shovel
assignments as structurally bad and impossible to be solved within reasonable time. As an
alternative to the optimal solution, authors suggested an increased human intervention to finally
get 10 best alternatives for the shovel assignments to choose from in the reasonable time. The
major limitation of the first stage is an increased human intervention which poses a limitation on
the optimality of the shovel assignments and renders the model non-dynamic. The second stage
determines the production rates of the shovels and truck assignments using non-linear
programming with three objectives: maximize shovel productions, minimize the squared
difference between computed and available truck hours and minimize the grade deviations
(blending). One unique characteristic of the proposition is the use of queuing theory to calculate
the truck waiting so as to compute the truck hours. Although the paper does not provide the
mathematical formulations, the conceptual proposition provides a significant contribution. The
truck dispatching is achieved by solving the classical assignment problem over the next 10-15

trucks.

Li (1990) proposed a three stage methodology for automated truck dispatching system.
Equipment matching stage determines the number of trucks to be employed to best match the
production objectives using a least square criterion. The haulage planning stage determines the

target tonnage to be produced along a path in the network using linear programming. And the
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truck dispatching stage based on maximum inter-truck-time deviation. The haulage planning
stage minimizes the transportation work (amount of material transported on a haulage path
multiplied by the haul length), which is regarded as directly proportional to the transportation
cost involved. This stage, instead of maximizing the production, attempts to achieve the desired
productions from individual loading units within desired limits. Their model does not account for
the desired plant feed or the grade requirements of the mine. The dispatching stage, using the
optimal path flow rates provided by the haulage planning stage, determines the optimal inter
truck time on the paths. The dispatching decisions are based on the time difference between the
last truck dispatched on various paths and the next truck to be dispatched. The dispatching
algorithm proposed contains various drawbacks, such as it does not account for the mixed fleet
systems, the next trucks needing assignments and the travel times along various paths. But the
simplistic approach makes the algorithm quite efficient to be easily implemented in real-time

dispatching systems.

Temeng et al. (1998) developed a goal programming formulation as an upper stage of a two-
stage dispatching system. Their paper describes goal programming to be better compared to
linear programming using the results obtained. The major limitation of their model is that they do
not provide any information regarding shovel assignments. Shovel assignment is an important
decision making problem which has a direct impact on achieving the production targets and thus
need to be accounted by the upper stage of the dispatching system. Although the model
developed by Temeng et al. (1998) account for mixed fleet, it does so by taking the average
payload of trucks, which would not be a realistic way of modeling this system. A better approach
would be to optimize the operation by considering the actual capacities of every truck type in the

system and their respective payloads.
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The dispatching system developed by Temeng, Otuonye, and Frendewey (1997) uses the target
production provided by the upper stage, to dispatch trucks to those shovels falling short of their
targets, so as to minimize the total waiting time of both trucks and shovels. They propose a
transportation algorithm, where available trucks are supplied to fulfill the demand of the shovels,

with the objective of minimizing the waiting time of trucks and shovels.

Alarie et al. (2002) review different types of dispatching strategies and classified them broadly
into three categories: 1 truck for N shovels, M trucks for 1 shovel and M trucks for N shovels.
They describe a multi-stage dispatching system to be ideal which updates the guidelines
representing not only the actual state of the mine, but also accounts for the forthcoming events
that will affect the operational conditions in the near future. They emphasize the use of M trucks
for N shovels strategy (the best among the three) in a multi stage dispatching algorithms, as the
computing power and the technology for the real-time management of such systems is now

available.

Ta et al. (2005) provide a stochastic optimization approach to improve the initial truck allocation
and reallocation based on observed mine operation. The first stage is a probabilistic chance —
constraint optimization model which is converted into a non-linear deterministic model; and the
second stage is a mixed integer linear optimization model to provide ultimate discrete truck
solutions. The truck allocation models minimize the truck resources needed to meet the
production constraint or in other words minimize the operating and capital cost of ore delivery.
Though the model provides a good conceptual background for stochastic optimization approach
to solve the multi-stage optimization problem, it takes into account the probabilistic nature of
truck travel times only. Also the model formulation is very much specific to a mining case and

cannot be generalized to other mining systems.
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Another model provided by Subtil et al. (2011) is used in commercial package SmartMine®
marketed by Devex SA. It uses LP in the upper stage to determine the maximum production
capacity of the mine and the optimal size of the truck fleet required to meet this production. The
allocation planning stage does not provide any information for shovel assignments which still
remains the task of the planner completely. Also the model do not take into consideration other
desired characteristics, such as grade blending, constant desired feed to plants etc. The dynamic
allocation or the truck dispatching is achieved by adopting M trucks for N shovels strategy.
Using M trucks, best possible solutions are generated and each solution is simulated 50 times to
get a desired confidence interval. The best solution is found using a multi-criteria optimization,
which is to maximize productivity of transport fleet and minimize queue time at shovels and idle
time of shovels. A fuzzy logic expert is then used to evaluate the solution and if passed dispatch
the truck to the allocated shovel. The major drawback of the approach can be the cumbersome
time consuming methodology adopted at the dynamic allocation stage, which demands quick and
real-time decisions. Authors mention some situations where fuzzy logic rejects the best solution,
which demands re-running of the entire model to get another solution. The solution is rejected
only if the solution obtained is not good, where as the model estimated that solution to be the
best, which poses a contradiction in the estimation and evaluation. The alternate solution
generated after rejecting the first one will be the second best solution, which may again get

rejected, leading the method into a loop and consuming lot of time.

Ahangaran et al. (2012) uses a two stage model for truck dispatching, where the first stage uses a
network analysis technique to determine the best routes between departure and destination points
and second stage provides dynamic truck assignments. The second stage adopts a binary integer

programming model to minimize the function of the total cost of loading and transportation. This
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dispatching model is significantly different compared to previous models in terms of the
objective function and the mixed fleet considerations in the modeling equations. One of the
major drawbacks of this model is that it does not consider any predetermined objectives of the

operations to achieve desired grade blending or constant feed to plants etc.

Munirathinam and Yingling (1994) provide a review of truck dispatching in mining and Lizotte
et al. (1989) describe different heuristic methods used for truck assignments at that time. Bonates
and Lizotte (1988) emphasize on the accuracy of the model in the upper stage in terms of the true
representation of the mining system, so that realistic targets could be fed to the dispatching
model in the lower stage. The major problems arise due to inaccurate input data at the upper
stage. The truck cycle time is one of the major input data that can affect the predictions. Chanda
and Gardiner (2010) provide multiple regression and artificial neural network based approaches
to be better compared to the cycle times predicted by software such as TALPAC (Talpac, 2011),
which uses manufacturers’ specifications and rimpull curves. The more precise the data used at

the upper stage, the better the performance of the model can be.

It is noted by reviewing the existing models in the multi-stage dispatching that very few models
try to link the operational plans with the strategic plans of the mine. Models try to improve the
efficiency of the mining operations but miss to incorporate the shovel assignments which still
remain the sole responsibility of the planners to meet medium to long term targets. This missing
link leads to frequent updates in the short term plans and may eventually lead to deviations from
the strategic targets. Also many models do not incorporate or provide flexibility to incorporate
major objectives of the operations. Not accounting for mixed fleet systems for optimum truck
allocations and different truck types within truck dispatching algorithms is another major

drawback which leads to inefficient utilization of equipment.
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2.4. Modeling and solution approaches
2.4.1. Goal programming

Goal programming (GP) is an efficient and important technique for multi-objective decision
making (MODM) problems (Chang, 2007). Charnes and Cooper (1957) are considered to be the
very first to introduce goal programming, which was further refined and developed by Lee
(1972) and Ignizio (1985). De Oliveira et al. (2003) used goal programming for Brazilian forest
planning problem. Temeng et al. (1997, 1998) and many others used goal programming in mine
operational planning decision making. Romero (2004) describes the structures of the
achievement function to measure the degree of minimization of deviation variables in the goal
programming formulation by critically examining the efficiency of widely used approaches for
achievement functions and concludes to choose an approach based on the requirements of the
decision makers (DMs). Tamiz et al. (1998) provides an overview of developments in goal
programming and elaborates on various modeling approaches including normalization
techniques for efficient results. Grodzevich and Romanko (2006) describes the zero one
normalization technique by formulating a meaningful achievement function and elaborating on
the pareto optimal space. Although zero one normalization technique is time consuming, the
resultant achievement function remains meaningful and priority weights assigned to individual
deviational variable in the achievement function generate desired prioritized results for

individual objectives.

2.4.2. Heuristic approaches

Souza et al. (2010) proves that open pit mine operational planning problem belongs to NP-hard
class by deriving an analogy with the Multiple Knapsack Problem (MKP) which belongs to NP-

hard class (Papadimitriou & Steiglitz, 1982), and proposes a heuristic algorithm as a combination
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of Greedy Randomized Adaptive Search Procedures (GRASP) and General Variable
Neighborhood Search (GVNS) to solve the Open pit mine operational planning problem. Ching-
Jong (1994) proposed a node selection strategy for the branch and bound search and claimed it to
be more efficient in storage space and computation time compared to conventional best bound
rule. Pryor and Chinneck (2011) addresses the problem of best branching heuristic by assigning
probability of satisfying a constraint at the child node for a variable, direction pair. Bley et al.
(2010) present an integer programming model for mine production scheduling and strengthened
their formulation by adding extra inequalities, by combining precedence and production
constraints, that assist in reaching to solution faster. Khan and Niemann-Delius (2014) proposed
Particle Swarm optimization algorithm as a meta-heuristic algorithm to solve long term
scheduling problem, to reduce computation time and generate solutions comparable to those
obtained by CPLEX solver. Krause and Musingwini (2007) describe the importance of optimal
number of trucks in the system; and propose a modified Machine Repair model to determine, as
a second estimation tool, the actual truck requirement in the mine for improved confidence.
Although many heuristic and meta-heuristic approaches exist to improve the solution time of the
problem or the sub-problems in short term and operational planning, this research does not
intend to develop or implement any heuristic at this stage, which can be worked upon as a future
research. As solution time is a critical factor, preprocessing strategies adopted by (Bley, et al.,
2010; Caccetta & Hill, 2003; L’Heureux, et al., 2013; Smith, 1998), which attempts at fixing
some of the variables based on the initial knowledge, have been implemented to improve the

solution time of the problem.
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2.5. Simulation in mining

The application of simulation in mine planning and design can be traced back to around 1940.
With the evolution and familiarization with simulation, its power has been accepted worldwide.
Simulation has been widely accepted as the most powerful tool for modeling the processes and
analyzing the system responses with changing parameters of the system, and in-turn optimizing
the system performance. Sturgul (2001) describe the importance of modeling and simulation in
the mine planning operations by presenting its applicability in modeling conveyor belts, room
and pillar mining operations, material handling and truck haulage in open pit mines. Paper
describes GPSS/H and SIMAN based ARENA (Rockwell Automation Inc.), as two most
commonly used discrete event simulation languages. Though there is an enormous opportunity
for simulation in mining, it has been mainly used for material handling and mine planning
purposes (Yuriy & Vayenas, 2008). Ataeepour and Baafi (1999), Sturgul and Eharrison (1987),
Bonates and Lizotte (1988), Forsman et al. (1993) and Kolonja and Mutmansky (1994) used
simulation models to analyze various dispatching strategies and proved the positive impact of
dispatching systems in mining. Peng et al. (1988) used simulation models to link the discrete
(truck-shovel) and continuous (belt conveyor) elements of the mining system. Awuah-Oftei et al.
(2003) used simulation models to determine the optimal truck and shovel requirements in a mine.
Upadhyay et al. (2013) used simulation to determine optimal number of trucks for continuous

surface mining operations.

Sturgul (1999) provides a historic review of discrete mine system simulation in United States and
credits Rist (1961) for the first published work of a computer simulation of a mining system.
Vagenas (1999) and Konyukh et al. (1999) provide a review of application of simulations in

Canada and Asia respectively. As noted by Vagenas (1999), Canadian mining mostly used
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simulations for 3D animations to visualize entire ore-bodies, reliability assessment of mining
equipment, integrating simulation with real-time mine management systems and analyzing the

short term and long-term requirements of operations.

Vagenas (1999) and Sturgul (1999) present an evolution of various simulation languages and
packages over the years, such as GASP V, SLAM, GPSS (GPSS II, GPSS360, GPSS V/S,
GPSS/PC, GPSS/H) and SIMAN. Since then many other simulation languages have evolved and
are being used. Yuriy and Vayenas (2008) describe “the availability of adequate debugging and
error diagnostics, the ability to import data from other software such as spreadsheets and
computer-aided-design packages, availability of an animation environment for visualization of
the operation and the quality and variety of output reports and graphs” as the various criteria to
be kept in mind for the selection of a simulation package. Another major criterion for the
selection of any simulation package would be the strength of the package in generating the

random numbers for modeling the processes.

Askari-Nasab et al. (2007) developed the open pit production simulator (OPPS) to simulate the
dynamic expansion of the open pit mine geometry. Paper concludes that stochastic simulation
with artificial intelligence can prove to be very efficient for modeling the random fields and
dynamic processes in open pit mine planning. Fioroni et al. (2008) uses simulation in
conjunction with a mixed integer linear programming model to reduce mining costs by optimal

production planning.

Yuriy and Vayenas (2008) use discrete event simulation in conjunction with a reliability
assessment model based on genetic algorithms to analyze the impact of equipment failures on
production, mechanical availability and equipment utilizations. In another paper Hodkiewicz

(2010) provide a broad review of simulation modeling in mining and describe the applicability of
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the simulation modeling in understanding the impact of preventive and corrective maintenance
on the production. Raj et al. (2009) provides a critical review of the application of simulation

techniques for production optimization in mining.

The researchers, through various simulation models, have proved the power of simulation and in-
turn proved the opportunity to improve the mining operations through efficient planning. A
generalized mine simulation program can provide ample scope and opportunity to improve the
production operations by experimenting with various multi-stage dispatching models and
comparing the effects on the system and desired objectives of the production operations.
Following are the major shortcomings of the simulation models that will be incorporated in this

research:

e Simulation models remain very much specific to any particular mining site.

e Models provide less user flexibility towards various stochastic parameters of the system,
such as shovel bucket cycle time, truck spotting, hauling on various gradients, payload,

dumping, and queuing etc.

e Models generally do not link the discrete production with continuous processing operation to

enable analyzing the overall system.

e Models do not incorporate block by block excavation, as determined by the operational
planning stage and hence fail to analyze the operation in short term planning horizons. This is

mainly due to the manual decisions regarding shovel assignments.

e Models generally provide very less flexibility towards analyzing different optimization

approaches at the dispatching stage.

2.6. Micro-simulation of truck haulage

It is evident that the power of simulation lies within the precise modeling of the system

processes. One of such processes is the transportation of haul trucks in mines. Burt and Caccetta
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(2007) and many others pointed out the importance of tracking the inherent traffic behavior in
the internal and congested haulage networks, especially when large number of trucks travels
through common shared haul road segments. Burt and Caccetta (2007) and Jaoua et al. (2012)
describe the existing dispatching software as inefficient in accounting for the stochastic nature of

the transportation system.

Jaoua et al. (2009) proposed a micro-simulation tool for accurately modeling the truck
interactions on haul roads and described its benefits in capturing the affect of accidents on haul
road segments and improved haul road design on the production. Meech and Juliana (2011)
developed a human driver model in simulation to study autonomous trucks. Meech and Juliana
(2011) used their human driver model to assign aggressiveness and stability of human drivers
working in a mine and also to compare the tire wear, fuel consumption, cycle times and

production between less variable autonomous trucks and manual trucks.

Jaoua et al. (2012) describe the importance of trucks haulage micro-simulation models for
efficient truck dispatching systems as well. They describe that most of the dispatching algorithms
are based on precompiled and deterministic truck cycle times and assume that for the next period
trucks will spend on average the same time to accomplish the mission. However in reality of
mining operation, the duration of truck travel is very sensitive to the real-time traffic state as well

as the road condition.

Koppa et al. (2001) describe the vehicle movement in a traffic stream to be loosely coupled with
other vehicles via the driver’s processing of information and execution of control inputs. The
driver perceives the speed or acceleration of other vehicles and executes the control which guides
his movement. Considering the general case of multi-lane road, two situations appear relevant

here which determines the movement of any vehicle 1) the vehicle ahead and 2) the vehicle
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alongside. In case of Mining Haul roads, which generally have only one lane for one way traffic,

only 1st situation comes into play.

In another study Rothery (2001) finds out that though it seems that the actions of any driver are
continuous, there is some evidence that driver of any vehicle acts in a discontinuous way. There
is a period of time during which the operator having made a decision to react is in an irreversible
state and that the response must follow at an appropriate time, which later is consistent with the
task. So, although the driver perceives the movement of other vehicles continuously, he/she
processes it and then executes controls discontinuously. Hence a discrete event simulation, by
modeling actions at discrete intervals of time can actually simulate the process. Another study by
Kesting and Treiber (2008) suggest that drivers compensate for the human reaction time by
anticipation. Hence a reaction time of zero seconds would be a reasonable assumption to model

the process.

Human visual perception to distinguish acceleration from constant velocity is very difficult
unless the object is observed for a relatively long period of time (10 to 15 sec) (Boff & Lincoln,
1988). Mortimer (1988) estimates that a driver can detect a relative movement with respect to a
leading vehicle when distance between them has varied by approximately 12 percent. Mortimer

notes that the major factor for this perception is the change in visual angle.

The concept of car following model has been used in this study to simulate the truck movements.
According to Rothery (2001) car following model assumes that, in single lane traffic, there exists
a correlation between two vehicles within a range of inter-vehicle spacing from zero to about 100
to 125 meters. This model assumes that each driver in a following vehicle is an active and
predictable control element. It is this interaction that determines the acceleration or deceleration

of the vehicle when two vehicles are interacting.
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In normal case, when there is no interaction between vehicles, they try to move freely on their
normal driving speed. According to Bonates (1996) maximum obtainable speed by any truck can
be determined by the rimpull curves generally provided by the manufacturers. He describes the
rimpull as the force exerted on ground by the drive wheels to get the truck in motion. This force
is generated by the torque that the engine develops and it is a function of the gear ratios.
Maximum achievable speed by truck on any haul road segment can be calculated as given in Eq.

(1) (Bonates, 1996)

~366.97 x Kwx Efficiency (1)
max TR >< W

Where: V= Maximum obtainable velocity (Km/Hr)

Kw= Vehicle engine power in Kw
Efficiency= Motor efficiency (decimal)
TR = Total resistance (decimal)

w = Vehicle weight, in Kg

The maximum velocity calculated in Eq. (1) is multiplied with a speed factor to determine the average
velocity of trucks along any haul road segment (Table 2-1).

Table 2-1: Factors for converting maximum speed to average speed (Bishop, 1968)

Length of Haul Road Section Factors for Converting Maximum Speed to Average Speed
(meter)
Unit Starting from Stop Unit in Motion when Entering Road Section

0-107 0.25-0.5 0.50-2.00

107-229 0.35-0.6 0.60-0.75

229-457 0.5-0.65 0.70-0.80

457-762 0.6-0.70 0.75-0.80

762-1067 0.65-0.75 0.80-0.85

Over 1067 0.70-0.85 0.80-0.90
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The concept of micro-simulation in mining is very new and bears enormous potential to analyze
the mining operations precisely. The scope of this research is limited to the modeling of truck
travel times as accurately as possible; to be used for development of a precise simulation model

for the truck-shovel based open pit mining system.

2.7. Summary and conclusions

The research in the area of mine planning and optimization can be traced back to 1950°s where
very basic models were used in planning. Queueing theory was widely used for truck shovel
optimizations in the beginning, which was later replaced by operations research techniques,
simulation and mixed optimization techniques with the evolution in computing capabilities.
Although lot of work can be found for long term and medium term mine planning, short term and
operational mine planning haven’t received sufficient attention of the researchers. Short term
mine production scheduling still bears a tremendous scope for research to improve the mine

operations and achieve strategic goals of maximum NPV.

Mixed Integer Programming, Goal programming and simulation have been found as the major
approaches to solve the short term and operational planning optimization problem in the
literature. Most of the literature in short term planning focus on the objectives of meeting plant
feed and grade blending requirements and determining an optimum sequence of block extraction
defined within pit limit based on medium or long term production schedule. The literature in
operational planning and multi-stage dispatching focuses on the determination of path flow rates
from mining shovels to respective destinations, to be fed into truck dispatching systems, to
achieve desired grade blend, tonnage feed to plants and maximum production during operations.
The scope of simulation models have been limited to specific problem domains and mining

systems they were created for. In recent years simulation optimization has also seen great
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development across different problem domains, an application of which has been found for truck
dispatching in mining. Truck haulage being a critical component in the mining operations has
also seen development over the past decade. Some researchers have made an attempt to model
the truck travel behavior on the haul roads, through micro-simulation systems, which leads to
platoon formations and decreased productions. They have used these micro-simulation models to
predict the impact on production due to haul road designs, increased traffic, accidents, and driver

behaviors.

A thorough review of the existing approaches in short term and operational planning; simulation
and micro-simulation models, following limitations have been observed which will be accounted
in this project.

2.7.1. Short term and operational planning

Literature on the optimal decision making in allocation planning unanimously emphasizes on a
multi stage optimization approach for optimal allocation planning at the operational level. The
upper stages optimize the systems to determine optimal number of equipment, allocation and
targets for the shift, whereas the lower stage implements the executable plan provided by the
upper stage. The decisions at the upper stage are based on the operational objectives of the mine.
The lower stage performs the dynamic truck allocations based on the decisions of the upper
stage. On the other hand, based on the literature reviewed, the objectives of short term
production planning are to provide sequence of extraction of blocks within pit limit defined by
medium or long term plan, to achieve the strategic production targets and minimize the
fluctuations in target tonnage feed and grades delivered to plants in daily operations. The short
term schedule must also provide optimal truck allocations for truck dispatching, maximize

equipment utilizations and must be flexible and practical for execution. Following are the major
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shortcomings of the existing models in short term and operational planning as reviewed in this

chapter:

e There exist no direct link between the short term plan and the operation, which is filled by
the planners on site who provide shovel allocations to blocks based on experience to meet

short term plans and operational objectives.

¢ Due to manual shovel allocations and not accounting for inherent uncertainties of the mining
operations, short term plans need frequent updating which may eventually lead to deviations

from short term and in turn long term plans; affecting economic objectives of the mine.

e Not accounting for highly uncertain mining environment during short term planning and
manual shovel assignments during operations, instills lower confidence on the plans and the
expected status of the system after the planning period; which forces for reactive planning

instead of pro-active decision making for an efficient production system.

e To the best of authors knowledge, except L’Heureux et al.(2013), no other literature
considers the effects of shovel movement for short term production planning, leaving the

practicality of the schedules in question.

e Truck allocation requirement is not accounted by any literature reviewed in short term
planning, which poses a limitation on the achievability of the schedules due to limited
available haulage capacity and increasing distances of scheduled faces; which again forces

reactive planning.

e Predicting the fluctuations in head grade and tonnage feed to plants is also considered
important at the short term planning stage, which is not provided by any planning model in

short term planning.

e Most of the models in multi-stage dispatching fail to include, or provide flexibility to include
all the major objectives of the production operations. The major objectives that can be
considered at the operational planning stage include maximizing production, minimizing

grade deviation, providing constant and desired feed to the processing plants and minimizing
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the operating cost and minimizing shovel movement times between faces, which also bear

importance in shift production planning.

Modeling the material transport as flow rate or in other cases not considering the truck
characteristics make most of the multi stage dispatching models inappropriate to be

implemented in mixed fleet systems.

2.7.2. Simulation

Discrete event simulation bears great scope towards decision making in mining industry, and it

has been successfully applied to assess the impact of changes in the operating strategy and

system parameters and hence to optimize the system by analyzing various scenarios. Very little

work has been found in literature which applies discrete event simulation models directly for

decision making purposes, such as simulation optimization models. In context to the objectives

of this study, following limitations are generally observed in the simulation models discussed in

literature:

Models generally do not link the discrete production with continuous processing operation to
enable analyzing the overall production system, as the production rate is limited by the

feeding capacity to plants.

Models do not incorporate block by block excavation, as determined by the short term
planning stage and hence fail to analyze the operation in longer time frames. This is mainly
due to the manual decisions regarding shovel assignments. An optimization model/tool for
operational planning, like the one presented in this study would enable developing such a
simulation model and thus help understand the production behavior and short term

production planning in short term planning time horizons.

Most simulation models do not construct the actual haulage network and do not model the
interactions among trucks, which may lead to platoon formations and greatly affect the

production.
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Truck velocities are usually modeled using distribution functions, which assigns a fixed
speed to trucks between a source and a destination. This is a big assumption in most models,
where in reality speed of trucks varies throughout the haul road network depending on the
haul road characteristics (gradient, rolling resistance etc.), rimpull characteristics of trucks

and truck interactions on individual road segments and at intersections.

Determination of optimal fleet size is a major problem faced by organizations, which is
usually calculated through scenario analysis of simulation models. However, not accounting
for haul road network, road characteristics, truck interactions and the dispatching system,

introduces error in estimation, which leads to poor productivity in operations.

Due to inherent nature of discrete event simulation models, they are made with respect to
particular mining sites and remain limited to the problem domain being analyzed. The
reusability of the model over time is still possible, which must be accounted while
developing the model. The flexibility must be provided to incorporate changing haul road
network, change distribution functions and alter the equipment and their characteristics, to

ease the applicability of the model over time for efficient returns over the life of the mine.
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THEORETICAL FRAMEWORK
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3. THEORETICAL FRAMEWORK
3.1. Introduction

Mine planning is usually classified as strategic plans constituting long term and medium term
plans; and tactical plans constituting short term and operational plans. Due to longer life spans of
mines, optimal and practical planning is essential for maximum NPV and smooth operations;
however on a reverse perspective, operational executions dictate achievements of planned targets
and schedules. This anomaly creates a cyclic behavior in the planning process, where actual
planning follows the sequence: long term — medium term — short term — operations; operational
executions necessitates reverse path to update and recalculate actual plans. Operational planning
and executions thus become very important to achieve the economic objectives and long term
life of mine plans. Pro-active planning and decision making tools may help mitigate this cyclic
effect, by foreseeing the deviations in operations from the strategic plans, to undertake timely
actions to minimize the deviations. A bottom-up approach is therefore proposed in this research,
which generates uncertainty based short term plan by simulating operations to achieve medium
to long term plans. This approach links operations directly to strategic plans, in turn creating the
short term plan which is practically feasible and achievable, and enabling pro-active actions to

minimize any perceived deviations from the strategic targets.

Fig. 3.1 shows the layout of an open pit mining system which consists of available
excavator/shovel resources, trucks, existing haul road network, process plants, stock piles and
waste dumps. Short term planning in open pit mining environment, with truck — shovel
operations, deals with planning the sequence of allocation of excavators/shovels to the blocks
available within the pit boundary determined by long term schedule, and the production targets

limited by shovel and destination capacities. Short term schedules are generated to guide the
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operations to meet medium or long term production schedules and on the other hand achieve
operational requirements. The problem becomes complex with the processing plants, which
require grades within desired range for efficient recovery of final product. Higher fluctuations in
head grade delivered to plants may affect the recovery of the final product substantially. High
grade variability within the ore deposit may sometimes make it practically impossible to
maintain a steady head grade to plants by blending through optimal dispatching. Such a case

enforces the requirement of blending stock piles, making problem further complex to solve.

Plant1 Plant 2

Shovel 1
) Truck 3 Stock Pile 1
— B ——
Shovel 2 Truck 1

Stock Pile 2

Waste Dump 1 Waste Dump 2
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shovel §
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Fig. 3.1. Mining system and components for short term planning in open pit mines

The major objectives for the short term production scheduling based on Chanda and Wilke

(1992) and the requirements for an efficient plan are:
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e Determining ore and waste mining faces and the sequence of extraction within the planned
faces based on medium or long term production schedule, the rates of ore and waste mining,

stripping ratios and composition of head grades,

e The schedule must minimize the absolute deviations in head grade delivered to plants, as it

may significantly affect the mill recovery,
e The schedule should predict the fluctuations in head grades delivered to plants,
e The schedule must provide detailed allocation of shovels, and trucks for dispatching,
e The schedule must efficiently utilize the equipment and mining resources,
e The schedule must be flexible and practically executable,

e The scheduling tool must reflect the operational environment, such as haul road network,
haul road characteristics, equipment conditions and availabilities, truck dispatching system

efficiency and other operational uncertainties.

This chapter presents a theoretical framework for the development of an efficient and practical
short term and operational planning tool. The next section elaborates the framework of the
planning tool, presenting the steps required and the interactions among components of the tool
for the development of short term plans and operational decision making. Then the mathematical
optimization model for the development of Mine Operational Optimization Tool (MOOT) is
presented. The development of simulation and micro-simulation of mine haulage is presented

next in this chapter followed by summary and conclusions.
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3.2. Definitions
3.2.1. Faces

Faces in the model refers to the cluster of blocks, grouped together based on similarity in
material content and rock types, also known as scheduling polygons (Fig. 3.2). The basic mining

unit considered in the model is a face.
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Fig. 3.2 Mining blocks on a bench clustered as faces

3.2.2. Decision and optimization time frame

For optimal short term production scheduling, following a simulation optimization approach, it is
considered essential for the model to make decisions for the current state considering future
decision requirements at the same time. The MOOT is thus developed as a multi-period
optimization model. The time frame for which the decision is required in the simulation model is

called the decision time frame in this research, which is the first period in the MOOT. The
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optimization time frame refers to total time which includes all the periods. So if simulation is
desired to have decisions for a shift of 12 hours (one shift per day), with 30 periods, the decision
time frame is a shift of 12 hours, and optimization time is a month, i.e. allocation decisions will
be provided to the simulation model for one shift, but the model optimizes the operations for an
entire month. This helps the simulation optimization approach to foresee grade variability and

unavailability of the faces and provide shovel allocations accordingly.

Optimization Time Frame
Period 1 Period 2 Period 3 Period 4 Period 5 Period 6
Decision
Time Frame
(T

Fig. 3.3. Decision and optimization time frames considered in this research

3.3. Short term mine planning

The process of short term planning starts with the long term plans. The blocks within the pit
boundary determined in the long term plan are selected and scheduled in the short term planning
time horizons. In the conventional approach, the short term plans are then executed through
operational plans and updated periodically to achieve strategic planning targets. This research
proposes a bottom up approach where operations are simulated with dynamic operational
decisions to meet strategic plans, within uncertain mining environment, to generate uncertainty
based short term plans. Although this approach does not guarantee that short term plans would be
exactly followed during operations and no reverse updating of plans would be required, the pro-
active approach help reduce the deviations and frequent updating of the plans. The conceptual
framework of the process is given in Fig. 3.4, which presents the applicability of the dynamic
operational decision making tool, the MOOT, developed in this research for mine operational

decision making and in a parallel process through simulation optimization approach for short
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term planning and optimization. Although conceptual framework for implementing the MOOT
as a dynamic operational decision making tool exist in actual operations, similar to multi-stage
dispatching systems such as Dispatch (Modular Mining Systems Inc.), current research is
focused on its applicability as a simulation optimization tool for uncertainty based short term

planning.

Mine Operations

Truck
Dispatching =
System

Dynamic Operational Decision Making

Strategic Plan

Medium Term Configuration

Schedule > Data. - > MOOT
Input File
A
Road Network
=l VBA macro
Create Model
VBA macro Simulation of

Upload Data Mine Operations

Short Term Planning

Fig. 3.4. Conceptual framework for implementing MOOT as a short term planning and dynamic operational decision
making tool

The steps involved in the proposed process for uncertainty based short term mine planning are

given in Fig. 3.5.
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Strategic schedule

* Select the blocks scheduled in the strategic plan.

* Group similar blocks together into faces.

» Determine mining precedence requirements based on practical accessibility of faces.
* Determine initial shovel location at the start of the planning time horizon.

Excel input interface

* Generate probability distributions to model process times, based on historical data.

* Create Excel input interface file with strategic schedule, systerm components and
various process time distributions.

* Calculate multiplier factors to model truck speeds based on rimpull curve
characteristics.

» Translate haul road network based on strategic plan by creating nodes and segments
into the Excel input interface file.

Simulation optimization

* Run the VBA macro created within Arena to generate the model variables, resources
and road network.

* Run the simulation model for the short term planning time horizon

* Run the upload VBA macro created within Arena to upload the simulation outputs into
SQL database.

» Run the Matlab result analysis tool to query the database to estimate and plot the KPIs
of the system.

 Run different scenarios by making changes in the Excel input interface file.

Fig. 3.5. Steps to run the proposed simulation optimization model

The very first and important requirement for carrying out the proposed approach is the
development of clusters for the blocks selected from the strategic plan. Although generating
clusters is not a requirement for MOOT, and it can work with blocks as well; clusters reduce the
number of available faces for assignment, thus reducing the run time of the model. It also brings
schedule closer to reality, as blasting and extractions are usually carried out over much wider
areas compared to blocks. Thus clustering is recommended in this research for improved and
better results. The clustering must be carried out to group similar blocks together to develop

larger size faces for shovel assignments. The blocks constituting a cluster must have:

e Similar grades
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e Same rock types
e Same bench
e Between minimum and maximum limit on the number of blocks

Clusters created by following the given criterion will have similar mining and destination
characteristics and will be almost of equal size as the blast areas in the mine operations. A
clustering algorithm developed by Tabesh and Askari-Nasab (2013) is used in this research to

generate clusters for the case study implemented in the following chapter.

The next important step involves determining the horizontal precedence face matrix. As the
shapes of clusters are usually irregular, a direct mathematical approach is not possible to
determine horizontal accessibility requirements of faces. Also depending on the equipment sizes
and practicality of the schedule, manual determination of precedence matrix is considered in this
research. This also provides flexibility to the planner to control the mining direction. The vertical
precedence faces are taken directly from the medium term schedule, which are combined with
horizontal precedence face matrix to determine the practical precedence requirement. Changes in

the precedence matrix may change the final solutions, as the mining directions might change.

Model provides shovel allocations based on their locations at any time. This makes the starting
position of shovels very critical for accurate results. Shovel position here refers to the
coordinates of the actual faces where shovels will be initially placed. To provide a warm-up to
simulation, this initial position refers to large dummy faces located exactly at the same location
as the original faces. The simulation starts with working on these dummy faces and moves to

original faces after the warm-up time.
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After the initial positions are determined and dummy faces are created, the schedule is created
within an Excel input interface/configuration file which contains all the faces scheduled within
the strategic plan including dummy faces. This schedule sheet contains the coordinates,
tonnages, average grades of all the material types present in the ore, face IDs and the precedence
faces determined before. In the process of constructing input configuration file, general inputs
are provided in the sheet general which provides information on number of scheduled polygon
faces, shovels, truck types, material types present in the ore, number of plant crushers, stock piles
and waste dumps. The general inputs also includes number of optimization periods and decision
time frame (period in hours) for the MOOT, hours per shift, number of shifts per day, working
days per week and weights assigned to individual goals for optimization. Dump location
information is provided in the sheet DumpLocations which contains coordinates and
simultaneous dump capacity of each dump including each plant crusher, stockpile (if any) and
waste dump. Information on trucks in the system are provided in the sheet Trucks, which
provides number of trucks of each type available and respective mean dump time, spot time and
tonnage capacities, along with distribution functions for dump times and spot times. Mean values
are used by MOOT for deterministic decision making purposes, while distributions are used
within simulation. Compatibility of each truck type to work with a shovel is also provided here.
This sheet also provides a schedule for each truck, i.e. the duration a truck will be out of system.
This schedule enables the user to include any contractor trucks if required for part of the
scheduling horizon. All the shovels are listed in the sheet Shovels, which provides mean bucket
tonnage capacities, bucket cycle times, travel speed of shovels, and initial face IDs for each
shovels. Distributions are also provided for bucket tonnage capacities and bucket cycle times to

be used within simulation. Truck failures for each truck type are provided in the sheet
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TruckFailures and shovel failures for each shovel are provided in the sheet ShovelFailures.
These sheets provide distributions for time between failures (TBF) and time to repair (TTR) for
each failure type. Crusher rate (tph) and corresponding hopper capacities are provided in the
sheet Plants, which also provides desired grades of each material type at each crusher location.
Weights are also provided here depending on desirability and criticality of material types at each

plant crusher location for the MOOT to provide optimal grade blending.

A Matlab® function is created to determine the speed factors of each truck type to adjust the
speed of trucks while travelling on varying road gradients. Based on rimpull curve characteristics
and, empty and loaded gross vehicle weights, this function determines the maximum possible
speed of each truck type on different total resistance (gradient + rolling resistance) haul roads,
which is divided by the maximum possible speed on flat hauls to calculate speed factors by
which the speed of trucks will be adjusted within simulation on different haul road segments.
These speed factors are written down within TruckSpeeds sheet of input configuration file, which
also contains mean flat haul speeds and respective distributions for each truck type calculated

based on historical data for an average driver.

The next task in the process is to translate designed haul road network into readable input for
Arena to create haul road network for simulation. A Matlab® based GUI is created, which takes
designed polylines as dxf input and creates nodes and segments into the input file, which will be
used during model building stage to construct haul road network within Arena simulation. The
inputs thus created contain haul road information on gradients, rolling resistances and maximum
allowed speed at each segment of the road. The user can then manually adjust the maximum

allowed speed and rolling resistances of individual haul roads. The GUI also creates face loading
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nodes and dumping nodes for each polygon face and dump defined in the input file based on

their coordinates.

At this stage the input configuration file is complete, which is then used to develop the
simulation model of the mining operation within Arena simulation. A VBA macro is created
within the simulation which is then run to generate various variables, expressions, sets, stations,

resources, resource capacities, transporters, and haul roads within the simulation model.

Finally simulation model is run for the duration of short term plan. The operational decisions
regarding shovel relocations and target productions for dispatch are provided by the MOOT
through VBA — Matlab® interactions. Each time system state changes which demands a
decision, the MOOT is executed in Matlab® through VBA, which generates a text file as its
output, which is then read into simulation. Both simulation and MOOT use the same input
configuration file during this process to maintain the consistency in the process. The simulation
outputs are recorded in the plain text format for each load carried by trucks, failures, plants and
shovel allocations. The simulation model at the end of simulation provides a VBA based form to
upload this data to the SQL server database. This process also removes the data generated during

the warm-up period within simulation.

A Matlab® function is created which is then run to analyze and plot the results for detailed
analysis of the scenario. This function queries the database through ODBC within windows to
fetch the required data. Queries on shovel movements provide details on shovel working faces
during the course of simulation time to determine the uncertainty based schedule for each

replication.
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Several scenarios can now be analyzed by changing the desired parameters in the input
configuration file to meet the strategic target, in turn selecting the best scenario to be

implemented in mine operations following a pro-active decision making approach.

3.4. Mine operational optimization tool (MOOT)
3.4.1. Notations

Table 3-1: Indices for variables, parameters and sets

S Index for set of shovels (s =1, ... 5)

f Index for set of faces (f=1, ... F )

t Index for set of truck types trucks (t=1, ... T )

k Index for set of material types (k= 1, ... K )

d Index for set of destinations (processing plants, stockpiles, waste dumps)
d¢ Index for set of crushers/processing plants (d“ =1, ... 13)

d’ Index for ore destinations (processing plants and stockpiles)

d” Index for waste dumps (d"=1, ... W)

P Index for periods (p=1,...P)

Table 3-2: Parameters of systems considered

D, Dumping time of truck type t (minutes)
E, Spotting time of truck type t (minutes)
N/ Number of trucks of type t

H, Tonnage capacity of truck type t

J Flexibility in tonnage produced, to allow fractional overloading of trucks (ton)
v, Average speed of truck type t when empty (Km/hr)

I7t Average speed of truck type t when loaded (Km/hr)

C Cost of empty truck movement ($/Km)

5, Cost of loaded truck movement ($/Km)

M ; Binary match parameter, if truck type t can be assigned to shovel s

X, Shovel bucket capacity (ton)
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X! Maximum possible shovel production in decision time frame ‘7 (ton)
X Minimum shovel production desired in decision time frame ‘7 (ton)

L, Shovel loading cycle time (seconds)

U’ Maximum desired shovel utilization (%)

U; Minimum desired shovel utilization (%)

A, Cost of shovel movement ($/meter)

S, Movement speed of shovel (meter/minute)

al Truck availability (fraction)

al Shovel availability (fraction)

Fi, Face where shovel is initially located (start of the shift)

D,FE Distance to exit from face f

D Distance to destination d from the pit exit

zZ e Maximum capacity of the crushers/processing plants (ton/hr)

A;, Maximum positive deviation in tonnage accepted at crushers/processing plants (ton/hr)
A;E Maximum negative deviation in tonnage accepted at crushers/processing plants (ton/hr)
Gk’ & Desired grade of material types at the ore destinations

G,; " Lower limit on grade of material type k at ore destinations

G/:, 2o Upper limit on grade of material type k at ore destinations

F ; ,F fy ,F fz X, V, z coordinates of the faces available for shovel assignment (meters)
N ; Number of precedence faces required to be mined before mining face f
éf,k Grade of material type k at face f

O, Tonnage available at face f at the beginning of optimization (ton)

O, Minimum material at face below which a face is considered mined

Q r 1 if material at face is ore, 0 if it is waste (binary parameter)

T Decision time frame (hr)

1 Lower limit on desired stripping ratio
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T Upper limit on desired stripping ratio

I Distance between available faces (meters), calculated as linear distance between faces on the same
If bench, and following the haul road and ramps between faces on different benches.

r?,d Distance of destinations from faces, based on the haulage profile in short term schedule (meters)

Ty Movement time of shovel s from initial face to face f (minutes)

T,J,d Cycle time of truck type t from face f to destination d (minutes)

@, 0 or 1 binary variable if shovel s is working or failed

M 0 if shovel s is locked to an ore face, 1 if locked to waste and 2 if not locked

w, Normalized weights of individual goals (i =1, 2, 3, 4) based on priority

& A very small decimal value to formulate strict in-equality (depending on constraint)

BM A very large number (depending on constraint)

3.4.2. Preliminary model (M)

3.4.2.1. Variables

Table 3-3: Variables considered in the preliminary model

a , Assignment of shovel s to face f (binary)

M ra Number of trips made by truck type ¢, from face f, to destination d (integer)

X rd Tonnage production sent by shovel s, from face f, to destination d

X, Negative deviation of shovel production from the maximum capacity in a shift

o, o 75 ; Negative and positive deviation of production received at the processing plants d“

g ..g Negative and positive deviation of tonnage content of material type k£ compared to tonnage content
kd® > Skde

desired, based on desired grade at the ore destinations d°

3.4.2.2. Model formulation

Goals:

)

¥, =228 8 ) (3)
d° k

¥, 2(5 +67) “4)
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Y, = ZZF; g xXAxag + Zzznz,f’,d x r?,d x(C + 5[) (5)
s f t f d

Equation (2) represents the difference between the maximum target production and production
achieved by the shovels over a shift. Equation (3) represents the difference between the material
content received at the ore destinations and the material content based on desired grade. Equation
(4) represents the difference between the quantities of ore supplied to the processing plants
compared to the target quantities desired over the optimization period. Equation (5) represents

the total cost of shovel movement (if any shovel is reassigned to a new face) and truck operating

cost.

Constraints:

da <1 vf (6)
da,, <1 Vs (7
7

zzxx,f,d +x; =X/ Vs (8)
d [

szs,f,d 2 X Vs )
d f

wa.,d < an,/;d xH, vd &Vf (10)
sz’fwd-i—JZZn["f»dth Vd &Vf (11)
DX . Sa,, %0, %0, Vs & Vf (12)

sz’f,dwSas‘fxO_/.x(l—Q_/.) VS&Vf (13)
T
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;nt’f’d xH, SZ[Z{{:)@JJ +as’f><ijM; Vit &Vf (14)
;;nnm xT, ,, <Tx60x N xa/ Ve (15)
;x&_ﬁd <(Tx60-7,,)x60x X, xa’ xa, , [L, Vs & Vf (16)
Z;x pu ¥6 =0 =Z, xT vd* (17)
6. <N, xT vd? (18)
6. <N xT vd? (19)
;zg:xs,f’d(, x Gf’k +8 —g;du = ZS:;xs’f’dU X Gk,d(, Vk&Vd° (20)

Constraints (6) and (7) assure that only one shovel is assigned to any face and also that any
shovel is assigned to only one face. Constraint (8) is a soft constraint on the production by any
shovel with a deviational variable that is minimized in the objective function. Constraint (9) is a
hard constraint that puts a lower limit on the production by any shovel. Constraint (10) assures
that total production by any shovel from its face to a destination is less than or equal to the total
material hauled by trucks between the face and the destination, which in turn is equal to the
product of number of trips between the face and destination, and the truck capacity. The
inequality constraint makes sure that total material hauled may not be an integer multiple of
truck capacity and so some trips may have slightly less load hauled. This constraint enables the
model to excavate the faces completely and reduces infeasibility of the model to a great extent
due to the tight equality constraint. To counter the effect caused by the inequality, constraint (11)

has been included which puts a lower limit on production deviation as equal to a predefined
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value J. To optimize the objective function, J is considered as the minimum of the truck
capacities in the truck fleet. It means, at the end of the shift, the maximum allowed difference
between the shovel production from a face to a destination and the material hauled based on
number of truck trips is J. In other words, constraints (10) and (11) allow the shovels to load the
trucks slightly less than the capacity of the trucks if required. Constraints (12) and (13) make
sure that total ore or waste production by any shovel from its assigned face cannot exceed the
total available ore or waste material at that face. This constraint also makes sure that no
production is possible by the shovel from the face it is not assigned to. Constraint (14) assures
that a particular truck type will have zero trips from any non-matching shovel. Part of the right
hand side of the inequality is included to incorporate what is modeled in constraint (11).
Constraint (15) limits the maximum possible trips by any truck type considering the truck
availability and optimization time. Constraint (16) limits the total production possible by a
shovel taking into account its availability and the movement time to the face (if assigned to a
different face from where it initially was). Constraints (17), (18) and (19) are the processing
constraints on the desired tonnage feed to the processing plants and maximum allowable
deviation in tonnage accepted at the plants. Constraint (20) tries that the average grade sent to the
processing plants is of the desired grade and deviation is within the upper and lower acceptable

limits.
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3.4.3. Main model (M)

3.4.3.1. Variables

Another index p is added to the variables considered in the preliminary model, apart from adding

few other variables to build MOOT, which are given as:

Table 3-4: Variables considered in the main model (MOOT)

Assignment of shovel s to face f'in period p (binary)

s.f-p
me, 0 or 1 binary variable if face f'is mined out in period p
rem
Yo 0if *7 is greater than 0, else 1
M ra Number of trips made by truck type ¢, from face £, to destination d (integer) in first period
X rdp Fraction of tonnage at face f'sent by shovel s, to destination d in period p
X, Fraction of maximum capacity of shovel s less produced in period p
-5t Negative and positive deviation in production received at processing plants d in period p, as
d°,p’ " d°,p

fraction of processing plant capacities

Negative and positive deviation in tonnage content of material type & compared to tonnage content

desired, as per desired grade, at ore destinations d° in period p

I, Tonnage of material available at face fat the start of period p

Top Movement time (minutes) for shovel ‘s’ in period ‘p’ to go to next assigned face
I’Sr;m Remaining movement time (minutes) to be covered in next period

I’;f ;t Actual movement time (minutes) covered in period ‘p’

3.4.3.2. MILGP formulations

Four operational objectives have been considered here as goals:

1. Maximum production objective is formulated as minimizing the negative deviation in

production by shovels compared to their maximum capacity.

v, :zz[é}xs—w @1
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2. Objective to meet the desired tonnage feed to processing plants is formulated as
minimizing the negative and positive deviation in production received at processing

plants.

v, = ;ZG]X G, ,+5. ) 22)

3. Objective to meet grade blend requirements at processing plants is formulated as

minimizing the negative and positive deviation in grades received at processing plants.

1
2553 1 RESRTIN @)

4. Shovel movement objective is formulated as minimizing the total movement time of

shovels over all periods.
\P4 = ZZ}’;,P (24)
sop

A weight, as inverse of period, is multiplied to the first three objectives to prioritize the first
period, which is the decision time frame. As shovel movement objective requires seeing future
movements, no priority is assigned to it based on period. It is desired here that shovel allocations
are made such that first three objectives are achieved better for the decision time frame but

shovel movements are minimized over the whole optimization time frame.
Objective function:

The problem is optimized following a non-preemptive weighted sum approach as described by
Grodzevich & Romanko (2006). Before optimizing the goal, individual objectives are optimized
to determine their respective values in pareto optimal space. Individual objectives are then

normalized and combined to generate the goal as given in eq. (25).
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W =W, x W1+ W, x W2 + W, x s + W, x Vs (25)
Constraints:

Constraints have been formulated to model a mining operation where shovels are assigned to
their initial faces where they were working at the start of optimization. Shovels are not allowed
to leave a face un-mined, i.e. shovels won’t be reassigned to a new face unless they have mined
out their current working face completely. If a shovel is re-assigned to a new face it will take
some movement time to reach the new face leading to some production loss. Shovel movement
time is based on the defined speed of shovel and location of the new face, following the ramp if

on a different bench, or a straight line distance if on the same bench.

Constraint eq. (26) to (32) control the shovel allocation to faces in each period. As the
optimization time frame of the model is divided into multiple periods, an assignment variable
indexed over multiple periods is used for shovel assignment in each period. Constraint eq. (26)
does not let multiple shovels to be assigned to any one face, which means any face can be mined
by only one shovel. Eq. (27) assigns shovels in the first period to their initial faces where shovels
were working at the start of optimization. Constraint eq. (28) allows any shovel to be assigned to
at maximum two faces in any period. This constraint allows the shovels move to their new faces

when their working face is mined out.

Zas,_/.,p <1 Vf & Vp (26)
=1 Vs& p=1 (27)

s,Fig,p

>a,,, <2 Vs & Vp (28)
7
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Eq. (29) models the same constraint as eq. (28), but also controls when a shovel can work at two
faces. Left hand side of the constraint is the maximum number of faces a shovel is assigned to in
any period. The right hand side of the constraint (29) looks over all the faces and takes a very
large value if shovel ‘s’ is not assigned to the face in that period. For the faces shovel is assigned
to, last part of the constraint will become zero and remaining portion may take a value of 1 or 2.
If the shovel was working on the face in the previous period and still hasn’t finished mining it,
maximum number of faces that shovel can work on can be 1, but if the face is mined out

completely, m, , will become 1 and thus the shovel will be allowed to be assigned to another

face. For the new face a, and m, will be zero and thus the constraint will still hold true

f.r-1
and allow the shovel to be assigned to two faces in that period. Constraint (30) force a shovel to
remain assigned to a face in the next period, if it is not mined out in that period, i.e. a shovel will

continue working on a face until it is completely mined.

Zas’f’p <a,,,+tm, + (1- a, o, Y+(1- as,f,p) x BM Vs, f.p (29)
f

Vs, f,p=1..P—1 (30)

>a

as,f,erl s fp mf,p

Constraint (31) ensures that shovels cannot be assigned to a face which is already mined, except
if face was mined by itself and shovel is sitting idle. Constraint (32) ensures that if shovel ‘s’ was
assigned to face ‘f” and to only one face in period ‘p’, it will continue to be assigned to face ‘f” in
the next period. Constraint (32) works in conjunction with constraint (30) to eliminate any
scenario where a face is mined out in a period and shovel movement cannot be finished in that
period, model tries to assign the shovel to the new face in the next period without modeling the

movement time and the loss in production.

a,;,a<l+a,, —m,, Vs, f,p=1..P-1 (31)
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A, 1o >2x a,;,— Zax,f’p Vs,f,p =1...P-1 (32)
f

Constraints eq. (33) to eq. (38) control the travel time of shovels from one face to the next one.
Eq. (33) determines the travel time of shovels in a period. As travel time variable is indexed over
shovel and period only, it is not possible to formulate as equality constraint. Thus travel time is
formulated as greater than or equal to the required travel time between faces. As travel time will
incur loss in production, model will make travel time variable equal to the required travel time.
Constraint (33) is formulated for all the faces and to determine the travel time between the
assigned faces. For those faces, where shovel is not assigned, last part of the constraint makes the
right hand side negative and thus does not affect the value of the travel time variable. For the
faces shovel is assigned to, it calculates the distance as the sum of distance from that face to all
other assigned faces, which includes the same face itself and the second face. As the distance

between the same face is zero, constraint (33) makes the travel time variable r, , greater than or

equal to the required travel time between the assigned faces.

r, 2 ;a XTI IS —(=a,, )xBM  Vs,Nf&p (33)

Constraint (34) is included to model the continuous nature of shovel movement. If a shovel starts

traveling towards the end of a period, it may finish the travel in the next period. »* and "

variables divide the required travel time into actual travel time in that period and the remaining
travel time for the next period. Constraint (35) is included to make sure travel time is zero, if

shovel is assigned to only one face in a period.

_ _act rem
Fp = ’/;‘,p + r.‘s,p Vs & Vp (34)

s,pP
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ry S(Zas’fﬂp —lijM Vs & Vp (35)
f

Constraints (36), (37) and (38) are formulated to ensure that no production is possible from the
newly assigned face in a period if shovel hasn’t finished traveling in that period. Constraints (37)

and (38) make sure that binary variable y_ becomes true if remaining travel time is zero and
false if greater than zero. Then this binary variable y  is used in constraint (36) to control

production from the newly assigned face. Constraint (36) is formulated for all the faces and right
hand side takes a very large value for all other faces where shovel is not working and thus do not
put any constraint on the production from those faces. For the face where shovel was initially
working, first part of the right hand side takes a very large value, thus do not affect the
production from that face as well. For the newly assigned face, first part of the right hand side of
constraint (36) becomes zero and production from the new face is controlled by the binary

variable y , which ensures that if remaining travel time is greater than zero, (y, ,=0), no

production is possible from the newly assigned face in that period.

sz’f’d,p < (1 —ag,,ta, ) x BM + Vyp X BM Vs, Vf & Vp (36)
d

2 (1-y,, )x(2xé) Vs & Vp (37)
K<y, e+ (1 -V, ) x BM Vs & Vp (38)

Constraint (39) controls the total production possible by the shovels in any period, which has to
be less than the maximum production capacity of the shovels in any period. First part of the

constraint (39) is the total production by the shovel from all the faces in that period and the
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second part is the production lost due to the travel in that period, which includes remaining travel

time from the last period and the new travel time, if any, in the current period.

s,p—1

DX ay X0, (1 1) x60% X, /LS <Tx3600x X, xa’ /L, Vs&Vp (39)
fod

Constraints (40) to (44) determine mined out faces and the material available at faces. Eq. (40) is
the equality constraint to read the material available at the faces initially and eq. (41) determines
the material available at the faces in the subsequent periods based on the production by shovels.
Eq. (42) and (43) determines if a face is mined out completely during a period. Eq. (42) is a
strict in-equality constraint and thus is modelled using a very small decimal value ‘epsilon’,
which converts it to a general in-quality constraint in the model to be solved directly using
CPLEX solver (CPLEX, 2014). Eq. (44) ensures that if a face is mined out during a period, it

will remain mined out in the subsequent periods.

ly, =0 Vi & p=1 (40)
by =l = g;xx,fﬂ'»l’ xO; Vf & p=1..P-1 (41)
oy = 2250y Oy 2 (1=, ) <(Op, +6) Vf &Vp (42)
I, - Zs“;x‘”‘d"’ xO, <m, , %O, +(1=m, ) x BM Vf & Vp (43)
My Z My, Vf&p=1.P-1 (44)

Eq. (45) is an equality constraint on the production to capture the negative deviation in
production by a shovel compared to its maximum capacity. Eq. (46) ensures that there is no

production possible from a face by a shovel if the shovel is not assigned to that face in that
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period. Eq. (47) and (48) limit the total production from a face to ore or waste destinations based

on the amount of material available at the face and whether it is ore or waste.

Zd:;xx,.f.d,p <O, [ X +x;, =1 Vs & Vp (45)
;xs,f’d,p <a,,, Vs, Vf & Vp (46)
Zde pa, X0 <1, %0, Vf & Vp 47)
Zde oy X0, <1, x(1-0)) Vf & Vp (48)

One major requirement of the model is to provide realistic shovel allocations. Thus it is
necessary to include precedence requirements within the model. To ensure that a shovel is
assigned to a face only if the face is available for mining, eq. (49) is included in this model. Eq.
(49) specifies that assignment variable for a face cannot take a value of one unless all the faces in

its precedence set are mined out completely.

Ny %D a, ., =2 mp, <0 Vf.Vp & f'€ PrecedenceSet, (49)
s f!

The tonnage of ore delivered at the processing plants is controlled using eq. (50) to (52). Eq. (50)
is a soft constraint which determines positive or negative deviation in production received at
processing plants and eq. (51) and eq. (52) puts a limit on the allowed deviation from the
capacity. Eq. (53) is an equality constraint which determines the positive or negative deviation in
tonnage content of material types received at ore destinations which is minimized in the

objective function.

225 XO/’/(Zw XT)+5;<',p =06, ,=1 Vd &Vp (50)
7

s
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5. SN, [Z, Vd© & Vp (51)
8. <AL /Z, Vd &Vp (52)
Z;xw’d”’p xO0,xG,, + &y —g]:do’p = sz'“f’d””’ <O, xG,_ ., Vk,Vd° & Np (53)

Constraint eq. (54) to (57) provide truck allocations to shovels. As only first period in the
optimization time corresponds to decision time frame and truck allocation decisions do not
significantly affect the objectives of the model (if sufficient haulage capacity is available), truck
allocations are made only for the first period. Eq. (54) specifies that total number of truck trips
from a face to a destination should be sufficient to transport the material produced by the shovel
in the first period. Eq. (55) puts an upper limit on the total number of truck trips specifying that
even if some over-loading or under-loading of trucks takes place, total tonnage haul capacity by
the number of truck trips should be less than the specified deviation, which is considered as one
truck load in this model. Eq. (56) controls the total number of truck trips based on the truck type.
Eq. (56) specifies that if a truck type is not desired to work with a shovel, number of truck trips
from the corresponding face has to be zero. Eq. (56) also specifies that number of truck trips
from a face with no shovel assigned to it, has to be zero. Eq. (57) puts a limit on the possible

number of truck trips based on the available time and number of trucks of each type available.

X, xO,<>»n ., xH Vd,Nf & p=1 (54)
s, f.d,p f t,f.d t

sz,/',d,p xO,+J 2 Z”t,./‘.d xH, Vd,Vf & p=1 (55)

Znt,f,d xH, < Z(sz,f’d’p xO, +a,,, ijxMt’,s Vi,Vf & p=1 (56)
d d

s
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ZZnt’f’d xi"/.’d STX60XN[T xatr V't (57)
fod

To run the model in a dynamic environment in conjunction with a simulation model eq. (58) is
added to model the shovel failures. Eq. (58) specifies that no production is possible by a failed
shovel although it will remain assigned to its current face. Shovels are locked to material types

(ore or waste) using eq. (59)

;;Zx&f’d,p <(1-¢,)xBM Vs (58)

a,,, <min(abs(M"*~0,),1) Vs, Vf & Vp (59)

3.4.3.3. Model size

Although model size changes with time when applied for dynamic decision making through simulation
optimization approach, the maximum model size is observed in the first optimization. To have an idea of
the model size and complexity, model size for first optimization considering the case study presented in
Chapter 4 is given in Table 3-5.

Table 3-5: Model size for the case study presented in Chapter 4

Number of variables 20,969

Number of binary variables 5,395

Number of integer variables (including binary variables) 6,469
Number of continuous variables 14,500

Number of constraints 42,847

3.4.3.4. Preprocessing

Although no heuristic technique is applied to solve the model, certain preprocessing techniques
as discussed in Chapter 2 are applied to improve the run time of the model. The main variable in
the model which account for increased run time is the assignment variable. Based on the
knowledge of the data and certain desirability of the planner, some of the assignment variables
can be fixed prior to solving the model which will not be branched during branch and bound

algorithm in Cplex solver.
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As will be discussed for the case presented in the next chapter, the shovel working in waste and
assigned to bottom bench of the strategic schedule in the beginning, is not desired to move to
upper benches, hence all the assignment variables for that shovel to all the faces in the upper
benches can be set zero prior to solving the model, limiting it only to the bottom benches.
Similarly if certain shovels are restricted to work in ore or waste but not in both, their assignment

variables can also be set accordingly to ore or waste faces.

Solution to some assignment variables for initial periods are also known prior to optimization,
such as if a shovel is working on a face ‘f’ initially and it is not mined out completely, shovel
will continue to remain assigned to face ‘/ until it is mined out. Thus based on the maximum
rate of production of the shovel, number of periods can be determined in the beginning for which
shovel shall have to remain assigned to face ‘f’, and assignment variables can be set for those

many periods.

3.5. Simulation

The discrete event mine simulation model is developed in Arena (Rockwell Automation Inc.).
The VBA capability of Arena has been extensively used to build the simulation model and
update the existing layout of the mining system. Fig. 3.6 shows the steps which are carried out in
the simulation. Step 1 is a manual process which is carried out only if the mining system changes
i.e. road network, schedule, number of shovels and number of truck types and shovel types in the
system changes. A Matlab® based GUI is created which reads the dxf file of the designed haul
road to generate readable input for Arena, which is then used by a VBA macro written in Arena
to generate the haul road network within the simulation model. The same VBA macro also reads
other system characteristics from a common configuration input file to build various variables,

expressions, shovel resources and truck transporter resources. After the model is manually built,
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rest of the system does not require any manual operation. General system characteristics such as
number of trucks of each type, capacities of equipment, process times and distributions can be
readily changed into the common configuration input file which remains linked to Arena, making

the model flexible enough for easy scenario analysis.

Step 1 — Pre-Simulation

/ VBA Macro / " Build
VBA Macro p / /
5 / / Build Model / Shovel and
BUKRoad / / Variables, / Truck
Network / - / /
Expressions etc. / Resources
Y

Step 2 — Run Begin Simulation

Create

Create bat Create bat file
Constant /! _w/  filetocall /—m/  toresetdata for
Model Inputs MOOT each replication
forMOOT ~ / / / i
Y

Step 3 — Run Begin Replication

" Reset system
state data at
the beginning of
each replication

A
Step 4 — Run Simulation

Simulate
Mine
Operations /

Fig. 3.6: Steps for translating the existing mining layout into the model and simulation run

Once the simulation model is run, at the beginning of the simulation before compiling the model,
a Matlab® function is run through the VBA in Arena to read and create a constant parameter
matrix from the common input configuration file, which is used by MOOT for decision making
purposes. This is necessary because once the simulation is under process the input configuration
file becomes inaccessible from outside Arena. Also this reduces the run time of MOOT for
reading the inputs from the external file each time it is run. The second step also creates bat files
for calling the Matlab® functions to run MOOT and resetting the schedule at the end of each

replication. The interaction between MOOT and Arena occurs through VBA and text files. The
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current state of the system including the available tonnage at faces, current face of working of
each shovel and shovel states are provided as input to MOOT through a text file and the output

of MOOT is also returned through a text file.

Step 3 occurs after the simulation model is compiled just before the start of simulation, and each
time a new replication starts. At this step the system state is re-initialized, i.e. shovel positions
are reset to their initial faces in the schedule and the tonnages of polygons are reset to their
original values. The simulation model is then run in step 4 for multiple replications to capture the

mining operational data.

MOOT Submodel
: o s
\ Time=0 /
\.T-/ Read Assignments
// MOO'I: Output
VBA / Shovel
™ | RunMOOT Assignments

.| Update Shovel allocation
¥ decision variables

Wait until system
calls for MOOT

Fig. 3.7: Submodel to call MOOT as external decision support system for shovel and truck allocations optimization

Fig. 3.7 shows a submodel for running the external decision support system MOOT. This model
is run in the beginning of each replication at simulation time of zero and each time the system
state changes, i.e. a shovel comes up after failure or any face gets depleted. The MOOT is called
through VBA and its outputs are read-in to reassign shovels, target productions and number of

truck trips by each truck type on various paths.
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Fig. 3.8: Flow of the main simulation model

_changed? -~

Fig. 3.8 shows the flow of the main simulation model. This main model consists of a polygon
(face) entity and a load entity. Polygon entities are created for each shovel in the system in the
beginning of the simulation after MOOT output is recorded. Each of these polygon entities are
then assigned the polygon attributes based on the shovel assignments provided by MOOT.
Similarly a load entity is created for each truck and truck attributes are assigned to them after the
MOQOT is run in the beginning of simulation (Fig. 3.14). In the main model, once a load entity
reaches a shovel, it is matched with the polygon entity of the corresponding shovel and batched
together into a single entity temporarily to model the loading process at the shovels. Now the
shovel resource is seized and loading is carried out based on the n