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Abstract

This thesis describes a system for automated detection of breast cancers
in mammograms. It uses the “asymmetry approach”, which suspects the
presence of a breast tumor at all locations, where there is a significant
difference in appearance between corresponding locations in the left and right
breast. The difficulty of this approach lies in the fact that these differences
have to be found against a background of naturally occurring asymmetries
of healthy breast tissue. A complete detection method is implemented and
presented in this thesis, with each step discussed in detail.

After the film mammograms have been digitized, a global thresholding
segmentation technique is used to extract the breast areas to be used for
comparison. A cubic B-spline corner detection method is used to detect
control points, namely the nipple and intersection points between breast
boundary and back boundary. These control points are then incorporated in

a geometric transformation which aligns the pair of mammogram images.



Four different measurements are studied for asymmetry measurement.
They include locally normalized digital subtraction, locally normalized
variance difference, brightness-to-roughness ratio difference and direction-
ality measures. Each of these measurements is described individually and
the formation of an overall mammographic asymmetry measurement from
these four measurements, using a vertical directionality measure as weight-
ing factor, is discussed.

A two-stage thresholding method is used to select suspicious areas from
the response image produced by the mammographic asymmetry measure-
ment. For a set of ten test cases, this method correctly identified twelve out

of the thirteen suspicious tumor locations marked by radiologists.
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Chapter 1

Introduction

The rising incidence of breast cancer shows that a mass mammography
screening program is in great demand. Mammography is a technically
demanding procedure that requires experienced, skillful, and meticulous
interpretation [McL84]. A mass screening program requires interpretation
of a large number of images by expertly trained radiologists. The cost and
shortage of mammography experts have been the major deterrents of its
widespread acceptance and implementation. With advanced computer tech-
nology in biomedical image processing, it is possible and feasible to automate
some prescreening processes. This would not only reduce the cost-benefit
ratio but will also enable radiologists to concentrate on suspicious cases.
This thesis attempts to search for algorithms to automate the breast cancer

detection process using the mammographic asymmetry approach.



1.1 Overview on Breast Cancer

Breast cancer has become a predominant fear among women today. The
chance of developing this disease is so high that about nine percent of the
female population (1 in 11 born) in United States will develop breast cancer
in their lifetime. More than 25% of all cancers diagnosed in women are breast
cancers and they account for 19% of all cancer deaths [SK83].

During the past decade, there has been a determined effort to identify
the factors capable of separating women at high risk from those with little
or no likelihood of developing this disease. For example, in younger women,
factors might lean more to familial factors, while those in older women to en-
vironmental conditions. Other indicators such as personal/family history of
breast cancer, hormonal status, substantial doses of ionizing radiation, body
weight and mammographic pattern are also suggested; but the etiology of the
disease is still unknown [Les84]. Despite the fact that primary prevention is
still not possible for the above reasons, detection of breast cancer in the early
stage can prevent it from becoming incurable and reduce mortality. Thus,
early detection is the best hope for improved survival [McL84].

It is well appreciated that most breast cancers cannot be palpated, i.e.
detected externally by physical examination, until they have achieved a size
of about 1¢m?, or 1 billion (10°) cells. Many kinetic studies have indicated

that this requires about 30 population doubles. When it is recognized that a



doubling time might take 30-200 or more days, it becomes apparent that a
tumor that is regarded as clinically early, is in fact biologically late, requir-
ing only 10-20 more doubles before causing the death of the host [Fis85].
According to previous studics, about 80% of Stage I and 95% of Stage 0
patients achieve 10 years disease-free survival rate after either conservation
surgery and radiation or radical/modified-radical mastectomy alone [Les84).
Stage I patients are those with a tumor of 2cm or less in greatest diameter,
without axillary nodal or distant metastases involvement according to the
America Joint Committee on Cancer (AJCC)’s TNM breast cancer staging
system. Stage 0 is not an official part of the AJCC’s system; but is com-
monly used by some authors in referring minimal, in situ cancer of 5mm or
less in size. Thus, it is important for medical experts to be able to detect
breast cancer in Stage 0. Mammography is the only method to date which
has convincingly demonstrated the ability to detect breast cancer at an early

stage with high sensitivity and specificity [TD87].

1.2 Overview on Breast Imaging Techniques

To detect early stage breast cancer in mass screening process, non-invasive
detection methods must be developed and used when a physical examination
method is no longer adequate to detect cancer at the nonpalpable stage.

Many breast imaging techniques have been developed for this purpose. Each



technique has its own merit as well as its own drawbacks. In the following
few paragraphs, a few techniques will be discussed briefly.

Ultrasound is a breast imaging technique where pulsed mechanical waves
of 2.25-10 megahertz are directed through the patient’s breast which is im-
mersed in a coupling agent of water, mineral oil, or acoustic gel. When the
pulsed wave encounters an interface with a difference in acoustic impedance,
such as the wall of a cystic structure, a small portion of the beam is re-
flected back to the transducer. These reflected echoes are then displayed
on a scan convertor for viewing or recording [Col87]. Ultrasound has not
only the ability to image the breast repeatedly with no known deleterious
effects and differentiate solid mass from cystic mass, but also finding masses
in dense breasts that are difficult to diagnose by X-ray mammography. How-
ever, the equipment is very expensive, examination time is relatively long and
resolution is limited (lesions smaller than 1cm remain usually undetected)
[Mar83].

Computed Tomography (CT Scanning) is another breast imaging tech-
nique in which a scanner of finely collimated x-ray beams opposite either a
single or multiple detectors arranged radially in a 360° circle is used. A typi-
cal 8 mm cross-sectional slice of the patient’s breast is scanned by pulsing the
x-ray beam over a 360° sweep. The cross-sectional image based on the var-
ious absorption coefficients measured by the detectors is then reconstructed

and displayed on a screen [GKR77, DS83] . This method shows a high degree



of accuracy in detecting breast cancers and is comparable, if not superior,
to X-ray mammography. However, adverse reactions from the intravenous
contrast medium, high costs and lengthy procedure make it inappropriate as
a screening tool for the general population [CSF*80].

Thermography, a method for producing an infrared image of the surface
of an anatomic section, is based on the principle that the amount of radiation
emitted by an object depends on its absolute temperature. Infrared sensitive
detectors produce an image representing the surface temperature of the skin
[DMH76]. This method has also been used for breast cancer detection as the
temperature of the skin in the vicinity of mammary cancers is generally higher
than the corresponding area of the opposite breast. The temperature-sensing
method has no radiation hazard and is inexpensive to perform; however, it
does not give consistent results for various reasons, such as early stage tumors
(less than 2 cm) d+ not show sufficient temperature discrepancy from normal
breast tissue and also due to the large variation in metabolic activities in
different types of tumors [LR80, Mar83].

In addition to the above mentioned techniques, there are also transillu-
mination, sonography, magnetic resonance imaging, etc.; but these methods
have neither proven their effectiveness in extensive clinical studies nor have
they been proven adequate for mass screening.

X-ray mammography has not only been used as a breast tumor screen-

ing method for more than two decades, but has also proven its effectiveness



in detecting early stage tumors in various mass screening studies, such as
BCDDP! and HIP2 It has been shown that this method successfully de-
tected 96% of breast cancer cases and that 48% of those detected cases are
at a nonpalpable stage [ST82). But with no exception, this technique also has
its own drawback, such as radiation hazards and insufficient contrast to show
individual structures within breast tissue. During the past 20 years, new im-
proved equipment and techniques, such as breast compression and film-screen
combination, have enabled good quality mammograms to be produced while
radiation dosage is minimized. Experience gained also improves the accuracy
in interpreting mammograms by radiologists. All these improvements have
made mammography the standard for diagnosis of breast cancer as no other
method approaches its effectiveness [Mar83].

Based on the consideration of cost-beneficial ratio, effectiveness, avail-
ability and length of examination; mammography is ideal, if not the best,
screening method for detecting breast tumor. In fact, it is currently the most

common screening procedure used across the nation.

1Breast Cancer Detection Demonstration Project supported by the National Institute
of Health an American Cancer Society in 1974-1981

2Controlled screening trial for breast cancer conducted by Health Insurance Plan of
New York in 1963-1969



1.3 Mammographic Diagnosis

At the present time, X-ray mammography is well accepted as the most re-
liable and effective method for diagnosing early breast tumors. Combined
with meticulous interpretation by expert radiologists, X-ray mammography
demonstrates a high degree of accuracy in detecting early stage breast tu-
mors. To automate the diagnosis procedure of mammograms, it is important
to have fundamental knowledge in mammography techniques and its diag-
nostic procedures.

Two types of mammographic systems commonly used today are film
mammography and zeromammography. The main difference between these
two lies in the image recording process. In film-mammography, conventional
fine grain direct exposure emulsion film is used to produce mammograms
with exceptional radiographic details. The screen-film technique which com-
bines a calcium tungstate intensifying screen in intimate contact with a single
emulsion film by a vacuum further reduces radiation dose applied to the
patient. In addition, this technique yields mammographic images that are
far superior to non-screen film mammograms [LJ87).

In xeroradiography, an aluminum plate coated with photoconductor,
selenium, is the counterpart of the conventional X-ray film. A latent image in
the form of a pattern of electrical charges is produced on a uniformly charged

selenium plate after exposure to X-rays. This pattern of electrical charges on



the plate is then transcribed into a visible image on a plastic-coated paper
[Fei87]. Unlike film-mammography which produces photographic negative
images, xeromammography produces positive images with the advantage of
eliminating the need for a view box in the interpretation process.

Both systems have their own advantages over each other. Xeromam-
mogram is characterized by its wide recording latitude which yields good
contrast and detail throughout a wide range of tissue density and thickness
[Fei87]. Also, the xeroradiographic edge enhancement property accentuates
the visualization of margins of breast masses, spiculations and calcific par-
ticles [Fei87). On the other hand, screen-film mammograms have a higher
overall difference in density between a mass and surrounding tissue (board
area contrast) than xeromammograms. Radiation dose (26-28 kVp) applied
is also lower when compared to xeromammography (45-55 kVp) [Fei87].

Despite all the differences between the above two mammographic systems,
studies do not show significant difference in their ability in detecting breast
cancer. Instead, the success of either mammographic system depends on the
skill and experience of the radiologist who operates them [GB83].

In the research of this thesis, screen-film mammograms are provided by

the Cross Cancer Institute of Alberta and are used in the detection program.



1.3.1 Mammogram Quality

Mammograms are the primary source of data of the entire diagnostic proce-
dure. High quality mammograms are required for ensuring a high detection
rate. The quality of mammogram basicaily depends on two major factors:
mammographic equipment and mammographer’s skill and experience.
Mammographic equipment has been improved dramatically over the past
20 years. Dedicated mammographic machines are built to produce good
quality mammograms while minimizing radiation doses. Various compression
equipment have been developed for proper breast compression to a more
uniform thickness; thus allowing a more even X-ray penetration and reducing
the amount of scattered radiation. Moreover, the highly automated exposure
control and the uniformly high quality screen-film combinations make latent
images of similarly high quality of other radiographic films [TD85].
Radiologists’ skill and experience acquired through training and clinical
practice have been proven invaluable in assisting patients for proper posi-
tioning of breast to be imaged. They also ensure that the breast is properly
compressed and immobilized during the course of mammogram being taken;
hence, eliminating any blurring effect that might be caused by movement.
Afterall, it is the radiologist’s responsibility to ensure that all components of
the mammography system are functioning correctly to achieve a high-quality

mammogram [TD85].



1.3.2 Interpretation Procedure

Mammographic examination routinely includes two views of each breast,
namely medio-lateral view and cranio-caudal view. Auxiliary views are some-
times required; but very few cancers are located in the breast in such a way
as to require extra and extended views beyond standard medio-lateral and
cranio-caudal views [ST82]. Hence, we will focus on the two standard views
only.

The film reading procedure performed by expert radiologists involves the
interpretation of each individual film and a comparison of identical views from
both breasts by using various masking techniques. Breast carcinomas can be
pathologically classified into four major categories: Circumscribed masses,
Stellate lesions, Micro-calcifications and Thickened skin syndrome. Each
type of tumor presents a certain number of discriminating mammographic
signs which can be used as detection criteria on individual film. For example,
(i) circumscribed masses have hazy and indistinct boundaries, approximately

circular in shape and may have short spicules on their surfaces; {ii) stellate

lesions have distinct central mass surrounded by a radiating corona of spicules.

In addition to these primary signs, there are also mammographic signs to dif-
ferentiate benign and malignant tumors. For instance, boundary sharpness
and density are used in circumscribed masses and consistency in appearance

across projections for stellate lesions [TD85]. Furthermore, other mammo-

10



graphic signs such as retraction, localized skin thickening are also used in
detecting tumors.

Apart from the method of detecting breast tumors using the above men-
tioned criteria, comparison of identical view mammograms of both breasts to
find asymmetries is also an effective method, not only for reducing the search
area but also for the detection of breast cancers. Comparison of correspond-
ing regions of two breasts is facilitated by using the masking technique; i.e.
covering specific regions of the breast and viewing the uncovered portions
[TD85]. Human breasts are approximately symmetric and there is a very
low likelihood that a patient has the SAME (size, type) tumor growth at
exactly the same location in both breasts. The earliest sign of tumor may be
distortion of the breast structure which will produce asymmetries between
both breast images. When these architectural disturbances are recognized,

hidden lesions can be detected [TD85].

1.4 Problem Statement

This thesis investigates methods to detect early stage breast carcinomas in
the mammography screening process, using the mammographic asymmetry
approach. This approach is based on the fact that human breasts are approx-
imately symmetric and there is a low likelihood that tumors of the same type

and size occur at exactly the same location in both breasts at the same time.

11



The existence of a tumor in one breast produces an asymmetry in terms of
brightness, contrast and distortion of breast structure at the tumor location
on identical views of both breasts. Detection of any asymmetry on identical
views of both breasts can lead to the detection of hidden lesion.

The problem can be stated as: Given a set of identical view mammograms
(either medio-lateral or cranio-caudal), the goal is to develop a detection
method based on the mammographic asymmetry approach which determines
the location and size of all suspicious areas. It must be noted that suspicious
areas include not only tumor areas but also areas that expert radiologists
would choose for further detailed examination. No attempt is made at clas-
sifying detected suspicious areas into tumor categories as this is beyond the

scope of this thesis.

1.5 Conventions and Notations

Digital format of mammogram images are used in the detection program of
this thesis. Mammogram films are digitized into 512x512 image elements or
pixels by using of a TV camera. The grey level (brightness level) of each
image element or pixel is represented by an integer and is stored in a two
dimensional array in which the corresponding row and column indices identify

the position of the pixel within the image.
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Figure 1.1: Coordinate System for Digital Mammogram Image

A total of 256 grey levels are used and numbered from 0 to 255, with
0 representing black and 255 representing white. The coordinate system
has the origin (0,0) located at the upper-left hand corner of the image and
each pixel is identified by its position (z,y) which is used as the column and
row indices in the array representation. The z-dimension is the horizontal
dimension which increases from left to right and y-dimension is the vertical
dimension which will increase downward. The coordinate system for the

digital image is depicted in Figure 1.1
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1.6 Thesis Organization

Chapter 2 first presents a review on recent and on-;o0ing research in auto-
mated breast tumor detection from radiographes and introduces the two
major approaches in developing automated detection methods, namely in-
dividual tumor type approach and mammographic asymmetry approach. Then
the difficulties in developing an automated method for detecting breast
tumor from mammogram are discussed. Finally, the overview of processes in
mammographic asymmetry approach adopted in this thesis is presented.

In Chapter 3, a detailed discussion on each step of the preprocessing
stage of the mammographic asymmetry approach is presented. This includes
the mammogram digitization process and breast area segmentation. The
control point extraction using a cubic B-spline corner detection method will
be discussed and a simple geometric transformation method for aligning the
mammogram image pair is proposed. Results on each step to test images are
also given.

The design of mammographic asymmetry measurement is discussed in
Chapter 4. Four different measurements were investigated which include nor-
malized digital subtraction, locally normalized variance difference, brightness-
to-roughness ratio difference and directionality. A mammographic asymme-
try measurement which is formed from these four measurements is presented.

Also, the criteria for detecting suspicious areas by mammographic asymme-

14



try is discussed. Results on test images for each of above measurements and
final asymmetry measurement are given. Final results of the proposed mam-
mographic asymmetry detection method on ten test cases are presented at

end of this chapter.

Chapter 5 will be the conclusion of this thesis and direction on future
research in the area of automated breast tumor detection by mammographic

asymmetry approach is discussed.

15



Chapter 2

Review on Automated Breast

Tumor Detection

In the past two to three decades, many researchers have demonstrated the
potential of using computers in various areas of biomedical image processing.
Numerous examples can be found in various scientific journals and research
publications. Practical applications have been developed in areas, such as
cardiac images enhancement for improved interpretation [MGE*84], bound-
ary detection of ventricle from cineangiograms [CK72], etc. Research directed
in the area of automated tumor detection has been particularly intense; and
tremendous efforts have been invested, especially in breast tumors detection

from mammograms.
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1. InNAiauas TUMOT TYpe approach WNicn 1S Dased ON Aetectlon Criteria
derived from the set of discriminating mammographic signs of each of

the four major types of breast carcinoma described in Section 1.3.2.

2. Mammographic asymmeiry approach which is based on the fact that
human breasts are approximately symmetric and the probability of
having simultaneous bilateral breast cancer of the same type at ex-
actly the same corresponding location is extremely low [Urb85]. Any
occurrence of breast cancer growth in one breast will produce an asym-
metry in identical view mammograms of both breasts. Detection of

such asymmetry thus leads to the detection of breast cancer.

The possibility of automating the detection process of breast cancers from
digitized mammogram images has been investigated by several groups of
researchers. Both of these approaches have been adopted in different auto-
mation projects and various degrees of success have been achieved and re-
ported.

Winsberg et al. [WEM*67] may have been the first to apply computer
image processing technique in detecting breast cancer from mammograms.
In their method, digitized images of identical view of both breasts were first

subdivided into 64 small 8x8 pixel windows of 16 grey-levels. Each window



is then characterized by 4 feature vectors which measure the distribution
of grey-level density within the window. Finally, the vector sets for each
breast are compared, resulting in the detection of the presence and location of
abnormalities [WEM167]. Their method is a typical mammographic asym-
metry approach method as comparison of both breast images is performed
and no specific mammographic feature of any particular breast tumor type
is used.

Ackerman and Gose [AGT72] developed four measures of malignancy from
digitized xeromammograms (calcification, spiculation, roughness, and area-
to-parameter ratio) to assign a classification of malignant or benign to
tumors. Although, their work was aimed at automated tumor classifica-
tion and not at detection; they laid the groundwork for the individual tumor
type approach of automated breast tumor detection. Their classification cri-
teria which included features such as calcification, spiculation, and roughness
(homogeneity) can, in fact, be used as tumor detection criteria.

Hand et al. [HSAAT9, SSA*80] developed a fully automated system for
detecting and locating suspicious areas of breast cancers from digitized xero-
mammograms. Their method is again based on the mammographic asym-
metry approach which compares contralateral identical view of both breasts,
using 14 texture parameters and 2 shape parameters defined on 10x10 pixel
window. 87% of suspicious areas out of 30 test cases were correctly identified

but a very large number of false-positive suspicious areas per case (53.6) were
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reported. As described in Section 1.3, xeromammograms have characteris-
tics vastly different from conventional screen-film mammograms. Thus, the
effectiveness of Hand et al.’s method on screen-film mammogram cannot be
determined.

Lai [L.ai88] developed an algorithm for detecting suspicious areas of cir-
cumscribed tumors from single view mammograms based on the individual
tumor type approach. The criteria of her detection algorithm are designed
based on the 4 basic mammographic features of circumscribed mass (CM)

given by expert radiologists. These mammographic features include the fol-

lowing:

1. CMs have a higher density value (brighter) than surrounding tissue.
2. CMs have a uniform density within the tumor area.
3. CMs have an approximately circular shape of various sizes.

4. CMs have a fuzzy boundary.

Lai’s algorithm first uses an edge-preserving smoothing filter, selective-median
filter, to enhance the digitized mammogram image, followed by a classical
template matching process with circular templates to detect circumscribed
masses. Furthermore, Lai implemented two additional tests to reduce the
number of false-positive suspicious areas from the resulting candidates gen-
erated by the template-matching process. A 100% perfect detection rate with

an average of 1.7 false-positive detections per case from the 17 test cases was

reported.
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2.1 Difficulties in Detecting Breast Tumor

from Mammograms

Despite all efforts, the success of automated breast tumor detection is very
limited. The limited success in all the automated breast tumor detection
projects is caused by several factors which can be summarized as follows.

In image pattern recognition, one of the most difficult steps is to extract
objects from a background. The degree of difficulty varies greatly with the
quality of the picture and the nature of the object [CKT72). The object
detection problem has been recognized to be one of the most difficult tasks
in biomedical image processing, especially in tumor detection. Like many
other types of radiographic images, mammograms possess the same inherent
characteristics—low contrast. Obtaining sufficient contrast that would define
the anatomical structures of the breast’s soft tissue in mammograms is always
a major problem. The digitization process not only results in reduction of
overall contrast, but also introduces noise, and quantization and sampling
errors.

The human breast consists of a number of different anatomical structures
such as glandular tissue, blood vessels, ducts, subcutaneous fat, etc. Fur-
ther, the mammographic appearance of normal breasts varies dramatically
between different individuals or for the same individual at different times.

This wide variation of mammographic appearance presents a highly irregu-



lar background which makes tumor detection a difficult task.

In order to design an automated method to reliably detect likely
tumor sites, the radiologists’ description of the X-ray signs of the tumor
must be translated into more explicit terms [Lai88). When interpreting mam-
mograms, expert radiologists use not only the primary mammographic signs
described in Section 1.3.2; and, secondary mammographic signs such as asym-
metric density or ducts, retraction of skin, nipple or areola; but also their
experience in cross-referencing with previous similar cases or the patient’s
medical history. Hence, the detection criteria given by the expert radiolo-
gists are often complex, vaguely defined and difficult to translate into explicit
terms. In most research projects, researchers thus use only a subset of mam-
mographic detection criteria which are theoretically unable to cover all the
variations of tumor types.

Summing up all the above factors, the design of an automated detection
method for breast tumors from mammograms is, indeed, an arduous task.

As a result, only limited success in all the automated breast tumor detection

projects is achieved.
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2.2 Advantages of Asymmetry Approach

There are a few advantages of the mammographic asymmetry approach over
the individual tumor type approach in designing automated tumor detection
method. First of all, as discussed in the last section, mammographic signs
given by expert radiologists are often vaguely described and do not cover all
the variations of breast tumors. The mammographic asymmetry approach
does not use specific mammographic signs of particular tumor types and
thus eliminates errors in translating descriptions of mammographic signs into
procedural terms.

Second, detection algorithms for individual tumors frequently tackle one
tumor type at a time and the detection criteria often include only a subset
of mammographic signs and thus cannot detect all variations of that tumor
type. On the other hand, the mammographic asymmetry approach does not
depend on the particular mammographic signs of specific tumors. Hence, in
principle, it can detect suspicious areas of all types of breast tumors.

Finally, the main objective of a mass screening process is to detect sus-
picious tumor sites; classification of the suspicious areas into various major
categories is of minor concern. Although, the short-coming of individual
tumor type approach, detecting one tumor type at a time, can be overcome
by integrating various detection algorithms for different tumor types to de-

tect all types of breast tumor; the computation cost will be enormous due
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to the redundancy in processing normal breast area by each individual algo-
rithm. The mammographic asymmetry approach can serve as a preprocess-
ing step for further diagnostic procedures such as classification of suspicious

areas into benign or malignant nature, or one of the four major categories of

breast tumor.

2.3 Processes of Asymmetry Approach

The processes involved in the mammographic asymmetry deteciion algorithm
can be summarized in Figure 2.1. These processes can be generally divided
into two major stages, namely, the preprocessing stage and detection stage.

It is common knowledge that human breasts, in nature, are not precisely
identical. In addition, the presence of tumor growth in one breast often
causes a discrepancy in size and shape between the two breasts. In order
to reliabiy detect mammographic asymmetry caused by tumor growth from
a pair of identical view mammogram images, both images must be perfectly
aligned such that any difference in size and shape must be eliminated as it
presents a kind of asymmetry of itself. In the preprocessing stage, a pair of
identical view digitized mammogram images are scaled and aligned so that
asymmetry measures can be properly performed in the detection stage.

In the detection stage, various asymmetry measures are designed to mea-

sure mammographic differences. A decision process is followed to detect



suspicious tumor areas from the above asymmetry measurements. The de-
cision rule is developed from the linear combination of those measurements.
In-depth details of each process in the detection algorithm are given in fol-

lowing chapters.

2.4 Examples of Mammogram Images

Plate 2.1 is a typical pair of Medio-Lateral view mammograms; whereas,

Plate 2.2 is a typical pair of Cranio-Caudal view mammograms.
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Plate 2.1: Medio-Lateral View

Plate 2.2: Cranio-Caudal View



Chapter 3

Preprocessing of Mammograms

To detect an asymmetry in any comparison process of two objects, a one-to-
one mapping of the two objects must be established at the level of compar-
ison. In the detection of mammographic asymmetries from a pair of identi-
cal view mammograms, a mapping at an anatomic structural level between
two images should be obtained before comparison process can proceed. By
obtaining the mapping of the anatomic structures between the two images,
natural asymmetries caused by discrepancy in relative position of structures
such as glandular tissue, duct, blood vessels within the breast can be elim-
inated. However, an accurate mapping of anatomic structures is extremely
difficult to obtain as there is a wide variation in mammographic appear-
ance of human breast and the detection of various anatomic structures is

often complicated. As an alternative, a one-to-one mapping at the pixel level
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of both breast images must be obtained. The preprocessing stage of the
mammographic asymmetry detection algorithm consists of procedures that
digitize and align a pair of mammograms, and eliminate any difference in size
and shape so that mammographic asymmetries can be reliably detected in

following stages. This chapter presents each step of the preprocessing stage.

3.1 Digitization of Mammograms

Since mammograms are not yet available in digital format, conventional film
mammograms must be first converted into digital format. Digitization of film
mammograms basically consists of two processes: sampling and quantization.
The sampling process is used to extract a discrete set of numbers which
represent the brightness values at a regularly spaced array of points. These
brightness values are then quantized into a set of equally spaced discrete grey
level values.

The quality of the digitized image is solely determined by its resolution
and contrast. Spatial resolution of a digitized image in turn depends upon the
sampling frequency used in the sampling process; and contrast is determined
by the number of discrete grey levels used in the quantization process. These
quality measures ultimately depend upon the digitization equipment used.

To avoid overhead computation in rotation and reflection operations in

later alignment processes, all mammograms were digitized at the same
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Figure 3.1: Boundary diagram of digitized mammogram

orientation. Furthermore, all lettering such as patient number, date, view,
etc. were removed by covering them up with black paper. Most importantly,
an accurate back boundary must be provided for each pair of mammograms
in the digitization process as the total breast area to be compared is defined
by the back boundary. An incorrectly determined back boundary (dotted
line in Figure 3.1) eliminates part of breast area (shaded) and will result
in incorrect alignment of the image pair, followed by erroneous detection
of mammographic asymmetries at a later stage. An example of a digitized

image can be found in Plate 2.1 and 2.2.
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3.2 Image Enhancement

Like many other types of radiographic images, mammograms are character-
ized by their low resolution and low contrast ratios. Due to quantization and
sampling errors, additional information is lost during the digitization pro-
cess. Moreover, noise caused by digitization equipment is introduced in digi-
tized images [Lai88]. A large number of image enhancement techniques have
been developed to improve the appearance of images by means of contrast
enhancement, noise removal, etc. A number of simple and general techniques
were studied and their effectiveness on mammogram images were evaluated
by Lai [Lai88]. In spite of the fact that some of these enhancement methods
improve the observer’s ability to analyze images, they do not add informa-
tion to the image itself. On the contrary, noise removal techniques such as
average filtering may remove important features from the image. For these

reasons, no enhancement was used in our system.

3.3 Area of Interest Detection

In any comparison process, the objects to be compared must be readily lo-
cated. By the same token, in order to detect mammographic asymmetry,
breast areas must be extracted from the background. It is important that

the proper method for extracting breast areas must be used because any
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inclusion of non-breast areas or exclusion of breast areas from either one of
the images, will lead to erroneous signalling of a mammographic asymme-
try. The identification of breast area restricts the area of interest and thus
improves the efficiency of subsequent processing.

Many image processing techniques have been developed for the purpose of
extracting objects from a picture. Unfortunately, no single method is suitable
for all image segmentation problems. Most techniques were designed either
for a particular type of application or for segmenting particular kinds of
objects. For example, edge-based segmentation algorithms are most suitable
for segmenting cbjects with distinct sharp boundaries; but are inappropriate
for images such as mammograms where objects have no well-defined bound-
aries. Template matching can be used when prior information about the
object’s shape, size, and orientation is available. Textv.e-based segmenta-
tion techniques are ideal for extracting objects with a texture that has a
geometrical or statistical regularity. Thresholding is especially efficient in
cases where object and background have grey level values distributed over
different ranges.

A proper segmentation technique requires some prior knowledge about
the objects and the background of the pictures. In Hand and Semmlow et
al.’s [HSAAT9, SSA*80] study on the detection of suspicious areas in xero-
mammograms, knowledge about the breast orientation within the image, and

size and shape of the nipple is used in designing their segmentation process
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of the breast area from the image. In their segmentation process, an edge
map is first obtained by thresholding the response of a Sobel filter. Then
the most likely position of breast boundary is traced starting with the nipple
point. Given a fixed breast orientation, all areas below the breast bound-
ary are eliminated as background. Thus, the breast area is segmented from
the image as the back boundary is readily available from their digitization
process.

For several reasons the segmentation method used by Hand and Semmlow
et al. is not suitable for our application. The nipple profile might not appear
in a mammogram due to improper positioning or compression of the breast
when the mammogram was taken and the image may not reveal the skin
boundary of the breast due to the low spatial resolution and the small grey
level range.

By analyzing the characteristics of the digitized mammogram images, it
is found that the breast is clearly distinguishable from the non-breast back-
ground areas. The grey level histogram also shows that the breast area and
background areas have grey level values distributed over different ranges and
form a bimodal distribution, as shown in the histograms in Figure 3.2. This
enables the use of thresholding for extracting the breast area from mammo-

gram images.
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Figure 3.2: Histogram for Plate 2.1

Thresholding an image function f(z,y) at threshold grey level ¢ can be

defined as:
b if f(z,y) <t

bl 1ff(:c,y) Zt

where b and b, are two distinct grey level values. In this project, a simple

ft(zay) =

global thresholding method was used in extracting the breast area from each
mammogram image. This simple method is adequate for several reasons.
First of all, our digitized mammograms do not reveal the breast boundary
very clearly. Therefore, a sophisticated method to detect the breast bound-
ary precisely is not warranted. Furthermore, as discussed in the beginning of
this chapter, the comparison process of the mammographic approach should

ideally be performed at the anatomic structural level rather than at the



precision of pixel level; thus, minute discrepancies between the detected
breast area and the true breast area should not affect the overall accuracy in
asymmetry detection.

Threshold selection is done interactively, allowing users to select the
threshold value by incrementally and interactively excluding the background
pixels with grey levels below the selected threshold value. Due to variations
in exposure, the thresholds varied in a range of 35 to 55 grey level in the ten
test cases (totalling 20 images). The resulting thresholded image for the left
image in Plate 2.1 is shown in Plate 3.1.

As one can observe, the global thresholding method does not yield a breast
area with sharp boundary. To overcome this problem, a threshold averaging
filter of size 11x11 pixels is used to smooth the binary image. Given an
binary image from the above thresholding process, f(z,y) € {0, 1} where 0
represents the non-breast background area pixel and 1 represents the breast

area pixel, the averaged threshold image is defined as:

11x11

0 if YIS T s £(4,7) < U3
X

<
1 Y2 T s f(5) 2 Y5

1=r-5

fA(zv y) =

11

Thus, a pixel is classified as breast area if more than half of the neighbor pixels
within the 11x11 pixel window are breast pixels. The result on Plate 3.1 is

depicted in Plate 3.2.
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3.4 Control Point Extraction

Prior to the geometric transformation operation which matches mammo-
gram image pairs, some visible and unambiguously defined features must
be detected and matched correspondingly. These unique features play a very
important role as control points in the image registration process. Goshtasby
points out that two images that have translational, rotational, and scaling
differences can be registered if the coordinates of at least two pairs of corre-
sponding control points from the two images are known [Gos83]. Also, Zhou
et al. [ZG88] have suggested that if a sufficient number of corresponding
features or “control poiuts” in the mammograms could be determined, then
mammogram images can be accurately registered over their whole area.
Since the comparison process should be performed at an anatomic struc-
tural level; our mammographic asymmetry detection algorithm does not
demand a geometric transformation which matches the images precisely.
Additionally, the complexity and amount of human assistance in sglecting
a sufficient number of control points for a sophisticated geometric trans-
formation algorithm is prohibitive for a mass screening procedure. Thus,
a simple geometric transformation algorithm requiring a limited number of

control points appears to be adequate for this project.
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3.4.1 Difficulty in Automating Extraction

Due to the large variation in mammographic appearance of the human breast,
it is difficult to identify unique features automatically within the breast area.
Therefore, it is arduous, if not impossible, to develop automated methods
that can accurately determine corresponding control points within the breast
area. In the geometric unwarping algorithm for digital subtraction mammog-
raphy by Zhou et al. [ZG88], control points were manually selected instead

of automatically detected with a computer program.

3.4.2 Proposed Approach

Even if control points can not be easily detected within the breast area, some
control points can be easily obtained from the breast boundary, namely the
nipple and the intersection of the breast boundary and the back boundary as
depicted in Figure 3.3. These control points are corners on a smooth curve
boundary with each control point having a higher curvature compared to
the rest of the boundary. Various corner detectors have been developed and
studied in the field of image processing. Medioni and Yasumoto [MY87] have
studied a number of corner detectors and found that their proposed cubic B-
spline method is excellent in terms of computation cost and accuracy. Hence,

their cubic B-spline method is adopted in this project.
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Figure 3.3: Control points of a typical breast area

The overall approach for extracting the control points for the geometric

transformation operation includes the following steps:

1. Breast boundary extraction and smoothing.

2. Control point extraction by cubic B-spline corner detection method.

As discussed in section 3.3, the nipple profile might not appear in the digitized
mammogram image. An interactive program is written to allow the user to
enter the nipple position. Although this requires the user’s assistance in the
process; the amount of assistance is limited. Furthermore, the nipple profile
should appear in the digitized mammogram, if the mammogram was taken

with proper position, compression and exposure settings.
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3.4.3 Breast Boundary Extraction and Smoothing

Before the cubic B-spline method can be used, the boundary pixels of the
breast area must be extracted. A simple edge tracing method is used to
extract the boundary coordinates of the breast area from the binary image
obtained in the previous area of interest detection process. The resulting
coordinates are stored in an array data structure.

Due to the nature of global thresholding technique, the resulting breast
area detected in the previous step has a rather rough boundary; there-
fore, a one-dimensional averaging filter is used to remove this excess jitter.

Mathematically, given an array of coordinates
B={.Pi=(l“‘,y.') | OSz<n;z+n=z}

which represents a closed curve of length n pixels, the one-dimensional

average filtering on B with a filter size N will yield

B'={P =(zi,y) |0Si<mi+n=1}

where:
1 :‘+r1\§1-1
T, = — z;
N j=i-=|N/2]
1 N1
Y= I Yy
'=l'—|.N/2]

A filter size of N = 31 was selected as it yielded satisfactory results for all
test cases. The smoothed breast boundary detected for the left image in

Plate 2.1 is depicted in Plate 3.3.
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3.4.4 Cubic B-Spline Method

As stated in [MY87], a cubic polynomial is used to fit a curve between point

A and B with parameter ¢ varying between 0 and 1 as follow:

z=f(t) = at® +bht*+ct+d (3.1)

y=9() = at® +bt’ +ct +d;

The curvature at point A(t = 0) can be derived as:

c1b2 ~ c2by (3.2)

C,(0) = 2522 =20
O =2

Suppose P;_y, P;, Piy1, Piy2 are equally spaced neighboring points on a
given curve as shown in Figure 3.4 and the approximation of the segment
between P; to P;4; by a cubic B-spline is given:

z(t) = TMP; (3.3)

y(t) = TMP,

‘vhere:

-1 3 -3 1

1] 3 <6 30
M=

-3 0 30

| 1 4 10
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Expanding equation 3.3 to the form of equation 3.1, the curvature at
P; can be computed in terms of the coordinates of P, P, Pi1, and the
displacement between the original position of P; and the point on the inter-

polating spline P! is given as:

5{; = :E,'._l/G o (17,'/3 + .'L‘,'+1/6 (34)

by = Yi-1/6 —yi/3+ yi41/6

40



P Pin

P,
Piya

!
i-1 i+2
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The first interpolation serves as a smoothing process to reduce the effects
of quantization on slope or curvature [MY87]. A second interpolation is
performed on the displacement points {P] = P;+6; [i -1 <j<i+1} to
detect corners. The second interpolation process is depicted in Figure 3.5.
The curvature C,, for the point P; of the second interpolation can be computed

by equation 3.2 where:

Ti—2  Ti-1 Ti | Tiyl | Tig2
O e K Tk b S S B i O ok o4 3.

b 12 + 6 2 + 6 + 12 (3:5)
Yic2  Yicr Y | Yiy1 | Yis2

b, = =g L=t ZE S 2L

2 276 276 T 12

($i+1 - zi—l) ($i+2 - 27-'-2)

@ = 3 T
(Yie1 — ¥ic1) | (Yiez — Yi-2)

@ = T
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and total displacement from the original position P; is é; where:

bz = Ti—2[36 +22i1/9 — 2i[2 + 22i41/9 + Tiy2/36

Sy = Yi-2/36 + 24i-1/9 — ¥i/2 + 2yis1/9 + Yis2/36

The criteria used by Medioni and Yasumoto to classify a point a corner
are:
1. the total displacement 6, is greater than a given threshold value d..

2. the curvature C’ is greater than a given threshold C..

3. the curvature C) is a local maximum.

This set of criteria can be simplified in the control point extraction process
since only a fixed number of corners (3) is required to be detected and these
points should have the maximum curvature among all points of the breast
boundary. Therefore, the three local maxima with maximum curvature are
selected.

In the implementation of this method, an interval of 8 pixels is used to
select neighboring points for each pixel along the breast boundary detected
earlier. The curvature for each point is then computed using equation 3.2
with coefficient formulas given in equations 3.5. To locate the local maximum
of curvature accurately, a one-dimensional Gaussian filter is used to smooth

tne curvature results. The Gaussian filter is defined mathematically as:

G(z) = exp ~z%/20?

1
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where o is a parameter controlling the amount of smoothing. To generate the
Gaussian filter, ¢ = 1.0 is used. Three local maximum curvature points with
highest curvature value are selected as control points after smoothing with
the above filter. An example of control points detected for the left image in

Plate 2.1 is depicted in Plate 3.4.

3.5 Geometric Transformation

As mentioned earlier, natural mammbgraphic asymmetries exist in any given
pair of identical view mammograms. This is caused not only by the differ-
ences in size and shape between the left and right breasts but also by the
differences in patient positioning and compression settings when the mam-
mogram was taken. This type of asymmetry must be eliminated in order to
accurately detect only mammographic asymmetry that was caused by the
growth of breast carcinoma. The geometric transformation process aims at
minimizing the amount of natural mammographic differences which is not

caused by breast carcinoma.

3.5.1 Difficulties In Obtaining Accurate Method

It is difficult to obtain an accurate geometric transformation which aligns
a pair of identical view mammograms and yields minimum natural asym-

metry. This is not only due to the aforementioned factors, but also due to
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deformation during the breast compression in the mammography procedure.
The human breast is a 3-dimensional flexible soft-tissue organ and conven-
tional film-mammography is only a 2-dimensional projection image of this
3-dimension organ; hence, the amount of shearing effect from breast com-
pression is not available in these 2-dimensional mammograms. The shearing
effect in one direction on the projection plan is depicted in Figure 3.6. Note
that the shearing can occur in any direction that is perpendicular to the

breast’s thickness dimension.

3.5.2 Review on Existing Methods

Although many techniques have been developed for image registration, most
methods are inadequate for mammographic images. They are either too
simple and do not yield adequate results or too complicated to be used
effectively and feasibly in a mass screening program. For example, Hand
and Semmlow ef al.’s method [HSAA79, SSA*80] is based on a simple
2-dimensional translation function which minimizes the least square error
between the two breast boundaries. Their method is simple and easy to
implement; however, it is not adequate for mammographic asymmetry de-
tection. This is because the lack of geometric transformation to eliminate the
natural discrepancy in size and shape between both breasts, therefore causing

this discrepancy to be falsely classified as a mammographic asymmetry.
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Figure 3.6: Shearing effect of breast compression
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On the other hand, Zhou and Gordon [ZG88] employ a rather sophis-
ticated but complicated technique in unwarping mammogram images for
digital subtraction. Firstly, their method requires the input of a sufficient
number of control points within the breast area, then a triangulation pro-
cess partitions the convex hull of this set of control points into triangles.
After estimating the partial derivatives of each control point, separate inter-
polation functions are derived for each triangle to compute the interpolated
coordinate for each point within its respective triangle. Clearly, this local
transformation method is more elaborate than the one used by Hand and
Semmlow et al.; however, the amount of human assistance in selecting con-
trol points and the high computation cost, especially in the two-dimensional
point-inclusion problem, make it infeasible to be used in a mass screening
procedure. Hence, a simple geometric transformation for the mammographic

asymmetry detection algorithm has to be found.

3.5.3 Proposed Method

A 2-dimensional geometric transformation can be mathematically defined by

a pair of equations in the form:

$'=f1($,y) ) y’=fz(z,y)

which specify the new coordinates (z',y’) of each point of the transformed

image as a function of the old coordinates (z,y). Geometric transformations
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are commonly classified into two categories, global and local techniques. In
global geometric transformation one set of transformation functions {fi, f2}
is used to transform the entire image; whereas in local geometric transforma-
tion the image is first subdivided into subimages and separate transformation
functions are used to transform each subimage.

Zhou and Gordon [ZG88] suggested that geometric distortions in many
images are due to local factors and they have demonstrated that local geo-
metric transformation method, based on a collection of local transformation
functions, is more accurate in unwarping mammogram images for digital sub-
traction. However, the programming complexity and computational cost is
also higher than it is for the global method, and is in directly proportion
to the number of subimages that the geometric transformation method sub-
divided from the image. Hence, there is a tradeoff between accuracy and
computational cost in term of the degree of locality of the transformation
method. In the following, a local geometric transformation method is pre-
sented that has sufficient degree of locality to yield satisfactory results in
aligning a pair of identical view mammograms.

For matching a pair of objects, one can either transform both objects
into a common reference model for comparison or use one of the objects as
a reference model and transform the other object to match that reference
object. Obviously, the latter approach is better than the first one for several

reasons. First of all, resampling or interpolation errors are introduced into
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Figure 3.7: Subdivision of breast area

only one image [RK82, section 9.3.1]. Second, the complexity and compu-
tational cost is lower. Therefore, the mammogram with the larger breast
area from a given pair of mammogram images is selected as the reference
image for transformation. This choice of selection eliminates the problems of
lost information and resolution reduction that are involved in transforming
a larger breast area into a smaller one.

Once the reference image is identified, the breast area in both images
is subdivided into three regions based on the control points detected in the
previous section. The subdivision is depicted in Figure 3.7. To facilitate

subsequent transformation procedures, both images are first rotated such
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Figure 3.8: Elimination of skewing effect

that their baselines C;C3 are parallel to the x-axis of the coordinate system
and then the non-reference image is translated such that the mid-points of

both baselines are aligned.

The next step is to eliminate the skewing effect above the baseline that is
caused by breast compression (see Figure 3.8). Although the skewing effect
is two dimensional, only the horizontal skewing effect is considered at this
stage. For every row of pixels above the baseline of the non-reference image,

they are shifted horizontally by:

1 1
d=hx (ta.non - tanBT)
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Figure 3.9: Transformation of sub-region L

where: h = the distance in y-dimension between the row

of pixel to be shifted and the baseline.

A common simple bilinear interpolation algorithm is used to transform
the sub-regions L and R depicted in Fig 3.7. An example of transforming

the L sub-region is shown in Figure 3.9. First, the algorithm finds the ratio,

H _ratio = %—% ,

i.e. the ratio of the baseline-to-boundary distances in both breast images.
This ratio maps every row of pixels in the reference image to the non-reference

image. Then, a ratio of the widths of the corresponding row of pixels between



(z,y) (z+1,y)
° (x',y')
&y+ Uz4+1,y+1)

Figure 3.10: Bilinear transformation of non-reference image

these two images can be formed as:

W,
W _ratio = TV%

Thus, every pixel in the L and R sub-regions of the reference image can be
mapped to a coordinate of the corresponding sub-region of the non-reference
image using these two ratios. The mapped coordinate (z',y’) in the non-
reference image may not necessarily be integers (see Figure 3.10). A bi-
linear interpolation method is then used to assign a grey level value to the
transformed image of the non-reference image as follows: let z and y be the

integer part of the mapped coordinate z’ an y’ such that

z = |2

y = |y
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Also, let the fractional part of 2’ and y’ be a and S; i.e.,

a = T -7
B = y-y

Then, the grey level value of the corresponding pixel of the mapped coordi-
nate is given by [RK82, section 9.3.2]:

(1—a)(1-B)f(z,y)+(1-0)Bf(z,y+1)+e(1-B) f(z+1,y)+aBf(z+1,y+1)

The deformation of sub-region B in Figure 3.7 is negligible, in particular
in the vertical direction. Therefore, we can use a simple horizontal scaling
to transform sub-region B. The results of geometric transformation of the
pair of images in Plate 2.1 are depicted in Plate 3.5. The top half shows the
original image pair and the bottom half is the corresponding transformed
images. This shows that the geometric transformation method presented in

this section yields satisfactory results.



Plate 3.1: Binary image for the left image of Plate 2.1

Plate 3.2: Thresholded averaging of binary image in Plate 3.1

53



54

Plate 3.4: Control points detected for Plate 3.3



Plate 3.5: Geometrically transformed images for Plate 2.1



Chapter 4

Detection of Mammographic

Asymmetry

Any comparison process requires the definition of a comparison measure. For
instance, meter is used as a measuring unit in comparing the length of two
objects; while degree is used in comparing two angles. There is no well-defined
measurement method available for describing the mammographic appearance
of a human breast. This chapter describes some criteria that can be used for

comparison and describes }ow these criteria can be computed.



4.1 Digital Subtraction

Digital subtraction is a basic operation for detecting differences between a
pair of digitized images. Zhou and Gordon [ZG88] suggested that pairs of
aligned mammograms could be subtracted to highlight changes due to a grow-
ing breast carcinoma. By the same argument, one can also detect mammo-
graphic asymmetry from a pair of identical view mammograms using digital
subtraction.

Since cancer cells have a higher density than normal breast tissue; breast
carcinomas appear as struciures with higher intensity level (brighter) than
normal breast tissue in mammograms. Thus, large discrepancies in grey-level
value between two identical view mammograms at any pixel position could
indicate breast cancer growth. However, due to the difference in exposure
and digitization setting, natural discrepancies in overall bt*sl:tness and con-
trast between tie two images are unavoidable. These discrepancies in overall
brightness and contrast could then be mistaken as mammographic asym-
metries caused by cancer growth. To avoid this, a norrmalization process is
performed to eliminate any difference in overall brightness and contrast of
the two images. The grey-level normalization process of a given grey-level
image, f(z,y) is given by:

fula,y) = {20

o

where u is the mean grey-level value ard o is the standard deviation of the
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entire breast area in the image.

In addition, our geometric transformation does not yield a pixel-precision
matching between two mammogram images and sampling errors might be
introduced into the transformed image during the geometiic transfermation
process. Therefore, instead of simply subtracting corresponding pixels, the
mean grey-level value of neighboring pixels, within a certain window size, is
used in the digital subtraction process. Given the normalized reference image,
fa(z.y), and normalized transformed image, g.(z, y), the digital subtraction

process is given by:

z+[271-1 y+{3]-1

S i)

XM 2212 j=v-l2)

S(Z,y) = fn(zsy) -

In other words, the normalized transformed image is first convolved w::h a
averaging filter of size nxn before digital subtraction takes place. Based vu
visual judgment on the results. a window size of 11x11 pixels was used in
the implementation and the result for the images in Plate 2.1 is shown in
Plate 4.1.

Digital subtraction is a good measurement for detecting maminographic
asymmetry if both images are aligned perfectly. However, perfect alignment
of a pair of mammographic images is difficult, if not impossible, to obtain
without human assistance and at a high cost. [t is very effective for mammo-
grams that do not have much grey-level variation due to anatomic structures

such as glandular tissue, ducts, etc., as is the case with the mammograms
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in Plate 4.2. This plate shows the geometrically transformed original images
on the top half and the result of digital subtraction, after linear grey-level
stretching has been applied, is shown at the bottom left. On the other hand,
digital subtraction is quite susceptible to noise in images and does not pro-
duce a strong response at tumor locations for mammograms with large grey-
level variation or for mammograms in which a tumor is partially or entirely
hidden in other anatomical structures. Hence, detection of mammographic

asymmetry cannot solely depend on this single measurement.

4.2 Analysis Using Texture Statistics

At present, there is no single qualitative measurement that can describe
mammographic appearance adequately such that mammographic asymme-
try can be determined reliably. However, various anatomic structures of the
human breast do appear with different texture characteristics in mammogram
images and these characteristics can be represented by a collection of tex-
ture measurements developed in texture analysis. Each measurement can
be used to reflect a single characteristic ditference in a pair of mammogram
images ant a sufficient number of carefully selected measurements will yield
an acceptable level of accuracy in detecting mammographic asymmetry.
Hence, detsciing -nammographic asymmetry can be formed as a problem

of texture analysis of a given pair of mammogram images.



Digital texture analysis has been used in image processing applications
such as segmentation in scene analysis, object’s shape determination, vege-
tation type classification in LANDSAT images, and evaluation of biomedical
images, etc. Despite the importance and wide applicability of texture analy-
sis in image processing, a precise definition for the notion of texture does not
exist. However, texture is commonly viewed as a structure composed of either
deterministically (regularly or structurally) or stochastically (irregularly or
randomly) interwove a elements; and it has the characterizing shift-invariance
property, that is, visual perception is independent of the position in the
image pattern [Lev83, ch.9]. These “interwoven elements” can be character-

ized by some mathematical feature descriptions as stated by Haralick [Har79}:

Image texture can be qualitatively evaluated as having one or
more of the properties of fineness, coarseness, smoothness, gran-
ulation, randomness, lineation or being mottled, irregular or hum-

mocky. (p.796)

In texture analysis, the first and most important task is to extract
texture feature descriptions which embody information about the spatial
distribution of intensity variations in the original image [HWG8T]. There are
two major approaches in texture feature extraction, namely the structural
and statistical approach. The structural approach regards texture as being

composed of primitives (interwoven elements) that form a repeating pattern
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and ‘lescribes such patterns with a grammar for generating them [BB82,
p-163]. This approach is best for describing texture composed of determinis-
tically placed primitive elements such as “reptile” and “wire braid” textures.
Nevertheless, not all textures have a patterned geometric regularity; on the
contrary, most textures exhibit patterns of stochastically distributed primi-
tive elements. These highly irregular and random texture patterns are best
analyzes by the statistical approach. The statistical appioach describes tex-
ture patterns by a feature vector. The feature vector is a set of statistical
measurements which condenses the description of relevant properties such
as fineness, coarseness, smoothness, etc. of the textured image inte a small
feature space for analysis [BB82, p.181]. The statistical approach is most
widely used for computer vision applications.

The choice between the two approaches is highly dependent on the
nature of the application and the characteristics of the textured images. For
mammographic images, the structural approach is not appropriate since the
human breast does not reveal any geometric regularity of repeating patterns.
In fact, the wide variation of mammographic appearance shows a high degree
of irregularity or randomness in grey-level distribution of pixels. Thus, e
statistical approach of the texture analysis appears to be the best choice in

describing mammographic patterns and detecting mammographic asymme-

try.
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Within the statistical domain of texture feature extraction, there are
many methods for analyzing texture characteristics. These include an auto-
correlation function for characterizing texture coarseness, two-dimensional
Fourier transform for analyzing texture in spatial-frequency domain, as well
as simple first-order statistical measurements such as mean, variance, and
skewness of grey-level distribution. However, grey-level co-occurrence ma-
trices and second-order statistics derived from co-occurrence matrices are
widely used in defining texture features. Haralick et al. [HSD73] defined
a set of texture feaiures including angular second moment, contrast, corre-
lation, etc.; and Connors et al. [CTH84] defined measures such as inertia,
local homogeneity, energy, etc. Nevertheless, the large amount of computa-
tion time involved in computing second-order statistics from co-occurrence
matrices or large images represents a severe drawback and receives a lot of
criticism in the literature. A detailed review of the above techniques can be
found in [Lev85, ch.9].

Each statistical measurement can only reflect a single texture property.
Variance, for example, reflects the coarseness of a texture. In order to pre-
cisely represent a given texture, a large number of statistical feature measure-
ments must be used. The selection of proper texture features is important
since it is desirable to have a minimum number of features that can ade-

quately represent the properties of a given texture.



In the past, researchers have used various sets of statistical measurements
to represent the properties of mammographic pattern for the detection of
breast abnormalities, the classification of breast lesion and the detection
of mammographic asymmetry caused by the growth of breast carcinoma.
[WEMt67, KOS77, HSAA79, SSA*80]. Hand et al. [HSAAT9] used 14
texture features constructed from a 10x10 pixel window of the original image
data. These texture features include average intensity, 8 roughness measures
defined as running sums of absolute intensity change between pixels in both
vertical and horizontal directions, and 5 directionality measures which form
a running sum of change in intensity across and down the boundaries of the
10x10 pixel window. In addition, 2 shape parameters, circle-likeness and
star-likeness, are also used in their detection algorithm.

in [HSAATY], a total of 16 feature parameters were used to detect sus-
picious areas in breast images. The number of feature parameters can be
reduced by improving scine of these feature measurements. In fact, a re-
duced and improved set of feature parameters was used in a subsequent
study [SSA*80] where only 6 feature parameters wers used to detect suspi-
cious areas. They include average intensity, circle-likeness, star-likeness; and
a normalized variance measure was used to replace the 8 roughness parame-
ters in the previous study and 2 directionality parameters were used instead
of 5 in the previous study. However, the effectiveness of this improved and

reduced feature parameter set is unknown as the suspicious areas detected
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were passed to a breast tumor classification program and no intermediate
result on suspicious area detection was presented in their paper [SSA*80].
If our asymmetry detection system is to be used in a mass screening
program, we must obtain a minimum set of texture features which is inex-
pensive to compute and yields a high level of detection accuracy. Several
texture measurements were investigated and implemented. The details of

the implementation and results are presented in the following sections.

4.3 Roughness (Variance)

Tumor growth often causes changes of mammographic appearance in terms
of roughness. For example, the center of a typical stellate lesion would have a
dotted pattern due to the longitudinal projection of spicules [AG72]; whereas
a typical circumscribed lesion would have a smooth texture compared to the
normal breast tissue. Thus, roughness is snother measurement for detecting
mammographic asymmetry caused by breast tumor growth.

Roughness is a commonly used property in texture analysis. There are
many methods for measuring roughness such as, for example, the auto-
correlation function or variance measure. In addition, roughness can also
be analyzed in the spatial-frequency domain by examining the distribution
in the power spectrum of the image or it can be defined using the grey-level

co-occurrence matrix [Lev85, ch.9]. However, no direct comparisons have
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been made of the effectiveness of these methods.

In breast radiography analysis, several roughness measures have been
used. Ackerman and Gose [AG72] defined roughness as the sum of the ab-
solute differences between points with a distance of 2 to 16 pixels along a
vertical line. The ratio between the roughness measures of a center circle and
an annulus was used as one of the parameters for classifying breast lesions in
xeromarrnograms. Following the same idea, Hand et al. defined 8 vertical
and horizontal roughness measures for their detection algorithm using the
mammographic asymmetry approach [HSAA79]. Since the computation of
the above 8 roughness measures is quite costly, Semmlow et al. improved the
efficiency of their detection algorithm by replacing them with a single normal-
ized variance measure [SSA*80]. Given its efficiency, the variance measure
seems to be a good choice for roughness measurement and is adopted in our

detection algorithm.

4.3.1 Globally Normalized Variance

Variance is a first-order statistical measure derived from the grey-level
histogram and provides an indication of how uniform or regular an image
region is. The variance of a region R with an area of n pixels in an image,
f(z,y), can be computed by the formula

oh== X [fid) -l

i.jER

65



where y is the mean grey-level value of the region R. This equation can be

expanded into the following form

 nTiserlf ) - [Sijer )]
op = 3 :

and this form is used in our implementation. Using a ring-buffer to save
the sum and sum of squares in each window, the amount of computation is
reduced in subsequent windows.

Once again, the overall brightness and contrast difference between the two
images must be eliminated first. Therefore, globally normalized images from
the previous digital subtraction process were used. Moving windows with
size ranging from 25 to 51 were used in computing the absolute difference
of variance for each pixel. The results indicate that the response of this
measurement is dominated in an area where a large amount of variation in
brightness exists. On the other hard, in an area with low variation in grey-
level, the response is weak. A good example for such situation is depicted in
Plate 4.3 which shows the original transformed images, Plate 2.1, in the top
half, and response of the absolute difference in variance in the bottom-left of
the image. The red circle indicates where radiologists suspect the presence of
a tumor. As one can observe, this measurement produces a strong response
in the left half of the breast area where there are a lot of anatomic structures
such as glandular tissue and ducts; whereas the suspicious area is located

in a low grey-level variation of fatty tissue background and it only shows a
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very weak response to the absolute difference of variance in that area. The
reason for such a result is quite logical as the range of absolute difference of
variance for areas with high grey-level variation is comparatively wider than
the one for areas with low grey-level variation. However, it is desirable to have
response for the same amount of absolute variance difference be emphasized
in a low grey-level variation neighborhood than in a high grey-level variation

neighborhood. A modified roughness measure is proposed in the next section.

4.3.2 Locally Normalized Variance

Dur i the linearity characteristics of global normalization, the response of
absolute variance difference is dominated in the high grey-level variation area.
To overcome this problem, a local normalization approach must be adopted
for the roughness measurement.

This local normalization approach operates on two concentric square
windows as illustrated in Figure 4.1.  The inner window R is used for
measuring the absolute difference of variance and the outer window N is
used for normalization. Let uy,0% be the mean and variance of the normal-
ization window respectively. The local normalization of each pixel, f(z,y),

in variance window R is given by:

fula,y) = LBt

Then, the roughness measure is defined as the variance of locally normalized
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Figure 4.1: Window subdivision for locally normalized variance.

variance window R, such that for (z,y) € R,

Variance [fy(z,y)]
f(z,y) = #N]
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Roughness

= Variance [

1 .
—- - Variance f(z,y))
N
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Thus, the roughness measure is defined as the ratio of the variance of varianre
window R to the variance of the normalization window N.
This improved roughness measurement was implemented and tested on
all mammogram image pairs with various combinations of variance window

sizes from 17 to 31 pixel square and normalization window sizes from 51 to

101 pixel square. Based on visual interpretation of the results, it is found



that a variance window size of 25 pixel square and a normalization window
size of 51 pixel square yielded satisfactory results. The response of this
measurement on the test Plate 2.1 is depicted in Plate 4.4 with the sa; e
convention used as in Plate 4.3. The locally nurmalized roughness measure
produces a much stronger response at the suspicious tumor location than the
globally aormalized measure.

The locally normalized absolute variance difference measurement is effec-
tive at detecting small tumors on a relatively homogenecus backgrounc ‘¢
the corresponding area in the opposite image is smooth. The responu peak
does not coincide with the center of the tumor as this measurement yields
a stronger response to edges than to the center of tumors. Also, this mea-
surement does not detect any difference when correspondirg locations have
the same variance within the variance window and normalization window
such that this ratio measurement is apnroximately equal to 1, even though
these two locations might have completely different overall variance values.
Furthermore, it produces no response to large tumors (> 40x40 pixel) with
a smooth center such as circumscribed lesions if the opposite breast image
has a homogeneous background at the corresponding location.

Observation of all test cases showed that the majority of large tumors were
not detected or produced a response only in the edge area. To overcome this

deficiency, an additional measurement was developed and is presented in the

next section.
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4.« Brightr - ‘o-Roughness Ratio

Tygical tumors that are =, .ed by the locally normalized variance measure
have a bright ar " relatively homogeneous tumor center. By comparing the
brightness and rougnness of this type of tumor to other breast tissue, such
as glandular duct and fatty tiseue, it was found thai ‘hey are drastically
different. The summary of comparison results are shown in Table -L.1. By
defining a measurement as the ratio of brightness and rcughness, the ti.mor
is clearly distinguishable from glandular and fatty tissue as illustrated in
Table 4.1. Thus, a measurement such as this can overcome the deficiency of

the locally normalized variance difference measurement.

| | Tumor | Glandular | Fatty |
Brightness () ! HIGH | MEDIUM - HiGH | LOW
Roughness (o) || LOW HIGH = | LOW
o HIGH LOW TOW

Table 4.1: Comparison of Brightness and Roughness on various breast
tissue.

The brightness to roughness ratio measurement is once again computed
on a windowing system. The brightness measure can be expressed in terms
of the mean grey-level value within the wincow region considered. Since the
variance measurement is a first-order statistic measure, it does not reflect
the spatial relationship hetween pixels within the window. For exampie, the

following two subimages have the same variance value.
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Therefore, variance is not used to represent the i%.a...éss in this measure-
ment.

Since the roughness measure depends not only nn the amplitude of grey-
level changes, but also on the spatial frequency of changes, a runuing sum
of absolute grey-level difference between neighboring -pixels in both vertical
and horizontal directions is used to define the roughness measure of an image
window. Mathematically, this roughness measure for a nxn window W, is

defined as follows:
255

o= 5 Pij)
Jj=0

where:
. 1
PU) = 5 5 [Bile)+ Vi)
if |[f(z,y) - flz+L,y)| =7
H,—(z,y) = J
‘ 0 otherwise
( . .
1 if [f(z,y) = fe,y + 1) =
Vi(z,y) =
0 otherwise




The brightness to roughness ratio measure is finaliy defined as:

a

BR = ——
(140)

where u is the average grey level in the window W. In order to reduce

computational cost, images were first reduced into 256x256 pixels. This
measurement was then applied to all test cases with various window sizes
from 11 to 51 pixel square. A window size of 11 pixel square was selected
based on visual judgment of the results. One of the results is depicted in
Plate 4.5. The top hLalf of the plate shows .he orig:nal transiormed images
and the response of absolute difference of this measurement is shown on the
ottom-left of the plate. The red <.rcle indicates the tumor location indicated
by the radiologist.

The resalts show that strong responses were produced for the majority of

suspicious tumor areas with a bright and relatively homogeneous center.

4.5 Directionality

Directionality was one of the measures used by Hand and Semmlow et al.
[HSAAT9, SSA*80] in detecting suspicious areas in Xxeromammograms.
Although they gave nc motivation for selecting directionality as one of the
parameters in their detection algorithm, we believe that this directionality
measure is aimed at detecting either spicules of stellate lesions or deforma-

tions of blood vessels and glandular ducts caused by the growth of breast

-1
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tumors. They measured directionality as scaled sum of intensity changes
between neighboring pixels with a fixed spatial distance and direction over

a small window [HSAAT79, SSA*80]. One example of their directionality

reasure is giv.: below:
] 8. X
Horizontal directionality = %0 Y IF(G ) = £+ 10,5)]
=1 y=1
However, image texture directionality can be better described in the power

spectrum as complete information on the grey-level variation for the entire

range of spatial frequency and direction is available in the power spectrum.

4.5.1 Fourier Transform

The discrete Fourier transform of an image, f(z,y) is defined as follows:

1 ==  (mu | nv
F(u,v) = AN Y. S fim,n)exp [—21rz (7\7 + N)]
m=0 n=0 4

The transform expresses an image function as a sum of sine waves of different
frequency and phase angle. Low spatial frequencies accunt fer the “slowly
varying” grey-levels in an image; whereas the high spatial frequencies are
associated with “quickly varying” information [BB82, p.25].

Image texture can be described by the power spectrum of an image. The
power spectrum represents the distribution of the magnitude of grey-level

variatior: at varivus frequencies and phase argles and is defined as:

P(u,v) = [F(u,v) - F*(u, v)]l/2
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where F*(u,v) is the complex conjugz:: of F(u,v). Various textural features
can be extracted from the power spectrum. For instance, coarse textures are
indicated by a power spectrum with strong low-frequency components that
are associated with large element size; whereas, fine textural patterns have
high values at high frequencies. In addition, texture directionality can also
be described by tue power spectrum. If a texture pattern contains features
which are highly oriented in one direction, then the power is concentrated in
a single direction in the power spectrum [Lev85, p 444]. The direction is per-
pendicular to the direction of the oriented features in the image; for example,
horizontal streaks in an image wii: .wsult in strong vertical components in
the power spectrum.

In order to simplify the measurement of textural directionality from the
two-dimensional power spectrum, it is necessary to break up the power spec-
trum into wedges centered at the origin [Lev85, p.444]. Each of these wedges
tends to measure the angular sensitivity of the range of phase angle it rep-
resents. To simplify the measurement of horizontal and vertical direction of
mammogram features, the power spectrum of each sub-window of an image is
divided into 4 wedges as illustrated in Figure 4.2. The horizontal and vertical
directionality is defined as the normalized total power in regions H and V' re-

spectively. Mathematically, given the power spectrum P(i, j), directionality
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Figure 4.2: Subdivision of power spectiuin for directionality.

is defined as:

_ ijen Pli,])
Lvi; P(i,7)

_ Yijev P(i,7)
Yvi; P(4,7)

The power spectral method is a computationally expensive method; to-

Dy

Dy

gether with the overlapping window technique, it is not feasible to analyze
images in a full scale 512x512 pixels in a mass screening program. Hence,
the images were first reduced to a resolution of 256x256 pixels. Moving
window sizes of 8, 16, 32 pixel square were tested on all test cases. The two-

dimensional Fast Fourier Transform routine was used to compute the Fourier
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transform of each window of the breast area. Breast boundei+ pixels within
the width of window size were ignored to eliminate the strong directional-
ity response at the breast boundary. Based on the periodicity properties of

Fourier transform where:
F(—u,—v)= F(M —u,N -v)

the directionality measures can be computed from half of the power spectrum;
thus, it saves a considerable amount of computation.

After observing the results frora i test cases, it was found that a win-
dow size of 16x16 pixels produced ti:: : st response for the total absolute
difference of the vertical and horizontal dizectionality measures. However,
these results aiso indicate that the response is dominated by the natural
asymmetries of largely oriented features, such as blood vessels and glandular
ducts; hence signaling a large number of false suspicious areas. One example
of this measurement’s response is depicted in Plate 4.6. This type of re-
sponse behavior is caused by two major factors. First of all, the majority of
breast tumor's are not as highly oriented as blood vessels or glandular ducts.
In addition, oriented patterns of breast tumor, such as spicules of stellate
lesion, are barely, if at all, visible in digitized mammograms. Thus, typical
breast tumors do not produce a strong response to these directionality mea-
sures. Second, anatomic structures such as blood vessels and ducts couid not

be aligned precisely due to the limitations of geometric transforination used.



Hence, natural asymmetries of these highly oriented features are unavoidabie
and they lead to responses of the above directionality measures.

For these reasons, the directionality measures were found to be not suit-
able for detecting mammographic asymmetries caused by breast tumors.
However, this measurement can be used as a weighting factor in the combi-
nation of all other mammographic asymmetry measurements to reduce the
aumber of false alarms by suppressing the responses due to natural asymme-

tries. Details of this method are presented in the next section.

4.6 Formation of Asymmetry Measurement

As suggested earlier in this chapter, mammographic asymmetry should be
defined based on the difference of a set of textural features as there is no single
measurement that can adequately describe mammographic appearance. The
more textural features are included in this set, the more likely it is that the
mammographic appearance can be described adequately by the set. However,
for efficiency reasons, it is not feasible to use a large set of textural features
for defining mammographic asymmetry. In addition, a larger number of
textural features does not guarantee a more precise asymmetry detection.
This is because a large number of false alarms results from the accumulation
of unavoidable false alarms for each feature measurement. Therefore, only

normalized digital subtraction, locally normaiized variance and brightness-



to-roughness ratio were used to detect mammographic asymmetries.

Due to the lack of a sufficient number of test cases, no quantitative stud-
ies were done to analyze the performance of each feature measurement in
detecting mammographic asymmetry caused by breast tumor growth. Thus,
it would be inappropriate to use a weighted linear combination method to
ccmbine these three ineasurements in an overall asymmetry detection mea-
surement as there is no adequate information for defining the weighting
factors. Therefore, a simple linear combination method with an equal weight-
ing factor was used to combine the feature measurements.

The final result is formed by combining ?..2 responses f.-, the normalized
digital subtraction, locally normalized variai:..c di*’erence, and brightness-to-
roughness ratio difference in previous sections. In addition, the response
to directionality measure on both transformed ima,- was used to form
a weighting factor for the above three measurements in order to suppicss
any natural mammographic asymmetry of oriented pattern, such as blood
vessels or glandular ducts. Since all mammograms were .i‘gitized with the
nipple pointing upward, the majority of the oriented patterns lay within a
phase angle region covered by the vertical directionality measure defined in
Section 4.5. Thus, only the vertical directionality response from both im-
ages was used to define this weizhting factor. Further, a power function was
used to ensure that only mammographic asymmetries due to highly oriented

patterns are removed. Let Dv(z,y) and Dv,r(z,y) be the vertical direc-



tionality on the left and right geometrically transformed mammogram image

respectively. The weighting factor for the linear combination of the three

feature measurements is defined as:

0 if P(z,y) > 1
W(z,y) =
1 — P(z,y) otherwise
where:
P P
Pz,y) = Dyr(z,y)" + Dva(z,y)

255P

Also, let S(z,y), R(z,y) and BR(z,y) represent the responses of normalized
digital subtraction, locally nnrmalized vari.ace difference and biish: ness-
to-roughness ratio difference respectively; the linear combination ot thuse

measurements’ responses with weighting factor can be written as follows:
CR(z,y) = [S(z,y) + R(z,y) + BR(z,y)] * W(z,y)

Various P values were tested out for P(z,y) in the weighting #actor and
the value 5 was selected as it produced the best result. An example of this

combined response of the test case Plate 2.1 is depi<cted in Plate 4.7.

4.7 Selection of Suspicious Areas

The response to the combined mammographic asymmetry measurement is
in turn a grey-level image as illustrated in the previous section. We now

have to devise a method for selecting all the suspicious areas marked by an
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expert radiologist from this image. Since the value in the combined response
image represents the degree of suspiciousness at its location, it is obvious
that one can select the location with peak response value as a suspicious
area. However, this naive selection method is not suitable for our application,
because multiple suspicious areas might be present in a pair of mammogram
itn:.ges due to multiple tumor growths. Furthermore, prior knowledge of the
exact number of suspicious areas is not available; hence, selecting a certain
fixed number of suspicious areas is not viable either. A thresiholding method
seems to be appropriate for this situation.

A single threshold could either produce too many false suspicious areas
or miss some of the true suspicious areas. Thus, a two-stage thresholding
method is designed for selecting suspicious areas from the combined response
image. Before the selection can begin, the combined response image from the
previous section is first convolved with a 3x3 low-pass filter to remove any
noise due to errors from previous processing operations.

At the first stage of this method, a percentile method is used to determine
a threshold for the filtered response image. Based on the assumption that
suspicious areas occupy, at most, a fixed percent ge of total breast area, a
threshold value T} is chosen such that ¢, percent of the non-zero response
vaiue locations in the filtered response image having a response value higher

than T are considered as primary suspicious areas.
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Following the first-stage thresholding of the response image, a blob-coloring
method [BB82, p.151] is applied to the result image to identify clusters of
response locations. Each of these clusters of response locations forms a sus-
picious area and a bounding circle is determined to represent its location
and size. The center coordinate, radius and mean response value of each
suspicious zrea are then stored in a list for further examination.

While the first-stage thresholding process determines the size of each sus-
pici>mis area, the second-stage is aimed at eliminating false suspicious ar~as
from the previous stage based on the mean response value of each suspicious
area. Anothe: reshold, T, is d:termined as ¢, percent of the maximum
mean respons. ’alue of all primary suspicious areas. Thus, a primary suspi-
cious area from the first-stage thresholding wh:.h has a mean response value
higher than T is considered a true suspicious area; otherwise, it is eliminated

from the list as a false suspicious area.

..<.2 Experimental Results

In determining the value of the parameter ¢, used in the percentile method
of the first-stage thresholding, the procedure described was applied to all ten
test cases. A value of ¢; = 5 produced the best result; and hence, it was
selected as the parameter value for the percentile method in the first-stage

thresholding method.
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Sirce one cannot expect the mammographic asymmetry detection algo-
rithm to produce suspicious areas perfectly matching those diagnosed by
expert radiologists, some criterion for determining a positive detection must
be established. The objective cof our system is to detect all areas marked as
“suspicious” by the radiologist. An area marked as “suspicious” by the sys-
tem is considered a positive *+ >ction if at least 50% of the area overlaps with
an area marked as suspicious oy the radiologist; otherwise, it is considered a
miss.

It is obvious that there is a tradeoff between inclusion of false suspicious
areas and exclusion of true suspicious areas when selecting the value for
parameter g, in the second-stage of the thresholding method. A low g, value
will produce a large number of false suspicicus areas; whereas, a high ¢,
value might exclude some of the true suspicious areas. Using three different
valaes for gz, namely 70, 80 and 90, the second-stage thresholding procedure
was applied to the lists of primary suspicious areas génerated by the first-
stage process on the ten test cases which contain a total of 13 true suspicious
areas, as diagnosed by an expert radiologist. The result of comparing the
performance of the above three parameter values fer g2 is summarized in
Table 4.2. This table shows that the lower the ¢; value used, the higher the
number of false suspicious areas detected. However, when a value of 90 was
used for g, the hit-rate dropped from 92% (q; = 80%) to 69%. Based on

these results, the value of 80 was selected as the parameter value for g, and



the list of size and location of suspicious areas diagnosed by the radiologist,
together with those detected by computer, are summarized in Table 4.3. A
few examples of the final result of the mammographic asymmetry method
proposed in this thesis are depicted in Plate 4.8 and 4.9. The convention
of these plates is that the top half is the original geometrically transformed
mammogram image pair and the bottom-left is the final response image of the
linear combination of the three feature measurements from Section 4.6. The
red circles are the true suspicious areas marked by the radiologist and the blue
circles are the suspicious areas mapped by the mammographic asymmetry

detection program.



Total False Average Number of
g2 | Hit-Rate | Suspicious Areas | False Suspicious

(%) (%) Detected Area per case

70 92 99 ' 9. '
80 92 49 4.9
90 69 16 1.6

Table 4.2: Comparison of performance of different ¢ value in second stage
thresholding procedure.

Coordinate of Suspicious Areas
CASE NO. Radiologist Computer Total False
X y | radius | x y | radius | Suspicious Areas
(pixel) (pixel)

19010(ML) 254 | 159 10 254 | 146 16 13
19010(CC) 344 | 196 10 338 | 192 6 2

140 | 216 10 132 | 212 10

160 | 249 20 MISSED
140496(CC) || 278 [323 | 12 | 276328 | 20 6

365 | 364 30 364 | 364 20
147336(CC) | 190 | 277 20 186 | 282 10 3
49746(CC) 286 | 382 50 298 | 394 38 0
128686(ML) || 166 | 310 35 172 | 328 30 3
166468(CC) || 306 | 228 20 | 306 ] 244 16 4
166468(ML) || 296 | 183 30 296 | 172 24 5
120610(CC) || 336 | 339 12 334 | 342 14 9
196348(ML) || 229 | 180 25 222 | 190 12 4

Table 4.3: Comparison of computer’s and radiologist’s interpretation on
ten test cases.



Plate 4.2: Result(case:49746¢c) of Locally Ncrmalized Digital Subtraction
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Plate 4.4: Result of Locally Normalized Variance Difference



Plate 4.6: Result of Directionality Difference
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Plate 4.8: Final Result of Suspicious Areas Detected on Case:19010ML
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Plate 4.9: Final Result of Suspicious Areas Detected on Case:19010CC
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Chapter 5

Conclusions and Future

Research

The objective of this thesis was to design and implement an automated breast
tumor detection algorithm using the mammographic asymmetry approach.
The low image quality of mammograms, the wide variation in mammographic
appearance of the human breast, and the existence of natural asymmetries
between a pair of identical view mammograms make the problem of detecting
mammographic asymmetries caused by growth of breast tumor a difficult one.

The research first conducted a background study on the medical aspect
of breast tumors, followed by a survey of diagnostic imaging techniques com-
monly used in clinical practice. Mammographic diagnosis procedure was then

discussed in depth.
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Based on the interpretation procedure used by expert radiologists, we
discovered that there are basically two major approaches used by different
researchers in designing their automated breast tumor detection methods
from mammograms, namely the Individual Tumor Type Approach and Man-
mographic Asymmetry Approach. A review of recent research projects in
automation of mammographic detection of breast tumor using the above
two approaches was presented. The advantages of using the mammographic
asymmetry approach in designing automated mammographic breast tumor
detection method were studied and discussed. All processes involved in
the mammographic asymmetry detection method were then identified and
discussed in detail.

The first step of the mammographic asymmetry detection method was
aimed at breast area extraction. A global thresholding segmentation method
with manual selection of threshold value was adopted. An unweighted
averaging filter of size 11x11 pixels was used to smooth the fuzzy bound-
ary of the binary images produced by global thresholding. This method
yielded satisfactory results on all test cases.

One of the major problems involved in developing an automated mam-
mographic asymmetry detection method was to devise a simple but adequate
geometric transformation method that can align a pair of identical view mam-
mograms and eliminate natural discrepancies in size and shape. The initial

requirement for any geometric transformation operation is to obtain some
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visible and unambiguously defined corresponding features from both images.
However, it is difficult, if not impossible, to reliably detect such features with-
out human assistance. Thus, three points along the breast boundary, namely
the nipple and intersection points between breast boundary and back bound-
ary, were selected as the control points for the geometric transformation pro-
cess. Based on the characteristic curvature property of these control points,
the cubic B-spline corner detection method proposed in [MY87] was adopted
and modified to detect these points in each mammogram. In addition, an
interactive program allowing the user to enter the nipple position was written
for the case where the nipple profile does not appear in the digitized image.

In the course of pursuing a geometric transformation for aligning mam-
mogram images, it was found that existing methods were either too simple
and did not yield adequate results [HSAA79, SSA*80] or were too compli-
cated to be used effectively and feasibly in a mass screening program [ZG88)].
A local geometric transformation method for transforming the breast area
in three sub-regions was proposed and implemented. This proposed method
produced adequate results for all test cases.

Another major topic of this thesis was to find a set of a minimum num-
ber of measurements to detect mammographic asymmetries caused by breast
tumor growth. A number of different measurements were studied and im-
plemented, and four measurements were selected to form the final mammo-

graphic asymmetry measurement. These measurements include locally nor-
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malized digital subtraction, locally normalized variance difference, brightness-
to-roughness ratio difference and directionality measure. A vertical direction-
ality measure was used as a weighting factor to suppress responses due to
natural asymmetries of highly oriented structures, such as blood vessels and
glandular ducts.

The response of the combined asymmetry measurements was then thres-
holded using a percentile method and followed by a blob-coloring method
to find clusters of responses which form the primary suspicious areas. After
the size, center of bounding circle and mean response value of each primary
suspicious area were determined, a second thresholding procedure was used
to eliminate false suspicious areas from the primary suspicious areas based
on the mean response value within each suspicious area.

The entire mammographic asymmetry detection method was implemented
and applied to ten test cases. The results showed that 92% of all suspicious
areas were correctly identified. Furthermore, a significantly lower false alarm
rate (4.9/case) compared to Hand et al.’s studies [HSAAT79] (53.6/case) was
achieved.

The research of this thesis provides a complete overall framework in
designing an automated breast tumor detection method from conventional
film mammograms using mammographic asymmetry approach. It also pro-
vides an initial step towards the development of an automated mammogram

screening method which can be used in a mass screening program.
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5.1 Future Directions

Given that this is an initial attempt to develop automated breast tumor
detection using the mammographic asymmetry approach, the method pre-
sented in this thesis produced quite encouraging results. However, the method
is still far from being reliable enough to be used in a mass screening program.
Further research is required to improve this method.

First of all, the stability of this method must be tested on a large number
of sample cases. This will not only provide more insight into selecting more
appropriate parameter values in the suspicious area selection process; but
will also provide more complete knowledge for determining weighting factors
for each of the three asymmetry measurements in the linezr combination
process.

Even though the proposed geometric transformation :nethod produced
adequate results in aligning identical view mammogram iinages; it does not
eliminate natural asymmetries within the breast area. Future work should
concentrate on detecting corresponding anatomic structures, such as blood
vessels and glandular ducts, and incorporate these structures as control points
in the geemetric transformation process. This will further eliminate natural
asymmetries between a pair of mammograms and provide a more accurate

alignment.
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Finally, this research has only investigated a small number of measure-
ments for mammographic asymmetry measurement. The study to find the
best mammographic asymmetry measurement is far from complete and
exhaustive. Future research should concentrate on the study of other mea-

surements and their applicability in measuring mammographic asymmetry.
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Glossary

Areola The pigmented ring of tissue that surrounds the nipple.
Benign Good prognosis; favorable; propitious; not malignant.

Calcification Calcium salts laid down in tissue; usually complex form of
calcium phosphates and carbonates; found in both benign and malig-

nant breast diseases.

Cancer A mass of tissue which is malignant, invasive and tending to recur

after excision and to metastasize to other tissue.

Cranio-caudal Projection image of the breast obtained by directing x-ray

beam through the breast in head to foot direction.

Medio-lateral Projection image of the breast obtained by directing x-ray

beam through the breast from medial side to lateral side.

Palpate To examine by touch; to feel, touch.
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