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Abstract

The large number of control loops in a modern industrial plant poses a serious

challenge for operators and engineers to monitor these loops to maintain them at

optimal conditions continuously. Much research has been done on control loop

performance assessment and monitoring of individual components within a control

loop. The literature, however, has been sparse in presenting a systematic approach

for control loop diagnosis.

This thesis is concerned with establishing a data-driven Bayesian approach for

control loop diagnosis. Observations from various monitoring algorithms and a

priori knowledge of the control loop are synthesized under the Bayesian framework

to pinpoint the underlying source of poor control performance. Several challenging

practical issues under the proposed framework will also be discussed.

To address the incomplete evidence problem that is often encountered in reality,

the missing pattern concept is introduced. The incomplete evidence problems are

categorized into single missing pattern ones and multiple missing pattern ones. A

novel method based on marginalization over an underlying complete evidence matrix

(UCEM) is proposed to include the incomplete evidences into the diagnostic frame-

work, such that information in all the evidence samples can be effectively utilized

in the diagnosis.

Data auto-correlation is common in engineering applications. The temporal

information hidden in the historical data is extracted by considering evidence and

mode dependency in this thesis. Data-driven algorithms for evidence and mode

transition probability estimation are developed. An auto-regressive hidden Markov

model is built to consider both mode and evidence dependencies. When both the

mode and evidence transitions are considered, the temporal information is effectively

synthesized under the Bayesian framework.

An approach to estimate the distributions of monitor readings with sparse his-

torical samples is proposed to alleviate the intensive requirement of historical data.



The statistical distribution functions for several monitoring algorithm outputs are

analytically derived. A bootstrap based method is proposed to handle the challeng-

ing problem of estimating the statistical distribution for valve stiction monitoring.

The proposed approach has the potential to estimate evidence distribution with as

few as only one evidence sample.
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6.12 Histogram of bootstrapped Ŝb and Ĵb for paper 9 . . . . . . . . . . . 114

6.13 TE process scheme diagram . . . . . . . . . . . . . . . . . . . . . . . 117

6.14 TE problem diagnosis with all historical data . . . . . . . . . . . . . 119

6.15 TE diagnosis with only one sample from mode IDV 8 . . . . . . . . . 119

6.16 Comparison of likelihood distributions . . . . . . . . . . . . . . . . . 120

6.17 TE diagnosis with only one sample from mode IDV 2 . . . . . . . . . 121

6.18 TE diagnosis with only one sample from mode IDV 7 . . . . . . . . . 121

6.19 TE diagnosis with only one sample from mode IDV 14 . . . . . . . . 121

6.20 Diagnosis with different number of historical samples for IDV 14 . . 122

6.21 Schematic diagram of the distillation column . . . . . . . . . . . . . 124

6.22 Distillation column diagnosis with all historical data . . . . . . . . . 126

6.23 Distillation column diagnosis with only one sample from mode m1 . 127



6.24 Distillation column diagnosis with only one sample from mode m2 . 128

6.25 Distillation column diagnosis with only one sample from mode m3 . 128

6.26 Distillation column diagnosis with only one sample from mode m4 . 129



List of Tables

2.1 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Summary of monitors . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 25

2.4 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 27

3.1 Summary of historical and prior samples . . . . . . . . . . . . . . . . 36

3.2 Estimated likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Summary of historical and prior samples . . . . . . . . . . . . . . . . 38

3.4 Realizations of evidences with different data set . . . . . . . . . . . . 49

4.1 Likelihood estimation of the illustrative problem . . . . . . . . . . . 54

4.2 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 66

4.3 Overall correct diagnosis rate . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Correct diagnosis rates for m3 and m7 . . . . . . . . . . . . . . . . . 70

4.5 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 73

4.6 Correct diagnosis rate for each single mode . . . . . . . . . . . . . . 74

5.1 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 85

5.2 Overall correct diagnosis rates . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Correct diagnosis rate for m3 and m7 . . . . . . . . . . . . . . . . . . 87

5.4 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 89

5.5 Overall diagnosis rates . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Correct diagnosis rates for each single mode . . . . . . . . . . . . . . 91

6.1 Comparison of sample standard deviations . . . . . . . . . . . . . . 111

6.2 Confidence intervals of the identified stiction parameters . . . . . . . 112

6.3 List of simulated modes . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 118

6.5 Detail dimensions of the column and trays . . . . . . . . . . . . . . . 123



6.6 Operating modes for the column . . . . . . . . . . . . . . . . . . . . 125

6.7 Commissioned monitors for the column . . . . . . . . . . . . . . . . 125

6.8 Summary of Bayesian diagnostic parameters . . . . . . . . . . . . . . 126



Chapter 1

Introduction

1.1 Objective of the thesis

Control loops play important roles in chemical engineering processes. Malfunction-

ing components in process control loops, including sensors, actuators and other

components, are not unusual in industrial environments. Their effects introduce

excess variation throughout the process thereby reducing machine operability, in-

creasing costs and disrupting final product quality control. It is reported as many as

60% of industrial controllers have some kind of control performance problems [29].

Some of the common causes of poorly performing control loops are [16, 94]:

• Improper controller tuning;

• Changing process dynamics (transitions, unmeasured disturbances);

• Limited controller output range;

• Large dead time or inaccurate determination of dead time;

• Inappropriate sampling interval;

• Incorrect controlled and manipulated variable pairings;

• Poor hardware (sensor, actuator) maintenance.

The incentives of this research arise from the important task of isolating and

diagnosing abnormalities of control loops in complex industry processes. A typical

modern process industry operation consists of hundreds or even thousands of control

loops, which is overwhelming for the plant personnel to detect as well as to isolate

control loops having deteriorated performance. Moreover, even if poor performance

1



is detected in some control loops, due to the reason that a problem in a single process

component may invoke a wide spread of control performance degradation, locating

the underlying problem source is not a trivial task. Without an advanced infor-

mation analysis framework, it is difficult to handle the overwhelming information

flood of process data and alarms to determine the source of the underlying problem.

Human beings’ inability of synthesizing large amount and high dimensional process

data is the main reason behind those problems. The purpose of control performance

monitoring and diagnosis is to provide an automated procedure that delivers infor-

mation to plant personnel for determining whether specified performance targets are

being met by the controlled process variables and that evaluates the performance of

control loops [41], as well as suggests possible problem sources and troubleshooting

sequence.

The main objective of this study is to establish a Bayesian approach for control

loop diagnosis, synthesizing observations of different monitoring algorithms and a

prior knowledge of the control loop, to suggest possible faulty sources based on

Bayesian probabilistic framework. Some related open problems and issues will be

investigated. An equally important objective of this study is to apply the proposed

Bayesian diagnostic approach to experimental and industrial processes to verify and

demonstrate validity and practicality of this method.

1.2 A brief literature overview

1.2.1 Control performance assessment

Performance assessment is concerned with the analysis of available process data

against certain benchmarks. The research was started by the ground-breaking study

of Harris (1989) [29] for proposing the Minimum Variance Control (MVC) bench-

mark. Huang and Shah (1995) [38] developed a filtering and correlation (FCOR)

algorithm to estimate the MVC benchmark effectively. A state space framework for

MVC benchmark was proposed by McNabb and Qin (2005) [65]. The MVC index

was extended to MIMO systems by Harris et al. (1996) [28]. Huang and Shah (1997)

[37] tackled MIMO MVC benchmark by introducing the unitary interactor matrix.

MVC benchmark provides a readily computable and physically significant bound on

control performance.

2



Although the MVC benchmark provides a simple way to evaluate control perfor-

mance, a prior knowledge of process time delay or interactor matrix is a requirement.

Extended horizon performance index based on MVC was introduced by Desborough

and Harris (1992) [16]. This method does not need a priori knowledge of system

delay or interactor matrix, and can also reflect deterministic performance, for in-

stance, settling time. Extended horizon index can also be extended to multivariate

case [28].

The theoretical variance lower bound of MVC may not be achievable for most of

practical controllers. More realistic performance indices are needed. Ko and Edgar

(1998) [48] discussed PID benchmark. An interesting result was presented by Qin

(1998) [76], stating that MVC can be achievable for PID controller when process

time delay is small or large, but not medium. Huang and Shah (1999) [36] proposed

the linear quadratic Gaussian (LQG) regulator benchmark as an alternative to the

MVC benchmark, based on process model. Model-based approaches also exist for

benchmarking model predictive control (MPC) systems; see Shah et al. (2001) [89],

and Gao et al. (2003) [22].

The benchmarks discussed above mainly focus on stochastic performance. How-

ever, those bechmarks can also be related with deterministic performances, such

as overshoot, decay ratio, settling time, etc. Ko and Edgar (2000) [49] modified

the MVC index to include setpoint variations in the inner loop of cascade control.

Influence of setpoint changes on the MVC index was discussed by Seppala et al.

(2002) [87], where a method that decomposes the control error into the one resulted

from setpoint changes and a setpoint detrended signal was proposed. Thornhill et

al. (2003) [97] examined the reasons why performance during setpoint change differs

from the performance during operation at a constant setpoint. The extension of the

MVC index to the varying setpoint case has also been discussed by McNabb and

Qin (2005) [65].

In practice, current operation performance is often compared with historical data

during a time period when the control performance was benchmarked as “good” from

the user’s viewpoint. Such criteria are called baselines, historical data benchmarks,

or reference data set benchmarks [25, 22, 84]. Although such historical data bench-

marks are pragmatic and practical, sometimes they may be too subjective and rely

heavily on how the history data are selected.

Some other methods have also been proposed for control performance assess-

3



ment. Kendra and Cinar (1997) [47] applied frequency analysis to evaluate control

performance. r-statistic was introduced by Venkataramanan et al. (1997) [100],

which detects deviations from setpoint, regardless of the output noise. Li et al.

(2003) [57] proposed a relative performance monitor, which compares the perfor-

mance of a control loop to that of a reference model.

A number of commercial control performance assessment software packages are

available in the market, such as the Intune software tools by Control Soft, Loop-

Scout by Honeywell Hi-Spec Solutions, Performance Surveyor by DuPont, etc. [41].

Various successful industrial applications have also been reported [31, 41].

1.2.2 Control loop diagnosis

The most common reasons for the downgrade of control performance include: mis-

tuned controller parameters, sticky valves, model plant mismatch. Significant work

has been done on the diagnosis on those single problems. However, the diagnosis

of the overall control loop is still of an open problem. Generally the controller per-

formance is evaluated by the various control performance assessment techniques as

discussed in the previous section. The following discussion will focus on overview of

other aspects of control loop monitoring.

Valve stiction diagnosis

The undesirable behavior of control valves is the biggest single contributor to poor

control loop performance [43]. According to Jelali and Huang (2009) [43], 20-30%

of control loop oscillations are induced by valve nonlinearities, including stiction,

deadband, hysteresis, etc. Among these problems, stiction is the most common one

in the process industry [45]. Oscillation in control loops increases the variability of

process variables, which in turn affects product quality, increases energy consump-

tion, and accelerates equipment wear. Detecting valve stiction in a timely manner

will bring significant economic benefits, and thus there is a strong incentive for the

valve stiction detection research. A comprehensive review and comparison of valve

stiction detection methods can be found in Jelali and Huang (2009) [43].

Singhal and Salsbury (2005) [91] proposed a stiction detection methodology by

calculating the ratio of the areas before and after the oscillation peaks of PV signal.

A method for diagnosing valve stiction was developed based on observations of

control loop signal patterns by Yamashita (2006) [104]. The method determines
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typical patterns from valve input and valve output/process variable in the control

loop, and thus does not allow detection of stiction which shows up in different

patterns. Scali and Ghelardoni (2008) [83] improved the work of Yamashita (2006)

[104] to allow different possible stiction patterns to be considered. Choudhury et

al. (2007) [12] proposed a controller gain change method, which is based on the

change in the oscillation frequency due to changes in the controller gain to detect

valve stiction. Yu et al. (2008) [105] showed that this method can fail to detect

the presence of the sticky valve in interacting multi-input multi-output systems. A

strategy based on the magnitude of relative change in oscillation frequency due to

changes in controller gain is proposed to overcome the limitations of the existing

method.

Despite of the various work regarding stiction detection, valve stiction quantifi-

cation remains to be a challenging problem. Choudhury et al. (2008) [13] proposed

a method to quantify stiction using the ellipse fitting method. The PV vs. OP

plot is fitted to an ellipse and the amount of stiction is estimated as the maximum

length of the ellipse in the OP direction. Chitralekha et al. (2010) [11] treated the

problem of estimating the valve position as an unknown input estimation problem.

The valve position is estimated via a Kalman filter type unknown input estimator.

Jelali (2008) [42] presented a global optimization based method to quantify valve

stiction. A Similar method was also proposed by Srinivasan et al. (2005) [93]. The

approach is based on identification of a Hammerstein model consisting of a sticky

valve and a linear process. The stiction parameters and the model parameters are

estimated simultaneously with a global grid search optimization method. Lee et

al. (2009) [43] presented a closed-loop stiction quantification approach using rou-

tine operating data. A suitable model structure of valve stiction is chosen prior

to conducting valve stiction detection and quantification. Given the stiction model

structure, a feasible search domain of stiction model parameters is defined, and a

constrained optimization problem is solved for search of stiction model parameters.

The aforementioned stiction qualification methods all assume that the process is

linear. Nallasivama et al. (2010) [69] proposed a method to qualify the stiction for

closed-loop nonlinear systems. The key idea used in the approach is based on the

identification of extra information available in process output PV compared to the

controller output, OP. Stiction phenomenon leads to many harmonic components

compared to the Fourier transform of the Volterra system, which allows stiction
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detection in nonlinear loops.

Model mismatch diagnosis

A large volume of work has been done for open loop model validation. However,

the literature has been relatively sparse on studies concerned with on-line model

validation using closed-loop data.

Huang (2001) [34] established a method for the analysis of detection algorithms

in the frequency domain under closed-loop conditions. The divergence algorithm is

extended to the model validation for the general Box-Jenkins model under closed-

loop conditions through the frequency domain approach. Based on the two-model

divergence method, Jiang et. al. (2009) [44] developed two closed-loop model vali-

dation algorithms, which are only sensitive to the plant changes. Of the two algo-

rithms, one is sensitive to changes in both plant and disturbance dynamics, while the

other one is only sensitive to the changes in plant dynamics, regardless of changes

in disturbance dynamics and additive process faults, such as sensor bias.

Badwe et. al. (2009) [5] proposed a model mismatch detection method based on

the analysis of partial correlations between the model residuals and the manipulated

variables. The more significant this correlation, the higher is the possibility that

there exists model mismatch. Badwe et. al. (2010) further extended their previous

work by analyzing the impact of model mismatch on the control performance in [6].

In Selvanathan and Tangirala (2010) [86], a plant model ratio (PMR) is intro-

duced as a measure to quantify the model-plant mismatch in the frequency domain.

The PMR provides a mapping between its signatures and changes in process models,

and thus the changes in model gain, time constant and time delay can be identified.

Although it is claimed that the PMR can be estimated from closed-loop operating

data, a significant underlying assumption is that the set-point contains at least a

pulse change. This assumption, however, can be restrictive in practice.

Overall control loop diagnosis

Despite the large amount of work on single component diagnosis in control loop, little

has been done for the overall control loop diagnosis. The most significant challenge

for control loop diagnosis is the the existence of similar symptoms among different

problem sources [35]. The monitoring or diagnostic methods discussed previously

often focus on one specific problem, and the potential abnormalities in the other
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unattended components are ignored [75]. A systematic approach is required to take

all possible faults into consideration. A Bayesian frame for control loop diagnosis

has been proposed by Huang (2008) [35]. The outputs from different monitoring

algorithms are synthesized to provide a probabilistic result for control loop diagnosis.

1.2.3 Bayesian diagnosis

Bayesian approach has proven to be useful for a variety of monitoring and predictive

maintenance purposes. Applications of Bayesian approach have been reported in

medical science, image processing, target recognition, pattern matching, information

retrieval, reliability analysis, and engineering diagnosis [73, 17]. It provides a flexible

structure for modeling and evaluating uncertainty. In the presence of noise and

disturbances, Bayesian inference provides a well-suited way to solve the process

monitoring and diagnosis problem, providing quantifiable measure of uncertainty

for decision making. It is one of the most widely applied techniques in probabilistic

inferencing [17].

Mehranbod et al. (2003) [66] expanded Bayesian model to detect sensor faults

in a dynamic process, whereas most other work utilizing Bayesian model for pro-

cess fault detection and diagnosis mainly focusing on steady state operations. An

intelligent automation system for predictive maintenance of machine tools, based

on Bayesian model was proposed by Gilabert and Arnaiz (2006) [27]. Wolbrecht et

al. (2000) [103] designed “part models” to represent individual parts in a process.

These “part models” were combined to form a Bayesian model of the entire manu-

facturing process. Similar Bayesian model structure can also be found in Mehranbod

and Soroush (2003) [66], where single-sensor models are used as building blocks to

develop a Bayesian model for all sensors in the process under consideration. Some

commercial software packages are also available for Bayesian diagnosis, such as Net-

ica, and MonteJade [7].

How to build a Bayeisan model is of great interest to many researchers. Dey

and Stori (2005) [17] used a data-driven method with Dirichlet prior distribution

to build Bayesian model to diagnose root causes of process variations. Such kind

of data-driven method based on Dirichlet prior distribution for Bayesian model

learning has also been addressed by Pernestal (2007) [73]. Sahin et al. (2007) [82]

implemented a fault diagnostic technique for airplane engines using the particle

swarm optimization algorithm to learn the structure of Bayesian model from a large

7



data set. The methods discussed above are all data based. However, in the case that

there are not enough data, model based methods should be considered. Romessis

and Mathioudakis (2006) [80] proposed a method to build Bayesian models from

mathematical models for aircraft engine diagnosis, without the need of hard-to-find

flight data with faults.

Besides the learning problem, evaluation of posterior probabilities also attracts

much attention in Bayesian diagnosis community. The storage space and computa-

tion burden of Bayesian approach increase exponentially over the number of nodes

in the Bayesian model. A compact storage strategy was introduced by Pernestal

(2007) [73]. In Lewis and Ransing (1997) [56], the notion of conditional probability

was generalized to enable the belief revision even in the presence of partial evidence.

Dealing with continuous variables is very expensive for the inferences computation,

so Flores-Loredo et al. (2005) [21] utilized automatic learning algorithms, together

with expert advices to determine the Bayesian model of the most common faults in

gas turbines.

Another issue widely considered is the evolution of Bayesian model with time.

Extension of the Bayesian model in time domain, called Dynamic Bayesian Network

(DBN), is used to model changes of Bayesian network over time. Kawahara et

al. (2005) [46] built DBN for diagnosis from a priori knowledge, and modified it

by statistical learning with operation data. A well summarized research regarding

DBN was presented by Murphy (2002) [68].

Nevertheless, few results have been reported about implementing Bayesian model

in diagnosing industry applications. This is possibly owing to the complexity of in-

dustry processes, which makes modeling, storage, and updating of belief of Bayesian

model difficult tasks. Also, unknown disturbances are not unusual in industry pro-

cesses. Omitting these unknown nodes may make the modeling of Bayesian model

impossible, since the disturbances may be main contribution sources of certain symp-

toms (measurements/observations).

1.3 Outline of the thesis

This thesis begins with an introduction to provide an overview of the main areas of

focus in this work by outlining the research scope and major objectives.

Chapter 2 establishes a control loop diagnostic strategy through a data-driven

Bayesian approach. This approach synthesizes information from different monitoring
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algorithms to isolate possible problem sources. Performance of the proposed data-

driven Bayesian approach is examined through simulations as well as an industrial

application example to verify its ability of information synthesis.

An outstanding problem of the diagnostic procedure in Chapter 2 is its inabil-

ity to handle incomplete evidence data. The missing pattern concept is introduced

in Chapter 3 to incorporate incomplete evidence samples into the data-driven di-

agnostic framework. The incomplete evidence problems are classified into single

missing pattern ones and multiple missing pattern ones. A novel method based on

marginalization over underlying complete evidence matrix (UCEM) is proposed to

circumvent the incomplete evidence problems. Performance of the proposed incom-

plete evidence handling approach is examined through simulations and an industrial

application example.

Conventional Bayesian methods commonly assume that the evidences are tempo-

rally independent. The assumptions regarding evidence independency, however, are

restrictive in most engineering applications. In Chapter 4, the important evidence

dependency problem is solved by a data-driven Bayesian approach with considera-

tion of evidence transition probability. The sparse data problem induced by high

dimensional evidence transition space is circumvented by analyzing the correlation

ratio of monitors. The applications in a simulated distillation column and a pilot

scale process are presented to demonstrate the data dependency handling ability of

the proposed diagnostic approach.

Chapter 5 further considers the mode dependency to extract more information

from historical samples. First of all, a hidden Markov model is built to address

the temporal mode dependency problem in control loop diagnosis. A data-driven

algorithm is developed to estimate the mode transition probability. The new solu-

tion to mode dependency is then further synthesized with the solution to evidence

dependency to develop a recursive auto-regressive hidden Markov model for the

online control loop diagnosis. When both the mode and evidence transitions are

considered, the temporal information is effectively synthesized under the Bayesian

framework. A simulated distillation column example and a pilot scale experiment

example are presented to investigate the ability of the proposed diagnostic approach.

A major concern with the data-driven Bayesian approach is the intensive re-

quirement for historical data. While in industry, the faulty data is often sparse.

In extreme cases, a fault may only happen once or none, which the data-driven
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approaches cannot handle. Chapter 6 proposes an approach to estimate the dis-

tribution of monitor readings in the presence of insufficient historical data. The

distributions of monitor readings are estimated with analytical approaches and the

bootstrap method. The applications of the proposed approach to the Tennessee

Eastman Challenge problem and an experimental distillation column are presented

to examine the performance of the proposed likelihood reconstruction methods. This

is followed by concluding remarks and suggestions for future work in Chapter 7.
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Chapter 2

Data-driven Bayesian Approach

for Control Loop Diagnosis

This chapter is concerned with determination of the underlying source of problematic

control performance through a data-driven Bayesian approach. This approach syn-

thesizes information from different monitoring algorithms to isolate possible problem

sources. Performance of the proposed data-driven Bayesian approach is examined

through simulations as well as an industrial application example to verify its ability

of information synthesis.

2.1 Introduction

Control loop performance monitoring and diagnosis has been and remains one of

the most active research areas in process control community. A number of control

performance assessment methods have been developed, including the ones based on

minimum variance control (MVC), linear quadratic Gaussian control (LQG), histor-

ical data trajectories, and user-specified control, etc [36, 29, 76, 41, 84, 72]. Several

surveys on control performance assessment research are available, and a number

of successful applications of control performance monitoring algorithms have been

reported [29, 76, 31, 41, 39, 90]. Besides performance assessment of control loops,

significant progress has also been made in the development of instrument and pro-

cess monitors, including sensor monitors, actuator monitors, and model validation

monitors [77, 3, 13, 67]. However, many problems remain. One of the outstanding

problems is that monitoring algorithms are often designed for detection of one spe-

cific abnormality. An implicit assumption that other unattended components are in

A version of this chapter has been published in F. Qi, B. Huang, and E.C. Tamayo. A Bayesian
approach for control loop diagnosis with missing data. AIChE Journal, 56:179-195, 2010.
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good shape is made. Clearly this assumption does not always hold. Different prob-

lems can produce similar symptoms, thus triggering the same monitor to alarm. On

the other hand, one problem source can also affect several monitors simultaneously.

Although there exists a large volume of papers addressing control loop monitoring,

the literature has been relatively sparse in reporting a systematic way for control

loop diagnosis [41, 84, 72, 98]. Continuous improvement in control performance

must be accompanied by constantly monitoring the performance of control loops,

and diagnosing the source of poor performance such as poor tuning, a sticky valve,

a major disturbance upset, or other root causes [41, 98]. It is necessary to develop

methods that not only monitor individual components, but are also capable of syn-

thesizing information from different monitors to isolate the underlying source of

problematic control performance.

There are several challenging issues in monitor synthesis [35]. First, although

problem sources may be different, the symptoms can be similar. For instance, oscil-

lations can either be introduced by a sticky valve or an improperly tuned controller.

Second, all processes operate in an uncertain environment to some extent, and there

are uncertainties in the links between problem sources and monitor readings due to

disturbances. No monitor has a 100% successful detection rate or 0% false alarm

rate, and thus a probabilistic framework should be built to describe the uncertain-

ties. Last but not least, how to incorporate a priori knowledge in the diagnostic

system to improve diagnostic performance is also worth consideration. Most of the

existing monitoring methods are data based. However, incorporating a priori knowl-

edge such as causal relations between variables is not only helpful, but is necessary

for an accurate diagnosis [35].

In view of the challenges listed above, the Bayesian method sheds lights on the

problem solution by providing a probabilistic information synthesizing framework. It

has been proven useful for a variety of monitoring and predictive diagnosis purposes.

Applications of Bayesian methods have been reported in medical science, image

processing, target recognition, pattern matching, information retrieval, reliability

analysis, and engineering diagnosis [73, 17, 67, 95]. It is one of the most widely

applied techniques in probabilistic inferencing [17]. Built upon previous work in

Bayesian fault diagnosis [73] and a framework outlined in Huang (2008) [35], this

chapter presents a data-driven algorithm for control loop diagnosis based on the

Bayesian approach.
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The remainder of this chapter is organized as follows: In Section 2.2, a general

description of the control loop diagnosis problem is given first, and some presump-

tions are made. A systematic approach for data-driven control loop diagnosis is also

presented. Simulations for a binary distillation column are shown in Section 2.3.

The diagnostic approach is applied to an industry process in Section 2.4. Section

2.5 concludes this chapter.

2.2 Data-driven Bayesian approach for control loop di-

agnosis

2.2.1 Control loop diagnosis

Typically a control loop consists of the following components: controller, actuator,

process, and sensor, all subject to disturbances. These components may all suffer

from certain abnormalities. For example, a valve acting as an actuator may suffer

from a stiction problem; the output of a sensor may be biased. All these problems

may cause degradation of control performance, such as large variation of process

variables, loop oscillation, etc.

In this work, measurements of manipulated variables (MVs) and controlled vari-

ables (CVs), and the nominal operating point are assumed to be available. If val-

idation of the process model or the disturbance model is of interest, then their

corresponding nominal models should naturally be available. We further assume

that all or some monitors are available for the components of interest in the control

loop. There may be, for example, the control performance monitor, valve stiction

monitor, process model validation monitor, and sensor monitor. These monitors,

however, are all subject to disturbances and thus false alarms, and each monitor

can be sensitive to abnormalities of other problem sources. For instance, a valve

with stiction problem in a univariate control loop may cause the alarms of several

monitors, in addition to the valve stiction monitor itself, as shown in Figure 2.1,

where the monitors marked with gray may respond to the valve stiction problem. It

is challenging to determine where the problem source is with several simultaneous

alarming monitors. Our goal is to determine the underlying source of problematic

control performance based on the outputs of all monitors.

In the presence of disturbances, Bayesian inference provides a well suited way

to solve the diagnostic problem, quantifying the uncertainty in its conclusion. In
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the work of Pernestal (2007) [73] and Pernestal and Nyberg (2007) [74] , a Bayesian

approach for diesel engine diagnosis based on complete sensor readings is studied.

This section adopts this approach to control loop diagnostic problem based on the

readings of control loop monitors.

2.2.2 Preliminaries

To apply the Bayesian method to control loop diagnosis, several notations need to

be introduced.

Mode M

Assume that a control loop under diagnosis consists of P components of interest:

C1, C2, · · · , CP , among which the problem source may lie in. All these components

are subject to possible abnormality or performance deterioration. Each component

is said to have a set of discrete operating status. For instance, the sensor might be

“biased” or “unbiased”. The control loop diagnostic problem is to determine the

operating status of all these components in the case of problematic loop performance,

i.e., to locate the underlying problem source of degraded control performance. An

assignment of operating status to all the components of interest in the control loop

is called a mode, and is denoted as M ; M can take different values and its specific

value is denoted by m. For example, m=(C1=well tuned controller, C2=valve with

stiction, · · · ). A mode representing normal operation is referred to as NF (normal

functioning), which means that all components operate normally.

Suppose that component Ci has qi different status. Then the total number of
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possible modes is

Q =
P∏

i=1

qi,

and the set of all possible modes can be denoted as

M = {m1,m2, · · · ,mQ}.

Evidence E

The monitor readings, called evidence, are input to the diagnostic system, and are

denoted as E = (π1, π2, · · · , πL), where πi is the output of the ith monitor, and L

is the total number of monitors.

Often the monitor readings, which are generally continuous, are discretized ac-

cording to predefined thresholds. In this work, monitor readings are all assumed to

be discrete. For example, the control performance monitor may indicate “optimal”,

“normal”, or “poor”, depending on the thresholds adopted. The specific value of

evidence E is denoted as e; for example, e=(π1=optimal control performance, π2=no

sensor bias,· · · ). Suppose that the single monitor output πi has ki different discrete

values. Then there are

K =

L∏

i=1

ki

different evidences, and the set of all evidences can be denoted as

E = {e1, e2, · · · , eK},

where ei is the ith possible evidence value of E.

Historical data set D

Historical data are retrieved from the past data record where the mode of control

loop, namely, status of all components of interest in the control loop, is available,

and the monitor readings are also recorded.

Each sample dt at time t in the historical data set D consists of the evidence et

and the underlying mode mt. This can be denoted as dt = (et,mt), and the set of

historical data is denoted as

D = {d1, d2, · · · , dN̂},
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where N̂ is the number of historical data samples. The historical data set can be

further divided into subsets under different modes,

D = {Dm1
,Dm2

, · · · ,DmQ
},

and

Dmi = {d1mi
, · · · , dNmi

mi }

includes all historical samples with the underlying mode being mi, where Nmi is the

number of historical samples corresponding to mode mi, and
∑

i Nmi = N̂ .

Different historical data samples may be auto-dependent or independent, contin-

gent on how they are sampled as well as how the disturbances affect the monitors.

Each monitor reading is calculated from a segment (window) of recorded process

data. If there is no overlap of the windows between two consecutive monitor cal-

culations and there is a sufficient gap between the two windows, then the monitor

readings are considered to be independent. In this chapter, all the historical data

samples are assumed to be independent, i.e.

p(D) = p(d1, d2, · · · , dN̂ ) = p(d1)p(d2) · · · p(dN̂ ). (2.1)

2.2.3 Bayesian control loop diagnosis

Given current evidence E, the historical data set D, Bayes’ rule can be stated as

follows:

p(M |E,D) =
p(E|M,D)p(M |D)

p(E|D)
, (2.2)

where p(M |E,D) is the conditional probability of mode M in the control loop given

current evidence E, historical data set D, which is also known as posterior proba-

bility or simply posterior; p(E|M,D) is the probability of having current evidence

E, conditioning on mode M with historical data D, also known as likelihood proba-

bility or simply likelihood; p(M |D) is the prior probability of mode M ; and p(E|D)

is a scaling factor, and can be calculated as p(E|D) =
∑

M p(E|M,D)p(M |D).

Note that historical data are selectively collected when control loop operates under

different modes; therefore they provide no information of prior probability of the

abnormality, p(M |D) = p(M) [73]. As a result, Equation 2.2 is often written as

p(M |E,D) ∝ p(E|M,D)p(M). (2.3)

Since prior probability is determined by a priori information, the main task of

building a Bayesian diagnostic system is the estimation of the likelihood probability
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p(E|M,D), whose objective is to make the estimated likelihood probability be consis-

tent with historical data D. Pernestal (2007) [73] presented a data-driven Bayesian

algorithm to estimate the likelihood in diesel engine diagnosis. This method is

adopted here for control loop diagnosis.

Suppose that the likelihood of evidence E = ei under mode M = mj is to be

calculated, where

ei ∈ E = {e1, · · · , eK},

and

mj ∈ M = {m1, · · · ,mQ}.

The likelihood p(ei|mj ,D) can only be estimated from the historical data subset

Dmj where the mode M = mj ,

p(ei|mj ,D) = p(ei|mj ,Dmj ,D¬mj ) = p(ei|mj ,Dmj ), (2.4)

where D¬mj is the data set whose underlying mode is not mj.

The likelihood probability can be computed by marginalization over all possible

likelihood parameters,

p(ei|mj ,Dmj ) =

∫

Ω
p(ei|Θmj ,mj ,Dmj )f(Θmj |mj,Dmj )dΘmj , (2.5)

where Θmj = {θ1|mj
, θ2|mj

, · · · , θK|mj
} are the likelihood parameters for all possible

evidences of mode mj , and K is the total number of possible evidences; for example,

θi|mj
= p(ei|mj) is the likelihood of evidence ei when the underlying mode is mj ; Ω

is the space of all likelihood parameters Θmj . In Equation 2.5, f(Θmj |mj,Dmj ) can

be calculated according to Bayes’ rule:

f(Θmj |mj ,Dmj ) =
p(Dmj |Θmj ,mj)f(Θmj |mj)

p(Dmj |mj)
. (2.6)

In Equation 2.6, Dirichlet distribution is commonly used to model priors of the

likelihood parameters with Dirichlet parameters a1|mj
, · · · , aK|mj

[73],

f(Θmj |mj) =
Γ(
∑K

i=1 ai|mj
)

∏K
i=1 Γ(ai|mj

)

K∏

i=1

θ
ai|mj

−1

i|mj
, (2.7)

where ai|mj
can be interpreted as the number of prior samples for evidence ei under

mode mj, which will be elaborated shortly; Γ(·) is the gamma function,

Γ(x) =

∫ ∞

0
tx−1e−tdt. (2.8)
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Here all the independent variables x of the gamma functions are prior numbers of

evidences, which take positive integers, so

Γ(x) = (x− 1)!. (2.9)

The likelihood of historical data subset Dmj can be written as

p(Dmj |Θmj ,mj) =

Nmj∏

t=1

p(dtmj
|Θmj ,mj). (2.10)

The data sample at time t in the historical data subset Dmj includes the underlying

mode mj and the evidence et,

dtmj
= (et,mj).

Thus when et = ei,

p(dtmj
|Θmj ,mj) = θi|mj

. (2.11)

Combining Equation 2.10 and Equation 2.11, we have

p(Dmj |Θmj ,mj) =
K∏

i=1

θ
ni|mj

i|mj
, (2.12)

where ni|mj
is the number of historical samples where the evidence E = ei, and the

underlying mode M = mj.

Substituting Equation 2.12 and Equation 2.6 in Equation 2.5, the following result

can be obtained for the likelihood [73]:

p(E = ei|M = mj,D) =
ni|mj

+ ai|mj

Nmj +Amj

, (2.13)

where ni|mj
is the number of historical samples with the evidence E = ei, and

mode M = mj; ai|mj
is the number of prior samples that is assigned to evidence ei

under mode mj; Nmj =
∑

i ni|mj
, and Amj =

∑
i ai|mj

. To simplify notations, the

subscript mj will be omitted when it is clear from the context.

This is a concise yet intuitive result. The likelihood probability is determined

by both prior samples and historical samples. As the number of historical data in-

creases, the likelihood probability will converge to the relative frequency determined

by the historical data samples, and the influence of priors will decrease. The num-

ber of prior samples can be interpreted as prior belief of the likelihood distribution,

where a uniform distribution indicates that prior sample numbers are equal across
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all evidences under a given underlying mode. It is important to set nonzero prior

sample numbers; otherwise the diagnostic system may yield unexpected results [73].

For example, an extreme situation occurs when there is only one sample in the

historical data set. Without any prior samples defined, the likelihood for the evi-

dence corresponding to the historical data sample will be assigned with one, whilst

likelihood of the other evidences will be zero. This result can be rather misleading

during the diagnosis. One may consider that the numbers of the prior samples rep-

resent the belief of the prior likelihood. The larger the prior sample numbers are,

the stronger belief in the prior likelihood. In general, the numbers of prior samples

of all possible evidences are set to be equal as a non-informative prior if there is no

prior information available.

Consider a univariate control loop under diagnosis with two possible problem-

atic components: a valve subject to the possible stiction problem, and a sensor

subject to the possible bias problem. Each possible problematic component has a

corresponding monitor. The reading of each monitor is discretized into two bins

with predefined thresholds; therefore the overall evidence space is discretized into

four bins, as shown in Figure 2.2(a). Consider that the underlying system mode

is m=(no valve stiction, sensor bias). Each discrete evidence bin is assigned with

one prior sample under the assumption of uniformly distributed prior samples. See

Figure 2.2(a). Hence, aj|m = 1, Am = 4, and the likelihoods of all the evidences

equal 1/4. With the historical data collected under the same underlying mode m,

the likelihood probabilities can be updated according to Equation 2.13, as presented

in Figure 2.2(b).

With the estimated likelihood probabilities for current evidence E under different

modes mi, P (E|mi,D), and the user defined prior probabilities p(mi), posterior

probabilities of each mode mi ∈ M can be calculated according to Equation 2.3.

Among these modes, the one with largest posterior probability is typically picked

up as the underlying mode based on the maximum a posteriori (MAP) principle,

and the abnormality associated with this mode is then diagnosed as the problem

source.

The above procedure illustrates a data-driven approach for control loop diagno-

sis. Results from different monitors can be synthesized within the Bayesian frame-

work to generate posterior probability for diagnosis.
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p(e=1 |bias)=1/4

(a) Likelihood with only prior samples

Valve stiction monitor

Sensor bias monitor

No stiction Stiction

Biased
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History data

Biased sensor mode

p(e=2 |bias)=6/15

p(e=4 |bias)=2/15

p(e=3 |bias)=3/15

p(e=1 |bias)=4/15

(b) Updated likelihood with historical data

Figure 2.2: Likelihood updating

2.3 Simulation example

2.3.1 Process description

To investigate diagnostic performance of the proposed Bayesian approach, we apply

the diagnostic scheme to a simulated binary distillation column [102]. The column

has five inputs, four of which are manipulated variables (MVs) operated by a model

predictive controller (MPC). Of the ten outputs, three are controlled quality vari-

ables (CVs). They are: top product (distillate) quality measured as final boiling

point (FBP top), bottom product (pressure compensated) temperature (PCT bot-

tom), and column pressure. The process is subject to several different problems.

All the possible modes, and the corresponding problematic components, are listed

in Table 2.1.
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Figure 2.3: Distillation column simulation system

Table 2.1: Operating modes

Mode Problematic components

NF None
m1 Poorly tuned MPC controller
m2 Feed temperature valve stiction
m3 Duty valve stiction
m4 FBP top & PCT bottom model mismatch
m5 PCT bottom model mismatch
m6 PCT bottom disturbance dynamic change
m7 Pressure disturbance dynamic change
m8 FBP top sensor bias
m9 Pressure sensor bias
UC Other unknown errors or combinations of errors

2.3.2 Monitor selection

To evaluate the information synthesizing ability of the Bayesian diagnostic approach,

monitors are chosen rather arbitrarily, some of which have high false-alarm/misdetection

rate.
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Control performance monitor

The minimum variance control benchmark is adopted to evaluate control perfor-

mances for both univariate and multivariate cases. The FCOR algorithm [36] is

employed to compute control performance indices based on both univariate CVs

and multivariate CVs.

Valve stiction monitor

For illustrative purposes, we consider the following simplified scenario: if a control

loop has oscillation, then the oscillation is caused either by valve stiction or by

external oscillatory disturbance. The latter has sinusoid form while the former does

not.

If the CV and the MV of a control loop oscillate sinusoidally, by plotting CV

versus MV, an ellipse will be obtained. It has been observed that an ellipse will be

distorted if the oscillation is caused by valve stiction. The method adopted here is

based on the evaluation of how well the shape of the CV versus MV plot can be

fitted by an ellipse. An empirical threshold of distance between each data point and

the ellipse is used to determine the goodness-of-fit, and thereafter the valve stiction.

Process model validation monitor

The local approach based on the output error (OE) method [3] is employed to

validate the nominal process model. This method applies to MISO systems. A

MIMO system can be separated into several MISO subsystems. Models of each

MISO part can be monitored with the local approach.

Disturbance model monitor

According to the assumption made before, the nominal model for the output distur-

bance, namely Gl, is available when the disturbance model validation is of concern.

Multiplying the residual of the process model with inverse of the disturbance model

yields the input to the disturbance model ẽ(t),

ẽ(t) = G−1
l [y(t)− ŷ(t)], (2.14)

where y(t) is the process output, and ŷ(t) is the simulated output from nominal

process model. If there is no mismatch in the disturbance model, the generated

sequence should be white noise. Thus the disturbance model validation problem
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can be transformed into a whiteness test problem. The index ẽT (t)R−1
ẽ ẽ(t) , which

should follow χ2 distribution, is used as the output of the disturbance dynamics

monitor, where Rẽ is variance of ẽ(t).

Sensor bias monitor

An analytical redundancy method which eliminates the unknown states is applied

to detect sensor bias [77].

2.3.3 Diagnostic settings and results

Since the three quality CVs are of the main interest, the selected monitors mainly

target these CVs, as shown in Table 2.2.

Table 2.2: Summary of monitors

Monitor Description

π1 Overall control performance monitor

π2, π3, π4 Univariate control performance monitors
for the three quality variables

π5, π6 Valve stiction monitors for
the two possible problematic valves

π7, π8, π9 Process model validation monitors
for the three quality variables

π10, π11, π12 Disturbance change monitors
for the three quality variables

π13, π14, π15 Sensor bias detection monitors
for the three quality variables

The parameter settings of the Bayesian diagnostic system are summarized in

Table 2.3. Note that UC represents unknown problems as well as combinations of

two or more problems occurring simultaneously, so data from PCT bottom sensor

bias mode, which represents unknown problems, and data from simultaneous poorly

tuned controller and pressure sensor bias mode, which represents combination of

two or more problems, are collected for the validation of UC mode.

Diagnostic results in Figure 2.4 are obtained from evaluation (cross-validation)

data which are generated independently of historical samples. In Figure 2.4, the

title of each plot denotes the true underlying mode, and the numbers on the hor-

izontal axis stand for the diagnosed eleven possible modes numbered according to
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Figure 2.4: Posterior probability assigned to each mode
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Table 2.3: Summary of Bayesian diagnostic parameters

Discretizaion ki = 3(“low”,“medium”,“high”),
K = 315 = 14348907

Historical data 300 samples for each mode, except UC

Prior samples Uniformly distributed with prior sample,
aj = 1, A = 14348907

Prior probabilities p(NF ) = 0.1, p(mother) = 0.09

Evaluation data 300 samples for each mode,
from training modes and UC

the sequence shown in the first column in Figure 2.1. In each plot, the posterior

probability corresponding to the true underlying mode is highlighted with gray bars,

while the others are in dark bars. The diagnostic conclusion is determined by se-

lecting the mode with the largest posterior probability. If the largest probability

happens to be the gray one, then the problem source is correctly identified. From

Figure 2.4, we can see that all the true underlying modes are assigned with the

largest posterior probabilities, except UC. Even in the presence of low-performance

monitors, the Bayesian approach can synthesize information from these monitors to

provide good diagnostic results. Performance of the diagnostic system for the UC

mode, however, is poor as expected, owing to the lack of historical data for that

mode.

2.4 Industry evaluation

The data-driven Bayesian diagnostic approach has been tested on an industry di-

luted oil pre-heater process.

2.4.1 Process description

The scheme diagram of the process is presented in 2.5. The function of this process

is to heat the diluted oil from the upstream process to a desired temperature with

a furnace. The diluted oil is fed into the furnace through eight passes, and the oil is

heated within the coils in the furnace. The eight oil passes are mixed at the outlet,

and then fed into downstream process. Flow control of the oil feed is provided for

each of the eight heater passes with eight PID controllers, FIC1 to FIC8 respectively.

The set-points of the flow PID controllers are set by a multivariate MPC controller to
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Figure 2.5: Structure of diluted oil pre-heater

control the temperatures of the eight passes at the outlet TI1 to TI8, i.e. coil outlet

temperatures (COT s). The COT s are controlled such that differences between the

eight COT s and their average COTave can be minimized, and the COTave is always

within the limit range. This MPC application is known as the pass balance.

One of the flow control loops, FIC4 is subject to the problem of a sticky valve

and frequent problematic PID control performance. Thus, the control system has

three problematic modes: (1) valve stiction problem, (2) control tuning problem,

and (3) simultaneous valve stiction and controller tuning problem. They share

almost the same symptoms, such as process oscillation and large process variance.

The interest is to isolate the problem source. The historical data we obtained

contain the valve stiction mode and the simultaneous valve stiction and problematic

controller tuning mode. The proposed Bayesian approach is used to synthesize

monitor outputs to distinguish different problems with similar phenomenons, so as

to enhance the stiction detection and control performance monitoring.

2.4.2 Data-driven Bayesian diagnosis

Three monitors are chosen for the Bayesian diagnostic system, including the univari-

ate control performance monitor π1, model validation monitor π2, and valve stiction

monitor π3. The univariate MVC benchmark is employed to monitor the control

performance of the difference between TI4 and COTave. The model validation mon-
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itor π2 uses the local output error approach to monitor the model change between

the input FI4 and the output TI4. The ellipse fitting method with oscillation detec-

tion is utilized for the FIC4 valve stiction monitor. Each complete evidence consists

of three monitor readings, i.e. E = (π1, π2, π3). Each single monitor reading is dis-

cretized into two values, “abnormal” and “normal”. Thus totally there are 23 = 8

discrete evidence bins.

The historical data contain two problematic modes together with the normal

operation mode. The two problematic modes are denoted as Sticky (sticky FIC4

valve problem only), and SP (simultaneous sticky FIC4 valve and problematic PID

control). The normal operation mode is denoted as NF (normal functioning). It

should be noted that the historical data are collected when there is no setpoint

change or other major upsets, such that the process operation status is consistent

with the defined mode. The sampling interval of process data is set to one minute.

Each window of data consists of approximately 8-hour process data for a calculation

of one monitor reading or one “historical sample”. The collected data of the three

modes are divided into two parts. One part is for estimation of the likelihood,

and the other is for cross validation of the Bayesian diagnostic system. Table 2.4

summarizes parameters for the Bayesian diagnosis.

Table 2.4: Summary of Bayesian diagnostic parameters

Evidence E = (π1, π2, π3)

Discretization ki = 2,K = 23 = 8

Historical data 41 samples for NF mode, 23 samples
for SP mode, and 8 samples for sticky mode

Prior samples Uniformly distributed with prior sample
aj = 1, A = 8

Prior probabilities p(NF ) = p(SP ) = p(sticky) = 1/3

Evaluation data 10 samples for NF and SP mode,
and 2 samples for sticky mode

With the data-driven Bayesian approach, the diagnostic results shown in Figure

2.6 are obtained for the cross validation data. In each plot, the posterior probability

corresponding to the true underlying mode is shown with gray bars, while others are

in dark bars. Thus, if the grey bar is highest then the correct diagnosis is obtained.

From Figure 2.6, we can see that all the true underlying modes are assigned with
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the largest probabilities, indicating correct diagnosis of the three modes.
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Figure 2.6: Posterior probability assigned to each mode

2.5 Conclusions

In this Chapter, a data-driven Bayesian approach is introduced for control loop

diagnosis. The Bayesian methods are employed to synthesize control loop monitors

and to isolate the underlying problem sources. Some Bayesian diagnosis concepts

are adapted to fit the control loop diagnosis problem. The proposed method is

verified by a simulated binary distillation column and an industrial process, where

the features of the Bayesian approach to the synthesis of a variety of monitors are

demonstrated.
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Chapter 3

A Bayesian Approach for

Control Loop Diagnosis with

Incomplete Historical Evidence

Data

A main issue encountered in the application of the data-driven Bayesian approach

is the problem of missing monitor readings. By introducing the concept of missing

pattern, incomplete problems are classified into single and multiple missing patterns.

A novel method based on marginalization over underlying complete evidence matrix

(UCEM) is proposed to circumvent the incomplete evidence problems. Performance

of the proposed incomplete evidence handling approach is examined through simu-

lations as well as an industrial application example.

3.1 Introduction

Although a data-driven Bayesian procedure for control loop diagnosis has been dis-

cussed in Chapter 2, practical problems remain. An outstanding problem of the

procedure in the previous chapter is its inability to handle incomplete evidences. In

the process industry environment, missing data is not an uncommon problem. Due

to instrument reliability, heavy control network traffic, or historian storage prob-

lem, some key process variable measurements may not be available in the historian.

Depending on the monitor calculation algorithms, the missing process variable will

often lead to incomplete evidences where some of the monitors readings are missing.

However, in the Bayesian diagnostic method discussed in Chapter 2, only com-

A version of this chapter has been published in F. Qi, B. Huang, and E.C. Tamayo. A Bayesian
approach for control loop diagnosis with missing data. AIChE Journal, 56:179-195, 2010.
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plete historical evidence samples can be used. If any monitor reading is missing,

then all the other monitor readings sampled in the same evidence, have to be dis-

carded, which will reduce the number of available historical samples and compromise

the performance of the diagnosis. This can be very problematic in many practical

applications where certain modes only appear infrequently. This problem will be

addressed in this Chapter.

Missing data has been a popular topic in various research areas [40]. A large

number of missing data reconstruction approaches have been developed, for instance,

maximum likelihood (ML) estimation [15], EM algorithms [59, 85], multi-imputation

[81, 92], generalized estimating equations [106], selection models [58, 101], etc. How-

ever, most of the available methods are computationally intensive, and cannot be

readily fit into the Bayesian diagnostic framework. In this chapter, we develop a

missing monitor handling strategy based on the marginalization of the incomplete

evidence likelihood. The proposed approach requires much less computational power

than the conventional methods. It is shown that the result obtained is the limit of

the ML method, and thus better incomplete evidence reconstruction performance is

expected from the proposed method.

The remainder of this chapter is organized as follows: The concepts of a missing

pattern and UCEM are introduced in Section 3.2 to classify incomplete evidence

problems into single and multiple missing pattern ones. The solution for evidence

likelihood estimation in the presence of incomplete evidences is derived in Section

3.3. The proposed approach is applied to a simulation example and an industrial

process in Sections 3.4 and 3.5. Section 3.6 concludes this chapter.

3.2 Incomplete evidence problem

In the following discussions, the subscript for denoting the mode M will be omitted

for simplicity without causing confusion.

In the presence of missing monitor readings, the historical data set can be seg-

regated into two parts, the complete evidence samples and the incomplete ones,

D = {Dc,Dic},

where Dc is the data set with complete evidences, and the Dic is the remaining data

set with incomplete evidences. The two data sets are therefore named complete

data set and incomplete data set respectively.
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Let a complete evidence consist of L monitor readings,

E = (π1, π2, · · · , πL),

and each single monitor reading πi has ki different discrete values. In reality, the

missing data problem may occur in any of these monitors. A concept named “miss-

ing pattern” needs to be introduced to describe and classify the monitor missing

problems.

A missing pattern is determined by the locations of the missing monitor, i.e.

how the missing monitor readings occur in an evidence. If two incomplete evidences

have missing data from the same monitors, they belong to the same missing pattern,

regardless of the value of the available monitor readings. For example, two evidence

readings (×,×, 0) and (×,×, 1) belong to the same missing pattern, where × denotes

the missing value. Otherwise, they are said to fall into different missing patterns.

For instance, the two evidence readings (×, 1, 0) and (1,×, 1) belong to two different

missing patterns; it should be noted that two evidence readings (×,×, 0) and (1,×, 1)

are also from two distinct missing patterns. By enumerating the numbers of missing

patterns in the historical data set, the incomplete evidence problems can be classified

into single missing pattern ones and multiple missing pattern ones.

In a multiple missing pattern problem, the incomplete historical data set is

divided into groups of different single missing patterns. For each single missing

pattern, all the missing data are from the same monitors and missing data occur

across these problematic monitors simultaneously.

Without loss of generality, assume that the first q monitor readings have missing

data for a given missing pattern. Thus an incomplete evidence in this missing

pattern can be represented as

E = (×, · · · ,×, πq+1, · · · , πL).

Each of the available monitor readings πq+1, · · · , πL can take one of its ki discrete

values; thus there are in total

S =

L∏

i=q+1

ki

different combinations of incomplete evidences. Each missing reading of the first q

monitors could have been anyone of its possible output values; thus each incomplete

evidence may have come from one of the R =
∏q

i=1 ki underlying complete evidences.
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A unique underlying complete evidence matrix (UCEM) can be formed for each

missing pattern. This matrix is constructed by enumerating all possible incomplete

evidences in a column in front of the matrix, and then listing all possible underlying

complete evidences corresponding to each incomplete evidence in the same row.

Therefore the size of a UCEM is S × R. Such a matrix looks like, for instance, for

one of single missing patterns

(×,×, 0)
(×,×, 1)

[
(0, 0, 0) (0, 1, 0) (1, 0, 0) (1, 1, 0)
(0, 0, 1) (0, 1, 1) (1, 0, 1) (1, 1, 1)

]
. (3.1)

Each row of UCEM contains all possible underlying complete evidences correspond-

ing to an incomplete evidence. All elements of this matrix are unique, so there

should be no coincidence between any two different rows in a UCEM. Therefore, all

underlying complete evidences can be located in the UCEM uniquely.

In the following derivation, first consider the kth single missing pattern corre-

sponding to a UCEM (denoted as kth UCEM); the underlying complete evidence

with location (i, j) in the kth UCEM is denoted as ǫi,j/k; its likelihood parameter

is denoted as θi,j/k; the number of historical samples with this underlying complete

evidence is denoted as ηi,j/k. The corresponding incomplete evidence is denoted as

ǫi/k; its likelihood is denoted as λi/k; the historical sample number of this incomplete

evidence is denoted as ηi/k. For instance, in the UCEM in Equation 3.1, which is

assumed to be the first UCEM, the evidence (0,0,0) is denoted as ǫ1,1/1; the num-

ber of historical samples with this evidence is denoted as η1,1/1. The corresponding

incomplete evidence, (×,×, 0), is denoted as ǫ1/1; the historical sample number of

(×,×,0) is η1/1, and its likelihood is λ1/1.

3.3 Diagnosis with incomplete evidence

Recall the posterior calculation Equation 2.3

p(M |E,D) ∝ p(E|M,D)p(M). (3.2)

As discussed in Chapter 2, prior probability p(M) is determined by a priori infor-

mation. Thus our interest remains in how to derive the likelihood of historical data

p(D|Θ,M) in the presence of incomplete evidences.

When there are only complete historical samples, p(D|Θ,M) can be calculated

with method outlined in Chapter 2. Missing data occur from the problematic moni-

tor readings, and the rest of the monitor outputs still provide partial information of

32



evidence. Thus, the incomplete samples need to be taken into consideration when

evaluating the likelihood. The likelihood probability of an incomplete data sample

dtic = (ǫi/k,M) equals the likelihood of the incomplete evidence ǫi/k,

p(dtic|Θ,M) = p((ǫi/k,M)|θ,M) = p(ǫi/k|Θ,M) = λi/k, (3.3)

which is the summation of the probabilities of all the possible underlying complete

evidences, i.e., marginalization of the likelihood over all possible complete evidences

in the ith row of the kth UCEM,

p((ǫi/k,M)|θ,M) =

R∑

j=1

p(ǫi,j/k|Θ,M) =

R∑

j=1

θi,j/k. (3.4)

Take the UCEM in Equation 3.1 as an example. The likelihood of incomplete

evidence (×,×, 0) equals the summation of likelihood from (0, 0, 0) to (1, 1, 0) in the

first row,

p((ǫ1/1,M)|Θ,M) = λ1/1 =
4∑

j=1

θ1,j/1. (3.5)

3.3.1 Single missing pattern problem

For a single missing pattern problem, where only one UCEM exists, the likelihood

probability over the historical data set, including both complete and incomplete

samples, is

p(D|Θ,M) = p(Dc|Θ,M)p(Dic|Θ,M)

=

S∏

i=1

R∏

j=1

θ
ηi,j
i,j ·

S∏

i=1

ληi
i =

S∏

i=1




R∏

j=1

θ
ηi,j
i,j ·

(
R∑

k=1

θi,k

)ηi

 . (3.6)

Note that since only one UCEM exits for the single missing pattern problem, the

subscript denoting the number of UCEM is omitted here without causing confusion.

Again, let the prior distribution of likelihood parameters be Dicichlet distributed

with parameters ai,j for the complete evidences [73],

f(Θ|M) =
Γ(
∑S

i=1

∑R
j=1 ai,j)∏S

i=1

∏R
j=1 Γ(ai,j)

S∏

i=1

R∏

j=1

θ
ai,j−1
i,j . (3.7)
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Then,

f(Θ|M,D) =
p(D|Θ,M)f(Θ|M)

p(D|M)

=
1

p(D|M)
·

S∏

i=1




R∏

j=1

θ
ηi,j
i,j ·

(
R∑

k=1

θi,k

)ηi



·
Γ(
∑S

i=1

∑R
j=1 ai,j)∏S

i=1

∏R
j=1 Γ(ai,j)

S∏

i=1

R∏

j=1

θ
ai,j−1
i,j . (3.8)

Let

c =
Γ(
∑S

i=1

∑R
j=1 ai,j)∏S

i=1

∏R
j=1 Γ(ai,j)

,

and then Equation 3.8 can be written as

f(Θ|M,D) =
c

p(D|M)
·

S∏

i=1




R∏

j=1

θ
ηi,j
i,j ·

(
R∑

k=1

θi,k

)ηi

 ·

S∏

i=1

R∏

j=1

θ
ai,j−1
i,j

=
c

p(D|M)
·

S∏

i=1




R∏

j=1

θ
ηi,j+ai,j−1
i,j ·

(
R∑

k=1

θi,k

)ηi



=
c∫

Ω p(D|Θ,M)f(Θ|M)dΘ
·

S∏

i=1




R∏

j=1

θ
ηi,j+ai,j−1
i,j ·

(
R∑

k=1

θi,k

)ηi

 . (3.9)

With derivations presented in Appendix A, the likelihood of evidence ǫs,r can be

determined as

p(ǫs,r|M,D) =
ηs,r + as,r
N +A

·
∑R

j=1(ηs,j + as,j) + ηs
∑R

j=1(ηs,j + as,j)

=
ηs,r + as,r
N +A

·
(
1 +

ηs∑R
j=1(ηs,j + as,j)

)
, (3.10)

where N =
∑

i ηi +
∑

i

∑
j ηi,j is the total number of historical data samples for

mode M , including both complete and incomplete samples; A =
∑

i

∑
j ai,j is the

total number of prior samples, which is, however, only applicable to the complete

evidences.

Let us use an example to illustrate the likelihood calculation. Suppose that there

are two monitors π1 and π2, both with possible output 0 and 1, and π2 is missing in

part of the historical data samples. Using the complete samples only, the likelihood

of evidence (0,0), for example, is

p((0, 0)|M,D) =
η(0,0) + a(0,0)

Nc +A
, (3.11)
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where η(0,0) is the number of complete data samples with evidence (0,0), and a(0,0)

is the prior sample number for evidence (0,0); Nc is the number of complete histor-

ical data samples. When the incomplete data samples are also used, according to

Equation 3.10, the likelihood becomes

p((0, 0)|m,D)

=
η(0,0) + a(0,0)

N +A
·
(
1 +

η(0,×)∑
π2

η(0,π2) + a(0,π2)

)
, (3.12)

where η(0,×) is the number of samples with incomplete evidence pattern (0,×).

The estimated likelihood in Equation 3.10 has an intuitive explanation. It can

be rewritten as

p(ǫs,r|M,D) =
ηs,r + as,r + η′s,r

N +A
, (3.13)

where

η′s,r = ηs ·
ηs,r + as,r∑R

j=1(ηs,j + as,j)
(3.14)

can be interpreted as the expected number of samples with evidence ǫs,r in the incom-

plete data set. Interestingly, this number equals the expected value of a variable sub-

ject to Dirichlet distribution with parameters (ηs,1+as,1, ηs,2+as,2, · · · , ηs,R+as,R).

As a result, the expected number of the underlying complete evidences in the in-

complete data set can be estimated from the distribution of the complete evidences.

See Figure 3.1 for illustration, where the sensor bias monitor reading is assumed to

be missing in some historical samples. The incomplete data samples are located on

the boundary between “biased” and “unbiased” zone; namely the underlying miss-

ing values could be sensor bias or unbias. With totally two samples in the evidence

bin labeled with (no stiction,unbiased), and three samples in the evidence bin la-

beled with (no stiction,biased), the expected numbers of the underlying complete

evidences in the incomplete samples can be calculated by Equation 3.14, as shown in

Figure 3.1. Namely, among the four incomplete evidences, 1.6 of them are expected

to be in the bin (no stiction, unbiased) and 2.4 of them are expected to be in the

bin (no stiction, biased).

The estimated sample numbers from the incomplete data set, together with the

numbers of complete data samples and prior samples, are used to calculate the final

likelihood according to Equation 3.13.

In summary, the following routine can be developed to estimate the likelihood

from historical data with incomplete evidences.
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Figure 3.1: Estimation of expected complete evidence numbers out of the incomplete
samples

(1) Construct a UCEM for the incomplete data samples;

(2) Calculate the expected numbers of all possible underlying evidences η′s,r accord-

ing to Equation 3.14;

(3) Calculate the likelihood according to Equation 3.13.

By considering the incomplete samples, how will the likelihood be changed?

Consider a data set with incomplete samples. Table 3.1 contains the details of the

data set. The prior samples are uniformly distributed with one for each complete

evidence.

Table 3.1: Summary of historical and prior samples

Evidence (0,0) (0,1) (1,0) (1,1) (0,×) (1,×)

Historical samples 6 5 4 8 20 4
Prior samples 1 1 1 1 N/A N/A

Compare the two different incomplete evidence handling strategies, i.e. omitting

all the incomplete evidences, and considering the incomplete evidences according to

the proposed approach. The results are displayed in Table 3.2.

With the difference being significant, it is demonstrated that the information

from the incomplete evidences is useful for the estimation of likelihood. Simply
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Table 3.2: Estimated likelihood

Evidence (0,0) (0,1) (1,0) (1,1)

Likelihood(discarded) 0.2593 0.2222 0.1583 0.3333
Likelihood(marginalization) 0.3484 0.2989 0.1261 0.2269

omitting all the incomplete evidences will lose information for the likelihood esti-

mation.

An interesting question at this point is when the proposed approach does not

change the likelihood estimation, i.e., generating the same likelihood as that when

only the complete evidences are considered. In view of Equation 3.10, if the missing

ratio

ρmiss
s =

ηs∑R
j=1(ηs,j + as,j)

(3.15)

is identical for all rows in UCEM, namely for different s, the likelihood of evidence

ǫs,r is

p(ǫs,r|M,D)

=
1

N +A
·
[
(ηs,r + as,r) + ηs ·

ηs,r + as,r∑R
j=1(ηs,j + as,j)

]

=
ηs,r + as,r
N +A

·
[
1 + ρmiss

s

]

=
ηs,r + as,r∑

s,j(ηs,j + as,j) + ρmiss
s

∑
s,j(ηs,j + as,j)

·
[
1 + ρmiss

s

]

=
ηs,r + as,r∑
s,j(ηs,j + as,j)

=
ηs,r + as,r
Nc +A

, (3.16)

which is the same as the result obtained with only consideration of the complete

evidences. Thus, it can be concluded that if the missing ratios ρmiss
s are the same in

all the incomplete evidences, consideration of incomplete evidences will not introduce

extra information, and hence the same likelihood will be obtained. For example,

consider a set of historical evidences summarized in Table 3.3, with one prior sample

being assigned to each complete evidence.

According to the definition of missing ratio in Equation 3.15,

ρmiss
(0,×) =

7

(2 + 1) + (3 + 1)
= 1,

and

ρmiss
(1,×) =

11

(4 + 1) + (5 + 1)
= 1.

37



Table 3.3: Summary of historical and prior samples

Evidence (0,0) (0,1) (1,0) (1,1) (0,×) (1,×)

Historical sample 2 3 4 5 7 11
Prior sample 1 1 1 1 N/A N/A

In this example, introduction of the incomplete evidences will not change the esti-

mation of the likelihood. Other than this special case, the proposed method will in

general generate different likelihood estimation from that obtained by merely using

the complete evidences.

3.3.2 Multiple missing pattern problem

The solution for the multiple missing pattern is more complex. In this section, we

will sketch the derivation and present the general solution.

When there are more than one missing pattern in the historical data set, several

UCEMs exist. Suppose that a historical data set, where each complete evidence

contains two monitor readings, E = (π1, π2), has two missing patterns (×, π2) and

(π1,×). Let both π1 and π2 have two possible values 0 and 1. Two UCEMs are

constructed for the historical data set:

(×, 0)
(×, 1)

[
(0, 0) (1, 0)
(0, 1) (1, 1)

]
, (3.17)

and
(0,×)
(1,×)

[
(0, 0) (0, 1)
(1, 0) (1, 1)

]
. (3.18)

Both UCEMs need to be taken into consideration when calculating the likelihood of

historical data, including both complete and incomplete samples. Since all complete

evidences can be located in either one of the two UCEMs, we only need to use one

to denote the likelihood of underlying complete evidences. The likelihood parameter

for complete evidence (0,0) , for example, is represented as θ1,1/1 according to the

UCEM in Equation 3.17.

In general, assume there are P missing patterns in the historical data set, the
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likelihood of the data set is calculated as

p(D|Θ,M) = p(Dc|Θ,M)p(Dic|Θ,M)

=

S1∏

i=1

R1∏

j=1

θ
ηi,j/1
i,j/1 ·

P∏

k=1

Sk∏

i=1

λ
ηi/k
i/k =

S1∏

i=1

R1∏

j=1

θ
ηi,j/k
i,j/1 ·

P∏

k=1

Sk∏

i=1




Rk∑

j=1

θi,j/k




ηi/k

,

(3.19)

where the size of kth UCEM is Sk ×Rk. Considering the fact that all the complete

evidences can be located in a single UCEM uniquely, each complete evidence ǫi,j/k

must have one and only one match in the first UCEM. As such, the first UCEM can

be used as the target, to project all the marginalization of the incomplete evidences

onto it.

Following the similar derivation procedure as developed for single missing pattern

case, the likelihood of complete evidence ǫs,r/1 can be derived as

p(ǫs,r/1|M,D) =
1

N +A

·
∑

T 1···T P

∏P
k=1

∏Sk
i=1

[
C

T k
i

ηi/kΓ(
∑P

j=1Zs,r + 1)
∏

(u,v)6=(s,r) Γ(Zu,v)
]

∑
T 1···T P

∏P
k=1

∏Sk
i=1

[
C

T k
i

ηi/k

∏S1

u=1

∏R1

v=1 Γ(Zu,v)
] (3.20)

where T i is all the combination of Tj for the ith missing pattern; Zs,r =
∑P

j=1 t̃s,r/j+

ηs,r/1 + as,r/1; t̃s,r/j is the possible number of complete evidence ǫs,r/1 in the jth

missing pattern; ηs,r/1 and as,r/1 are the historical counts and prior counts of the

complete evidence ǫs,r/1 respectively; andN =
∑

i,j ηi,j/1+
∑

i,k ηi/k, A =
∑

i,j ai,j/1.

In view of the general solution for multiple missing patterns presented in Equa-

tion 3.20, we can see that the computation load increases exponentially with the

growth of missing patterns. Thus simplification or approximation of the likelihood

calculation is necessary for a computationally affordable solution.

It is however worthy to point out that the single missing pattern solution does

have its practical merit whether the data has single missing pattern or multiple

missing patterns. In general, multiple missing patterns do exist. The evidence of a

typical process consists of a large number of monitor readings but not all these vari-

ables suffer from the missing data problem. In other words, there are some monitors

that have the missing data problem. If data missing does not occur simultaneously

across all the problematic variables, a multiple missing pattern occurs, but we can

still apply the single missing pattern method to get an approximate solution. In

this case, a single missing pattern which includes all monitors that have missing
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data problems is constructed. All multiple missing patterns can be fitted into this

single missing pattern by discarding some monitor readings. For instance, consider

that an evidence of a process contains five monitors and two of them have miss-

ing data problem, say monitor 1 and 2. If in an instant, one monitor reading has

missing data, say monitor 1, but the other one (monitor 2) has a reading at this

instant (i.e. multiple missing pattern occurs). The traditional method would ignore

readings of all five monitor readings at this instant. To apply the proposed single

missing-pattern method, however, one only needs to omit the reading of monitor 2,

but the readings from monitors 3-5 can still be used, rather than omitting all five

monitor readings. An improvement is therefore expected. Comparing to the com-

putation load of applying full missing pattern method, this single missing pattern

approximation can be a valuable alternative. We will demonstrate its application

to a multiple missing pattern problem in the next section.

3.4 Simulation example

To investigate diagnostic performance of the proposed Bayesian approach for a pro-

cess with advanced process control scheme, we apply the algorithm to the simulated

binary distillation column described in Section 2.3. The process and diagnostic

settings are the same as Section 2.3, and hence will not be repeated here.

3.4.1 Single missing pattern

Assume that duty valve stiction monitor reading π6 and process model monitor

reading π9 have missing data in some historical samples collected underm9, pressure

sensor bias mode. The incomplete evidence can be denoted as

e = (π1, · · · , π5,×, π7, π8,×, π10, · · · , π15).

In the simulation, let that π6 and π9 tend to be missing when the discrete output of

the pressure sensor bias monitor reading is “high”. π6 and π9 have 0.9 probability

to be missing under such a condition. When the discrete output of the pressure

sensor bias monitor indicates “low” or “medium”, the probability that the readings

of monitors π6 and π9 are missing is 0.1. By analyzing the original historical data

set for m9 mode, it can be observed that π9 in most of the samples indicates “high”.

While most of such data samples are incomplete, the distribution of the complete
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evidences for m9 is distorted as shown in Figure 3.2, which will deteriorate the

diagnostic performance.

Diagnosis with the proposed approach

We use the proposed approach for single missing pattern to tackle this problem. A

UCEM is constructed, and the expected number of each possible underlying com-

plete evidence is calculated according to Equation 3.14. These estimated samples

are added to the samples with complete evidences as the new set of historical data.

We may regard this procedure as recovery of the incomplete data with the proposed

approach.

Consider a figure with the horizontal axis indicating different realizations of com-

plete evidences (different combinations of each monitor readings to form evidences

that appeared in data records) and the vertical axis indicating the numbers of oc-

currences in the historical data set of the corresponding evidences. The original

data set (no missing monitor problem), the set with incomplete evidences, and the

recovered data set are shown in Figure 3.2. It should be noted that the missing

evidences which do not appear in the set with incomplete set are now recovered and

displayed in Figure 3.2 together with the original ones.
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Figure 3.2: Comparison of complete evidence numbers

Clearly, the evidence distribution is seriously distorted if only complete samples
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in the set with incomplete evidences are considered. Although the proposed ap-

proach can not recover all underlying missing evidences, i.e. to make the dotted line

in Figure 3.2 coincide with the solid one, the dotted line (recovered data) can follow

the overall trend of the original data well, which implies that likelihood distribution

is well recovered. Further, compare the diagnostic results of m9 mode using the

original data set, and the diagnostic result from the set with incomplete evidences

using two different strategies, i.e. (1) simply ignoring all the incomplete samples

and (2) using the proposed approach. The comparison results are displayed in Fig-

ure 3.3. By ignoring all the incomplete samples, the posterior probability assigned

to mode m9, which is the true underlying mode, is only 0.1606. This probability

is not the largest one assigned, which means that the diagnostic system generates

an erroneous result. By using the proposed approach, the posterior assigned to m9

mode is 0.3736, which is the largest probability assigned to all the potential modes.

Thus the diagnostic system generates correct result with the proposed approach.
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Figure 3.3: Diagnostic results with different data set

To further examine the performance of the proposed approach, Monte-Carlo sim-

ulations are performed. Totally 1000 runs are performed for the above simulations.

The mean values of the posterior probabilities using original data and incomplete

data set with two incomplete evidence handling strategies as discussed above are

displayed in Figure 3.4. In comparison of Figures 3.3 and 3.4, the posteriors in

two figures are very close, indicating small deviation of each simulation from mean

values. The standard deviations of the Monte-Carlo simulations are summarized in
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Figure 3.4: Mean value of posteriors with Monte Carlo simulations

Figure 3.5. The small standard deviations of the Monte-Carlo simulations indicate

once again consistent results of each simulation.
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Figure 3.5: Standard deviations of posteriors with Monte Carlo simulations

In the histogram of the posterior probabilities assigned to mode m9 shown in

Figure 3.6, one can see that the posteriors obtained from original data set are always

the highest. Although the posteriors calculated from incomplete data set with the

proposed approach are smaller than those by complete data, they are all higher than

the results when the incomplete samples are simply discarded. In summary, it can
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be concluded that the proposed approach has improved diagnostic performance in

the presence of incomplete evidences.
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Figure 3.6: Histogram of posteriors assigned to m9

Gibbs sampling method

The Gibbs sampling method is selected as an example to compare the performance

of the proposed incomplete evidence handling strategy with those of traditional

ones. Gibbs sampling is a Monte-Carlo Markov chain (MCMC) method introduced

by Geman and Geman (1984) [24]. It is capable of estimating the parameters in

the case of missing data, and thereby reconstruct the missing data according to

the estimated parameters. Readers can refer to Korb and Nicholson (2004) [50] for

details of the algorithm. A software named BUGS (Bayesian inference Using Gibbs

Sampling) [1] is utilized in this work to perform the Gibbs sampling.

By plotting the figure with the horizontal axis indicating different realizations

of complete evidences and the vertical axis indicating the numbers of occurrences in

the historical data set of the corresponding evidences, the original data set (complete

data), the recovered data with the proposed approach and the recovered data with

Gibbs sampling are shown in Figure 3.7. It can be observed that the evidence

distribution recovered with Gibbs sampling by a large number of iterations (4000

iterations in this example) converges to that recovered with the proposed approach.

If the numerical iterations are not sufficient, however, the result obtained by
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Figure 3.7: Comparison of complete evidence numbers

Gibbs sampling method will deviate more from that obtained by the proposed

method. Figure 3.8 shows the evidence reconstruction error in terms of differences

between the number of occurrence of the evidences in the original data set and the

number of occurrence of the evidences after reconstructions by the two methods as

discussed. The closer the difference from zero, the better the reconstruction per-

formance is. It is observed that with insufficient iterations (10 iterations in this

example), Gibbs sampling method yields a larger reconstruction error than the pro-

posed method. In other words, the performance of Gibbs sampling method is by all

means no better than that of the proposed approach.

The above results are expected. In the historical data set for a single mode, ev-

idences are subject to categorial distribution with parameters p1, p2, · · · , pQ, where
Q is the total number of all possible evidences. In the Gibbs sampling method, it

is these parameters that are estimated first, and then the missing data are recon-

structed.

Recall that the elements between the rows of a UCEM are independent of each

other, which follow the categorial distribution with parameters [
pi,1∑
j pi,j

, · · · , pi,R∑
j pi,j

].

That is, for an evidence ǫs,r, it follows categorial distribution [θs,1, · · · , θs,R], where
θs,i = ps,i/

∑
j ps,j.
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Figure 3.8: Reconstruction error of two data recovery methods

The procedures of the Gibbs sampling in BUGS can be described as following:

Suppose that there are several parameters α1, · · · , αN to estimate. With hierarchy

distribution given, sample through all the parameters,

α1 ∼ p(α1|α̃1,D)

...

αN ∼ p(αN |α̃N ,D),

where α̃i = {α1, · · · , αN}\αi is the parameter set excluding αi, and D is all the

available data.

Consider the parameters for the distribution of evidences in the sth row in the

UCEM, θ = (θs,1, · · · , θs,R). Since θs,i are not independent of each other, θ has to

be estimated as a whole:

P (θ|D) =
P (D|θ)P (θ)∫

Ω P (D|θ)P (θ)dθ
, (3.21)

where P (D|θ) =
∏R

i=1 θ
ns,i

(s,i); P (θ) is assigned with Dirichlet distribution with pa-

rameters [as,1, · · · , as,L], namely

f(θ) =
Γ(
∑R

j=1 as,j)∏R
j=1 Γ(as,j)

R∏

j=1

θ
as,j−1
s,j .
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According to the previous derivations in the evidence likelihood computation,

the distribution of θ is

P (θ|D) =
Γ(
∑R

i=1 ηs,i + as,i)∏R
i=1 Γ(ηs,i + as,i)

·
R∏

i=1

θ
ηs,i+as,i−1
s,i , (3.22)

which is actually a Dirichlet distribution with parameter (ηs,1+as,1, · · · , ηs,R+as,R).

Based on the samples from this distribution in each iteration step, the missing data

are then reconstructed. Hence, more iteration steps mean more samples from the

distribution of the missing data, which implies that the fitted distribution is closer

to the real distribution.

Note that the expected value of a Dirichlet distribution is

E[θs,r] =
ns,r + as,r∑R
i=1 ηs,i + as,i

,

so the expected number of evidence ǫs,r in the incomplete evidence samples is

ηs ·
ηs,r + as,r∑R
i=1 ηs,i + as,i

.

With this reconstructed incomplete evidences, the likelihood can be computed

as

1

N +A
·
(
ηs

ηs,r + as,r∑R
i=1 ηs,i + as,i

+ ηs,r + as,r

)

=
ηs,r + as,r
N +A

(
1 +

ηs∑R
i=1 ηs,i + as,i

)
, (3.23)

which is the likelihood equation we derived for the single missing pattern problem

using marginalization. Therefore, we can conclude that Gibbs sampling method

simply produces sufficient samples from a numerous iterations of simulations, and

estimates parameters of the distribution from the sampled data, which is expectation

in our example. The solution developed in this chapter is the limit that the Gibbs

sampling method tries to achieve through iterative numerical simulations. Our

method is an analytical solution with straightforward computation and hence the

advantage is obvious.

3.4.2 Approximation of multiple missing pattern solution

As discussed in previous sections, the solution of single missing pattern problem pro-

vides a viable alternative in the presence of multiple missing patterns. An example

is provided here to further demonstrate the idea.
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In the data missing case studied so far, two monitor readings π4 and π9 are

assumed to be unavailable simultaneously if missing occurs, and hence there is only

one missing pattern considered. This problem can be modified into a multiple

missing pattern problem by removing the assumption that the two monitors must

be unavailable simultaneously if missing occurs. Thus there can be three different

missing patterns in the evidence data set: missing π4 only, missing π9 only, and

missing π4 and π9 simultaneously. Let π6 or π9 tend to be missing when the discrete

output of the pressure sensor bias monitor reading is “high”; π6 or π9 has 90% chance

to miss under such a condition. When the discrete output of the pressure sensor

bias monitor indicates “low” or “medium”, the chance that the readings of monitors

π6 or π9 are missing is 10%.

By applying the single missing-pattern method, we only need to deal with

the single missing pattern with missing π4 and π9 simultaneously, i.e., omitting

some available monitor reading π4 or π9 whenever the other one is missing. As

such, all the incomplete evidences are categorized into a single missing pattern

(π1, · · · , π5,×, π7, π8,×, π10, · · · , π15),. Not surprisingly, the diagnostic results by

this approximation are the same as those presented in Figures 3.2 and 3.3, and it

has been shown they are considerably better than simply ignoring an entire evidence

when one of the monitor readings is not available.

3.5 Industrial case study and evaluation

The diluted oil pre-heater process presented in Section 2.4 is used to investigate

the incomplete evidence handling ability of the proposed method. The diagnostic

settings are kept the same.

Consider a scenario that some historical data sampled under SP mode have the

missing control performance monitor reading π1. The missing ratio, or the probabil-

ity of missing monitor changes according to the output of π1. When π1 is “normal”,

the probability that π1 is missing is 0.3; when π1 is “abnormal”, the probability

is 0.9. Thus, π1 is more likely to be unavailable when the control performance is

poor. Column 2 of Table 3.4 shows the true occurrences of complete evidences in

the historical data set for mode SP , and column 3 shows actual appearance of the

evidences. It can be observed that the distribution of evidences is distorted with

missing monitor, and so does the likelihood of evidences. If only the samples with

complete evidence are used to calculate the likelihood, the diagnostic results of SP
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mode is shown in the middle panel of Figure 3.9, where the highest probability is

not assigned to the true underlying mode.

Table 3.4: Realizations of evidences with different data set

Evidences
Numbers of occurrences

true data sampled data recovered data

(101) 18 2 12.2
(001) 2 1 7.8
(100) 2 0 0.667
(000) 1 1 2.333
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Figure 3.9: Diagnostic results with different data set

With the proposed approach, the recovered historical samples are presented in

the last column of Figure 3.4. It can be seen that evidence distribution of the

recovered data cannot be exactly recovered to the true one, but is able to be closer

to the true evidence distribution. Thus in the diagnostic results obtained with the

recovered data, shown in the right panel of Figure 3.9, the highest probability is

indeed assigned to the true underlying mode, and the probabilities assigned to the

three modes are close to the results obtained with the true data set.

3.6 Conclusions

In this chapter, a novel data-driven Bayesian approach for control loop diagnosis

with incomplete evidences is presented. Monitor missing problems, including single

49



missing pattern ones and multiple missing pattern ones are handled via marginal-

ization of evidences over the UCEM. The proposed method is verified by a simu-

lated binary distillation column and an industrial process, where the features of the

Bayesian approach to the incomplete evidences are demonstrated, and are compared

to the performance of Gibbs sampling method.
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Chapter 4

Bayesian Methods for Control

Loop Diagnosis in Presence of

Temporal Dependent Evidences

Conventional Bayesian methods commonly assume that the evidences are tempo-

rally independent. This condition, however, does not hold for most engineering

problems. With the evidence transition information being considered, the temporal

information can be synthesized within the Bayesian framework to improve diagnos-

tic performance. In this chapter, the important evidence dependency problem is

solved by a data-driven Bayesian approach with consideration of evidence transition

probability. The sparse data problem induced by the high-dimensional evidence

transition space is circumvented by analyzing the correlation ratio of the evidence.

The applications in a simulated distillation column and a pilot scale process are

presented to demonstrate the data dependency handling ability of the proposed

diagnostic approach.

4.1 Introduction

In Chapter 2, the Bayesian diagnostic method proposed by Pernestal (2007) [73]

is applied to the control loop diagnostic problem. The approach is further devel-

oped with consideration of incomplete evidences in Chapter 3. The algorithms have

been tested through simulation as well as an industrial example, where the informa-

tion synthesizing ability of the proposed approaches is demonstrated. However, the

developed algorithms, along with majority of other existing data-driven Bayesian

A version of this chapter has been published in F. Qi, and B. Huang. Bayesian methods for
control loop diagnosis in the presence of temporal dependent evidences. regular paper, Automatica,
2011, doi:10.1016/j.automatica.2011.02.015
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methods, have not yet considered the temporal dependency problem.

Note that in the approaches described in the previous two chapters, an assump-

tion is made in that the current evidence only depends on the underlying mode,

and is independent of the previous monitor readings. Based on this assumption, the

data-driven Bayesian diagnostic approach is developed. The corresponding graphic

model is shown in Figure 4.1. The assumptions regarding evidence independency,
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M

2
E

t
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t
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1t
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1t
E

Figure 4.1: Bayesian model with independent evidence data samples

however, are restrictive in engineering applications; some important temporal in-

formation that is helpful for the the diagnosis is neglected. In this chapter, a new

algorithm is developed with consideration of evidence temporal dependency, so as

to solve the important evidence dependency problem with Bayesian methods.

The remainder of this chapter is organized as follows. The rationale to consider

evidence dependency is detailed in Section 4.2. The estimation algorithm for the

evidence transition probability is developed in Section 4.3. Section 4.4 proposes a

dimension reduction solution for the high order evidence transition space. Sections

4.5 and 4.6 present applications of the proposed diagnostic approach to a simulated

example and a pilot scale process. Section 4.7 concludes this chapter.

4.2 Temporally dependent evidences

An evidence is a statistic estimated from a section (window) of process data. The in-

dependency among evidences relies on how the evidence data are sampled, and how

the disturbance affects the monitor outputs. If the evidence samples are collected

with sufficiently large intervals, or if the disturbance has no or weak correlation

among the evidence samples, the evidences can be considered as independent. Gen-

erally the first requirement regarding the sampling interval can be easily satisfied by

leaving sufficient gap between consecutive monitor readings. If disturbance has long-

term autocorrelation and the gap between consecutive monitor readings is not large
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enough, then the temporal independency assumption of monitor readings cannot

apply. A simple practical example of long-term auto-correlation of the disturbance

is the ambient temperature change. Consider that each evidence, which includes

one monitor reading, is calculated based on one-hour process data and there is no

overlap in the use of data in consecutive monitor reading calculations. Due to the

cyclic change of temperature within 24 hours, the monitor readings may follow a

predictable pattern. Apparently it is more justifiable to consider the dependency be-

tween those evidence samples than simply ignoring it in this example if the monitor

is indeed affected by the temperature.

Besides the practical issues, another limitation with the conventional Bayesian

approach ignoring evidence dependency is its inability to capture all time domain

information. An illustrative problem is presented in the following. Suppose that the

system under diagnosis has two modesm1 andm2. One monitor π, with two discrete

outcomes, 0 and 1, is available. A set of 100 samples of the monitor outputs is shown

in Figure 4.2. The title in each plot indicates the underlying operating mode under

which the evidence data are collected. The likelihood probability of evidence being 0
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−1

0

1

2

m
1
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Figure 4.2: Monitor outputs of the illustrative problem

or 1 is summarized in Table 4.1. The likelihoods of the evidence being 0 or 1 under

the two modes are almost identical. This may invoke confusion in the diagnosis,

which will lead to high false diagnosis rate. By looking at the data plot in Figure 4.2,

one can argue that distinguishing the two modes should not be such a difficult task.

Although the evidences under m1 and m2 share similar likelihood, the frequencies

of the evidence change apparently differ far from each other. The limitation with
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Table 4.1: Likelihood estimation of the illustrative problem

e = 0 e = 1

m1 0.46 0.54

m2 0.48 0.52

the conventional Bayesian method without considering evidence dependency is that

the temporal information has not been completely explored, leading to less efficient

diagnostic performance. In summary, it is desirable to take the evidence dependency

into consideration when building the diagnostic model.

Assume that current evidence depends on both current underlying mode and

previous evidence, and the evidence dependency follows a Markov process. The

corresponding graphic model is shown in Figure 4.3. With the consideration of

2t
E

1t
M

1t
E

t
M

t
E

1t
M

1t
E

2t
M

Figure 4.3: Bayesian model considering dependent evidence

evidence dependency, the mode posterior probability is calculated as

p(M t|Et−1, Et,D) ∝ p(Et|M,Et−1,D)p(M t). (4.1)

In view of Equation 4.1, the main task of building a Bayesian diagnostic system

boils down to the estimation of the evidence transition probability with historical

evidence data D, p(Et|M t, Et−1,D).

4.3 Estimation of evidence transition probability

The intention of the estimation of evidence transition probability is to let the esti-

mated probabilities be consistent with the historical evidence data set D in which

the evidence dependency exists. Our goal is to calculate the likelihood probability

of an evidence Et given current underlying mode M t and previous evidence Et−1 to
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reflect the dependency with the Markov property, so every evidence transition sam-

ple, which is defined for evidence transition probability estimation purpose, should

include these three elements,

dt−1
E = {M t, Et−1, Et}. (4.2)

The new evidence transition data setDE , which is assembled from historical evidence

data set D to estimate the evidence transition probability, is defined as

DE = {d1E , · · · , dN̂−1
E }

= {(M2, E1, E2), · · · , (M N̂ , EN̂−1, EN̂ )}, (4.3)

which may also be called transition data set for simplicity. Figure 4.4 depicts how the

collected historical evidence data are divided to form transition samples. In Figure

4.4, the part highlighted with shadows or gray and enclosed by the dash-lined or

solid-lined frame is a transition sample described by Equation 4.2.
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Figure 4.4: Illustration of evidence transition samples

Suppose that the evidence transition probability from Et−1 = es to Et = er

under mode M t = mc is to be estimated from the transition data set,

p(Et|Et−1,M t,DE) = p(er|es,mc,DE) (4.4)

where

es, er ∈ E = {e1, · · · , eK}, (4.5)

and

mc ∈ M = {m1, · · · ,mQ}. (4.6)

The evidence transition probability p(er|es,mc,DE) can only be estimated from the

subset DE|mc
where the mode M t = mc,

p(er|es,mc,DE) = p(er|es,mc,DE|mc
,DE|¬mc

)

= p(er|es,mc,DE|mc
), (4.7)
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where DE|¬mc
is the historical transition data set when the underlying mode M t

is not mc. To simplify notations, the subscript mc will be omitted when it is clear

from the context.

The evidence transition probability can be computed by marginalization over all

possible evidence transition probability parameters,

p(er|es,mc,DE)

=

∫

Ψ1,··· ,ΨK

p(er|Φ1, · · · ,ΦK , es,mc,DE) · f(Φ1, · · · ,ΦK |es,mc,DE)dΦ1 · · ·ΦK .

(4.8)

where Φi = {φi,1, φi,2, · · · , φi,K} represents the probability parameter set for all

possible evidence transitions from evidence ei under mode mc, and K is the total

number of possible evidence values. For example, φs,r = p(er|es,mc) is the prob-

ability of evidence transition from Et−1 = es to Et = er with underlying mode

M t = mc. According to the definition of φs,r, we have

K∑

i=1

φs,i =

K∑

i=1

p(ei|es,mc) = 1. (4.9)

Ψi is the space of all the probability parameter sets Φi subject to Equation 4.9.

Among all parameter sets Φ1, · · · ,ΦK , the value of p(er|Φ1, · · · ,ΦK , es,mc,DE)

only depends on the parameter set Φs; thus

p(er|Φ1, · · · ,ΦK , es,mc,DE) = p(er|Φs, es,mc,DE). (4.10)

Substituting Equation 4.10 in Equation 4.8 yields

p(er|es,mc,DE)

=

∫

Ψ1,··· ,ΨK

p(er|Φs, es,mc,DE) · f(Φ1, · · · ,ΦK |es,mc,DE)dΦ1 · · ·ΦK

=

∫

Ψ1,··· ,ΨK

φs,r · f(Φ1, · · · ,ΦK |es,mc,DE)dΦ1 · · ·ΦK . (4.11)

The calculation of the second term, f(Φ1, · · · ,ΦK |es,mc,DE), is tackled from a

Bayesian perspective. It can be regarded as the posterior probability of parameter

sets {Φ1, · · · ,ΦK},

f(Φ1, · · · ,ΦK |es,mc,DE)

=
p(DE |es,mc,Φ1, · · · ,ΦK)f(Φ1, · · · ,ΦK |es,mc)

p(DE |es,mc)
, (4.12)
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where

p(DE |es,mc)

=

∫

Ψ1,··· ,ΨK

p(DE|es,mc,Φ1, · · · ,ΦK) · f(Φ1, · · · ,ΦK |es,mc)dΦ1 · · ·ΦK (4.13)

is the scaling factor.

In Equation 4.12, the first term in the numerator, p(DE |es,mc,Φ1, · · · ,ΦK), is

the likelihood of transition data set given parameter sets {Φ1, · · · ,ΦK}. It should

be noted that likelihood of transition data DE is solely determined by the mode

and parameter sets {Φ1, · · · ,ΦK}, and thereby is independent of current evidence

es, i.e.,

p(DE |es,mc,Φ1, · · · ,ΦK) = p(DE |mc,Φ1, · · · ,ΦK)

=
K∏

i=1

K∏

j=1

φ
ñi,j

i,j , (4.14)

where ñi,j is the number of evidence transitions from ei to ej in the transition data

set.

Similar to the likelihood of historical transition data set, the prior probability

of transition parameter set Φi is solely determined by the underlying mode mc, and

thus is independent of current evidence es,

f(Φ1, · · · ,ΦK |es,mc) = f(Φ1, · · · ,ΦK |mc).

With the common assumption that the priors for different parameter sets Φi and

Φj, where i 6= j, are independent [73],

f(Φ1, · · · ,ΦK |mc) = f(Φ1|mc) · · · f(ΦK |mc). (4.15)

Dirichlet distribution is used to model priors of the likelihood parameters with

Dirichlet parameters bi,1, · · · , bi,K ,

f(Φi|mc) =
Γ(
∑K

j=1 bi,j)∏K
j=1 Γ(bi,j)

K∏

j=1

φ
bi,j−1
i,j , (4.16)

so

f(Φ1, · · · ,ΦK |es,mc) =

K∏

i=1

Γ(
∑K

j=1 bi,j)∏K
j=1 Γ(bi,j)

K∏

j=1

φ
bi,j−1
i,j (4.17)
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where bi,j can be interpreted as the number of prior samples for evidence transition

from ei to ej . Γ(·) is the gamma function,

Γ(x) =

∫ ∞

0
tx−1e−tdt. (4.18)

Since in this chapter all the independent variables x of gamma functions are counts

of evidence transitions, which are positive integers, so

Γ(x) = (x− 1)!. (4.19)

Substituting Equation 4.17 and Equation 4.14 in Equation 4.12, we have

f(Φ1, · · · ,ΦK |es,mc,DE)

=
p(DE|es,mc,Φ1, · · · ,ΦK)f(Φ1, · · · ,ΦK |es,mc)

p(DE |es,mc)

=
1

p(DE|es,mc)
·

K∏

i=1

Γ(
∑K

j=1 bi,j)∏K
j=1 Γ(bi,j)

K∏

j=1

φ
bi,j−1
i,j ·

K∏

i=1

K∏

j=1

φ
ñi,j

i,j (4.20)

Let

µ =

K∏

i=1

Γ(
∑K

j=1 bi,j)∏K
j=1 Γ(bi,j)

, (4.21)

and then Equation 4.20 can be written as

f(Φ1, · · · ,ΦK |es,mc,DE)

=
µ

p(DE |es,mc)
·

K∏

i=1

K∏

j=1

φ
bi,j−1
i,j ·

K∏

i=1

K∏

j=1

φ
ñi,j

i,j

=
µ

p(D|es,mc)

K∏

i=1

K∏

i=1

φ
ñi,j+bi,j−1
i,j . (4.22)

Therefore the transition probability from evidence es to er can be derived as

p(er|es,mc,DE)

=

∫

Ψ1,··· ,ΨK

φs,r · f(Φ1, · · · ,ΦK |es,mc,DE)dΦ1 · · ·ΦK

=

∫

Ψ1,··· ,ΨK

φs,r ·
µ

p(DE |es,mc)
·

K∏

i=1

K∏

j=1

φ
ñi,j+bi,j−1
i,j dΦ1 · · ·ΦK

=
µ

p(DE |es,mc)

∫

Ψ1

K∏

j=1

φ
ñ1,j+b1,j−1
1,j dΦ1 · · ·

∫

Ψs

φ
ñs,r+bs,r
s,r

∏

j 6=r

φ
ñs,j+bs,j−1
s,j dΦs

· · ·
∫

ΨK

K∏

j=1

φ
ñK,j+bK,j−1
K,j dΦK (4.23)
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In the above equation, p(DE |es,mc) is the scaling factor as defined in Equation

4.12. According to Equation 4.13,

p(DE |es,mc)

=

∫

Ψ1,··· ,ΨK

p(DE|es,mc,Φ1, · · · ,ΦK) · f(Φ1, · · · ,ΦK |es,mc)dΦ1 · · ·ΦK

=

∫

Ψ1,··· ,ΨK

K∏

i=1

Γ(
∑K

j=1 bi,j)∏K
j=1 Γ(bi,j)

·
K∏

i=1

K∏

j=1

φ
ñi,j+bi,j−1
i,j dΦ1 · · ·ΦK

=µ ·
∫

Ψ1

K∏

j=1

φ
ñ1,j+b1,j−1
1,j dΦ1 · · ·

∫

ΨK

K∏

j=1

φ
ñK,j+bK,j−1
K,j dΦK

=µ ·
K∏

i=1

∏K
j=1 Γ(ñi,j + bi,j)

Γ(Ñi +Bi)
, (4.24)

where Ñi =
∑

j ñi,j is the total number of transition samples, from previous evidence

ei under mode mc, and Bi =
∑

j bi,j is the corresponding total number of transition

samples under mode mc.

Similarly, we can derive

∫

Ψ1

K∏

j=1

φ
ñ1,j+b1,j−1
1,j dΦ1 · · ·

∫

Ψs

φ
ñs,t+bs,r
s,r ·

∏

j 6=r

φ
ñs,j+bs,j−1
s,j dΦs · · ·

∫

ΨK

K∏

j=1

φ
ñK,j+bK,j−1
K,j dΦK

=
Γ(ñs,r + bs,r + 1)

Γ(Ñs +Bs + 1)
·
∏

i,j 6=s,r Γ(ñi,j + bi,j)
∏

i 6=s Γ(Ñi +Bi)
(4.25)

Thus Equation 4.23 can be simplified as

p(er|es,mc,DE)

=µ · Γ(ñs,r + bs,r + 1)

Γ(Ñs +Bs + 1)
·
∏

i,j 6=s,r Γ(ñi,j + bi,j)
∏

i 6=s Γ(Ñi +Bi)
·

∏K
i=1 Γ(Ñi +Bi)

µ ·∏K
i=1

∏K
j=1 Γ(ñi,j + bi,j)

=
ñs,r + bs,r

Ñs +Bs

(4.26)

Rewrite the evidence likelihood equation without consideration of evidence de-

pendency,

p(ei|mc,D) =
ni + ai
N +A

. (4.27)

By comparing Equation 4.27 and Equation 4.26, we can see that the evidence

transition probability is also determined by both prior samples and historical sam-

ples, similar to the single evidence likelihood calculation when the evidences are

considered as independent. The difference lies in how the numbers of prior and his-

torical samples are counted. In Equation 4.27 the prior and historical samples refer

59



to a count of the single evidence samples corresponding to a target mode, while in

Equation 4.26 the prior and historical samples refer to the count of the transition

samples under the target mode. However, the evidence transition space is much

larger than the single evidence space. This may lead to insufficient historical data

problem, which will be elaborated shortly.

As the number of historical transition samples increases, the transition proba-

bility will converge to the relative frequency determined by the historical samples,

and the influence of the priors will decrease. The number of prior samples can be

interpreted as prior belief of the evidence transition probability distribution, where

the uniform distribution requires that prior sample numbers are equal across all pos-

sible transitions under any given underlying mode. It is important to set nonzero

prior sample numbers; otherwise unexpected results may occur in the case of limited

historical samples [73].

As an example, consider a univariate control loop under diagnosis with one prob-

lematic component: a valve subject to the stiction problem. A control performance

monitor is commissioned on the loop. The reading of the monitor is discretized

into two bins according to a predefined threshold. One is corresponding to E = 0

and the other is for E = 1. This is illustrated in Figure 5(a), where the bin for

E = 0 is to the left of the dashed vertical line and to the right is the bin for E = 1.

Therefore there are four possible evidence transitions, namely Et−1 = 0 → Et = 0,

Et−1 = 0 → Et = 1, Et−1 = 1 → Et = 0 and Et−1 = 1 → Et = 1, which are

depicted as the directed arcs in Figure 4.5(a). Let the underlying system mode be

m=sticky valve. Each evidence transition is assigned with one prior sample under

the assumption of uniformly distributed prior transition samples. See Figure 4.5(a).

Hence, bi,j = 1, Bi = 2, and all the evidence transition probabilities equal 1/2.

With the historical data collected under the same underlying mode m, the evidence

transition probabilities can be updated. In Figure 4.5(b), the solid directed arcs

denote the historical transition samples. For instance, there are two solid arcs from

the bin E = 0 to E = 1, indicating that two historical samples have been collected,

ñ0,1 = 2. Meanwhile no solid arc is seen from E = 0 to itself, and thus there is no

historical sample corresponding to that transition, ñ0,0 = 0, and Ñ0 =
∑

i ñ0,i = 2.

According to Equation 4.26, the transition probability from Et−1 = 0 to Et = 1 is

calculated,

p(Et = 1|Et−1 = 0,m,DE) =
ñ0,1 + b0,1

Ñ0 +B0

=
3

4
, (4.28)
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Figure 4.5: Evidence transition probability updating

as seen in Figure 4.5(b).

4.4 Reduction of evidence transition space

Define the evidence transition space as the set that contains all possible evidence

transitions. The dimension of the evidence transition space is the total number

of monitor readings that an evidence transition sample can include. A practical

problem encountered in the evidence transition probability estimation is the large
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combinatorial number of evidence transitions. Consider a diagnostic system with

ten monitors,

E = {π1, π2, · · · , π10},

and each single monitor output is discretized into two bins. The total number of

possible evidence values equals

K = 210 = 1024; (4.29)

the total number of possible evidence transitions equals

K ′ = 210 · 210 = 1048576, (4.30)

which is the square of the total number of single evidence values. Although the

number of evidence transition combinations that have actually occurred in the data

set, may be lower, the number of historical transition samples still needs to in-

crease dramatically in general to generate an accurate estimation of the evidence

transition probability. Otherwise insufficient data will lead to degraded diagnostic

performance. This issue will be illustrated shortly.

Obtaining such a large number of historical samples is challenging, especially

for an industrial process, where the available historical data corresponding to faulty

modes may be sparse. To circumvent this problem, we propose an approximate

solution based on correlation ratio analysis of the evidence, to reduce the dimension

of the evidence transition space, and thereby to relieve the requirement of large

amount of historical evidence data.

The temporal dependency (auto-dependency) of the evidences is mainly intro-

duced by the temporally dependent disturbances. Consider, for example, that the

disturbance is a sequence of filtered white noise. If the time gap between two

consecutive monitor readings is much larger than the time constant of the filter,

those monitor readings may be treated as auto-independent; otherwise the auto-

dependency introduced by the disturbance has to be taken into consideration. By

analyzing dependence of the evidence data, we can divide the monitor readings into

two groups: the auto-dependent ones, and the auto-independent ones.

Correlation ratio, which measures the functional dependence of two random vari-

ables, is selected to model the dependence of the monitors. In contrast to the corre-

lation coefficient, the correlation ratio is capable of detecting almost any functional

dependency, not only the linear dependency [19].
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For illustration, consider a diagnostic system with one monitor, E = {π}. Sup-
pose that totally N evidence samples are collected, and are represented as

{(π1), (π2), · · · , (πN )},

where πt is the tth collected sample of π. Assume that the monitor has two discrete-

valued outcomes, 0 and 1. To estimate the correlation ratio of πt on πt−1, shift the

data sequence of π by one sample and then create a set of paired data as follows:

{(π1, π2), (π2, π3), · · · , (πN−1, πN )}.

The collected samples of πt are classified into two categories according to first value

of each pairs:

The 1st value of the pair = 0 : π0,1 π0,2 · · · π0,n0

The 1st value of the pair = 1 : π1,1 π1,2 · · · π1,n1 ,

where πi,j the second element of the jth pair whose first value is i. Following [63],

the correlation ratio of πt on the πt−1 can be calculated as

η(πt|πt−1) =

√√√√
∑1

i=0 ni(π̄i − π̄)2
∑1,ni

i,j (πi,j − π̄)2
, (4.31)

where i = 0, 1, π̄i is the average of the monitor readings in the ith category, and π̄

is the average of all the collected monitor readings. The calculated correlation ratio

quantifies the dependency of πt on πt−1, namely, the effect of the value of πt−1 on

the value of πt. This value is an indication of how previous π value affects current

π value. η(πt|πt−1) = 0 means that π is auto-independent, while η(πt|πt−1) = 1

indicates that current output of π is completely determined by its previous value.

Generally if η(πt|πt−1) is sufficiently small, π can be treated as auto-independent.

Similarly, we can calculate the cross correlation ratio between different monitor

outputs, say, π1 and π2, by creating a new set of paired data,

{(π1
1 , π

1
2), (π

2
1 , π

2
2), · · · , (πN

1 , πN
2 )}.

By calculating the auto-correlation ratio of each monitor, the temporal depen-

dency of each monitor may be determined. Without loss of generality, assume that

the first q monitors generate auto-independent outputs, while remaining monitors

do not. An evidence can now be divided into two portions,

E = {π1, π2, · · · , πq
... πq+1, · · · , πL} = {Ec, Eic} (4.32)
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where Ec = {π1, π2, · · · , πq} is the set of auto-dependent monitors, and Eic is the

set of auto-independent monitors. Using the newly defined notations, the evidence

transition probability can be written as

p(Et|Et−1,M t) = p(Et
c, E

t
ic|Et−1

c , Et−1
ic ,M t). (4.33)

Further assume that Ec and Eic are mutually independent (may be tested approxi-

mately by cross correlation ratio),

p(Et
c, E

t
ic|Et−1

c , Et−1
ic ,M t) = p(Et

c|Et−1
c , Et−1

ic ,M t)p(Et
ic|Et−1

c , Et−1
ic ,M t). (4.34)

Recall that Et
ic only depends on the underlying mode M t, and Et

c depends on both

the underlying mode M t and the previous evidence, Et−1
c , so Equation 4.34 becomes

p(Et
c, E

t
ic|Et−1

c , Et−1
ic ,M t)

=p(Et
c|Et−1

c , Et−1
ic ,M t)p(Et

ic|Et−1
c , Et−1

ic ,M t)

=p(Et
c|Et−1

c ,M t)p(Et
ic|M t), (4.35)

which means that the probability of the evidence transition equals the product of

transition probability of temporally dependent part of the evidence, i.e., partial evi-

dence transition, and the likelihood of temporally independent monitor outputs, i.e,

partial single evidence. Hence the likelihoods of the partial evidence transition and

partial single evidence can be estimated separately. Only a subspace of the evidence

transition space is needed to estimate the partial evidence transition probability, and

the dimension of the evidence transition space is therefore reduced. Let monitor πi

have ki discrete outputs. The number of complete evidence transition is

K ′ =

L∏

i=1

ki ·
L∏

i=1

ki =

L∏

i=1

k2i . (4.36)

In Equation 4.35, the number of partial evidence transitions is
∏q

i=1 k
2
i < K ′. Con-

sequently fewer historical data samples are required to calculate the evidence tran-

sition probability. Better diagnostic results are expected with the same amount of

historical data samples.

4.5 Simulation example

The simulated binary distillation column [102] that is used for simulations in the

previous chapters, is selected to evaluate the Bayesian diagnostic approaches with

and without considering the evidence dependency.
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4.5.1 Diagnostic settings

In addition to the simulation settings presented in Chapter 2, random binary se-

quence of limited frequency bandwidth is introduced into the FBP top and PCT

bottom measurement as two-level temporal dependent disturbances for the sake of

simulation. The change of disturbance in FBP top follows the transition probability

matrices shown in Equation 4.38, where the transition probabilities of FBP distur-

bance under modem3, P
FBP
m3

, are different from those under the other modes PFBP
¬m3

;

the change of disturbance in PCT bottom follows the transition matrices shown in

Equation 4.37, where the transition probabilities of PCT disturbance under mode

m7, P
PCT
m7

are different from those under the other modes PPCT
¬m7

.

PFBP
m3

=




0 1

0 0.9 0.1

1 0.1 0.9


, PFBP

¬m3
=




0 1

0 0.1 0.9

1 0.9 0.1


; (4.37)

PPCT
m7

=




0 1

0 0.9 0.1

1 0.1 0.9


, PPCT

¬m7
=




0 1

0 0.1 0.9

1 0.9 0.1


. (4.38)

5000 evidence samples are simulated. It should be noted that while the evi-

dence transitions are subject to the rules stated above, the underlying modes are

completely randomly generated and independent of each other. Also note that in

contrast to the data collection presented in previous chapters, where the historical

data are “selectively” collected, namely, neglecting the time domain information,

the evidence samples collected here are all in temporal order, so that important

time domain information such as evidence transition probability can be persevered

and thereafter be retrieved.

Among the collected evidence samples, 3000 of them are used to estimate the ev-

idence likelihood, evidence transition probability, and the other 2000 independently

generated evidence samples are used for cross-validation of the diagnostic system.

In the validation data set, some data are from the unconsidered (UC) mode, for

which no historical data are available. Thus there are totally 11 possible modes to

diagnose.

The parameter settings of the Bayesian diagnostic system are summarized in

Table 4.2.
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Table 4.2: Summary of Bayesian diagnostic parameters

Discretization ki = 3(“low”,“medium”,“high”),
K = 315 = 14348907

Historical evidence data A mixture of totally 3000 samples from the 10 modes

Prior samples Uniformly distributed with prior sample, for single
evidence space, and evidence transition space

Prior probabilities Uniformly distributed, p(m) = 1/11

Evaluation data Mixture of 2000 samples from the 10
known modes, and UC mode

4.5.2 Diagnostic results

The single evidence space of this system is already a high-dimensional one, where a

single evidence includes 15 monitors. The number of possible evidence transitions

is the square of that of the single evidences, i.e.,

K ′ = K2 = 330 = 2.0589 × 1014,

which indicates that an evidence transition can take any combination among the

2.0589 × 1014 possible ones. For such a high-dimensional space, 3000 samples are

distributed sparsely, and are far from enough to give a meaningful estimation of the

evidence transition probability.

To deal with this sparse evidence transition data problem, the correlation ratio

of the evidence vector is investigated to reveal the temporal dependency of the mon-

itor outputs. The auto-correlation ratio and cross-correlation ratio of each discrete

monitor output are calculated and compared. The correlation ratios of monitor π1

and π11 against some of other monitors are displayed in Figure 4.6 as examples.

According to the correlation ratio analysis, it is observed that the monitor π11 and

π13 both have strong temporal auto-dependency, and the other monitors are all

auto-independent as well as cross-independent of monitor π11 and π13.

This results in reduction of the evidence transition space. According to the
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Figure 4.6: Correlation ratios of monitors

discussions in Section 4.4 and the correlation ratio analysis above,

p(Et|Et−1,M t)

=p({πt
1, · · · , πt

11, π
t
12, π

t
13, · · · }|{πt−1

1 , · · · , πt−1
11 , πt−1

12 , πt−1
13 , · · · },M t)

=p({πt
1, · · · , πt

12, · · · }|M t)p({πt
11, π

t
13}|{πt−1

11 , πt−1
13 },M t)

=p(Et
ic|M t)p(Et

c|Et−1
c ,M t), (4.39)

The original high-dimensional evidence transition space can be separated into a low

dimensional partial single evidence space and a low dimensional partial evidence

transition space. Recall the simulation settings. The disturbances, which affect

monitor π11 and π13, are both assumed to be a binary signal with predefined high

and low levels, which indicates that there exist four possible values of Et
c. Thus the

number of possible partial evidence transitions is K ′ = 42 = 16, and the number of

possible partial single evidences is

K = 313 = 1.59 × 106. (4.40)

These numbers are remarkably reduced in comparison with the the original evidence

transition space, which has 2.0589 × 1014 different evidence transitions. Although

the number of lower-dimensional partial single evidences is still a large one, the real

effective dimension is actually even lower, since some combinations of partial single

evidence never appear in the data set. In this simulation, for example, including

both historical and validation data, only 595 different single partial evidence values

have actually occurred. Thus 3000 samples are sufficient to generate a reasonable

estimation of the partial single evidence likelihood distribution.
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Figure 4.7: Numbers of occurrences diagnosed for each mode

Diagnostic results shown in Figure 4.7 are obtained from the 2000 evaluation

(cross-validation) evidence samples which are generated independently of the his-

torical samples. In Figure 4.7, the dark bars are the numbers of occurrences of each

mode in the validation data set. The other bars are the diagnostic results shown in

the form of numbers of samples assigned to each mode by three different diagnostic

strategies, namely: 1) Bayesian approach ignoring evidence dependency; 2) con-

sidering evidence dependency but without reducing the evidence transition space;

and 3) both considering evidence dependency and reducing the evidence transition

space. The closer the bars to the dark ones, the better the diagnostic performance

is.

Figure 4.7 clearly illustrates the poor performance of the approach that con-

siders the evidence dependency, but does not reduce the evidence transition space.

The number assigned by this strategy, is unreasonably high for mode NF . This

is due to the insufficiency of historical data. The number of possible values of the

unreduced evidence transitions, as discussed above, is 2.0589 × 1014. Although the

actual dimension of the space is smaller for each mode, where not all possible evi-

dence transitions appear in the historical and the validation data set, the number

of historical data samples in this case study is still far from enough to yield a rea-

sonable estimation of the evidence transition probabilities. According to further

simulations, approximately half million of historical data samples are needed to es-

68



timate the transition probabilities to obtain a good diagnostic performance without

using evidence transition space reduction.

The proposed approach, which considers the evidence dependency and also takes

the strategy to reduce the evidence transition space dimension, yields better diag-

nostic results than other two methods. The numbers of each mode diagnosed by the

proposed approach are close to the real distribution of the modes in the validation

data set. The better performance of the proposed method is also demonstrated by

the overall correct diagnosis rate, as presented in Table 4.3.

Table 4.3: Overall correct diagnosis rate

Ignoring evidence dependency 72.86%

Considering evidence dependency with 18.69%
original evidence transitions space

Considering evidence dependency with 80.56%
reduced evidence transitions space

Further, consider the diagnostic performance of mode m3 and m7, for which

the disturbances are different from the other modes according to Equation 4.37 and

4.38. Figure 4.8 displays the average posteriors assigned to the ten possible modes

by the three approaches when the true underlying mode is m3 or m7. In each

figure, the title of each plot denotes the diagnostic approach used. In each plot, the

posterior probability corresponding to the true underlying mode is denoted with

gray bars, while the others are in dark bars. The diagnostic result is determined

by picking up the mode with the largest posterior probability. Clearly for both

modes, the approach considering evidence dependency without compressing evidence

transition space has poor performance owing to insufficient historical data. It is

interesting to compare the results obtained between the Bayesian method ignoring

evidence dependency and the proposed approach. Both approaches, assign highest

probability to the true underlying modes. Yet the probability for the true underlying

mode calculated by the proposed approach is higher, indicating better diagnostic

performance. This is validated by comparing the correct diagnosis rate of the two

modes, as shown in Table 4.4. The proposed approach yields the highest correct

diagnosis rate for both m3 and m7 among the three diagnostic strategies, indicating

more effective handling of evidence dependency.
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Table 4.4: Correct diagnosis rates for m3 and m7

m3 m7

Ignoring evidence dependency 80.12% 69.27%

Considering evidence dependency with 9.36% 6.22%
original evidence transitions space

Considering evidence dependency with 91.23% 89.12%
reduced evidence transitions space
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0.5
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(a) Diagnosis for mode m3
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Figure 4.8: Average posteriors for validation data from mode m3 and m7

4.6 Pilot scale experiment

A pilot scale experiment is conducted to investigate performance of the proposed

Bayesian approach with consideration of the evidence dependency, and to compare

it with the Bayesian approach when the evidence dependency is ignored.

4.6.1 Process description

The experiment setup is a water tank with one inlet flow and two outlet flows. The

schematic diagram of the process is shown in Figure 4.9. The inlet flow is driven

by a pump. Of the two outlet flow valves, one is adjusted by a PID controller to

provide level control for the tank, and the other one is a manual bypass valve. The

bypass valve is closed when the system is in its normal operation condition.

Three operating modes are defined, including the normal functioning (NF )

mode, and two problematic modes leakage and bias: the tank leakage problem

defined as leakage mode, implemented by opening the bypass valve manually, and

the sensor bias problem defined as bias mode, implemented by adding a constant
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Figure 4.9: Pilot scale tank process

bias to the sensor output. The two problems share similar symptoms in terms of

shifting the steady state operation point of the process. For instance, when there is

a leakage in the tank, the valve adjusted by the PID controller will close to maintain

the water level; when there is a negative sensor bias, the valve will also close. Thus

it is not obvious how to distinguish the two faulty modes without any advanced

diagnostic method. To make things worse, the external disturbance introduced by

changing the pump input will shift the operation point. Thus the operation point

may also change during the normal operation.

Consider that disturbance is introduced through flow changes fluctuating be-

tween two rates. A random binary sequence of a limited frequency band is intro-

duced into the inlet pump input to simulate temporal dependent disturbances. By

defining the high value as 1, and the low value as 0, the disturbance is designed to

follow the transition probability matrices presented in Equation 4.41,

P dis
NF =




0 1

0 0.9 0.1

1 0.2 0.8


, P dis

leakage =




0 1

0 0.1 0.9

1 0.8 0.2


,

P dis
bias =




0 1

0 0.5 0.5

1 0.5 0.5


, (4.41)

where P dis
M represents the transition probability matrix of the introduced disturbance

under mode M .
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Two process monitors, process model validation monitor and sensor bias monitor,

are implemented. Since we are only concerned with the study of the information

retrieving and synthesizing abilities of Bayesian approaches with different diagnostic

strategies, some of the selected monitor algorithms do not necessarily have high

performance.

The output of the process model validation monitor π1 is given by the squared

sum of the nominal model output residuals, scaled by the magnitude of the process

output. Let the simulated output of the nominal model be ŷt at each sampling

instance t, and the real output be yt. The output of the model validation monitor

π1 is calculated as

π1 =

∑N
t=1(yt − ŷt)

2

ȳ
, (4.42)

where ȳ = 1
N

∑N
t=1 yi is the mean value of the process output over one monitor

reading period, and N is the length of data segment during this period.

The sensor bias monitor output π2 is obtained by examining shift of the operation

point. For illustration, consider the scenario when a negative sensor bias occurs. The

steady state in terms of the sensor output will not change, since it is controlled by

the PID. The steady state output of the controller, i.e., the valve position, however,

will decrease. The valve position will reverse in the presence of the positive sensor

bias. Thus we can detect the sensor bias by monitoring the deviation of the mean

value of the controller output from the nominal operation point. The output of the

sensor bias monitor π2 is calculated as

π2 =

∣∣∣∣∣u0 −
1

N

N∑

t=1

ut

∣∣∣∣∣ , (4.43)

where u0 is the nominal operation point of the controller output, ut is the controller

output at sampling instant t, and N is the length of process data segment for a

calculation of single monitor reading. Note that this monitor only applies to steady

state data.

4.6.2 Diagnostic settings and results

Process data are collected for the three predefined modes. The sampling interval

is set to be 1 second. Process data sampled over every 100 seconds are used for

calculation of one monitor reading. Totally 600 monitor readings are calculated

from 16.5 hours of process experiments. The collected evidence data of the three
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modes are divided into two parts for estimation of the likelihood, and for cross-

validation respectively. Table 4.5 summarizes the Bayesian diagnostic parameter

settings.

Table 4.5: Summary of Bayesian diagnostic parameters

Discretization ki = 2, K = 22 = 4

Historical data Totally 360 evidence samples for the three modes

Uniformly distributed with prior sample, for single
Prior samples evidence space, and evidence transition space

Prior probabilities p(NF ) = p(mother) = 1/3

Evaluation data 240 independently generated cross-
validation evidence samples

Note that there are only 42 = 16 combinations of evidence transitions, so the

reduction of the evidence transition space is not necessary. With the data-driven

Bayesian approaches of two different strategies, namely, considering and ignoring

the evidence dependency, the diagnostic results in Figure 4.10 are obtained based

on the cross-validation data. In the plot, the white bars are the numbers of the

underlying modes occurred in the validation data set; the light gray and black bars

are the numbers of the diagnosed mode by two diagnostic approaches respectively.
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Figure 4.10: Numbers assigned to each mode

Owing to the dependent external disturbance, the Bayesian approach ignoring

evidence dependency significantly overestimates the number of leakage mode, and

underestimates the number of NF mode. Therefore, its overall correct diagnosis rate

is only 51.45%, and is much lower in comparison to the diagnosis rate of the proposed
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method, which is 73.86%. Not only can better overall performance be obtained by

the proposed approach, the diagnostic performance of each single mode, as will be

investigated, is also more favorable.

Figure 4.11 summarizes diagnostic results in the form of average posterior prob-

abilities. The title of each plot denotes the true underlying mode, and the posterior

probability corresponding to the true underlying mode is denoted by light gray. The

left panel summarizes the diagnostic results calculated by the approach ignoring ev-

idence dependency; the right panel summarizes the diagnostic results obtained by

the approach with consideration of evidence dependency. It is observed that for the

three modes, the posterior probabilities assigned to the true underlying modes by

the proposed approach are all higher than that assigned by the method ignoring

dependency. Thus we can conclude that the proposed approach has better perfor-

mance for diagnosis of all modes. This conclusion is confirmed by computing the

correct diagnosis rate for each single mode, as presented in Table 4.6.
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Figure 4.11: Average posterior probability for each mode

Table 4.6: Correct diagnosis rate for each single mode

NF leakage bias

Ignore evidence dependency 6.25% 73.75% 70%

Consider evidence dependency 55% 78.75% 92.5%
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4.7 Conclusions

In this chapter, a data-driven Bayesian approach with consideration of temporally

dependent evidences is proposed for control loop diagnosis. Temporal dependency

problem is solved by introducing transition evidence. The evidence transition prob-

abilities needed for the solution are estimated from the historical evidence data. The

large evidence transition space problem is alleviated by analyzing the correlation ra-

tio of monitors. The proposed method is applied to a simulated binary distillation

column and a pilot scale experiment setup, where the performance of the proposed

approach is shown to be signficantly improved compared to the method ignoring

evidence temporal dependency.
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Chapter 5

Dynamic Bayesian Approach for

Control Loop Diagnosis with

Underlying Mode Dependency

In this chapter, first of all, a hidden Markov model is built to address the temporal

mode dependency problem in control loop diagnosis. A data-driven algorithm is

developed to estimate the mode transition probability. The new solution to mode

dependency is then further synthesized with the solution to evidence dependency to

develop a recursive auto-regressive hidden Markov model for the online control loop

diagnosis. When both the mode and evidence transition information is considered,

the temporal information is effectively synthesized under the Bayesian framework.

A simulated distillation column example and a pilot scale experiment example are

investigated to demonstrate the ability of the proposed diagnostic approach.

5.1 Introduction

In Chapter 4, the temporal information in terms of evidence transition is synthesized

within the Bayesian framework to improve diagnostic performance. However, the

mode dependency has not been considered. In engineering practice, the assump-

tion that the current system mode is independent of previous modes is not general

enough. For example, the fact that new equipment has more of a tendency to operate

normally in the future than aged equipment has not been considered. On the other

hand, if a system is in a faulty mode, without any repair action being taken, it is

more likely that the system will remain in the same faulty status. Furthermore, the

A version of this chapter has been published in F. Qi, and B. Huang. Dynamic Bayesian
approach for control loop diagnosis with underlying mode dependency. Industrial Engineering

Chemistry Research, 49:8613-8623, 2010.
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system mode may also change due to regular operating condition shifts. All these

mode changes may follow some patterns, and thus, it will be beneficial to consider

the mode dependency when performing diagnosis. The temporal dependency of the

underlying modes will be considered in this chapter. This chapter is concluded by

integrating the two solutions for the comprehensive temporal-dependency problem.

The remainder of this chapter is organized as follows. A recursive solution based

on the deliberation of mode dependency and the associated data-driven algorithm

for mode transition probability estimation are detailed Section 5.2. After that,

the evidence and mode dependency are incorporated into an auto-regressive hidden

Markov model framework in Section 5.3. The data dependency handling ability of

the proposed approach is demonstrated by examining the diagnostic performance

in simulation and experiment problems in Sections 5.4 and 5.5. The final section

concludes this chapter with a discussion of the results achieved.

5.2 Mode dependency

Note that in this section, we consider only the mode dependency problem. The most

general case when both the mode and evidence have temporal dependency will be

addressed in the next section.

5.2.1 Dependent mode

The dynamic Bayesian model [26] is used to represent the mode dependency. Con-

sider that the mode transition follows a Markov process, in which a mode is depen-

dent only on its immediate previous neighbor in the temporal domain. By adding

directed lines that represent dependencies between the consecutive modes depicted

in Figure 4.1, a graphic model with temporal-dependent modes as shown in Figure

5.1 is constructed. The model is also known as the hidden Markov model [68].

To estimate the probability of the current system mode, previous evidence also
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Figure 5.1: Bayesian model considering dependent mode

needs to be taken into consideration due to the dependency of the underlying modes,

p(M t|E1, · · · , Et)

=
p(E1, · · · , Et|M t)p(M t)

p(E1, · · · , Et)

=

∑
M t−1 p(E1, · · · , Et,M t−1|M t)p(M t)

p(E1, · · · , Et)

=

∑
M t−1 p(Et|M t,M t−1, E1, · · · , Et−1)p(E1, · · · , Et−1,M t−1|M t)p(M t)

p(E1, · · · , Et)
.

(5.1)

According to the Markov property, given current mode M t, current evidence Et

is conditionally independent of the previous modes M t−i, where i ≥ 1, and previous

evidences Et−j , where j ≥ 1, so

p(M t|E1, · · · , Et)

=

∑
M t−1 p(Et|M t)p(E1, · · · , Et−1,M t−1|M t)p(M t)

p(E1, · · · , Et)
. (5.2)

In the above equation, the term p(E1, · · · , Et−1,M t−1|M t) can be calculated

based on Bayes’ rule:

p(E1, · · · , Et−1,M t−1|M t)

=
p(M t|E1, · · · , Et−1,M t−1)p(E1, · · · , Et−1,M t−1)

p(M t)
. (5.3)

Insert Equation 5.3 into 5.2,

p(M t|E1, · · · , Et)

=

∑
M t−1 p(Et|M t)p(M t|E1, · · · , Et−1,M t−1)p(E1, · · · , Et−1,M t−1)

p(E1, · · · , Et)
. (5.4)
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It is also known that M t should be conditionally independent of E1, · · · , Et−1

given M t−1, so

p(M t|E1, · · · , Et)

=

∑
M t−1 p(Et|M t)p(M t|M t−1)p(E1, · · · , Et−1,M t−1)

p(E1, · · · , Et)

=

∑
M t−1 p(Et|M t)p(M t|M t−1)p(M t−1|E1, · · · , Et−1)p(E1, · · · , Et−1)

p(E1, · · · , Et)

=p(Et|M t)p(E1, · · · , Et−1)

∑
M t−1 p(M t−1|E1, · · · , Et−1)p(M t|M t−1)

p(E1, · · · , Et)
,

(5.5)

which means

p(M t|E1, · · · , Et) ∝ p(Et|M t)
∑

M t−1

p(M t−1|E1, · · · , Et−1)p(M t|M t−1). (5.6)

Equation 5.6 provides a recursive solution for calculating the probability of the

current system mode in the presence of mode dependency. To apply this equation, in

addition to the single evidence likelihood, p(Et|M t), the mode transition probability,

p(M t|M t−1), also needs to be estimated, which will be discussed shortly.

In addition to the ability to handle the time domain information in terms of

mode dependency, another advantage of the proposed approach lies in the fact that

this approach is less likely to be affected by inaccurate prior probability. In view

of Equation 5.6, there is no need to calculate prior probability. All the information

required to compute the mode posterior probability includes the following: (1) the

mode transition probability, p(M t|M t−1), and (2) the single evidence likelihood

probability, p(Et|M t); both (1) and (2) can be estimated from the historical evidence

data set, and (3) the mode posterior probability as calculated diagnostic results from

the previous diagnosis, p(M t−1|E1, · · · , Et−1).

Although the prior probability is still necessary to calculate the first mode prob-

ability p(M1|E1) when no “previous mode” is available,

p(M1|E1) ∝ p(E1|M1)p(M1), (5.7)

the impact of the prior probability will diminish as more evidences surge, according

to Equation 5.6. Rewrite the posterior probability equation for single evidence

diagnosis according to Bayes’ rule,

p(M t|Et) ∝ p(Et|M t)p(M t). (5.8)
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A comparison of Equation 5.6 and Equation 5.8 shows that the term p(Et|M t) ap-

pears in both equations, and they both update the information by considering newly

emerging evidence; the remaining terms
∑

M t−1 p(M t−1|E1, · · · , Et−1)p(M t|M t−1)

and p(M t) respectively in the two equations are determined before the arrival of the

new evidence Et. Thus, we may equivalently treat
∑

M t−1 p(M t−1|E1, · · · , Et−1)p(M t|M t−1) as the “prior” in the recursion. The dif-

ference is that the term
∑

M t−1 p(M t−1|E1, · · · , Et−1)p(M t|M t−1) is constantly up-

dated with new evidences and mode transition probability. Thus, it is not surprising

to see that the impact of prior probability in the first recursion will eventually dimin-

ish as more evidence data samples are collected. Therefore, when sufficient evidence

data samples are available, we can claim that the term
∑

M t−1 p(M t−1|E1, · · · , Et−1)p(M t|M t−1) is completely determined by the data,

and thus is free from the negative impact from inaccurate prior probability.

5.2.2 Estimation of mode transition probability

The intention of estimating the mode transition probability is to make the estimated

probabilities to be consistent with the historical evidence data set D in which the

mode dependency exists. Our goal is to calculate the likelihood probability of a mode

M t given previous mode M t−1 to reflect the Markov property, so every composite

mode sample, which is defined for mode transition probability estimation purpose,

should include two elements:

dt−1
M = {M t−1,M t}. (5.9)

It should be noted that since our focus is only on the mode transition, not the

evidence transition, the composite mode sample dtM includes only the transitions of

the underlying modes, i.e., two consecutive modes. Accordingly, the new composite

mode data set DM , which is assembled from the historical evidence data set D to

estimate of the mode transition probability, is defined as

DM = {d1M , · · · , dÑ−1
M }

= {(M1,M2), · · · , (M Ñ−1,M Ñ )}. (5.10)

Figure 5.2 depicts how the collected historical evidence data are organized to form

composite mode samples. In Figure 5.2, the nodes highlighted with shadows or

enclosed by the solid-lined frame constitute a single composite mode sample, as

described by Equation 5.9.
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Figure 5.2: Historical composite mode data set for mode transition probability
estimation

Following an approach similar to that outlined in Chapter 2, the mode transition

probability can be derived as

p(mv|mu,DM ) =
n̂u,v + cu,v

N̂u + Cu

, (5.11)

where n̂u,v is the number of mode transitions from mu to mv in the historical com-

posite mode data set; N̂u =
∑

j n̂u,j is the total number of mode transitions, from

modemu to any other mode; cu,v is the number of prior samples for the mode transi-

tion from mu to mv, and Cu =
∑

j cu,j is the total number of prior mode transitions

from mu to any other mode. See Appendix B for the derivation of Equation 5.11.

Rewrite the single evidence likelihood calculation equation

p(ei|mj,D) =
ni + ai
N +A

, (5.12)

and the evidence transition likelihood calculation equation,

p(er|es,mc,DE) =
ñs,r + bs,r

Ñs +Bs

(5.13)

By comparing Equations 5.12 and 5.13 with Equation 5.11, we can see that the

mode transition probability is also determined by both prior samples and histori-

cal data samples, similar to the single evidence likelihood calculation and evidence

transition probability calculation introduced in Equations 5.12 and 5.13. The dif-

ference lies in how the numbers of the prior and historical samples are counted. In

Equations 5.12 and 5.13 the prior and historical samples refer to a count of the

evidence samples or evidence transitions that correspond to a target mode, while in

Equation 5.11 the prior and historical samples refer to the count of the composite

mode samples assembled from the historical evidence samples.
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As the number of historical composite modes increases, the transition probabil-

ity will converge to the relative frequency determined by the historical composite

mode samples, and the influence of the priors will decrease. The number of prior

samples can be interpreted as prior belief of the mode transition probability dis-

tribution, where the uniform distribution indicates that prior sample numbers are

equal across all possible transitions. It is important to set nonzero prior sample

numbers; otherwise, unexpected results may occur in the case of limited historical

samples [73].

In Chapter 4, an evidence space reduction solution is proposed to handle the

intensive historical data needed for the evidence transition probability estimation.

This space reduction, however, is unnecessary for the mode transition estimation.

The problem with the evidence transition probability estimation arises due to the

large combinatorial number of evidence transitions. The limited historical evidence

transition data are divided into the small subspaces defined by different evidence

transitions and the underlying modes. For example, consider a diagnostic system

with ten monitors and ten modes, and each single monitor output is discretized into

two discrete values. The total number of possible evidence transitions equals

K = 210 · 210 = 1048576. (5.14)

With the underlying modes being further considered, which have ten different sta-

tuses, there is a total of approximately 107 possible subspaces for each single evi-

dence transition sample to fall into. However, the total number of possible mode

transitions equals

K = 10 · 10 = 100, (5.15)

which does not increase exponentially with the number of the modes. Mode transi-

tion space reduction is not required.

5.3 Dependent evidence and mode

Up to now, we have discussed two different types of temporal dependency: evi-

dence dependency, addressed in Chapter 4, and mode dependency, addressed in this

chapter. In reality, both kinds of dependencies may exist. Thus, it is necessary to

consider the evidence dependency and the mode dependency simultaneously.

With both mode and evidence dependencies being considered, a dynamic Bayesian

model [26] is established to depict the temporal dependency between data samples.
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By adding directed lines, which represent dependencies, between consecutive modes

and evidences as shown in Figure 4.1, the proposed model is constructed in Figure

5.3. The model structure is also known as the auto-regressive hidden Markov model

[68].
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Figure 5.3: Dynamic Bayesian model that considers both mode and evidence de-
pendency

Following similar derivations as in the previous section, a recursive solution can

be developed. To estimate the probability of the current system mode, the previous

evidences also need to be taken into consideration due to the evidence dependency

in the time domain,

p(M t|E1, · · · , Et)

=
p(E1, · · · , Et|M t)p(M t)

p(E1, · · · , Et)

=

∑
M t−1 p(E1, · · · , Et,M t−1|M t)p(M t)

p(E1, · · · , Et)

=

∑
M t−1 p(Et|M t,M t−1, E1, · · · , Et−1)p(E1, · · · , Et−1,M t−1|M t)p(M t)

p(E1, · · · , Et)
.

(5.16)

Note that the current evidence is determined by both the current mode M t and

previous evidence Et−1,

p(M t|E1, · · · , Et)

=

∑
M t−1 p(Et|M t, Et−1)p(E1, · · · , Et−1,M t−1|M t)p(M t)

p(E1, · · · , Et)
.

(5.17)

By following procedure similar to that in the previous section, a recursive solution
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can be expressed as follows,

p(M t|E1, · · · , Et) ∝ p(Et|M t, Et−1)
∑

M t−1

p(M t−1|E1, · · · , Et−1)p(M t|M t−1).

(5.18)

With previous mode posterior p(M t−1|E1, · · · , Et−1), two transition probabili-

ties are required to calculate the current mode posterior, namely, the evidence tran-

sition probability p(Et|M t, Et−1) and the mode transition probability p(M t|M t−1).

The estimation algorithms of the first probability have been detailed in Chapter 4,

and the second has been developed in the previous section of this chapter.

With data dependency being considered, the ability to retrieve the time domain

information hidden in both the evidence and mode transitions, along with insensitiv-

ity to inaccurate prior probability, provides a significant advantage to the proposed

approach in comparison to the Bayesian diagnostic solution based on information

solely from single evidence without considering the data dependency.

5.4 Simulation example

The simulated binary distillation column employed in previous chapters is selected

to evaluate the four Bayesian diagnostic approaches. Both the mode and evidence

dependencies are introduced into the experiment.

5.4.1 Diagnostic settings

When simulation parameters are set, it is assumed that a hardware abnormality,

or an external disturbance change, has a much lower probability of disappearing

once the abnormality occurs, which also means that it is more unlikely to shift

from other modes to the NF or m1 mode, which are neither hardware modes nor

disturbance modes. Other transitions have the same probability. Further assume

that the hardware of the system is prone to problems, and the NF and m1 modes

thus have low probabilities to persist. In summary, the mode transition probability

matrix is shown in Equation 5.19:

Pm =




NF m1 m2 · · · m9

NF 0.02 0.02 0.12 · · · 0.12

m1 0.02 0.02 0.12 · · · 0.12
...

...
...

...
. . .

...

m9 0.02 0.02 0.12 · · · 0.12



. (5.19)
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In addition to the original measurement noise, random binary bias with two

different levels, which are defined as 0 and 1, respectively, is added into the FBP

top and PCT bottom sensor signal to introduce the evidence dependency into the

simulation. The change in the bias in the FBP top follows the transition probability

matrices shown in Equation 5.21, where the transition probabilities of FBP bias

under mode m3, P
FBP
m3

, are different from those under the other modes PFBP
¬m3

; the

change in bias in the PCT bottom follows the transition matrices shown in Equation

5.20, where the transition probabilities of PCT bias under mode m7, P
PCT
m7

, are

different from those under the other modes PPCT
¬m7

.

PFBP
m3

=




0 1

0 0.9 0.1

1 0.1 0.9


, PFBP

¬m3
=




0 1

0 0.1 0.9

1 0.9 0.1


; (5.20)

PPCT
m7

=




0 1

0 0.9 0.1

1 0.1 0.9


, PPCT

¬m7
=




0 1

0 0.1 0.9

1 0.9 0.1


. (5.21)

A total of 5000 consecutive evidence data samples are collected. Among the

collected samples, the first 3000 are used to estimate the single evidence likelihood,

evidence transition probability, and mode transition probability. The remaining

2000 samples are used for cross-validation.

The parameter settings of the Bayesian diagnostic system are summarized in

Table 5.1. The evidence transition space is a high dimensional one. According to

the procedure introduced in Chapter 4, the evidence transition space is compressed

to reduce the intensive requirement of historical evidence data.

Table 5.1: Summary of Bayesian diagnostic parameters

Discretizaion ki = 3(“low”,“medium”,“high”),
K = 315 = 14348907

Historical evidence data A mixture of a total of 3000 from all the 10 modes

Uniformly distributed with prior samples,
Prior samples for single evidence space, evidence

transition space, and mode transition space

Prior probabilities p(NF ) = 0.2,p(m1) = 0.1, p(mother) = 0.0875

Evaluation data Mixture of 2000 samples from all possible modes
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5.4.2 Diagnostic results

The diagnostic results in Figure 5.4 are obtained from the 2000 evaluation (cross-

validation) evidence data samples. In Figure 5.4, the bars denote the number of

actual occurrences of each mode in the validation data set, as well as the number

of modes diagnosed by four different diagnostic approaches, namely, the Bayesian

approach that ignores both dependencies, that considers evidence dependency only,

that considers mode dependency only, and that considers both mode and evidence

dependencies.
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Figure 5.4: Number of occurrences diagnosed for each mode

In view of the numbers of the modes assigned by different approaches, the two

Bayesian methods that ignore the mode dependency significantly overestimate the

number of NF mode occurrences due to the methods’ heavy dependency on prior

probability: p(NF ) = 0.2, p(m1) = 0.1, and p(mother) = 0.0875. With a high prior

probability assigned to mode NF , the diagnostic system that ignores the mode de-

pendency tends to yield higher posterior probability for the NF mode, and therefore

overestimates the occurrences of the NF mode. The numbers of modes diagnosed by

the remaining two approaches are close to the real numbers. The overall diagnostic

performance is the best when both mode and evidence dependencies are taken into

consideration, as summarized in Table 5.2.
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Table 5.2: Overall correct diagnosis rates

Evidence dependency
Ignore Consider

Mode dependency
Ignore 69.92% 73.36%

Consider 76.66% 82.21%

Further, consider the diagnostic performance for mode m3 and m7, for which

the disturbances are different from the other eight modes. Figure 5.5 displays the

average posteriors assigned to the ten possible modes by the four approaches when

the true underlying mode is m3 and m7. In each subplot, the title denotes the

diagnostic approach used, and the posterior probability assigned to the true under-

lying mode is highlighted with gray. The diagnostic conclusion is determined by

picking up the mode with the largest posterior probability. The posterior proba-

bilities assigned to the true underlying mode by the two approaches that consider

the evidence dependency are higher than the other two that simply ignore the evi-

dence dependency. Of the two approaches that ignore the evidence dependency, the

posteriors assigned to the true underlying mode, generated by the method that con-

siders the mode dependency, are higher, suggesting better diagnostic performance;

furthermore, the probability assigned to the true underlying mode calculated by the

proposed approach that considers both the mode and evidence dependencies is the

highest, indicating the best diagnostic performance. The above discussion is further

validated by the comparison of the correct diagnosis rates of the two modes in Table

5.3.

Table 5.3: Correct diagnosis rate for m3 and m7

m3 m7

Ignoring both dependencies 70% 58.82%

Considering evidence dependency 84.17% 80%

Considering mode dependency 72.92% 68.63%

Considering evidence 91.25% 95.29%
and mode dependencies
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(a) Diagnosis for mode m3
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Figure 5.5: Posterior of mode m3 and m7

5.5 Pilot scale experiment

A pilot scale experiment is conducted to investigate the performance of the proposed

Bayesian approach that considers both mode and evidence dependencies and to

compare this strategy with the other Bayesian diagnostic strategies.

5.5.1 Process description

The experiment setup is a water tank with one inlet flow and two outlet flows. This

equipment was used to test our previous diagnostic algorithms in Chapter 4, and is

used here to test the new algorithm and compare it with the previous ones. Both

the mode and evidence dependencies are introduced into the experiment.

The transition of the system modes follows the mode transition probability ma-

trix in Equation 5.22. It is assumed that the system status tends to remain in the

current condition, whether it is normal or faulty. Thus, the diagonal elements in

the mode transition probability matrix are much larger than the others, as shown

in Equation 5.22.

Pm =




NF leakage bias

NF 0.95 0.025 0.025

leakage 0.025 0.95 0.025

bias 0.025 0.025 0.95


. (5.22)

For the evidence dependency, consider that the disturbance is introduced through

flow changes that fluctuate between two predefined rates. The random binary se-
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quence of a limited frequency band is introduced into the inlet pump to simulate

temporally dependent disturbances. By defining the high value as 1 and the low

value as 0, the disturbance is introduced by following the transition probability

matrices presented in Equation 5.23,

P dis
NF =




0 1

0 0.9 0.1

1 0.2 0.8


, P dis

leakage =




0 1

0 0.1 0.9

1 0.8 0.2


,

P dis
bias =




0 1

0 0.5 0.5

1 0.5 0.5


, (5.23)

where P dis
M represents the transition probability matrix of the introduced disturbance

under mode M .

5.5.2 Diagnostic settings and results

A total of 600 evidence samples that correspond to the three modes are collected.

The collected evidence data are divided into two portions to estimate the parameters,

and for cross-validation. Table 5.4 summarizes the Bayesian diagnostic parameters.

Table 5.4: Summary of Bayesian diagnostic parameters

Discretizaion ki = 2, K = 22 = 4

Historical evidence data A mixture of 360 samples

Uniformly distributed with prior samples,
Prior samples for single evidence space, evidence

transition space, and mode transition space

Prior probabilities p(NF ) = 0.5, p(mother) = 0.25

Evaluation data A mixture of 240 independently generated cross-
validation monitor readings

The diagnostic results in Figure 5.6 are obtained based on the cross-validation

data. Due to inaccurate prior probabilities, the two Bayesian approaches that ignore

mode dependency significantly overestimate the number of occurrences of the NF

mode. Therefore, these approaches’ overall correct diagnosis rates are much lower

than the diagnosis rates of the methods that consider the mode dependency for the

same prior probabilities, as shown in Table 5.5.
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Figure 5.6: Numbers of occurrences diagnosed for each mode

Table 5.5: Overall diagnosis rates

Evidence dependency
Ignore Consider

Mode dependency
Ignore 37.76% 46.67%

Consider 67.73% 75.93%

Figure 5.7 summarizes the diagnostic results in the form of average posterior

probabilities. The title of each subplot denotes the true underlying mode from

which the validation data come from, and the posterior probability corresponding

to the true underlying mode is highlighted with light gray. The left-most panel

summarizes the diagnostic results obtained by the approach that ignores all data

dependencies; the next panel summarizes the diagnostic results obtained by the ap-

proach that considers evidence dependency only; the further next panel summarizes

the diagnostic results by the approach that considers mode dependency only; and

the right-most panel summarizes the diagnostic results obtained by the approach

that considers both mode and evidence dependencies. The approach that considers

both the mode and evidence dependencies always assigns the highest posterior prob-

abilities to the true underlying modes, while the other approaches do not possess

such diagnostic performance. Therefore, we can conclude that this last approach

has a consistently better performance for all the modes, as also shown in Table 5.6.
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Figure 5.7: Average posteriors assigned to each mode

Table 5.6: Correct diagnosis rates for each single mode

NF leakage bias

Ignoring both dependencies 98.44% 29.47% 0%
Considering evidence dependency 76.56% 66.32% 0%
Considering mode dependency 37.5% 81.05% 75.61%

Considering mode and evidence dependencies 67.19% 85.26% 71.95%

5.6 Conclusions

In this chapter, a data-driven approach based on the dynamic Bayesian model is

presented to handle the temporal dependency problem in control loop diagnosis.

Temporal dependencies of evidences as well as underlying modes are taken into

consideration to achieve better diagnostic performance. A recursive solution for

the mode posterior probability calculation is developed. The mode and evidence

transition probabilities necessary for the recursive solution are estimated from the

historical evidence data. The proposed method is applied to a simulated binary

distillation column and a pilot scale experiment setup, where the performance of

the proposed approach is shown to be better than approaches that ignore data

dependencies.
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Chapter 6

Control Loop Diagnosis with

Sparse Historical Data

A major concern with the data-driven Bayesian approach is the intensive require-

ment for historical data. While in industry, the faulty data may be sparse. In

extreme cases, a fault may only happen once, which causes difficulty for diagnosis.

In this chapter, we propose an approach to estimate the statistical distribution of

monitor readings when historical data is sparse. The monitor distributions are es-

timated with both analytical approaches and the bootstrap method. Applications

of the proposed approach to the Tennessee Eastman Challenge problem and an

experimental distillation column are presented to examine the performance of the

proposed likelihood reconstruction methods.

6.1 Introduction

The Bayesian diagnostic methods discussed so far are all data-driven. To estimate

the distribution of evidences, which is required by any Bayesian diagnostic method,

sufficient historical samples must be collected. Otherwise poor diagnostic results are

inevitable. A good example is shown in Chapter 4, where the number of historical

evidences is much smaller than the dimension of the evidence transition space, and

as a result, the estimation of evidence transition likelihood is poor. As disused

in previous chapters, the dimension of evidence space will grow exponentially as

the number of monitors increases. Thus a large number of historical evidences are

required for a reasonable diagnosis for a medium or large scale system. However,

the faulty data in industry can be very sparse. In extreme cases, a fault may only

A portion of this chapter has been published in F. Qi, and B. Huang. Estimation of distribution
function for control valve stiction estimation. Journal of Process Control, 21:1208-1216, 2011.
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appear once. Estimating the evidence likelihood with limited number of historical

samples is a challenging problem.

Knowing the nominal value of the monitor output, which is obtained from the

sparse evidence samples, nonetheless, is still not sufficient for the Bayesian diagnosis.

Recall that the core of the Bayesian diagnosis is the estimation of evidence likelihood.

Only knowing nominal value of the evidence will result in a likelihood of one for the

discrete bin which the nominal value falls in, and zeros for all the other bins. Such

kind of likelihood completely removes the uncertainty, and will not fit into the

Bayesian diagnostic framework. In order to have a reasonable diagnostic result, the

uncertainty should be estimated and incorporated into the diagnostic framework.

The uncertainty of monitor output, either continuous or discrete, originates from

disturbance and the infinite window length of monitor calculation: if there is no

disturbance, or the segment window for monitor calculation contains infinite process

data samples, the monitor output is solely determined by the underlying fault. To

estimate the uncertainty, the distribution of continuous monitor output needs to be

reconstructed. In this chapter, we will show how the monitor output distribution can

be estimated using an analytical approach and a data-driven approach with limited

number of historical evidence samples. It should be noted that there exists a large

number of monitoring algorithms, and we will focus on some of the critical ones as

examples to demonstrate the proposed distribution function estimation. The general

idea, which is to establish relations between the nominal monitor output value and

the monitor output distribution, can be extended to other monitoring algorithms.

The reminder of the chapter is organized as follows: in Section 6.2, the distri-

butions of control performance monitor, sensor bias monitor and model validation

monitor are determined with analytical approaches. Section 6.3 presents a boot-

strap approach to estimate the distribution of valve stiction monitor output. The

proposed distribution estimation approaches are applied to the Tennessee Eastman

Challenge problem and an experimental distillation column setup in Sections 6.4

and 6.5. This chapter is concluded by Section 6.6.

6.2 Analytical estimation of monitor output distribu-

tion function

The idea to be discussed in this section is to derive the monitor output distribu-

tion as an analytical function of nominal monitor output (mean value), such that
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the distribution function can be estimated with even only one historical evidence

sample. Recall that each historical evidence sample is calculated from a section of

process data sampled from physical process variables. Therefore, it is possible to

derive the distribution of the corresponding evidence sample. In this section, several

monitoring algorithms are selected for the analytical derivation of distribution func-

tion to illustrate the proposed approach. These algorithms include the minimum

variance control performance monitor [36], process model monitor [3], and sensor

bias monitor [77].

6.2.1 Control performance monitor

The univariate control performance assessment method adopted in this work is the

minimum variance benchmark [36]. Filtering and CORrelation (FCOR) algorithm

is employed to compute the control performance index of single controlled variable

(CV).

A stable closed-loop process can be modeled as an infinite-order moving-average

process:

yt = (f0 + f1q
−1 + · · · + fd−1q

−(d−1) + fdq
−d + · · · )at, (6.1)

where d is the process delay, and at is white noise. Multiplying Equation 6.1 by

at, at−1, · · · , at−d+1 respectively, and then taking the expectation of both sides of

the equation yields

rya(0) = E[ytat] = f0σ
2
a

rya(1) = E[ytat−1] = f1σ
2
a

...

rya(d− 1) = E[ytat−d+1] = fd−1σ
2
a

The minimum variance or the invariant portion of output variance is [36]

σ2
mv = (f2

0 + f2
1 + · · ·+ f2

d−1)σ
2
a. (6.2)

Define the control performance index as

η(d) =
σ2
mv

σ2
y

, (6.3)

where σ2
y can be extracted from the output data.
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In Desborough and Harris (1992) [16], the values of the mean and variance of

the performance index are estimated as

mean[η̂(d)] = η(d) (6.4)

var[η̂(d)] =
4

n
(1− η(d))2[

d−1∑

k=1

(ρk − ρe,k)
2 +

∞∑

k=d

ρ2k], (6.5)

where d is the process time delay; ρk and ρe,k represent the output and residual

auto-correlations respectively, and can be calculated from the available process data.

Readers are refereed to Desborough and Harris (1992) [16] for the derivation details.

It is also shown in Desborough and Harris (1992) [16] that distribution of the control

performance can be approximated by a normal distribution. Therefore, with the

nominal value from one evidence available, the variance of the monitor output can

be calculated to give an estimation of the monitor output distribution.

6.2.2 Process model monitor

A local Output Error (OE) method has been employed to validate the nominal

process model [3].

For a multi-input single-output (MISO) subsystem, we have

Y (s) = G1(s)e
−δ1sU1(s) + · · · +Gk(s)e

−δksUk(s) + V (s), (6.6)

where Ui(s) is the the Laplace transform of the ith input, Gi(s) = Bi(s)
Ai(s)

, Ai(s) =

ai,ns
ni + · · · + ai,1s + ai,0, Bi(s) = bi,ns

ni + · · · + bi,1s + bi,0, Y (s) is the Laplace

transform of output, and the model parameters are given by

θ = [θT1 , θ
T
2 , · · · , θTk ]T ,

θi = [ai,ni , · · · , ai,0, bi,ni , · · · , bi,0, δi]T .

Define the overall model output ŷ(t|θ) = L−1[Ŷ (s)], and output corresponding to

the ith input channel ŷi(t|θ) = L−1[Ĝi(s)e
−δisUi(s)]. We have

ŷ(t|θ) = ŷ1(t|θ1) + · · ·+ ŷk(t|θk). (6.7)

Primary residuals and improved residuals are defined as

ρ(θ, xt) = ϕ(t)(y(t)− ŷk(t|θ)) = ϕ(t)e(t, θ) (6.8)

ξN (θ) =
1√
N

N∑

t−1

ϕ(t)e(t, θ), (6.9)

95



where

ϕ(t|θ) = −∂ŷ(t|θ)
∂θ

=




−∂ŷ1(t|θ1)
∂θ1
...

−∂ŷk(t|θk)
∂θk


 =




ϕ1(t|θ1)
...

ϕk(t|θk)


 ,

ϕi(t|θi) = [ŷ(ni)
i

(t), · · · , ŷ
i
(t),−û

(ni)
i (t∗i), · · · ,−û

(ni)
i (t∗i), ŷ1

i
(t)]T ,

t∗i = t − δi, û
(j)
i = L −1[ sj

Ai(s)
Ui(s|θ)], and ŷ(j)

i
= L −1[ sj

Ai(s)
Yi(s|θ)]. Then calcu-

late the generalized likelihood ratio test as I = ξN (θ)TΣ−1(θ)ξN(θ), where Σ(θ) =
∑∞

t=−∞ cov(ρ(θ, xt), ρ(θ, xt)).

The above I value can be used as model validation monitor of a MISO system.

The model monitoring index is subject to χ2 distribution when there is no model

mismatch, and is subject to a non central χ2 distribution when mismatch exists. A

MIMO system can be divided into several MISO parts by different outputs. Model

of each MISO part can be validated with the local OE approach, and therefore the

overall MIMO model will be validated.

When there is a model mismatch, the improved residual, whose dimension is p,

will be subject to a nonzero multivariate normal distribution,

ξ(θ) ∼ N(µ,Σ) (6.10)

where µ 6= 0. As a result, the model monitor index, which is calculated as

I = ξTS−1ξ, (6.11)

will no longer follow χ2 distribution. The distribution of I, has to be re-modeled.

Define d = Σ−1/2ξ, M = Σ−1/2SΣ−1/2 [62] and

α = (n− 1)(d′M−1d/d′d)d′d = (n − 1)I. (6.12)

Knowing that M is subject to Wishart distribution [62],

M ∼ Wp(Σ, n− 1), (6.13)

and its distribution is independent of that of d, the distribution of β = d′d/d′M−1d

is χ2
n−p. Furthermore, the mean value of d is nonzero, therefore the distribution

of d′d should be a noncentral χ2 distribution with degree of p, and the noncentral

parameter

λ = nµTΣ−1µ. (6.14)
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Thus α can be represented as the ratio of a noncentral χ2 variable and a central χ2

variable, which in turn is a noncentral F distribution, with noncentral parameter λ,

α = (n− 1)χ2
p,λ/χ

2
n−p = (n− 1)p/(n − p)Fp,n−p,λ. (6.15)

As such, I can be calculated as

I =
1

(n− 1)
Fp,n−p,λ. (6.16)

According to Evans (2000) [20], mean value the noncentral Fp,n−p,λ distribution

is

µF =
(n− p)(p+ λ)

p(n− p− 2)
(6.17)

Consequently, we can estimate the mean value of I,

E[I] =
1

n− p

(n− p)(p+ λ)

p(n− p− 2)
(6.18)

In Equation 6.18, the only unavailable variable is λ and E[I]. We can substitute

the E[I] with the nominal monitor output. Once E[I], n and p are all known,

λ can be calculated with Equation 6.18, and thereafter the distribution of I can

reconstructed as per Equation 6.16.

6.2.3 Sensor bias monitor

The sensor bias monitor discussed here is the algorithm proposed in Qin and Li

(2001) [77].

A system with sensor fault can be described by the following state-space model:

{
x(t+ 1) = Ax(t) +Bu(t) + d

y(t) = Cx(t) + yf + o
. (6.19)

Define Ys = [y(t−s), y(t−s−1), · · · , y(t)]T , where s is the observability index of the

system. It should be noted that y(t− i), i = 0, · · · , s are actual outputs subtracted

with normal operating value yo. Therefore, knowing the nominal operating point yo

is a necessary condition for sensor fault diagnosis.

For simplicity, we can assume that the state-space model is a minimal realization,

say, s = n for a single output system. Equation 6.19 can be transformed as [77]

Ys = Γx(t− s) + Y f
s +HsUs +GsDs +Os, (6.20)
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where Γx =




C
CA
...

CAs


, Hs =




0 · · · · · · 0

CB
. . .

...
...

. . .
. . .

...
CAs−1B · · · · · · 0



,

Gs =




0 · · · · · · 0

C
. . .

...
...

. . .
. . .

...
CAs−1 · · · · · · 0



, and Us, Ds are all defined similarly as Ys. Denote

Zs =

[
Ys

Us

]
. (6.21)

Equation 6.20 can be written as

[
I −Hs

]
Zs = Γx(t− s) + Y f

s +GsDs +Os (6.22)

Let characteristic polynomial of A be

|λI −A| =
n∑

k=1

akλ
k (6.23)

According to Cayley-Hamilton theorem, we know that

n∑

k=1

akA
k = a0I + a1I + · · ·+ anA

n = 0. (6.24)

Defining Φ =
[
a0 a1 · · · an

]
, then Equation 6.24 gives

ΦΓs = C(a0 + a1A+ · · ·+ anA
n) = 0 (6.25)

Multiplying both sides of Equation 6.22 with Φ yields

Φ
[
I −Hs

]
Zs = ΦΓx(t− s) + Y f

s +GsDs +Os

= Φ[Y f
s +GsDs +Os], (6.26)

so that the unknown state x(t−s) is completely removed. Define e∗ = ΦGsDs+ΦOs,

which is a scalar value. Then Equation 6.26 equals to

e = Φ
[
I −Hs

]
Zs = ΦY f

s + e∗ (6.27)

Ds and Os are process noise and output noise which are both Gaussian distributed,

and e∗ is linear combination of Ds and Os, so it is readily known that e∗ is also

Gaussian distributed, e∗ ∼ N(0, Re∗), where Re∗ is the variance of e∗(t).
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If there is a sensor bias fault E(yf ) 6= 0, e = ΦY f
s + e∗ will not have zero

mean. Therefore, we can use the index d = eTR−1
e e as observation of the sensor

bias monitor, where Re is the variance of e.

Similar to the model monitoring monitor, the sensor bias index follows χ2 dis-

tribution when there is no sensor bias, and non-central χ2 distribution when sensor

bias exists. The only difference lies in that the sensor bias monitor is calculated

with a scalar residual, while the process model monitor is based on a vector resid-

ual. Thus we can consider the distribution of sensor bias monitor as a special case

of the process model monitor when p = 1. Following the same procedure in Section

6.2.2, the distribution of sensor bias monitor output can be estimated.

6.3 Bootstrap approach to estimate monitor output dis-

tribution function

In this section, a bootstrap method for monitor output distribution estimation is in-

troduced. In contrast to the analytical approaches discussed in the previous section,

the bootstrap method provides an empirical estimation of the monitor distribution

function. The valve stiction monitor, whose distribution cannot be derived with an-

alytical approaches, is presented as an example of applying the bootstrap approach.

6.3.1 Valve stiction identification

Several valve stiction detection methods have been proposed in the past decades,

for instance, the method based on cross-correlation analysis proposed by Horch

(2009) [32], the curve fitting method of He et al. (2007) [30], the higher order

statistics method of Choudhury et al. (2004) [14], and the area comparison method

of Singhal and Salsbury (2005) [91]. A comprehensive review and comparison of

these methods can be found in Jelali and Huang (2009) [43]. However, valve stiction

quantification remains to be a challenging problem. Only a few publications are

available. Choudhury et al. (2008) [13] proposed a method to quantify stiction

using the ellipse-fitting method. The PV vs. OP plot is fitted to an ellipse and

the amount of stiction is estimated as the maximum width of the ellipse in the

OP direction. Jelali (2008) [42] presented a global optimization based method to

quantify the valve stiction. Good initial values of the stiction parameters, which are

obtained by using the ellipse-fitting method, play an essential role for an accurate
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Figure 6.1: Operation diagram of sticky valve

estimation. A similar method was proposed by Srinivasan et al. (2005) [93]. The

approach is based on identification of a Hammerstein model consisting of a sticky

valve and a linear process. The stiction parameters and the model parameters are

estimated simultaneously with a global grid optimization search method. Lee et al.

(2009) [55] presented a stiction quantification approach. Given the stiction model

structure, a feasible search domain of stiction model parameters is defined, and a

constrained optimization is used in search of stiction parameters.

In Lee et al. (2009) [55], a method based on a type of Hammerstein model

identification is proposed for the estimation of valve stiction parameters. The process

(excluding sticky valve) is approximated by a linear transfer function model. The

valve stiction model introduced by He et al. (2007) [30] is chosen to describe the

nonlinearities invoked by the stiction valve.

Figure 6.1 shows the operation diagram of a sticky valve, where fD is the kinetic

friction band, fS is the static friction band, S is the stick plus deadband,

S = fS + fD, (6.28)

and J is the slip jump,

J = fS − fD. (6.29)

If there is no stiction, the valve movement will follow the dashed line crossing

the origin. Any change in the controller output, i.e., input to the valve, is matched

100



r

s

v s D

r s D

v v

r

Figure 6.2: Stiction model flow diagram

exactly by the valve output, i.e., the valve movement. If there is stiction, the valve

movement, will follow the solid line in Figure 6.1.

He et al. (2007) [30] proposed a valve stiction model as illustrated by the flow

chart in Figure 6.2. ur is the residual force applied to the valve which has not

moved yet; cum u is an intermediate variable describing the current force acting on

the valve. If cum u is larger than the static friction fS, the valve position will equal

to the controller output, subtracted by the dynamic stiction fD; if not, the valve

will remain in the same position, and cum u will be the residual force applied to

the valve at the next time instant.

Stiction estimation can be considered as a Hammerstein model identification

problem. The identification of the overall Hammerstein model is performed by a

global optimization search for the stiction parameters, in conjunction with the iden-

tification of the linear transfer function model. In order to have an effective search

for optimal estimation, the search space needs to be specified. The bounded search

space can be defined by analyzing the collected operation data and the relationship

of stiction parameters.

In view of Figure 6.1, it is noted that

fD + fS ≤ Smax, (6.30)

where Smax is the span of OP . Also consider the relation

fS = fD + J, (6.31)
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Figure 6.3: Bounded stiction parameter search space

so

2fD + J ≤ Smax. (6.32)

Figure 6.3 shows the constrained search space for the stiction parameter set (fS, fD).

For each point in the stiction parameter space, a series of intermediate valve

output data (denoted as MV ′, input to the linear dynamic model) can be calculated

from the collected OP data as per the stiction model. With MV ′ and the collected

PV data, the linear dynamic model, which is chosen as a first or second order

plus dead time transfer function, is identified with the least squares method by

minimizing the mean squared error. A grid optimization method is applied to search

within the bounded stiction parameter space for the minimal mean square error

so as to obtain the corresponding linear dynamic model and the stiction model

parameters.

6.3.2 The bootstrap method

The quantification of uncertainty for nonlinear parameter estimation is nontrivial.

Ninness et al. (2002) [70] investigated the accuracy of Hammerstein model estima-

tion, and derived an approximated solution for the variance of identified nonlinear

parameters. This result, however, requires that the nonlinear part of the Ham-

merstein model must be memoryless. In the valve stiction case, the current valve

output (position) depends not only on the current controller output, but also on
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the previous controller output series [30], and thus, the valve stiction model is a

memory one. Extending the work of Ninness to nonlinear components with mem-

ory, for instance, a sticky valve, is an open problem [93]. As to the best of the

author’s knowledge, there is no work that has successfully handled the uncertainty

quantification problem.

Bootstrap methods have been proven useful for a variety of statistical inferences,

such as estimation of bias, variance, and distribution functions [9, 108]. Applications

of bootstrap methods have been reported in medicine science, communication, image

processing, physics, quality assurance, etc. [88, 8, 107, 33, 96]. Built on previous

work of valve stiction quantification of Lee et al. (2009) [55], this section develops

a bootstrap based approach to quantify the distribution of valve stiction parameter

estimation.

The purpose of the bootstrap method is to estimate the distribution of parameter

estimators [9]. Suppose that we have a set of data x = {x1, x2, · · · , xN} collected

from the realizations of a random variable X, which follows the distribution FX .

Let θ be a parameter or statistics of the distribution FX . θ̂ is a estimator of θ,

which can be, for instance, the estimator for the mean value, θ̂ =
∑N

i=1 xi/N. If the

distribution FX is known and yet relatively simple, it will not be difficult to evaluate

the distribution of the parameter estimator. A common example is the variance

of the sample mean value of a normal distribution. However, if the distribution

is unknown, or is too complicated to evaluate analytically, the bootstrap method

provides a well suited alternative to estimate the distribution of the estimator by

resampling the collected data.

Assume that the collected data samples x = {x1, x2, · · · , xN} are independently

and identically distributed (i.i.d.). The collected samples x = {x1, x2, · · · , xN} are

resampled to construct the bootstrap samples from the same distribution. Often

the distribution is unknown and has to be estimated from the original samples.

To construct the bootstrap samples is to estimate the kernel distribution of the

collected sample set, and to generate the bootstrap samples from the estimated

kernel distribution. The bootstrap sample sets have the same size as the original

sample set, and can be denoted as

xbi = {xbi,1, xbi,2, · · · , xbi,N}, (6.33)

where xbi is the ith bootstrap sample set, and xbi,j is the jth sample in the ith
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bootstrap sample set. Each bootstrap set is considered as a new set of data. Suppose

that totally M sets of bootstrap samples are collected. For the ith bootstrap set,

the bootstrap estimator of θ, θ̂bi , can be evaluated. Based on theM sets of bootstrap

samples, we can have a group of bootstrap estimators,

{θ̂b1, θ̂b2, · · · , θ̂bM}. (6.34)

With a sufficiently large M , the distribution of parameter estimator θ̂, Fθ̂, can be

approximated by the distribution of θ̂b, Fθ̂b , which is determined from the bootstrap

estimators θ̂bi , i = 1, 2, · · · ,M.

An important assumption for the bootstrap is that the data samples that are to

be bootstrapped must be i.i.d.. This assumption, however, has a clear limitation in

control related applications. Once the collected data are dependent, the aforemen-

tioned bootstrap method will lead to incorrect estimation result of Fθ̂. A solution

for the dependent data bootstrap is to whiten the data through a time series model,

and then bootstrap the whitened data, but not the original data [108], as elaborated

below.

Suppose that a set of dependent data x = {x1, x2, · · · , xN} is collected. To

estimate the distribution of estimator θ̂, the first step is to fit the data into a

time series model. With the fitted model, a set of simulated model output can be

obtained, x̂ = {x̂1, x̂2, · · · , x̂N}. Subtracting the model output from the collected

data, a set of i.i.d. residuals is obtained, ê = {e1, e2, · · · , eN}. Perform bootstrap on

the residuals, and we can generate M sets of bootstrap residual samples

ebi = {ebi,1, ebi,2, · · · , ebi,N}, i = 1, · · · ,M (6.35)

where ebi is the i-th bootstrapped residual sample set, and ebi,j is the j-th sample

in the i-th bootstrapped residual sample set. The new sets of bootstrap sample for

xi can be obtained by adding the bootstrapped residual samples to the simulated

model output,

xbi = x̂+ ebi . (6.36)

It has been shown that with the above procedure, the bootstrap distribution is

an asymptotically valid estimator of the distribution of parameter estimation [51, 4].

For a closed-loop system with sticky valve, the output data (PV) are almost

always non-white. Thus we cannot apply the bootstrap method to the PV data
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directly. Following the above data whitening procedure, we propose a residual

bootstrap method based on the identification of both closed-loop model and the

disturbance model.

Controller identification

The process model, which includes the linear dynamic model and the sticky valve

model, can be identified by the method outlined in Section 6.3.1. In order to re-

construct the closed-loop model, the controller model is needed. If the controller is

known, the closed-loop model can be readily constructed. However, in some scenar-

ios when the controller is unknown, the controller has to be identified.

In this work, all controllers attached to the valves are assumed to be PI or PID

controllers. Thus the controller model can be written as,

u(t) = Kpǫ(t) +Ki

t∑

i=1

ǫ(i) +Kd (ǫ(t)− ǫ(t− 1)) , (6.37)

where u(t) is the controller output, and ǫ(t) is the controller error, ǫ(t) = r(t)−y(t).

r(t) is the control loop setpoint, and y(t) is the process output.

The PID controller parameters

θ = (Kp, Ki, Kd)
T

can be identified with the collected process data. Let

U = (u(2) u(3) · · · u(N))T , (6.38)

and

X =




ǫ(2)
∑2

i=1 ǫ(i) ǫ(2)− ǫ(1)

ǫ(3)
∑3

i=1 ǫ(i) ǫ(3)− ǫ(3)
...

...
...

ǫ(N)
∑N

i=1 ǫ(i) ǫ(N)− ǫ(N − 1)


 . (6.39)

Accordingly we have

U = X · θ. (6.40)

Following the least squares method, the PID parameters are calculated as

θ =
(
XTX

)−1
XTU. (6.41)
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In a closed control loop, two equations exist

y(t) = H(S, J, u(t))Gp(q
−1) +Gl(q

−1)e(t), (6.42)

u(t) = Gc(q
−1)(r(t)− y(t)), (6.43)

where H(S, J, u(t)) is the sticky valve model; Gp(q
−1) is the linear dynamic model;

Gl(q
−1) is the disturbance model; e(t) is white noise; Gc(q

−1) is the controller model;

r(t) is the setpoint signal, and in most valve stiction scenarios it is 0. These two

equations can be written as

u(t) = F (S, J, (y(t) −Gl(q
−1)e(t))G−1

p (q−1)), (6.44)

u(t) = −Gc(q
−1)y(t), (6.45)

where F (S, J, ·) is the inverse function of H(S, J, ·). The purpose of controller model

identification is to find a model that can fit the process data u(t) and y(t),

u(t) = −Ĝc(q
−1)y(t) (6.46)

In Equation 6.44, F (S, J, ·) is a nonlinear function due to valve stiction, and the

output u(t) is corrupted by noise; in Equation 6.46, the controller model is linear

and noise free, and the model structure is a perfect match of the real controller used

if correctly selected. Identifiability of Gc(q
−1) can be easily proved.

Although only the PID controller is considered, the discussion of this work can be

extended to controller of other structures by selecting the corresponding controller

model structure. For example, some PID controllers have filters. In this case we

can fit a second order or higher order model, with constraint that the denominator

has a pole that equals one to account for the integrator. With the controller model,

the sticky valve parameters and the linear dynamic model, the closed loop model

can be built, and we are ready to generate bootstrap data, as discussed below.

Bootstrap of sticky valve parameters

When identifying the valve stiction parameters and linear dynamic model param-

eters, a set of residuals are generated from the identification. However, we cannot

bootstrap the identification residuals directly. The reason lies in the fact that the

valve stiction identification algorithm outlined in Section 6.3.1 only estimates the

linear dynamic model as well as the valve stiction model, and the disturbance model

has not been estimated. If the disturbance model is considered, the identification
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of the linear dynamic model becomes a nonlinear optimization problem [60]. Con-

sidering the global grid search of stiction parameters and the need of identifying

the linear dynamic model from each grid search, the overall computation will be

formidable. The generated identification residuals are not temporally independent,

and thus are not i.i.d.. Whitening of the residual is needed.

Let the residual be e(t). Fit the residual by a time series model:

e(t) =
C(q−1)

B(q−1)
a(t), (6.47)

where a(t) is i.i.d. white noise. Since a(t) is i.i.d., the bootstrap can be applied.

Let,

a(t) ∼ N (µ̂, σ̂2), (6.48)

where µ̂ and σ̂2 can be calculated from the filtered residuals a(t). New sets of

bootstrapped ab(t) are generated from the following normal distribution

ab(t) ∼ N (µ̂, σ̂2), (6.49)

The bootstrapped ab(t) are then passed to the model identified in Equation 6.47 to

get bootstrap residuals eb(t).

The bootstrapped residuals eb(t) are added into the closed-loop model, to simu-

late new process data, including the process output (PV ) and the controller output

(OP ), where the controller and model parameters for the simulation are the previ-

ously identified ones. It should be noted that the newly simulated bootstrap data

set must have the same length as the original one. Use the valve stiction parameter

identification method presented in Section 6.3.1, and a new set of stiction parameters

can be estimated from the re-simulated closed-loop response data.

Repeat the above procedure for sufficient number of iterations, say, M times, and

as a result, M different sets of stiction parameters are estimated. With the newly

bootstrapped stiction parameters, the distribution of the valve stiction parameters

can be determined. The procedure is summarized in Figure 6.4.

6.3.3 Illustrative example

To verify the proposed procedure, a SISO closed control loop with sticky valve is

simulated. The linear part of the process model, together with the disturbance
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Figure 6.4: Bootstrap method flow diagram

model in Garatti and Arnaiz (2009) [23], is

y(t) =
q−1

1 + q−1
uv(t) + (1 + q−1)a(t), (6.50)

where uv(t) is the valve output (position), and a(t) is Gaussian distributed white

noise, a(t) ∼ N (0, 0.01). A sticky valve model with the structure described in

Section 6.3.1 is used to convert the controller output u(t) into valve position uv(t).

The valve stiction parameters are S = 2, and J = 1. The loop is controlled by a PI

controller, with parameters Kp = 0.5, and Ki = 0.1.

Totally 2000 Monte-Carlo simulation runs are performed. Each simulation con-

tains 1000 samples of process data. Based on each single simulation run, a set of
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linear process model, disturbance model, valve stiction model, and controller pa-

rameters, are identified. The histograms of the 2000 sets of identified valve stiction

parameter are shown in Figure 6.5.
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Figure 6.5: Histogram of simulated Ŝ and Ĵ

From each one of the simulations, a set of stiction and linear dynamic model pa-

rameters are estimated. With the any set of identified linear dynamic model, stiction

parameters, disturbance model, controller parameters, as well as the whitened resid-

uals, we can generate bootstrap samples to determine the empirical distribution of

the identified stiction parameters. Before that, we also need to assure that the

whitened residuals are i.i.d.. The auto-correlation coefficients of the filtered 1000

residuals are shown in Figure 6.6 and the histogram of the residuals is shown in

Figure 6.7. It can be observed that the whitened residuals are uncorrelated, and

have a distribution close to normal. Thus the filtered residual can be used as the

bootstrap variable to generate new samples.

The distributions of parameters based on the bootstrap from one set of the iden-

tification results are compared with the results from 1000 Monte-Carlo simulations

based on true stiction parameters, as presented in Figure 6.8. In Figure 6.8, Ŝ and

Ĵ are the stiction parameters estimated from the Monte-Carlo simulations, and Ŝb

and Ĵb are the stiction parameters estimated from the bootstrap samples based on

one of the 1000 Monte-Carlo simulations. As can be seen, the distributions of boot-

strapped parameters Ŝb and Ĵb are close to the Monte-Carlo simulated results. This

is also verified by comparing the sample standard deviations, as shown in Table 6.1.

To further quantify the accuracy of bootstrap estimation performance, Kullback-
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0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

(b) Histogram of Ĵ
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Figure 6.8: Comparison of parameter histograms

Table 6.1: Comparison of sample standard deviations

σŜ σĴ
simulated 0.3614 0.2645

bootstrapped 0.3013 0.2021

Leibler divergence is employed to measure the distance between the the bootstrap

distribution and the simulated distributions. In information theory, the Kullback-

Leibler (KL) divergence is a measure of the difference between two probability dis-

tributions P and Q [53].

For distributions P and Q of a continuous random variable, the KL divergency

is defined as

DKL(P ||Q) =

∫ ∞

−∞
p(x) log

p(x)

q(x)
dx, (6.51)
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where p and q denote the densities of P and Q. While for probability distributions

P and Q of a discrete random variable, the KL divergence of Q from P is defined as

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (6.52)

Since the analytical density function is unavailable for both the simulated dis-

tribution and the bootstrapped distribution, the only way to calculate the KL di-

vergence in the valve stiction case is to consider the two distributions as discrete

distribution over a vector X. The elements of X are selected as a finite number

of small consecutive intervals within the range of the stiction parameters. P (i) or

Q(i) is the frequency over the ith interval. Choosing interval size of 0.05, the KL

divergences of the two sets of distribution pairs are

DKL(Ŝ||Ŝb) = 1.0285, (6.53)

DKL(Ĵ ||Ĵb) = 0.8695, (6.54)

which further confirm the good estimation performance of the bootstrap method.

6.3.4 Applications

Several industrial data sets are selected to further investigate the performance of

the proposed method. These data sets have been used in Jelali and Huang (2009)

[43] and Thornhill et al. (2002) [99] to test the stiction detection performances.

1000 bootstrap data sets are simulated for each loop. The histograms of the

bootstrapped parameters are shown in Figures 6.9, 6.10, 6.11, and 6.12. The es-

timated stiction parameters and 95% confidence intervals (CIs) of the estimated

parameters are summarized in Table 6.2. The distribution of stiction parameter

estimates provides valuable information to determine the stiction.

Table 6.2: Confidence intervals of the identified stiction parameters

chemical 55 chemical 60 paper 1 paper 9

Stiction? yes yes yes no

Ŝ 1.6672 1.8809 4.4006 0.015

Ĵ 0.6669 0.8996 3.5204 0.010

95% CI of Ŝb [1.1795, 4.1668] [0.5860, 3.2911] [0.2090, 10.4878] [0, 0.1306]

95% CI of Ĵb [0.2852,3.1174] [0, 2.3051] [0.0713, 9.6138] [0, 0.1277]
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Figure 6.9: Histogram of bootstrapped Ŝb and Ĵb for chemical 55
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Figure 6.10: Histogram of bootstrapped Ŝb and Ĵb for chemical 60
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Figure 6.11: Histogram of bootstrapped Ŝb and Ĵb for paper 1
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Figure 6.12: Histogram of bootstrapped Ŝb and Ĵb for paper 9

According to the data source [99], the valve has stiction problem in the “chemical

55” data set, and the estimated stiction parameters are nonzero for both S and J .

The previous stiction identification methods only provide a point estimation but

not a confidence interval. According to the distribution provided by the bootstrap

method, we can observe that the 95% CIs do not include zero. Thus we can conclude

that the valve do have stiction problem with 95% confidence.

For the “chemical 60” data set, the bootstrap results show that the 95% CI of Ĵb

includes the 0, although the point estimation suggests that Ĵ is nonzero. Therefore

we can conclude with 95% confidence that the valve only has a deadband problem,

i.e., S > 0, but J might be zero

Both the two 95% CIs of “paper 5” do not include 0, indicating that the valve

does have a stiction problem with 95% confidence. However, both the CIs of Ŝb and

Ĵb are wide. The quantification of the valve stiction is of great uncertainty, i.e., the

extent of stiction estimated from this set of data may be unreliable..

For the “paper 9” data set, the point estimation algorithm yields non-zero es-

timations for both Ŝ and Ĵ , which does not agree with the fact that there is no

stiction in the loop [43]. However, in the 1000 bootstrap simulations, over 30% yield

zero stiction parameters. The 95% CIs of both Ŝ and Ĵ cover 0. Thus 0 is still

within the possible range of the stiction parameters. When diagnosing the valve

problem, even though the point estimation may indicate stiction, it is important to

check its confidence interval to avoid misleading conclusions.

It should be noted that the bootstrap method is not only applicable to the valve
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stiction monitor. It can also be applied to other monitors. During the bootstrap

procedures, the controller model, valve stiction model, and process model plus the

disturbance model are all identified. A complete closed-loop model is built based on

the identified models. Simulated samples can be generated to estimate the distribu-

tion of not only valve stiction monitors, but also the control performance monitor,

process model monitor, and sensor bias monitor. The disadvantage of the boot-

strap method is that the accuracy of the estimation may not be as good as the

analytical solutions. The bootstrap method, however, estimates the distributions of

the monitors in the same loop simultaneously, other than considering each monitor

distribution individually. Therefore the cross monitor output dependency is taken

into consideration. If cross monitor output dependency is of concern, the bootstrap

method should be employed. As a rule of thumb, the bootstrap method shall be

used on multiple monitors located in the same control loop. If monitors are located

in different control loops, we can apply the analytical estimation techniques to each

individual monitor.

With the distributions estimated by approaches presented in Sections 6.2 and

6.3, the likelihoods of single monitors can be calculated with the method outlined

in Chapter 2 using the simulated data samples. Further assuming that the moni-

tor distributions are cross-independent between control loops, the overall evidence

likelihood can be calculated as

p(E|M) = p(π1, π2, · · · , πk|M)

=

L∏

i=1

p(πi,1, · · · , πi,ki |M), (6.55)

where L is the number of control loops; πi, j is the jth monitor in the ith control

loop; and ki is the number of monitors in the ith control loop.

6.4 Simulation example

The Tennessee Eastman (TE) Challenge problem is selected to evaluate the monitor

distribution estimation algorithms. TE problem provides a realistic industrial pro-

cess for process control community [18] to test developed algorithms. It has been

widely used as a benchmark to exam the performances of different control monitor-

ing and diagnostic approaches [52, 64, 10, 78, 54, 61]. The structure of the process
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is shown in Figure 6.4.

The gaseous reactants A, C, D, and E and the inert B are fed to the reactor

where the liquid products G and H are formed. The reactions in the reactor are

irreversible, exothermic, and approximately first-order with respect to the reactant

concentrations. The reactor product stream is cooled through a condenser and

then fed to a vapor/liquid separator. The vapor exiting the separator is recycled

to the reactor feed through the compressor. A portion of the recycle stream is

purged to keep the inert and byproducts from accumulating in the process. The

condensed components from the separator are pumped to the stripper to strip the

remaining reactants, which are combined with the recycle stream. The products G

and H exiting the base of the stripper are sent to a downstream process which is

not included in this process. The simulation code allows 15 known preprogrammed

major process faults.

The decentralized control strategy outlined by Ricker (1996) [79] was adopted in

this work to provide control to the TE process. In Ricker (1996) [79], six variables

are selected as the key process variables to be controlled. They are: production

rate, mole % G in product, reactor pressure, reactor liquid level, separator liquid

level, and stripper level. The simulation codes are available in [2].

The monitoring algorithms discussed in Sections 6.2 and 6.3 are used to construct

a diagnostic system. Six univariate control performance monitors are commissioned

to monitor the control performance of the six key PVs. In addition to the control

performance monitors, three additional model validation monitors are commissioned

to monitor the model change of reactor level, separator level and stripper level.

According to Downs and Vogel (1993) [18], the reactor cooling water valve and the

condenser cooling water valve both have potential sticky valve problem. Two valve

stiction monitors are commissioned to monitor the problems. Each valve stiction

monitor yields two outputs: the stiction parameter S and J , and thus there are 13

monitor outputs in total. Out of the 13 monitors, three pairs of monitors are located

in the same loop: the control performance monitors and model validation monitors of

reactor level, separator level, and stripper level. For the three pairs, the bootstrap

method is used to model the the joint distributions of monitor outputs. For the

rest seven monitors, their distributions are modeled individually using analytical

methods (for control performance monitor/model validation monitor) or bootstrap

method (for valve stiction monitor).
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6.4.1 Diagnostic settings and results

Seven faulty modes are selected for simulation in addition to the normal opera-

tion (NF) mode. Thus there are eight modes in total. The eight modes and the

corresponding problematic variables are listed in Table 6.3.

Table 6.3: List of simulated modes

Variable number Process variable Type

NF N/A N/A
IDV 1 A/C feed ratio B composition constant (stream 4) Step
IDV 2 B composition, A/C ratio constant (stream 4) Step
IDV 7 C header pressure loss, reduced availability Step
IDV 8 A, B, C feed composition (stream 4) Variation
IDV 9 D feed temperature (stream 2) Variation
IDV 12 Reactor cooling water inlet temperature Variation
IDV 14 Reactor cooling water valve Sticking

For each mode, 500 historical data samples, and 500 cross validation data samples

are simulated. The diagnosis is performed first using all available historical data.

The diagnostic settings are summarized in Table 6.4.

Table 6.4: Summary of Bayesian diagnostic parameters

Discretizaion ki = 2, K = 213 = 8192

Historical data 500 samples for each mode

Prior samples Uniformly distributed with prior sample,
aj = 1, A = 8192

Prior probabilities Uniform distributed for all modes

Evaluation data 500 samples for each mode,
from training modes

The diagnostic results in terms of average posterior probability are shown in

Figure 6.14. The title of each figure indicates the underlying mode from which the

validation data are from. The highest posterior probabilities from this simulation

are all assigned to the true underlying modes, which are highlighted in gray.

Further assume that there is only one sample of evidence data for IDV 8 fault

(stream 4 random variation). The evidence likelihood needs to be estimated from the

one evidence sample with the approaches developed in this chapter. The diagnostic
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Figure 6.14: TE problem diagnosis with all historical data
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Figure 6.15: TE diagnosis with only one sample from mode IDV 8

results for the eight modes are shown in Figure 6.15. Although the probability

assigned to IDV 8 when the underlying fault is IDV 8 is lower than the one calculated

in Figure 6.14, the eight modes are correctly diagnosed despite the sparse historical

evidence data.

The IDV 8 fault is also selected to examine the likelihood estimation perfor-

mance. In Figure 6.16, the reconstructed likelihood distribution does not completely

agree with the one calculated from the original data. It, however, tracks the trend.

Most of the peaks or valleys are captured. Thus the above method provides a good

estimation of the likelihood distribution even though the dependency of monitors

across different control loops is not considered.

The diagnostic performances are also examined when the historical data is sparse
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Figure 6.16: Comparison of likelihood distributions

under mode IDV 2, IDV 7, and IDV 14. The results are summarized in Figures 6.17

to 6.19. All the modes are correctly diagnosed even with only one historical evidence

sample.

6.4.2 Weighting of historical data

An interesting problem is how to estimate likelihood when there are multiple but

relatively sparse historical evidence samples. The key issue of the likelihood esti-

mation problem is how to extract information effectively from a limited number of

historical samples. There are two different ways: the first one is to use the average

of multiple monitor readings as the nominal monitor output value to calculate the

likelihood distribution using analytical approaches or bootstrap; the second one is

to estimate the distribution directly from the historical data samples if the number

of historical evidences is sufficient. Apparently when there are insufficient historical

readings, more weight should be given to the calculated distribution; on the other

hand, as the historical data number grows, more weight should be given to the

historical data samples; and eventually, we will only consider historical data when

a large number of samples are available. Therefore, the weight of the historical

data should be a function of the historical sample number. Here we propose using

exponential function as the weight function of likelihood estimated from historical
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Figure 6.17: TE diagnosis with only one sample from mode IDV 2
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Figure 6.18: TE diagnosis with only one sample from mode IDV 7
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Figure 6.19: TE diagnosis with only one sample from mode IDV 14
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Figure 6.20: Diagnosis with different number of historical samples for IDV 14

data,

w = 1− exp(−n/β), (6.56)

where n is the number of historical samples; β is a tuning parameter. The final

likelihood is calculated as

p = pcalc ∗ (1− w) + phist ∗ w, (6.57)

where pcalc is the likelihood calculated with analytical approaches or bootstrap, and

phist is the distribution estimated from historical data directly using the data-driven

methods presented in Chapter 2.

We apply the weighting function to the TE problem. As an example, IDV 14 fault

is selected. Figure 6.20 summarizes the diagnostic results with different numbers of

historical samples for IDV 14 fault. It can be seen that as the data sample number

grows, better diagnostic performance is achieved.

6.5 Experimental example

In order to demonstrate practicality of the developed monitor distribution estimation

technique, we investigate the proposed approach experimentally on a real distillation

column.
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6.5.1 Process description

A distillation column with 0.3 m diameter is used to separate a methanol and iso-

propanol mixture. A schematic diagram of the experimental setup is shown in Figure

6.5.1. The column contains five identical sieve trays spaced 0.457 m apart. Each

tray is made of stainless steel and equipped with thermocouple and liquid sampling

point at the outlet of the tray. The column is made of Pyrex glass to enable obser-

vation of the vapor/liquid phenomena. Detailed dimensions of the column and tray

are shown in Table 6.5. The total pressure drop for two trays is measured using a

Rosemount differential pressure cell. A total condenser and a thermosiphon partial

reboiler complete the distillation system. The column is instrumented for continuous

unattended operation. An Opto-22 process I/O subsystem interface with a personal

computer running LabView (Version 7.1) software is used for process control and

data acquisition.

Table 6.5: Detail dimensions of the column and trays

Column Diameter 0.3m

Tray active area 0.0537 m2

Hole diameter 4.76 mm

Open hole area 0.00537 m2

Tray thickness 3.0 mm

Outlet weir height 0.063 m

Inlet weir height 0.051 m

Weir length 0.213 m

Liquid path length 0.202 m

Tray spacing 0.457 m

The column is started with total reflux operation and is then switched to contin-

uous mode by introducing feed to the column and withdrawal of two products from

the top and bottom of the column. In this study, a total of five different steady state

operating modes are carried out under ambient pressure using methanol/isopropanol

mixture [71]. For each operating mode, the column bottom level and the top reflux

drum level are kept constant while the other variables, including feed rate, reflux

rate, top pressure, and steam rate are varied. Table 6.6 shows the operating vari-

ables for the five steady state operating modes. In Table 6.6, all the process data

are normalized for easier computation and comparison. When the flow rate and

temperature profiles shown by the software (LabView) remain constant for a period
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of 30 minutes, steady state condition is assumed for that particular mode. Liquid

samples from each tray outlet and condenser bottom as well as one from the re-

boiler are taken and analyzed to minimize the measurement uncertainty. During

the steady state operation, the sampling period is set to 3 seconds.

Table 6.6: Operating modes for the column

Variables NF(benchmark) m1(Feed) m2(Reflux) m3(Pressure) m4(Steam)

Feed 0.8 0.95 0.8 0.8 0.8
Reflux 0.15 0.15 0.3 0.15 0.15
Pressure 0.3 0.3 0.3 0.4 0.3
Steam 0.2 0.2 0.2 0.2 0.35

Bottom Level 0.45 0.45 0.45 0.45 0.45
Top Level 0.45 0.45 0.45 0.45 0.45

6.5.2 Diagnostic settings and results

Six monitors are commissioned to detect any changes in the process. As for the

model monitor and sensor bias monitor, we use the variable that has the most

significant direct impact to the CV as the model input. For example, consider the

reflux flow rate as the input for tray 1 (top) temperature. The designed monitors

are presented in Table 6.7.

Table 6.7: Commissioned monitors for the column

Monitor Description

π1 control performance monitor for tray 5 temperature
π2 control performance monitor for tray 1 temperature
π3 control performance monitor for tray 3 temperature
π4 control performance monitor for cooling water flow rate
π5 model monitor between steam flow rate and tray 5 temperature
π6 sensor bias monitor between reflux rate and tray 1 temperature

For each mode, steady state process data of 5 hours are collected. In total

there are 6000 process data samples available for each mode. Every 50 process

data samples are segmented for a calculation of one evidence/monitor data sample,

resulting 120 evidence samples for each mode. Out of the 120 evidence samples,

80 of them are designated as historical samples, and the other 40 are used as cross

validation samples. Detailed diagnostic settings are summarized in Table 6.8.
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Table 6.8: Summary of Bayesian diagnostic parameters

Discretizaion ki = 2, K = 26 = 64

Historical data 80 samples for each mode

Prior samples Uniformly distributed with prior sample,
aj = 1, A = 64

Prior probabilities Uniform distributed for all modes

Evaluation data 40 samples for each mode
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Figure 6.22: Distillation column diagnosis with all historical data

Figure 6.22 shows the diagnostic results in terms of average posterior probability

when all historical data samples are available for the five modes. It is observed

that all the modes are assigned with the largest posterior probabilities, which are

highlighted with gray.

Now assuming that only one historical evidence sample is available for each faulty

mode, the proposed estimation techniques for monitor distributions are applied to

the six monitors to generate diagnostic results. For the monitors that involve the

same process variables, we consider them to be in the same control loop or cross-

dependent, i.e., the pair of monitors π1 and π5, and the pair of monitors π2 and

π6. The bootstrap approach is employed to estimate the joint distribution of the

two pairs. For monitors π3 and π4, which do not have direct correlation with other
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Figure 6.23: Distillation column diagnosis with only one sample from mode m1

monitors, the analytical approaches are applied.

Figures 6.23 to 6.26 show the diagnostic results when only one historical sample

is available for modes m1 to m4. The title of each sub figure indicates the mode from

which the validation data are from. It can be seen that even though the average

posterior probabilities assigned to the true underlying mode, which are highlighted

in gray, are lower than when all historical data are available, the correct diagnosis

is still made for all the five modes.

6.6 Conclusions

In this chapter, monitor distribution reconstruction techniques in the presence of

sparse historical evidence samples are proposed for control loop diagnosis. The ap-

proaches are classified into two categories: the analytical ones and the bootstrap

based method. Several monitoring algorithms are selected to illustrate how the dis-

tributions can be estimated with the nominal monitor output values from the sparse

samples. With the reconstructed monitor distributions, additional data samples are

generated using a Monte-Carlo method such that the evidence likelihood can be

calculated. The proposed approaches have been applied to the TE problem and

a distillation column experiment setup, where the diagnostic performance of the

proposed approaches is demonstrated.
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Figure 6.24: Distillation column diagnosis with only one sample from mode m2
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Figure 6.25: Distillation column diagnosis with only one sample from mode m3
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Figure 6.26: Distillation column diagnosis with only one sample from mode m4
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Chapter 7

Concluding Remarks and

Future Work

7.1 Concluding remarks

The main objectives of the work reported in this thesis are to develop data-driven

Bayesian diagnostic strategies for control loops. Related topics, including incomplete

historical evidence, temporal evidence and mode dependency, and sparse historical

data, have been addressed. The main contributions of this thesis can be summarized

as follows:

• A data-driven Bayesian framework is developed for control loop diagnosis. In-

formation from various monitor readings is synthesized to provide an effective

diagnosis of problem source of poor control performance.

• The incomplete historical evidence problem is effectively handled. By intro-

ducing the missing pattern concept, the incomplete evidence problems are

categorized into single missing pattern problems and multiple missing pattern

ones. The likelihood of each incomplete evidence is marginalized as per the

underlying complete evidence matrix (UCEM), such that these incomplete

evidence samples can also be utilized to facilitate the diagnosis.

• The evidence temporal dependency is taken into consideration to improve

Bayesian control loop diagnostic performance. The temporal correlation ratio

of monitors is analyzed to alleviate the intensive requirement for historical

data when calculating evidence transition probability.

• In addition to the evidence dependency, mode dependency is also considered.

A hidden Markov model is built to address the temporal mode dependency
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problem in control loop diagnosis. The new solution to mode dependency is

then further synthesized with the solution to evidence dependency to develop

a recursive auto-regressive hidden Markov model for the online control loop

diagnosis.

• An approach to estimate the statistical distributions of monitor readings with

sparse historical data is proposed. The proposed approach has the potential

to generate evidence likelihood estimation with as few as only one evidence

sample. The distribution functions of several monitoring algorithm outputs

are analyzed to generate simulated data for likelihood estimation.

• A bootstrap approach is proposed to estimate the statistical distributions of

valve stiction parameters. The identification residuals are filtered through

a disturbance model to generate i.i.d. residuals for bootstraping. With the

obtained bootstrap residuals, identified closed loop model and the identified

disturbance model, the distributions of stiction parameters can be estimated.

The newly proposed techniques have been evaluated on a variety of simulation,

experimental and industrial examples.

• The data-driven Bayesian approach (in Chapter 2), incomplete evidence han-

dling strategies (in Chapter 3), and evidence/mode dependency analysis (in

Chapters 4 and 5) have been successfully applied to a simulated distillation

column model built upon the industrial process presented in Volk et al. (2004)

[102].

• The performance of the data-driven Bayesian approach (in Chapter 2), and

incomplete evidence handling strategies (in Chapter 3) are evaluated in an

industrial oil pre-heater process.

• The evidence/mode dependency analysis (in Chapters 4 and 5) is studied

on a pilot tank process in the Computer Process Control Laboratory at the

University of Alberta.

• The diagnostic strategy dealing with sparse historical data (Chapter 6) is

successfully demonstrated on the Tennessee Eastman Challenge problem and

a distillation column set up in the Process Engineering Lab at the University

of Alberta.
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• Several industrial data sets in Jelali and Huang (2009) [43] and Thornhill et

al. (2002) [99] are used as benchmarks to demonstrate the bootstrap approach

for valve stiction parameter distribution estimation.

7.2 Recommendations for future work

The following topics/problems are worthy of future investigations:

• A solution to multiple missing pattern problem is provided in this thesis. The

likelihood calculation, however, is computationally intensive, and may not

be suitable for large scale problems. An approximate solution is desired to

simplify the calculation process.

• In Chapter 6, when dealing with the sparse historical data problem, an as-

sumption that monitors across different control loops are independent is made.

The overall evidence likelihood is then calculated as the product of likelihood

of these independent monitor groups. This assumption may be restrictive in

practice, since the material/energy flow can propagate from one loop to an-

other. A cross control loop monitor dependency analysis will further improve

the diagnostic performance.

• In this thesis, all discussions are based on discrete monitor output. Actual

monitor outputs, however, could be continuous. The diagnosis performance

can be affected by the discretization thresholds. A Bayesian diagnosis frame-

work built on continuous monitor outputs will be beneficial to achieve better

diagnostic performance.

• Another interesting topic is the economic impact of diagnosis. With sev-

eral possible problem sources and their probabilities being suggested by the

Bayesian approach, a maintenance order will be created to check each one of

them. The service of each fault is associated with a price tag, and the re-

moving of each fault will bring different economic benefits. How to design a

maintenance sequence, to minimize the maintenance cost and to maximize the

economic benefits will be of great interest to practitioners.

• A significant disadvantage of the approaches discussed in this work is the

reliance on availability of fault signatures. The evidence likelihood of fault
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cannot be estimated if no historical data is available. In order to have a correct

diagnosis, a fault must have occurred beforehand, at least once. Developing

a method that can identify unknown fault will make the overall Bayesian

diagnostic framework more comprehensible.
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Appendix A

Estimation of Likelihood with

Incomplete Evidences

A.1 Evidence likelihood estimation

Suppose that the likelihood of evidence ǫs,r is about to be calculated. According to

Equation 2.5, the likelihood probability can be computed by marginalization over

all possible likelihood parameter sets Θ,

p(ǫs,r|M,D)

=

∫

Ω
p(ǫs,r|Θ,M,D)f(Θ|M,D)dΘ

=

∫

Ω
θs,r

c

p(D|M)
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θ
ηi,j+ai,j−1
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R∑

k=1

Θi,k

)ηi
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=
c
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 dΘ

=
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·
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The denominator of Equation A.1 is

∫

Ω

S∏

i=1




R∏

j=1

θ
ηi,j+ai,j−1
i,j ·

(
R∑

k=1

θi,k

)ηi

 dΘ

=

∫

Ω

S∏
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θ
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i,j ·

∑

ti,1,··· ,ti,R
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ti,1, · · · , ti,R
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θ
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=
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ti,1, · · · , ti,R

)
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i,R dΘ, (A.2)

where

(
ηi

ti,1, · · · , ti,R

)
=

(
ti,1
ti,1

)(
ti,1 + ti,2

ti,2

)
· · ·
(
ti,1 + ti,2 + · · ·+ ti,R

tRi

)

=
ηi!

ti,1! ti,2! · · · ti,R!
, (A.3)

and
∑

ti,1,··· ,ti,R
is summation over all possible sequences of nonnegative integer

indices ti,1 through ti,R such that
∑R

j=1 ti,j = ηi .

Similarly, the numerator in Equation A.1 is

∫

Ω
θs,r

S∏

i=1

∑

ti,1,··· ,ti,R

(
ηi

ti,1, · · · , ti,R

)
· θti,1+ηi,1+ai,1−1
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i,R dΘ (A.4)

Denote all sets of ti,1, · · · , ti,R as Ti, combination of all Ti as T ,

(
ηi

ti,1, · · · , ti,R

)

as CTi
ηi , and ηi,j + ai,j − 1 as qi,j. Then Equation A.2 is

∫
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=
∑

T

∏S
i=1C

Ti
ηi

∏R
j=1 Γ(ti,j + qi,j + 1)

Γ(N +A+ 1)
, (A.5)

where N =
∑

i ηi +
∑

i

∑
j ηi,j is the total number of historical data samples for

mode M , including both complete and incomplete samples; A =
∑

i

∑
j ai,j is the

total number of prior samples, which is, however, only applicable to the complete

evidences.

142



With the new notations, Equation A.4 can be rewritten as

∫

Ω
θs,r

S∏

i=1



∑

Ti

CTi
ηi θ

ti,1+qi,1
i,1 · · · θti,R+qi,R

i,R


 dΘ

=
∑

T

∏S
i=1 C

Ti
ηi Γ(ts,r + qs,r + 2)

∏
j 6=r Γ(ti,j + qi,j + 1)

Γ(N +A+ 1)
(A.6)

The likelihood of evidence ǫs,r can be calculated as

p(ǫs,r|M,D)

=
1

N +A
·
∑

T

∏S
i=1 C

Ti
ηi (ts,r + qs,r + 1)!

∏
j 6=r(ti,j + qi,j)!

∑
T

∏S
i=1 C

Ti
ηi

∏R
j=1(ti,j + qi,j)!

. (A.7)

As discussed previously, there is no replication between different rows in a

UCEM. Any possible underlying complete evidences of an incomplete one can only

be located uniquely in the corresponding row. Thus the assignments of ti,1, · · · , ti,R
are independent for different rows i, and Equation A.7 can be simplified to

p(ǫs,r|M,D)

=
1

N +A
·
∑

Ts
CTs

ηs (ts,r + qs,r + 1)!
∏

j 6=r(ts,j + qs,j)!
∑

Ts
CTs

ηs

∏R
j=1(ts,j + qs,j)!

·
∑

T \Ts

∏
i 6=sC

Ti
ηi

∏R
j=1(ts,j + qs,j)!

∑
T \Ts

∏
i 6=sC

Ti
ηi

∏R
j=1(ts,j + qs,j)!

=
1

N +A
·
∑

Ts
CTs

ηs (ts,r + qs,r + 1)!
∏

j 6=r(ts,j + qs,j)!
∑

Ts
CTs

ηs

∏R
j=1(ts,j + qs,j)!

, (A.8)

where T \Ts is the combination of all the possible set of Ti with i 6= s.

As a result, the likelihood equation is greatly simplified by completely removing

other possible Ti with i 6= s. Only the assignment of ts,1, · · · , ts,R to evidences

ǫs,1, · · · , ǫs,R needs to be considered. However, the computation load is still heavy,

and will grow exponentially with the increase of R and ηs. Further simplification is

needed to make the likelihood computation feasible. This is developed below.

Lemma A.1.

∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)! =

R∏

k=1

xk! ·
ηs−1∏

i=0




R∑

j=1

xj + i+R


 (A.9)

See appendix A.2 for details of the proof.

143



With Lemma A.1, Equation A.8 can be further simplified. The denominator is

(N +A)
∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(tj + ηs,j + as,j − 1)!

= (N +A)
R∏

k=1

(ηs,k + as,k − 1)! ·
ηs−1∏

i=0




R∑

j=1

[ηs,j + as,j] + i


 , (A.10)

and the numerator is

∑

Ts

(
ηs

t1, · · · , tR

)
(tr + ηs,r + as,r)! ·

∏

j 6=r

(tj + ηs,j + as,j − 1)!

= (ηs,r + as,r)!
∏

k 6=r

(ηs,k + as,k − 1)! ·
ηs−1∏

i=0




R∑

j=1

[ηs,j + as,j] + i+ 1


 (A.11)

By substituting Equation A.10 and Equation A.11 in Equation A.8, the following

result is obtained for the likelihood of evidence ǫs,r,

p(ǫs,r|M,D) =
ηs,r + as,r
N +A

·
∑R

j=1(ηs,j + as,j) + ηs
∑R

j=1(ηs,j + as,j)

=
ηs,r + as,r
N +A

·
(
1 +

ηs∑R
j=1(ηs,j + as,j)

)
(A.12)

A.2 Proof of Lemma A.1

Lemma A.1

∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)! =

R∏

k=1

xk!

ns−1∏

i=0




R∑

j=1

xj + i+R


 (A.13)

Use mathematical induction to prove the above equation.

First, let ns = 1, R = 2, which is the most simplest data missing case, i.e., one

incomplete data sample with two possible evidence values.

RHS =

2∏

j=1

xj!

0∏

i=0




2∑

j=1

xj + i+ 2


 = x1!x2!(x1 + x2 + 2) (A.14)

LHS =
∑

T

(
1

t1, t2

) 2∏

j=1

(xj + tj)! = (x1 + 1)!x2! + x1!(x2 + 1)!

= x1!x2!(x1 + x2 + 2) = RHS (A.15)

There are two parameters which need to be inducted, ns and R. Suppose the

equation holds for ns and R.
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1. Induction on R

Note that Equation A.13 can be written as

∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

tj∏

r=1

(xj + r)! =

ns−1∏

i=0




R∑

j=1

xj + i+R


 . (A.16)

Thus

ns−1∏

i=0




R+1∑

j=1

xj + i+R+ 1




=

ns−1∏

i=0




R−1∑

j=1

(xj + 1) + [(xR + xR+1 + 1) + 1] + i




=
∑

Ts

(
ηs

t1, · · · , tR−1, T

)R−1∏

j=1

tj∏

r=1

(xj + r)

· (xR + xR+1 + 1 + 1) · · · (xR + xR+1 + 1 + T )

=
∑

Ts

(
ηs

t1, · · · , tR−1, T

)R−1∏

j=1

tj∏

r=1

(xj + r)

· (xR + 1 + xR+1 + 1) · · · (xR + 1 + xR+1 + 1 + T − 1)

=
∑

Ts

(
ηs

t1, · · · , tR−1, T

)R−1∏

j=1

tj∏

r=1

(xj + r) ·
(

T
tR, tR+1

)R+1∏

j=R

tj∏

r=1

(xR + r) (A.17)

In Equation A.17,

(
ηs

t1, · · · , tR−1, T

)
·
(

T
tR, tR+1

)

=
ns

t1! · · · tR−1!T !
· T !

tR!tR+1!
=

(
ηs

t1, · · · , tR+1

)
, (A.18)

so

ns−1∏

i=0




R+1∑

j=1

xj + i+R+ 1


 =

∑

Ts

(
ηs

t1, · · · , tR+1

)R+1∏

j=1

tj∏

r=1

(xj + r). (A.19)

By multiplying Equation A.19 with
∏R+1

j=1 xi!, we can get

∑

Ts

(
ηs

t1, · · · , tR+1

)R+1∏

j=1

(xj + tj)! =

R+1∏

j=1

xj!

ns−1∏

i=0




R+1∑

j=1

xj + i+R+ 1


 . (A.20)

2. Induction on ns
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RHS of equation A.16 is

ns∏

i=0




R∑

j=1

xj + i+R




=
ns−1∏

i=0




R∑

j=1

xj + i+R


 · (

R∑

j=1

xj + ns +R)

=
∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)! · (
R∑

j=1

xj + ns +R)

=
∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)!

R∑

k=1

(xk + 1 + tk)

=
R∑

k=1

∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)!(xk + tk + 1) (A.21)

Following the multinomial theorem, which indicates that

(x1 + x2 + · · · + xm)n+1 =
∑

Ts

(
n

t1, · · · , tm

)
xt11 · · · xtmm · (x1 + · · ·+ xm)

=
m∑

j=1

∑

Ts

(
n

t1, · · · , tm

)
xt11 · · · xtmm xj

=
∑

Ts

(
n

t1, · · · , tm

)
xt11 · · · xtmm , (A.22)

Equation A.21 can be written as

R∑

k=1

∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)!(xk + tk + 1) =
∑

Ts

(
ηs

t1, · · · , tR

) R∏

j=1

(xj + tj)!

(A.23)

By multiplying Equation A.19 with
∏R+1

k=1 xk!, we can get

∑

Ts

(
ηs + 1

t1, · · · , tR

) R∏

j=1

(xj + tj)! =

R∏

k=1

xk! ·
ns∏

i=0




R+1∑

j=1

xj + i+R+ 1


 , (A.24)

which completes the induction and the proof.
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Appendix B

Estimation of Mode Transition

Probability

Suppose that the mode transition probability from M t−1 = mu to M t = mv, i.e.,

p(mv|mu) is about to be estimated from the composite mode data:

p(M t|M t−1,DM ) = p(mv|mu,DM ) (B.1)

where

mv,mu ∈ M = {m1, · · · ,mQ}. (B.2)

This transition probability can be calculated by marginalization over all possible

mode transition parameters,

p(mv|mu,DM )

=

∫

Σ1,··· ,ΣQ

p(mv|mu,DM ,Υ1, · · · ,ΥQ)f(Υ1, · · · ,ΥQ|mu,DM )dΥ1 · · ·ΥQ, (B.3)

where Υi = {ϕi,1, · · · , ϕi,Q} is the probability parameter set for mode transition

starting from mode M t−1 = mi; Q is the total number of possible modes; for

instance, ϕi,j = p(mj|mi); Σi is the space of all possible parameter sets Υi, where
∑Q

j=1 ϕi,j = 1.

The transition probability from mu to mv depends only on the parameter set

Υu,

p(mv|mu,DM ,Υ1, · · · ,ΥQ) = p(mv|mu,Υu). (B.4)
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Thus, Equation B.3 can be written as

p(mv|mu,DM )

=

∫

Σ1,··· ,ΣQ

p(mv|mu,DM ,Υ1, · · · ,ΥQ)f(Υ1, · · · ,ΥQ|mu,DM )dΥ1 · · ·ΥQ

=

∫

Σ1,··· ,ΣQ

p(mv|mu,Υu)f(Υ1, · · · ,ΥQ|mu,DM )dΥ1 · · ·ΥQ

=

∫

Σ1,··· ,ΣQ

ϕu,vf(Υ1, · · · ,ΥQ|mu,DM )dΥ1 · · ·ΥQ. (B.5)

The second term in the integration can be calculated from a Bayesian perspective,

f(Υ1, · · · ,ΥQ|mu,DM ) =
p(DM |Υ1, · · · ,ΥQ,mu)f(Υ1, · · · ,ΥQ|mu)

p(DM |mu)
, (B.6)

where p(DM |mu) is the scaling factor,

p(D|mu) =

∫

Σ1,··· ,ΣQ

p(DM |Υ1, · · · ,ΥQ,mu)f(Υ1, · · · ,ΥQ|mu)dΥ1 · · · dΥQ. (B.7)

In Equation B.6, the first term in the numerator is the likelihood of historical

composite mode data. It is solely determined by the parameter set {Υ1, · · · ,ΥQ},
and is independent of mu, i.e.

p(DM |Υ1, · · · ,ΥQ,mu) = p(DM |Υ1, · · · ,ΥQ) =

Q∏

i=1

Q∏

j=1

ϕ
n̂i,j

i,j , (B.8)

where n̂i,j is the number of mode transitions from M t−1 = mi to M t = mj in the

historical composite mode data set.

In accordance with the common assumption that the priors of different parameter

sets Υi and Υj, where i 6= j, are independent [73],

f(Υ1, · · · ,ΥQ|mu) = f(Υ1|mu) · · · f(ΥQ|mu). (B.9)

Dirichlet distribution is usually used for the priors of the mode transition parameters

Υi with parameters ci,1, · · · , ci,Q,

f(Υi|mu) =
Γ(
∑Q

j=1 ci,j)∏Q
j=1 Γ(ci,j)

Q∏

j=1

ϕ
ci,j−1
i,j . (B.10)

As a result, we have

f(Υ1, · · · ,ΥQ|mu) =

Q∏

i=1

Γ(
∑Q

j=1 ci,j)∏Q
j=1 Γ(ci,j)

Q∏

j=1

ϕ
ci,j−1
i,j , (B.11)
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where ci,j can be interpreted as the number of prior samples for mode transition

from mi to mj . Γ(·) is the gamma function, defined as

Γ(x) =

∫ ∞

0
tx−1e−tdt. (B.12)

Since in this thesis all the independent variables x of gamma functions are counts

of mode transitions, which are all positive integers, so

Γ(x) = (x− 1)!. (B.13)

Substituting Equation B.11 and B.8 in Equation B.6, we have

f(Υ1, · · · ,ΥQ|mu,DM )

=
p(DM |Υ1, · · · ,ΥQ,mu)f(Υ1, · · · ,ΥQ|mu)

p(DM |mu)

=
1

p(DM |mu)
·

Q∏

i=1

Γ(
∑Q

j=1 ci,j)∏Q
j=1 Γ(ci,j)

Q∏

j=1

ϕ
ci,j−1
i,j ·

Q∏

i=1

Q∏

j=1

ϕ
n̂i,j

i,j (B.14)

Let

ρ =

Q∏

i=1

Γ(
∑Q

j=1 ci,j)∏Q
j=1 Γ(ci,j)

, (B.15)

and then Equation B.14 can be written as

f(Υ1, · · · ,ΥK |mu,DM )

=
ρ

p(DM |mu)
·

Q∏

i=1

Q∏

j=1

ϕ
ci,j−1
i,j ·

Q∏

i=1

Q∏

j=1

ϕ
n̂i,j

i,j

=
ρ

p(DM |mu)

Q∏

i=1

Q∏

j=1

ϕ
n̂i,j+ci,j−1
i,j . (B.16)

Therefore, the transition probability from evidence mu to mv can be derived as

p(mv|mu,DM )

=

∫

Σ1,··· ,ΣQ

ϕu,vf(Υ1, · · · ,ΥQ|mu,DM )dΥ1 · · ·ΥQ

=

∫

Σ1,··· ,ΣQ

ϕu,v
ρ

p(DM |mu)

Q∏

i=1

Q∏

j=1

ϕ
n̂i,j+ci,j−1
i,j dΥ1 · · ·ΥQ

=
ρ

p(DM |mu)

∫

Σ1

Q∏

j=1

ϕ
n̂1,j+c1,j−1
1,j dΥ1 · · ·

∫

Σu

ϕ
n̂u,v+cu,v
u,v

∏

j 6=v

ϕ
n̂u,j+cu,j−1
u,j dΥu

· · ·
∫

ΣQ

Q∏

j=1

ϕ
n̂Q,j+cK,j−1
A,j dΥQ, (B.17)
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In the above equation, p(DM |mu) is the scaling factor as defined in Equation

B.6. According to Equation B.7,

p(DM |mu)

=

∫

Σ1,··· ,ΣQ

p(DM |Υ1, · · · ,ΥQ,mu)f(Υ1, · · · ,ΥQ|mu)dΥ1 · · · dΥQ

=

∫

Σ1,··· ,ΣQ

Q∏

i=1

Γ(
∑Q

j=1 ci,j)∏Q
j=1 Γ(ci,j)

Q∏

j=1

ϕ
ci,j−1
i,j ·

Q∏

i=1

Q∏

j=1

ϕ
n̂i,j

i,j dΥ1 · · · dΥQ

=ρ ·
∫

Σ1

Q∏

j=1

ϕ
n̂1,j+c1,j−1
1,j dΥ1 · · ·

∫

ΣQ

Q∏

j=1

ϕ
n̂Q,j+cQ,j−1
Q,j dΥK

=ρ ·
Q∏

i=1

∏Q
j=1 Γ(n̂i,j + ci,j)

Γ(N̂i + Ci)
, (B.18)

where N̂i =
∑

j n̂i,j is the total number of mode transitions, namely the number of

historical composite mode samples, from previous mode mi, and Ci =
∑

j ci,j is the

corresponding total number of prior composite mode samples.

Similarly, we can derive

∫

Σ1

Q∏

j=1

ϕ
n̂1,j+c1,j−1
1,j dΥ1 · · ·

∫

Σu

ϕ
n̂u,v+cu,v
u,v

∏

j 6=v

ϕ
n̂u,j+cu,j−1
u,j dΥu

· · ·
∫

ΣQ

Q∏

j=1

ϕ
n̂Q,j+cK,j−1
Q,j dΥQ

=
Γ(n̂u,v + cu,v + 1)

Γ(N̂u + Cu + 1)
·
∏

i,j 6=u,v Γ(n̂i,j + ci,j)
∏

i 6=u Γ(N̂i + Ci)
. (B.19)

Thus, Equation B.17 can be simplified as

p(mv|mu,DE)

=ρ · Γ(n̂u,v + cu,v + 1)

Γ(N̂u +Cu + 1)
·
∏

i,j 6=u,v Γ(n̂i,j + ci,j)
∏

i 6=u Γ(N̂i + Ci)
·

∏Q
i=1 Γ(N̂i + Ci)

ρ ·∏Q
i=1

∏Q
j=1 Γ(n̂i,j + ci,j)

=
n̂u,v + cu,v

N̂u + Cu

. (B.20)
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