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Abstract

In recent years fake news has become a more serious problem. This is

mainly due to the popularity of social networks, search engines and news ag-

gregators that propagate fake news. Classifying news as fake is a hard problem.

However it is possible to distinguish between fake and real news, by consider-

ing how many related tweets agree/disagree with the news. Therefore, in the

simplest case the problem can be reduced to identifying whether a given tweet

agrees with, disagrees with or is unrelated to the news in question. In general

this problem is referred to as ’stance detection’. In machine learning termi-

nology this is a classification problem. This thesis investigates more advanced

Natural Language Models, such as matching Long Short Term Memory model

and soft attention mechanism applied to stance detection problem. The ideas

are tested using a publicly available data set.
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Chapter 1

Introduction

1.1 Fake news problem / Motivation

Social networks have become an important source of information in recent

years, especially with respect to news. Such networks generate a firehose of

data which attracts researchers. Twitter seems to be one of the most popular

social networks among researchers. The reason might be a clear and simple

structure of the data:

• each tweet has the maximum length of 140 characters

• users can follow other users.

The amount of research papers that use datasets from Twitter is vast and

the review of this body of research deserves a lengthy paper in its own. Here

I give a very short survey of papers related to the topic of the thesis. Results

in [1] provide some descriptive statistics based on a small sample of around

2,000 tweets. A more in-depth graph theoretical analysis based on all Tweets
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as of July 2009 is presented in [25].

As it was shown in [36] clustering tweets provides the means of extracting

news from Twitter. Breaking news detection was considered to be the next

challenge at that time. Recently, a case study published in [29] showed that

it is possible to detect breaking news faster than traditional journalism 2.

The veracity of news is another important issue and still remains a chal-

lenge. In the case of news detection we know that unsupervised statistical

machine learning methods such as clustering allows us to detect news. Simply

put, a breaking news is a new cluster. That is the data set of tweets is self-

contained in the sense that it contains all the sufficient information for news

detection. The main problem in identifying fake news however, is that fake

news usually does not contain sufficient information for revealing itself as fake.

It needs some external information or some indirect measures of veracity.

An important study of this problem was conducted in [30]. In this paper

authors came up with an indirect (but easy to interpret) measure of verac-

ity. They analyzed the dynamics of Twitter activity right after the Chilean

earthquake in 2010 3.

In [30], authors tried to see the difference in propagation of true facts

versus false rumours. Researchers came up with the hypothesis that the

stance/sentiment of a tweet about the news can measure the veracity of that

news. To test the hypothesis authors collected a data set that contains 7 cases

of confirmed truths and 7 cases of false rumours. The veracity of each case

2Authors also claim their production proprietary system has fake news detection module,
although they do not disclose any details.

3According to Wikipedia it is considered to be the seventh strongest earthquake in his-
tory. NASA also believes that Earth’s axis shifted causing a permanent shortening of day.
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was validated by reliable sources. An example of a confirmed truth: ’The in-

ternational airport of Santiago is closed’. For each case researchers manually

collected unique tweets. By unique tweet we mean a tweet posted by a user

without quotes from other tweets (the opposite of a re-tweet). The number of

tweets per one case ranges from 42 to 700. The next step was to classify each

tweet into the following categories:

• tweet confirms the news

• tweet denies the news

• tweet asks questions about the news to gather more information

• tweet is indifferent or difficult to classify.

It is worth mentioning that classification was done by humans not by

statistical machine learning or classical Natural Language Processing (NLP)

methods. That makes results reliable and does not raise questions about the

accuracy of classification. The confirmed truths get over 95% of approval 4

whereas false rumours get only 45%. Given the size of the sample and the

methodology (classification by humans) the result is significant. Hence, it can

be concluded that detection of fake news can be reduced to stance detection

of related messages, at least in the case of Titter.

Fake news detection problem is an interesting research problem in Natural

Language Processing on its own. In addition, fake news is becoming a serious

problem of social networks nowadays. The coverage and the speed of propaga-

tion of information in social networks made social networks an important part

4The percentage of tweets that confirm the news.
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of mass media. However, the news generation process here is not centralized

and, therefore, the news is not validated. Identifying the veracity of news by

humans is costly. Thus statistical machine learning methods can significantly

reduce the cost.

1.2 Pre Neural Networks models / Classical

Natural Language Processing methods

Stance detection (SD) as a separate subfield seems to be younger than a closely

related field of Recognizing Textual Entailment (RTE). Given a pair of sen-

tences RTE is the classification of the relation between two sentences as:

• sentences contradict each other

• first sentence implies the second

• sentences are unrelated.

SD on the other hand is the classification of a pair of sentences as:

• second sentence confirms/favours the first

• second sentence denies/is against the first

• sentences are unrelated.

It can be seen that the problems are quite close and it is reasonable to conjec-

ture that classification models should have similar approach if not the same.
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RTE has been a challenging task and is recognized as an important build-

ing block in other NLP systems, like text summarizations and information

extraction [11].

A lot of effort was put into explicit feature engineering approaches. Such

hand crafted features require expert knowledge in natural language processing.

In [26] researchers used features based on:

• overlap of sentences on the level of words

• sentences’ alignment

• negation detection

• semantics similarities of parts of sentences that do not overlap

The novelty of [19] lies in the application of soft cardinality [20] in the

similarity measure as opposed to a more conventional Jaccard similarity [18]

which is based on the mathematical cardinality of a set. When dealing with

hand crafted features in Natural Language Problems, a common task is to

measure the similarity of sentences or some features derived from sentences.

Definition 1.2.1. Jaccard similarity. For any two sets A and B

J(A,B) =
|A ∩B|
|A ∪B| (1.1)

In [19] authors used soft cardinality instead of mathematical cardinality |.|.

Definition 1.2.2. Soft cardinality.

|A|sim =

|A|∑
i=1

1∑|A|
j=1 sim(ai, aj)p

(1.2)
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where

A = {a1, a2, . . . a|A|}, p ≥ 1 (1.3)

and sim(., .) satisfies the following conditions:

for i 6= j sim(ai, aj) ∈ [0, 1) (1.4)

for i = j sim(ai, aj) = 1 (1.5)

It can be seen that as p→∞ |A|sim = |A|.

The approach taken in [40] is the combination of a large number of hand

crafted features. In total researchers used 72 features grouped into following

categories:

• Length features. 16 different measures related to the length of sentences.

• Surface text similarity. 10 sentence similarity measures.

• Semantic similarity. 6 similarity measures based on meaning of words.

• Grammatical relationship. 8 measures of similarity on grammatical level.

• Text difference measures. 13 various handcrafted features based not on

the overlapping part of sentences but rather on its difference.

• String features. 13 similarity measures on the character level.

• Corpus-based features. N-gram and vector space features, 6 features in

total.

Using those features authors applied 5 standard classifiers:

6



• SVM

• Random Forest

• Gradient Boosting

• kNN

• semi-supervised learning with kNN

The best model achieved high accuracy compared to other models at that

time 5. The work [40] does not have any novel approaches, but rather uses a

combination of many existing techniques.

Slightly different approach of Markov Logic Networks applied to RTE was

explored in [7]. Authors combined logic-based sentence representations with

vector space model in order to learn features derived from both sentence struc-

ture and meaning of separate words.

Recent breakthroughs in deep neural NLP led to new approaches in both

RTE and SD. In [35] authors applied ideas of conditional RNN encoding and

attention mechanism for RTE problem. Another model similar to that in [35]

but with an interesting modification of LSTM presented in [39].

The recent model described in [4] achieved state of the art performance

in stance detection task of SemEval 2016 [33] data set. That model seems

simpler than contemporary models from RTE. It is basically a bidirectional

conditional RNN encoder. It should be noted that new data set specifically

for stance detection appeared quite recently [12]. It should help advance the

research in this field.

5around 83 % of 5 fold cross-validated accuracy.
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Chapter 2

Methods

2.1 NLP from scratch

It can be seen from Section 2.1 how much effort and prior knowledge is required

for hand crafted feature engineering. However, recent advancements in Neural

Networks show that automated feature extraction is possible. It is worth

quoting a highly cited paper [10] from this field:

We propose a unified neural network architecture and learning algo-

rithm that can be applied to various natural language processing

tasks including: part-of-speech tagging, chunking, named entity

recognition, and semantic role labeling. This versatility is achieved

by trying to avoid task-specific engineering and therefore disre-

garding a lot of prior knowledge. Instead of exploiting man-made

input features carefully optimized for each task, our system learns

internal representations on the basis of vast amounts of mostly

unlabeled training data.
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2.1.1 Statistical language models/distributed represen-

tation for words

A lot of tasks in NLP require a good representation of semantics. For instance,

a good feature representation of word should preserve its meaning, such as

’closeness’ in meaning – i.e. words ’cat’ and ’kitten’ should be ’closer’ in

meaning than ’cat’ and ’horse’. It turns out that the model that quantifies

this idea is the statistical language model. In order to give a formal definition

of a statistical language model we need some preliminaries.

Definition 2.1.1. Token. The smallest indivisible lexical unit.

Definition 2.1.2. Text. An ordered set of tokens in a natural language.

A text can be a book, a set of Wikipedia articles and the token can be a

character, a word or a whole sentence. In the thesis the token is a word.

Definition 2.1.3. Dictionary. Given a text in natural language, a dictionary

is an ordered set of unique tokens contained in text.

Now we can introduce the notion of statistical language model.

Definition 2.1.4. Statistical language model. Given a dictionary D, a statis-

tical language model is the joint probability density over sequences of tokens

with elements from the dictionary:

∀{w1, w2, . . . wT} s.t. wt ∈ D, P (w1, w2, . . . wT ) ∈ R. (2.1)

Simply put a ’good’ statistical language model should assign higher prob-

ability to natural sentences. For example we expect the following relation to
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hold:

P(’The quick brown fox jumps over the lazy dog.’) ¿ P(’The dog quick

brown lazy jumps fox over the.’)

It is easy to see that by factoring the joint probability statistical language

model can be rewritten as:

P (w1, w2, . . . wT ) =
T∏
t=1

P (wt|w1, w2, . . . wt−1) (2.2)

Given that equivalent formulation a good statistical language model should

estimate conditional probabilities in such a way that sampled sentences from

the model mimic the sentences from the text that was used for estimation. For

example given the sequence of tokens,

’The quick brown fox jumps over the lazy’,

a good model will generate ’dog’ as the next token, whereas a bad model

will generate ’lazy’ which won’t make the resulting sequence into a sensible

sentence.

Estimating conditional probabilities from 2.2 might be difficult, since the

longer sequences are less frequent and hence the bias for such estimators will

be high. Therefore, a quite common approximation is an n-gram model:

Definition 2.1.5. N-gram language model.

∀{w1, w2, . . . wT} s.t. wt ∈ D, P (w1, w2, . . . wT ) ∈ R (2.3)

where

P (w1, w2, . . . wT ) =
T∏
t=1

P (wt|w1, w2, . . . wt−1) (2.4)
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with

P (wt|w1, w2, . . . wt−1) ≈ P (wt|wt−n+1, . . . wt−1). (2.5)

The idea is quite intuitive: consider only n-1 last tokens, that is n-1 or-

der Markov property. However estimation of these probabilities (by counting

measure) raises at least three important issues:

1. Model will assign zero probability to sequences longer than n

2. Model will not generalize to sequences it has seen in the training data.

3. Curse of dimensionality. A better model will require larger data sets and

the number of n-grams will grow.

A major breakthrough was the distributed representations of words [8].

The main is idea to learn smooth feature representations of words. Smoothness

here means the following: slight changes in the meaning of a word in a sentence

should cause a slight change in the probability assigned to that sentence.

The model proposed in [8] consists of the following parts:

• Given a sequence of words (for simplicity we can think of a sentence

except the last word):

w1, w2, . . . wT−1, s.t. wt ∈ D (2.6)

where D is a dictionary, the model maps each wt into Rm with m� |V |.

V is a |V | dimensional vector space such that each element is a standard

basis vector (so called ’one hot encoding’). The mapping: C : V → Rm
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is linear, C(wt) = wtC, where C is a |V |×m matrix. Matrix C is usually

referred to as an embedding matrix.

• The score y ∈ R|V | is the output of the one layer feed-forward neural

network:

y = U tanh(Hx+ d) (2.7)

where

x = V ec([Cw1, Cw2 . . . CwT−1]) (2.8)

is the concatenation of the word feature vectors, H is a h × m(T − 1)

matrix, d ∈ Rh and U is |V | × h matrix. tanh is applied element-wise.

The probability distribution is obtained from scores through the softmax:

P̂ (wT |w1, w2, . . . wT−1) =
eywT∑
i e

yi
(2.9)

The parameters of the model are C,H, d, U , which are estimated by minimizing

the log-likelihood:

L =
1

T

∑
i

log(P̂ (wT |w1, w2, . . . wT−1)) (2.10)

More schematically model is presented in Figure 2.1 6.

More elaborate models based on these ideas can be found in [17], [34], [32],

[31] and [3]. It is interesting to note that distributed representation of words

models are able to produce very rich vector spaces of features. For example,

a skip-gram model from [32] estimates the vector space where

6Figure by Bengio, Yoshua and Ducharme, Réjean and Vincent, Pascal and Jauvin,
Christian from [8].
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Figure 2.1: Language model described in [8]

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

vec(’Madrid’) - vec(’Spain’) + vec(’France’) ≈ vec(’Paris’).

It is not a single example, and therefore the structure of such learnt represen-

tations is rich.

Similar ideas were extended to models where a token is a whole sentence.

A good example of such model is skip-thought vectors model presented in [24].

Distributed representation for words became an important building block

in many natural language processing models as a rich feature representation

of words. Even though distributed representation for words are estimated for

a very specific model, i.e. language model, it turns out that these features are

13



useful in seemingly unrelated problems like machine translation, sentiment

classification etc.

In practice these features are used not as the direct word features but

rather as a ’warm start’ of the embedding matrix. In order to obtain such a

’warm start’ the initial step is to estimate the language model similar to what

was described in this section using textual information related to the problem

at hand. Very often researchers use word features from pre-trained language

model on one billion words provided by Google [21].

2.1.2 RNN/LSTM

Once we have a good feature representation of words the next logical step is to

find a good representation of sentences. It can be seen from 2.7 that the word

features were combined into a single feature via a linear map. However, the

intrinsic structure of the natural language text lies in the time domain. The

basic time series model that is able to learn efficient feature representations

of sequence of tokens is the Recurrent Neural Network (RNN). The model

consists of the following parts:

• Observed states (distribution vector representation of words): {xt}Tt=1

• Hidden state: ht = f(ht−1, xt) with h0 = 0

• Score of the next state: ŷt = W Tht

• P̂ (xt+1|xt, . . . x1) = softmax(ŷ) or equivalently P̂ (xt+1|ht) = softmax(ŷ)

Thus hidden feature representation ht encodes x1, . . . xt, i.e. more formally

ht = f(x1, x2, . . . xt). Estimation of such models is performed by minimizing

14



the log-likelihood:

L =
1

T

∑
i

log(P̂ (wT |w1, w2, . . . wT−1)) (2.11)

where P̂ (wT |w1, w2, . . . wT−1) = softmax(ŷ).

Figure 2.2: Recurrent Neural Network

Training	RNNs	is	hard

• Multiply	the	same	matrix	at	each	time	step	during	forward	prop	

• Ideally	inputs	from	many	time	steps	ago	can	modify	output	y	
• Take										for	an	example	RNN	with	2	time	steps!	Insightful!

2/2/17

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

A very important extension of RNN is the bidirectional RNN [37]. Bidi-

rectional RNN consists of two RNNs:

• regular RNN described above

• second RNN that encodes the same sequence but in reversed order.

{xt}1t=T

Now at each t we obtain two features:

15



• −→h t feature that encodes the sequence {xt′}tt′=1

• ←−h t feature that encodes the sequence {xt′}Tt′=t.

Thus we obtain a concatenated feature [
−→
h t,
←−
h t] that encodes the past and the

future at each step t, which allows for a better representation of sequences.

One of the most significant applications of bidirectional RNNs is the neural

machine translation model described in [5].

Figure 2.3: Bidirectional Recurrent Neural Network

Bidirectional	RNNs

2/2/17

Problem:	For	classification	you	want	to	incorporate	
information	from	words	both	preceding	and	following	

Ideas?

Corresponding figures 2.2 and 2.3 7 illustrate the structure of both models.

RNN suffers from the vanishing/exploding gradient problem which will be

discussed in Section 2.1.3. Long Short Term Memory model (LSTM) [16], [13]

introduces the ’forgetting’ mechanism which allows for moving weight between

ht and xt.

7By Christopher Manning and Richard Socher from
http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture8.pdf
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Definition 2.1.6. LSTM. Given a sequence {xt} LSTM is defined recursively

by the following set of equations:

it = δ(W ixt + U iht−1)

ft = δ(W fxt + U fht−1)

ot = δ(W oxt + U oht−1)

c̃t = δ(W cxt + U cht−1)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh (ct).

(2.12)

Figure 2.4 8 illustrates the structure of the LSTM.

Figure 2.4: LSTM

8By Chris Ola: h[p://colah.github.io/posts/2015-08-Understanding-LSTMs/
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2.1.3 Estimation technique/Backpropagation

The problem in minimizing the log-likelihood is that the function is non con-

vex. In practice, the main algorithm used in minimizing log-likelihood for

neural network based NLP models is gradient-descent. The problem in apply-

ing gradient descent to neural networks is in the complexity of the functions

that represent those models. These functions are basically multi-layered com-

positions of mappings. Computing derivatives and updating the estimated

parameters is a challenging task. The efficient algorithm of computing deriva-

tives was only discovered in 1980s, see for example [27].

It turned out that RNN models pose another estimation problem. Since

RNNs are recursive functions, the derivative is the product of the same Jaco-

bian, i.e. Jacobian raised to a power of 30-50. In practice, once the Jacobian

becomes small the product converges to zero, or if Jacobian becomes large it

diverges to infinity. This is the so-called vanishing/exploding gradient problem

discussed in [9] and [14]. The same problem was studied in the framework of

dynamical system in [15]. The dynamical system in this case is the gradient

descent update mapping:

wt+1 = wt − α∇f(wt) (2.13)

where f is the objective function and α is the learning rate.

Neural networks are quite sensitive to the learning rate parameter. In

practice researchers use adaptive learning rates. One of the most popular

algorithms is RMSProp (Root Mean Square Propagation) [38]. The update

equations are

18



vt+1 = γvt + (1− γ)||∇f(wt)||2 (2.14)

wt+1 = wt −
η√
vt+1

∇f(wt) (2.15)

where γ and η are hyper parameters. Another popular algorithm is Adam

(Adaptive Moment Estimation) presented in [23].

Another estimation technique widely used in practice is stochastic mini

batch gradient descent [28]. The idea is to perform gradient descent update

with small random sample of data. The rationale behind it is two-fold:

• First, it is less computationally intensive to perform a gradient descent

using only a small batch of data. It is also a good solution for the memory

bound problem.

• Second, stochastic update helps to perturb the gradient descent path,

which is important in non convex problems.

Non convexity of neural networks comes in the form where we can observe

a lot of local minima. However, it was conjectured in [6] in 1989 and recently

proved in [22] in 2016. nonexistence of poor local minima. Therefore, the

objective in the loss minimization problem is not the global solution, but

rather a ’good’ local solution, which greatly simplifies the estimation problem.

2.2 Approach/Models implemented

In this project I implemented the following 4 models:

• Conditional bidirectional RNN encoder described in [4]. The model
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is presented in 2.7. First, bidirectional RNN encodes the name (i.e. ’Don-

ald Trump’). Second bidirectional RNN encodes the tweet (i.e. donald

trump has my vote! #donaldtrumpforpresident #donaldtrump) with

the initial hidden state produced by the first bidirectional RNN encoder

(conditioning). Then the final hidden state is classified as

NONE/FAVOR/AGAINST.

The source code for the model is available in tensorflow 0.6 [2] (the link

is in the paper). I ended up rewriting it in tensorflow 1.0.

There is an important part of the model not documented in [4]. By in-

specting the code, I discovered that the estimation of the model was done

using 3 classes. But during inference authors used simple hand crafted

features to classify name-tweet pairs as NONE/RELATED and then used

the estimated model to classify RELATED pairs as FAVOR/AGAINST.

Therefore, the model was estimated for 3 classes but inference was done

only for 2 classes, which does not seem to be theoretically sound. Ad-

dition of a third class during estimation brings more complexity to the

data and thus affects the properties of the estimator.

This turned out to be a very crucial part of the model. I compared the

accuracy on the test set of the model with and without hand crafted

feature classifier. The difference in accuracy 9 is significant: 43 % vs 63

% respectively. What could be even more surprising is that the hand

crafted features are very simple. For example, given a person’s name:

’Donald Trump’ and a tweet the problem is to classify the tweet as

9Percentage of correctly predicted data points in the test set.
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RELATED or NONE 10 (unrelated) with respect to the person’s name.

The hand crafted feature then: if a tweet contains at least one of the

strings from the list {’donald trump’, ’trump’, ’donald’}, it is considered

to be RELATED to ’Donald Trump’ and NONE otherwise. I make use of

this fact in the experimental design and discuss this issue in the Section

3.2.3.

• Conditional RNN encoder with neural attention described in [35].

Its schematic representations are in figures 2.5 and 2.8. First RNN en-

codes the name (’Donald Trump’). Second RNN encodes the tweet with

the initial hidden state produced by the first RNN encoder (condition-

ing). Let {hnj }j∈J and {hwk }k∈K be the encodings of name and tweet

respectively. The attention vector is then

ak =
M∑
j=1

αkjh
n
j , (2.16)

where attention weight αkj models the alignment of hnJ and hwk . That is

αkj =
exp(ekj)∑
j′ exp(ekj′)

(2.17)

with

ekj = W e tanh (W nhnj +Wwhwk +W ahak−1). (2.18)

10Here I use the same terminology as in [4]. We are detecting stance. Hence, the stance
can be related or none (no stance).
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Final encoder summarizes attention vectors:

hak = ak + tanh (V ahak−1). (2.19)

The last layer feature haN is used for classification. I implemented the

model in tensorflow 1.0 following the presentation in the paper [39].

Figure 2.5: The figure taken from [39] clarifies the wiring of Conditional RNN
encoder with neural attention

• Matching LSTM (mLSTM) encoder with neural attention de-

scribed in [39]. Its schematic representations are in figures 2.6 and 2.9.

First RNN encodes the name (’Donald Trump’). Second RNN encodes

the tweet without conditioning on the hidden state produced by the first

RNN encoder (conditioning). Let hnj and hwk be the encodings of name

and tweet respectively. The attention vector is then

ak =
M∑
j=1

αkjh
n
j , (2.20)
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where attention weight αkj models the alignment of hnJ and hwk . That is

αkj =
exp(ekj)∑
j′ exp(ekj′)

(2.21)

with

ekj = W e tanh (W nhnj +Wwhwk +Wmhmk−1). (2.22)

The final encoder summarizes attention vectors using mLSTM (slight

modification of LSTM).

Definition 2.2.1. Matching LSTM. Let mk = [ak, h
w
k ] then

imk = δ(Wmimk + V mihmk−1 + bmi)

fm
k = δ(Wmfmk + V mfhmk−1 + bmf )

omk = δ(Wmomk + V mohmk−1 + bmo)

cmk = fm
k � cmk−1 + imk � tanh (Wmcmk + V mchmk−1 + bmc)

hmk = omk � tanh (cmk )

(2.23)

The last layer feature hmN is used for classification. I implemented the

model in tensorflow 1.0 following the presentation in the paper [39].

• 2 stage classification proposed by me. First stage classifier treats

the problem as if it has only 2 categories as opposed to 3 as in the

original formulation. First stage model classifies name-tweet pairs as

’NONE/RELATED’. The pairs which were marked as ’RELATED’ are

then passed to the second stage model which classifies name-tweet pairs

as ’FAVOR/AGAINST’. In this project I used Conditional bidirec-
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Figure 2.6: The figure taken from [39] clarifies the wiring of mLSTM encoder with
neural attention

tional RNN encoder as a first and second stage model. In another

approach I used very basic hand crafted feature from [4] (decribed in

Conditional bidirectional RNN encoder subsection) for the first

stage model. I implemented the model in tensorflow 1.0.

2.3 Rationale

In this project, I implemented and applied two models from a different subfield

of NLP, Recognizing textual entailment (RTE). It seems to me that SD and

RTE are very closely related and therefore it serves as a rationale for choosing

these models. Furthermore, recent models in RTE incorporate an attention

mechanism, which is not present in approaches from SD.

• Conditional bidirectional RNN encoder The model was picked

since it achieved state of the art performance in the stance detection
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Figure 2.7: Conditional bidirectional RNN encoder.

subtask of the SemEval 2016 [33] data set. However, the model that

was used seemed a little simplistic. In particular, authors only used a

bidirectional RNN encoder. One apparent improvement is the attention

mechanism. On the other hand, the performance (around 43%) of the

model made me think that there is some room for improvement that

might lead to interesting general conclusions. In this project I consider

this model as a baseline model.
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• Conditional RNN encoder with neural attention This is the first

model from RTE. As with the previous model, it also uses a conditional

RNN encoder, but the main distinction is the addition of attention mech-

anism.

• mLSTM encoder with neural attention This model was picked due

to its superior performance on RTE problems compared to Conditional

RNN encoder with neural attention. It also has a curious modifi-

cation of LSTM.

• 2 stage classification The main rationale for implementing this model

was the hypothesis that the classes are not equally well separated. I will

discuss the hypothesis in detail in the Section 3.2.1.
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Figure 2.8: Conditional RNN encoder with neural attention
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Figure 2.9: Matching LSTM (mLSTM) encoder with neural attention
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Chapter 3

Numerical Studies

3.1 Problem

In recent years, fake news has become a more serious problem. This is mainly

due to the popularity of social networks, search engines and news aggregators

that propagate fake news. Classifying news as fake is a hard problem as

was stated in Section 1.1. However, in [30] authors show that it is possible to

distinguish between fake and real news by considering how many related tweets

agree/disagree with the news. Therefore, in the simplest case the problem

can be reduced to identifying whether a given tweet agrees with, disagrees

with or is unrelated to with the news in question. In general this problem is

referred to as ’stance detection’ (SD). In machine learning terminology this is

a classification problem.

In this project I addressed a simplified problem. Instead of a piece of news

I consider a name. So, given:

• a name: Donald Trump
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• and a tweet: donald trump has my vote! #donaldtrumpforpresident

#donaldtrump

the problem is to identify the stance: NONE/FAVOR/AGAINST. The dataset

used in this project is from stance detection subtask B part of the well know

SemEval 2016 [33] data set.

The reason for the simplification is twofold:

• to my knowledge at the time of writing there was no commonly accepted

data set for fake news

• simplified problem allows for reduced cost of conducting experiments

The reasons for choosing this particular problem:

• As far as I can judge SD is an ’unsolved’ problem. My conclusion is

based on the accuracy achieved by state of the art models in this field

(around 50%). Therefore, there is room for interesting research which

could lead to general results.

• The ’size’ of the problem seemed manageable.
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3.2 Experiments

3.2.1 Hypotheses

For the purpose of the current project I formulated and tested the following

hypotheses:

1. Addition of attention mechanism to RNN encoder allows for a better

stance detection.

2. mLSTM in conjunction with attention mechanism allows for a better

stance detection.

3. Classes are not equally well separable at the same time. Intuitively, the

3 category problem NONE/FAVOR/AGAINST is in fact two unrelated

2 category problems: NONE/RELATED and FAVOR/AGAINST. And

one model might struggle in separating all three classes at the same time.

Therefore, the hypothesis states that in order to reduce the complexity

of the problem we can separate NONE/RELATED and then refine sep-

aration for FAVOR/AGAINST by using the same model.

4. Classes are not equally well separable in 2 stages. Geometrically, the hy-

pothesis states that sub-manifolds of 3 categories are entangled in differ-

ent ways. That is, the decision boundary between NONE/RELATED is

different from the decision boundary between FAVOR/AGAINST. Prob-

abilistically, the problem itself has a specific structure, which allows for

the following factorizations:
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P(FAVOR) = P(FAVOR |RELATED) P(RELATED),

P(AGAINST) = P(AGAINST |RELATED) P(RELATED).

Stage 1 models

P(RELATED)

and stage 2 models

P(FAVOR |RELATED), P(AGAINST |RELATED).

Here we exploit the fact that only if the name and the tweet are related

then we can say what is the type of relationship. Therefore, hypoth-

esis states that two different models are needed in order to separate

NONE/RELATED and FAVOR/AGAINST.

5. Conditional bidirectional RNN encoder model is not robust to

addition of a ’hard to separate’ class. As I mentioned in the Sec-

tion 2.2 the model from [33] was trained on a data set with 3 classes

(NONE/FAVOR/AGAINST) and tested on only with 2 classes (FA-

VOR/AGAINST). The third class was labeled by hand crafted features.

Therefore, the idea behind the experiment to see how the model per-

forms if it is trained on a data set with 2 classes (FAVOR/AGAINST)

and used to label the test set containing the same 2 classes vs training

on 3 classes and testing on 3 classes.

3.2.2 Experimental design

As it was briefly mentioned previously the data set used in all experiments is

a stance detection subtask B from SemEval 2016. It should be noted that the

training set contains only one name, namely ’Donald Trump’ and, more im-
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portantly, the training set is not labeled. However, authors of [4] autolabelled

it by using hand crafted features (simple regular expressions) which are de-

scribed in the paper and are publicly available (link is in the paper). Potential

implications of this fact will be discussed in the Section 3.2.3.

The data set is split into training (18,760 name-tweet-label triples) and

testing sets (707 name-tweet-label triples). It should be noted that the training

set is unbalanced with respect to 3 classes. The training set consists of 50%

of NONE class, 25% of FAVOR class and 25 % of AGAINST class. For the

3 category classification, I’d rather subsample the NONE subset in order to

make the data set balanced. However, in order to keep the results comparable

to other published models that make use of the official data set provided by

SemEval 2016, that was not altered. Potential implications of that will be also

discussed in Section 3.2.3.

1. Addition of attention mechanism to RNN encoder allows for a better

stance detection. The experiment design in this case is quite straightfor-

ward. I compared the performance of the baseline model Conditional

bidirectional RNN encoder and a similar model but with attention

mechanism Conditional RNN encoder with neural attention. The

’training’ dataset (18,760 name-tweet-label triples) specified by SemEval

2016 was split into training (90%) and evaluation sets (10%). The mod-

els were trained with the same hidden state dimensions and dropout rate

for 8 epochs. All these parameters were set as in the original paper [4]

describing the baseline model. I used cross entropy loss on the evaluation

set as a performance measure.
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2. mLSTM in conjunction with attention mechanism allows for a better

stance detection. The experiment design in this case is quite straightfor-

ward. I compared the performance of the baseline model Conditional

bidirectional RNN encoder and a similar model but with attention

mechanism mLSTM encoder with neural attention The ’training’

dataset (18,760 name-tweet-label triples) specified by SemEval 2016 was

split into training (90%) and evaluation sets (10%). The models were

trained with the same hidden state dimensions and dropout rate for 8

epochs. All these parameters were set as in the original paper [4] de-

scribing the baseline model. Cross entropy loss on the evaluation set

was chosen as a performance measure.

3. Classes are not equally well separable at the same time. The experi-

mental design in this case is slightly different than in two previous ex-

periments. I tested the hypothesis by comparing the performance of

the baseline model Conditional bidirectional RNN encoder (with-

out hand crafted features) to the 2 stage model, where at each stage I

applied the same model Conditional bidirectional RNN encoder.

The idea behind the experimental design was to see if there is a differ-

ence between performing one 3 category classification or two 2 category

classification in a sequence.

The 2-stage classification required splitting the training set into train-

ing stage 1, training stage 2 and evaluation set into evaluation stage 1,

evaluation stage 2 sets. Stage 1 model classifies name-tweet pairs into

NONE/RELATED and, hence, training stage 1 set contains the same
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sample as the training set but with both FAVOR and AGAINST data

points labelled as RELATED. evaluation stage 1 set is constructed in

a similar fashion. Stage 2 model classifies name-tweet pairs into FA-

VOR/AGAINST and, therefore, training stage 2 set only includes the

name-tweet-label triplets from the training set with labels FAVOR/AGA-

INST. evaluation stage 2 set is constructed in a similar fashion. Stage 1

and stage 2 use the same model but trained on different sets: train-

ing stage 1 and training stage 2 sets. That is same model but with dif-

ferent parameterizations.

In this experiment it is difficult to compare evaluation training loss

curves, since 2-stage classification produces two curves: one for stage 1

and one for stage 2 (although they are still very instructive). I used train-

ing/evaluation sets to training models and monitor overfitting. Then I

used test set to compare accuracy of predictions by both models. Ide-

ally, the data need more splits in order to use test set once in the end.

Since all the code was set up for training/evaluation/test split, I ended

up using test set twice (in this and next experiments). I will elaborate

on that issue in the Section 3.2.3.

4. Classes are not equally well separable in 2 stages. In this experiment, I

compare the performance of the 2-stage classifier where both stages use

the same model (homogenous) and 2-stage classifier where stage 1 and

stage 2 models are different (heterogenous).

Homogenous model uses the baseline model Conditional bidirectional

RNN encoder as described in Section 2.2 for both stages. In the het-
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erogenous setup I used simple hand crafted features discussed in Section

2.2 as stage 1 model that classifies tweets into RELATED and NONE.

For stage 2 model I used the baseline model Conditional bidirec-

tional RNN encoder that classifies RLATED tweets into FVOR and

AGAINST.

5. Conditional bidirectional RNN encoder model is not robust to ad-

dition of a ’hard-to-separate’ class. In this case the experimental de-

sign is quite straightforward: train the baseline model Conditional

bidirectional RNN encoder on the data set with 3 classes (NO-

NE/FAVOR/AGAINST) and test on data with same 2 classes using

hand crafted features to classify NONE/RELATED (original approach

from [4]). I replicate the same approach with one modification: the

model will be trained on 2 classes only rather than 3.

3.2.3 Results

Here I list the results of experiments for each hypothesis from Section 3.2.1 in

the same order:

1. Addition of attention mechanism to RNN encoder allows for a better

stance detection.

2. From figures 3.1 and 3.2 it can be seen that mLSTM model with at-

tention is much worse than the baseline model. There is no significant

difference between the baseline model and the Conditional RNN encoder

with neural attention. It should be noted that loss curves represent the
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dynamics of gradient descent. After every epoch the loss is computed

using training set and evaluation set. The dynamics of gradient descent

shows the convergence properties of each model and potential signs of

overfitting. Both training loss curves and evaluation loss curves have

monotonically decreasing shapes. That implies that models do not have

overfitting problems.

3. Classes are not equally well separable at the same time. By comparing

results from numerical experiments for ’baseline without hand crafted

features’ and ’2-stage baseline’ it can be concluded that the hypothesis

is false (the difference of means is almost within the smallest standard

deviation). Therefore, it does not matter if we use the same model in 2

stages with fewer classes or same model with all classes at once.

4. Classes are not equally well separable in 2 stages. By comparing results

from numerical experiments for ’2-stage baseline’ and ’2-stage features +

baseline’ it can be concluded that the hypothesis is true and the difference

is very significant (the difference of means is much bigger than the biggest

standard deviation). That implies that the decision boundaries between

NONE/RELATED and FAVOR/AGAINST are intrinsically different.

This conclusion is also supported by results presented in table 2. Here

we can observe that baseline model separates FAVOR/AGAINST classes

much better than NONE/RELATED. Also simple hand crafted feature

classifier separates NONE/RELATED much better than the deep neural

NLP (baseline) model.

5. Conditional bidirectional RNN encoder model is not robust to ad-
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dition of a ’hard to separate’ class. By comparing results from numerical

experiments for ’baseline with features’ and ’2-stage features + baseline’

it can be concluded that the hypothesis is true although the difference

is not that significant (the difference of means is slightly bigger than the

biggest standard deviation).

Figure 3.1: Training loss curves
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Table 3.1: Test accuracy for all 3 classes (5 repeats)

mean standard deviation
baseline without hand crafted features 0.4311 0.003

2-stage baseline 0.4306 0.002
baseline with features 0.6320 0.004

2-stage features + baseline 0.6424 0.007
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Figure 3.2: Evaluation loss curves
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Table 3.2: Test accuracy for 2 classes (5 repeats)

mean standard deviation
features 0.7991 0

stage 1 baseline 0.4543 0.003
stage 2 baseline 0.6527 0.04
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Chapter 4

Conclusion

4.1 Critical evaluation

Let me first discuss the most general issue, i.e. the issue with the data set.

First of all the biggest issue with the training data set is that it is not labelled

by humans and, therefore, geometrically sub-manifolds of classes are distorted.

That might imply any NLP model trained on that data might not generalize

well to the real data sets.

The training data is also unbalanced which can skew the modeled distri-

butions. And a very strong model free baseline is always choose NONE and

it will produce 50 % accuracy on training and evaluation sets. At the same

time the stage 1 and stage 2 training/evaluation sets turned to be perfectly

balanced.

The results of the experiments don’t allow us to conclude that attention

mechanism is superior to biconditional approach. Besides the data set prob-

lems, another issue is that the baseline model has biconditional RNN encoder
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and Conditional RNN encoder with neural attention has only one di-

rectional RNN encoder. For a more fair comparison Conditional RNN en-

coder with neural attention should be implemented with the biconditional

RNN encoder, which won’t alter other parts of the model.

The hypothesis ’Classes are not equally well separable in 2 stages’ might

lead to a very general conclusion. The geometry of the ’true’ decision bound-

aries between classes can be very different and thus in order to model those

boundaries we might need different models. 2-stage model can be generalized

in a straightforward way to n-stage model where at each stage we separate

one class from the rest. In this project I hypothesized that separation between

NONE/RELATED and FAVOR/AGAINST were different. Similarly, sepa-

rating CATS/DOGS is different from separating PLANES/FROGS in image

classification problems. In general, the assumption of classes being separated

by very similar boundaries seems rather strong.

Another point to make is that the baseline model with features from [4]

was trained on the dataset with 3 classes and then applied on the data set

with 2 classes. It is possible that 3rd ’unused’ class distorts the probability

distribution modeled by the neural net attracting some weight from other

classes and thus seems to me very bad/wasteful/unclear from theoretical point

of view. Empirical results support that conclusion. The model trained on 2

classes and test on 2 classes achieves a higher accuracy on the test set.

Overall, my main two contributions are

• Designed and implemented 2 stage classifier.

• Formulated and tested hypotheses in which more advanced natural lan-
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guage models are applied to the problem described in 3.1.

4.2 Lessons learned and future work

A very good lesson learnt during this research project is to be a critical thinker.

Research papers should be taken with a grain of salt. One of the crucial points

in research is reproducibility of results. It was interesting to discover a very

crucial hand crafted features based part of the model used but not documented

in [4].

From Section 2.2 it can be seen that research should be theoretically sound.

This is especially important in todays widely spread applications of statistical

machine learning methods.

Another important point is that neural networks is not a one-size-fits-all

model. We can see from the experiments that a simple hand crafted feature

almost twice more effective than complex neural networks.

Neural nets separate FAVOR/AGAINST more successfully than NONE/

RELATED, it would be interesting to see the performance of the models with

attention in classifying FAVOR/AGAINST. It seems that attention mechanism

in conjunction with bidirectional RNN might improve the accuracy.

Choosing the right data set is very important. In the future work it is best

to choose dataset labeled by humans, balanced and with sufficient sample size.
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