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Abstract

In the South American abelisaurids Carnotaurus sastrei, Aucasaurus garridoi, and, to a lesser extent Skorpiovenator
bustingorryi, the anterior caudal ribs project at a high dorsolateral inclination and have interlocking lateral tips. This unique
morphology facilitated the expansion of the caudal hypaxial musculature at the expense of the epaxial musculature. Distinct
ridges on the ventrolateral surfaces of the caudal ribs of Aucasaurus garridoi are interpreted as attachment scars from the
intra caudofemoralis/ilio-ischiocaudalis septa, and confirm that the M. caudofemoralis of advanced South American
abelisaurids originated from a portion of the caudal ribs. Digital muscle models indicate that, relative to its overall body size,
Carnotaurus sastrei had a substantially larger M. caudofemoralis than any other theropod yet studied. In most non-avian
theropods, as in many extant sauropsids, the M. caudofemoralis served as the primary femoral retractor muscle during the
locomotive power stroke. This large investment in the M. caudofemoralis suggests that Carnotaurus sastrei had the potential
for great cursorial abilities, particularly short-burst sprinting. However, the tightly interlocking morphology of the anterior
caudal vertebrae implies a reduced ability to make tight turns. Examination of these vertebral traits in evolutionary context
reveals a progressive sequence of increasing caudofemoral mass and tail rigidity among the Abelisauridae of South America.
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Introduction

When first described by Bonaparte et al. in 1990 [1], the

holotype of Carnotaurus sastrei (MACN-CH 894) revealed many

puzzling adaptations in both the appendicular and axial skeleton

that were previously unseen in theropods. C. sastrei established

Abelisauridae as a unique clade of carnivorous dinosaurs,

evidently separated from all other known theropod groups by a

large evolutionary rift [1]. Currently, Abelisauridae is best known

for the small horns and other cranial ornamentations common to

most of its members. C. sastrei is the most advanced member of

Abelisauridae, with a pair of robust conical horns that extend

devilishly from the frontals. However, the most unusual skeletal

adaptations of C. sastrei and its close relatives occur not in the skull,

but in the tail.

The preserved tail vertebrae of MACN-CH 894 have caudal

ribs that are posteriorly inclined, dorsally angled, and often exceed

the neural spines in absolute height [1]. The tips of the caudal

ribs are flattened and expanded with anteriorly-projecting half-

crescent-shaped anterior edges and rounded posterior edges

(Figs. 1, 2). Since the initial description of C. sastrei, many aspects

of this bizarre caudal morphology have been reported in other

South American abelisaurids, including Aucasaurus garridoi [2],

Ilokelesia aguadagradensis [3], and Skorpiovenator bustingorryi [4].

Abelisaurids in Madagascar and Southern Asia have consistently

shown an absence of this unusual morphology. In the Malagasy

genus Majungasaurus, for which a largely complete caudal series is

known, the general proportions of the caudal osteology do not

differ dramatically from those of most other large-bodied non-

coelurosaurian theropods. The anterior caudal ribs of Majunga-

saurus crenatissimus project predominantly transversely, with only a

slight ventral inclination, and lack specialized caudal rib tips [5].

The prominent lateral projections of the caudal vertebrae are

here referred to as ‘‘caudal ribs,’’ in preference to the term

‘‘transverse processes’’. Conclusive osteological evidence support-

ing one terminology over the other is currently lacking among

theropods. Although the latter term has become conventional

within much of the paleontological literature, the accuracy of the

former term has been established in developmental studies on

modern sauropsids, including crocodilians [6–9]. As here used, the

term ‘‘caudal rib’’ should also not be confused with the arguments

made by Carrano et al. [10] (later discussed), which suggests that

both caudal ribs and caudal transverse processes were present in

some abelisaurids.

Beginning with the original description of C. sastrei, the potential

athleticism of abelisaurids has been the subject of speculation and

debate. Based on the proportions of the hind limbs, Bonaparte

et al. [1] suggested that C. sastrei was among the most cursorial of

the large-bodied theropods, and Mazzetta et al. [11] supported this

inference. However, the subsequent discovery of complete hind

limbs in the type specimen of the closely related Aucasaurus garridoi

showed that the length ratio of the tibia/femur was likely not a
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high as Bonaparte et al. [1] anticipated [2]. In Majungasaurus

crenatissimus, the total tibia-femur length is notably short compared

to other similarly sized theropods [12], suggesting that Majunga-

saurus crenatissimus was comparably slow. The hind limbs of the

Indian abelisaurid Rajasaurus narmadensis and the South American

abelisaurid Ekrixinatosaurus novasi were proportioned similarly to

Majungasaurus crenatissimus, while the legs of C. sastrei and Aucasaurus

garridoi were relatively longer and more gracile [12–14].

Consideration of the novel caudal osteology of C. sastrei and its

South American kin is potentially relevant to the discussion on

abelisaurid cursoriality, because the tails of most non-avian

theropods, like the tails of most other non-avian sauropsids, were

the origin sites for the primary hind-limb retractor muscle: the M.

caudofemoralis [15–17]. The M. caudofemoralis inserts onto the fourth

trochanter of the femur, and contraction of the M. caudofemoralis

swings the femur posteriorly. Electromyographic studies on extant

crocodiles have shown that the M. caudofemoralis is active during

locomotion [18], and, because of its size, the muscle is assumed to

contribute the majority of force to the hind limb’s locomotive

power stroke [17,19]. Recent advances have been made in the

study of dinosaur caudal musculature and in the struggle to

estimate the size of individual caudal muscles from osteological

correlates [20–23]. It is now recognized that the dimensional

extents of the various caudal muscle sets were not limited to those

of the caudal skeleton [21–23]. Persons and Currie [22] outlined a

simple method for conservatively estimating the mass of the M.

caudofemoralis and other major caudal muscles based on caudal

osteology, and concluded that the size of the M. caudofemoralis of

most non-avian theropods was proportionately larger and more

laterally extensive than in modern crocodiles and lizards. Here, the

same techniques are applied to a digital reconstruction of the

caudal skeleton of C. sastrei (with posterior portions modeled after

those of more complete closely related theropods).

Institutional Abbreviations
BHI, Black Hills Institute of Geological Research, Hill City,

South Dakota, USA; FMNH, Field Museum of Natural History,

Chicago, Illinois, USA; LACM, Natural History Museum of Los

Angeles County, Los Angeles, California, USA; MACN-CH,

Museo Argentino de Ciencias Naturales ‘‘B. Rivadavia,’’ Colec-

cion Chubut, Argentina; MCF-PVPH, Museo Municipal ‘‘Car-

men Funes’’, Paleontologia de Vertebrados, Plaza Huincul,

Argentina; USNM, Smithsonian Institution, National Museum

of Natural History, Washington, District of Colombia, USA;

TMP, Royal Tyrrell Museum of Palaeontology, Drumheller,

Alberta, Canada.

Results and Discussion

Reconstruction Results
It is apparent from simple observation of the fossil specimens of

both Carnotaurus sastrei and Aucasaurus garrido that the dorsal tilt of

the caudal ribs and the insertion of the M. caudofemoralis onto the

lateral surfaces of the caudal ribs permitted the dorsal expansion of

the M. caudofemoralis, even past the point of mediolateral overlap

with the M. longissimus. The results of the digital modeling are

Figure 1. Typical anterior caudal vertebral morphology of Carnotaurus sastrei (MACN-CH 894). Restored illustration of caudal vertebra 6 in
(A) left lateral view, (B) anterior view, and (C) dorsal view.
doi:10.1371/journal.pone.0025763.g001
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summarized in Table 1 and indicate a substantial investment in

hypaxial vs. epaxial musculature (Figs. 3,4,5). The calculated mass

of the M. caudofemoralis is particularly large, estimated to range

from 111–137 kg for each hind limb. In Persons and Currie [22],

the methods used here to create the conservative muscle model

were tested on a range of modern long-tailed sauropsids and were

found to consistently underestimate true M. caudofemoralis mass, but

to within 1–6% of the true value. The overall muscle to bone

proportions of the robust model exceed the typical range reported

by Allen et al. [21] for a variety of modern lizards. The true mass of

the M. caudofemoralis of C. sastrei, therefore, likely lies within this

range, but probably not at either extreme. Compared with the

other muscles, the estimated mass of the M. ilio-ischiocaudalis varied

the most between the conservative and robust models. This is

because, in the robust reconstruction, both the absolute thick-

ness of M. ilio-ischiocaudalis was increased and, because the M.

caudofemoralis was expanded laterally, the elliptical path of the M.

ilio-ischiocaudalis was also increased.

Figure 2. Select caudal vertebra of Carnotaurus sastrei (MACN-CH 894). (A, B, C) Caudal vertebra 1 in right lateral, anterior, and dorsal view,
respectively – note: caudal rib tips not fully preserved. (D, E, F) Caudal vertebra 2 in right lateral, anterior, and dorsal view, respectively; note: caudal
rib tips not fully preserved. (G, H, I) Caudal vertebra 5 in right lateral, anterior, and dorsal view, respectively – note: centrum and caudal rib tips not
fully preserved. (J, K, L) Caudal vertebra 6 in right lateral, anterior, and dorsal view, respectively; note: centrum and left caudal rib tip not fully
preserved.
doi:10.1371/journal.pone.0025763.g002
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Comparisons of the conservative muscle mass estimations with

those obtained using the same methods for other theropods are

given in Table 2, and confirm that C. sastrei had an exceptionally

large investment in the M. caudofemoralis – estimated to be greater

relative to overall body size than that previously calculated for any

other theropod.

Functional Implications
The models created in this study are largely based on both

Carnotaurus sastrei and Aucasaurus garrido. For the sake of simplicity,

and because C. sastrei shows the most extreme caudal morphology,

in this section the results are discussed primarily as they relate

to the paleobiology of C. sastrei. Nonetheless, the functional

implications of this study are relevant, to varying degrees, to most

known South American abelisaurids

The arguments made by Bonaparte et al. 1990 [1] and Mazzetta

et al. 1998 [11] that C. sastrei was a more agile form than other

large-bodied theropods is partially supported by this study. The

large size of the M. caudofemoralis of C. sastrei would impart great

force to the power strokes of the hind limbs; however, the ridged

nature of the caudal series likely reduced turning performance.

The flattened, half-crescent-shaped tips of the caudal ribs of C.

sastrei overlapped with those directly anterior and posterior in the

series, with those of the first caudal vertebra articulating with the

ilium [2]. This appears to have resulted in a highly inflexible

anterior tail, in terms of both lateral and dorsoventral maneuver-

ability. Recent biomechanical analyses of theropod turning

performance have commented on the large rotational inertia that

the elongate body-plans of most theropods would impart [24–25].

Such studies have likely underestimated the turning abilities of

most theropods, because they have assumed that the sum total of a

theropod’s rotational inertia had to be overcome all at once.

Theropods were not laterally stiff, and it is likely that most

theropods turned with a more serpentine motion – turning first

their heads and necks, then torsos, then hips, and finally, in a

sinuous motion, their tails. In the case of C. sastrei and the other

abelisaurids that shared the interlocking caudal rib morphology,

the hips and most of the caudal mass would have been forced to

rotate as one unit, and sinuosity would have been minimized. This

suggests that C. sastrei and it close relatives had a diminished ability

to make rapid tight turns, relative to other equivalently sized

theropods.

Figure 3. Lateral and dorsal views of the robustly modeled tail
of Carnotaurus sastrei (MACN-CH 894). (A) Digital reconstruction of
the caudal and pelvic skeleton with M. caudofemoralis longus (red).
(B) Complete digital reconstruction, with epaxial musculature (orange)
and M. ilio-ischiocaudalis (pink) added.
doi:10.1371/journal.pone.0025763.g003

Figure 4. Lateral and dorsal views of the conservatively
modeled tail of Carnotaurus sastrei (MACN-CH 894). (A) Digital
reconstruction of the caudal and pelvic skeleton with M. caudofemoralis
longus (red). (B) Complete digital reconstruction, with epaxial muscu-
lature (orange) and M. ilio-ischiocaudalis (pink) added.
doi:10.1371/journal.pone.0025763.g004

Table 1. Mass estimation results from the conservative and robust models of Carnotaurus sastrei (results are presented for left and
right muscle sets combined).

M. spinalis M. longissimus M. ilio-ischiocaudalis M. caudofemoralis

Conservative Model 7000 g 15000 g 63000 g 222000 g

Total tail muscle mass: 307000 g 2.30% 4.90% 20.50% 72.30%

Total body mass: 1500000 g [39] 0.50% 1.00% 4.20% 14.80%

Robust Model 11000 g 24000 g 106000 g 273000 g

Total tail muscle mass: 414000 2.70% 5.80% 25.60% 65.90%

Total body mass: 1500000 g [39] 0.70% 1.60% 7.10% 18.20%

doi:10.1371/journal.pone.0025763.t001
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However, the results of the digital muscle reconstruction suggest

that what C. sastrei lacked in turning ability it may have made up

for in overall speed and acceleration. In a sensitivity analysis of

bipedal dinosaur running, Bates et al. [26] found that locomotive

muscle mass and cross-sectional area were the most important

factors in estimations of top running speeds. Because the M.

caudofemoralis was the primary femoral retractor, the large relative

mass and corresponding large relative cross-sectional area of the

M. caudofemoralis of C. sastrei would impart exceptional strength to

the backwards strokes of the hind limbs. Such a large investment in

caudofemoral mass would translate into enhanced locomo-

tive force generation. For an animal as massive as C. sastrei,

overcoming its own inertia would pose a considerable hindrance to

rapid acceleration. The enlarged M. caudofemoralis may have

provided C. sastrei with the raw power necessary for sudden

straight-forward sprints and charges.

This investment in locomotive power required a tradeoff in

muscle masses. Dorsally tilting the caudal ribs allowed for a larger

M. caudofemoralis, but, because the neural spines are observably no

more elongated than those of most other similarly sized theropods,

it also left relatively less space available to be filled by the M.

spinalis and M. longissimus. Both the M. spinalis and M. longissimus

function in mediolateral and dorsoventral tail movement and in

maintaining tail stability. While overall tail maneuverability was

lost, the interlocking tips of the caudal ribs served to compensate

for the diminished epaxial musculature by enhancing tail stability

and were perhaps key to allowing the dorsal expansion of the M.

caudofemoralis. The increased relative stiffness of the anterior

Figure 5. Cross-section through the tail of Carnotaurus sastrei showing caudal vertebra 6 and accompanying musculature. Note: the
cross-section is an anatomical abstraction and depicts the neural arch and chevron in the same vertical plane.
doi:10.1371/journal.pone.0025763.g005

Table 2. Estimated conservative caudal muscle masses of Carnotaurus sastrei and other theropods (results are presented for left
and right muscle sets combined).

M. spinalis M. longissimus M. ilio-ischiocaudalis M.caudofemoralis

Carnotaurus sastrei MACN-CH 894 7000 g 15000 g 63000 g 222000 g

Total tail muscle mass: 307000 g 2.30% 4.90% 20.50% 72.30%

Total body mass: 1500000 g [11] 0.50% 1.00% 4.20% 14.80%

Ornithomimus edmontonicus TMP 95.11.001 860 g 2440 g 5050 g 9890 g

Total tail muscle mass: 18240g 4.70% 13.40% 27.70% 54.20%

Total body mass: 150000 g [22] 0.60% 1.60% 3.40% 6.60%

Gorgosaurus libratus TMP 91.36.500 3900 g 6900 g 10300 g 17300 g

Total tail muscle mass: 38300 g 10.20% 18.00% 26.90% 45.20%

Total body mass: 400000 g [22] 1.00% 1.70% 2.60% 4.30%

Tyrannosaurus rex BHI 3033 65200 g 154200 g 159400 g 522200 g

Total tail muscle mass: 901000 g 7.20% 17.10% 17.70% 58.00%

Total body mass: 5622000 g [39] 1.20% 2.70% 2.80% 9.30%

Gorgosaurus libratus, Ornithomimus edmontonicus, and Tyrannosaurus rex estimations are taken from Persons and Currie 2011 [6].
doi:10.1371/journal.pone.0025763.t002
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portion of the tail likely aided in providing a rigid framework for

the large caudofemoral muscles to pull against and likely mitigated

energy loss that would have resulted from any lateral or dorsal

swing of the tail towards the contracting muscle.

On its own, increased maximum femur retraction force has

positive implications for the overall cursorial potential of C. sastrei.

However, it should be noted that the effect the rigidity of the

anterior caudal vertebrae had on locomotive endurance is unclear.

On the one hand, in computer simulations of Allosaurus, Manning

[27] found that a stiff trunk had the potential to store significant

elastic energy during dinosaur locomotion. The stiff tail of C. sastrei

may, therefore, have translated to more spring in its step. On the

other hand, undulations of dinosaur tails while walking and

running could have facilitated preload stretching of the M.

caudofemoralis, which also had the potential for great energetic

efficiency. The enhanced rigidity in the tail of C. sastrei may have

limited or altogether prevented anterior tail undulations and the

resulting energetic benefits.

Evolutionary Context
Carnotaurus sastrei is currently the youngest known South

American abelisaurid and is generally regarded as the most

derived in its morphological features [2,28]. In recent years,

a series of older South American abelisaurids have been found

and help reveal the rough evolutionary sequence that led

to the caudofemoral-dominated tail morphology of C. sastrei.

Ekrixinatosaurus novasi and Ilokelesia aguadagradensis (from the lower

Cenomanian Candeleros Formation, and the upper Cenomanian

Huincul Formation, respectively) are among the oldest known

South American members of Abelisauridae [28,29]. Anterior

caudal vertebrae are not known for I. aguadagradensis, but in E.

novasi the caudal ribs have slight dorsal inclinations and expanded

tips [28]. The mid-caudal vertebrae of both E. novasi and I.

aguadagradensis have caudal ribs with generally similar morphology.

The main difference is that the mid-caudal ribs of E. novasi are

more posteriorly inclined [28]. In both taxa the mid-caudal ribs

extend laterally with slight dorsal inclinations and have strong

posterior and anterior projections on the tips, producing a ‘‘T-

shape’’ in dorsal view. While these ‘‘T-shaped’’ caudal ribs lack the

overlapping and interlocking morphology of C. sastrei, the anterior

and posterior projections nearly abutted with the next tips in the

series and were likely connected by ligaments or other more sturdy

tissue. In the caudal vertebrae of I. aguadagradensis, the neural spines

appear to be reduced in relative dorsoventral height (however, this

observation is tenuous, because the incompleteness of the caudal

series makes determining the exact position of each vertebra

difficult), indicating that the epaxial muscle mass was somewhat

reduced, but with no strong evidence of increased relative hypaxial

muscle mass.

Skorpiovenator bustingorryi [4] is a slightly younger abelisaurid (from

the Huincul Formation, Late Cenomanian – Early Turonian). The

morphology of the caudal ribs of S. bustingorryi closely resembles

those of E. novasi and I. aguadagradensis, but the ribs have notably

stronger dorsal inclinations and the anterior projections of the tips

of the caudal ribs are more pronounced than the posterior

projections [4]. The next youngest South American abelisaurid for

which good caudal material is known is Aucasaurus garridoi (from the

Campanian Rio Colorado Formation) [2]. A. garridoi is regarded

by many to be the sister taxon to C. sastrei [2,4,28] (but for an

alternative interpretation see Carrano and Sampson [30]). The

caudal ribs of A. garridoi have a strong dorsal orientation with

interlocking tips. A. garridoi still has ‘‘T-shaped’’ caudal ribs, but the

posterior projections are smaller in relation to the anterior

projections.

The phylogeny of the Abelisauridae has been the subject of

much analysis, debate, and uncertainty. Based on the caudal

morphology and the chronology of taxa, the overall evolutionary

sequence of South American abelisaurids seems to have been:

1) slight dorsal inclining of the caudal ribs and the development of

anterior and posterior projections on the tips of the caudal ribs,

which increased rigidity in the caudal series and diminished the

need and functional value of the caudal epaxial musculature (seen

in E. novas and I. aguadagradensis); 2) the gradual increase in the

dorsal inclination of the caudal ribs (S. bustingorryi) and corre-

sponding dorsal expansion and increase in total mass of the M.

caudofemoralis; 3) a further increase in rigidity accomplished through

true interlocking caudal ribs (A. garridoi) and continued caudofe-

moral dorsal expansion; and, 4) maximized rigidity through

crescent-shaped, tightly interlocking rib morphology (C. sastrei).

The evolutionary sequence we suggest is summarized in Figure 6.

This phylogeny should not be misinterpreted as a well

substantiated cladistic conclusion. It is instead a tentative

hypothesis derived solely from two lines of evidence (caudal

morphology and chronological sequence). It is offered here with

the hope that it will be validated or invalidated by future studies,

and with the encouragement that subsequent cladistic analyses of

Abelisauridae (which have previously been heavily reliant on

cranial characters) take into more thorough consideration the

morphology of the caudal vertebral series.

Regardless of the true phylogeny, increased M. caudofemoralis

mass and caudal rigidity appear to be characteristic of later South

American abelisaurids. This result, and its inferred relation to

relative cursoriality, is consistent with previous observations on the

limb proportions of South American abelisaurids [13], which

reported longer and more gracile limbs in Carnotaurus, Aucasaurus,

and Skorpiovenator than in earlier genera. These results also show a

strong contrast between the late abelisaurids of South America and

those known from the rest of Gondwana – which have primitive

Figure 6. Chronostratigraphy and hypothesized phylogeny of
South American Abelisauridae with representative caudal
vertebrae for each in anterior and dorsal views. Note: although
each taxon is demarked by a separate branching event, given the close
geographic and temporal proximities of these taxa, combined with the
unlikelihood that multiple other as-yet-unknown large-bodied carniv-
orous abelisaurids were coexistent, it is probable that some of these
taxa have a direct anagenetic relationship with others.
doi:10.1371/journal.pone.0025763.g006
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caudal morphology and short, stocky hind-limb proportions

[12,14,30]. In particular, these results conflict with previous

conclusions that the Malagasy abelisaur Majungasaurus crenatissimus

and C. sastrei were more closely related to each other than ether

were to any of the other South American taxa [31–33].

Conclusions
In his examination of the M. caudofemoralis of theropod

dinosaurs, Gatesy [17] posited a general trend of relative

caudofemoral muscle size reduction throughout the whole of

theropod evolution. As shown by Gatesy [17], a strong trend

toward reduced caudofemoral mass can be seen in the lineage

leading to modern birds. However, the unique caudal vertebrae

morphology of Carnotaurus sastrei and its close relatives offers a

dramatic counterexample. The development of interconnecting

caudal ribs, each with a strong dorsal inclination, enabled an

exceptionally large M. caudofemoralis. This would have made

Carnotaurus sastrei a powerful sprinter – perhaps among the fastest of

the large bodied theropods (see Fig. 7). Consideration of these

morphological differences in a stratigraphic context indicates a

pattern of increased caudofemoral mass and cursorial potential

throughout the evolutionary history of the Abelisauridae of South

America. During at least the early portion of this history,

abelisaurids coexisted with another clade of predatory dino-

saurs: carcharodontosaurids. The carcharodontosaurids of South

America (including Giganotosaurus carolinii, Mapusaurus roseae, and

Tyrannotitan chubutensis) were among the largest of all theropods,

and obtained body sizes much greater than that of any known

abelisaurid [13]. It has been argued that the extreme size of these

carcharodontosaurids allowed them to hunt the even larger South

American titanosaur sauropods [34]. The cursorial tail morphol-

ogy of South American abelisaurids may have arisen to help in

avoiding potential carcharodontosaurid predators and/or sup-

ported niche partitioning by allowing abelisaurids to specialize in

the pursuit and capture of smaller prey, such as ornithopods.

Methods

Digital skeletal and muscle models of Carnotaurus sastrei were

created following procedures shown to be accurate for modern

taxa [22]. All models were created using the digital modeling

program RhinocerosH [35].

Skeleton
MACN-CH 894 includes only the first six caudal vertebrae and

an isolated fragment interpreted by Bonaparte et al. [1] as possibly

belonging to caudal vertebra 12. In the digital model, the first six

caudal vertebrae were sculpted based on measurements made on

LACM 127704 (a cast of MACN-CH 894). To ensure accuracy,

measurements of LACM 127704 were compared to those

Figure 7. Life restoration of a sprinting Carnotaurus sastrei, by Lida Xing and Yi Liu. Illustration shows laterally expansive and appropriately
large caudal musculature.
doi:10.1371/journal.pone.0025763.g007
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published in Table 2 of Bonaparte et al. 1990 [1], and were found

to be reliable (see Table S1).

The remaining vertebrae had to be digitally sculpted based on

published measurements and illustrations of other abelisaurid

material and scaled to fit. Caudal vertebrae 7–13 were modeled

based on MCF-PVPH-236, the holotype of Aucasaurus garridoi [2].

The anterior caudal vertebrae of A. garridoi show a morphology

similar in most respects to that of Carnotaurus (although the caudal

ribs of Aucasaurus are not as dorsally inclined and lack the

distinctive crescent shape), and the two theropods are considered

by most authors to be sister taxa [2,4,28]. Thus, the posterior

portion of the created ‘‘Carnotaurus’’ model may be more

representative of a generalized carnotaurine, but the model does

include all the known advanced caudal morphology of C. sastrei,

with the region modeled after A. garridoi modified to fit the

proportions of the anterior sequence and scaled to conform to the

large body size of C. sastrei.

Deducing the shape of the more posterior vertebrae requires

greater speculation. Fortunately, beyond caudal vertebra 13, the

vertebrae and associated muscles are so diminished in size that

reasonable variation in their shape and total number can only

have minimal effects on the calculations of muscle mass (see Fig.

S1, S2 and Table S2). Caudal vertebrae 14–25 were based on

those of Majungasaurus crenatissimus (FMNH PR 2100) – the only

abelisaurid for which a reasonably good series of posterior caudals

has been described. Based on the trend of vertebral size reduction

observed in the more anterior vertebrae, the series is estimated to

have ended at caudal vertebra 42, and the remaining 17 vertebrae

were based on those of Ceratosaurus nasicornis (USNM 4735). It is

assumed that in the more posterior vertebrae the caudal ribs

successively assumed a more typical, horizontal orientation. This

assumption seems reasonable, given that in other theropods with

slightly dorsally oriented caudal ribs on the anterior caudal

vertebrae (such as Allosaurus fragilis and Ceratosaurus nasicornis), the

caudal ribs of the posterior caudals lose all dorsal inclination.

In the description of the type specimen, the chevrons of C. sastrei

were reconstructed with strong posterior angulations [1]. The

chevrons of most non-avian theropods show some degree of

posterior orientation, but none are as extreme as those depicted for

C. sastrei (Fig. 38 of Bonaparte et al., 1990 [1]). The articulated

caudal series preserved for Aucasaurus garrido shows chevrons with

posterior angulations relative to the axis of the caudal vertebrae,

but the chevrons are still less posteriorly inclined than in the

original depiction of C. sastrei. In the digital model, the anterior

chevrons have been inclined to angles consistent with those seen in

A. garrido. This more conservative chevron orientation is also

consistent with the angles of the chevron indentations preserved

with the skin impressions of MACN-CH 894. A possible

explanation for the discrepancy between the chevron angulations

proposed here and those proposed by Bonaparte et al. [1] is that

the single well-preserved chevron of MACN-CH 894, which was

tentatively identified by Bonaparte et al. 1990 [1] as chevron

number four, was in fact chevron number one or two. The first

two chevrons of crocodiles and many modern reptiles are more

strongly inclined posteriorly than the other chevrons in the series,

and this is also the case in numerous theropod genera [36],

including A. garrido (see Fig. 2 in Coria et al., 2002 [2]).

The digital reconstruction assumes that the total number of

caudal vertebrae in the tail of C. sastrei was 42, that the posterior

caudal ribs became gradually less dorsally inclined and terminated

at caudal vertebrae 26, and that the orientations of the chevrons

were similar to those seen in A. garrido (see Fig. 8).

Epaxial Musculature
Following the terminology scheme established in Persons and

Currie 2011 [22], the epaxial tail musculature is divided into two

major muscle sets: the dorsal M. spinalis and the ventral M.

longissimus. Throughout the caudal series, the M. spinalis inserts

onto the tips and lateral surfaces of the neural spines. Anteriorly,

the M. longissimus inserts onto the lateral surfaces of the neural

arches and the dorsal surfaces of the caudal ribs. More posteriorly,

after the termination of the caudal ribs, the M. longissimus only

inserts onto the lateral surfaces of the neural arches (see Persons

and Currie [22], for a complete review of theropod caudal muscle

insertions). The septum that divides the M. spinalis from the M.

longissimus leaves no clear insertion scar, but is reconstructed based

on the morphology observed in dissections of modern sauropsids.

Hypaxial Musculature
The hypaxial tail muscles consist of two large muscle sets: the

M. ilio-ischiocaudalis and the M. caudofemoralis [6]. The M. ilio-

ischiocaudalis is composed of multiple myomere series and can be

subdivided into the M. iliocaudalis, which originates from the ilium,

and the M. ischiocaudalis, which originates from the ischium. The

M. ilio-ischiocaudalis extends posteriorly to the tip of the tail. The M.

caudofemoralis is composed of long uninterrupted muscle fibers and

can be subdivided into the m. caudofemoralis brevis, which fills the

brevis fossa, and the m. caudofemoralis longus, which tapers

posteriorly. Both the m. caudofemoralis brevis and the m. caudofemoralis

longus insert onto the fourth trochanter of the femur, and together

serve as the primary limb retractor [17–18].

Gatesy 1990 [17] argued that the posterior tip of the M.

caudofemoralis was correlated with the termination of the caudal

ribs. Persons and Currie 2011 [22] identified a scar on the broad

haemal spines of some well-preserved theropod specimens as the

insertion of the septum that separated the M. ilio-ischiocaudalis from

the M. caudofemoralis. This scar could, therefore, be used to identify

Figure 8. Digital model of the tail of Carnotaurus sastrei. Blue vertebrae modeled after Carnotaurus sastrei (MACN-CH 894), red vertebrae
modeled after Aucasaurus garridoi (MCF-PVPH-236), purple vertebrae modeled after Majungasaurus crenatissimus (FMNH PR 2100), and green
vertebrae modeled after Ceratosaurus nasicornis (USNM 4735).
doi:10.1371/journal.pone.0025763.g008
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the posterior tip of the M. caudofemoralis. Well preserved haemal

spines from the region of the tail where the posterior terminus of

the M. caudofemoralis would be expected have yet to be described

for C. sastrei or any of its close relatives. In C. sastrei, the position of

the posterior tip must be inferred, based on the point of caudal rib

termination, which must in turn be inferred from the general trend

in caudal rib reduction seen in the anterior vertebrae and from the

caudal rib termination point of the distantly related Majungasaurus

crenatissimus.

Using comparisons with modern reptiles, Wilhite [37] and

Persons and Currie [22] argued that anterior to its posterior

termination, the M. caudofemoralis of dinosaurs inserted across the

full lateral surfaces of the centra and chevrons. Contrary to

numerous depictions (e.g. [15,20]), the M. caudofemoralis did not

insert onto the ventral surfaces of the caudal ribs (which are strictly

insertions of the M. ilio-ischiocaudalis).

However, Persons and Currie [22] suggested that the nearly

vertical caudal ribs of some advanced abelisaurids were possible

exceptions. The well preserved anterior caudal series of Aucasaurus

garrido offers strong evidence that this was indeed the case, and that

the caudal ribs of advanced South American abelisaurids were

insertion surfaces for both the M. ilio-ischiocaudalis and the M.

caudofemoralis. The ventral surface of each caudal rib of A. garrido

shows a narrow anteriorposteriorly directed scar (Fig. 9,10) that

strongly resembles the haemal spine scar interpreted in Persons

and Currie [22] as the insertion of a septum in other theropods.

Carrano et al. [12] interpreted the caudal rib scars of A. garrido

as sutures between fused caudal ribs and caudal transverse

processes. This interpretation is here disfavored, because the scars

do not form continues rings around the caudal ribs, but are instead

pronounced only on the ventral surfaces. The scars are also

morphologically dissimilar to typical sutures, being substantially

distended from the surrounding bone surface and tapered to form

central keels. However, the scars are morphologically similar to

vertebral septum insertion scars observable in modern animals,

such as on the dorsal surfaces of lumbar transverse-processes,

Figure 10. Caudal vertebra 1–4 of Aucasaurus garridoi (MCF-PVPH-236) in lateral view. Arrows indicate the sequence of M. ilio-
ischiocaudalis/M. caudofemoralis septum scars.
doi:10.1371/journal.pone.0025763.g010

Figure 9. Caudal vertebra 4 of Aucasaurus (MCF-PVPH-236) in
(A) lateral, (B) dorsal, and (C) anterior view. Arrows indicate the M.
ilio-ischiocaudalis/M. caudofemoralis septum scars.
doi:10.1371/journal.pone.0025763.g009
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which commonly demark boundaries between epaxial muscle in

mammals (Fig 11) (pers. obs.).

These caudal rib scars are here interpreted as marking the

dorsal insertion of the M. ilio-ischiocaudalis/M. caudofemoralis septum.

Using these scars as a guide, it is possible to reconstruct how far

dorsally the M. caudofemoralis extended across the caudal ribs

of A. garrido, and, by analogy, approximately how far the M.

caudofemoralis extended across the caudal ribs of C. sastrei (Fig. 5).

Musculature Modeling
Following methods similar to those used by Arbour [20], Allen

et al. [21], and Mallison [23], two muscle reconstructions were

created. One is a conservative reconstruction that is comparable

with those created in Persons and Currie [22]. The other is a

robust reconstruction.

In the conservative model, the whole of the epaxial musculature

was reconstructed by extending an arc in dorsoventral cross-

section from the tips of the neural spines to the tips of the caudal

ribs; anterior to its tapering, the M. caudofemoralis was reconstructed

by extending an arc in dorsoventral cross-section from its

attachment site on the ventrolateral surface of the caudal ribs to

the ventral tip of the chevrons. The M. ilio-ischiocaudalis was

reconstructed anterior to the tapering point of the M. caudofemoralis,

by extending an arc in dorsoventral cross-section from the lateral

tips of the caudal ribs to below the ventral tips of the chevrons,

and, posterior to the tapering point of the M. caudofemoralis by

extending an arc in dorsoventral cross-section from the ventral

boundaries of the neural arches to the ventral tips of the chevrons.

Anteriorly, the arc of the M. ilio-ischiocaudalis maintained a

consistent thickness equal to the distance between the reconstruc-

tion of the M. caudofemoralis and the ventrolateral edge of the

caudal ribs. Note that this method of conservative reconstruction is

not synonymous with the ‘‘traditional elliptical’’ reconstruction

method described in Allen et al. [21], and in the conservative

model the dimensional extents of the caudal musculature greatly

exceeds that of the caudal osteology.

In the robust model, the epaxial musculature arc was assumed

to extend beyond the neural spines and caudal ribs by 25% and

75%, respectively. The M. caudofemoralis was reconstructed with

a laterally oblong shape; and the M. ilio-ischiocaudalis was

thickened such that the lateral extreme of its arch extended

beyond that of the anterior caudal ribs by 400%. Like the

conservative model, the robust model assumes that no large fat

deposits were present in the tail, although in modern sauropsids

the tail is a common site of fat storage. In modern crocodilians,

a thick layer of fat is often deposited between the M.

caudofemoralis and the M. ilio-ischiocaudalis [38]. The proportions

used in the robust model conform to those observed in the

girthy anterior-most caudal regions of modern reptiles

[21,23,38], with fat deposits removed.

The portion of the M. caudofemoralis reconstructed in both the

conservative and the robust model corresponds to the m.

caudofemoralis longus. The m. caudofemoralis brevis was not modeled.

Instead, the mass of the m. caudofemoralis brevis was estimated by

measuring the volume of the brevis fossa. Because the m.

caudofemoralis brevis is completely capped by the brevis fossa, the

size of the m. caudofemoralis brevis is far less speculative, and its

contribution to the final mass estimations was not varied between

the robust and conservative results.

Supporting Information

Figure S1 Long tail model of Carnotaurus sastrei
(MACN-CH 894) reconstructed to test for muscle mass
variation resulting from uncertain posterior tail form.
Reconstruction assumes five additional posterior vertebrae and

posterior chevrons and caudal ribs that decrease in size more

gradually. Muscle reconstruction follows the conservative meth-

od. (A) Digital reconstruction of the caudal and pelvic skeleton

with M. caudofemoralis longus (red). (B) Complete digital recon-

struction, with epaxial musculature (orange) and M. ilio-

ischiocaudalis (pink) added.

(TIF)

Figure S2 Short tail model of Carnotaurus sastrei
(MACN-CH 894) reconstructed to test for muscle mass
variation resulting from uncertain posterior tail form.
Reconstruction assumes five fewer posterior vertebrae and

posterior chevrons and caudal ribs that decrease in size more

rapidly. Muscle reconstruction follows the conservative method.

(A) Digital reconstruction of the caudal and pelvic skeleton with

M. caudofemoralis longus (red). (B) Complete digital reconstruction,

with epaxial musculature (orange) and M. ilio-ischiocaudalis (pink)

added.

(TIF)

Figure 11. Example of muscle septa scars. Arrows point to scars on the anterior most lumbar vertebra of Felis catus that demark the boundary
between two epaxial muscle insertions (right lateral view).
doi:10.1371/journal.pone.0025763.g011
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Table S1 Measurements of LACM 127704 (a cast of
Carnotaurus sastrei MACN-CH 894). Direct measurements

of MACN-CH 894 from Bonaparte et al. [1] included for

comparison. All measurements given in millimeters.

(XLSX)

Table S2 Comparison of mass estimations from the test
of muscle mass variation resulting from uncertain
posterior tail form. Results indicate total tail muscle mass is

potentially affected by less than 7%.

(XLSX)
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