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Abstract

Internal symmetries play a vital role in the development of particle physics
theory, and the implications of these symmetries and their subsequent breakdown
can produce a variety of physical implications for the low energy effective theory.
Three such case studies are presented, which examine some of the more unusual as-
pects of internal symmetries and their breakdown. The issues considered are the low
energy effective theory signatures of strong coupling induced Higgs bag formation,
biased spontaneous symmetry breaking of a discrete symmetry, and the effect on nu-
cleon decay from a supersymmetric SO(10) grand unified theory with a non-minimal
Higgs sector. The conclusions resulting from these studies range from the complete
rejection of any observable Higgs bag signatures associated with toponium bound
tion of a branching fraction spectrum for nucleon decay. The latter, if observed at
experiments like Super-KAMIOKANDE, would elucidate much on the structure of
the supersymmetric grand unified theory extension to the Standard Model of particle

physics.
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CHAPTER 1

Introduction

Simplicity and elegance are often considered desicable qualities. Unfortunately,
the complicated jumble of the observed low energy particle physics that we call the
subatomic zoo appears to mirror neither of these qualities. Because of this, it should
be of no surprise that one of the most compelling and aesthetic notions put forward
in present day particle physics is that the underlying theory should move toward
simplicity and elegance as the energy scale is increased. Adhering to this notion of

reformation then requires two primary tenets on the underlying physical theory:

1 The underlying physical theory is constructed from a set of symmetry principles

and the invariances under these symmetries.

2 The complicated nature of the physics of the low energy limit is a resull of the

bre .king of these internal symmetries.

Although these tenets suggest that first we build up the theory, and then we tear -
it down, the construction of the theory is done along very specific guidelines, with
the tearing down being well regulated, in as much as the symmetry breaking follows
specific patterns.

The standard example of this approach in particle physics is the issue of the
origin of mass. Classically, all particles were thought to be massive, and it is only

through the development of electrodynamics, quantum mechanics, and quantum field



theory that a limited set of massless particles have been revealed. These observations
raise questions as to the origin of mass, as explicit vector boson mass terms in the
formulation of the underlying physical theory are not permitted in a renormalisable
field theory[1]. Thus, it is simply not enough, as a physicist, to play God, and decree
the masses of the particles in the subatomic zoo. Clearly there must be a mechanism
by which mass is generated, but it is also clear that this mechanism must be selective,
so that particles like the photon are not assigned a mass. As will be seen, there is
indeed such a mechanism, which manages to selectively generate masses for all of
the observed massive particles, as well as maintaining the masslessness of the others.
This mechanism requires the development of an underlying structure specified by the
invariance under internal symmetries, followed by a carefully constructed breakdown
of an internal symmetry that causes the lowest energy state of a particular field

component to disrespect the internal symmetry.

The mechanism in question is of course the Higgs mechanism[2], which evolved
from the development of gauge theories by means of a deft use of spontaneous sym-
metry breaking in the local gauge symmetry environment. As will be seen, the Higgs
mechanism generates a non-zero vacuum expectation value for a particular field com-
ponent, and through the couplings of other physical fields to this vacuum field config-
uration, effective mass terms result. It is by means of the gauge thearzy construction,
and the subsequent breaking of the internal gauge symmetry, that masses for all the

consistent way.

Such a process can occur as the physics of the early Universe is taken to be
at a very high energy scale, implying that its energy density is sufficient to force
the physical theory into some simple highly symmetric and unified form. One can

imagine that this high energy limit of the physical theory is explicitly invariant under



However, as the Universe expands, the subsequent cooling induces the conditions
necessary for the Higgs mechanism to kick in, thereby breaking some of the internal
symmetries and hence generating mass for some subset of the originally massless
particle states. Whatever the specifics of the particular symmetry breaking pattern
the Higgs mechanism induces, the phenomenological upshot of the whole procedure

is that at least one massive scalar particle is necessarily produced.

Indeed, all known models of mass generation for standard model fermions and
gauge bosons involve Higgs bosons, or some composite states masquerading as Higgs
bosons. Clearly, the Higgs mechanism is the most feasible answer to the question
of the origin of mass, and it relies strongly on the two tenets described above; the
development of gauge theory is a response to the desire for a simple self-consistent
high energy theory, while the symmetry breaking Higgs mechanism offers the most

acceptable means of reproducing the spectrum of particle masses.

Yet gauge theories and the Higgs mechanism are only one aspect of the issues
associated with internal symmetries in a physical theory. Due to the fundamental
importance placed on the role of symmetries in physical theory, there are in fact
many far reaching consequences of the aforementioned tenets, that provide a full
range of far-reaching predictions for those willing to look. These predictions take the
form of unexpected phenomena, whether they be unusual experimental signatures,
relic particles, or predictions from the low energy limit resulting from the unification

generated by internal symmetries.

This thesis presents three separate studies dealing with the issues of internal

symmetries in particle theory, and the associated physical phenomena induced by



symmetry breaking. Each focuses on a particular feature or characteristic of symme-
try breakdown, and attempts to resolve the predictions resulting from these issues in
terms of experimental signatures. Further, the work is designed to show that internal
symmetries and the breaking of such symmetries are responsible for much more than
just the gauge theories, the Higgs mechanism, and mass generation (as if that weren’t

already enough!).

1.1 The Gauge Age
Before launching into some of the issues surrounding internal symmetries and sym-
metry breaking, a review of gauge theories and their implications is necessary to set
the stage. Thus, the remainder of this introduction is devoted to the achievements
of the era in modern particle physics colloquially known as “the age of the gauge”.

First however, a little pre-history is ia order.

1.1.1 Pre-History

In comparison to our everyday world, the length scales associated with the subatomic
particle zoo are very very very small. Such small scales imply the subatemic world

is quantum mechanical by nature, and not the classical billiard-ball physics of our
macro-scale world. Upon descent into this quantum regime, the fundamental laws of
classical physics are found to be replaced by the quantum mechanical action, Then, in
this quantum mechanical formulation, the classical motion of a particle is replaced by
the transition amplitude, which is the weighted sum of all possible trajectories in the

quantum mechanical configuration space. The weighting factor for each trajectory



constant /i is defined as Planck’s constant, and is generally minute in comparison
to the value of the action. The only exception to this arises when the action is
extremal, and as the path length of a trajectory is unbounded above, this extremal
corresponds to the minimum of the action. This then gives the principle of least
action[3], which states that in the limit & — 0, the correct quantum mechanical field

58 = 0.).

Therefore, in order to formulate a quantum mechanical description of sub-

atomic physics, a formulation of the quantum mechanical action is necessary. Follow-

1 8B , o ,
S = ZL d*z\/GL(8,0,8) (1.1)

where A and B are the initial and final points of the trajecory in a general 4-
dimensional spacetime, g is the determinant of the spacetime metric g,.,, and £(®, 8,%)
is the Lagrangian density associated with the set of local fields ®. On restriction to the
normal default of Minkowskian flat spacetime, which is appropriate for the particle

physics regime, the action reduces to
. A . -
S = /E d*zL(3(z), ,8(z)) (1.2)

with L(®(z),0,%(z)) being the Lagrangian of the system. In the classical limit
the Lagrangian defaults to the kinetic minus the potential energy of the system,
but in the quantum regime, it is a real function of the fields of the system and

their partial derivatives®. Typically, the terms of the Lagrangian are constrained

!Here local fields means that the fields have no spatial size, and are considered at a single
spacetime point.

¥The terms in L are required to contain at most two 9, operators, as otherwise the associated
classical equations of motion will be higher than second order in derivatives, which is unacceptable
as it implies the equations of motion develop non-causal solutions.



by the imposition of Poincaré invariance (a.k.a invariance under translations and
Lorentz transformations) which preserves the postulates of Special Relativity, thereby
permitting theories compatible with the observed physical world[3]. However, it is
the imposition of additional internal symmetries (symmetries pertaining to the set
of local fields ®) within the Poincaré invariant structure, that are used to specify
the form of the terms that comprise the Lagrangian. In attempts to describe the
subatomic world, it has been this freedom to choose the internal symmetries of the
Lagrangian that has led to the development of gauge theories, and the arrival of the

“Gauge Age”.

1.1.2 The Gauge Age

Gauge theories[5] are theories in which the physics predicted by the theory remains
unchanged after a set of transformations on a set of local fields. Such an invariance
of the physics is intimately related to the presence of an exact symmetry - either
manifest or hidden - in the underlying physical theory. This connection between
physical invariance and internal symmetries is best seen by considering the case of
phase rotations of a set of complex scalar fields ¢;. Being complex, these fields and
their hermitian conjugates are distinct, allowing for the identification of ¢; and ¢!

with charged particle and antiparticle states. A phase rotation on these fields of
$i(z) — €71 gy(2) (1.3)
can be seen to leave a simple “kinetic — potential” Lagrangian of the form
L(2,8',0,8,0,81) = 8,410"¢: — V(414:) (1.4)

unaltered. As phase space rotations are identified with the Abelian U(1) group, this

invariance of the Lagrangian is equivalent to an invariance of the theory under the



continuous U(1) internal symmetry. From the form of the ¢;(x) transformation, gQ;
corresponds to the eigenvalues of the U(1) group, and in this simple charged particle
model, g is a coupling constant corresponding to a fundamental unit of charge?.
Therefore, this invariance under the U(1) group implies the physical property of

charge conservation in this particular model. For more sophisticated theories, where

gQiA°, where the Q° are the hermitian generators of the internal symmetry group, and
A% a set of parameters. Invariance under such larger symmetries implies conservation

of more generalised charges.

Thus, this simple model, with its invariance under the U(1) group, constitutes
an example of a gauge theory, albeit a trivial one, This triviality is due mainly to the
global nature of the phase rotation parameter in the ¢;(z) transformation - A does
not depend on spacetime position at all. A much more instructive example of gauge
theory is one where the phase invariance is made local, so that the phase rotation
itself is spacetime dependent (A — A(z*)). With this relaxing of the constraints on
but the kinetic term of the Lagrangian loses its invariance due to the appearance of

“extra” terms in the associated transformation of the derivative:
Oudi(z) — [Oudi(z) — 1gQ:di(2)B A (z)]e~ A=) (1.5)

In order to restore invariance to the Lagrangian under this local phase rotation of
#i(z), necessity implies that terms must be added to the Lagrangian, but in such a
way that the transformation of these terms under the symmetry group cancel out

the unwanted “extra” terms already present. As the transformation of the derivative

‘In U(1) theory, only one generator @ exists, and so the fields are often rescaled to absorb the
coupling constant present in the phase rotation. This coupling constant then only appears in the
normalisation of the kinetic term of the vector gauge field. This has not been done here, in order to
emphasize the generality of the procedure to any gauge group.



generates “extra” terms that carry a vector index, a vector field must be introduced
into the theory in order to cancel, or “gauge away” the unwanted terms in the La-
grangian. Restoration of the invariance of the Lagrangian under the symmetry group
then requires that the vector gauge field A, (or set of gauge fields, if the symmetry

group is larger than U(1)) must transform as
Au(z) = Au(z) + uMz) (1.6)

To guarantee invariance of the kinetic term under this local gauge transformation, it
is also necessary to redefine the derivative to allow for the presence of the gauge field.

The “new” covariant derivative is
Dyu¢i(z) = [0, + i9Q:iAu(z)] () (1.7)

Thus, once the symmetry (gauge) group is specified by means of the transformation on
&i(z), the introduction of the gauge field and a redefinition of the derivative combine
to give the necessary cancellation of the troublesome “extra” terms, thereby returning
the invariance under the internal symmetry group to the kinetic term. However,
consistency implies that one must also add kinetic terms for the gauge field to the

Lagrangian, which is done by adding the term
A 1 ,
L = 1 F*(@)Fun(c) (18)
where the field strength F,, is given by
Fu(z) = 8,Au(z) — 8, Au(z) (1.9)

This then results in a consistent self-contained theory, as the field strength is itself
invariant under the symmetry group due to the transformation given by equation

(1.6), and so the entire Lagrangian is invariant?.

It should be noted that the discussion presented has only been for scalar fields, but that an
equivalent argument applies for fermionic fields[5].



In summary, we see that the underlying internal symmetry by means of local
gauge invariance, has resulted in the introduction of a massless vector boson (gauge
boson), and subsequently, introduced new terms in the Lagrangian. For the case at
hand, equation (1.7) shows that this vector field couples to charge, so the natural
identification for the massless 4,(z) would be that of the photon. The effect of

demanding a local gauge symi};etry has been that it fixes the dynamical behaviour of

1.1.3 IfIt Ain’t Fixed, Bust It!

With gauge theories under our belt, we feel ready as physicists to take on the particle

physical world. This feeling soon subsides however, as it becomes obvious that gauge
theories themselves are not sufficient - the reason being that the gauge symmetries
are exact and the associated gauge bosons are all massless, in contrast to the ob-
served particle spectrum. As far as is known, the subatomic world is governed by
the strong, the weak, and the electromagnetic force!, and so three different types
of force mediators (gauge bosons) are expected(5]. If the gauge symmetrics were all
exact, then all of the gauge bosons would be massless. Such a conclusion is com-
pletely unsatisfactory, as the weak interaction requires rather massive gauge bosons
to mediate the weak force in order to explain the short range of the weak force. (Note
the gauge boson mediating the electromagnetic force is of course the photon, which
is massless, thereby explaining the infinite range of the electromagnetic interaction).
To add further insult to injury, explicit addition of mass terms in the Lagrangian
for the observed chiral fermions destroys the invariance under the gauge group(5], so

suggesting that an exact gauge symmetry is synonymous with massless fermions - this
{Gravity is only sigﬂiﬁtant gtileﬁgtg scales of order the Planck scale, and so it is unnecessary to
try an attempt to include it within the particle physics model - at least at this stage.




is a rather unpalatable thought for any particle phenomenologist. What is needed is

a mass generating mechanism within the context of a gauge theory.

Such a mass generating mechanism is indeed possible within the confines of
a gauge theory, if the theory is constructed so that the gauge symmetry is an exact
symmetry of the theory, but not a symmetry of the vacuum. Clearly, this symme-
try “breaking” cannot be done by a simple explicit symmetry breaking. In order
to have the symmetry “hidden” in the vacuum while maintained in the full theory,
a particular type of symmetry breaking must be invoked. The required breaking
scheme necessary for a mass generating mechanism compatible with the gauge theory
movement is that of spontaneous symmetry breaking. Yet as will be seen, the sponta-
neous symmetry breaking of a continuous global symmetry leads to the generation of
massless Nambu-Goldstone bosons[6], which are by themselves, insufficient for mass
generation. It was only with the application of spontaneous symmetry breaking to
local gauge theories[2], by Anderson, Higgs, Brout and Englert, Guralnick, Hagen,
and Kibble, that the massless Nambu-Goldstone bosons produced by the sponta-
neous symmetry breaking of the gauge symmetry were shown to be absorbed in the
theory by means of supplying the longitudinal components to the gauge fields. The
generation of longitudinal components for vector gauge fields imply that these fields

are massive, and so the spontaneous symmetry breaking of a local gauge symmetry

the Higgs mechanism, has dramatic consequences.

Spontaneous symmetry breaking occurs when the Lagrangian retains its invari-
ance under the symmetry group, but the vacuum state (ground state of the system)
does not exhibit the same invariance - the symmetry is hidden, as the vacuum state
breaks the symmetry. To understand how this is achieved, we return to the case of a

single complex scalar field (¢ = —=(¢1 +i¢:)), and the U(1) phase rotation invariant

10



Lagrangian given by equation (1.4), with V(¢,¢!) = u?|¢|* + A|#|*. The vacuum
state of the system, ¢y then corresponds to the solution of the field equation for ¢,

and for this system the vacuum state must satisfy
do(1” + 2A|¢o)*) = 0 (1.10)

This condition offers two possibilities; either both u? and A are positive, or p? is
negative while A remains positive (A cannot be negative as the potential must be
bounded below.). The former case implies that there is only one solution, that of

conventional vacuum with ¢y = 0, while the latter case permits a second solution;

|6ol* = 2 5r = % Po =< ¢ >= %vs"‘" (1.11)

This latter solution implies that the true vacuum corresponds to a non-zero vac-
uum expectation value (vev) for ¢. In the two dimensional space of real components
of the complex scalar field, the spontaneous symmetry breaking potential is the fa-
mous “Mexican Hat” potential, and the vev (< ¢ >) is a circle of minima of radius
7; centred on the origin. Figure 1.1 shows the potential for both solutions to the
spontaneous symmetry breaking condition, as well as a sketch of the 3-dimensional

“Mexican Hat” potential.

Initially, one may find this second solution a little disturbing, as the scalar
field appears to have an unphysical negative mass. Actually, the physical masses are
positive semi-definite, and the apparent negative mass is an artifact of the expansion
of ¢ around something other than its vev. However, this situation can be remedied
by means of a field redefinition of ¢, where ¢ is now expanded around its vev. The

form of this expansion is

f (P(I) ) (1.12)

11



V(4) V(¢)

() (b) ()

Figure 1.1: Various variations of the U(1) invariant Higgs potentials: (a) The con-
ventional vacuum Higgs potential with < ¢ >= 0, (b) the spontaneous symmetry

breaking Higgs potential with < ¢ >5£ 0, and (c) the Mexican Hat Higgs potential.

with p(z) and {(z) being real fields. The effect of this field redefinition on the La-

grangian is to cause it to dramatically alter its form;

1, 1(p+v)? , . 3 A v —
L= 30,0+ 7 LI gomg 4 gt - nopt - A - (g

The justification for the field redefinition becomes apparent. Equation (1.13) is now
the Lagrangian for two real scalar fields, one of which (p(z)) has a positive mass
while the other (£{(z)) is massless. Both are physically acceptable fields. Further, this
Lagrangian does not explicitly exhibit the original invariance under phase rotations
(due to the expansion of ¢ around its vev), yet by its very construction the Lagrangian
still possesses the underlying internal symmetry of the gauge group. Because of this,
the symmetry has been spontaneously broken, and resulting in the appearance of a
massless field (Nambu-Goldstone boson[6]), which is free to move along the minima

of the “Mexican Hat” potential.



In general, for a gauge group G, of dimension N, spontaneous symmetry break-
down of G to the subgroup H, of dimension M, results in N — M massless Nambu-
Goldstone bosons. These N — M massless bosons correspond to the N — M broken

generators of the coset space &.

Now we are in a position to understand the Higgs mechanism - namely the
application of spontaneous symmetry breaking to a local gauge group. Again consider
the complex scalar field, but this time require it to be invariant under local gauge
transformation, as well as having the “Mexican Hat” potential. From the above

discussion, the Lagrangian takes the form
L= Z=FuF* 4 (D) D¢ — 29l - Al (1.14)

with the covariant derivative and field strength defined as in equations (1.7) and (1.9).
If u* is negative, then spontaneous symmetry breaking is induced, and a non-zero vev
for ¢ results. This in turn leads to an expansion of ¢ around the vev in order to
recover physical scalar fields, however the expansion is a little more complicated due
to the presence of the covariant derivative. Specifically, the scalar field kinetic term
is reparameterised as

(DD = Sou00%0 + 3L (5,100 (1.15)

2
g(P‘+ )Apa#€+ 2(P+1’) oy

Again the field redefinition has generated mass, but this time for the vector gauge field
Au(z)! An additional term proportional to A#8, has also been generated, which does
not correspond to a standard interaction. However, by means of a field redefinitjon

of the gauge field, one can introduce a massive field B,(z) such that

&@:&w+§¢m (1.16)
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which restores the Lagrangian to a more conventional form, namely

_ _— — 1 " 2 . 3 i =
L = EE,EB'*“ + 5mpB*B, + ‘%(p2 + 2pv) B*B, (1.17)
1, ., 1 A,
+50up0"p = 5mp® — 7o' = Avp®

All trace of the Nambu Goldstone boson field {(z) has been removed, and instead of
a massless gauge field A,(z) the theory contains a massive vector gauge field B,(z),
as well as the massive scalar p(z). The masses are mp = gv and m, = /=247
respectively.

What has happened is that the spontaneous symmetry breaking has caused
thereby gaining the additional longitudinal degree of freedom that is necessary for a
massive vector gauge field. Colloquially, the massless A,(z) has “eaten” the scalar

field £(z), and in doing so has become the massive vector gauge field B,(z).

Thus, by means of spontaneous breaking of a local gauge symmetry (aka the
Higgs mechanism), gauge bosons can be given mass*. This procedure also solves
the problem of fermion mass generation, as the general gauge invariant coupling of
fermions to a Higgs field is in the form of a Yukawa coupling (Ay f¢f where f corre-
sponds to a fermion field, Ay is a coupling constant, and the group structure of the
interaction has been ignored for the moment). When ¢ takes its vev, ¢ =< ¢ >, and
the Yukawa interaction reduces to an effective mass term. Further, as a by-product of
this symmetry breaking procedure, the scalar field p(z), itself attains a mass. (Cor-
responding to excitations about the potential well centred on the vev.) Within the
context of the Standard Model[7], this massive scalar is of course the infamous Higgs
particle - the one remaining Standard Model particle still to be discovered, and the

one particle that can offer confirmation of this mass generation mechanism.

!For a renormalisable field theory with massive gauge bosons, 't Hooft showed that these theories

must be spontaneously broken Yang-Mills gauge theories[1]
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1.1.4 The Best Gauge Theory We Have

Having established the power of the gauge principle, and that the Higgs mecharism
is a consistent mass generation mechanism, a return to the problem of describing
the subatomic zoo is in order. Such a discussion constitutes the “coming of age of
the gauge”, and of course deals with the Yang-Mills gauge theories[8] of QCDI9] and
Glashow, Salam, and Weinberg’s unified electroweak model[10]. These combine to

give a model known as the Standard Model of particle physics, and is at present, the

most accurate model of the particle physics world that we have.

The Standard Model is built up from three gauge symmetries, corresponding to
the three fundamental forces relevant to particle physics, namely the strong, the weak,
and the electromagnetic force. The Standard Model gauge group is the product group
SU(3) x SU(2) x U(1), with the SU(3), SU(2), and U(1) component groups being
associated with the colour, weak, and hypercharge symmetries[11]. The corresponding
gauge bosons are the massless gluons of QCD, the massive W+, W~ and Z of the weak
interaction, and the massless photon of electromagnetism. As the weak gauge bosons
are massive, a Higgs field is necessary to induce spontaneous symmetry breaking, and
as the gauge group for the weak interaction is SU(2), the simplest scenario for the
Higgs field is that it be an SU(2) doublet. Lastly, there are the fermion representations
- these depend on the gauge group to which particular fermions couple. Starting with
the quarks, their interactions are mediated by the gluons of QCD, implying that
they are labelled by the colour quantum number of QCD. This in turn 1mphes that
quarks must transform as a fundamental representation of SU(3) (a colour triplet).
As SU(3) is a non-Abelian gauge theory, the coupling will only become small at
large momentum scales (this is the property of asymptotic freedom[12]), so that the

only physical quark states are colour singlet baryon (ggg) and meson (¢§) states (ie
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colour confinement(13]). For the electroweak (SU(2) x U(1)) section of the theory, the
fermion assignment is based on the observation that the charged 5U(2) gauge bosons
mediate the interaction between charged leptons and their associated (left-handed)
neutrinos[7]. Thus, the left-handed states must transform non-trivially under SU(2),
while the right handed states are SU(2) singlets. The simplest scenario that works for
the electroweak assignments is that of left-handed doublets and right handed singlets!
framework, and as the observed hadronic charged weak currents are left-handed, the

representation structure follows that of the leptonic sector. Thus, the Standard Model

fermions have electroweak representations given by

Ve
€R HR TR
-
- . (1.18)
u' ,
, ] [ uh,di chish thibk
dl
L d A L

where i = 1,2,3 is an SU(3) colour index. Note, in the Standard Model there is no
provision for right handed neutrinos, and so the left handed neutrinos are taken to
be massless. Unfortunately, the Standard Model makes no attempt to explain the

observed three-family structure of quarks and leptons.

This chiral structure of the fermion sector reinforces the idea that fermion
masses are generated by Yukawa couplings to the Higgs field, as any explicit fermion
mass term would mix left and right handed components, thereby destroying gauge
invariance. Further, due to the doublet structure of the left-handed fermions, the
Higgs field must be an SU(2) doublet (as suggested by the W* and Z being mas-
sive), in order to produce a Yukawa interaction term that is a singlet under the full
gauge group (Lyu ~ AY PFH fs, where F and f are a fermion doublet and singlet
respectively, and a and b are family indices.). A full description of the Standard
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Model Lagrangian is then obtained by application of the gauge principle to the gauge
group SU(3) x SU(2) x U(1) with the particle content as outlined above; a detailed
description of the resulting Lagrangian is inappropriate for this introduction, but the
interested reader is referred to some excellent texts [5, 7). As a final comment on
the Standard Model, it should be noted that while it still leaves some unanswered
questions, it is the most well-tested theory that physics has produced, and the de-
gree with which predictions match with experimental verification is nothing short of

remarkable,

1.2 Bigger Things

Unfortunately, the Standard Model does have its limitations, which suggest that the
Standard Model may not be the whole picture. Some of these short-falls are: The
model is inflicted with too many unspecified parameters (19 at minimalist counting),
the U(1) charge quantization is left unexplained, there is no explanation as to the
general features of the fermion mass spectrum nor the overall 3-family structure of
the model, and there is no real justification as to why neutrinos should be massless.
What these unexplained problems are telling us is that the Standard Model has to
be viewed as a low energy effective theory, and that at some higher energy scale, a
deeper underlying theory should emerge that will resolve at least some of these issues.
Of course there may be more than one layer of effective theory, and we may h‘ave to
bootstrap ourselves up one underlying theory at a time!. Nevertheless, the desirable
course of action is to construct a higher level theory, valid up to some higher energy

scale, that defaults to the Standard Model in the low energy limit. To do so, one

tThe boostrap process may go something like Standard Model — super GUTs — superstrings

- ...
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is faced with two possible paths. Either the Standard Model fields are composite or
they are not. If one takes the composite field approach[14], then the particles of both
the scalar and fermion sectors can easily be thought of as composite particles, and the
preons (constituents of quarks and leptons) offer the possibility of solving the family
structure of the Standard Model, just as quarks provided a way to understand the
multitude of hadronic states observed. Yet observation requires that compositeness
occur at length scales above 1 TeV, while quark and lepton masses are well below
this scale. This implies that the theory must be such that composite quarks and
leptons stay light, yet this is rather difficult to arrange, given that the low energy
limit has to match with the Standard Model. Thus, this route will not be considered,
as a full discussion of such compositeness is outside the scope of this thesis. Instead,
if Standard Model fields are taken to be fundamental, the challenge is to produce a
suitable extension to the Standard Model, all the while staying within the comfortable
confines of gauge theory. This approach results in the development of Grand Unified

Theories[15].

1.2.1 Grand Unified Theories

A Grand Unified Theory (GUT) is one in which the gauge group has been enlarged
to a single simple group G (or the product of two identical groups, so that only one
coupling constant is necessary), so that at some high energy scale Mg the Standard
Model forces are unified under this gauge symmetry G. The Standard Model is then
expected to appear through a spontaneous symmetry breaking pattern of G down to
SU(3) x SU(2) x U(1). Further, if the GUT is such that all the fundamental fields of
a given spin fit into irreducible representations of 7, then their interactions are also

governed by the gauge group symmetry. With these expectations of a GUT, it is then
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a matter for the physicist to construct an appropriate GUT model, and thanks to the

machinery of gauge theories, such constructions follow a straight-forward recipe.

This GUT recipe is as follows:

o Pick a gauge group G, such that SU(3) x SU(2) x U(1) is contained within G.

Local gauge invariance then specifies the spin 1 gauge bosons of the theory.

o Prescribe the fermions of the theory to representations of G. Again, local gauge
invariance acts to specify the nature of the coupling of these fermions to the
gauge bosons. The only constraint on the assignment of the fermion content to
representations of G is that in the low energy limit, the SU(3) x SU(2) x U(1)
fermion structure should emerge. This implies that the fermion representations
must be complex in order to accommodate the chiral structure of the Standard

Model?.

e Arrange the scalar sector so that the pattern of spontaneous symmetry breaking
takes the gauge group G down to SU(3) x SU(2) x U(1). Again, the scalar
content must fit into representations of the gauge group G in order to maintain

local gauge invariance.

e Finally, specify the Yukawa couplings, so that after spontaneous symmetry
breaking from G down to SU(3) x SU(2) x U(1), the fermion mass spectrum

matches the observed Standard Model spectrum.

{Real representations are possible for the fermion assignment, but only at the cost of introducing
“mirror” fermions[15] - which then requires that these mirror fermions be consistent within the
context of the low energy theory. This turns out to be very difficult to arrange, and so this possibility
is not considered here. '

19



Application of this procedure results in a phenomenological model that is a candidate
for a GUT based Standard Model extension; whether the model is a valid/reasonable
description of the high energy theory depends on the degree of accuracy of its low

energy predictions.

1.2.2 Leading By Example

In order to understand the implications of GUTs, it is perhaps best to consider the
prototypical GUT; SU(5)[16]. SU(5) is the natural candidate for an extension of the
gauge group, as its rank (number of diagonal generators and hence the number of
conserved quantum numbers the symmetry permits) is the same as SU(3) x SU(2) x
U(1)*, it contains SU(3) x SU(2) x U(1), and it has complex representations for
the fermion assignments. There are 24 vector gauge bosons corresponding to the
N2 — 1|n=s = 24 generators of the adjoint representation of SU(5), and in unbroken
SU(5) these gauge bosons are massless. As to the fermion representations, the GUT
structure requires that all fermions within a representation be of a single helicity,
which suggests that it is best to deal with left-handed fermions and write the right-
handed fermions as left-handed charge conjugate spinors. The small dimensional
representations of SU(5) that are available for assignment of the fermions are the
singlet, 1, the fundamental representation, 5 and the antisymmetric product of two
fundamental representations, 10. Given these representations, a single family of the

Standard Model fermion content is found to fit into SU(5) representations in the

1SU(3) x SU(2) x U(1) has 4 diagonal generators, but the U(1) generator is trivially diagonal,
and so is usually overlooked. This is especially true when one uses Coxeter-Dynkin diagram notation
to aid in gauge group selection. For example, in Dynkin diagram notation, SU(5) is O-Q-0O-0,
which contains the O - QO QO of SU(3) x SU(2) x U(1).
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combination 5 & 10, with the specific assignment of a single family being

[ D, ] [0 Us U, —-u' =d']
D, ~Us; 0 Uy —u? -—d?
5= | D, _1__.—__% Uy -Ui 0 —u® —d (1.19)
l u? u? ud 0 -~L
], I I N S N

where U;, D; and L; are the charge conjugations of the right handed SU(2) singlet up,
down, and charged lepton fields.

This fermion assignment immediately starts to reveal some of the appealing
aspects of GUT models. In particular, as the Standard Model is embedded in SU(5),
the photon is a gauge boson of SU(5), and so the charge operator @, must be as-
sociated with one of the 4 traceless generators of SU(5). This implies a traceless

condition on the fermion multiplets, and for the 5 this gives the condition
0=3Q, + Qic + Q.- (1.20)

Not only does this imply that the U(1) charge is now quantised, but also that the
down quarks carry one third of the electron charge (similarly for the other fami-
lies). In addition, the left-handed SU(2) lepton doublet must be combined with the
left-handed charge conjugates of the right-handed SU(2) quark singlets in order to
maintain this trace condition, which means that SU(5) predicts the right-handed
quarks to be SU(2) singlets. Similar constraints also exist for the 10, thereby de-
termining the above assignment. Furthermore, the 5 ® 10 assignment results in an

anomaly free theory?.

tAn anomaly in a theory occurs when an apparent symmetry at the classical (or tree) level is
not respected by radiative corrections, and as such anomaly cancellation is critical for the renomal-
isability of a theory. The simplest example of an anomaly is that of the triangle anomaly in QED,
which is a three fermion loop with two vector and one axial coupling to three external gauge boson
legs.

21



The next step is to fix the scalar sector, and here the requirement is that it
breaks SU(5) down to SU(3) x SU(2) x U(1), followed by the electroweak breaking
SU(2) x U(1) — U(1)em. In the first symmetry breaking from SU(5) directly to
SU(3) x SU(2) xU(1), 12 of the 24 gauge bosons acquire masses that are of order the
GUT breaking scale Mg, leaving the 12 remaining gauge bosons associated with the
Standard Model massless. The second spontaneous symmetry breaking is that of the
electroweak theory, which generates masses for the W+, W=, and Z. The simplest
Higgs representation is of course, a Higgs 5, and due to the fermion assignments, this
5-plet is composed of an SU(3) triplet and an SU(2) doublet. The SU(2) doublet
component of this Higgs field is exactly what is required to facilitate the spontaneous
electroweak symmetry breaking, and so can be identified with the standard Standard
Model Higgs doublet. Alas, this 5-plet is not suitable for inducing the first symme-
try breaking stage, as this would imply the unfavourable situation that My ~ M.
Instead, it is necessary to extend the Higgs sector by introducing an adjoint repre-
sentation (the 24 representation). Inclusion of this 24 not only breaks SU(5) and
thereby generates Mg scale masses for both the gauge bosons and the Higgs scalars
of the 24 itself, but the cross coupling between the 24 and 5 of Higgs scalars result in
contributions to the masses of both the colour triplet and weak doublet Higgs fields
of the 5 that are of order Mg. Unfortunately, this is not desirable, as the mass of the
doublet in the 5-plet must be of order to My if electroweak breaking is to proceed as
desired. For a typical GUT My is 12 orders of magnitude smaller than Mg. While it
is possible to arrange a cancellation in Higgs doublet mass term contributions so that
its mass is of the My scale, such a cancellation within the context of GUTs is rather
extreme and unjustified, and at best, must be considered fine tuning. This necessity

of fine tuning is known as the Hierarchy problem|[17, 15].
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Despite this problem, the minimal SU(5) GUT offers some significant predic-
tions. Perhaps the two most pertinent predictions are that of coupling unification

and nucleon decay!

As the Standard Model coupling constants depend on the energy scale at which
they are measured (the dependence is introduced via radiative corrections), the action
of the renormalisation group equations is to cause these coupling constants to flow

toward a unification point as the energy scale is increased. This is exactly what is

constants made at the 1 GeV scale, the couplings appeared to unify, with the unifi-
cation occurring at an energy scale of the order of Mg =~ 10*® GeV][18]. Subsequent
precision measurements have shown that coupling unification under the GUT formal-
ism doesn’t actually work, but this is remedied by the inclusion of supersymmetry.

Supersymmetry is to be discussed in the following section.

same multiplet, it is automatic that the gauge bosons mediate interactions between
quarks and leptons. Further, as SU(5) has both the 5 and 10 fermion representations,
this 4-fermion interaction mediated by the heavy gauge boson exchange can result
in effective interactions that violate both the baryon quantum number B, and the
lepton quantum number L (but not the combination B — L). This implies that within
the context of a GUT, nucleon decay is permitted, which is a radical departure from
the Standard Model, where the proton is considered a stable baryon. However, in the
low energy limit of the GUT, these nucleon decay inducing quark-quark-quark-lepton
effective vertices are weighted by two inverse powers of the GUT breaking scale Mg
(this weighting comes from the low energy limit of the gauge boson propagator), and
so are heavily suppressed. With Mg ~ 10'® GeV, the proton lifetime predictions

obtained from these standard GUT nucleon decay channels, are too small compared
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with the experimental lower bound of 7, > 5.5 x 1032 years for the partial lifetime of

the dominant p — 7° + e* mode[19].

1.2.3 Variations

As has been mentioned, the non-supersymmetric SU(5) GUT is problematic. It
appears to answer a number of questions, but either fails or partially answers others,
as well as raising a few new questions. Yet the SU(5) GUT is only a prototype,
and a variety of GUT models can be constructed that attempt to improve on the
minimal SU(5) GUT. Typical variations involve either (or both) an extension of
the Higgs sector (in an attempt to give accurate predictions of the Standard Model
fermion mass spectrum generated from the Yukawa interaction), or an expansion of
the gauge group to a higher rank. The work to be presented in chapter 4 is in fact

based on a supersymmetric version of one such variation - a non minimal SO(10)

and hence SU(3) x SU(2) x U(1) are contained within it, it is rank 5 and so the
quantum number B — L can be associated with a generator of the group rather
than a residual symmetry (as in SU(5)), it is automatically anomaly free, and the
spinorial representation is 2* = 16 dimensional so that an entire family of Standard
Model fermions plus a right handed neutrino can be assigned to the 16-plet. (The
SU(5) decomposition of the SO(10) 16 is 16 — 10 ® 5 @ 1. The singlet in this
decomposition is ideal for identification with the right-handed neutrino, and can be
taken as being very massive?.) However, these variations do not address issues such as

the Hierarchy problem or the failure of the coupling constant unification in the GUT

~ iThe inclusion of therrig}sf;hénd;d}eutriné gives the possibility that the left-handed neutrinos
are indeed massive, but very light as a result of the neutrino see-saw mass mechanism[7, 15].
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scheme. These issues require either that there is an increase in the influence of non-

1.3 The Politically Correct Symmetry

In order not to extend the gauge group, imposition of a new symmetry requires that
the symmetry itself not be of the local gauge variety, but rather some other internal
symmetry residing within the theory. As GUTs compartmentalise the particle content
in terms of particle spin, the obvious choice for such a symmetry is one that relates

particles of different spin. In particular, this spin symmetry would rclate fermions

supersymmetry. As the algebra of supersymmetry can be rather laborious, we restrict
ourselves to a colloquial discussion of this symmetry, which is adequate for discussing
the relevance of supersymmetry to GUTs, and suitable preparation for chapter 4. (A
full description of the formalities of supersymmetry can be found in a number of texts

and papers [21].)

Supersymmetry, simply put, follows the maxim
For every HE there is a SHE, where SHE is a super-HE*.

As this maxim implies, for every particle in the theory, simple (N=1) supersymmetry
requires there be a partner particle (sparticle) that is identical in mass, charge, and all
relevant quantum numbers, except that it differs in spin by half a unit of spin. This

results in a doubling of the particle content of the theory, so that in addition to the

tAttributed to Bruce Campbell

25



vector gauge bosons, fermions and Higgs particles, one has the superpartner gauginos,

sfermions, and Higgsinos. The gauginos are taken to be spin § (spin 2 sparticles are

partnered with the spin 2 graviton of supergravity), but alas, the fermions of the

into the adjoint representation in the same way the gauge bosons do, while this is
not possible for the chiral representations of the fermions. Likewise the sfermions
(squarks and sleptons) cannot be spin 1, as all the spin 1 particles must be gauge
bosons if the theory is to be renormalisable, and so having spin 1 sfermions would
entail an enlargement of the gauge group. Instead, the sfermions are taken to be
spin 0 and placed in a chiral supermultiplet with their partner fermions. The only
choice for the Higgsinos is that they be spin 1, and one may be tempted to equate the
Higgsinos with some of the quarks and leptons of the theory. Unfortunately this fails
to work, as it does not generate acceptable masses for the Standard Model fermions,

implying that Higgs particles have “new” and distinct Higgsino fermion partners.

Given the supermultipet structure of a supersymmetric particle model (vec-

superpotential’, The definition of these interaction terms in terms of the superpoten-

tial, W, is

1—, *W o 1 o
Lint = 3 g(mlkwﬁj + h.c.) = ; |'§§i1§2¢ (1.21)

with ® represents a chiral superfield, and ¢ and % the scalar and fermionic compo-
nents of the ®. However, the key feature to this superpotential is that due to the
requirement of invariance under supersymmetry, the superpotential W can only be
composed i,t@m chiral superfields with the same chirality - that is, the superpotential

$This ;Jéébiaj: detour is ﬂécgssaxy as a particular superpotential is considered in chapter 4.
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W must have the functional form W(®) but not W(®, &t). Also, renormalisability
constrains the general form of the superpotential to being at most cubic in chiral

superfields[15]. Thus, the most general form for W (%) is

_ 1 - 1 , .
W(‘i’) = \®; + Emij‘i‘i@j 4+ §gijk§g§‘j‘§k (1!22)

From this, one deduces that the superpotential, being rather simple in form, can play
a key role in the evaluation of the physical properties of a supersymmetric model -
especially one where Yukawa couplings and fermion masses are a central issue - as

will be seen in chapter 4.

Another interesting feature of a theory with exact supersymmetry is that the

the associated radiative corrections are cancelled to all orders of perturbation theory.
Such cancellation is due to a non-renormalisation theorem[22], which states that in
perturbation theory, no radiative corrections can be generated that would result in
corrections to the superpotential. Technically, no F-terms are generated at any order
of perturbation theory above the tree level: F-terms are terms that are constructed
from superfields of a single chirality. An understanding of how this theorem works is
perhaps best obtained by considering the cancellation of the quadratically divergent
1-loop corrections to a Higgs field propagator in the presence of exact supersymme-
try. As shown in Figure 1.2, the 1-loop corrections involve an internal fermion and
sfermion loop, with the fermion and its fermionic partner being degenerate in mass
(supersymmetry unbroken), and so the amplitude of these two 1-loop corrections are
found to be identical in magnitude. However, from field theory it is well known that
the presence of a closed fermion loop results in an additional factor of —1, and it is
this factor that causes the exact cancellation of these two 1-loop radiative corrections.
This reasoning applies to all orders of perturbation theory, and so implies. that no

radiative corrections, and hence no corrections to the superpotential, are induced.
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Figure 1.2: The cancelling 1-loop corrections to a Higgs propagator in exact super-

symmetry.

Finally, when considering supersymmetric particles, the question that natu-
rally arises is “Where are they?”. If supersymmetry were an exact symmetry, the
superpartner particles would be degenerate with their particle partners, which is in
clear contradiction to the observed particle zoo. This suggests that at some scale,
supersymmetry must be broken, either explicitly or spontaneously, thereby removing
the mass degeneracy. There are numerous ways in which to break supersymmetry[15],
but as will be seen in the next subsection, certain model independent consequences
can be ascertained without going into the detailed mechanics of the supersymmetry
breaking mechanism. With supersymmetry broken, it is then possible that the super-
symmetric particles may themselves decay into lighter non-supersymmetric particles,
resulting in no supersymmetric particles in the low energy limit. Also, nucleon decay
can, in general, occur via renormalisable interactions generated by the gauge invari-
ant superpotential. These somewhat unpalatable consequences are easily rectified by
the imposition of an additional discrete symmetry called R-parity[23], which assigns
a multiplicative quantum number to each particle/sparticle state. In fact, while the
imposition of R-parity is not essential in a supersymmetric theory, it was precisely
the prohibiting of the dimension 4 proton decay operators which are unsuppressed by

any inverse powers of Mg, and hence so deadly for proton lifetime predictions that
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motivated its introduction. Further, by definition, every non-supersymmetric parti-
cle is assigned an R-parity value of +1, and each supersymmetric particle a value of
—1, so that if R-parity is an exact symmetry, the R-parity quantum number is con-
served. R-parity conservation implies that a supersymmetric particle cannot decay
into purely conventional non-supersymmetric particle states, and conversely conven-
tional non-supersymmetric states cannot produce an odd number of supersymmetric
states. Thus, demanding R-parity conservation guarantees that a lightest supersym-

metric particle (LSP) must exist in the low energy limit of the theory.

1.3.1 What SUSY Can Do For You

With the properties of supersymmetry established, attention must now turn to what

the inclusion of supersymmetry can do for GUT models.

One of the primary features of a supersymmetric GUT scheme is that it offers
a solution to the Hierarchy problem. From earlier discussion, it was seen that the
structure of the GUT scheme implied that there was nothing, apart from “unnatural”
fine tuning of the theory, to prevent the light Standard Model Higgs doublet from
becoming extremely heavy (masses ~ Mg) as a result of radiative corrections. The
only “natural” way of preventing the Standard Model Higgs from becoming exces-
sively heavy is to impose a symmetry that prohibits contributions to the Higgs mass
from radiative corrections. Due to the existence of the non-renormalisation theorems,
supersymmetry is exactly such a symmetry, and as far as is known, is the only such
symmetry that provides such cancellation. Thus, supersymmetry provides a resolu-
tion to the Hierarchy problem. Yet as supersymmetry is not an exact symmetry in

the low energy limit, the cancellation of radiative corrections to the Standard Model
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Higgs doublet is not exact below the scale at which supersymmetry is broken. Fur-
ther, the requirement that the Higgs doublet stay relatively light (mg < 1TeV in
order to maintain perturbative unitarity up to energy scales approaching the Planck
scale[24].) implies that the mass splitting induced by supersymmetry breaking, for
both the vector and chiral supermultiplets, also be of order 1 TeV. Such a result is of
considerable interest, as it suggests that particles from the supersymmetric spectrum

are on the verge of accessibility for current particle physics experiments.

Thus, the requirement of a light Higgs, which defines the electroweak breaking
scale, is directly related to supersymmetry breaking and the supersymmetry breaking
scale Ms. If supersymmetry is explicitly broken, then M typically is of order the
electroweak breaking scale My, and the mass splitting of the chiral supermultiplets
containing the Standard Model fermions is of order Mw. Unfortunately, explicit
symmetry breaking is rather arbitrary, and so spontaneous symmetry breaking is
often preferred. In contrast, spontaneous breaking of supersymmetry, such that the
electroweak Higgs doublet and mass splitting of the supermultiplets are acceptably
small, requires only a weak constraint on Mg. In fact, phenomenologically, a large
value (of order 10'* GeV) is preferred for Mgs*. At such a breaking scale, gravity
can not be neglected, and the influence of gravity on spontaneous supersymmetry
breaking, the resulting supermultiplet mass splittings, and the Higgs doublet mass
requires an extension to local supersymmetry (supergravity); unfortunately this topic

is beyond the scope of this introduction.

Perhaps the most obvious feature that supersymmetry brings to the GUT
scheme is that the “doubling of the particle content” alters the running of the Stan-

dard Model gauge coupling constants. As a supersymmetric GUT requires a light

{Due to gravitational effects induced by the supergravity extension of the model[25).
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Standard Model Higgs, and thus a relatively small mass splitting of the supermulti-
plets, the theory is populated with a plethora of light supersymmetric particles. This
“doubling” of the possible radiative corrections causes a slowing in the evolution of
the Standard Model coupling constants as they are renormalised up to higher energy
scales. Fortunately, this slowing in the coupling constant flow results in an improve-
ment in the projected unification of the gauge couplings - with the present precision
measurements of coupling constants at 100 GeV, and their subsequent extrapolation
via the Renormalisation Group equations, a gauge coupling unification is found to
be consistent with current measurements. However, the price of this doubling of the
particle content, and the subsequent slowing of the coupling constant flow, is that
the unification scale is pushed to higher energies. For typical supersymmetric GUTs,

this new unification scale is Mg ~ 3 x 10'® GeV/[26, 27].

A consequence of this increase in the unification scale is that the nucleon decay
operators of standard GUT models, that are generated by means of gauge boson
exchange, are suppressed due to this higher unification scale. (The SUSY GUT decay
rate for these operators is typically suppressed by eight orders of magnitude over the
non-SUSY GUT equivalent.) As a result, proton decay via these operators is pushed
well beyond the present experimentally determined lower bound, making these decay
channels unmeasurable by present standards. Yet one can still confront nucleon decay
with experimental evidence, as the imposition of supersymmetry opens up new decay
channels that were not possible in a conventional GUT scheme. In particular, fermion-
fermion-sfermion-sfermion effecti .. vertices that mediate nucleon decay are generated
by means of Higgsino exchange, a.::' as the Higgsino is fermionic, the low energy limit
of its propagator is proportional to inverse mass, implying that these effective vertices
are suppressed by MLG and not ﬁlg. Therefore, within the SUSY GUT structure, it

is possible to have nucleon decay such that the lifetimes are comparable with the
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current experimental lower bounds. In chapter 4, such effective vertices, and their
resulting phenomenological implications, are considered for a “realistic” SUSY GUT
model.

One final point regarding SUSY GUTs is necessary, and this concerns the
Higgs superfield sector. In order to build a “realistic” model, it is often the case that
the Higgs sector requires extension. Such a practice is not new, as even in the case
of the supersymmetric version of the Standard Model, it is necessary to introduce a

masses.}

1.4 Onwards

In this thesis, the reader will find three relatively self contained investigations deal-
ing with aspects of symmetry breaking, and in particular, the implications one can
draw from the structure and observed signatures of our particle world. Two of these
studies look closely at physical effects generated by the actual symmetry breaking
process, while the other focuses on the combined result of demanding an elaborate
set of symmetries necessary for superunification, along with a symmetry breaking
pattern sufficient to generate a realistic low energy effective theory. Specifically, the
topics addressed are non-perturbative strong coupling within the Standard Model[28],
biased discrete Higgs symmetries[29], and a realistic supersymmetric Grand Unified

Theory[30]. As a means of preparation, this chapter was designed to provide the

~ !Yukawa terms are generated by the superpotential, which is composed of superfields of the same
chirality, and so one cannot use the charge conjugate of the original Higgs doublet to generate the
up quark mass, as in the non-supersymmetric case. Instead one must introduce a second Higgs

superfield[15].
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will now enjoy the pages that follow.
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CHAPTER 2

2.1 Preliminaries

Particle physicists, in order to have a calculational scheme, often stay well within
the realm of perturbative field theory, and pay little or no attention to the non-
perturbative strong coupling regime. Yet strong coupling may indeed play a role in
our physical world, and so the physical signatures generated by such strong coupling
must be understood. However, exact derivation of such signatures is typically very dif-
ficult, due to the inherent non-linearities associated with a strongly coupled system.
Thus, in order to deal with these non-linear characteristics of the model, reason-
able quantitative approximations are necessary. The importance of non-perturbative
approximations can only be borne out through examination of the experimental sig-
natures that they imply.

The issue of strong coupling is raised within the Standard Model due to the

unspecifed nature of the coupling constants associated with the Yukawa interaction.

particular Yukawa coupling involved. Therefore, any fermion representations that we
allow within the context of the Standard Model, or any of its extensions, may contain
a sufficiently strong Yukawa coupling so that a non-linear feedback mechanisms is es-

tablished between the Higgs and fermion field. Fortunately, only one Standard Model
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fermion is sufficiently massive to warrant such attention. Such teasoning has led to
the some recent suggestions (to be discussed in the next section) that top quarks,
or very massive fourth generation quarks, might surround themselves with a Higgs
“bag” of deformation of the Higgs expectation value from its vacuum magnitude. In
this chapter, the issue addressed is not the nature or various aspects of the interaction
to experimental verification. Specifically, the experimental signatures resulting from
both the Yukawa interaction itself, as well as the bound state system formed from a

fermion-antifermion pair will be discussed.

It should be noted that this work assumed that no massive fourth generation
quarks exist, and that the top quark - although undiscovered at the time of publication
of this work - was the primary fermion candidate for a strong or non-perturbative
coupling to the Higgs field, due to its apparently heavy mass. Since then, strong
experimental evidence for the top quark’s existence has been collected[1], and a pre-
liminary measurement of the top quark mass has been made. This measurement of
the top mass does not alter the results of this work, but rather, acts to constrain the
experimental signature beyond what was originally presented. Because of this, the

reader will find an updated conclusion appended to the end of this chapter.

In the standard model the Higgs field acts, through its vacuum expectation value
(vev), as the source of mass for all particles, with the mass obtained depending on

the strength of the particle’s coupling to the Higgs. Of the particles in the standard
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model, the only one with potentially very large mass, and hence large coupling to the
Higgs, is the top quark. This opens the possibility that there are nonperturbative,
strong-coupling effects, with Higgs particles, that will occur uniquely in interaction
with the top quark. The idea that a fermion which is strongly coupled to an order
parameter may locally deform that order parameter, and surround itself with a “bag”
of field deformation, dates at least as far back as Feynman’s treatment of polarons
[2], and more recently has been generally explored in relativistic field theories of
scalars and spinors [3, 4, 5, 6, 7, 8, 9]. Recently it has been s’i:i,ggested [10] that
for large values of the top quark mass just such nonlinear effects occur, with the
top quark digging a hole in the Higgs vev, and surrounding itself with a “bag” or
“dimple” of deformation of the Higgs field (a posteriori such a possibility would
also appear for very massive quarks, or leptons, of a hypothetical fourth generation).
More detailed quantitative examinations of this proposal have come to the conclusions
that: semiclassical “bag” formation implies couplings sufficiently strong to jeapordize
vacuum stability, or imply a breakdown of perturbation theory at energies not too far

above the top quark mass range [11]; perturbative couplings result in “dimples”, that

as quantum superpositions involve on average a fraction of a quantum [12]; strong
non-perturbative couplings result in quantum fluctuations that tend, at least in a
large N expansion, to “deflate” the “bag” [13]. In this work we adopt a slightly
different approach to the problem; we ask what would be the observable signatures
of formation of Higgs “bags”, both for individual top quarks, and also for toponium
bound states. We then evaluate the magnitude of these effects for top quarks of
moderate mass, where we may treat the Higgs-top coupling in perturbation theory,
and examine where the nonlinear higher-order effects should begin to dominate, giving
observable signatures of “bag” formation. In agreement with the previous analyses

[11, 12, 13] we find for standard model Higgs masses in the range allowed by vacuum
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stability, and perturbative non-triviality, that the effects of Higgs “bag" formation are
not strong enough to be significant, We then extend our analysis to the case of two
Higgs doublets, where one of the Higgs may have enhanced coupling to the top, to

examine whether in this case observable effects of Higgs “bag” formation may occur.

The possibility of the formation of Higgs “bags” around heavy quarks is sug-
gested by simple energetic considerations. A heavy quark obtains its large mass by
virtue of a large Yukawa coupling to the Higgs field vev. If the value of that vev
could be locally diminished in the vicinity of the top quark, then the mass of the
top quark could be lowered. Provided that the gain in energy from decreasing the
mass of the top quark can more than compensate for the kinetic and potential energy
invested in deforming the Higgs field around the top quark, and the kinetic energy
localizing the top quark, then the top quark will dig a hole for itself in the Higgs vev,
and inhabit the region of diminished vev. For this to be energetically favourable, we
need the energy saved from lowering the quark mass to dominate, which means the
possibility depends on a large Yukawa coupling, and so it may occur only for (very)
heavy quarks. If this scenario is correct, then a heavy quark such as the top should
be thought of not as an isolated fermion, but rather as a structured object consisting
of a fermion surrounded by a coherent superposition of Higgs bosons representing the

deformation of the Higgs vev.

2.2.2 The Higgs-Top Yukawa Coupling and Higgs Bag Ex-
plosions

Since this coherent superposition of Higgs quanta is supported by the energy saved
would, result in the dispersal of the Higgs quanta. In the case of top quarks, this
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means that their normal charged current weak decay, via ¢ — bW™* would remove
the source of the Higgs “bag” (the b being too weakly coupled to the Higgs), and
hence lead to the sudden disruption of the “bag”. This would in turn mean that
the dominant decay modes of such a top quark (with “bag”) would involve a copious
shower of Higgs bosons from the disruption of the “bag”, as well as the b and W.
Decay to the bW mode (without Higgs) would be str@ngiy suppressed by the small
wave function overlap of the “bag” state with the final state absence of Higgs. This
means that the observation of the standard decay mode of the top would provide
prima facie evidence against the formation of Higgs “bags”. Conversely, a fermion
strongly enough coupled to the Higgs field to engender “bag” formation, may be
expected to have complex decay modes, that display the complexity of the coherent

Higgs superposition in which it reposes.

2.2.3 The Toponium Bound State Signature

A second way that one might imagine obtaining experimental evidence concerning
the possibility of Higgs “bag” formation, is by examining toponium bound states.
A priori, these seem like ideal systems to probe the possibility of “bags”: first they
represent already localized top quark sources for the Higgs; second the bound state
spectrum provides a sensitive test of the structure of the potential well in which the
it find themselves, and should surely be sensitive to as qualitatively distinct a feature
as Higgs “bag” formation. To reduce the problem to its essential form, let us consider
a tt bound state, held together by the QCD potential, which for the heavy toponium
we may consider to be approximately Coulombic, and which interacts with the Higgs

field via a Lagrangian of the form: (we ignore everything else in the standard model,
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as we expect it to be quantitatively insignificant in our considerations)

s\ 4

o (2.1)

2 _ _
= % 0,609 — TGt 1 9(i - 94)¥ ~ m V-

The interaction term £ = —gW¥¢¥ will cause a minor deformation of the Higgs field in
the presence of the top quarks. Moreover, due to the assumed heaviness of the top, one
can apply non-relativistic quasi-classical methods to bound state systems (toponium)
composed of (anti)top quarks and a Higgs field. For quasi-static (anti)top quarks in
a toponium bound state, which act as a source of deformation of the Higgs field from

its vev, we have classically for the Higgs deformation:

(V?—my)p = gyl (2.2)

where in the preceding equation (and hereafter) the 7 represents the “large” compo-
nents of the non-relativistic spinor ¥. Here the time dependence has been disregarded
as the lowest energy state of the toponium is stationary. Further, the scalar coupling
of the Higgs to the top quark, and the non-relativistic treatment of the toponium,

be treated as a scalar source for the Higgs vev deformation.

We consider the S-wave fermion wave functions of our toponium bound states
as Higgs sources. In view of the spherical symmetry of the S5-wave states, the source
term composed of the ff can be written in terms of the top wave function, expressed
in polar coordinates, centred on the toponium. Assuming that the QCD binding
potential is approximately Coulombic, then over the distance scale probed by the
toponium wave function, these wave functions are exponential in nature; they act as
an exponentially falling (radially) Higgs source term; and the 1S and the 25 wave

functions represent strong, localized Higgs sources. For Coulombic toponium, the



Higgs field source terms are:

- aalsTa — £ E_E%
18 : Wl = ray N (2.3)
25 : g = G- e

with ag = 1;;;%7 as the Bohr radius of the unpe:tuzbed tapnnium bound state. «,
toponium bound state, which we take to have a value of a, ~ 0.32, in approximate
agreement with the values used by Athanasiu et al. [14] in their study of the it
system. The deformation of the Higgs field in the neighborhood of the toponium

source causes a decrease in the observed top (and hence toponium) mass.

To solve for the deformation of the Higgs vev, one uses the three dimensional
Green’s function associated with the equation of motion of the Higgs field.
—1 emulfi=fal

Gy 72) = —

dr |7y —7a|

(2.4)
Utilising this, one can then analytically obtain the first order position dependent
deviation of the Higgs vev from its asymptotic value of v = 246 GeV. For the 15 and
25 toponium wave function sources the form of the Higgs vev deviation is
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To see the effect of the coupling on the mass of the toponium bound state, we
examine the change in the splitting between the 2S5 and 1S energy levels; we focus

on the energy level splitting as it is a physical observable, and may reasonably be

represent Higgs sources with a different degree of localization, so they should be
deformed differently by the formation of a Higgs “bag”. Our strategy is to determine
the ratio of the leading perturbative correction to the 25-1S splitting, to corrections

that appear at second order, after the feedback of the Higgs field on the toponium

interpret second order corrections to the splitting that were a significant fraction of
the first order correction, as evidence of a nonlinear feedback in the Higgs-toponium

system, representing the onset of “bag” formation.

To examine the effect of the interaction term, first consider as the zeroth order
approximation, a QCD toponium bound state. The energy level for the nS state of
such a system is given approximately by the Coulombic QCD binding potential for

heavy quarkonium
4 (47ra,)’m,
3 4n?z

Here § is the colour factor. For the 25-1S splitting, AE® this gives AE® ~ —1.7

GeV with our assumed value of the effective QCD coupling. The modification of the
splitting due to the presence of the Higgs-top interaction is given by the change in the
energy level splitting, AE, for which time independent non-degenerate perturbation

theory is used. The perturbing Hamiltonian is given by
Hy = —g¢ (2.8)

The first order correction to the energy levels due to the presence of the condensate



¢ is then:

E;§ =< Yns| — g8lins > (2.9)
Applying equation (2.9) one can obtain numerical values for the first order correction
to the 25-1S splitting for various values of mg and m,. Figure 1(a) shows the ratio
of the first order correction to the 25-1S splitting to the zeroth order splitting, as a
function of the top quark mass and the mass of the Higgs. In Figure 1(b) contour
lines are shown corresponding to first order fractional shifts in the splitting of 5% and
of 1%; also shown on the figure is the top and Higgs mass parameter range allowed
in the standard model by the constraints of vacuum stability, and perturbative non-
triviality up to the Planck scale [15]. Clearly, a measurable shift in the splitting
from first order corrections is restricted to a small region of the allowed mpy and
m, parameter space. To test for evidence of “bag” formation, one has to consider
the higher order corrections to the energy perturbation. In particular, Higgs “bag”
effects would be observable if the non-linear feedback in the Higgs-toponium system,
represented by the second order correction, was large in comparison with the first
order correction (say of the same order or more). A large second order correction
implies that the fermion wave function is pulled in tighter, giving stronger binding to
the toponium, and thereby indicating strong binding in a Higgs “bag” potential well.
This in turn would increase the influence of the source term in equation (2.2), and so
result in a significant increase in the deviation of the Higgs field around the toponium
which would then cause a further correction to the splitting. This nonlinear feedback

would proceed to dig a hole in the Higgs field, and produce observable Higgs “bag”

effects.

Using the first order perturbations, and maintaining the top normalisation,
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Figure 2.1: (a) The ratio of the first order correction to the 25-1S splitting to the
zeroth order splitting, as a function of the top quark mass and the mass of the Higgs;
(b) Contour lines corresponding to first order fractional shifts in the splitting of 5%
(dashed line) and of 1% (dot dashed line).
one has
Yis = Pls+dls
Ya2s bas + s

for the first order corrected top wave functions. It should be noted that for 1, in the

(2.10)

range 0 to 250 GeV the adjustment is slight. Given these corrected wave functions,

the correction to the Higgs field can be computed. The torrection to ¢y is given by
(V2 —my)b1 = gynkls (2.11)

As this equation only differs from equation (2.2) in the inhomogenous term, the
Green’s function is unaltered, and the ¢; can be found. This then allows one to
evaluate the second order correction to the toponium energy levels. For the nS top

wave functions, the second order energy correction is

E3 =< yQs| - gl D bntbps > + < Pls| — g 9% > (2.12)
m¥#n
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Figure 2.2: (a) The ratio R of the second order correction to the first order correction

for the 25-15 energy splitting as a function of the top quark mass and the mass of

line) in R.

where the b,, are the coefficients of the first order correction to the wave function.

The ratio of concern is 7 o 7
AE™ By - By (2.13)
Eif ~ Eif -

T A Eiat
If R (plotted in Figure 2(a))is large then the feedback will have a significant effect on

the toponium bound state. On the other hand if R is negligible, then then feedback is
insignificant. Figure 2(b) displays the values of the mass parameters required to give
a 0.1% and 1% value for R. Clearly, the my and m, for even such slight feedback are
not physically acceptable as they lie outside the range of the allowed mass parameters.
Also, for any larger value of R the predicted values of my and m, fall further away
from the acceptable region. The smallness of R in the mass parameter range allowed
by the standard model tells one that the feedback corrections to the energy splitting
are negligible, and thus Higgs “bag” are experimentally unobservable. The only

circumstance with marginally significant feedback is the case where the top mass is
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Figure 2.3: (a) The R ratio for normal Higgs coupling (upper surface), and for a
coupling enhanced by a factor of 5 (lower surface) as a function of the top quark mass
and the mass of the Higgs; (b) Contour line corresponding to 1% (dashed line) in R,
with the enhanced coupling.

large (m, ~ 150 GeV) and the Higgs mass is of the order of a few GeV: this situation
is already ruled out by LEP limits on the Higgs mass [16).

2.2.4 Non-minimal Higgs Sector Models

If the Higgs sector is extended to a non-minimal content consisting of two Higgs
doublets, then there will be extra physical scalar Higgs fields, each of which must be
considered. Consider the possibility that one or more of the physical scalars in this
non-minimal scenario has enhanced coupling to the top quark. Such an enhancement
will in general result in an increase in the corrections to the energy level splittings,
thus reopening the possibility for detectable Higgs “bag” effects. In Figure 3(a) the
feedback ratio has been plotted for a coupling that has been enhanced by a factor
of 5 over the standard model Higgs coupling, while Figure 3(b) indicates the mass

parameters required for R to reach the 1% level. Clearly, while enhancement of
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the coupling increases the second order correction, even a factor of five increase in
the coupling has not resulted in significant nonlinear feedback. As such, we do not
find evidence for Higgs “bag” formation around toponium, even with substantially

enhanced couplings that could appear in models with non-minimal Higgs content.

2.3 Conclusion

2.3.1 The 1993 Conclusion

In conclusion, we have considered the possible observable effects of formation of a
Higgs “bag” around toponium, as has been recently suggested. For values of the
Higgs and top mass expected in the standard model, the potentially observable effects
that could occur in toponium bound states are sufficiently small, that no indication of
non-linear feedback characteristic of “bag” formation has appeared. This conclusion
remains essentially unaltered, even with the ad hoc enhancement of the top-Higgs
coupling by a factor of five, as might occur in a model with 2 non-minimal Higgs

sector.

2.3.2 The 1996 Conclusion

Since the work presented here was originally published, the ‘Collider Detector at
FermiLab’ (CDF) collé.boration have found evidence for top quark production in pp
collisions at /s = 1.8 TeV [1]. The original announcement, released in April of 1994,
found a small number of events (12) that consituted evidence of top quark production,
and from this, it was inferred that the top quark mass is m, = 174+10%}3 GeV. Given

that the top quark mass, as determined from the Yukawa interaction, is m; = % and
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the value of the Higgs vev is 246 GeV, this top mass measurement implys that the
Higgs-top Yukawa coupling g is very close to unity, thereby confirming the non-
perturbative strong coupling nature of the Higgs-top Yukawa interaction. Yet the
observation of top decay by its standard signature revealed no anomalous signal that
could be associated with a Higgs bag explosion. Further, this value of the top mass
eliminates completely any chance of observable feedback corrections to the toponium
energy level splittings, and the CDF measurement acts only to reaffirm the original
conclusion that no experimental evidence for Higgs “bag” production via a non-linear

feedback mechanism is expected.
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CHAPTER 3

Biased Discrete Symmetry Breaking and Fermi

Balls

3.1 Preliminaries

Enforcement of symmetries and their subsequent breaking has to be considered one
of the most crucial cornerstones of modern physics. As has been shown, this is
particularly true in the case of the gauge theory development of particle physics. The
onset of symmetry breaking, whether spontaneous, explicit, or dynamical, reduces the
the degree of symmetry in the model, leaving a gauge group of smaller rank, as well

as the possibility of additional accidental symmetries that can be either continuous

tn

or discrete. Thus, symmetry breaking can introduce a variety of physical effects

that are symptomatic of the underlying symmetries, but length scale dependent.

the symmetries involved, and the pattern of symmetry breaking chains employed.
The standard example is of course the Standard Model, with its SU(3) x SU(2) x
U(1) group representation content, and the Higgs Mechanism (aka the spontaneous
symmetry breaking of a local gauge symmetry). As discussed in chapter 1, it is
this spontaneous symmetry breaking by the Higgs field that offers what appears to
be the only consistent mechanism by which mass is generated. Inclusion of one

or rore Higgs fields in such a way that the resulting Higgs potential can evolve
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to a configuration that has non-trivial minimum (global or local) in the Higgs field
configuration space, and is bounded below, implies that the Higgs potential can induce
one or more symmetry breaking phases. When a Higgs symmetry is broken, a non-
zero vacuum expectation value (vev) for the associated Higgs field results, implying
that couplings of the Higgs field to other particle representations in the theory induce

“new” effective interaction terms (aka mass terms) when the Higgs field takes its vev,

This brief outline of the Higgs mechanism has been to emphasise what the
Higgs mechanism actually does for us; it produces non-zero vacuum expectation val-
ues of Higgs fields. Unlike the previous chapter, where the symmetry breaking was
standard and the local variations of the single Higgs vev was the issue, the work
presented in this chapter considers the astrophysical implications of a non-traditional
symmetry breaking. It shows that residual symmetries from some higher gauge sym-
metry breaking can produce a scenario that has physical implications that extend well
beyond the simple mass generation associated with the vevs of scalar fields. Specif-
ically, this chapter deals with a discrete symmetry rather than the usual continuous
SU(2) x U(1) symmetry responsible for the Standard Model’s “Mexican Hat” Higgs

potential, and the astrophysical predictions resulting from its breaking.

Discrete symmetries obviously come in many varieties, with the number of
minima specifying the labelling scheme - Z, is equivalent to the parity symmetry, while
Z,, corresponds to a symmetric potential with nth level degeneracy in the minima.
To visualise examples of such potentials, one needs only to think of a vertical slice of
the “Mexican Hat” potential, or alternatively, the bottom of a 1-litre pop bhottle (see
figure 3.1). The key characteristic of a discrete symmetry over its continuous cousin
is that with a discrete symmetry, one can not continuously deform from one minima
(vacuum expectation value) to another without the field being forced out of the
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Figure 3.1: Various spontaneous symmetry breaking potentials: (a) A Z, discrete
symmetry potential, (b) a biased Z, discrete symmetry potential, (¢) the “Mexican
Hat” potential, and (d) The discrete “pop-bottle” potential.

can be removed by biasing the discrete symmetry. A biased discrete symmetry is

of a term in the Lagrangian that does not respect the symmetry of the potential.
Biased discrete symmetries therefore require explicit symmetry breaking, but with
the strength of the explicit symmetry breaking being sufficiently small so that the
symmetry of the potential is approximately maintained for the length scale under
consideration. It is such a biased discrete symmetry that is to be considered in the

following sections.
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3.2 Biased Discrete Symmetry Breaking and Fermi

Balls

3.2.1 Discrete Symmetry Breaking and the Astrophysical Im-

plications

It is well known that spontaneous breaking of a discrete symmetry can produce topo-
logical structures composed of different domains separated by topological defects
[1, 2, 3]. In the simplest such physical scenario, the topological defects produced
are domain walls [1] (transition regions between spatial domains that possess topo-
logically different vacuum orientations), which within the context of cosmological
models, have been applied to phenomena ranging from energetically soft topological

defects [4] and structurons [5, 6] for the formation of large scale structure [7, 8], to

[10, 11], and an origin for cosmological Gamma Ray Bursts [12]. In this chapter, the
interaction of domain walls with a fermion sector is considered, which suggests the
possible production of composite microscopic cosmological relics referred to hence-
forth as Fermi balls. These Fermi balls, under certain conditions, provide an unusual

source for cold dark matter, and may be relics of the seeds for possible structure

formation in the cold dark matter scenario.

@ with a Lagrange density of the form

Lo ou A0 o 1
L= %255;4%95' ‘?(‘P ~ o) (3.1)

Clearly, equation (3.1) possess a Z, symmetry (invariance under ¢ — —), which if

spontaneously broken results in a vacuum expectation value (vev) for ¢ that has two
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possible values; < ¢ >= £po. These two vev’s correspond to topologically distinct
vacuum orientations (distinct values of the order parameter); here the notion of topo-
logically distinct vacua implies that one vacuum orientation cannot be continuously
deformed into the other. Yet due to the Z, symmetry being exact, neither vev is pre-
ferred, so the determination of the vev in a particular spatial region is set by random
fluctuations in ¢. Thus the spontaneous symmetry breaking results in a randomly
generated network of spatial domains of both vacuum orientations that are separated
by transition regions called domain walls ( topological defects). The form of the do-
main wall solution is a topological soliton of class m [13], and is easily obtained from
the equation of motion for . The simplest such solution is that of a planar domain
wall in the xy plane at z = 0 with the boundary conditions ¢(z — +o0) = o,
and has the form < ¢ >= o tanh(%). Here § = 5Z- is the wall thickness. Typically,
§ is assumed to be small compared to the average radius of curvature of the walls
(the thin wall approximation ), so that the domain walls can be treated as two di-
mensional surfaces. For the planar domain wall, the associated stress-energy tensor
is T# = 2200 cosh™*(2) diag(1,1,1,0), indicating that the only non zero pressure
components are within the plane of the wall, and both are equal to minus the energy

density. Due to the form of the stress energy tensor, the surface tension ([ T7dz) is

20

3 (3.2)

o=

The cosmological implication of spontaneous breaking of an exact discrete
symmetry, as first analysed by Zel’dovich et al. [1], is the formation of stable domain
walls separating protodomains (spatial regions with distinct vacuum orientations) of
topologically distinct energetically degenerate ground states. These walls evolve to
planar structures that dominate the energy demsity of the Universe. Clearly, this

is in contradiction with our present observations. To avoid this prediction, the self
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coupling of ¢ could be fine tuned so to sufficiently delay the wall dominance of the
energy density. A more creditable alternative, suggested in [1] is to remove the wall
stability by requiring the discrete symmetry to be only approximate. Then, sponta-

neous symmetry breaking results in topologically distinct ground states that are non

in the form of protodomains of true and false vacuum, that are separated by domain

walls.

Upon formation, the domain walls evolve in accordance with the protodomain
ensemble minimising its energy, so that the wall motion can be described in terms of
the pressure imbalance across the domain wall [14]. In a ¢ self coupling model [14],
only the false vacuum volume pressure and the normal component of the wall surface
tension contribute to the pressure imbalance. The false vacuum volume pressure is
typically constant, and pulls the wall towards the false vacuum protodomain, whilst
the normal component of the surface tension acts to straighten the wall, and decreases
with decreasing wall curvature. Thus, finite sized false vacuum protodomains (vacuum
bags) collapse on themselves, whilst infinite domain walls are pulled toward the false

vacuum region [14]. It is this biased discrete symmetry breaking, with its inevitable

a wall dominated energy density disaster is avoided [2, 15, 16]. Obviously, the degree
of biasing between the vacua dictates the average domain wall lifetime, and if their
longevity is sufficient for them to dominate the energy density of the Universe, then

power law inflation can be induced (2, 1, 15].
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3.2.2 The Effects of Bias

As no ¢ self coupling model of biased discrete symmetry breaking produces stabilised
finite size vacuum bags from topological defects, other more novel couplings have
been investigated [17, 10, 18], each with there own cosmological implications. The
coupling advocated in this work is one which relies on the presence of fermions strongly
coupled to the scalar, with ¢ symmetrically coupled to a fermion via standard Yukawa

couplings:

|t

£ =59

TN PO
i0 = Go)p + 50up0"p — (" — w5)* + Alp) (3.3)

The Lagrangian now contains both a Yukawa coupling of fermions to the scalar field
¢, and a term A(p) that explicitly breaks the discrete symmetry to an approximate
one. The actual form of A(yp) is specified only to the extent that the energy difference

between the two vev orientations is A. ( For specific examples of A(¢) consult [17]

.} The Yukawa coupling implies that after spontaneous breaking, fermions acquire a
mass proportional to < ¢ >, and so it is energetically favourable for the fermions to
inhabit the domain wall as they become effectively massless there. (In the infinite
planar wall there exists an analytic solution for the zero mode of the fermion bound
to the domain wall {19].) Thus, any off wall fermions (that are strongly coupled)
are swept up by, and reside in the domain wall. Since immediately after the phase
transition each fermion will be, on average, within a correlation length of the per-
colating wall structure, we expect the fermions to be efficiently stuck to the walls.
Domain walls quickly become populated with fermions, so that the walls (in the thin
wall approximation) are essentially two dimensional surfaces inhabited by a Fermi gas
of massless fermions. The associated Fermi gas pressure contributes to the pressure
imbalance and acts to modify the wall dynamics. In order to halt the collapse of

a finite sized false vacuum protodomain, and give stable false vacuum bubbles, the
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Fermi gas pressure must cancel the surface tension and false vacuum volume pressure
components. This will occur if the energy of a false vacuum protodomain that has
accumulated a wall gas of N fermions can be minimised for some finite radius. For a

vacuum bag of arbitrary shape, the energy of the bag is
E=VA+Sco+Ep (3.4)

(V = the volume of the vacuum bag, § = its surface area, and Er = the energy of
the Fermi gas composed of N wall fermions.) Assuming the wall gas is composed
of massless degenerate fermions with g = 2 internal degrees of freedom, the Fermi
energy of the fermi gas in the zero temperature limit, with a wall number density n,
is

e NN (3.5)
3/9V5 3/

and for a spherical vacuum bag, minimising with respect to radius results in a sta-

ZLETJ
|

Ep =

bilised bag being found, with a radius given by

N3 = 6r\/g (R'A + 2R%0) (3.6)

This halting of the collapse process is due entirely to the presence of the fermions on

the domain wall, and so for spherical false vacuum protodomains, one might expect

But assuming the collapse of false vacuum bags to be completely described by
the process of spherical shrinking until the pressure imbalance is nullified is incorrect.
The collapse process is driven by a minimisation of the bag energy, to which there are
three competing elements: volume energy density splitting, surface tension energy,
and surface Fermi gas energy. As the surface tension energy and the energy of the

two dimensional Fermi gas, Er, are dependent on the surface area of the bag and
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in the bag volume, with the surface area held constant. Thus, bags are unstable
with respect to “pancake” deformations, implying the bag flattens into a sheet-like
structure. In conjunction with this flattening, the vacuum bag lowers its energy by
fragmenting into smaller vacuum bags. To see that fragmenting is favoured, consider
the energy for an arbitrary vacuum bag, but first neglect the volume contribution. By
minimising this energy with respect to the surface area 5, the energy of the stabilised
bag is found to be

. domw s . .
E IVAz() =3 (?) N (3.7)

which is proportional to N. This implies that one vacuum bag with a domain wall
Fermi gas composed of N fermions is energetically equivalent to two vacuum bags
each with % fermions on their domain wall, and so vacuum bags may fragment but
are not compelled to do so. However, on inclusion of the false vacuum volume energy,
minimisation of energy favours bag fragmentation. These facets of the collapse process
for a finite sized false vacuum protodomain result in a more involved vacuum bag

evolution than the simple shrinkage to a minimal surface area stabilised by N wall

a false vacuum bag is one of repeated shrinking, flattening, and fragmenting, that

results in numerous smaller vacuum bags.

3.2.3 The “Creation” of a Particle

However, for a sufficiently strong coupling of the fermions to the scalar order param-
eter the collapse process does not continue ad infinitum, as the soliton origin of the
bag structure will eventually arrest the collapse. This onset of the quantum regime
is signified by the breakdown of the thin wall approximation, and implies that the

domain wall radius of curvature is comparable to the size of the vacuum bag. When
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this occurs, the vacuum bag is no longer a bubble of false vacuum with a domain
wall skin containing a two dimensional Fermi gas, but rather a ball composed almost
exclusively of the domain wall, with almost all the interior false vacuum having been
destroyed. Such a ball of domain wall still carries the Fermi gas, but now the mass-
less fermions of the Fermi gas constitute a three dimensional Fermi gas inhabiting

the interior of the domain wall ball. It is these balls of fermion populated domain

If the fermions are strongly coupled to the scalar, then the Fermi balls will be stable
if the energy invested in the scalar field configuration is less than the total mass the
trapped fermions would have to obtain if the wall disappeared. To get a crude esti-
mate of the size of the stabilised Fermi balls, we note that our Lagrangian contains
only one dimensional parameter which, in the wall solution, determines its intrinsic
wall thickness §, and assuming these stabilised Fermi balls adopt a minimum surface
area configuration, the typical stabilised radius (radius at which the collapse process

stops) is estimated by
2

Rmin ~ S0 (3.8)

The radius R is small, indicating the collapse of false vacuum protodomains pro-
duces in a mist of tiny Fermi balls distributed throughout the 3-space. This mist of
Fermi balls should be considered as possible cosmological relics, since their stability
against further collapse may be assured by energetic considerations, and Fermi ball
annihilation is ruled out if the fermions are Dirac particles with conserved fermion

number.

Yet biased spontaneous symmetry breaking doesn’t necessarily result in the
formation of finite sized false vacuum protodomains. The nature of the protodomain

structure at formation depends on the degree of anomalous breaking A; for A small
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compared to the potential barrier, a percolating domain wall structure [20, 3, 8] is

expected, whilst a A comparable to the barrier height implies the formation of finite
sized false vacuum bags. For the dynamical evolution of percolating domain walls,
the analysis and conclusions differ little from that of Gelmini et. al. [14], who show
that although there are several different cosmological scenarios, in which the domain
walls straighten out on various scales, the false vacuum volume pressure eventually
dominates the prcssure imbalance. This causes the domain walls to be driven inward
on the false vacuum protodomain structure, inducing a “melting” of the false vacuum.

Once the false vacuum volume pressure becomes dominant, the conversion of false to

domain wall structure into finite sized false vacuum bags. This fragmentation is
essentially the conversion of topological defects to nontor~logical ones, and is a result
of the system’s desire to minimise its energy. Inclusion of a strong coupling to a
fermion sector causes a modification to the constraints on A that define the different
dynamical regimes (The surface tension ¢ is replaced by ¢ — P to account for the two

dimensional Fermi gas pressure P.), but the conclusions of [14] remain unaltered. This

finite sized false vacuum bags are eventually produced, which in turn evolve into the

Fermi ball structures discussed above.

Thus, biased discrete symmetry breaking with strongly coupled Dirac fermions
may result in a mist of nontopological objects (Fermi balls) comprised of a superposi-
tion of the massless fermions and a local deformation of the order parameter < ¢ >.
These Fermi balls are expected to be approximately spherical, with a radius R,
(equation (3.8)). Their stability against further collapse is assured by sufficiently

has not been addressed. Such annihilations could significantly affect the Fermi ball
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lifetime.

A strong Yukawa coupling implies that after the symmetry breaking, the
fermions collect on the domain walls, thereby enhancing the fermion anti-fermion

annihilation rate. Fermion anti-fermion annihilations reduce the Fermi gas pressure,

so destabilising the false vacuum bag so that collapse continues until the pressure
balance is restored. Thus, confinement of the fermions to the domain wall prohibits
freeze out of the number density of fermions, and so Fermi balls can exist only if there

is a net fermion anti-fermion asymmetry.

3.2.4 Where Are They?

Given that Fermi balls are produced, equations (3.6), (3.7), and (3.8) imply that
they would be composed of approximately 50 fermions, independent of the symmetry
breaking scale, and possess !a mass of the order of 1000, GeV. This suggests that a
Fermi ball would appear as a very heavy slow moving particle, which if the individual

electron charge. Such objects therefore have characteristics similar to either heavy
ions or nuclearites [21], and so analysis of the Fermi ball stopping power [22] and
the negative results of nuclearite searches by collaborations such as MACRO [23] can

place a constraint on the relation between the Fermi ball mass and number density.

Alternatively, Fermi balls could be composed of a new Dirac fermion that pos-
sesses no standard model gauge charges. Fermi balls would then be neutral, heavy,
and non relativistic, and due to their absence of gauge charges, would interact ex-
tremely weakly with standard model matter; barring new couplings, the only interac-
tion (apart from the gravitational one) would be via couplings of the real scalar field

@ to the standard Higgs fields. Thus, the heavy non relativistic neutral Fermi balls
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would constitute an ideal candidate for cold dark matter. This suggests a possible
constraint on these neutral Fermi balls, as gravity results in an accumulation of Fermi
balls around massive objects such as the sun. Gravitationally bound Fermi balls may
orbit through or within the solar interior, thereby iransporting energy away from
the solar core by their weak scattering from solar core baryons (protons). If such
heat diffusion is sufficiently efficient, the gravitationally bound Fermi balls become

incompatible with the standard solar model.

Assuming the Fermi balls are the sole source of dark matter and that their
contribution is such that the Universe attains closure density (2 = 1), the magnitude
of the luminosity diffusion, as a function of the Fermi ball mass, can be evaluated.
The analysis is based on the work of Press and Spregel [24, 25], which deals with the
solar capture and the subsequent luminosity transport of cosmions [26]. For this clo-
sure density scenario, with gravitationally bound Fermi balls in approximate thermal
equilibrium with the solar core, Figure 3.2 shows a contour plot of the luminosity
transported by them relative to the solar luminosity, as a function of the Fermi ball
mass relative to the proton mass, and the Fermi ball-baryon cross section relative to
a fiducial cross section of reference [25]. A relative luminosity contour of unity is used
to restrict the relative cross section and relative mass of the Fermi balls (which in
turn can be related to o), as a relative luminosity of unity or greater implies that
for fixed total energy transport, the Fermi ball transport would more than halve the
core temperature gradient, in contradiction with the solar model [25]. The restriction
on parameter space isn’t particularly severe, considering that neutral Fermi balls are

expected to have extremely weak nou-gravitational interactions, and so would free

stream through the sun.

Finally, if Fermi ball closure density is assumed, the fermion anti-fermion asym-

metry required just prior to the biased spontaneous symmetry breaking in order to
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Figure 3.2: A contour plot of the relative solar luminosity carried by the Fermi balls,
as a function of a = Tty the Fermi ball mass relative to the proton mass, and
B = ER, the Fermi ball-baryon cross section, relative to the fiducial cross section

d.

%EE(% = 4.0 x 107*cm?. The contour shown is that of relative luminosity of

unity, and the excluded region is where the relative luminosity is greater than 1.

produce Fermi balls can be estimated. The cinstraint of clnsure density sets a re-

striction on the present day Fermi ball number dens;ty, which is in turn related to the

L n=

B =-

1]

” (3.9)

(here » and 7 represent the number density of fermions and anti-fermions). The
present day Fermi ball number density is obtained from the number density of excess
fermions at the symmetry breaking by evolving this number density forward to the

present day, and then dividing this number density by the number of fermions in a

typical Fermi ball. From this, the constraint on the relative fermion asymmetry is
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found to be of order 7
B~ —— (3.10)
which for a breaking scale of ¢y = 1GeV implies an asymmetry of 10~7, which is of

similar magnitude to the baryon asymmetry at the 1GeV scale.

3.3 Conclusion

composite particles. These composite particles, or Fermi Balls as they were dubbed,
have been shown to form in a rather generic and model-independent scenario, which
only depends on the presence of a biased discrete Higgs symmetry, and generic Yukawa

couplings to some fermion content. This study emphasises the phenomenological and

whether they be accidental or residual, are present.

The actual characteristics of Fermi Balls are divided into two categories; gen-
eral and specific. The general properties are that they are very massive, extremely
stable in the low energy limit, and of very small size (with size decreasing with an
increasing discrete symmetry breaking scale). The specific properties of Fermi Balls
are much more subtle, and depend on the Standard Model gauge charges carried by
the Fermi Ball’s fermion constituent. An analysis of these specific properties would
require a model-specific study, which was not the intent of the work in this chapter.
Despite the lack of specific characteristics, the general characteristics, combined with
the fact that Fermi Balls have not been observed (so telling us that they must at least
be WIMPs - weakly interacting massive particles) suggest that Fermi Balls are ideal

dark matter candidates. Also, their massive nature suggests that detection of these
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objects is most likely to come from nuclearite-type searches, or in the dark matter
scenario, from astrophysical constraints such as the solar luminosity study presented

in the chapter.

Recently, Morris and Bazeia[27] added to the credibility of the Fermi Ball

scenario, by showing that Fermi Ball production arises rather naturally from a super-
given a domain wall within the context of a supersymmetric theory, and a fermion
zero mode on the domain wall, soft supersymmetry breaking results in the addition

from exact to biased, thereby initiating the production of Fermi Balls.

Whatever the nature of these Fermi Balls, it is hoped that this chapter has
shown the reader that some unexpected physics can be generated from the breaking
of more exotic symmetries than the now familiar gauge symmetries. Also, such phys-

ical/astrophysical phenomena can be compatible with the more familar physics, as

the required discrete symmetry can be in addition to other symmetries present in the

theory.
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CHAPTER 4

S0O(10)

4.1 Preuminaries

The realisation that the Standard Model is at best only an effective theory, is one of

the most exciting observations of particle physics. It immediately implies that some
deeper underlying theory is lurking at shorter length scales?, and has been reduced to
the Standard Model as the Universe cooled (Presumably through a pattern of syra-
metry breakings.). Naturally, this has led to much discussion as to the form of this
underlying theory, and its associated phenomenological consequences. Both the dis-
cussions in chapter 2 of the phenomenology of strong coupling, and the astrophysical
implications of discrete symmetries considered in chapter 3 constitute examples of
such theorising, as they attempt to elucidate possible Standard Model extensions by
means of phenomonology. However, the most feasible, physically reasonable, predic-
tive, and downright attractive proposal to date, is the one that employs to the fullest,

the concepts of symmetries, and is to be the subject of this chapter. The theory in

question is that of a supersymmetric Grand Unified Theory (SUSY GUT).

underlying gauge group symmetry is expanded to a larger simple group, G, with the

{Here the reader is advised to see the film “Creature from the Black Lagoon”,



particle content of the theory fitting into representations (reps) of this group. Not only
does this provide for a simple high energy structure, but also, when supersymmetrised,
scale. While such a structure may or may not be a faithful representation of the
actual high energy physics, the benefit of a GUT is that it provides a robust and
consistent theoretical framework in which to model the physics at the high energy
scale, allows definite phenomenological predictions, and appears to give the most
consistent description of the high energy physics as seen from our low energy world. (It
may well be that the actual fundamental physical theory is some version of the present-
day string theory, which breaks directly to the Standard Model, thereby passing the
GUT stage altogether, but such a theory would be difficult to test and indeed, at the
low energy scale, difficult to distinguish from a GUT approximation.) Once a GUT
structure is assumed as the form of the Standard Model extension, the challenge is
then to choose an appropriate gauge group, and construct the particle representations
in such a way that the low energy effective theory that results from symmetry breaking
of the gauge structure does actually mirror the Standard Model. Again, I refer the
reader back to chapter 1 for the sort of constraints the model must respect. In line
with this, the GUT model adopted in this chapter is not the usual minimal GUT
model, but rather one that was chosen on the basis that its prediction of the low

energy fermionic mass spectrum is the most “realistic”.

In addition to imposition of the GUT scheme, a further symmetry is adopted:
Supersymmetry. Supersymmetry, the symmetry that relates fermions to bosons and
vice versa, is primarily justified in the GUT scheme by the fact that the “doubling of
the particle content of the theory” slows the Renormalisation Group running of the
Standard Model coupling constants so that they actually converge (within error) to

a single unification point. (Again, the reader is refered back to chapter 1.) Yet this
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doubling of the particle content automatically introduces interactions between the
particles and their superpartner particles, and it is these new interactions that open
up the door to a variety of new physical processes, which can greatly influence the
low energy signatures of the resulting effective theory. This is what the inclusion of
supersymmetry does for the phenomenologist. Further, the influence of SUSY on the
low energy signatures is more pronounced the lower the SUSY breaking scale, and if
we require SUSY model to solve the hierarchy problem (return again to chapter 1),
then the superpartners to the light Standard Model particles must be relativly low in
mass (ie a low SUSY breaking scale). Thus, one should expect the influence of SUSY

on the low energy signatures of the effective theory to be significant.

Obviously, the low energy signatures have to be identified, and it is the ap-
peal to the role of symmetries in the “gauge age” (aka the gauge principle) that
provide these signatures of the high energy theory. Specifically, it is the belief that
all continuous symmetries are gauge symmetries, and that only conserved quantum
numbers correspond directly to these gauge symmetries and their associated mass-
less gauge fields. To date, we are only aware of the photon, gluon, and the graviton
as massless fields, impling that quantum numbers such as the baryon number B or
the lepton number L, cannot be absolutely conserved quantities. Violation of such
conservation laws is then due to the breaking of the gauge symmetry, with the rate
depending on some inverse power of the gauge boson mass generated in the symmetry
breaking. (Once more the reader is refered back to the gauge theory discussion in
chapter 1 for a discussion on the relation between the rank of the gauge group and
conserved quantum numbers.) Thus, any GUT or SUSY GUT extension of the Stan-
dard Model must have both B and L violation as a low energy signature, although
considerably suppressed due to the large value of the conjectured GUT breaking

scale (Mx ~ 10 — 10 GeV). From this baryon number non-conservation it can be



inferred that the lightest baryons, which the Standard Model considers stable, can
decay via AB # 0 interactions. The classic low energy signature for GUT or SUSY
GUT theories is therefore evidence of nucleon decay. Prediction of the relative decay
rates then implies a method of distinguishing between different GUT and SUSY GUT
candidates, once nucleon decay is observed. The work that follows is a specific inquiry
into the set of phenomenological predictions associated with nucleon decay, with the
model used being the SUSY extension of what the author considers to be the most

“realistic” GUT in the literature.

4.2 Nucleon Decay in Non-Minimal Supersymmet-

ric SO(10)

4.2.1 Introduction

Nucleon decay is by definition a baryon number violating process, and within the
context of the standard model (SM) of particle physics is forbidden . Yet there is a
strong motivation for assuming that baryon number violation occurs; particularly the
fact that there is no baryonic analog of the electromagnetic gauge invariance [2](which
guarantees the conservation of electric charge), the presence of a baryonic asymmetry
in the Universe [3], and the violation of baryon number conservation by black holes
[4]. Allowing baryon number violation then suggests that the SM is only a low energy
effective theory, and as such the stability of the nucleon is brought into question. This
view was further reinforecd when the adoption of Grand Unified Theories (GUTs) as

a SM extension appeared to explain a large number of questions left unanswered by

{Baryon number is not conserved in the SM, as violation occurs in weak interactions via instanton
effects and the triangle anomaly, but the rate is suppressed and also involves viclation of 3 units of
baryon number for 3 standard model generations, thus making it irrelevant to nucleon decay [I).
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under a single simple gauge group. Imposition of such an underlying GUT structure
then provided a new mechanism by which baryon number violation could occur, and
nucleon decay induced [6, 7].

This nucleon decay mechanism is due to the fact that for conventional GUTs,
quarks and leptons are placed in the same multiplets of the GUT gauge group. The
coupling of these multiplets to either gauge or Higgs boson representations then gives
interactions that couple quarks to leptons, and below the GUT scale, produce effective
operators that induce nucleon decay. These tree level operators are four fermion
dimension 6 operators [8, 9] built from two fermion-fermion-boson vertices by means
of a gauge or Higgs boson exchange. As the low energy limit of the internal boson
propagator is ﬁlg— (Mg is the mass scale at which the GUT is spontaneously broken),
the four fermion interaction reduces at low energy to an effective four fermion vertex
scaled by two inverse powers of Mg. It is this class of effective vertex that would

mediate nucleon decay in non-supersymmetric GUT models.

In the archetypal GUT - minimal non-supersymmetric SU(5) - first proposed
by Georgi and Glashow [6], the unification scale is Mg ~ 5 x 10'* GeV [10, 11], and
predicts the most dominant decay mode to be p — #° + e* with a partial lifetime
of 7, ~ 4.5 x 10217 yrs [11]. This is to be contrasted with the experimental lower
bound obtained from IMB-3 Collaboration, of 7, > 5.5 x 1032 yrs [12, 13]. Clearly the
minimal SU(5) mode! predicts proton decay at too rapid a rate, thereby ruling it out
as a realistic GUT candidate. Nucleon decay channels and partial lifetime predictions
have been calculated for a variety of GUT models [14], including non-minimal SU(5)
(which includes a 45 Higgs rep in an attempt to predict the fermion masses), minimal
and non-minimal SO(10), and an Eg¢ GUT model. Unfortunately, all these models
tend to fail on the basis of a unification scale Mg ~ (2 — 7) x 10* GeV, which
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implies an overly rapid nucleon decay rate as well as a prediction for sin? 8y that is

inconsistent with the high precision LEP measurements [15].

As conventional GUTs are essentially condemned by these failings, attention
has turned to the supersymmetric GUT models (SUSY GUTs). Imposing supersym-
metry - a symmetry that relates bosons and fermions - has the effect of doubling the
particle content below the GUT scale, which results in the slowing of the SM gauge
coupling running, and consequentially predicts a consistent gauge coupling unification
at a higher scale. Thus, a SUSY GUT model not only addresses the matter of the
consistency of the sin® fy prediction, but it also predicts a unification scale that is
typically two orders of magnitude larger than that of conventional GUTs. This in-
crease in the unification scale induces a suppression factor of order 10~8 in the decay
rates of four fermion dimension 6 operators generated by boson exchange, placing
the dimension 6 mediated nucleon partial lifetime predictions well beyond the exper-
imental lower bound. However, with the advent of Super-KAMIOKANDE, even the

decay mediated by the dimension 6 operators may be observable.

Yet the extension to a SUSY GUT model permits a new operator, capable of
being the dominant contribution to nucleon decay. This operator is a dimension 5
fermion-fermion-sfermion-sfermion effective operator [16, 17] constructed from either
two fermion-sfermion-Higgsino vertices or a fermion-fermion-Higgs and a sfermion-
sfermion-Higgs vertex by means of a heavy colour triplet Higgino or Higgs exchange
below the GUT scale. Such an operator then evolves down to the SUSY breaking
scale, at which point the sfermions are ‘dressed’ by gaugino exchange to give an
effective four fermion vertex that mediates nucleon decay. As the low energy limit of
the dimension 5 operator is scaled by -];};, nucleon decay via this operator generally

dominates over those mediated by the conventional dimension 6 operators?.

41t is assumed that | ‘= invoked so to rule out dangerous dimension 4 operators.
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Investigations of nucleon decay in a number of SUSY GUT models have been
carried out, beginning with the supersymmetrised version of minimal SU(5) [18, 19].
Unlike its non-SUSY cousin, this model predicts the dominant nucleon decay modes
to be p — K+ + 7, and n — K° + i, and as the unification scale is Mg ~ 2.5 x 10
GeV the partial lifetime prediction is 7,_ g+, ~ 10%°#4 yrs (20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] (with My, set to Mg). This prediction
does not disagree with the experimental bound of 7,_g+45 > 10%% yrs (obtained
from the water Cerenkov detector of the KAMIOKANDE Collaboration [39, 13])
due mainly to the large uncertainty resulting from the value of the Higgs/Higgsino
colour triplet mass. Likewise, predictions for non-minimal SUSY SU(5), minimal
SUSY SO(10) result in a marginal degree of compatibility with the experimental
marginal consistency suggests that an improvement on the experimental lower bounds
could lead to either a rejection of nucleon decay via SUSY GUT generated dimension 5
operators, or an observation of nucleon decay. Yet the uncertainties in nucleon partial
lifetime predictions preclude model discrimination by rate. In order to distinguish the
underlying SUSY GUT structure, the relative decay rate predictions within a model
should be determined, and then used to identify the SUSY GUT candidate, once

nucleon decay has been observed.

With this strategy in mind, this work presents the branching ratios for nu-

cleon decay in a particular ‘realistic’ SUSY GUT model. The model chosen is a

Reiss, and Ramond [41], which was constructed primarily to reproduce a consistent
phenomenological fit to the observed SM fermion masses and mixing angles. This
realistic non-minimal SUSY SO(10) model, like its non-SUSY counterpart, can be

viewed as a sophisticated phenomenological one, as it supports a rather expansive
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Higgs sector that is responsible for the required Yukawa coupling texture. It will be
shown that analysis of the various nucleon decay channels mediated by the dimension
5 operators of this model results in branching ratio predictions depending on a single
parameter, with the branching ratios for some observable modes enhanced by factors
of order 100 over the minimal SUSY SU(5) predictions. This in turn suggests that if
nucleon decay is observed at Super-KAMIOKANDE, the p — K%+ u*, p — 7%+ u*,
and n — n~ +put decay channel may play a significant role in identifying the structure

of the underlying SUSY GUT.

In this chapter, section 2 presents the non-minimal SUSY SO(10) model to
be used, section 3 examines in detail the low energy quark-level effective Lagrangian,

while section 4 discusses the effective Lagrangian at the hadronic level and presents

and the conclusions that can be drawn from them is given.

4.2.2 The Non-Minimal SUSY SO(10) Model

As mentioned, this analysis is based on the non-minimal SO(10) GUT model of Har-
vey, Reiss, and Ramond [41], which has been explicitly constructed to generate a
mass spectrum (including mixing angles) of the SM fermions from the GUT. An ad-
vantage of the choice of SO(10) as the gauge group is that the lowest dimensional
chiral representation that accommodates the observed SM fermions is the 16, which
allows for the assignment of one family of SM fermions plus a right handed neu-
trino, and does not include any mirror fermions. This in turn places constraints on
the possible Higgs sector representations, since the fermion masses transform under
SO(10) as 16 x 16 = (10 + 126)s + 1204, (where S and A refer to the symmetric and

antisymmetric parts respectively), implying that the allowed Higgs reps that couple
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to fermions to form SO(10) invariant Yukawa terms are the 10,120, and the I26.
The ‘realistic’ model of Harvey et al. [41] is then constructed from the representa-
tions in such a way that SO(10) GUT is broken directly to the SM gauge structure
of SU(3)c x SU(2) x U(1), and the GUT scale texture of Yukawa couplings incor-
porates the up quark mass matrix ansatz of Fritzsch [42] and the down quark and
charged lepton mass matrix ansatz of Georgi and Jarlskog [43] in such a way that
the Oakes relation [44] results. The cost of such a model is the expansion of the
Higgs sector well beyond that of most minimal models. The particle content of this
model is given in terms of a 45 that is the adjoint of vector bosons, three families of
fermions (16,,16,, 165), and a scalar sector composed of a 54, a complex 10, and three
families of 126 (126,,126,,1265) - all of which are required for a viable spectrum of
fermion masses. Note that the phenomenologically observed mass spectrum can be
produced without requiring the presence of the 120 rep, which has a Yukawa coupling
to the fermions that is antisymmetric in generation indices (as the SM fermions are

expressed in terms of a single chirality, and the spin 0 fields occur in a product that

is symmetric in Lorentz indices).

The extension [40] of this model to that of a SUSY SO(10) model is straight
forward, as the gauge, fermion and conjugate Higgs fields are converted into vector

and chiral superfields, giving a superfield content of:

Vector superfields : 45
Chiral superfields : 10,16,,16,,165,54,126,,126,,126,

This SUSY SO(10) model, like its non-SUSY counterpart, is distinguished by

its sophisticated Yukawa texture, composed of the 10,16, and 126 chiral superfield

=29 =249

reps. Specifically, the model is defined in terms of its superpotential, and for the

80



purposes of nucleon decay, the relevant terms of the superpotential for this SO(10)

model are

W = (Al6, x 16, + B16, x 165) x 126, + (al6; x 16, + b6 x 165) x 10

+c(16, x 16;) x 126, + d(16, x 165) x 1265 + Mgl0 x 10 (4.1)

with the superpotential expressed in terms of the SO(10) representations, and A, B,
a, b, ¢, d as the undetermined GUT scale Yukawa couplings.

The beauty of this globally supersymmetric model is that as 10 x 10 D 1 and

126 x 126 p 1, the only SO(10) invariant F-term that contributes to nucleon decay
below the spontaneously broken SO(10) GUT scale is given by Figure 4.1.

Figure 4.1: The only F-term supergraph that contributes to nucleon decay.

The key point here is that this superfield diagram has a Higgs/Higgsino mass
insertion that involves only the 10 (the 120 reps are absent!), which implies that
only the GUT scale Yukawa couplings of the 16’s to the 10 are of relevance to the
predictions of nucleon decay (i.e. @ and b in equation (4.1) are the only relevant
couplings). In terms of the particle diagrams, the only tree level diagrams of concern

are given in Figure 4.2,

Here the first dimension 5 diagram exhibits the exchange of a Higgsino of
GUT scale mass (Mg), and so for momentum below the GUT scale the Higgsino
propagator reduces to a factor of A—;;. The second diagram in Figure 4.2 involves the

exchange of a GUT scale Higgs scalar whose propagator reduces to 777+ but due to
G _
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the weighting of the sfermion-sfermion-Higgs trilinear coupling by one power of Mg,
the resulting diagram also contributes to the dimension 5 operator with weight I»%}
Thus the effective dimension 5 operator, valid between the SUSY GUT scale and the
SUSY breaking scale (assumed to be of order the electroweak scale) is a combination

of both diagrams, and is represented by the effective vertex in Figure 4.2.

4.2.3 The Dimension 5 Operators

In order to evaluate these dimension 5 operator contributions to nucleon decay, the su-
perpotential must be re-expressed in terms of the superfields corresponding to the SM
content. This may be done in a two step process, which first involves the re-expression
of the superpotential in a compact SU(5) notation, followed by a decomposition of
the SU(5) superfields into their SM components. Such a decomposition can be used
as the F-term of Figure 4.1 is the only dimension 5 contribution to nucleon decay,
and it relies only on the Higgs 10 of SO(10) which has the SU(5) decomposition
10 — 5+ 5. (Note that the SU(5) decomposition of the 16 is 16 — 10+ 5+ 1.) Thus

the superpotential terms that contribute to nucleon decay can be written as

= alinsD - 1 )
Wsus) = VXS MEpaHap — Zéggwggxg MYUxY Hf + Mg H? Hy, (4.2)
;}, /-
:\ % f ;‘; f N -
f ' f s f

xH

f

Figure 4.2: The two particle d;ag:ams generated by the F-term supergraph of Figure

4@1@



with Wsy(s) being valid at the GUT scale. Here MV and MP are 3 x 3 matrices
in generation space that express in a compact form the Yukawa coupling texture
expressed in equation (4.1). Below the SO(10) scale, the heavy Higgs superfield can
be integrated out to give an effective superpotential (that is appropriate below the
GUT scale but above the SUSY breaking scale). This effective superpotential is

v2 o8

Wehko) = gascemmas® MUXIXE MEb (43)

< [

Here the Greek indices a,f, ... are SU(5) indices, the family indices are
(ayb,c,d), and the index ¢ runs from 1 to 3. Also, the Lorentz structure is sup-
pressed, so as to focus on the generation and SU(5) structure. Restriction to the tree
level diagrams relevant to nucleon decay (Figure 4.1) then implies the Yukawa texture

matrices for this effective superpotential are of the form

0 a 0
MYV=|a 0 0f=M" (4.4)
0 0 b

As it is assumed that this SUSY SO(10) breaks straight to the minimally
supersymmetric standard model (MSSM), the superpotential can then be further
decomposed into the SM quark and lepton superfields. Typically the decomposition
for one family of left-handed SU(5) matter superfields are

[ D, ] 0 Us U, —-u! —d']
D, -Us 0 U, —-u? -4
Yo = | D3 X = % v, -U; 0 —u® —-d° (4.5)
l VLI TER 0 -L
v, & 2 & I 0,

where U;, D; and L; are the charge conjugations of the right handed SU(2) singlet up,
down, and charged lepton fields. Substitution of this decomposition into the super-

potential (equation (4.3)), results in an effective superpotential relevant to nucleon
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decay that is expressed in chiral superfields associated with the SM. The form of the

effective superpotential in question is

-1 6'i_‘ik eijk
wsM - S (- Le MaUsUaME Dy + —-Ua M3 LiUet M3 Dsg
—ein(ui Myd] — diMGup)(ub MB1ls — dEMBpa)] (4.6)

a

. From this superpotential it is clear that as a result of the SU(2) content, there
are two classes of F-terms; the (LLLL)r and the (RRRR)F terms (here the notation
of reference [17] is used to emphasise the SU(2) weak content of the operators).
However as the (RRRR)p terms are antisymmetric in generation indices (a,b,c) -
due to the Bose statistics of superfields in a superpotential - their composition is
such that they must contain either a charm or a top SU(2) singlet superfield. This
superfield generation remains, to a first approximation, unchanged on the dressing of
the operator by gluino or bino exchange at the SUSY breaking scale (SU(2) gaugino
exchange is forbidden for these singlet superfields), and so the low energy four fermion
operator contains either a charm or a top quark. This implies that the (RRRR)p term
contribution to nucleon decay is suppressed, leaving only the (LLLL)Fr terms. The
effective Lagrangian relevant to nucleon decay is then obtained from the (LLLL)s
term of the superpotential by the usual method (Ly,4 = %Zi‘j(a—g’%jh:(ﬂbiw +
h.e.) - ¥, 'gTW,.Iqu with & representing a chiral superfield, and ¢ and 7 the scalar
and fermionic parts), which results in vertices composed of two particles and two
sparticles. These vertices are then evolved down to the SUSY breaking scale (~
O(Mw)) using the renormalisation group equations, at which point the dimension 5
operator is converted to a dimension 6 operator via gaugino and Higgsino exchanges.

This dressing is schematically shown in Figure 4.3.

Of all the gaugino and higgsino exchanges associated with the dressing of the

(LLLL)F dimension 5 operators, the dominant contribution comes from the charged
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Figure 4.3: The particle diagram for the nucleon decay operators after being dressed

by the wino or charged higgsino exchange.

wino. The gluino, neutral gaugino, and neutral Higgsino exchange contributions to
the dressed operator are suppressed as their exchange is approximately generation
diagonal and their contribution is thereby suppressed due to small Yukawa couplings
of the first and second generation fields present in the dimension 5 operators [20, 21].
The charged-Higgsino exchanges are also suppressed, due to their Higgs strength
Yukawa couplings to the first and and second generation fermions, thereby leaving

the charged wino as the dominant contribution to the loop integral. The calculation of

versions of SU(5) [29]. Here however, the simplifying assumption of wino dressing
dominance in the decay amplitude is invoked. Performing the loop integration results
in a triangle diagram factor, that although it depends on mass eigen-values and mixing

angles of the sparticles in the loop, can be approximated (in the pure charged wino

exchange limit) by [19]

Qs ., 5 .= , [ dk 1 1 1
e f@d W) = gt [ (4.7)

o 2 2 2 m?
a2  my ( ma 1 M i1, ﬂ)

2

d

ot bl - — i 3 . — — In :
T 2rmi ~mi \mi-m} " m? m3 —mb,  mb,

and so becomes a multiplive factor of the dressed four fermion operator.

85



From the superpotential of equation (4.6), the eflective Lagrangian for the
dressed quark level operators of Figure (4.3) can be obtained, and with the use of

equation (4.7) it has the form

L = 2 RsRpMYMBeis [(uid])(d ) { (e leymuy) + f(tas doymy))
2r Mg

+(d:zui)(u’§ld){f(dm V4, mW) + f(da)ubamﬂ’)}
+(upd)(ugla){ £ (e, dyy M) + F(day var o)) (4.8)
+(d;Vd)(di“f){f(ua, ldvmv'V) + f(ub’ dc’mv'v)} ] + h.c.

Here the Rs and Ry, are the short and long range renormalisation factors. The short
range renormalisation accounts for the renormalisation effects from the SO(10) to the
SUSY breaking scale, while the long range factor is from the SUSY breaking scale to
a low energy scale (assumed here to be 1 GeV). Rs can be shown to be generation
independent, and can be taken to be [20, 21]
=1 =3 B
Rs = [a"(ms)] 9 [az(ms)] 2 [a‘(ms)} v 091 (1.9)

ag ag ag

where mg is the SUSY breaking scale (which here, has been set to the electroweak scale
mw ). The long range renormalisation is predominantly a result of QCD interactions
between the SUSY scale and 1 GeV, and encompasses the renormalisation of the
Yukawa couplings and anomalous dimension corrections to the four fermion operators.

Again, following reference [21],

o= [ BT )T e

This effective Lagrangian, as written, is for four fermion operators with the
quarks and leptons expressed in their gauge interaction eigenstates; this however, is
easily remedied by rotating from a gauge interaction to a mass eigenstate basis. Due

to the mismatch in the rotations of the charge %,—%, and —1 fields, the operators
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incur additional generation mixing. The rotation matrices appropriate to this model
are obtained from the diagonalisation of the mass matrices which are defined in terms
of the Yukawa coupling texture (as specified in equation (4.1)) and the vevs of the
various Higgs reps. For these Al = } Dirac masses (Iw denotes weak isospin), it is
convenient to consider the SO(10) vev contributions in terms of their SU(5) content.
The contribution of SU(5) vevs to the quark and charged lepton masses is as follows

[41]):

<...> ~ §gives a contribution to the charge Z mass
<...> ~ 35 gives an equal weight contribution to the charge —2% and —1 masses

<...> ~ 45 relative weight contribution of 1: —3 for charge —% and —1 masses
The SO(10) Higgs vevs structure is then decomposed as

<10 > = r(along §) + p(along 5)

<126, > = t(along 5)

< 126, > = s(along 45) (4.11)

<1263 > = g(along 5)

where p,q,7,s,t are taken as complex vevs. The assumption of complex vevs allows
for the generation of soft CP violation through the process of symmetry breaking.
Yet it is assumed that soft CP violation is not the sole source of CP violation in the
model. Hard CP violation is also permitted due to the fact that, unlike the non-
SUSY model of reference [41], the Yukawa couplings of equation (4.1) are taken to be
complex [40].

As the masses in the low energy effective SUSY theory arise from the Yukawa
couplings of the quarks and charged leptons to a single light Higgs doublet of Al =

, the mass matrices can be formulated in terms of the vev of this light Higgs. From

B

87



the SU(5) decomposition of the SO(10) Higgs vevs, this light Higgs vev is a linear
combination of the doublets in the 10,126,,126,, and 126, (in the ratio |[r+p|:t:s:
g), and so the GUT scale couplings appearing in the mass matrices can be read off.
Yet as it is the mass texture at the SUSY breaking scale that must be diagonalised,
the entries in these Yukawa coupling texture matrices at the GUT scale must be
evolved down to the SUSY scale via the renormalisation group equations, as was
done by Dimopoulos, Hall, and Raby [45] for ‘realistic’ Yukawa matrices of this form.
The quark and charged lepton Yukawa matrices specified at the SUSY breaking scale

are then the mass matrices that are diagonalised. From equations (4.1) and (4.11)

the GUT and SUSY scale mass matrix textures of the quarks and charged leptons

are:
GUT scale texture SUSY scale texture
0 Pz O 0 P 0O
U= PG 0 QG —_— U=\|P 5u Q
0 Q¢ Vo 0 Q@ V
0 Rge¥s 0 0 Re'* 0
; . (4.12)
D = | Rge™'¥e Sa 0 — D=|Re* § {4
0 0 Te 0 0 T
0 R 0 0 R 0
L=Rs -35 0 — L=|R =35 0
0 0 Te 6 0 T
with the assignments
P=ap+ At V =bp+ Bt
R=ar T=br S=cs Q=dg (4.13)

and the subscript G indicating entries defined at the GUT scale. Here, the zero
entries in the mass textures are the result of accidental discrete symmetries, which

if broken, allow the generation of non-zero entries by means of the renormalisation
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group equations as the mass matrices are renormalised down to lower energies. This
is indeed the case for the entries §, and §; which occur due to the violation of a

discrete symmetry at the GUT scale.

Although both the Yukawa couplings and che SO(10) Higgs vevs are complex,
thereby permitting both hard and soft CP violaticn, the entries in the mass matrix
textures, as given in (4.12), have been rendered explicitly real by means of quark and
charged lepton field redefinitions. It is then these (SUSY scale) matrices, with 8 real
parameters and one phase, that are diagonalised and the mass eigenvalues fitted to
the low energy data, following Dimopoulos, Hall, and Raby [45]. The diagonalisation
proceeds by means of unitary and biunitary transformations of the form U diag
v.Uv}, pdieg = vEDVF!, and r4i28 — VLV, and in following the assumptions of
reference [45], that V >> Q ~ 6, >> P and T >> § ~ 64 >> R, the approximate

mixing matrices are of the form

¢ sz 07 1 0 O
V. = |—52 ¢c2 0 cs s3 0
[ 0 0 1JLl—s3 c3 OJ
f[cp —s; 0771 0 0771 O O
VE = |ss e 0|]|ca ss O[O0 ¥ 0 (4.14)
| 0 0 1] L—sq4 e 21 L0 0 €%
[ ¢ S5 07
Vi= |—-8 ¢ 0
| 0 0 1

with s; = sin§; and ¢; = cos §;. The angles defined in these rotation matrices can
then be determined by fitting the mass eigenvalues to the low energy data. Using the
low energy input data of [45], the resulting phenomenological fit specifies the angles

as

51~ 0.196 55~ 0.05 53~ 0.046 (4.15)

89



542~ 0.0066 s5 ~0.070 cosp ~ 0.41%)32

This phenomenological fit may need some revision in view of the subsequent and more
precise low energy data (especially in light of the recent improvement to the bounds
on the CKM matrix entry Vi [46]) but it is expected that any revisions will have

small effects on our results, and so we continue to use the original fit.

4.2.4 The Hadronic Lagrangian and Branching Ratios

With the mass eigenstate rotations defined by equations (4.14) and (4.16), the low
energy effective Lagrangian of equation (4.8) can be explicitly evaluated in terms of
the dimension 6 four fermion quark level operators. In focusing on nucleor decay,
ihese quark level (gqql) ope:utors can be restricted by energy conservation, to have
a quark composition of only the u, d, and s quarks. This in turn results in only five

distinct operators, namely

0%(dudy,) = eije(d'u?)(d*vs) O%(sudva) = e s'u?)(d*va)

0% (udsv,) = eije(u'd?)(s*v,) (4.16)

0%(duuly) = eijp(du?)(utls)  O0(suuly) = €ju(s'u? ) (ukls)
Thus, the effective Lagrangian, expressed at the quark level, can then be written
as Loucleon = 3 C(qqql)O%ggql). Here the C(qqql)’s are the coefficients of the
distinct quark level operators 0%(qqq!l), and are determined from equation (4.8) by
summing the coefficients of the equivalent four fermion effective operators, modulo

Fierz transformations. By classifying nucleon decay in terms of its various allowed

channels, the effective Lagrangian for nucleon decay can be written as

L(n,p - 7+ 5) = C(dudv;)0%(dudy;) (4.17)
L(n,p—m+1F) = C(duul;)0%(duul;)
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L(n,p— K +1F) = C(suul))0%suul;)
L(n,p — K+ ;) = C(sudy;)0% sudy;) + C(dusy;)0%(dusy;)

Yet these effective Lagrangian contributions are in terms of quark level opera-
tors, and so inappropriate for hadronic decay rate calculations. Instead, they must be
converted to effective Lagrangian contributions at the hadronic level, thereby permit-
ting evaluation of the nucleon decay rates, which although calculated at the hadronic
level, are expressed in terms of the coefficients of the quark level four fermion effective
operators specified by equations (4.8) and (4.17). This conversion may be performed
using the chiral Lagrangian techniques developed in references [47], [24], and [25],
which express general hadronic level decay widths in terms of coefficients of generic
four fermion quark level operators. The results of these decay width calculations, in

the notation of [34], are as follows:

(mg — mk)?

2
2mp

I(p — K* +5) = 32m3 o DC(sudv;) + [ (D + 3]—')] Clawsws)
L(p— =t +) = 32 f2 [1+D+ f]C’(dudV,)I
(mg — mkg)® m
-— K© +y — P2 Al - r -
L(p— K°+ 1) 327rm3f2 [1 mpg (P f)]
T(p—on®+1) = 64 f2 1 + D + F)C(duuly)|? (4.18)
3(m2 - m2)2 1 2
— + = P n —_— - —_ :
T(p — 0 +17) . [1 3(D 3f)] C(duul)
2 _ 22
[(n— K°+5) = % [1 .. ] C(sudy;)
Mg 2
+ [1 + (D + 3]-‘)] C(dusws)
T(n—°+5) = 647rf2 [1+D+ f]C'(dudV,)[
I(n—or +1}) = 32 f i1 4+ D + F)C(duul)?
_y _ 3(ml —mf,)2 1 2
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Here mg = myg = my = 1150 MeV is the mass to be associated with the virtual
baryon exchange, m, = m, is the nucleon mass, and D = 0.81 and F = 0.44 are

numerical factors.

From these decay rates, it is then very simple to construct bianching ratios,
which have the advantage over decay rates in that most of the as yet unspecified
factors hidden in the quark level operators C(qgqgl) divide out, leaving the branching
ratios parameterised by the ratio of the GUT scale Yukawa couplings of the complex
10. The numerical predictions for the branching ratios of the most dominant proton
and neutron decay channels, for a large range of this parameter, £, are presented in

Figures 4.4 and 4.5 respectively. For this numerical evaluation, the branching ratios

are defined as
(N —z+y)

4.
(N — anything) (4.19)

Br(N—»w-}—y):r

where N represents either the nucleon, and the decay rate for N — anything has

been taken as the sum of all the relevant decay rates listed in (4.18).

4,3 Conclusions

With the results of the analysis of nucleon decay in this non-minimal SUSY SO(10)
model presented in Figures 4.4 and 4.5, a number of important conclusions can be
drawn. The first and most significant point is that this model gives one-parameter
predictions for all the relevant nucleon decay branching ratios. Once nucleon decay is
observed through any two channels, the ratio § is determinéd, and all the remaining
partial lifetimes of the proton and the neutron then have a definite prediction. As with
the SUSY SU(5) models, this model predicts that for a large region of § parameter

space, p — K+ + 7, and n — K° -+ 7, are the most dominant proton and neutron
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Figure 4.4: The branching ratios of the most dominant proton decay channels.

]

decay modes. This prediction could only be altered by a strong suppression of the
GUT scale Yukawa coupling a relative to the third family self-coupling b, as shown by
the prominence of the p — K+ +o,, p — 7t +0r,n — K°+7,, and n — 7%+ 0, decay
modes for £ < 3 x 1072, Another striking feature is that for § > 10~2 the branching
ratio predictions are insensitive to the actual value of the parameter, thereby implying

a degree of robustness to the predictions, regardless of the relative importance of the

10 of SO(10) in the assumed form of the GUT scale texture.

However, it is the relative strengths of some of the individual branching ratios
that serve to identify this model, and in particular, it is the nucleon decay channels
involving the u* and the &, that are the distinctive fingerprints of this model. For both
the proton and the neutron, the branching ratio predictions for channels involving the
charged muon show a marked enhancement over corresponding predictions of minimal

SUSY SU(5). Specifically, the branching ratio predictions for the p — K° + pt,
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Figure 4.5: The branching ratios of the most dominant neutron decay channels.

p — 7%+ u*, and n — 7 + pt relative to the dominant proton and neutron
decay channels are enhanced over the minimal SUSY SU(5) predictions by factors
of 50-500, 10-100, and 20-200 respectively (the ranges given in these enhancement
factors are due to the uncertainty of the minimal SUSY SU(5) predictions as quoted
by [29, 25, 34]). To a lesser extent, the p — «+ + 7, and n — 7% + ¥, decay
channels show a similar enhancement, but only by factors of 3.6 and 2.6 respectively.
Thus, these enhancements in the decay rate predictions result in branching ratios for
this non-minimal SUSY SO(10) model that are both qualitative and quantitatively
different from that of the SUSY SU(5) nucleon decay spectrum, thereby making this
‘realistic’ non-minimal model a testable candidate for a SUSY GUT extension to
the standard model. The issue of testing the predictions of this model could be
addressed at Super-KAMIOKANDE, provided that Super-KAMIOKANDE in fact

observes nucleon decay.
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In sum, the distinctive tests of this realistic supersymmetric SO(10) GUT
which arise from the consideration of nucleon dezay come riot from the actual decay
rates or partial lifetimes of the nuclecn, as the nature of the Higgs sector and the
uncertainty of the Higgs and Higgsino colour triplet masses make the SUSY dimension
5 operator decay rate predictions uncertain. Rather, they come from the calculation

of nucleon decay branching ratios. The fact that this realistic model predicts ratios

: « . Brip—K%+ut) Br(p—7+ut) Br(n—n~+ut)
of branching ratios gL 2=3+75-, Fri=kTas,) 209 Brm—xvss,) of order 20%, shows

the relevance of ‘observable’ channels such as p — K® + p*, p — #° + p*, and

n — 7~ 4 pt to the testing of models of GUT unification. (For related considerations
involving mass textures induced by higher dimensional operators see [48].) These
enhanced Franching ratio predictions are instead simply a result of the composition
of the Higgs superfield sector, which is such that the GUT scale Yukawa couplings

relevant to nucleon decay are not the full set of couplings that contribute to SM

fermion mass generation.

The results presented here may be seen as some of the possible implications
of a viable SUSY GUT model, and any observation of p — K%+ p*, p — #% + p*
or n — m + ut at a level significantly enhanced above the expected SUSY SU(5)
predictions is an indication that the underlying structure of a realistic extension to
the standard model is best described in terms of a SUSY GUT model with a non-
minimal Higgs sector. Unfortunately, because only a partial set of the GUT scale
Yukawa couplings is directly involved in the analysis of nucleon decay, whereas the
light Higgs is a linear combination of contributions from the various SO(10) Higgs
reps, the actual values of the GUT scale couplings remain undetermined and the

texture unexplained, at least in this model.
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CHAPTER 5

Conclusion

With the three case studies on the implications of symmetry breaking for low
energy experimental signatures completed, it is time to take stock. Clearly, from the
results presented, some definite conclusions can be reached, both on the individual

chapter results, and on the overall study.

First the individual chapters. The work in chapter 2 results in a very definite
statement - no experimental signature of Higgs bag formation around a toponium
bound state is expected. This essentially kills any discussion on the use of non-
linear feedback produced by the strong Higgs-top coupling, as any effect that is there
is at the present time, unobservable. Further, this work shows that the degree of
relevance of the debate on the classical and/or semiclassical nature of the Higgs bag
formation is rather small, as any hypothesis is virtually unaccessible to experimental
verification. This conclusion is further supported by the fact that observation of the
t — b+ W decay is without anomalous signals that could be associated with a Higgs

bag explosion.

Chapter 3 provides a conclusion that is a little more upbeat, in that the out-
come of the investigation is a novel class particles. The results of considering a biased
discrete symmetry (either accidental or residual) on an unspecified extension of the
Higgs sector has shown that the production of composite particles is possible. The
composite particles, or Fermi Balls as they were dubbed, form a rather odd low en-

ergy state, that if observed would be definite evidence of physics beyond the Standard
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Model, While many physical properties of these novel astrophysical objects are model
dependent, the Fermi Ball construction was specifically done in a model independent
way. Nevertheless, such a construction does yield some discernible Fermi Ball charac-
teristics, namely that they would be very massive, small in size, slow moving (unless
accelerated by some cosmic dynamo), and almost certainly quite weakly interacting.
These properties would suggest Fermi Balls are very difficult to detect. Evidence for
their existence is most likely to come from dedicated experiments that focus on the
very massive nature of these nuclearite-type particles, rather than from searches based
on their model dependent characteristics. In lieu of direct evidence, one is restricted
to astrophysical constraints such as the one derived from the solar luminosity argu-

ment, but these are typically not ovesly constraining. Due to the difficulty of defining

these objects make ideal, if somewhat novel, WIMP dark matter candidates.

The results of the third study are the most definitive of the three, and they
should be of considerable interest to those pushing back the lower bound on nucleon
lifetimes. Unlike the Higgs sector extension associated with the production of Fermi
Balls, the Higgs sector prescribed in the evaluation of the non-minimal supersymmet-
ric §0(10) GUT of chapter 4 is very specific. It is in fact the non-standard Higgs

work. Firstly, the expansion of the Higgs sector has been large, with the three copies
of the SO(10) 126 representations implying a dramatic increase in the number of
Higgs fields. Although some may question the validity of such a non-minimal Higgs
sector, it does achieve an acceptable low energy fermion mass spectrum for the Stan-
dard Mode! fermions, which is essential if the Standard Model extension is to be
realistic. Also the multitude of Higgs states present are conveniently hidden by the

high energy scale GUT breaking - in a sense, all the uncertainty in the Standard
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Model extension has been put into the Higgs sector and pushed to a high scale by
the GUT scheme. Secondly, the imposition of supersymmetry does not just “double”
the Higgs sector, but rather, shows that the Higgs sector is not necessarily composed
of only scalar Higgs fields, and that thanks to Higgsino (as well as squark and slep-
ton) states, the door is opened for “new” nucleon decay channels. The results of

chapter 4 indicate is that when nucleon decay is observed, the relevant branching

alistic non-minimal supersymmetric SO(10) GUT. As has been seen, the branching
fraction predictions of this model make definite model-specific predictions, and are a
classic example of employing phenomenological signatures in the low energy limit to

unravel the underlying high energy theory.

From these case studies, it is hoped that the reader has realised the usefulness
of internal symmetries in particle physics. Certainly, it is seen that the deduced low
energy predictions can cover the whole spectrum of relevance (negative conclusions,
novel proposals, and definitive predictions), but this is just a characteristic of the

variety of ways that symmetry breaking can manifest itself. Further, it should also

in exoticness of the internal symmetry structure. Obviously, the supersymmetric
50(10) GUT case study was the most exotic, and as such has the most far reaching

and exciting predictions.
Nevertheless, it is hoped that this thesis has shown that the consideration of
the issues of symmetry breaking and superunification is well worth the while, and

that symmetry breaking does much more than simply generate mass.



