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Abstract 

Deep Neural Networks (DNNs) have recently evolved as the state-of-the-art method for 

machine learning applications such as object detection, face recognition, and image classification. 

However, a DNN typically has high computational complexity, and specialized hardware 

accelerators would be helpful to obtain real-time performance. 

Over the last decade, many accelerators have been proposed in the literature for DNN 

models. This thesis presents a comprehensive review of the existing DNN accelerators. The 

accelerators were classified into four categories: ALU, Dataflow, Sparsity, and Hybrid, based on 

the optimization techniques used. The classification provides a good starting point to identify 

significant areas where an accelerator can be further optimized for better throughput, latency, 

and energy performance. 

In this thesis, we also explored the bit-precision requirement of the MAC units for DNN 

implementation. A DNN has two modes of operations: Training and Inference. It is generally 

known that the inference can be done using lower-precision MAC units, but the training requires 

higher-precision MAC units. The lower-precision MAC units consume less energy which may be 

desirable for low-power applications. We propose an iterative MAC model where the inference 

will be done using low-precision MAC in a single pass, and the training will be done with the 

same low-precision MAC using multiple passes (to achieve higher bit precision). The proposed 

model, during training, determines the number of iterations on the fly by checking the error 

magnitude. Experimental results, with LeNet-300-100 model implemented using the iterative 

MAC, show a satisfactory performance for digit classification. 
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Preface  

➢ Chapter 2 of this thesis has been published as {Machupalli R, Hossain M, Mandal M, 

“Review of ASIC accelerators for deep neural network” Microprocessors and 

Microsystems, Volume 89, 2022}. I was responsible for reviewing, classifying, and 

evaluating the existing accelerators. Dr. Masum Hossain provided the insights and helped 

me review the hybrid technology-based implementation of ALU units. Dr. Masum 

Hossain and Prof. Mrinal Mandal were the supervisory authors involved with concept 

formation and manuscript composition. This Chapter reviews existing ASIC DNN 

accelerators and classifies them into four categories. Dataflow architectures are evaluated 

for different workloads. 
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Chapter 1  

Introduction 

Artificial intelligence (AI) is the science and engineering of creating intelligent machines 

that have the ability to achieve goals like humans do [1]. Intelligence is the general mental ability 

for learning, reasoning, and problem-solving. The human brain consists of billions of neurons 

connected in a complex structure. Therefore, creating an intelligent model requires a large 

number of well-connected computing units (small building blocks) and enough examples to train 

the model. Due to the availability of a large quantity of data and computing resources in recent 

times, the creation of large-size AI models is realizable.  

Machine learning (ML) is a subsection of artificial intelligence in which a mathematical 

model is trained over numerous examples to solve a new problem. ML is a rapidly evolving field 

in artificial intelligence due to the availability of a large set of example data for training. Deep 

Neural Networks (DNNs) are ML algorithms that use multiple neuronal layers to extract high-

level features to classify or segment the input data. DNNs have been successfully applied to 

many problems, such as computer vision [2], robotics [3], security [4], medical diagnosis [5], 

self-driving [6], and natural language processing [7]. The DNN model size (e.g., number of 

layers, parameters) typically increases with problem complexity. Depending on the problem's 

complexity, a large amount of computing resources is typically required to implement a model. 

Hence, deploying DNN models on edge devices, where data is collected and processed near the 

sensor, is still limited.  

The deployment of DNN models imposes severe design and scalability challenges on 

conventional embedded systems as they require substantial computing resources. General-

purpose processors, like CPUs, have limited computing resources and fail to provide desired 

performance [96]. As an alternative, DNN models can be built on cloud computing servers. 

Cloud computing requires high bandwidth internet service to send and receive the data. Some 

applications require data processing at the edge devices for low latency, for example, in 

applications such as auto-piloted cars [6]. Therefore, the demand for ML/DNN accelerators has 
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been increasing recently [9,10,11,96]. Domain-specific accelerators provide better latency and 

higher energy efficiency [12, 13, 14, 15,16]. 

 1.1 Motivation 

The computational resources can be embodied on edge devices by integrating co-

processors or accelerators like a Graphics Processing Unit (GPU), a Neural Processing Unit 

(NPU), and a Tensor Processing Unit (TPU) with the central processor. The co-

processor/accelerators are optimized for high throughput, low latency, and low power for a 

specific category of applications. There are applications, like drone technology and mobile 

devices, where size and energy are more important because they run on batteries. The 

deployment on battery-powered edge devices needs an energy-efficient accelerator for longer 

battery life. Therefore, it is vital to study the existing accelerator architecture and identify 

potential areas to improve its flexibility, scalability, and power efficiency. An optimized 

accelerator should have the flexibility to process dense to highly sparse networks, low precision 

to high-precision dataflows at lower power consumption.  

Many researchers from academics and companies like IBM, NVIDIA, AMD, and Google 

are working to develop specialized processor architecture or special hardware for DNNs. 

TrueNorth [8] from IBM, NVDLA [9] architecture from NVIDIA, Deep Learning Processor Unit 

(DPU) IP [10] from AMD-Xilinx, and TPU [11] from Google (deployed different versions in its 

servers and mobile platforms) shows the importance of DNN accelerators. Other well-known 

architectures from academic are Cnvltin [12, 13], Cambricon-X [14], Eyersis [15], Envision [16], 

EIE [17], SCNN [18], SIMBA [19], and many others. But can we use the existing accelerators in 

embedded systems? Are these accelerators flexible enough to provide optimal performance on all 

types of DNN models? Some accelerators are designed for sparse DNNs, and some are for dense 

DNNs [10, 11, 12, 16, 17]. Many of them are intended for inference. If an application requires 

fine-tuning of parameters at the edge device to mitigate environmental changes, then the 

accelerator should be capable of training the model. An accelerator designed for training a model 

is likely to underperform in energy efficiency for inference task due to performing low-precision 

operations using high-precision Arithmetic and Logical Units (ALU). For this reason, Google 

has different versions of TPU for training (server TPUs) and inference (edge TPUs). Therefore, it 
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is essential to understand how the existing accelerators work and identify the areas to incorporate 

flexibility.  

The parameters such as energy, compute capacity, silicon area, and accuracy are 

interrelated in designing a processor architecture. Accuracy mainly depends on the precision and 

dynamic range of parameters. Precision and dynamic range can improve by the number of bits 

representing the parameters. The complexity in the datapath and memory bandwidth requirement 

will increase with the bit length (for parameter representation). The numerical format required 

for an ML is extensively investigated [20, 21, 22]. The inference requires lower precision 

compared to training. An architecture with reconfigurability in its precision can be used for 

training and inference. The work presented in this thesis studies the existing architectures and 

identifies areas to improve flexibility. 

1.2 Neural Networks 

Neural networks (NN) learn the decision ability based on experience, i.e., training. The 

NNs are composed of artificial neurons, also known as perceptrons, and somewhat mimic the 

human brain. A perceptron takes multiple inputs and produces a single output, as shown in 

Fig.1.1(a). Inputs are multiplied by synaptic weights (weight parameters), which refer to the 

strength or amplitude of the connection between two neurons (nodes). Fig. 1.1 shows the 

schematic of the simple and modern perceptron. Note that Fig. 1.1(b) has the advantage of 

incorporating nonlinearity and bias and is typically used in all current NNs and DNNs.  

 

Figure 1.1. Basic neuron structure, (a) perceptron, (b) modern perceptron (artificial neuron) with 

non-linear function. 

 ML has various architectures such as Multi-layer Perceptron (MLP)/Feed Forward 

Networks (FFNs), Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), and 
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Recurrent Neural Networks (RNNs). Different types of neural networks are better suited for 

different kinds of tasks and input data. 

Multi-layer Perceptron: 

A multi-layer perceptron (MLP) is a type of neural network that consists of a series of 

fully-connected layers. The output of each neuron in a layer is connected to the input of every 

neuron in the next layer. MLPs are often used for tasks such as classification and regression. 

Convolutional Neural Network:  

A convolutional neural network (CNN) is designed to process grid-like data, such as 

images. CNNs consist of a series of convolutional layers, pooling layers, and fully-connected 

layers [2, 95]. Convolutional layers apply filters to local regions of the input data to extract 

features while pooling layers down-sample the feature maps to reduce the computational cost of 

the network. In CNN, each neuron will act as a filter, convolving with input data to extract 

features. CNNs are commonly used for image classification and object detection. 

Deep Neural Network: 

A deep neural network (DNN) is a neural network with many layers. The term "deep" 

refers to the large number of layers in the network. DNNs can be seen as an extension of CNNs 

to handle more complex input data and perform better in a broader range of tasks. 

 

Recurrent Neural Network: 

A recurrent neural network (RNN) is designed to handle sequential data, such as time 

series data or natural language. The RNNs consist of a series of recurrent layers, where each 

neuron receives input from the previous layer and the previous time step. RNNs capture 

information from the entire sequence of inputs rather than just the current input. RNNs are often 

used for tasks such as speech recognition and language translation. 

The working principle behind all the models is similar. For a classification task, key 

features are generated from the data, and the classification is done based on these features. It can 

also be viewed from a different angle: the lower dimensional input data is projected into higher 

dimensional feature space, and a separation curve is learned for classification. The new features 
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are application and input dependent. Therefore, different applications may require different NNs 

(i.e., different architectures or weights). The NNs consist of weight parameters that generate 

higher dimensional values or features from the input data. There can be weights with zero value, 

which means that the input feature through that weight has no importance in the neuron output. 

The NNs have two stages: predicting the output based on the input values is called a 

forward pass or inference, and learning the optimal weights is called training. As the definition 

of machine learning, it learns decision ability based on experience. In NN, experience means 

training in which a possible range of input values and their outputs is provided. First, the inputs 

are processed through the network to generate outcomes. The generated output is then compared 

with the desired result, and any errors in the output are propagated back through the network to 

update the weights. Consider an MLP network for mathematical modeling, which can easily be 

extended to all other NNs. To generalize deeper networks, we follow specific notation and 

follow the same in the rest of the document. The layer number is denoted with l on the 

superscript of parameter, j indicates neuron number in the lth layer, and i indicates neuron in (l-

1)th layer. The weight matrix is denoted with W, and individual weights are represented with wji, 

the weight between the jth neuron in the lth layer and ith neuron in (l-1)th layer.  

1.2.1 Inference/ Forward Pass 

A neural network can be represented mathematically as a function that takes the inputs, X, 

and predict the outputs, Y. Each neuron in the network can be described as a node in a 

computational graph. Fig. 1.1(b) shows the schematic of a neuron whose output y is calculated as 

follows. 

v W X b=  +  

( ) ( )y f v f W X b= =  +                                           (1-1) 

where X is the input vector, W is the weight matrix, b is the bias, v is the weighted sum, and f is 

the activation function. Similarly, the lth layer in an MLP network shown in Fig.1.2 can be 

written as  

( )l l l lY f W X b=  +                                                        (1-2) 
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where lY , 
lW  and 

lb  are lth layer output, weights, and biases, respectively. Note that the input to 

the lth layer, lX , is the output of the (l-1)th layer, i.e. 1l lX Y −= . 

 

Figure 1.2. Data flow graph in an MLP network with each neuron equivalent to Fig. 1.1(b). 

The activation function, f, is a non-linear function that determines a neuron's output. 

Common choices for f include the sigmoid function, the hyperbolic tangent function, and the 

rectified linear unit (ReLU) function. 

1.2.2 Backpropagation 

Once the input data is processed through the forward pass, an error (e) and a cost function 

(C) are defined to measure the difference between predicted outputs and desired outputs (targets). 

Let Y denote the targets. If the network has L layers, then the Lth layer outputs, i.e., 
LY  are the 

predicted outputs. Error (e) is defined as the difference between the target and predicted values 

as follows: 

L

j j je y y= −                                                                   (1-3) 

where j indicates a neuron number in the lth layer. 
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The cost function (the loss function) is a mathematical measure that quantifies how well 

the network performs on a given task. The cost function compares the network's predicted output 

to the desired output and computes a scalar value representing the error between the two. The 

goal of training a neural network is to minimize the cost function, reducing the error and 

improving the network's performance. Different types of tasks and networks may require 

different cost functions. Some cost functions are Mean Squared Error (MSE), Binary Cross-

Entropy, Categorical Cross-Entropy, and Kullback-Leibler Divergence (KL-Divergence). 

Mean Squared Error (MSE) is a commonly used cost function for regression tasks. It 

calculates the root mean squared difference between the predicted and true values as follows:  

221 1

2 2

L

j j j

j j

C e y y= = −                                         (1-4) 

where L represents the number of layers in a network and L

jy  represents the output of jth neuron 

in the last (Lth) layer. Binary Cross-Entropy is used for binary classification tasks. It measures the 

difference between the predicted and the actual probabilities of the positive class. Categorical 

cross-entropy measures the difference between the predicted and actual probability distributions, 

used for multi-class classification tasks. Kullback-Leibler Divergence (KL-Divergence) is 

another commonly used cost function for multi-class classification tasks. It measures the 

difference between the predicted and true probability distributions but with a different 

mathematical formulation than categorical cross-entropy. 

It is important to note that the choice of the cost function can significantly impact the 

neural network's performance. Using the wrong cost function can lead to suboptimal results or 

prevent the network from learning. In addition, some cost functions may have limitations on the 

types of problems they can handle, the types of networks they can use, or the range of values 

they can generate. The specific task, numerical stability, and network architecture typically guide 

the choice of the cost function. It may also be helpful to experiment with different cost functions 

during training to see which one works best for a given problem.  

The most important job while training a NN is calculating the weight gradients. The 

weight gradients are the partial derivatives of the cost function with respect to the weights of a 

neural network. During the training process, the goal is to find weights that minimize the cost 
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function. Training is typically done using a gradient descent algorithm [97]. The weight 

gradients tell us how much the cost function changes for a slight change in each weight. The 

gradients for lower layers are calculated using the chain rule. Hence, first, calculate the gradient 

with respect to the last layer weights L

jiw . We consider the MSE cost function defined in Eq. 1.4 

for the rest of the derivatives, the same can be extended for any cost function. Using Eq. 1-1, 1-2, 

1-3, and 1-4, the weight gradients of the last layer can be written as follows. 

( )

L

j

L L L

ji j ji

eC C

w e w n

 
=

  
                                                 (1-5) 

Using Eq. 1-4, we obtain: 

( )
( )

( )
jL

j

C n
e n

e n


=


.  

From Eq. 1-3, we obtain: 

0

L L L

j j j

L L L

ji ji ji

e y y

w w w

  
= − = −

  
. 

Substituting Eq. 1-2 in the above equation, we obtain:                                                           

                                                              '(.)
( )

L

j L

iL

ji

e
f x

w n


= − 


 

where '(.)f  is the derivative of the activation function (f) with respect to the weighted sum (v). 

Substituting the above in Eq. 1-5, we obtain: 

( ) '(.) L

j iL

ji

C
e n f x

w


= −


                                                 (1-6) 

In the backpropagation algorithm, the weight correction term jiw  (to be applied to jiw ) is 

defined as 

ji

ji

C
w

w



 = −


                                      (1-7) 
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where   is the learning-rate parameter. The -ve sign accounts for the gradient descent in weight 

space. Substituting Eq. 1-6 in Eq. 1-7 yields: 

'(.)L L

ji j iw e f x =                                                  (1-8) 

Generalizing Eq. 1-8 to all the layers, a local gradient   can be defined as 

( 1) '( )

'( )

j

j

j j

j j j

j j

j j

C

v

e yC

e y v

e f v

e f v




= −


 
= −  

  

= −  − 

= 

 

where jv  is called a local response, which is the input to the activation function. In the lth layer, 

jv  can be expressed as l l l l

j ji i j

i

v w x b= + . The weight gradients can be written in terms of local 

gradients as follows: 

L L L

ji j iw x  =                                                             (1-9) 

The backpropagation algorithm passes local gradient values back to lower layers to 

calculate the weight gradients. The data flow in the backpropagation is shown in Fig. 1.3. Figure 

1.3(a) shows the backpropagation data flow in a single neuron. Fig. 1-3(b) shows data flow in the 

lth layer of an MLP network. From Eq. 1-2,1-6, and using the chain rule in partial derivatives, the 

local gradients of the lower layer can be calculated as follows: 

1 1 '[ ] (.)l l lW f + +=   

The weights are updated by adding weight gradients at each iteration. The updated weights can 

be written as follows: 

( 1) ( ) ( )l l l

ji ji jiw n w n w n+ = +   

where n represents the iteration number. 
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Figure 1.3. Data flow graph of neural network in backpropagation. (a) Data flow in a single 

neuron, (b) Dataflow at the lth layer of an MLP network with each neuron equivalent to (a). 

1.3 Contributions and Thesis Outline 

The rest of the thesis is organized as follows: Chapter 2 reviews the state-of-the-art ASIC 

DNN accelerators. In the existing architectures, we identify three key areas, ALU, dataflow, and 

sparsity, which can potentially improve the overall performance of an accelerator. Existing 

accelerators for inference are broadly classified into four categories. Each area offers multiple 

tuning techniques to improve the overall architecture performance. The advantages and 

drawbacks of each category are discussed. Chapter 3 proposes an iterative MAC unit, where 

higher-precision arithmetic calculation can be performed iteratively using a lower-precision 

MAC unit. This MAC unit can be used to implement a DNN inference model (with a single 

iteration) and can be used to train the DNN model (with multiple iterations), which requires 

higher-precision calculations. The effectiveness of the proposed iterative MAC was evaluated by 

simulating the LeNet-300-100 model. Finally, the conclusions and future research directions are 

presented in Chapter 4. 
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Chapter 2  

Review of ASIC Accelerators for Deep 

Neural Network 

Deep neural networks (DNNs) have become an essential tool in artificial intelligence, 

with a wide range of applications such as computer vision [2], medical diagnosis [5], security [4], 

robotics [3], and autonomous vehicles [6]. The DNNs deliver state-of-the-art performance in 

many applications. The complexity of the DNN models generally increases with application 

complexity, and deploying complex DNN models requires high computational power. General-

purpose processors are unable to process complex DNNs within the required throughput, latency, 

and power budget [96]. Therefore, domain-specific hardware accelerators are required to provide 

high computational resources with superior energy efficiency and throughput within a small chip 

area. In this Chapter, existing DNN hardware accelerators are reviewed and classified based on 

the optimization techniques used in their implementations. Each optimization technique 

generally improves one or more specific performance parameter(s). For example, the hardware 

optimized for sparse DNNs may provide poor performance for dense DNNs in terms of power 

and throughput. Therefore, understanding the tradeoff between different hardware accelerators 

helps to identify the best accelerator model for application deployment. We identify four major 

areas, ALU, dataflow, sparsity, and Hybrid model in hardware architectures that can potentially 

improve an accelerator's overall performance. Existing hardware accelerators for inference are 

broadly classified into these four categories. It is difficult to compare the existing accelerators 

based on speed and energy as each accelerator has its own specifications such as number of 

MAC units, on-chip memory size, sparsity in data, and the DNN model. For example, it is 

difficult to compare the EYERISS [15] accelerator (optimized for sparse data and row-stationary 

dataflow) and the TPU accelerator [11] (optimized for matrix multiplication and weight 

stationary dataflow). The classification model can help to identify appropriate performance 

parameters and benchmarks for accelerators. 
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 2.1 Introduction 

Artificial intelligence is the ability of a system to think, learn, and react like humans 

without explicit programming. The human brain consists of billions of neurons connected in a 

complex structure with operational efficiency. Similarly, the creation of an intelligent model 

requires a large number of well-connected computing units (or small building blocks) and 

enough examples to train the model. Due to the availability of a large quantity of data and 

computing resources in recent times, the creation of intelligent machines is realizable. Machine 

learning (ML) is a subsection of artificial intelligence in which a mathematical model is trained 

over many examples to solve a new problem. Deep neural networks (DNNs) are subsections of 

ML with a deep network structure and shared weights (filters). 

The DNNs have been successfully applied to many problems, such as computer vision [2], 

robotics [3], security [4], medical diagnosis [5], and self-driving cars [6]. Most DNNs are based 

on the convolutional neural networks (CNN), where output feature maps are typically generated 

by convolving input feature maps with 3D filters. Recent DNN models have been shown to 

surpass human performance in some applications. The performance improvements typically 

come with the increased complexity of the DNNs. As seen in Table 2.1, the classification of a 

small-size image (e.g., 227×227 pixels) requires billions of arithmetic operations (i.e., 

multiplication and addition). The MCN-MobileNet has 4.19 million parameters (weights) and 

requires 0.58 billion operations to classify an image. A large-size VGG-19 DNN model requires 

about 20 billion operations per classification.  

Table 2.1. Number of parameters and operations required for different DNN models [23]. 

Model Input size 
PARAMETERS SIZE 

(In millions) 

# of Operations 

(In GOPs) 

AlexNet 227 x 227 61.07 0.73 

Squeezenet 224 x 224 1.31 0.84 

VGG-16 224 x 224 138.41 16 

VGG-19 224 x 224 143.65 20 

GoogleNet 224 x 224 13.36 2 

Resnet-18 224 x 224 11.79 2 

Resnet-152 224 x 224 60.29 11 

Inception-V3 299 x 299 23.85 6 

Densenet-201 224 x 224 20.18 4 

MCN-mobileNet 224 x 224 4.19 0.58 
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General-purpose processors, like CPUs, are unable to provide such huge computing 

power with the required latency. To deploy the DNNs in real-time applications, the embedded 

processors must have high throughput and low power consumption. Therefore, the demand for 

domain-specific accelerators has been increasing in recent times as these accelerators can 

provide superior performance at higher energy efficiency. 

There are two main phases in DNNs: training and prediction (or inference). In the 

training mode, an example input with a known outcome is applied to the model to learn its 

internal parameters. In the prediction (or inference) mode, the possible outcome is calculated 

based on the input test data. Training typically requires high-precision numerical representation, 

while low-precision representation is enough for inference [20, 21, 24, 25]. Generally, training is 

done using high-power GPUs and data centers. The precision and size of the trained DNN 

models can be reduced significantly with negligible (<1%) change in the accuracy for inference 

[22]. In real-time deployment, the trained DNNs need to operate in inference mode only if there 

is no change in application requirements. Therefore, hardware accelerators for inference mode 

are more important than for training. Therefore, this paper is mainly focused on the inference 

mode, and all discussions are subject to the inference mode of operation. 

Globally, a large number of researchers, in both academia and industry, are working 

towards developing optimized hardware for DNNs inference. DNN accelerators have been 

developed using FPGAs, GPUs, and ASICs. GPUs come with massive parallel compute units 

and process DNN computations in parallel. GPUs are power-hungry, which limits their 

applications in embedded and battery-powered systems. FPGAs have high performance per watt 

and can be configurable in the fields. FPGAs are often used to prototype and validate the design. 

ASICs are custom-designed for specific applications with optimum speed and power 

consumption. ASICs are best suited for embedded devices. ASIC implementation takes longer 

development cycle compared to GPUs and FPGAs and have no flexibility after design. Talib et 

al. [26] reviewed several hardware accelerators for machine learning using FPGA, GPU, and 

ASIC platforms and discussed the advantages of each platform over other platforms. Guo et al. 

[27] surveyed several FPGA-based neural network accelerator designs and summarized the 

methods used for design automation. The FPGA allows less control and flexibility over the 

multiplication and accumulation (MAC) unit design, which typically limits the exploration of the 
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MAC variants. Li et al. [28] presented an overview of the GPU, FPGA, and ASIC-based 

accelerators and a detailed explanation of the DianNao [29] family of accelerators. This has 

motivated significant progress in the ASIC accelerators after the [28] survey. Camus et al. [30] 

analyzed the precision-scalable MAC units from different accelerators and discussed their 

benefits in different scenarios. Although the MAC unit is an important block in the DNN 

accelerator design to improve performance, the MAC alone cannot define the overall 

performance. Hence, along with the MAC unit, some other factors in the accelerators need to be 

analyzed. The MAC utilization depends on the data flow and on-chip memory. An efficient 

architecture should have high MAC utilization, i.e., MAC should not be idle because of operands 

are unavailable. Reuther et al. [31] discussed existing ML accelerators based on peak 

performance vs. power scatter plots. The accelerators are broadly categorized into six types 

based on regions in the plot. The factors causing variation in the performance of different 

accelerators are not well explained in [31]. 

Du et al. [32] presented an overview of self-aware neural network systems, where a 

system can predict and adapt dynamics in network parameters, such as precision, sparsity, and 

network structure, based on the input data. The self-aware techniques can significantly improve 

the accelerator’s throughput and energy efficiency, but the accelerators should have some 

flexibility. For example, a DNN with a variable precision requirement at different layers needs a 

variable precision MAC to adapt and save energy. The survey did not include much information 

on the implementation techniques to incorporate the flexibility in accelerator implementation and 

how it affects overall performance. Sze et al. [24] provided an overview of the DNN 

development platforms, optimization algorithms, accelerator implementations, and benchmarks. 

The paper explains three different dataflow methods but does not include all recent advances in 

the arithmetic logic unit and sparsity exploration. Chen et al. [33] reviewed several current DNN 

accelerators based on their application and technologies used (e.g., ReRAM, Hybrid Memory 

Cube). Most surveys provide the architectural and performance improvements of existing DNN 

accelerators, but analyzing the architectures in a generalized framework would be helpful. 

The existing literature classifies the different DNN accelerators based on their 

implementation techniques or applications. For example, the accelerators in [33] are reviewed 

based on architectures (e.g., stand-alone or co-processor-based) or technologies used (e.g., Re-
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RAM, HMC). Similarly, the accelerators in [31] are classified based on the peak power versus 

performance tradeoff. In the DNN literature, we identify three major areas for improvements in 

the DNN architecture: Arithmetic logic unit, dataflow, and sparsity. In this Chapter, we present a 

comprehensive review of the ASIC accelerators for the DNN architectures. The state-of-the-art 

accelerators are classified into three broad categories (i.e., ALU, data flow, and sparsity-based) 

based on their architectural differences. This broad classification can provide more insights to 

develop generic DNN architectures. Additionally, we have added a fourth section that captures a 

recent trend of analog-digital hybrid digital implementation for faster computation. 

The organization of the Chapter is as follows. Section 2.2 presents the background 

information and performance criteria of hardware architectures. Section 2.3 presents a 

comprehensive review of the DNN hardware architectures and their classification. Section 2.4 

presents evaluation methods and observations in existing accelerators, followed by the 

conclusions in Section 2.5. 

 2.2 Background 

    The superior performance of DNNs generally comes at the cost of high computations. For 

example, AlexNet [2], which won the ImageNet challenge [34] in 2012, has 61M parameters and 

requires 727M MAC operations per image classification. Large DNNs may require billions of 

MAC operations per inference, as shown in Table 2-1. Performing such a large number of 

operations sequentially affects the throughput. Existing general-purpose processors (GPPs) may 

be unable to provide the required computational power and throughput within a low-power 

budget. The GPU can provide high computational speed but consumes a large amount of power. 

GPUs can therefore be used on servers where the computational speed is more important than the 

power requirement. Domain-specific accelerators (e.g., ASICs) are known to provide high 

energy efficiency (around 1~10 TOPs/W). The FPGAs have less energy efficiency but have the 

advantage of reconfigurability. 

Real-time deployment of DNN is constrained by energy efficiency and the throughput of 

embedded processors to maximize battery life. For example, a typical mobile phone has a 2-3 Ah 

(5V) battery life (i.e., 15 Wh) and the DNN processing power should be only a fraction of the 

maximum available power. For real-time data processing, the processor should have a 
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throughput equal to the data collection frame rate (e.g., the camera frame rate). Fortunately, there 

is no interdependency among outputs (i.e., in the same layer output or feature map) in a DNN 

layer. Therefore, parallel implementation of large MAC units can increase the throughput. An 

example of the DNN accelerator implementation based on Parallel MAC units is shown in Fig. 

2.1. In general, the size of the accelerator in silicon and the power requirements are directly 

proportional to the number of MAC units (working in parallel) and on-chip memory. Note that 

the DNN-specific accelerators will have an array of processing elements (PEs) connected to their 

neighbors. Each PE contains one to several MAC units connected in such a way that matrix 

multiplication can be performed with a single instruction. The MAC unit contains a control unit 

to configure the operation to multiplication or addition or both and register files to store the local 

parameters and intermediate results. To increase the on-chip storage, global and local buffer 

memory blocks are implemented along with PEs. 

 

Figure 2.1. Block diagram of a generic DNN architecture. 

The cost of the individual MAC units can be reduced with lower bit-length/precision of 

the MAC units. The energy and area consumption of multiply and add circuits for four different 
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precisions are shown in Table 2.2. An 8-bit fixed-point (FIX) add circuit occupies 116× less area 

and consumes 30× less energy (in picojoules) than a 32-bit floating-point (FL) adder. For 

multiplication, an 8-bit fixed-point circuit consumes 18.5x less energy and occupies 27.3x less 

area than a 32-bit floating-point. Approximately, the energy and area of fixed-point circuits scale 

linearly for add, quadratically for multiply, with the number of bits [35]. 

Reduction in the MAC precision can save both the computation and storage requirements. 

Therefore, the impact of low precision on the accuracy of DNN models has been explored in the 

literature, mainly with respect to quantization [20, 22, 37]. In most DNNs, quantization of 

weights and activations to less than 16-bit integers can still provide accuracy similar to that of a 

32-bit floating-point [37, 38, 39]. Linear quantization to 8-bit fixed-point numbers benefits the 

hardware implementation of the MAC unit, as shown in Table 2.2. Both energy consumption and 

silicon footprint increase with the increase in precision when changed from fixed-point to 

floating-point representation. In Binary network [40], weights and activations are quantized to 

binary values +1 or -1. The binarization of the network will simplify the multiplication into the 

XOR operation. Ternary network [41] quantizes the parameters to three levels: -1, 0, and +1. But 

applications of Binary and Ternary networks are limited. 

Table 2.2. Resource consumption of MAC units at different precisions [36] 

Operation/ 

Precision 

Energy (pJ) Area  

MUL ADD MUL ADD 

8-bit fixed 0.2 0.03 282 36 

32-bit fixed 3 0.1 3497 137 

16-bit float 1.1 0.4 1640 1360 

32-bit float 3.7 0.90 7700 4184 

 

Depending on the application requirements, the arithmetic operations in a DNN network 

may be implemented using different bit precisions. Also, there exist models whose optimized bit 

length varies from layer to layer. For example, for a 5-layer Convnet (with three convolutional 

and two fully-connected layers), the optimized bit length requirement for the five layers has been 

found to be 8-7-7-5-5 bits [42]. In other words, no standard precision requirement is optimized 

2( )m
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for all layers or models. Therefore, a flexible DNN hardware accelerator (or the associated MAC 

units) should be able to support all possible bit precisions. For lower-precision computations, 

multiple operations can be performed with a single MAC unit by hardware reuse or sub-word 

parallel processing. With hardware reuse, the overall throughput or peak performance of an 

accelerator can be improved for lower-precision layers or models. For example, the Tesla T4 [43] 

GPU can be configured to four precisions: 4-bit, 8-bit, FP16/FP32-mixed, and FP32. Tesla T4 

achieved the highest speed at thelowest precision (4-bit). The throughput increases at the cost of 

reduced precision. The peak performance is typically expressed in arithmetic operations per sec 

(OPS), primarily depending on the available MAC units. An additional control unit is required to 

configure the MAC unit into multiple sub-MACs or bit length in a variable precision MAC unit. 

The overall size of the MAC unit increases with flexibility (in precision). In other words, the 

MAC density (i.e., MAC units per unit area) decreases with increased flexibility [30]. Therefore, 

there is a tradeoff between MAC’s flexibility and density. 

Having a large array of MAC units with a variable bit precision can fulfill the DNN 

processing requirement in terms of computations. But just having an extensive array of MAC 

units does not improve the throughput. To provide operands to all MAC units in a large array, 

sufficiently high memory bandwidth (BW) is required. After a certain point of arithmetic 

intensity, the memory bandwidth of an accelerator will determine the overall throughput. Fig. 2.2 

shows the estimated roofline model for DNN inference on four different embedded platforms. 

Arithmetic intensity (AMI), also commonly referred to as the operational intensity or compute-

to-communication ratio, is expressed as the number of arithmetic operations performed per byte 

of off-chip memory traffic (expressed in operations/byte). The arithmetic performance of the 

hardware depends on the AMI and the data access rate from the external memory. In other words, 

the arithmetic performance can be expressed as follows: 

 min( , )Arithmetic Performance PP AMI BW=                          (2-1) 

where BW is the memory bandwidth, and PP is the peak performance. It is observed in Fig. 2-2 

that the arithmetic performance increases initially with an increase in the AMI until peak 

performance (PP) is reached. After achieving the PP, any further increase in the AMI does not 

increase performance. The arithmetic performance is observed to be memory-bound when the 

AMI is to the left of the break point and compute-bound when the AMI is to the right [44]. 
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Figure 2.2. Comparison of the roofline models for DNN inference [44]. 

The arithmetic performance of the hardware typically depends on the PP, AMI, and 

memory bandwidth. Resources available on the chip define the PP of the hardware. Arithmetic 

intensity depends on the dataflow structure implemented and available on-chip memory. Note 

that an external memory operation is energy and time-consuming. Hence, the hardware should 

run at a minimum bandwidth to save energy. With minimum bandwidth, the arithmetic 

performance of hardware can be increased with increased AMI. As seen in Fig. 2.2, the 

arithmetic performance improves with an increase in the AMI in the linear region of the curves 

(as the PP and BW are constant). The AMI can vary through the data flow structure. Therefore, 

the dataflow structure should be optimized to achieve higher arithmetic performance for a given 

bandwidth. 
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Table 2.3. Memory hierarchy in a general accelerator and its approximate performances [24]. 

Memory level 
Access time 

(approx. cycles) 

Available 

capacity 

Energy consumption 

(normalized) 

Registers 1 < 0.5 KBs 1x (Reference) 

PEs cache 2-4 ~1-10 KBs 2x 

Local buffer 10 ~100 KBs 4x 

Global buffer 40 ~10 MBs 6x 

Main memory 200 In GBs 200x 

 

To avoid the data read/write each time (to speed up the computation, reduce energy 

consumption, and increase the AMI), the read data must be used as much as possible within the 

chip before writing it back to the memory. Fortunately, the convolution layers in DNNs have this 

data reuse option. For example, a single filter is reused to calculate all pixels in an output feature 

map. Therefore, reading the coefficients of a filter once is enough. But keeping all filter 

coefficients at each MAC unit is a resource (i.e., memory) consuming option. To reduce the 

overall energy cost of data movement, several levels of memory (e.g., global buffer, local buffer, 

registers) can be implemented in hardware. A rough estimation of the available memory size, 

latency, and energy consumption per operation at various levels are shown in Table 2.3 [24]. The 

global buffer (with a size of hundreds of kilobytes) connects to DRAM, with the local buffer 

dedicated to a few processing elements (PE). Read/write data from a Global buffer to a MAC 

consumes around six times more energy and 40x latency than read/write from register files. 

Register files (RF) corresponding to a MAC unit of a PE are connected to a local buffer and 

consume the least amount of energy to read/write the data. The advantage of the local buffer is 

limited by its available size. The energy consumption and access time increase from low-level 

memory (Registers) to high-level memory (Global buffer). 

In a DNN, the output of a convolution or fully-connected layer goes through an activation 

function. The Rectified Linear Unit (ReLU) is a nonlinear activation function widely used in 

DNNs (all the networks in Table 2.1 uses ReLu) which maps the output value of a feature map as 

follows. 
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where x is the input and y is the output of the activation function. It is observed that the negative 

output values are truncated to zero by the activation function. This truncation can make the 

output values sparse. It has been shown that the AlexNet has a sparsity between 19% to 63%, 

where the sparsity is defined as the percentage of the data (e.g., feature maps, filter coefficients) 

that are zero. Several researchers have exploited the sparsity in a DNN to increase the throughput 

and reduce power consumption.  

The DNN model size (i.e., the number of the DNN weights) can be reduced through 

pruning without affecting the model accuracy. The pruning eliminates insignificant connections 

or weights (i.e., making the insignificant weights zero) in a DNN. Note that multiplication with a 

very small value operand results in a negligible value that will not likely alter the outcome. This 

observation makes the case for opportunistic energy savings by eliminating insignificant 

multiplications. The DNN architectures can therefore be designed to skip multiplications with 

zeros, known as zero skipping. 

If arithmetic hardware can skip zero multiplication, sparsity in data and zero weights 

cumulatively reduce the computing power requirement. Higher speed can also be achieved by 

exploring sparsity in data. To exploit the sparsity further, the storage requirement can be reduced 

by encoding the sparse data. The compression techniques may vary from simple run-length 

coding to compressed sparse column (CSC) or compressed sparse row (CSR) [45]. Compression 

techniques, however need additional encode and decode modules in the hardware.  

Based on the above discussion, it can be inferred that an efficient hardware accelerator 

must be optimized for low-precision, best data flow, and be flexible for varying precision and 

sparse models. As expected, there is a tradeoff between flexibility and optimized architecture. An 

architecture optimized for sparse models will affect the throughput of dense models. 

Accelerators optimized for the convolutional layer may not perform well on a fully-connected 

layer due to the data reusability. In a convolutional layer, weights are reused, but in fully-

connected layers, input features are reusable for optimal performance. Overall, efficient 
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hardware for DNNs should have scalable precision to support different DNN models, optimized 

data flow structure to increase the arithmetic intensity, and should utilize sparsity. 

The deployment of DNNs in real-time applications requires low-power and high-

throughput DNN accelerators. Many efficient DNN accelerator architectures have been proposed 

over the last decade to reflect versatile efforts to improve the overall performance of the DNNs. 

Domain-specific accelerators will always have a scope to improve the overall performance by 

customizing architectures towards a specific application. Even the accuracy requirement of the 

same application can make a difference in the DNN complexity. A generalized DNN accelerator 

architecture should have the flexibility to work on different models at the optimum performance. 

The DNN architectures can be broadly divided into three categories based on the area 

where the architecture has been primarily optimized. These three areas are Arithmetic logical 

unit (ALU), Dataflow, and Sparsity. In the ALU category, the basic building block, i.e., the 

MAC units (or an array of MAC units), are modified such that the accelerator can have large 

computing resources and flexibility to achieve the optimal performance with variable bit 

precision. In the Dataflow category, the parameters (e.g., weights, activations, partial sums) are 

managed such that the overall (intra-chip) data movement energy is reduced, and high arithmetic 

intensity (Ops/Byte) can be achieved. In the Sparsity category, the unstructured sparse data is 

managed such that the matrix multiplication units (e.g., a 2-D array of MAC units) can avoid the 

zero multiplications effectively. A comprehensive review of the DNN architectures based on 

these three criteria is presented in the following. 

2.3 Classification  

2.3.1 ALU-based Accelerators 

Computation-hungry DNN algorithms require a huge amount of computing hardware 

resources. Large arrays of PEs are typically implemented in parallel to improve the 

computational power of a processor. Graphical Processor Units have thousands of PEs in parallel. 

Hence, GPUs are widely used as accelerators for DNNs. The GPUs can provide the throughput 

requirement but consume high energy. The energy consumption of a MAC unit can be reduced 

by decreasing the bit length. Therefore, low-precision DNN accelerator architectures have been 

proposed for DNN inference. 
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Chen et al. [46] proposed an architecture known as the DianNao architecture, with a 

Neuron Flow Unit (NFU) as the basic arithmetic building block. An NFU has 16 neurons, with 

each neuron having sixteen 16-bit fixed-point multipliers in stage 1 and 15 adders in a tree 

structure at stage 2 to add the multiplication results. Stage 3 has an activation layer. DianNao has 

three memory blocks, input buffer, output buffer, and synapse buffer, to store inputs, outputs, 

and weights, respectively. Based on the DianNao architecture, a series of accelerators 

DaDianNao [47], ShiDianNao [48], and PuDianNao [49] have been proposed by improving the 

NFU unit as well as dataflow. The DianNao family can provide 450x speedup and 150x 

reduction in energy with 64 chips over a GPU [29]. Although the Diannao family provides a 

good speed-up, it does not support variable precision. Running a four or 8-bit DNN Model will 

consume as much energy as the 16-bit model. 

To save energy at lower precision, the Dynamic Voltage, Accuracy, and Frequency 

Scaling (DVAFS) MAC-basedd CNN architecture (ENVISION) has been proposed in [16]. In 

DVAFS, all run-time adaptable parameters influencing power consumption: activity (  ), 

frequency ( f ), and voltage ( V ) are scalable. The dynamic power consumption at constant 

throughput is given by [16] 

2

1 2

DVAFS

f
P C

k N k

  
=  

 
                                              (2-3) 

where k1, k2, and N are scaling factors of switching activity, voltage, and level of parallelism, 

respectively. For lower precision, the switching activity can be reduced by masking lower LSBs 

at the inputs of the MAC units. For example, as shown in Fig. 2.3, the configuration of 8b-MAC 

to 4b-MAC leaves a portion of the MACs unused. The unused region can be masked to reduce 

the switching activity. The reduced precision MAC (4b or 2b) will have a shorter critical path 

than the full precision MAC (8b). The shorter critical path can help to increase the operating 

frequency or to reduce the input voltage for energy efficiency. With sub-word parallel processing, 

one MAC unit at full precision (8b) can be configured to produce more than one MAC unit of 

lower precision. As seen in Fig. 2.3, one 8b-MAC can be configured to two 4b-MACs or four 

2b-MACs. At constant throughput, the sub-word parallel processing helps to reduce the 

operating frequency (1 MAC/clock at 8-b precision, 2 MACs/clock at 4-b precision, and 4 
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MACs/clock at 2-b precision). The reduced switching activity, frequency, and voltages have 

been explored to increase the overall energy efficiency in the DVAFS. The energy efficiencyy is 

further improved by modulating the body bias (BB) in an FDSOI technology [16]. The body bias 

permits tuning of the dynamic vs. leakage power balance while considering the computational 

precision. On average, 0.26-10 TOPS/W peak efficiency is reported (implemented in 28nm 

FDSOI technology). Note that processing at the full precision (i.e., 8-bit) with DVAFS comes at 

a slightly higher energy and area penalty (compared to 8-bit standard precision) due to additional 

control circuitry for configuration and more extensive register. 

  

Figure 2.3. Implementation of symmetric precision-variable MAC unit using the DVAFS 

architecture. An 8x8-bit MAC can be used to implement two 4x4-bit MACs or four 2×2-bit 

MAC units [16]. 

Shin et al. [50] proposed a Deep Neural Processing Unit (DNPU) architecture for general 

DNN models using reconfigurable MAC with sub-word parallel processing (SWP) approach on 

one operand. In SWP, parts of bits are processed separately using the lower-precision MACs and 

results are combined to get full results, as shown in Fig. 2.4. In Figure 2.4(a), both activation (A) 

and weight (W) have 8-bit precisions, and W is represented as two 4-bit sub-words. The SWP 

architecture generates 16-bit multiplication output by combining the two sub results. In Fig. 

2.4(b), A has 8-bit precision, but W represents two independent 4b words, and the SWP generates 

two 12-bit multiplication outputs. In other words, the DNPU architecture allows fixed precision 

on one operand (A) and variable precision on the other (W). The DNPU reported 8.1 TOPS/W 
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energy efficiency (with 4-bit precision) on 65 nm CMOS technology. Although the DNPU 

architecture exposed the SWP for only one operand, the SWP can be exposed in both operands 

using a DVAFS-like architecture shown in Fig. 2.3. 

 

                                  (a)                                                                            (b) 

Figure 2.4. Sub-word parallel (SWP) architecture, (a) use of two 8bx4b MAC units to perform 

one 8bx8b operation, (b) Two 8bx4b MAC operations implemented in parallel. 

Lee et al. [51] proposed the Unified Neural Processing Unit (UNPU) architecture using a 

bit-serial MAC unit. The schematic of a weight-only bit-serial MAC unit is shown in Fig. 2.5. 

The bit-serial MAC requires just an adder and a shift register and does not require multiplication. 

In each clock cycle, one bit of weight (LSB bit first) is supplied, and activation is added to the 

shifted value of the previous cycle partial product. The number of cycles required to finish a 

MAC operation depends on the weight precision. For an 8-bit precision weight value, eight clock 

cycles are required to perform the MAC operation, as shown in Fig. 2.5(a). Four and two clock 

cycles for 4-bit and 2-bit weights respectively, as shown in Fig. 2.5(b) and (c). The architecture 

supports any weight bit precision from 1b to 16b and reported 1.43× higher power efficiency for 

a convolutional layer at 4b weight compared to the DNPU. 

Alternatively, approximate multipliers or logarithmic multipliers have been proposed to 

reduce the power and area consumption of multipliers. Note that the neural networks and their 

associated applications are known for exhibiting intrinsic resilience to errors, which makes them 

appropriate candidates for approximate computations. A review of the effect of approximate 

multipliers on the DNN performance can be found in [52]. Ansari et al. [53] proposed an 
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improved logarithmic multiplier (ILM) that rounds both inputs to their nearest powers of two by 

using a nearest-one detector (NOD) circuit. The MNIST and CIFAR-10 dataset classification 

using ILM showed up to a 21.85% reduction in energy consumption and a 1.4% improvement in 

classification accuracy.  

 

(a)            (b)                           (c) 

Figure 2.5. Bit-serial MAC configured as (a) 8bx8b MAC unit, (b) 8bx4b MAC unit, and (c) 

8bx2b MAC unit. (Weight-only scaling). 

Note that the MAC optimization presented above is primarily based on the binary number 

system. A few accelerators have been proposed based on non-conventional number systems, e.g., 

the residual number system (RNS) and posit numbers. Posit numbers have better dynamic ranges 

and are suitable to represent weights in DNN with lower bit precision. Carmichael et al. [54] 

proposed a Deep positron architecture based on the posit number system and evaluated its 

robustness at low precision (< 8 bits). The residual number system is represented by k integers 

{m1, m2, ... mk}, called moduli which should be relatively prime by each other. In the RNS, an 

integer value, X, is represented with residues {r1, r2, … rk} where ri = |X|mi. Any arithmetic 

operation in the RNS is equal to the same operation on residues. For example, for two numbers 

(in RNS) x1 = {a1, a2, a3} and x2 = {b1, b2, b3}, x1+x2 can be calculated as {a2+ b2, a2+ b2, a3+ 

b3}. In RNS, any arithmetic operation can be broken down to the same operation on residues 

which are represented with lower precision than the actual binary number. It reduces the bit 

precision requirement at the cost of more computations. In the digital domain, the RNS can 

improve the speed and reduce the energy in high-precision computations. Olsen et al. [55] 
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implemented RNS-based matrix multiplication to accelerate neural network processing on 

FPGAs and achieved 7-9x speed compared to the 32-bit fixed-point implementations. The 

reduction in the precision requirement is extremely helpful in analog domain implementation, 

where higher-precision MACs have some limitations with their non-linear and hysteretic 

behavior. Samimi et al. [56] proposed a RESnet accelerator in the analog domain with RNS. The 

RNS-based RESnet consumes 145.5× less energy and obtains 35.4× speedup compared to 

NVIDIA GPU GTX 1080. Accelerators with emerging technologies are discussed further in 

section 2.3.4. 

2.3.2 Dataflow accelerators 

The focus of the data flow accelerators is on data management to reduce the off-chip 

memory bandwidth. Spatial and Temporal architectures are well-studied for data reusability. 

Efficiency of dataflow accelerators can be characterized with arithmetic intensity, number of 

operations performed per byte of off-chip memory read. The dataflow can be optimized by 

reusing the parameters in different layers wherever possible. For example, in a convolutional 

layer, both the weights and activations can be reused. The each neuron has unique weights in a 

fully-connected layer, and hence weights cannot be reused but input data (i.e., feature maps) can 

be reused. The reusable parameters are stored in local registers so that data movement between a 

MAC and higher-level memory can be reduced. 

For a MAC unit, three memory reads (i.e., weight, activation, and partial sum), and one 

memory write (i.e., updated partial sum) are required. One of the parameters (e.g., weight) can be 

stored locally in a register file and can be reused for the following few calculations. The 

parameters stored differ from architecture to architecture based on the data flow structure 

implemented. There are four major types of data flow structures to manage the input/output data 

of a MAC in a DNN: No local reuse (NLR), Weight stationary (WS), Output stationary (OS), 

and Row stationary (RS). In NLR, all memory operations are performed directly from the main 

memory (e.g., DRAM). In WS, the weights are stored in the RF (i.e., local memory). In OS, the 

partial sum outputs are stored in the RF to reduce read and write operations. In RS, a row of filter 

weights is stored in the RF. 

Google has developed the Tensor Processing Unit (TPU) accelerator for the efficient 

implementation of machine learning techniques. The TPU architecture [11] has a systolic array 
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of 256 × 256  MAC units as a matrix multiplication unit. The implemented systolic array 

structure is a 2D single-instruction, multiple-data (SIMD) architecture with specialized weight-

stationary dataflow [33]. The block diagram of TPU is shown in Fig. 2.6. The weights can be 

fetched directly from DRAM and stored in the weight FIFO (First-In-First-Out) register. Input 

activations from the external memory or previous layer results are stored in the unified local 

buffer. A systolic data setup block is used to rearrange the input data such that convolution can 

be performed on a matrix multiply unit. The first version of TPU, known as TPU1, focused on 

the inference tasks and has been deployed in Google’s datacenter since 2015. TPU2, also known 

as Cloud TPU, has been used for training and inference in the datacenter. TPU2 also adopted a 

systolic array and introduced vector-processing units. 

 

Figure 2.6. Block diagram of a tensor processing unit (TPU) [11]. 

The SCNN (sparse CNN) accelerator proposed by Parashar et al. [18] uses a dot product 

dataflow termed as PlanarTiled-InputStationary-CartesianProduct (PT-IS-CP). The Cartesian 

Product (CP) term indicates the implementation of MAC units in a PE such that a full Cartesian 

Product of weights and activations ( ) is calculated. The CP implementation maximizes W A
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spatial reuse. The Input stationary (IS) term indicates that activations are reused at the PEs by 

storing them in local memory. The Planer Tile defines the distribution of data across PEs. In 

SCNN, activations and weights are partitioned into smaller tiles and distributed across the PEs. 

In the output stationary (OS) dataflow, the partial sums are stored in the local register 

files. The OS works well with the fully-connected layers, as each neuron output depends on all 

input activations. Instead of multiplying all inputs with the corresponding weights (which may be 

a few hundred), in each clock cycle, a few inputs (e.g., K) are multiplied with weights, and the 

partial sum is stored locally. The entire operation will require N/K clock cycles, where N is the 

number of inputs. ShiDianNao [48], an example of OS dataflow, was implemented for K=16. 

 

Figure 2.7. Schematic of a row-stationary dataflow. 

Chen et al. [57] proposed a row-stationary (RS) dataflow-based accelerator called Eyeriss 

that minimizes the data movement energy on a spatial architecture. Note that in the RS dataflow, 

a row of operands (i.e., input, weights, and partial sums corresponding to a PE) are stored in the 

RF. A schematic of a row-stationary dataflow in Eyeriss is shown in Fig. 2.7. Inputs are reused 

across the PEs connected diagonally. The partial sums are accumulated in the vertical direction. 
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Each PE has local registers to store at least one row of weights and activations, one MAC uni,t 

and controller. The controller is responsible for the temporal reuse of MAC units to perform 1-D 

convolution. 

 

Figure 2.8. Implementation of a row-stationary dataflow on the Eyeriss architecture. (a) 1-D 

convolution between first row of filter 1(Filter1, row1) and input feature map 1 (Ifmap1). (b) 1-D 

convolution between first row of filter 2 (Filter2, row1) and input feature map 1 (Ifmap1). 

Implementation of 1-D convolution using the RS dataflow in a PE is shown in Fig. 2.8. A 

sizable portion of RF is allocated to the weights. A row of input vectors is reused to calculate the 

partial sums of multiple output feature maps. Figure 2.8 shows how the same PE can be used to 

calculate multiple output features by reusing the input data. It has been shown that the RS 

dataflow is more energy-efficient than the existing dataflows [57] in both convolutional (1.4-

2.5×) and fully-connected layers (at least 1.3× for batch size>16). To support a wide variety of 

DNN models and further increase in the resource utilization, an improved version of Eyeriss is 

proposed in [58] called Eyeriss V2. The Eyeriss V2 introduces a highly flexible on-chip network, 

called hierarchical mesh, which can adapt to different amounts of data reuse and bandwidth 
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requirements of different data types. Eyeriss V2 reports 12.6× faster and 2.5× more energy-

efficiency than Eyeriss running the MobileNet. Venkatesan et al. [59] proposed multi-level 

weight-output stationary dataflows: Weight Stationary–Local Output Stationary (WS-LOS) and 

Output Stationary–Local Weight Stationary (OS-LWS). The advantages of these dataflows over 

the IS, WS, and OS dataflows are also discussed. An automated framework, MAGNet, to 

generate an accelerator for a neural network has been proposed in [59]. Using this framework, an 

accelerator can achieve up to 40 fJ/op and 2.8TOPS/mm2 in a 16nm FinFET technology. 

In most of the DNN accelerators, the layers are processed iteratively. However, by 

processing each layer to completion, the accelerator must use off-chip memory to store 

intermediate data between layers as the intermediate data is too large to fit on on-chip memory. 

Alwani et al. [60] explored the dataflow across layers and proposed the Fused-layer CNN 

accelerator. In a Fused-layer accelerator, neurons in multiple layers which depend on generated 

intermediate data are processed once. This increases the data reuse across the layers. The data 

dependency between the two layers can be seen in Fig. 2.9. Layer 1 output features (Tile 1’ and 

2’) can be further processed to generate layer 2 outputs, which avoids the storage requirement 

and memory read-write operations for layer 1 output features (Tile 1’ and 2’). For example, Tile 

1 input data processed through layer 1 generates Tile 1’ data. Instead of storing the Tile 1’ data 

in global or external memory, layer 2 computations can be performed to generate the green 

pixels (layer 2 output). To generate the red pixels at layer 2, only a small amount of data needs to 

be read from the higher-level memory. The overlapped data can be reused by storing it in the 

local memories. Fused-layer method avoids the storage requirement of intermediate results (layer 

1 outputs) externally. If multiple processors run in parallel, the intermediate results can be reused 

across the processors without read/write to external memory. Based on this principle, Shao et al. 

[19] proposed the SIMBA accelerator based on a multi-chip-module (MCM). In the MCM, small 

chiplets (i.e., small chips) are integrated at the package level. Each chiplet has a 4x4 PE array 

with weight stationary dataflow. The SIMBA integrates 36-chiplets, each with 4 TOPS peak 

performance, to achieve up to 128 TOPS peak and 6.1 TOPS/W [19]. 
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Figure 2.9. Example of fusing two convolutional layers. 

 

2.3.3 Sparsity-based Accelerators. 

The computational and memory requirement of a DNN model can be reduced through 

pruning without significant loss of accuracy. In pruning, at the time of training, any insignificant 

weights are made to zero. The pruned weights (or zeros) can be in a regular structure or random. 

In regular structure pruning, also called structured sparsity, a neuron will be removed (i.e., all the 

weights connected to the neuron are set to zero). The pruning in structure sparsity can be at the 

level of neuron, filter, or channel of the filter. In unstructured pruning, all the insignificant 

weights which are random across the weight tensors, are made to zero. The unstructured pruning 

is simple; it can be done by adding a regularization to the training algorithm. But, due to 

unpredictable zero patterns in unstructured sparse models, it requires complicated hardware 

design to compress the non-zero weights and skip zero multiplication. Over time, researcher 

found complex algorithms for structured pruning where a complete neuron, filter or channel of 

filters are removed. The architecture for structured sparsity is simple. 

Albericio et al. [12] proposed the Cnvlutin architecture to exploit the sparsity in feature 

maps. Computation with zeros in the inputs are eliminated by indexing the input data. Non-zero 

input data along with index value are supplied to compute unit. Based on index value, the 

compute unit selects the corresponding weight from filters and performs multiplication. The 
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controller fills the index buffer on the fly such that it does not consume extra clock cycle. To 

further increase the acceleration, Cnvlutin prunes near-zero outputs during inference to increase 

the sparsity of the next layer’s input data. Experiments with several CNNs, including AlexNet, 

GoogleNet, and VGG-19, showed 1.2–1.6× throughput increases over DaDianNao [47] without 

any loss in accuracy on ImageNet data. The Cnvlutin reported an area overhead of 4.5% over 

DaDianNao. Judd et al. [13] proposed Cnvlutin-2 architecture, an extension of Cnvlutin by 

exploring both input and weight sparsity. Cnvlutin-2 is further optimized to reduce the memory 

bandwidth. 

Eyeriss [15] also explored the sparsity in inputs to reduce energy consumption. MAC 

units corresponding to the zero inputs are inactivated by a gating method (disable). The gating 

method saves energy but does not increase the throughput. Eyeriss V2 [58] can process the sparse 

data directly in the compressed format for both the weights and activations, and therefore is able 

to improve both processing speed and energy efficiency with sparse models. 

Han et al. [45] deep-compressed the model by pruning the redundant connections and by 

enabling multiple connections to share the same weight. Deep compression uses threshold-based 

pruning, quantization, and Huffman coding techniques to reduce the overall size of the model to 

fit on the chip memory. Han et al. [17] proposed an energy-efficient inference engine (EIE) to 

accelerate deep compressed model’s inference. To exploit the sparsity and reduce the memory 

bandwidth, the data is compressed using a variation of the compressed sparse column (CSC) 

format. For each column (Mj) of matrix M, a vector v that contains the non-zero weights, and 

another equal length vector z that encodes the number of zeros before the corresponding entry in 

v, are stored. Each entry of v and z is represented by a four-bit value. If more than 15 zeros 

appear before a non-zero entry, then a zero is added in vector v. For example, the following 

column [0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3] is encoded as v = [1, 2, 0, 3], z 

= [2, 0, 15, 2]. Weight matrix distributed across the PEs and stored in a compressed format. The 

EIE performs the sparse matrix × sparse vector operation by scanning vector a (activations) to 

find its next non-zero value aj and then broadcasting aj along with its index j to all PEs. Each PE 

then multiplies aj by the non-zero elements in column Wj. Compared with DaDianNao, the EIE 

has 2.9x, 19x, and 3x better throughput, energy efficiency, and less area respectively [17]. 
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Parashar et al. [18] proposed the SCNN accelerator for compressed-sparse convolutional 

neural network. Weights and activations are compressed with variants of the CSR methods used 

in [17]. For example, as shown in Fig. 2.10, multiple 3x3 filters are compressed into a data 

vector (row-wise), containing non-zero filter values and an index vector. In the index vector, the 

first value represents the number of non-zero elements in the data vector, followed by the 

number of zeros before each value in the corresponding data vector. Multiplication between 

compressed weights and activations is performed like dense matrix multiplication. The output 

activation’s index is calculated based on the inputs and weight’s index at accumulation buffers 

using crossbar connections. The SCNN accelerates a CNN by 2.7x while still being 2.3x more 

energy-efficient (compared to the uncompressed network). 

 

Figure 2.10. Weight compression in SCNN  

With zero skipping implementation for sparse models, a small to significant percentage 

of the MAC units may be end up in the inactive state to synchronize with other PEs. Zhang et al. 

[61] used parallel associative search to maximize the even distribution of data across the MAC 

units and implemented it in SNAP accelerator. The SNAP maintains an average of 75% 

hardware utilization. Similarly, Lee et al. [62] proposed the LNPU architecture for sparse DNN 

model learning. The LNPU has an input load buffer module which distributes the workload 

evenly to the PEs, accounting for irregular sparsity. The overall MAC utilization increased in the 

LNPU. Lin et al. [63] proposed a Dual-core deep learning accelerator based on compression, 

zero skipping, and Fused-layer techniques. 

Zhang et al. [14] proposed the Cambricon-X architecture to exploit the sparsity in filter 

weights by adding a buffer control module. The buffer control module includes an indexing 
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module that selects and transfers the useful input neurons (neurons corresponding to non-zero 

weights in the filter) to PE. A PE stores the compressed filter weights locally and performs the 

computation asynchronously. Cambricon-X reported a 7.23x speedup and 6.43x energy saving 

against the DianNao accelerator.  

The architectures presented above are unstructured sparsity-based, but the unstructured 

sparsity in weights needs complex decode module to decompress the weights and calculate the 

respective activation index. Based on this observation, Zhou et al. [64] showed that the pruning 

block of weights in a DNN model reduces the irregularity in weight sparsity. Zhou et al. [64] 

proposed a Cambricon-S accelerator that uses structured sparsity in weights and encoded to 

achieve a higher compression ratio. Cambricon-S reported 1.71× speed and 1.37× energy 

efficiency compared to the Cambricon-X. 

2.3.4 Hybrid implementation techniques 

With increasing complexity in the neural network architectures, the required computing 

power far exceeds what is achievable with today’s technology [65]. Hence alternative 

technologies like analog computation, photonic and quantum computing are being explored. The 

new technologies are mainly applied at the ALU level in DNN accelerators to improve the speed 

and energy efficiency. Therefore, this section (i.e., Section 2.3.4) can be seen as an extension to 

the ALU-based accelerator classification (Section 2.3.1). 

In the ML hardware implementation, the processor-memory bandwidth is often the main 

bottleneck that limits the achievable energy efficiency. Due to the interconnect loss and signal 

integrity issues, the data transfer is not as efficient as the data processing. Note that the 

technologies are optimized for either data processing (processor technology) or storage (memory 

technology). Therefore, DRAM ICs are used for storage, and processor ICs are used for 

processing. Bringing them closer through advanced packaging can reduce energy penalties due 

to the data movement. But Processing-near-memory or Processing-in-memory (PIM) can reduce 

the data movement. The hybrid memory cube (HMC) technology lets vertical integration of 

DRAM memories on logic circuits and enables near-data processing. Neurocube [66] and Tetris 

[67] are two DNN accelerators based on HMC. Given that the DRAM ICs are optimized for data 

storage, they are few generations behind the logic CMOS devices in terms of computational 

efficiency. Therefore, analog computation can be an attractive alternative to conventional digital 
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computation. For instance, multiplication can be directly integrated into the bit-cells of an 

SRAM array [24]. 

In recent years, memristors (or programmable resistive elements) show promising 

performance improvements. In memristors, weight values are stored as the resistor’s 

conductance, and multiplication is performed based on Ohm’s law 

i G V=                                                                       (2-4) 

where V is the input voltage, G is the resistor’s conductance, and i is the output current 

equivalent to the multiplication result. Fig. 2-11 shows a schematic of the memristor crossbar in 

which currents in a column are added together. Using Kirchhoff’s current law, the resulting 

current (I) can be expressed as follows. 

 ,j k j

k

I i=                                                                    (2-5) 

Substituting the i value from Eq. 2-4, we obtain 

, ,j j k k

k

I G V=                                                            (2-6) 

The output current 
jI  in Eq. 2-6 is equivalent to a neuron output in the neural network. 

Therefore, the memristor crossbar can be used to implement neural networks. Figure 2.11 shows 

memristor implementation of a vector matrix multiplication, ( )V W .  The digital input X is 

converted into an analog input V using a DAC converter. The weight values, W, are programmed 

as the resistor’s conductance. The output currents are converted back to the digital domain using 

ADC converters. The resistive crossbar implementation can reduce the data movement energy.  

The resistive memory can be implemented using different technologies such as Resistive 

RAM (ReRAM), Phase-Change Memory (PCM), floating-gate charged-trap memory, 

SpinTransfer Torque Magnetic Random-Access Memory (STTMRAM), and Ferroelectric Field-

Effect Transistor (FeFET) [68]. ReRAM is a popular technology used in resistive crossbar array 

implementation for neural networks. The two major limitations of this technology are small 

tunable conductance range and the parasitic voltage drop across the array. But more importantly, 

their non-linear and hysteretic behavior limits their usage for applications where higher precision 

would be needed. Ultimately, to interface with the digital part of the CNN, we need a DAC to 
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convert the digital inputs to analog voltages and an ADC to convert the summation output 

voltage/current to digital. The accuracy of such MAC units is limited by the ADC and DAC 

resolutions as well as other circuit noises. The conductance range and noise levels define the 

weight precision, and eight-bit weight precision remains at the upper limit using a single non-

volatile memory device [68]. The low-precision parameters can still produce similar accuracy in 

inference, but are generally not sufficient for training. The conductance is always positive, and 

hence only positive weights can be implemented. For negative-valued weights, w, two weights, 

w1 and w2, whose difference is equal to w (𝑤 = 𝑤1 − 𝑤2) are implemented, and resulting output 

currents are subtracted. A few proposed analog NN architectures are PRIME [69], ISAAC [70], 

Memristive Boltzmann machine [71], Newton [72], PUMA [73], and mCNN [74]. 

 
Figure 2.11. Resistive memory crossbar implementing vector-matrix multiplication Y X G=  . 

V denotes the input voltage vector (analog equivalent of X); G denotes the conductance of 

memory equivalent to weights, and I denote the resultant output currents (analog equivalent of 

Y). DAC: Digital to Analog conversion block, ADC: Analog to Digital conversion block. 

In some mixed-signal accelerators, the computational units are partially implemented in 

the analog domain. Cao et al. [75] proposed a hybrid digital mixed signal computing platform 
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using a Time-Division Mixed signal (TD-MS) multiplier. It usea s 5b TD-MS multiplier and 

extends to higher precision (6 to 8- bits) using shift and add. Bankman et al. [76] proposed a 

mixed signal binary CNN processor which performs multiplication in the digital domain and 

summation using switched capacitor neurons. The weights and input data are represented in 

binary form hence multiplication in the digital domain is efficient. Detailed reviews on analog 

neural network accelerators can be found in [68, 77]. 

Similar to the memristors, the digital data in these analog accelerators has to be converted 

into analog using DAC before processing in the analog domain. After processing, the result has 

to be converted back to digital domain using an ADC. The DAC and ADC converters consume 

more energy with an increase in precision. For higher-precision data, energy consumed by 

converters can nullify the advantage gained with analog computations and the overall 

performance may degrade compared to the digital domain. The MAC unit does not always need 

the ADC or DAC elements, but in most cases, the non-idealities of the analog MAC require 

digital calibration and correction that mandates ADC and DACs. Like analog accelerators, 

photonic accelerators are also being explored to enable faster computation with improved energy 

efficiency [65]. A detailed discussion of such solutions is beyond the scope of this work. 

However, these solutions also face the same resolution challenges as other analog solutions that 

limit their usage to certain applications. 

2.4 Evaluation  

In this section, we present the performance evaluation of a few selected architectures. 

Most existing research works use measures such as chip area, throughput, latency, and power 

efficiency for performance comparison. An accelerator proposed for a specific DNN model (e.g., 

sparsity, kernel size) may not translate its benefits to other DNN models. For example, the 

performance of sparsity-based accelerators significantly degrades on the denser models due to 

the presence of additional encode and decode modules. Similarly, the weight stationary data flow 

typically performs better on the convolutional layers compared to the fully-connected layers 

because of weight reusability in the convolutional layers. A similarr performance trend is 

observed in the variable-precision accelerators (ALU-based), where both the latency and the 

power consumption increase compared to the fixed-precision accelerators on a DNN model 

running at full-precision. Therefore, it is essential to understand the advantage and drawbacks of 
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each method of accelerator implementation (e.g., ALU-based, RS, WS, OS, and sparsity-based 

accelerators). 

Parashar et al. [78] proposed a software framework known as Timeloop to estimate the 

energy-efficiency of an accelerator architecture on different workloads without physical 

implementation. It is claimed that the Timeloop framework can give over 95% accuracy 

compared to the actual physical implementation of hardware. Therefore, the Timeloop 

framework was used to measure the performance of a few architectures. Before considering 

Timeloop, the framework performance on Eyeriss architecture with AlexNet layer 1 workload is 

verified with manual calculations, the difference is within 5%. Manual calculation uses a similar 

method proposed by Yang [79]. The workload (AlexNet layer 1) is mapped manually on Eyeriss 

architecture. The parameters (inputs, weights, and partial sums) are stored across the memory 

hierarchy (DRAM, global buffer, and RF files) such that minimum data read-write operations (or 

maximum data reuse) are performed. The final output is written back to DRAM. The number of 

memories read or write operations of each parameter at all levels of the memory hierarchy are 

counted. In the calculation, we consider that the 16-bit MAC consumes 2.20pJ per operation 

(obtained from the Timeloop software). Note that the energy consumed for read/write operation 

at different levels of memory is calculated based on 45nm CMOS technology [78] (DDR4 

technology for external memory access). The energy required to read data from RF is assumed to 

be equal to one MAC operation. The manual calculations require 840 𝜇𝐽 to process AlexNet 

layer 1 on Eyeriss, and the Timeloop reports 866 𝜇𝐽 . The advantage of using the Timeloop 

framework is the optimal workload mapping on an architecture. Therefore, we will be using the 

Timeloop framework to evaluate the performance. 

In a DNN model, the size of parameters varies from layer to layer. Let I, W, and O denote 

the size (in Kbytes) of a convolution layer's inputs, weights, and outputs. In general, O > I, W in 

the initial few layers. This is because a large number of feature maps (typically known as the 

depth of the layer) are generated at the initial layers. In the later layers, the size of output features 

O is reduced. Hence, in the last layers, W >> O in general.  

The size of parameters can affect the performance of an architecture. Therefore, five 

different convolutional workloads, which can generalize to a broad range of workloads (with 

different filter sizes, convolution strides, etc.,) are considered for evaluation in this section. The 



40 

 

configuration of these five workloads is shown in Table 4. The workload, calculated as number 

of computations in a layer, increases from CONV1 to CONV5. 

Table 2.4. Example of five workload configurations in terms of Input (I), Output(O), and 

Weight(W) sizes. TOTAL-PARAM: Total number of Parameters, I+W+O (in millions). 

TOTAL-COMPUT: Total number of computations (in millions). 

PARA-

METERS 
CONV1 CONV2 CONV3 CONV4 CONV5 

INPUT (I) 225X225X3 227X227X3 64X64 X128 17X17 X256 33X33 X96 

WEIGHTS (W) 5X5X3X96 11X11 X3X96 1X1X128X256 3X3X256X384 3X3X96X256 

OUTPUT (O) 111X111X96 55X55 X96 64X64 X256 15X15X384 31X31 X256 

STRIDES 2 4 1 1 1 

TOTAL-PARAM 1.34 0.47 1.6 1.04 0.57 

TOTAL-

COMPUT 
88 105 134 199 212 

 

Using the Timeloop framework, the energy performance of three different architectures 

on the five workloads was calculated. The three architectures considered are Row Stationary 

(RS), Weights Stationary (WS), and Output Stationary (OS) architectures with the same number 

of resources (e.g., MACs and memory) available. The allocated resources are based on the 

existing hardware accelerator EYERISS [15]. The availableon-chipp global buffer is set to 

128KB and 256 (16x16) PEs, and the local buffer at each PE is 440 bytes. The local buffer is 

used to store weight, and partial outputs in the RS, WS, and OS architectures. In the RS 

architectures, the local buffer is partitioned into three parts and is used to store inputs, weights 

and outputs. In WS, the local buffer is used to store only weights, whereas OS architectures store 

only partial outputs. The latency is calculated based on the number of clock cycles required to 

process. The clock frequency is 200MHz (assuming 45nm CMOS technology). 

Two performance parameters, latency and energy, are calculated for all three 

architectures on 5-different workloads using the Timeloop framework, and results are shown in 

Fig. 2.12. In the Timeloop framework, the mapper (e.g., a compiler) searches for the optimum 

workload map on the architecture. The search algorithm requires the performance criteria to 

select the best match. We choose latency and energy as the optimization criteria. In Fig. 2.12(a), 

the amount of computation increases monotonically from CONV1 to CONV5, but the energy 

consumption of the architectures does not always increase with computations. This is because 

data transfer contributes a significant part of the total energy. For example, between CONV4 and 
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CONV5, there is a slight reduction in the total energy consumption despite increased 

computation due to less data transfer. Therefore, the energy efficiency of an architecture depends 

on both computations and the number of parameters. From Fig. 2.12(b) and (c), it can be 

observed that the RS architecture has the lowest latency (combining all layers), and the WS 

architecture consumes the least energy. 

 

Figure 2.12. Performance of three different architectures: (a) energy consumption in different 

workloads. (b) architecture latency on all workloads. (c) architecture total energy consumption. 

The dataflow efficiency depends on how much the parameters are reused within the local 

memory once they have been read from the external memory. In the convolution operation, the 

filter properties (height (R), width (S), and channel (C)) define the data reusability. For example, 

in a convolution with a 3×3 sized filter, one input can be reused to calculate nine partial products 
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(with nine weights) corresponding to nine outputs. Therefore, the performance of the RS, WS, 

and OS dataflows are evaluated with filter size, as shown in Fig. 2.13. In this figure, the 

workload of CONV5 is varied by changing the filter size from 1×1 to 11×11. 

 

Figure 2.13. The RS, WS, and OS performance with variation in filter size. Note that the Latency 

and MAC utilization in the OS and WS are same, and their plots coincide (dotted black line). 

The total computations increase with the filter size and require more processing energy. 

From Fig. 13, it can be observed that energy consumption rises with filter size for all the 

architectures. But the energy consumption of the RS and OS architectures increases more than 

that of the WS architecture. To understand the energy variation, we looked at the energy 

consumption of DRAM, global buffer, local buffer access, and MAC unit per computation. The 

MAC unit and local buffer consume similar energy across the filters. The DRAM and global 

buffer access energy varies with filter size, as shown in Fig. 2.14. For filter 1x1, the WS and RS 

architectures consume a similar amount of energy (as seen in Figs. 2.13 and 2.14) because when 

the filter size is 1x1, the weight reuse is identical in both the architectures. The input data 

reusability increases with filter size but requires more local memory to store the filter weights. In 
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the WS architecture, the local memory is allocated primarily for filter weights and can keep all 

the weights for even large-size (11x11) filters. Therefore, the DRAM access energy per 

computation decreases for the WS with increasing filter size, as shown in Fig. 2.14. The local 

memory is primarily allocated for partial products in the OS architecture and shared with all 

three parameters in the RS. The OS and RS architectures may not have sufficient space in the 

local memory for large-size filters, and hence the increased data reusability with filter size does 

not significantly affect the DRAM access energy, as shown in Fig. 2.14. The WS architecture 

requires less DRAM and global memory access energy, which means it maximizes the data reuse 

within the local memory and requires less access to the higher-level memory. Therefore, the WS 

consumes less energy among all architectures with filter size increase, as shown in Fig. 2.13. 

 

Figure 2.14. Energy consumption and MAC utilization in the WS, OS, and RS architectures for 

different filter sizes. R and S are the number of rows and columns, respectively. 

The MAC utilization of the RS varies with the filter size, as shown in Fig. 2.14 (see the 

dotted lines). In RS architecture, the PEs are connected in such a way that the inputs are reused 

in diagonal PEs, and partial sums are accumulated across vertically connected PEs, as shown in 

Fig. 2.7 (the directions can be configured). When mapping the workload on the PE array, a few 
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PEs may end up unallocated. For example, in mapping a 3x3 filter on four PEs, three rows of 

filters can be stored in three PEs and accumulate the partial products to get the convolution 

output. The fourth PE is unused and can be used to calculate the next output, but the partial 

product must be stored in the memory and be read in the next cycle. The additional energy 

required for the partial product memory read-write can defeat the advantage of using the fourth 

PE. Therefore, only three PEs are used for calculations, and fourth one is left ideally. Due to only 

three PEs being utilized effectively, more clock cycles are required to complete the convolution. 

To fully use the PEs in the RS dataflow, the array size should be multiples of the filter size. In 

this experiment, the PE array size is 16x16, which is not multiples of 3, 5, 7, 11 (i.e., the filter 

size). Therefore, the MAC utilization of RS dataflow varies with filter size (see the dotted green 

line in Fig. 2.13). The decrease in MAC utilization increases the latency as, shown in Fig. 2.13. 

For filter sizes from 5 to 11, the latency of the RS increases more compared to the WS or OS 

because of the drop in the MAC utilization. The latency difference between the RS and WS/OS 

is small at filter size 5 (~0.8) compared to the difference at filter size 3 (~1.4) because of the 

increase in the MAC utilization for RS. 

The convolution stride is another parameter that can affect the data flow. With a stride of 

greater than one, the input features may not be reusable in two neighboring output feature (pixels) 

computation. For example, with the stride of one, six input pixel values (i23, i33, i43, i24, i34, i44) 

out of nine can be reused for the next window, as shown in Fig. 2.15(a). In the convolution with 

a stride of two, only three input pixel values (i24, i34, i44) out of nine can be reused for the next 

window, as shown in Fig. 2.15(b). On the other hand, in the convolution with a stride of three, 

there are no common pixel data in the consecutive windows, as shown in Fig. 2.15(c). Therefore, 

the input data reusability depends on the stride value, and there is no reuse of input data in 

consecutive output feature calculation if the stride value is more than the filter size. 
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Figure 2.15. Impact of convolution strides on the input data reusability. (a), (b), (c) represent 

input feature maps with filters (colored boxes) imposed on it to show consecutive convolution 

windows with stride values of 1, 2, and 3, respectively. 

Note that it is important to understand dataflow architectures’ efficiency with stride 

variation. In this experiment, the stride size is varied from 1 to 4 in the CONV4 workload. The 

total energy consumption depends on the type of workload and filter size, as shown in Fig. 

2.12(a) and 2.14. Hence, instead of comparing the total energy, we compare the energy 

normalized to stride one in respective architectures. The normalized energy here indicates the 

change in energy due to the change in the stride value. The DRAM access energy increases by 

about 120% in the WS architecture as stride value changes from 1 to 4, as shown in Fig. 2.16. 

The DRAM access energy changes because of the change in the input data reusability and may 

require reading the full window of input data at each cycle, as shown in Fig. 2.15. In the RS 

architecture, a row of inputs is stored in the connected PEs and used in the later computations, if 

not in consecutive computations. Therefore, the DRAM access energy changes more in the WS 

compared to the marginal change in the RS. The total energy changes with DRAM access energy, 

more than 20% increase in the WS, and marginal change in the RS, as shown in Fig. 2.16. 

Therefore, for large stride values, the RS has better data reusability compared to the OS and WS 

architectures. 
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Figure 2.16. Energy variation in the RS, WS, and OS with stride variation for CONV4 workload. 

 

Figure 2.17. Performance of DNN architectures with different precisions and sparsity levels. The 

sparsity-based accelerators are denoted with star marks and dense models with plus sign. Small 

size mark indicates real-time performance, and large size mark indicates peak performance. 
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Note that most accelerators reviewed in the previous section vary in terms of the 

available MAC units, memory size, dataflow implemented, and workload used. Therefore, 

energy and latency parameters are insufficient to evaluate or compare the existing accelerators. It 

is difficult and time-consuming to implement all existing accelerators on the Timeloop 

framework, keeping the same  resources, to obtain the performance metrics for comparison 

purposes. In the ALU-based accelerators, the MAC implementation enables performance 

improvement. Hence, the ALU-based accelerators can be evaluated by comparing single MAC 

units. Camus et al. [30] analyzed precision scalable MAC units from different accelerators. 

Similarly, the performance improvement in sparse-based accelerators is defined by the sparse 

encoder and decoder modules. To observe the trend in ALU and sparse-based accelerators, the 

power vs speed plot of a few accelerators is shown in Fig. 2.17. The data for Fig. 2.17 has been 

obtained from a standard repository [80]. In the Fig. 2.17, the small size marks indicate the real-

time performance, and the large size marks indicate the peak performance. The ALU-based 

accelerators evaluated for at least two precisions are considered. From Fig. 2.17, it is observed 

that the sparsity-based accelerators consume less power (star marks in Fig. 2.17). The advantage 

of sparse architectures depends on the sparsity in the input data. For highly sparse data, the 

additional cost of encoder/decoder can be overcome by the computational advantage (i.e., 

smaller number of MAC operations after zero skipping). Running a dense model on a sparse 

accelerator can degrade the performance. Therefore, it is crucial to evaluate the sparse 

accelerator with varying sparsity (e.g., from 5% to 90%). Precision can also affect the power and 

speed of an architecture. Low-precision accelerators provide high speed at lower power (see the 

blue and red color marks in Fig. 2.17). In sub-word parallel architectures, by running at half-

precision, the speed can be doubled at the same amount of power ([32], [33], [58]) or power can 

be reduced at the same speed ([31]). The binary and INT4 precision architectures can achieve 

high speed at low power but have limited applications. 

2.5 Conclusion 

Understanding the factors affecting the performance of an DNN accelerator is vital to 

develop an energy-efficient accelerator.  In this study, three major areas ALU, dataflow, and 

sparsity are identified as potential areas to improve the overall performance of a DNN 

accelerator. The existing architectures were classified into four categories. The advantages and 
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drawbacks of each category are discussed. A variable precision ALU can take advantage of sub-

word parallel processing for low-precision DNN models to improve overall throughput or to 

reduce the power requirement. But a precision-variable ALU comes with a complex 

configuration circuit. An efficient data flow can improve the arithmetic intensity and memory 

bandwidth requirement. The dataflow efficiency can vary from layer to layer or with filter size. 

The sparse models can reduce the power requirement by skipping zero multiplication but 

increase the latency per MAC operation. Three dataflow architectures are evaluated. The 

dataflow efficiency depends on the workload. Hence, the dataflow must be chosen based on the 

accelerator application. The classification is discussed in Section 2.3. will help the readers in 

selecting the best technique at different levels in architecture. An efficient DNN accelerator 

should have a precision-variable ALU, flexible dataflow for all types of layers in a DNN model, 

and explore the sparsity with simple control circuitry. 
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Chapter 3  

An Iterative MAC Model 

In the previous Chapter, we identified three key areas: arithmetic logic unit, data flow, 

and sparsity that have the potential to improve the overall performance of a hardware accelerator. 

In addition, hybrid (mixed analog and in-memory) architectures were discussed for high-speed 

implementation. The efficiency of the dataflows was evaluated. In this Chapter, we further 

explore the arithmetic logic unit architectures. It is generally known that the training of DNNs 

requires higher precision compared to inference. As a result, few hardware accelerators support 

DNN training. In this Chapter, we propose a low-precision iterative MAC unit-based accelerator 

intended for inference which can also be used to train the DNN model. The proposed MAC unit 

can provide good performance and flexibility. 

3.1 Introduction 

As observed in Chapter 2, the DNN models have been modified by researchers to 

optimize the performance of hardware accelerators, such as throughput, latency, memory, and 

power requirements. The two most popular techniques are parameter quantization and parameter 

reduction. In parameter reduction, the number of distinct weights in a DNN model is reduced. 

Parameter reduction utilizes different compression techniques and reduces on-chip memory 

requirements [45]. Parameter quantization leads to a reduction in bit length (precision) to 

represent weights and activations. The DNN models are typically quantized to fixed-point to 

implement on embedded systems. The fixed-point arithmetic unit takes the least number of 

resources. Therefore, various DNN accelerators have been proposed based on fixed-point ALUs. 

However, problems arise when offline training is required. Existing fixed-point-based 

accelerators do not support training. In this Chapter, we look at fixed-point ALU 

implementations for inference that can also train the DNN model.  

3.2 Precision requirements 

The training phase requires calculation and backpropagation of the error gradients 

through the network. The weights ( W ), error gradient (  ), and weight gradients ( W ) 
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generally have a large dynamic range during the training. Therefore, the training of a DNN 

model is typically done in single precision (i.e., 32-bit Floating-point, FL32) format. However, in 

the inference mode, the model parameters do not change. The range of weights is known before 

the deployment of the DNN model. For example, Fig. 3.1 shows the weight distribution of two 

convolutional layers, conv1 and conv3, and two fully-connected layers, fc7 and fc8, of AlexNet 

[81]. Note that the weights are small in value and have a normal distribution (a similar kind of 

variation is observed in many standard networks, such as VGG-16, GoogleNet, and ResNet). The 

weights of a DNN model typically follow a normal distribution. Inside a DNN, the mean and 

variance of the distribution vary from layer to layer. To represent weights from such distributions, 

FL32 format is not necessary. Lower bit width data formats can effectively represent such 

weights. Bit length requirements for DNNs can be greatly reduced with only slight variations in 

the accuracy. FL32 (32-bit length) weights can be represented in FL8 (8-bit length) without loss 

of DNN precision [81]. 

 

Figure 3.1. Weight distributions in four different layers of AlexNet. conv1 and conv3 are 

convolutional layers and fc7, fc8 are fully-connected layers [81]. 
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 There are different ways to quantize the model parameters. One simple way is to use 

fixed-point representations with enough bit width. The fixed-point operations do not need any 

conversion or scaling operations to obtain the result. Hence, a fixed-point arithmetic unit can 

provide the lowest latency with less power consumption within a smaller area. In dynamic fixed-

point format, the binary point position is arbitrary and requires scaling after an arithmetic 

operation. Other quantization approaches include binary, ternary, lower bit-width floating, and 

non-linear (e.g., logarithmic) quantization. The binary and ternary representations of parameters 

lead to better hardware performance but degrade accuracy and model capabilities [44]. Non-

linear quantization reduces the bit lengths but requires relatively complex arithmetic hardware 

units. Hence, fixed-point hardware is preferred inside an accelerator. 

The accuracy loss of AlexNet with different quantization formats is shown in Table 3.1. 

The weights and activations are quantized to different bit lengths, and the accuracy drop with 

respect to FL32 representation is shown in Table 3.1. It is observed that the reduction of bit 

length from 32-bit to 8-bit results in a marginal loss of accuracy [22, 45, 83]. Binarization (i.e., 

1-bit representation) of AlexNet results in an accuracy loss of more than 20% which is 

undesirable [87]. Non-linear quantization can produce similar accuracy as FL32 but makes the 

MAC unit design complex. The deep compression model [45] can reduce the weights to 8 bits, 

and activations to 16 bits without affecting the accuracy. Dynamic fixed-point quantization can 

also produce good accuracy but requires scaling after an arithmetic operation [22, 83]. 

Quantization-aware training approaches [82] have been proposed in the literature, which can 

reduce the accuracy loss arising due to quantization. 

A well-optimized DNN model may require different bit lengths at different layers within 

the model. For example, the optimized bit length requirements for a five layers Convnet (three 

convolutional and two fully-connected layers) are 8-7-7-5-5 bits, respectively [42]. In other 

words, no standard precision is likely to be optimal for all the layers or models. Therefore, a 

flexible DNN hardware accelerator (or the associated MAC units) should be able to support all 

possible bit precisions. 

Parameter quantization helps in implementing pre-trained DNN models in embedded 

systems. However, problems arise when on-the-job training is required. The model might need 

training with domain-specific or confidential data for performance optimization. The weight 

gradients generally have small values (in a large range) and calculating these values may require 
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high-precision ALU units. Micikevicius et al. [92] used mixed-precision to train a network. The 

weights, activations, and gradients are stored in IEEE half-precision (FL16) format, and a master 

copy (original) of weights are stored in single-precision (FL32) format. The weight gradients are 

added to the master copy of weights after each iteration, and then the updated weights are 

converted to half-precision for the next iteration. The approach works for various models, 

including convolutional neural networks and recurrent neural networks.  

Table 3.1. Different methods to reduce numerical precision for AlexNet, accuracy measured for 

TOP-5 error on IMAGENET data [24]. 

Reduction Strategy 

Bit width Accuracy 

loss vs. FL32 

(%) 
Weights Activations 

Dynamic 

Fixed-point 

Without fine-tuning [83] 8 10 0.4 

With fine-tuning [22] 8 8 0.6 

Fixed-point 

Quantization 

(only weights) 

Binary Connect [84] 1 FL32 19.2 

Binary Weight Network [84] 1* FL32 0.8 

Ternary Weight Network [41] 2* FL32 3.7 

Trained Ternary Quantization 

[85] 
2* FL32 0.6 

Fixed-point 

Quantization 

(both weight 

and activations) 

XNOR-Net [86] 1* 1* 11 

Binarized Neural Networks [87] 1 1 29.8 

DoReFa-Net [88] 1* 2* 7.63 

Quantized Neural Networks [37] 1 2* 6.5 

HWGQ-Net [89] 1* 2* 5.2 

Non-linear 

Quantization 

LogNet [90] 
5 (conv) 

4 (fc) 
4 3.2 

Incremental Network 

Quantization [91] 
5 FL32 -0.2 

 

Deep Compression [45] 

8 (conv) 

4 (fc) 
16 0 

4 (conv) 

2 (fc) 
16 2.6 

* Quantization is not applied to first and/or last layers 

Wang et al. [93] trained AlexNet with ImageNet data using FL8-bit format weights and 

activations except for the first and last layers. In the implemented MAC unit, multiplication is 

done in FL8, and accumulation in FL16 registers. A speedup factor of 2~4× is achieved without 

any loss in accuracy. Das et al. [94] proposed a shared exponent representation of tensors and 

developed a Dynamic Fixed-Point (DFP) scheme, which uses INT16 tensors with a shared 8-bit 

tensor-wide exponent to represent the parameters. It uses an Integer Fused-Multiply-and-
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Accumulate (FMA) unit for computation. An overall 1.8× speedup in training throughput is 

achieved compared to the baseline FL32 performance. 

It has been shown [81, 92, 93, 94] that the training phase requires higher bit-precision 

compared to inference. Therefore, an accelerator designed for training is generally inefficient if 

also be used for inference. Accelerators designed for training consume more power and less 

throughput than those intended for inference. Consider the backpropagation equations used for 

the network training as given below: 

1 1 '[ ] ( ( ))l l lW f v n + +=                                                   (3-1) 

1( ) ( ) ( )L L L

ji j iw n n x n  − =                                                      (3-2) 

The computation of the local gradients ( l ) involves at least one forward pass parameter, i.e., 

the weight (𝑊𝑙 ) and/or activation (𝑥𝑙−1). The 
' ( ( ))f v n  of most widely used ReLu function 

inside a DNN model is 1. The weight and activation parameters used in the local gradient 

calculation are the same values used in the forward pass (inference mode). This suggests that the 

gradient parameters may need higher precision, but one of the operands (e.g., 
1lW +
 in Eq. (3-1)) 

involved in gradient calculation can be represented in lower precision. Therefore, a high-

precision multiplication unit is not necessary for training. For example, assume that the forward 

path is calculated in 8-bit integer (INT8) representation, meaning the weights and activations are 

represented in INT8. In backpropagation, even though gradients are represented in FL16 format, 

a full FL16×FL16 multiplier is not needed. A FL16×INT8 multiplier unit is enough. Further, if 

we can represent FL16 with an 8-bit mantissa and 8-bit exponent, then the multiplication can be 

simplified as ((8-bit mantissa) × INT8) *exponent. This way, the floating-point multiplication 

can replace with a lower-precision fixed-point multiplier. Replacing the floating-point 

multiplication with fixed-point in the hardware improves the latency and power efficiency 

exponentially. 

Apart from the above proposed precision models, researchers around the world are 

exploring different solutions to the training step using the integer representation of gradients, 

without affecting the convergence. In this Chapter, we propose a flexible iterative MAC unit 

optimized for inference that can be used to train a DNN. 
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3.3 Iterative MAC Unit 

It has been shown in the literature [16, 50, 51] that a high-precision MAC unit can be 

implemented using lower precision MAC units. In this section, we use this approach to design a 

low-precision MAC unit that can be used for DNN inference and can be used recursively to train 

a DNN. A 16×16-bit multiplication can be implemented using four 8×8-bit MACs in parallel or 

one 8x8-bit MAC in serial, as shown in Fig. 3.2. Figure 3.2(a) shows the parallel implementation, 

all the four partial products are calculated in parallel and scaled results are added. Figure 3.2(b) 

shows the serial implementation, one 8-bit multiplier is reused in time to calculate four partial 

products. The parallel method consumes more resources and space but has less latency (single 

iteration) whereas the serial method consumes fewer resources but has higher latency (four 

iterations). 

 

Figure 3.2. A 16-bit MAC implementation. (a) Parallel implementation using four 8-bit MAC 

units, (b) Serial implementation using a single 8-bit MAC. 
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It is possible to obtain identical outputs by the two approaches in Fig. 3.2. However, in 

the serial method, it may be possible to reduce the computations if some error in the output 

calculation is allowed. For example, consider two INT16 numbers: 6,244C =  and 3,272D = . 

The number C and D can be represented by two INT8 numbers as follows 

' 8 ''

' 8 ''

2

2

C C C

D D D

=  +

=  +
 

here ' '' ' '', , ,C C D D  are 8-bit numbers. ' ',C D are MSB 8-bits and '' '',C D are LSB 8-bits. For 

6,244C = , ' 24,C =
'' 100.C =  Similarly, for 3,272,D =  

' 12,D = '' 200D = . The exact result 

C D  is 20,430,368. If the multiplication is performed using just the upper bytes, 'C  and 'D , 

and scaled appropriately, we will obtain 
16( ) 2C D   = 18,874,368, which is 92% of the exact 

result. Further, calculating the two more partial products ' ''C D  (=1,228,800) and '' 'C D  

(=307,200) and adding it to the first product with appropriate scaling (28), the result is 

20,410,368, which is 99.9% of the exact result. The calculation of the lower byte partial product 

(4th partial product) can be skipped if a 0.1% error is acceptable in the final value. In other words, 

with the allowance of error in the final output, some partial products can be omitted. 

As the DNN models are error resilient up to a certain level, we can reduce the number of 

partial products required to be calculated. The parallel implementation is not advantageous 

because all four partial products are calculated simultaneously. In the serial implementation, if 

we can calculate the partial products one after another, starting from the product of upper bytes, 

we can eliminate partial product calculation using lower bytes. Hence, fewer calculations result 

in less power consumption and low latency. The serial implementation can also be extended to 

any higher-precision MAC operation without any additional multipliers. The serial 

implementation with a threshold limit for lower partial products calculation is called an iterative 

MAC unit. In the iterative MAC, the upper byes’ partial product is calculated first. The iterative 

MAC has the required flexibility and can take advantage of error resilience to reduce the latency 

and power consumption of the hardware. 
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Figure 3.3. Proposed 8-bit iterative MAC implementation for 16×16-bit multiplication. 

An 8-bit iterative MAC unit is shown in Fig. 3.3. Partial product using upper bytes is 

calculated first. The partial product is compared with the set threshold value. If the partial 

product exceeds the threshold value, no more iterations are calculated. The scaled partial product 

is the approximate output. If the partial product is less than the threshold value, then the next 

partial product is calculated and compared with the threshold. The process is continued until the 

threshold condition is satisfied or all the four partial products are calculated. For a 16-bit 

multiplication, minimum one iteration and maximum of four iterations are required. To optimize 

the usage of hardware resources, it is crucial to know when all partial products should be 

calculated and when some partial product calculations can be omitted. That means the optimal 

threshold value is important in the iterative MAC performance. To obtain some statistical results 

on MAC operations, we performed an experiment. We generate normalized 16-bit data x  in the 

range [ 1,1]− . It is hard to simulate with all possible combinations for 16×16 MAC, the result 

matrix size goes beyond 16 GB. Therefore, we are considering 
2x calculation using the proposed 

8-bit iterative MAC unit. The 
2x  calculation can show possible minimum and maximum errors 

with iterative MAC. Three kinds of results are calculated and plotted in Fig. 3.4(a). The blue line 

shows the output obtained using single iterations ( )C D  , the green line shows the output 

obtained using three iterations ( , , )C D C D C D         and the red line shows the output obtained 

using all four iterations ( , , , )C D C D C D C D           . Note that all outputs were scaled (by 82  or 

162 ) appropriately. As all three output values are very close, the lines are indistinguishable in Fig. 

3.4(a). To see the difference, a zoomed version is shown in Fig. 3.4(b). It is observed that the red 
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line is parabolic as expected as it shows the 2x  function. The blue line shows results for the high 

byte only, any change in the lower byte value does not reflect the squared value. The squared 

(blue) value is constant for all adjacent input values whose difference is in the low byte. The 

green line has a better approximation to 2x  because it includes any change in lower byte values 

through the additional partial products ( , )C D C D     . 

 

Figure 3.4. 16-bit square value calculation using an 8-bit iterative MAC unit. (a) input vs squared 

plot of all three results, red indicates full MAC, green indicates three iterations and blue indicates 

one iteration result. (b) zoom in version of (a) at smaller input values. 

The error percentage of the squared values calculated for one (blue) and three (green) 

iterations are shown in Figures 3.5(a) and (b). Figure 3.5(a) shows the error over the entire range 

of the input ([-1 1]). It is observed that the percentage error is very small for high values of | |x . 
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A zoomed version of Fig. 3.5(a) at smaller values of | |x is shown in Fig. 3.5(b). Figure 3.5(b) 

shows that for input values 0.15x  , the squared values calculated in one iteration are within 5% 

error (blue line). Note that when we multiply two numbers with uniform probability density 

function in the range [ 1,1]− , the probability that both operands have a magnitude greater than 

0.15 is 72% ( 0.85 0.85=  ). In other words, in 72% of the cases, one iteration is sufficient to 

produce a multiplication result within a 5% error. The error exceeds 5% in the remaining 28% of 

cases. Note that, as shown in Fig. 3.5(d), the percentage error is high when x  becomes small. For 

example, when 0.05x = , the error is around 15%. In other words, when the input is small, the 

error may be too large to ignore. To obtain a more accurate output, smaller input values require 

more than one iteration. To simplify the iteration threshold, the size of the value in the first 

iteration (that is, the high-byte product) is checked. Subsequent iterations are calculated if the 

value is less than 5% of the maximum possible absolute value. For example, if the first iteration 

produces 16-bit output then the maximum absolute value in signed 16-bit representation is 32768, 

and 5% of it is 1639. The threshold value is set to 1639 for an 8-bit iterative MAC, assuming a 5% 

error can be tolerated in DNNs. If the first iteration value is less than 1,639, the subsequent 

iterations are performed. The iteration results are scaled by a factor of 216, which makes the 

remaining partial products insignificant in the approximated result. The least sixteen bits of the 

32-bit register are zeros in a single iteration (blue) calculation. The results can be compressed to 

a lower size by eliminating zero storage to save memory space. The error in single iteration 

calculations can be reduced by approximating the least 16 bits with some random data. But the 

approximation eliminates the possibility of data compression. Therefore, we are not seeking any 

approximations to reduce the error in partial products. We can choose either input value (based 

on Fig. 3.4) or partial product value as the threshold for further MAC iterations. We choose a 

partial product value based (i.e., 1639) as the threshold for further experiments in this work. 



59 

 

 

Figure 3.5. 16-bit square value calculation using 8-bit iterative MAC unit (a) percentage of error 

in square value using single iteration (blue) and three iterations (green) with respect to full 

precision MAC. (b) zoom in version of (a) at smaller input values. 

 

3.4 Experiments 

In this section, we evaluate the performance of the proposed iterative MAC unit for 

training and testing a popular DNN known as LeNet-300-100 [95]. As shown in Fig. 3.6, LeNet-

300-100 is a fully-connected neural network with two hidden layers. The first and second hidden 

layers contain 300 and 100 neurons, respectively. LeNet-300-100 was initially proposed to 

classify digit images in the MNIST dataset [99]. The MNIST dataset has 70,000 images, each 
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28x28 pixels in size, with each image containing a handwritten digit between 0 and 9. The output 

layer of LeNet-300-100 has ten neurons to classify an input image into one of the ten digits (0 to 

9). 

 

Figure 3.6. LeNet-300-100 network architecture [95]. 

For the evaluation of the LeNet-300-100 implementation, the MNIST dataset was divided 

randomly into three sets: training (50,000), validation (10,000), and testing (10,000) images. The 

training set is used to train the model (i.e., update the model parameters), and the validation set is 

used to check the performance of the model as the training progresses. The validation data is 

used to evaluate the model after every iteration. In each iteration, A set of 1000 training images 

are fed to the network to train the parameters and then a validation set is applied to measure the 

accuracy with the updated parameters. The validation accuracy typically improves over the 

iterations, which means parameters move toward the optimal solution. The validation error (=1-

validation accuracy) graph gives an idea about network convergence. After several iterations, the 

validation accuracy does not improve further, meaning the network converges to an optimal 

solution/parameters. The optimal parameters might vary based on the weights initialization and 

training order. Sometimes, the training is stopped before the validation error reaches a very 

small value (zero) to avoid overfitting the model to the training data. The performance of the 

trained model is evaluated based on unseen test data, and its accuracy is measured. 
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The LeNet-300-100 was trained and tested with four different precision models, as shown 

in Table 3.2. Training and testing were simulated in the MATLAB environment. In the first 

model, the network was trained using single-precision floating-point (FL32) representation for 

all parameters and data, such as weights, activations, and gradients. This model was used as the 

reference model to measure the performance of the other models (with fixed-precision 

representations). 

Table 3.2. Four different precision models used for performance evaluation. Note that the Fourth 

model uses the iterative MAC, whereas the First, Second, and Third models use the regular 

MAC. 

Model Forward Path Backpropagation 

First model 
Weights – FL32 

Activations-FL32 

Weights – FL32 

Local gradient – FL32 

Weight gradient – FL32 

Second model 
Weights – FX8 

Activations-FX8 

Weights – FL32 

Local gradient – FL32 

Weight gradient – FL32 

Third model 
Weights – FX8 

Activations-FX8 

Weights – FX8 

Local gradient – FX40 

Weight gradient – FX32 

Fourth model 
Weights – FX8 

Activations-FX8 

Weights – FX8 

Local gradient – FX40 

Weight gradient – FX32 

 In the second model, the forward propagation parameters (e.g., weights, and activations) 

are represented in the INT8 format, and the parameters for the backpropagation are in the FL32 

format. Note that in the forward path, all arithmetic operations (e.g., multiplications and 

additions) are done in single-precision floating-point, and the output is quantized to INT8 to use 

at a later layer. The third model uses a fixed-point format in both forward/inference and 

backpropagation. A 32-bit accumulator is used in the forward path. Different bit lengths are used 

at different levels, as shown in Table 3.3. The weights and weight gradients are represented using 

a 32-bit format, and local gradients are represented using a 40-bit format. The bit lengths used in 

the third model are not fully optimized as these are the numbers that arise when observing the 

parameter ranges during the first model training. All computations are performed using the full 

MAC unit (red line in Fig. 3.4). The fourth model is similar to the third model, but all 

calculations are performed using an iterative MAC unit with a threshold of 5%. The fourth model 

replicates the proposed idea of using an iterative MAC unit. 
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Table 3.3. Parameters’ precision in the third and fourth models. Here Partial 

( ) ( ) ( )ji j iw n n x n =  . 

Parameter Fixed-point 

Bits/ (sign, integer, fraction) 

Weights (Forward path) 8 / (1, 0, 7) 

Activations (Forward path) 8 / (1, 0, 7) 

Local gradient δj 40 / (1, 16, 23) 

Weight gradient ( )jiw n  32 / (1, 0, 31) 

Partial weight gradients ( )jiw n  32 / (1, 8, 23) 

Weights (Stored) 32 / (1, 0, 31) 

 

 The convergence curves for all four models are shown in Fig. 3.7. The validation error 

(=1-validation accuracy) vs. iteration curve is used to show the convergence during the training. 

As expected, the first model converged to the best solution. The second model has the largest 

validation error because it accumulates weights in floating-point and quantizes to INT8 bits for a 

forward pass. Due to the quantization at each iteration, the weight updates may not reflect the 

next iteration forward pass, causing the weights to oscillate at local minima. The convergence 

rate for the third and fourth models is higher than the first, which is suitable for small training 

datasets but can lead to local minima. The third and fourth models converge at a similar rate and 

have similar validation and test error, implying that the iterative MAC with a threshold of 5% is 

as efficient as using a full-size MAC unit. 

Table 3.4. Accuracy measured for all four models. 

Model Training accuracy (%) Testing accuracy (%) 

First model 97 96 

Second model 74 77 

Third model 85 87 

Fourth model 86 87 
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Figure 3.7. Convergence plots of all four models trained. 

The trained models are evaluated with 10,000 test images. The results for the Top-1 test 

and training accuracy for all four models are shown in Table 3.4. As expected, the first model 

gives the best accuracy. The second model has the lowest accuracy because of the weight 

quantization at each iteration. The weight updates may not reflect the next iteration forward pass, 

causing the weights to oscillate at local minima. The third and fourth models have better 

accuracies than the second and lower accuracy than the first models. The accuracy of the third 

and fourth models can be further improved with higher bit length in the forward path. The 

simulation results show that a model can be trained with an iterative MAC. 

In the fourth model, during the training, the number of iterations the MAC unit is reused 

to calculate the local gradient are shown in Fig. 3.8. Figure 3.8 shows the percentage of 

multiplications requiring the MAC unit to go to a second, third, fourth and fifth iteration (based 

on 5% threshold value) to calculate 40×8-bit multiplication (local gradient in 40-bit and weight 

in 8-bit). As the training progresses, the percentage of multiplications requiring the fifth iteration 

increases due to the decrease in the magnitude of the local gradient. Figure 3.8 shows that the 

second and third iterations are always required instead of 28% in square value calculation (Fig. 
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3.4 and 3.5). The local gradient distribution in layers 2 and 3 are plotted in Fig. 3.8 show that the 

gradient values are not uniformly distributed; most of the gradients are concentrated near zero 

(very small values). Hence, the second and third iterations are required for almost all the 

calculations in Lenet-300-100 model. We can also observe that as the gradient distribution is 

wider in layer 3, the third iteration requirement goes below 90% whereas more than 95% in layer 

2. The required iterations might vary depending on the network depth and type. 

 

Figure 3.8. Percentage of multiplications in layer 2 and 3 local gradient calculation required 

second, third, fourth and fifth iterations of iterative MAC unit. The second and third iterations 

number are similar so only blue line is visible.  
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Figure 3.9. Local gradient distribution in layers 2 and 3 of the fourth model. 

The simulation results do not generate any insightful information regarding the latency 

and power reductions. In order to generate those results, the design needs to be implemented on 

the hardware. For hardware implementation, the existing dataflows discussed in Chapter 2 are 

ineffective for iterative MAC implementation. In all existing dataflows, full operands (i.e., 

8/16/32-bit values) are read from memory for computation, but for an iterative MAC unit, only 

the upper byte or MSB 8-bits are read first. We may or may not read the next byte value (next 8-

bit data) based on the partial product magnitude. Eliminating unnecessary memory accesses for 

lower-byte data can reduce the memory bandwidth requirement and memory access energy. 

Therefore, a better dataflow architecture is needed to fully understand the advantages of the 

iterative MAC at the hardware level. 

3.5 Conclusions 

In this Chapter, we proposed a low-precision iterative MAC unit-based accelerator for 

DNN implementation. The proposed accelerator can be used for inference and training the DNN. 

The popular LeNet-300-100 network was implemented using different precision models, and the 

performance of the proposed iterative MAC was evaluated. Experimental results show that the 

iterative MAC is as effective as a full MAC unit because of the error-resilient nature of neural 

networks. 
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Chapter 4  

Conclusion and Future Work 

The DNNs have been shown to deliver state-of-the-art performance in many applications, 

such as computer vision, medical diagnosis, security, robotics, and autonomous vehicles. The 

application complexity determines the DNN model size, and large DNN models require more 

computational power. Therefore, domain-specific hardware accelerators are needed to provide 

high computational resources with superior energy efficiency and throughput within a small chip 

area. 

In Chapter 2, we identified three major areas: ALU, dataflow, and sparsity, in hardware 

architectures that can potentially improve an accelerator's overall performance. Existing ASIC 

hardware accelerators for inference are broadly classified into four categories. Each area offers 

multiple optimization techniques to improve the overall architecture performance. The 

advantages and drawbacks of each category are discussed. It is difficult to compare the existing 

accelerators just based on speed and energy as each accelerator has its own specifications, such 

as a number of MAC units, on-chip memory size, sparsity in data, and the DNN model. The 

classification model can help to identify appropriate performance parameters and benchmarks for 

accelerators. Three major dataflow architectures are evaluated. We found that the dataflow 

efficiency depends on the workload. Weight-stationary dataflow gives better energy efficiency 

and row-stationary dataflow has low latency for dense convolutional layers. The performance 

varies with convolutional stride and filter size. Hence the dataflow must be chosen based on the 

accelerator application. 

DNN deployment on the embedded system requires generality in embedded hardware to 

produce an optimal performance on DNN models quantized for different precisions. The 

embedded system should be able to fine-tune the model with the sensor data i.e., training offline. 

In Chapter 3, we proposed an iterative MAC unit to add precision flexibility and training 

capabilities to the accelerators. In the iterative MAC, a small MAC unit is reused in time to 

achieve higher-precision MAC functionality. The number of iterations of the small MAC can be 

reduced by tracking the error magnitudes. The iterative MAC effectiveness in inference accuracy 
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and convergence rate at training are measured by simulating the LeNet-300-100 model. The 

simulation results show that it is as effective as a full MAC unit. 

4.1 Future Research Directions 

The simulation results of the iterative MAC unit do not give any insights on latency and 

power reductions. To determine latency and power requirements, we need to implement the 

DNN model in hardware. For hardware implementation, the existing dataflows discussed in 

Chapter 2 are ineffective for iterative MAC implementation. In all existing dataflows, full 

operands (i.e., 8/16/32-bit values) are read from memory for computation, but for an iterative 

MAC unit, only the upper nibble or MSB 8-bits are read first. We may or may not read the next 

nibble value (next 8-bit data) based on the partial product magnitude. Eliminating unnecessary 

memory accesses for lower nibble data can reduce the memory bandwidth requirements and save 

memory access energy. Therefore, an alternative dataflow which can accesses the upper and 

lower nibble data independently is needed to fully understand the advantage of the iterative 

MAC at the hardware level. 
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