

Hardware Accelerators for Deep Neural Networks

by

Raju Machupalli

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

© Raju Machupalli, 2023

ii

Abstract

Deep Neural Networks (DNNs) have recently evolved as the state-of-the-art method for

machine learning applications such as object detection, face recognition, and image classification.

However, a DNN typically has high computational complexity, and specialized hardware

accelerators would be helpful to obtain real-time performance.

Over the last decade, many accelerators have been proposed in the literature for DNN

models. This thesis presents a comprehensive review of the existing DNN accelerators. The

accelerators were classified into four categories: ALU, Dataflow, Sparsity, and Hybrid, based on

the optimization techniques used. The classification provides a good starting point to identify

significant areas where an accelerator can be further optimized for better throughput, latency,

and energy performance.

In this thesis, we also explored the bit-precision requirement of the MAC units for DNN

implementation. A DNN has two modes of operations: Training and Inference. It is generally

known that the inference can be done using lower-precision MAC units, but the training requires

higher-precision MAC units. The lower-precision MAC units consume less energy which may be

desirable for low-power applications. We propose an iterative MAC model where the inference

will be done using low-precision MAC in a single pass, and the training will be done with the

same low-precision MAC using multiple passes (to achieve higher bit precision). The proposed

model, during training, determines the number of iterations on the fly by checking the error

magnitude. Experimental results, with LeNet-300-100 model implemented using the iterative

MAC, show a satisfactory performance for digit classification.

iii

Preface

➢ Chapter 2 of this thesis has been published as {Machupalli R, Hossain M, Mandal M,

“Review of ASIC accelerators for deep neural network” Microprocessors and

Microsystems, Volume 89, 2022}. I was responsible for reviewing, classifying, and

evaluating the existing accelerators. Dr. Masum Hossain provided the insights and helped

me review the hybrid technology-based implementation of ALU units. Dr. Masum

Hossain and Prof. Mrinal Mandal were the supervisory authors involved with concept

formation and manuscript composition. This Chapter reviews existing ASIC DNN

accelerators and classifies them into four categories. Dataflow architectures are evaluated

for different workloads.

iv

This thesis is dedicated to the memory of my father

Maddilet Machupalli

v

Acknowledgment

I would like to express my sincere gratitude to my supervisors, Prof. Mrinal Mandal and

Prof. Masum Hossain, for their continuous support, encouragement, and guidance throughout my

graduate studies. All my achievements have benefited from their knowledge and inspiration. It

would not have been possible to write this thesis without their help.

Special thanks to the defense committee chair Prof. Ying Tsui and committee members,

Prof. Bruce Cockburn and Prof. Jie Han, for the valuable suggestions on the thesis.

Much respect to my labmates, classmates, and friends: Dr. Salah AL-Heejawi, Dr. Lina

Liu, Ms. Shyama Gandhi, Mr. Naga Venugopal Kasibhotla, Mr. Raviraj Polishwala, Mr. Khimji

Chavda, Mr. Bharath Tedlapu, Mr. Bhargav Tedlapu, Mr. Chetan Kumar and many others. They

made my days meaningful and happy. The years I have spent at the University of Alberta have

been an unforgettable period of learning and working experience.

My heartiest love and thanks to my parents and family members. Thank you for your

tremendous love, devotion, and encouragement throughout my life, for which mere words cannot

express my gratitude.

vi

Table of Contents

Abstract …………….………………………………………………………………………….… ii

Preface ………………………………………………………………….…………………….… iii

Acknowledgement ………………………………………………………..………………..….… v

Table of Contents ………………….…………..….………….…………..….……………….… vi

List of Tables …………………………………………..…….…………….….……….........… viii

List of Figures ……………….…………………………………………..……...………...….…. ix

List of Abbreviations ……………………….……………….……………...….…………….… xii

Chapter 1: Introduction ... 1

1.1 Motivation ... 2

1.2 Neural Networks ... 3

1.2.1 Inference .. 5

1.2.2 Backpropagation .. 6

1.3 Contributions and Thesis Outline.. 10

Chapter 2: Review of ASIC Accelerators for Deep Neural Networks 11

2.1 Introduction .. 12

2.2 Background ... 15

2.3 Classification ... 22

2.3.1 ALU-based Accelerators ... 22

2.3.2 Dataflow Accelerators .. 27

2.3.3 Sparsity-based Accelerators. .. 32

2.3.4 Hybrid implementation techniques ... 35

2.4 Evaluation ... 38

2.5 Conclusion ... 47

Chapter 3: An Iterative MAC Unit ... 49

3.1 Introduction .. 49

3.2 Precision Requirements .. 49

vii

3.4 Experiments .. 59

3.5 Conclusions ... 65

Chapter 4: Conclusions and Future Work ... 66

4.1 Future Research Directions ... 67

References:... 68

viii

List of Tables

Table 2.1 Number of parameters and operations required for different DNN models. 12

Table 2.2 Resource consumption of MAC units at different precisions. 17

Table 2.3 Memory hierarchy in a general accelerator and its approximate

performance.

20

Table 2.4 Example of five workload configurations in terms of Input (I), Output (O),

and Weight (W) sizes. TOTAL-PARAM: Total number of Parameters,

I+W+O (in millions). TOTAL-COMPUT: Total number of computations

(in millions).

40

Table 3.1 Different methods to reduce numerical precision for AlexNet, accuracy

measured for TOP-5 error on IMAGENET data.

52

Table 3.2 Four different precision models used for performance evaluation. 61

Table 3.3 Parameter precisions in the third and fourth models. 62

Table 3.4 Accuracy measured for all four models. 62

ix

List of Figures

Figure 1.1. Basic neuron structure, (a) perceptron, (b) modern perceptron (artificial

neuron) with non-linear function.

3

Figure 1.2. Data flow graph in an MLP network with each neuron equivalent to Fig.

1.1(b).

6

Figure 1.3. Data flow graph of neural network in backpropagation. (a) Data flow in a

single neuron, (b) Dataflow at the lth layer of an MLP network with each

neuron equivalent to (a).

10

Figure 2.1. Block diagram of a generic DNN architecture. 16

Figure 2.2. Comparison of the roofline models for DNN inference. 19

Figure 2.3. Implementation of symmetric precision-variable MAC unit using the

DVAFS architecture. An 8x8-bit MAC can be used to implement two

4×4-bit MACs or four 2×2-bit MAC units.

23

Figure 2.4. Sub-Word Parallel (SWP) architecture, (a) use of two 8b×4b MAC units

to perform one 8b×8b operation, (b) Two 8b×4b MAC operations

implemented in parallel.

25

Figure 2.5. Bit-serial MAC configured as (a) 8b×8b MAC unit, (b) 8b×4b MAC unit,

and (c) 8b×2b MAC unit (Weight-only scaling).

26

Figure 2.6. Block diagram of a tensor processing unit (TPU). 28

Figure 2.7. Schematic of row-stationary dataflow. 29

Figure 2.8. Implementation of a row-stationary dataflow on Eyeriss architecture. (a)

1-D convolution between first row of filter 1(Filter1, row1) and input

feature map 1 (Ifmap1). (b) 1-D convolution between first row of filter 2

(Filter2, row1) and input feature map 1 (Ifmap1).

30

Figure 2.9. Example of fusing two convolutional layers. 32

Figure 2.10. Weight compression in SCNN. 34

Figure 2.11. Resistive memory crossbar implementing vector-matrix multiplication

Y X G=  . V denotes the input voltage vector (analog equivalent of X); G

denotes conductance of memory equivalent to weights, and I denote the

37

x

resultant output currents (analog equivalent of Y). DAC: Digital-to-

Analog conversion block, ADC: Analog-to-Digital conversion block.

Figure 2.12. Performance of three different architectures: (a) energy consumption for

different workloads. (b) architecture latency on all workloads. (c)

architecture total energy consumption.

41

Figure 2.13. The RS, WS, and OS performance with variation in filter size. Note that

the latency and MAC utilization in the OS and WS are identical, and their

plots coincide (dotted black line).

42

Figure 2.14. Energy consumption and MAC utilization in the WS, OS, and RS

architectures for different filter sizes. R and S are the number of rows and

columns, respectively.

43

Figure 2.15. Impact of convolution strides on the input data reusability. (a), (b), (c)

represent input feature maps with filters (colored boxes) imposed on it to

show consecutive convolution windows with stride values of 1, 2, and 3,

respectively.

45

Figure 2.16. Energy variation in the RS, WS, and OS with stride variation for CONV4

workload.

46

Figure 2.17. Performance of DNN architectures with different precisions and sparsity

levels. The sparsity-based accelerators are denoted with star marks and

dense models with a plus sign. Small size mark indicates real-time

performance and large size mark indicates peak performance.

46

Figure 3.1. Weight distributions in four different layers of AlexNet. conv1 and conv3

are convolutional layers and fc7, fc8 are fully-connected layers.

50

Figure 3.2. A 16-bit MAC implementation using four 8-bit MAC units. (a) Parallel

implementation, (b) Serial implementation.

54

Figure 3.3. Proposed 8-bit iterative MAC implementation for 16×16-bit

multiplication

56

Figure 3.4. 16-bit square value calculation using an 8-bit iterative MAC unit. (a) input

vs. squared plot of all three results, red indicates full MAC, green

indicates three iterations and blue indicates one iteration result. (b) zoom

in version of (a) at smaller input values.

57

xi

Figure 3.5. 16-bit square value calculation using 8-bit iterative MAC unit (a)

percentage of error in square value using single iteration (blue) and three

iterations (green) with respect to full precision MAC. (b) zoomed in

version of (a) at smaller input values.

59

Figure 3.6. LeNet-300-100 network architecture. 60

Figure 3.7. Convergence plots of all four models trained. 63

Figure 3.8. The percentage of multiplications in layers 2 and 3 local gradient

calculations require second, third, fourth, and fifth iterations of iterative

MAC unit. The second and third iteration numbers are similar so only

blue line is visible.

64

Figure 3.9. Local gradient distribution in layers 2 and 3 of the fourth model. 65

xii

List of Abbreviations

ADC Analog-to-Digital Converter

AI Artificial Intelligence

AMI Arithmetic Intensity

ASIC Application-Specific Integrated Circuit

ALU Arithmetic Logical Unit

BW Bandwidth

CMOS Complementary Metal–Oxide–Semiconductor

CNN Convolutional Neural Network

CONV Convolution

CPU Central Processing Unit

CSC Compressed Sparse Column

CSR Compressed Sparse Row

DAC Digital-to-Analog Converter

DFP Dynamic Fixed-Point

DNNs Deep Neural Networks

DNPU Deep Neural Processing Unit

DRAM Dynamic Random-Access Memory

DVAFS Dynamic Voltage, Accuracy, and Frequency Scaling

FeFET Ferroelectric Field-Effect Transistor

EIE Efficient Interface Engine

FDSOI Fully Depleted Silicon-On-Insulator

xiii

FFNs Feed-Forward Networks

FIFO First-In-First-Out

FIX Fixed-Point

FL Floating-Point

FPGA Field-Programmable Gate Array

GPPs General-Purpose Processors

GPU Graphics Processing Unit

HMC Hybrid Memory Cube

ILM Improved Logarithmic Multiplier

INT Integer

MAC Multiplier and Accumulation Circuit

MCM Multi-Chip Module

ML Machine Learning

MLP Multi-Layer Perceptron

MNIST Modified National Institute of Standards and Technology

MSE Mean Squared Error

NFU Neuron Flow Unit

NLR No Local Reuse

NN Neural Network

NPU Neural Processing Unit

OS Output Stationary

PCM Phase Change Memory

PEs Processing Elements

xiv

PIM Process-In-Memory

ReLU Rectified Linear Unit

ReRAM Resistive RAM

RF Register Files

RNNs Recurrent Neural Networks

RNS Residual Number System

RS Row Stationary

SCNN Sparse Convolutional Neural Network

SIMD Single-Instruction Multiple-Data

SNAP Sparse Neural Acceleration Processor

STTMRAM Spin-Transfer Torque Magnetic Random-Access Memory

SWP Sub-Word Parallel processing

TDMS Time-Division Mixed Signal

TOPS Terra Operations Per Second

TPU Tensor Processing Unit

UNPU Unified Neural Processing Unit

WS Weight Stationary

1

Chapter 1

Introduction

Artificial intelligence (AI) is the science and engineering of creating intelligent machines

that have the ability to achieve goals like humans do [1]. Intelligence is the general mental ability

for learning, reasoning, and problem-solving. The human brain consists of billions of neurons

connected in a complex structure. Therefore, creating an intelligent model requires a large

number of well-connected computing units (small building blocks) and enough examples to train

the model. Due to the availability of a large quantity of data and computing resources in recent

times, the creation of large-size AI models is realizable.

Machine learning (ML) is a subsection of artificial intelligence in which a mathematical

model is trained over numerous examples to solve a new problem. ML is a rapidly evolving field

in artificial intelligence due to the availability of a large set of example data for training. Deep

Neural Networks (DNNs) are ML algorithms that use multiple neuronal layers to extract high-

level features to classify or segment the input data. DNNs have been successfully applied to

many problems, such as computer vision [2], robotics [3], security [4], medical diagnosis [5],

self-driving [6], and natural language processing [7]. The DNN model size (e.g., number of

layers, parameters) typically increases with problem complexity. Depending on the problem's

complexity, a large amount of computing resources is typically required to implement a model.

Hence, deploying DNN models on edge devices, where data is collected and processed near the

sensor, is still limited.

The deployment of DNN models imposes severe design and scalability challenges on

conventional embedded systems as they require substantial computing resources. General-

purpose processors, like CPUs, have limited computing resources and fail to provide desired

performance [96]. As an alternative, DNN models can be built on cloud computing servers.

Cloud computing requires high bandwidth internet service to send and receive the data. Some

applications require data processing at the edge devices for low latency, for example, in

applications such as auto-piloted cars [6]. Therefore, the demand for ML/DNN accelerators has

2

been increasing recently [9,10,11,96]. Domain-specific accelerators provide better latency and

higher energy efficiency [12, 13, 14, 15,16].

 1.1 Motivation

The computational resources can be embodied on edge devices by integrating co-

processors or accelerators like a Graphics Processing Unit (GPU), a Neural Processing Unit

(NPU), and a Tensor Processing Unit (TPU) with the central processor. The co-

processor/accelerators are optimized for high throughput, low latency, and low power for a

specific category of applications. There are applications, like drone technology and mobile

devices, where size and energy are more important because they run on batteries. The

deployment on battery-powered edge devices needs an energy-efficient accelerator for longer

battery life. Therefore, it is vital to study the existing accelerator architecture and identify

potential areas to improve its flexibility, scalability, and power efficiency. An optimized

accelerator should have the flexibility to process dense to highly sparse networks, low precision

to high-precision dataflows at lower power consumption.

Many researchers from academics and companies like IBM, NVIDIA, AMD, and Google

are working to develop specialized processor architecture or special hardware for DNNs.

TrueNorth [8] from IBM, NVDLA [9] architecture from NVIDIA, Deep Learning Processor Unit

(DPU) IP [10] from AMD-Xilinx, and TPU [11] from Google (deployed different versions in its

servers and mobile platforms) shows the importance of DNN accelerators. Other well-known

architectures from academic are Cnvltin [12, 13], Cambricon-X [14], Eyersis [15], Envision [16],

EIE [17], SCNN [18], SIMBA [19], and many others. But can we use the existing accelerators in

embedded systems? Are these accelerators flexible enough to provide optimal performance on all

types of DNN models? Some accelerators are designed for sparse DNNs, and some are for dense

DNNs [10, 11, 12, 16, 17]. Many of them are intended for inference. If an application requires

fine-tuning of parameters at the edge device to mitigate environmental changes, then the

accelerator should be capable of training the model. An accelerator designed for training a model

is likely to underperform in energy efficiency for inference task due to performing low-precision

operations using high-precision Arithmetic and Logical Units (ALU). For this reason, Google

has different versions of TPU for training (server TPUs) and inference (edge TPUs). Therefore, it

3

is essential to understand how the existing accelerators work and identify the areas to incorporate

flexibility.

The parameters such as energy, compute capacity, silicon area, and accuracy are

interrelated in designing a processor architecture. Accuracy mainly depends on the precision and

dynamic range of parameters. Precision and dynamic range can improve by the number of bits

representing the parameters. The complexity in the datapath and memory bandwidth requirement

will increase with the bit length (for parameter representation). The numerical format required

for an ML is extensively investigated [20, 21, 22]. The inference requires lower precision

compared to training. An architecture with reconfigurability in its precision can be used for

training and inference. The work presented in this thesis studies the existing architectures and

identifies areas to improve flexibility.

1.2 Neural Networks

Neural networks (NN) learn the decision ability based on experience, i.e., training. The

NNs are composed of artificial neurons, also known as perceptrons, and somewhat mimic the

human brain. A perceptron takes multiple inputs and produces a single output, as shown in

Fig.1.1(a). Inputs are multiplied by synaptic weights (weight parameters), which refer to the

strength or amplitude of the connection between two neurons (nodes). Fig. 1.1 shows the

schematic of the simple and modern perceptron. Note that Fig. 1.1(b) has the advantage of

incorporating nonlinearity and bias and is typically used in all current NNs and DNNs.

Figure 1.1. Basic neuron structure, (a) perceptron, (b) modern perceptron (artificial neuron) with

non-linear function.

 ML has various architectures such as Multi-layer Perceptron (MLP)/Feed Forward

Networks (FFNs), Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), and

4

Recurrent Neural Networks (RNNs). Different types of neural networks are better suited for

different kinds of tasks and input data.

Multi-layer Perceptron:

A multi-layer perceptron (MLP) is a type of neural network that consists of a series of

fully-connected layers. The output of each neuron in a layer is connected to the input of every

neuron in the next layer. MLPs are often used for tasks such as classification and regression.

Convolutional Neural Network:

A convolutional neural network (CNN) is designed to process grid-like data, such as

images. CNNs consist of a series of convolutional layers, pooling layers, and fully-connected

layers [2, 95]. Convolutional layers apply filters to local regions of the input data to extract

features while pooling layers down-sample the feature maps to reduce the computational cost of

the network. In CNN, each neuron will act as a filter, convolving with input data to extract

features. CNNs are commonly used for image classification and object detection.

Deep Neural Network:

A deep neural network (DNN) is a neural network with many layers. The term "deep"

refers to the large number of layers in the network. DNNs can be seen as an extension of CNNs

to handle more complex input data and perform better in a broader range of tasks.

Recurrent Neural Network:

A recurrent neural network (RNN) is designed to handle sequential data, such as time

series data or natural language. The RNNs consist of a series of recurrent layers, where each

neuron receives input from the previous layer and the previous time step. RNNs capture

information from the entire sequence of inputs rather than just the current input. RNNs are often

used for tasks such as speech recognition and language translation.

The working principle behind all the models is similar. For a classification task, key

features are generated from the data, and the classification is done based on these features. It can

also be viewed from a different angle: the lower dimensional input data is projected into higher

dimensional feature space, and a separation curve is learned for classification. The new features

5

are application and input dependent. Therefore, different applications may require different NNs

(i.e., different architectures or weights). The NNs consist of weight parameters that generate

higher dimensional values or features from the input data. There can be weights with zero value,

which means that the input feature through that weight has no importance in the neuron output.

The NNs have two stages: predicting the output based on the input values is called a

forward pass or inference, and learning the optimal weights is called training. As the definition

of machine learning, it learns decision ability based on experience. In NN, experience means

training in which a possible range of input values and their outputs is provided. First, the inputs

are processed through the network to generate outcomes. The generated output is then compared

with the desired result, and any errors in the output are propagated back through the network to

update the weights. Consider an MLP network for mathematical modeling, which can easily be

extended to all other NNs. To generalize deeper networks, we follow specific notation and

follow the same in the rest of the document. The layer number is denoted with l on the

superscript of parameter, j indicates neuron number in the lth layer, and i indicates neuron in (l-

1)th layer. The weight matrix is denoted with W, and individual weights are represented with wji,

the weight between the jth neuron in the lth layer and ith neuron in (l-1)th layer.

1.2.1 Inference/ Forward Pass

A neural network can be represented mathematically as a function that takes the inputs, X,

and predict the outputs, Y. Each neuron in the network can be described as a node in a

computational graph. Fig. 1.1(b) shows the schematic of a neuron whose output y is calculated as

follows.

v W X b=  +

() ()y f v f W X b= =  + (1-1)

where X is the input vector, W is the weight matrix, b is the bias, v is the weighted sum, and f is

the activation function. Similarly, the lth layer in an MLP network shown in Fig.1.2 can be

written as

()l l l lY f W X b=  + (1-2)

6

where lY ,
lW and

lb are lth layer output, weights, and biases, respectively. Note that the input to

the lth layer, lX , is the output of the (l-1)th layer, i.e. 1l lX Y −= .

Figure 1.2. Data flow graph in an MLP network with each neuron equivalent to Fig. 1.1(b).

The activation function, f, is a non-linear function that determines a neuron's output.

Common choices for f include the sigmoid function, the hyperbolic tangent function, and the

rectified linear unit (ReLU) function.

1.2.2 Backpropagation

Once the input data is processed through the forward pass, an error (e) and a cost function

(C) are defined to measure the difference between predicted outputs and desired outputs (targets).

Let Y denote the targets. If the network has L layers, then the Lth layer outputs, i.e.,
LY are the

predicted outputs. Error (e) is defined as the difference between the target and predicted values

as follows:

L

j j je y y= − (1-3)

where j indicates a neuron number in the lth layer.

7

The cost function (the loss function) is a mathematical measure that quantifies how well

the network performs on a given task. The cost function compares the network's predicted output

to the desired output and computes a scalar value representing the error between the two. The

goal of training a neural network is to minimize the cost function, reducing the error and

improving the network's performance. Different types of tasks and networks may require

different cost functions. Some cost functions are Mean Squared Error (MSE), Binary Cross-

Entropy, Categorical Cross-Entropy, and Kullback-Leibler Divergence (KL-Divergence).

Mean Squared Error (MSE) is a commonly used cost function for regression tasks. It

calculates the root mean squared difference between the predicted and true values as follows:

221 1

2 2

L

j j j

j j

C e y y= = −  (1-4)

where L represents the number of layers in a network and L

jy represents the output of jth neuron

in the last (Lth) layer. Binary Cross-Entropy is used for binary classification tasks. It measures the

difference between the predicted and the actual probabilities of the positive class. Categorical

cross-entropy measures the difference between the predicted and actual probability distributions,

used for multi-class classification tasks. Kullback-Leibler Divergence (KL-Divergence) is

another commonly used cost function for multi-class classification tasks. It measures the

difference between the predicted and true probability distributions but with a different

mathematical formulation than categorical cross-entropy.

It is important to note that the choice of the cost function can significantly impact the

neural network's performance. Using the wrong cost function can lead to suboptimal results or

prevent the network from learning. In addition, some cost functions may have limitations on the

types of problems they can handle, the types of networks they can use, or the range of values

they can generate. The specific task, numerical stability, and network architecture typically guide

the choice of the cost function. It may also be helpful to experiment with different cost functions

during training to see which one works best for a given problem.

The most important job while training a NN is calculating the weight gradients. The

weight gradients are the partial derivatives of the cost function with respect to the weights of a

neural network. During the training process, the goal is to find weights that minimize the cost

8

function. Training is typically done using a gradient descent algorithm [97]. The weight

gradients tell us how much the cost function changes for a slight change in each weight. The

gradients for lower layers are calculated using the chain rule. Hence, first, calculate the gradient

with respect to the last layer weights L

jiw . We consider the MSE cost function defined in Eq. 1.4

for the rest of the derivatives, the same can be extended for any cost function. Using Eq. 1-1, 1-2,

1-3, and 1-4, the weight gradients of the last layer can be written as follows.

()

L

j

L L L

ji j ji

eC C

w e w n

 
=

  
 (1-5)

Using Eq. 1-4, we obtain:

()
()

()
jL

j

C n
e n

e n


=


.

From Eq. 1-3, we obtain:

0

L L L

j j j

L L L

ji ji ji

e y y

w w w

  
= − = −

  
.

Substituting Eq. 1-2 in the above equation, we obtain:

 '(.)
()

L

j L

iL

ji

e
f x

w n


= − 



where '(.)f is the derivative of the activation function (f) with respect to the weighted sum (v).

Substituting the above in Eq. 1-5, we obtain:

() '(.) L

j iL

ji

C
e n f x

w


= −


 (1-6)

In the backpropagation algorithm, the weight correction term jiw (to be applied to jiw) is

defined as

ji

ji

C
w

w



 = −


 (1-7)

9

where  is the learning-rate parameter. The -ve sign accounts for the gradient descent in weight

space. Substituting Eq. 1-6 in Eq. 1-7 yields:

'(.)L L

ji j iw e f x =    (1-8)

Generalizing Eq. 1-8 to all the layers, a local gradient  can be defined as

(1) '()

'()

j

j

j j

j j j

j j

j j

C

v

e yC

e y v

e f v

e f v




= −


 
= −  

  

= −  − 

= 

where jv is called a local response, which is the input to the activation function. In the lth layer,

jv can be expressed as l l l l

j ji i j

i

v w x b= + . The weight gradients can be written in terms of local

gradients as follows:

L L L

ji j iw x  =   (1-9)

The backpropagation algorithm passes local gradient values back to lower layers to

calculate the weight gradients. The data flow in the backpropagation is shown in Fig. 1.3. Figure

1.3(a) shows the backpropagation data flow in a single neuron. Fig. 1-3(b) shows data flow in the

lth layer of an MLP network. From Eq. 1-2,1-6, and using the chain rule in partial derivatives, the

local gradients of the lower layer can be calculated as follows:

1 1 '[] (.)l l lW f + += 

The weights are updated by adding weight gradients at each iteration. The updated weights can

be written as follows:

(1) () ()l l l

ji ji jiw n w n w n+ = + 

where n represents the iteration number.

10

Figure 1.3. Data flow graph of neural network in backpropagation. (a) Data flow in a single

neuron, (b) Dataflow at the lth layer of an MLP network with each neuron equivalent to (a).

1.3 Contributions and Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 reviews the state-of-the-art ASIC

DNN accelerators. In the existing architectures, we identify three key areas, ALU, dataflow, and

sparsity, which can potentially improve the overall performance of an accelerator. Existing

accelerators for inference are broadly classified into four categories. Each area offers multiple

tuning techniques to improve the overall architecture performance. The advantages and

drawbacks of each category are discussed. Chapter 3 proposes an iterative MAC unit, where

higher-precision arithmetic calculation can be performed iteratively using a lower-precision

MAC unit. This MAC unit can be used to implement a DNN inference model (with a single

iteration) and can be used to train the DNN model (with multiple iterations), which requires

higher-precision calculations. The effectiveness of the proposed iterative MAC was evaluated by

simulating the LeNet-300-100 model. Finally, the conclusions and future research directions are

presented in Chapter 4.

11

Chapter 2

Review of ASIC Accelerators for Deep

Neural Network

Deep neural networks (DNNs) have become an essential tool in artificial intelligence,

with a wide range of applications such as computer vision [2], medical diagnosis [5], security [4],

robotics [3], and autonomous vehicles [6]. The DNNs deliver state-of-the-art performance in

many applications. The complexity of the DNN models generally increases with application

complexity, and deploying complex DNN models requires high computational power. General-

purpose processors are unable to process complex DNNs within the required throughput, latency,

and power budget [96]. Therefore, domain-specific hardware accelerators are required to provide

high computational resources with superior energy efficiency and throughput within a small chip

area. In this Chapter, existing DNN hardware accelerators are reviewed and classified based on

the optimization techniques used in their implementations. Each optimization technique

generally improves one or more specific performance parameter(s). For example, the hardware

optimized for sparse DNNs may provide poor performance for dense DNNs in terms of power

and throughput. Therefore, understanding the tradeoff between different hardware accelerators

helps to identify the best accelerator model for application deployment. We identify four major

areas, ALU, dataflow, sparsity, and Hybrid model in hardware architectures that can potentially

improve an accelerator's overall performance. Existing hardware accelerators for inference are

broadly classified into these four categories. It is difficult to compare the existing accelerators

based on speed and energy as each accelerator has its own specifications such as number of

MAC units, on-chip memory size, sparsity in data, and the DNN model. For example, it is

difficult to compare the EYERISS [15] accelerator (optimized for sparse data and row-stationary

dataflow) and the TPU accelerator [11] (optimized for matrix multiplication and weight

stationary dataflow). The classification model can help to identify appropriate performance

parameters and benchmarks for accelerators.

12

 2.1 Introduction

Artificial intelligence is the ability of a system to think, learn, and react like humans

without explicit programming. The human brain consists of billions of neurons connected in a

complex structure with operational efficiency. Similarly, the creation of an intelligent model

requires a large number of well-connected computing units (or small building blocks) and

enough examples to train the model. Due to the availability of a large quantity of data and

computing resources in recent times, the creation of intelligent machines is realizable. Machine

learning (ML) is a subsection of artificial intelligence in which a mathematical model is trained

over many examples to solve a new problem. Deep neural networks (DNNs) are subsections of

ML with a deep network structure and shared weights (filters).

The DNNs have been successfully applied to many problems, such as computer vision [2],

robotics [3], security [4], medical diagnosis [5], and self-driving cars [6]. Most DNNs are based

on the convolutional neural networks (CNN), where output feature maps are typically generated

by convolving input feature maps with 3D filters. Recent DNN models have been shown to

surpass human performance in some applications. The performance improvements typically

come with the increased complexity of the DNNs. As seen in Table 2.1, the classification of a

small-size image (e.g., 227×227 pixels) requires billions of arithmetic operations (i.e.,

multiplication and addition). The MCN-MobileNet has 4.19 million parameters (weights) and

requires 0.58 billion operations to classify an image. A large-size VGG-19 DNN model requires

about 20 billion operations per classification.

Table 2.1. Number of parameters and operations required for different DNN models [23].

Model Input size
PARAMETERS SIZE

(In millions)

of Operations

(In GOPs)

AlexNet 227 x 227 61.07 0.73

Squeezenet 224 x 224 1.31 0.84

VGG-16 224 x 224 138.41 16

VGG-19 224 x 224 143.65 20

GoogleNet 224 x 224 13.36 2

Resnet-18 224 x 224 11.79 2

Resnet-152 224 x 224 60.29 11

Inception-V3 299 x 299 23.85 6

Densenet-201 224 x 224 20.18 4

MCN-mobileNet 224 x 224 4.19 0.58

13

General-purpose processors, like CPUs, are unable to provide such huge computing

power with the required latency. To deploy the DNNs in real-time applications, the embedded

processors must have high throughput and low power consumption. Therefore, the demand for

domain-specific accelerators has been increasing in recent times as these accelerators can

provide superior performance at higher energy efficiency.

There are two main phases in DNNs: training and prediction (or inference). In the

training mode, an example input with a known outcome is applied to the model to learn its

internal parameters. In the prediction (or inference) mode, the possible outcome is calculated

based on the input test data. Training typically requires high-precision numerical representation,

while low-precision representation is enough for inference [20, 21, 24, 25]. Generally, training is

done using high-power GPUs and data centers. The precision and size of the trained DNN

models can be reduced significantly with negligible (<1%) change in the accuracy for inference

[22]. In real-time deployment, the trained DNNs need to operate in inference mode only if there

is no change in application requirements. Therefore, hardware accelerators for inference mode

are more important than for training. Therefore, this paper is mainly focused on the inference

mode, and all discussions are subject to the inference mode of operation.

Globally, a large number of researchers, in both academia and industry, are working

towards developing optimized hardware for DNNs inference. DNN accelerators have been

developed using FPGAs, GPUs, and ASICs. GPUs come with massive parallel compute units

and process DNN computations in parallel. GPUs are power-hungry, which limits their

applications in embedded and battery-powered systems. FPGAs have high performance per watt

and can be configurable in the fields. FPGAs are often used to prototype and validate the design.

ASICs are custom-designed for specific applications with optimum speed and power

consumption. ASICs are best suited for embedded devices. ASIC implementation takes longer

development cycle compared to GPUs and FPGAs and have no flexibility after design. Talib et

al. [26] reviewed several hardware accelerators for machine learning using FPGA, GPU, and

ASIC platforms and discussed the advantages of each platform over other platforms. Guo et al.

[27] surveyed several FPGA-based neural network accelerator designs and summarized the

methods used for design automation. The FPGA allows less control and flexibility over the

multiplication and accumulation (MAC) unit design, which typically limits the exploration of the

14

MAC variants. Li et al. [28] presented an overview of the GPU, FPGA, and ASIC-based

accelerators and a detailed explanation of the DianNao [29] family of accelerators. This has

motivated significant progress in the ASIC accelerators after the [28] survey. Camus et al. [30]

analyzed the precision-scalable MAC units from different accelerators and discussed their

benefits in different scenarios. Although the MAC unit is an important block in the DNN

accelerator design to improve performance, the MAC alone cannot define the overall

performance. Hence, along with the MAC unit, some other factors in the accelerators need to be

analyzed. The MAC utilization depends on the data flow and on-chip memory. An efficient

architecture should have high MAC utilization, i.e., MAC should not be idle because of operands

are unavailable. Reuther et al. [31] discussed existing ML accelerators based on peak

performance vs. power scatter plots. The accelerators are broadly categorized into six types

based on regions in the plot. The factors causing variation in the performance of different

accelerators are not well explained in [31].

Du et al. [32] presented an overview of self-aware neural network systems, where a

system can predict and adapt dynamics in network parameters, such as precision, sparsity, and

network structure, based on the input data. The self-aware techniques can significantly improve

the accelerator’s throughput and energy efficiency, but the accelerators should have some

flexibility. For example, a DNN with a variable precision requirement at different layers needs a

variable precision MAC to adapt and save energy. The survey did not include much information

on the implementation techniques to incorporate the flexibility in accelerator implementation and

how it affects overall performance. Sze et al. [24] provided an overview of the DNN

development platforms, optimization algorithms, accelerator implementations, and benchmarks.

The paper explains three different dataflow methods but does not include all recent advances in

the arithmetic logic unit and sparsity exploration. Chen et al. [33] reviewed several current DNN

accelerators based on their application and technologies used (e.g., ReRAM, Hybrid Memory

Cube). Most surveys provide the architectural and performance improvements of existing DNN

accelerators, but analyzing the architectures in a generalized framework would be helpful.

The existing literature classifies the different DNN accelerators based on their

implementation techniques or applications. For example, the accelerators in [33] are reviewed

based on architectures (e.g., stand-alone or co-processor-based) or technologies used (e.g., Re-

15

RAM, HMC). Similarly, the accelerators in [31] are classified based on the peak power versus

performance tradeoff. In the DNN literature, we identify three major areas for improvements in

the DNN architecture: Arithmetic logic unit, dataflow, and sparsity. In this Chapter, we present a

comprehensive review of the ASIC accelerators for the DNN architectures. The state-of-the-art

accelerators are classified into three broad categories (i.e., ALU, data flow, and sparsity-based)

based on their architectural differences. This broad classification can provide more insights to

develop generic DNN architectures. Additionally, we have added a fourth section that captures a

recent trend of analog-digital hybrid digital implementation for faster computation.

The organization of the Chapter is as follows. Section 2.2 presents the background

information and performance criteria of hardware architectures. Section 2.3 presents a

comprehensive review of the DNN hardware architectures and their classification. Section 2.4

presents evaluation methods and observations in existing accelerators, followed by the

conclusions in Section 2.5.

 2.2 Background

 The superior performance of DNNs generally comes at the cost of high computations. For

example, AlexNet [2], which won the ImageNet challenge [34] in 2012, has 61M parameters and

requires 727M MAC operations per image classification. Large DNNs may require billions of

MAC operations per inference, as shown in Table 2-1. Performing such a large number of

operations sequentially affects the throughput. Existing general-purpose processors (GPPs) may

be unable to provide the required computational power and throughput within a low-power

budget. The GPU can provide high computational speed but consumes a large amount of power.

GPUs can therefore be used on servers where the computational speed is more important than the

power requirement. Domain-specific accelerators (e.g., ASICs) are known to provide high

energy efficiency (around 1~10 TOPs/W). The FPGAs have less energy efficiency but have the

advantage of reconfigurability.

Real-time deployment of DNN is constrained by energy efficiency and the throughput of

embedded processors to maximize battery life. For example, a typical mobile phone has a 2-3 Ah

(5V) battery life (i.e., 15 Wh) and the DNN processing power should be only a fraction of the

maximum available power. For real-time data processing, the processor should have a

16

throughput equal to the data collection frame rate (e.g., the camera frame rate). Fortunately, there

is no interdependency among outputs (i.e., in the same layer output or feature map) in a DNN

layer. Therefore, parallel implementation of large MAC units can increase the throughput. An

example of the DNN accelerator implementation based on Parallel MAC units is shown in Fig.

2.1. In general, the size of the accelerator in silicon and the power requirements are directly

proportional to the number of MAC units (working in parallel) and on-chip memory. Note that

the DNN-specific accelerators will have an array of processing elements (PEs) connected to their

neighbors. Each PE contains one to several MAC units connected in such a way that matrix

multiplication can be performed with a single instruction. The MAC unit contains a control unit

to configure the operation to multiplication or addition or both and register files to store the local

parameters and intermediate results. To increase the on-chip storage, global and local buffer

memory blocks are implemented along with PEs.

Figure 2.1. Block diagram of a generic DNN architecture.

The cost of the individual MAC units can be reduced with lower bit-length/precision of

the MAC units. The energy and area consumption of multiply and add circuits for four different

17

precisions are shown in Table 2.2. An 8-bit fixed-point (FIX) add circuit occupies 116× less area

and consumes 30× less energy (in picojoules) than a 32-bit floating-point (FL) adder. For

multiplication, an 8-bit fixed-point circuit consumes 18.5x less energy and occupies 27.3x less

area than a 32-bit floating-point. Approximately, the energy and area of fixed-point circuits scale

linearly for add, quadratically for multiply, with the number of bits [35].

Reduction in the MAC precision can save both the computation and storage requirements.

Therefore, the impact of low precision on the accuracy of DNN models has been explored in the

literature, mainly with respect to quantization [20, 22, 37]. In most DNNs, quantization of

weights and activations to less than 16-bit integers can still provide accuracy similar to that of a

32-bit floating-point [37, 38, 39]. Linear quantization to 8-bit fixed-point numbers benefits the

hardware implementation of the MAC unit, as shown in Table 2.2. Both energy consumption and

silicon footprint increase with the increase in precision when changed from fixed-point to

floating-point representation. In Binary network [40], weights and activations are quantized to

binary values +1 or -1. The binarization of the network will simplify the multiplication into the

XOR operation. Ternary network [41] quantizes the parameters to three levels: -1, 0, and +1. But

applications of Binary and Ternary networks are limited.

Table 2.2. Resource consumption of MAC units at different precisions [36]

Operation/

Precision

Energy (pJ) Area

MUL ADD MUL ADD

8-bit fixed 0.2 0.03 282 36

32-bit fixed 3 0.1 3497 137

16-bit float 1.1 0.4 1640 1360

32-bit float 3.7 0.90 7700 4184

Depending on the application requirements, the arithmetic operations in a DNN network

may be implemented using different bit precisions. Also, there exist models whose optimized bit

length varies from layer to layer. For example, for a 5-layer Convnet (with three convolutional

and two fully-connected layers), the optimized bit length requirement for the five layers has been

found to be 8-7-7-5-5 bits [42]. In other words, no standard precision requirement is optimized

2()m

18

for all layers or models. Therefore, a flexible DNN hardware accelerator (or the associated MAC

units) should be able to support all possible bit precisions. For lower-precision computations,

multiple operations can be performed with a single MAC unit by hardware reuse or sub-word

parallel processing. With hardware reuse, the overall throughput or peak performance of an

accelerator can be improved for lower-precision layers or models. For example, the Tesla T4 [43]

GPU can be configured to four precisions: 4-bit, 8-bit, FP16/FP32-mixed, and FP32. Tesla T4

achieved the highest speed at thelowest precision (4-bit). The throughput increases at the cost of

reduced precision. The peak performance is typically expressed in arithmetic operations per sec

(OPS), primarily depending on the available MAC units. An additional control unit is required to

configure the MAC unit into multiple sub-MACs or bit length in a variable precision MAC unit.

The overall size of the MAC unit increases with flexibility (in precision). In other words, the

MAC density (i.e., MAC units per unit area) decreases with increased flexibility [30]. Therefore,

there is a tradeoff between MAC’s flexibility and density.

Having a large array of MAC units with a variable bit precision can fulfill the DNN

processing requirement in terms of computations. But just having an extensive array of MAC

units does not improve the throughput. To provide operands to all MAC units in a large array,

sufficiently high memory bandwidth (BW) is required. After a certain point of arithmetic

intensity, the memory bandwidth of an accelerator will determine the overall throughput. Fig. 2.2

shows the estimated roofline model for DNN inference on four different embedded platforms.

Arithmetic intensity (AMI), also commonly referred to as the operational intensity or compute-

to-communication ratio, is expressed as the number of arithmetic operations performed per byte

of off-chip memory traffic (expressed in operations/byte). The arithmetic performance of the

hardware depends on the AMI and the data access rate from the external memory. In other words,

the arithmetic performance can be expressed as follows:

 min(,)Arithmetic Performance PP AMI BW=  (2-1)

where BW is the memory bandwidth, and PP is the peak performance. It is observed in Fig. 2-2

that the arithmetic performance increases initially with an increase in the AMI until peak

performance (PP) is reached. After achieving the PP, any further increase in the AMI does not

increase performance. The arithmetic performance is observed to be memory-bound when the

AMI is to the left of the break point and compute-bound when the AMI is to the right [44].

19

Figure 2.2. Comparison of the roofline models for DNN inference [44].

The arithmetic performance of the hardware typically depends on the PP, AMI, and

memory bandwidth. Resources available on the chip define the PP of the hardware. Arithmetic

intensity depends on the dataflow structure implemented and available on-chip memory. Note

that an external memory operation is energy and time-consuming. Hence, the hardware should

run at a minimum bandwidth to save energy. With minimum bandwidth, the arithmetic

performance of hardware can be increased with increased AMI. As seen in Fig. 2.2, the

arithmetic performance improves with an increase in the AMI in the linear region of the curves

(as the PP and BW are constant). The AMI can vary through the data flow structure. Therefore,

the dataflow structure should be optimized to achieve higher arithmetic performance for a given

bandwidth.

20

Table 2.3. Memory hierarchy in a general accelerator and its approximate performances [24].

Memory level
Access time

(approx. cycles)

Available

capacity

Energy consumption

(normalized)

Registers 1 < 0.5 KBs 1x (Reference)

PEs cache 2-4 ~1-10 KBs 2x

Local buffer 10 ~100 KBs 4x

Global buffer 40 ~10 MBs 6x

Main memory 200 In GBs 200x

To avoid the data read/write each time (to speed up the computation, reduce energy

consumption, and increase the AMI), the read data must be used as much as possible within the

chip before writing it back to the memory. Fortunately, the convolution layers in DNNs have this

data reuse option. For example, a single filter is reused to calculate all pixels in an output feature

map. Therefore, reading the coefficients of a filter once is enough. But keeping all filter

coefficients at each MAC unit is a resource (i.e., memory) consuming option. To reduce the

overall energy cost of data movement, several levels of memory (e.g., global buffer, local buffer,

registers) can be implemented in hardware. A rough estimation of the available memory size,

latency, and energy consumption per operation at various levels are shown in Table 2.3 [24]. The

global buffer (with a size of hundreds of kilobytes) connects to DRAM, with the local buffer

dedicated to a few processing elements (PE). Read/write data from a Global buffer to a MAC

consumes around six times more energy and 40x latency than read/write from register files.

Register files (RF) corresponding to a MAC unit of a PE are connected to a local buffer and

consume the least amount of energy to read/write the data. The advantage of the local buffer is

limited by its available size. The energy consumption and access time increase from low-level

memory (Registers) to high-level memory (Global buffer).

In a DNN, the output of a convolution or fully-connected layer goes through an activation

function. The Rectified Linear Unit (ReLU) is a nonlinear activation function widely used in

DNNs (all the networks in Table 2.1 uses ReLu) which maps the output value of a feature map as

follows.

21

0

0 0

x x
y

x


= 



 (2-2)

where x is the input and y is the output of the activation function. It is observed that the negative

output values are truncated to zero by the activation function. This truncation can make the

output values sparse. It has been shown that the AlexNet has a sparsity between 19% to 63%,

where the sparsity is defined as the percentage of the data (e.g., feature maps, filter coefficients)

that are zero. Several researchers have exploited the sparsity in a DNN to increase the throughput

and reduce power consumption.

The DNN model size (i.e., the number of the DNN weights) can be reduced through

pruning without affecting the model accuracy. The pruning eliminates insignificant connections

or weights (i.e., making the insignificant weights zero) in a DNN. Note that multiplication with a

very small value operand results in a negligible value that will not likely alter the outcome. This

observation makes the case for opportunistic energy savings by eliminating insignificant

multiplications. The DNN architectures can therefore be designed to skip multiplications with

zeros, known as zero skipping.

If arithmetic hardware can skip zero multiplication, sparsity in data and zero weights

cumulatively reduce the computing power requirement. Higher speed can also be achieved by

exploring sparsity in data. To exploit the sparsity further, the storage requirement can be reduced

by encoding the sparse data. The compression techniques may vary from simple run-length

coding to compressed sparse column (CSC) or compressed sparse row (CSR) [45]. Compression

techniques, however need additional encode and decode modules in the hardware.

Based on the above discussion, it can be inferred that an efficient hardware accelerator

must be optimized for low-precision, best data flow, and be flexible for varying precision and

sparse models. As expected, there is a tradeoff between flexibility and optimized architecture. An

architecture optimized for sparse models will affect the throughput of dense models.

Accelerators optimized for the convolutional layer may not perform well on a fully-connected

layer due to the data reusability. In a convolutional layer, weights are reused, but in fully-

connected layers, input features are reusable for optimal performance. Overall, efficient

22

hardware for DNNs should have scalable precision to support different DNN models, optimized

data flow structure to increase the arithmetic intensity, and should utilize sparsity.

The deployment of DNNs in real-time applications requires low-power and high-

throughput DNN accelerators. Many efficient DNN accelerator architectures have been proposed

over the last decade to reflect versatile efforts to improve the overall performance of the DNNs.

Domain-specific accelerators will always have a scope to improve the overall performance by

customizing architectures towards a specific application. Even the accuracy requirement of the

same application can make a difference in the DNN complexity. A generalized DNN accelerator

architecture should have the flexibility to work on different models at the optimum performance.

The DNN architectures can be broadly divided into three categories based on the area

where the architecture has been primarily optimized. These three areas are Arithmetic logical

unit (ALU), Dataflow, and Sparsity. In the ALU category, the basic building block, i.e., the

MAC units (or an array of MAC units), are modified such that the accelerator can have large

computing resources and flexibility to achieve the optimal performance with variable bit

precision. In the Dataflow category, the parameters (e.g., weights, activations, partial sums) are

managed such that the overall (intra-chip) data movement energy is reduced, and high arithmetic

intensity (Ops/Byte) can be achieved. In the Sparsity category, the unstructured sparse data is

managed such that the matrix multiplication units (e.g., a 2-D array of MAC units) can avoid the

zero multiplications effectively. A comprehensive review of the DNN architectures based on

these three criteria is presented in the following.

2.3 Classification

2.3.1 ALU-based Accelerators

Computation-hungry DNN algorithms require a huge amount of computing hardware

resources. Large arrays of PEs are typically implemented in parallel to improve the

computational power of a processor. Graphical Processor Units have thousands of PEs in parallel.

Hence, GPUs are widely used as accelerators for DNNs. The GPUs can provide the throughput

requirement but consume high energy. The energy consumption of a MAC unit can be reduced

by decreasing the bit length. Therefore, low-precision DNN accelerator architectures have been

proposed for DNN inference.

23

Chen et al. [46] proposed an architecture known as the DianNao architecture, with a

Neuron Flow Unit (NFU) as the basic arithmetic building block. An NFU has 16 neurons, with

each neuron having sixteen 16-bit fixed-point multipliers in stage 1 and 15 adders in a tree

structure at stage 2 to add the multiplication results. Stage 3 has an activation layer. DianNao has

three memory blocks, input buffer, output buffer, and synapse buffer, to store inputs, outputs,

and weights, respectively. Based on the DianNao architecture, a series of accelerators

DaDianNao [47], ShiDianNao [48], and PuDianNao [49] have been proposed by improving the

NFU unit as well as dataflow. The DianNao family can provide 450x speedup and 150x

reduction in energy with 64 chips over a GPU [29]. Although the Diannao family provides a

good speed-up, it does not support variable precision. Running a four or 8-bit DNN Model will

consume as much energy as the 16-bit model.

To save energy at lower precision, the Dynamic Voltage, Accuracy, and Frequency

Scaling (DVAFS) MAC-basedd CNN architecture (ENVISION) has been proposed in [16]. In

DVAFS, all run-time adaptable parameters influencing power consumption: activity (),

frequency (f), and voltage (V) are scalable. The dynamic power consumption at constant

throughput is given by [16]

2

1 2

DVAFS

f
P C

k N k

  
=  

 
 (2-3)

where k1, k2, and N are scaling factors of switching activity, voltage, and level of parallelism,

respectively. For lower precision, the switching activity can be reduced by masking lower LSBs

at the inputs of the MAC units. For example, as shown in Fig. 2.3, the configuration of 8b-MAC

to 4b-MAC leaves a portion of the MACs unused. The unused region can be masked to reduce

the switching activity. The reduced precision MAC (4b or 2b) will have a shorter critical path

than the full precision MAC (8b). The shorter critical path can help to increase the operating

frequency or to reduce the input voltage for energy efficiency. With sub-word parallel processing,

one MAC unit at full precision (8b) can be configured to produce more than one MAC unit of

lower precision. As seen in Fig. 2.3, one 8b-MAC can be configured to two 4b-MACs or four

2b-MACs. At constant throughput, the sub-word parallel processing helps to reduce the

operating frequency (1 MAC/clock at 8-b precision, 2 MACs/clock at 4-b precision, and 4

24

MACs/clock at 2-b precision). The reduced switching activity, frequency, and voltages have

been explored to increase the overall energy efficiency in the DVAFS. The energy efficiencyy is

further improved by modulating the body bias (BB) in an FDSOI technology [16]. The body bias

permits tuning of the dynamic vs. leakage power balance while considering the computational

precision. On average, 0.26-10 TOPS/W peak efficiency is reported (implemented in 28nm

FDSOI technology). Note that processing at the full precision (i.e., 8-bit) with DVAFS comes at

a slightly higher energy and area penalty (compared to 8-bit standard precision) due to additional

control circuitry for configuration and more extensive register.

Figure 2.3. Implementation of symmetric precision-variable MAC unit using the DVAFS

architecture. An 8x8-bit MAC can be used to implement two 4x4-bit MACs or four 2×2-bit

MAC units [16].

Shin et al. [50] proposed a Deep Neural Processing Unit (DNPU) architecture for general

DNN models using reconfigurable MAC with sub-word parallel processing (SWP) approach on

one operand. In SWP, parts of bits are processed separately using the lower-precision MACs and

results are combined to get full results, as shown in Fig. 2.4. In Figure 2.4(a), both activation (A)

and weight (W) have 8-bit precisions, and W is represented as two 4-bit sub-words. The SWP

architecture generates 16-bit multiplication output by combining the two sub results. In Fig.

2.4(b), A has 8-bit precision, but W represents two independent 4b words, and the SWP generates

two 12-bit multiplication outputs. In other words, the DNPU architecture allows fixed precision

on one operand (A) and variable precision on the other (W). The DNPU reported 8.1 TOPS/W

25

energy efficiency (with 4-bit precision) on 65 nm CMOS technology. Although the DNPU

architecture exposed the SWP for only one operand, the SWP can be exposed in both operands

using a DVAFS-like architecture shown in Fig. 2.3.

 (a) (b)

Figure 2.4. Sub-word parallel (SWP) architecture, (a) use of two 8bx4b MAC units to perform

one 8bx8b operation, (b) Two 8bx4b MAC operations implemented in parallel.

Lee et al. [51] proposed the Unified Neural Processing Unit (UNPU) architecture using a

bit-serial MAC unit. The schematic of a weight-only bit-serial MAC unit is shown in Fig. 2.5.

The bit-serial MAC requires just an adder and a shift register and does not require multiplication.

In each clock cycle, one bit of weight (LSB bit first) is supplied, and activation is added to the

shifted value of the previous cycle partial product. The number of cycles required to finish a

MAC operation depends on the weight precision. For an 8-bit precision weight value, eight clock

cycles are required to perform the MAC operation, as shown in Fig. 2.5(a). Four and two clock

cycles for 4-bit and 2-bit weights respectively, as shown in Fig. 2.5(b) and (c). The architecture

supports any weight bit precision from 1b to 16b and reported 1.43× higher power efficiency for

a convolutional layer at 4b weight compared to the DNPU.

Alternatively, approximate multipliers or logarithmic multipliers have been proposed to

reduce the power and area consumption of multipliers. Note that the neural networks and their

associated applications are known for exhibiting intrinsic resilience to errors, which makes them

appropriate candidates for approximate computations. A review of the effect of approximate

multipliers on the DNN performance can be found in [52]. Ansari et al. [53] proposed an

8x4 8x4

A
-8

b
it

s

W -4bits

(MSB)

W -4bits

(LSB)

Result–16bits

W

8x4 8x4

A
-8

b
it

s

W1 -4bits W2 -4bits

R1–12bits R2–12bits

a b

26

improved logarithmic multiplier (ILM) that rounds both inputs to their nearest powers of two by

using a nearest-one detector (NOD) circuit. The MNIST and CIFAR-10 dataset classification

using ILM showed up to a 21.85% reduction in energy consumption and a 1.4% improvement in

classification accuracy.

(a) (b) (c)

Figure 2.5. Bit-serial MAC configured as (a) 8bx8b MAC unit, (b) 8bx4b MAC unit, and (c)

8bx2b MAC unit. (Weight-only scaling).

Note that the MAC optimization presented above is primarily based on the binary number

system. A few accelerators have been proposed based on non-conventional number systems, e.g.,

the residual number system (RNS) and posit numbers. Posit numbers have better dynamic ranges

and are suitable to represent weights in DNN with lower bit precision. Carmichael et al. [54]

proposed a Deep positron architecture based on the posit number system and evaluated its

robustness at low precision (< 8 bits). The residual number system is represented by k integers

{m1, m2, ... mk}, called moduli which should be relatively prime by each other. In the RNS, an

integer value, X, is represented with residues {r1, r2, … rk} where ri = |X|mi. Any arithmetic

operation in the RNS is equal to the same operation on residues. For example, for two numbers

(in RNS) x1 = {a1, a2, a3} and x2 = {b1, b2, b3}, x1+x2 can be calculated as {a2+ b2, a2+ b2, a3+

b3}. In RNS, any arithmetic operation can be broken down to the same operation on residues

which are represented with lower precision than the actual binary number. It reduces the bit

precision requirement at the cost of more computations. In the digital domain, the RNS can

improve the speed and reduce the energy in high-precision computations. Olsen et al. [55]

27

implemented RNS-based matrix multiplication to accelerate neural network processing on

FPGAs and achieved 7-9x speed compared to the 32-bit fixed-point implementations. The

reduction in the precision requirement is extremely helpful in analog domain implementation,

where higher-precision MACs have some limitations with their non-linear and hysteretic

behavior. Samimi et al. [56] proposed a RESnet accelerator in the analog domain with RNS. The

RNS-based RESnet consumes 145.5× less energy and obtains 35.4× speedup compared to

NVIDIA GPU GTX 1080. Accelerators with emerging technologies are discussed further in

section 2.3.4.

2.3.2 Dataflow accelerators

The focus of the data flow accelerators is on data management to reduce the off-chip

memory bandwidth. Spatial and Temporal architectures are well-studied for data reusability.

Efficiency of dataflow accelerators can be characterized with arithmetic intensity, number of

operations performed per byte of off-chip memory read. The dataflow can be optimized by

reusing the parameters in different layers wherever possible. For example, in a convolutional

layer, both the weights and activations can be reused. The each neuron has unique weights in a

fully-connected layer, and hence weights cannot be reused but input data (i.e., feature maps) can

be reused. The reusable parameters are stored in local registers so that data movement between a

MAC and higher-level memory can be reduced.

For a MAC unit, three memory reads (i.e., weight, activation, and partial sum), and one

memory write (i.e., updated partial sum) are required. One of the parameters (e.g., weight) can be

stored locally in a register file and can be reused for the following few calculations. The

parameters stored differ from architecture to architecture based on the data flow structure

implemented. There are four major types of data flow structures to manage the input/output data

of a MAC in a DNN: No local reuse (NLR), Weight stationary (WS), Output stationary (OS),

and Row stationary (RS). In NLR, all memory operations are performed directly from the main

memory (e.g., DRAM). In WS, the weights are stored in the RF (i.e., local memory). In OS, the

partial sum outputs are stored in the RF to reduce read and write operations. In RS, a row of filter

weights is stored in the RF.

Google has developed the Tensor Processing Unit (TPU) accelerator for the efficient

implementation of machine learning techniques. The TPU architecture [11] has a systolic array

28

of 256 × 256 MAC units as a matrix multiplication unit. The implemented systolic array

structure is a 2D single-instruction, multiple-data (SIMD) architecture with specialized weight-

stationary dataflow [33]. The block diagram of TPU is shown in Fig. 2.6. The weights can be

fetched directly from DRAM and stored in the weight FIFO (First-In-First-Out) register. Input

activations from the external memory or previous layer results are stored in the unified local

buffer. A systolic data setup block is used to rearrange the input data such that convolution can

be performed on a matrix multiply unit. The first version of TPU, known as TPU1, focused on

the inference tasks and has been deployed in Google’s datacenter since 2015. TPU2, also known

as Cloud TPU, has been used for training and inference in the datacenter. TPU2 also adopted a

systolic array and introduced vector-processing units.

Figure 2.6. Block diagram of a tensor processing unit (TPU) [11].

The SCNN (sparse CNN) accelerator proposed by Parashar et al. [18] uses a dot product

dataflow termed as PlanarTiled-InputStationary-CartesianProduct (PT-IS-CP). The Cartesian

Product (CP) term indicates the implementation of MAC units in a PE such that a full Cartesian

Product of weights and activations () is calculated. The CP implementation maximizes W A

29

spatial reuse. The Input stationary (IS) term indicates that activations are reused at the PEs by

storing them in local memory. The Planer Tile defines the distribution of data across PEs. In

SCNN, activations and weights are partitioned into smaller tiles and distributed across the PEs.

In the output stationary (OS) dataflow, the partial sums are stored in the local register

files. The OS works well with the fully-connected layers, as each neuron output depends on all

input activations. Instead of multiplying all inputs with the corresponding weights (which may be

a few hundred), in each clock cycle, a few inputs (e.g., K) are multiplied with weights, and the

partial sum is stored locally. The entire operation will require N/K clock cycles, where N is the

number of inputs. ShiDianNao [48], an example of OS dataflow, was implemented for K=16.

Figure 2.7. Schematic of a row-stationary dataflow.

Chen et al. [57] proposed a row-stationary (RS) dataflow-based accelerator called Eyeriss

that minimizes the data movement energy on a spatial architecture. Note that in the RS dataflow,

a row of operands (i.e., input, weights, and partial sums corresponding to a PE) are stored in the

RF. A schematic of a row-stationary dataflow in Eyeriss is shown in Fig. 2.7. Inputs are reused

across the PEs connected diagonally. The partial sums are accumulated in the vertical direction.

30

Each PE has local registers to store at least one row of weights and activations, one MAC uni,t

and controller. The controller is responsible for the temporal reuse of MAC units to perform 1-D

convolution.

Figure 2.8. Implementation of a row-stationary dataflow on the Eyeriss architecture. (a) 1-D

convolution between first row of filter 1(Filter1, row1) and input feature map 1 (Ifmap1). (b) 1-D

convolution between first row of filter 2 (Filter2, row1) and input feature map 1 (Ifmap1).

Implementation of 1-D convolution using the RS dataflow in a PE is shown in Fig. 2.8. A

sizable portion of RF is allocated to the weights. A row of input vectors is reused to calculate the

partial sums of multiple output feature maps. Figure 2.8 shows how the same PE can be used to

calculate multiple output features by reusing the input data. It has been shown that the RS

dataflow is more energy-efficient than the existing dataflows [57] in both convolutional (1.4-

2.5×) and fully-connected layers (at least 1.3× for batch size>16). To support a wide variety of

DNN models and further increase in the resource utilization, an improved version of Eyeriss is

proposed in [58] called Eyeriss V2. The Eyeriss V2 introduces a highly flexible on-chip network,

called hierarchical mesh, which can adapt to different amounts of data reuse and bandwidth

31

requirements of different data types. Eyeriss V2 reports 12.6× faster and 2.5× more energy-

efficiency than Eyeriss running the MobileNet. Venkatesan et al. [59] proposed multi-level

weight-output stationary dataflows: Weight Stationary–Local Output Stationary (WS-LOS) and

Output Stationary–Local Weight Stationary (OS-LWS). The advantages of these dataflows over

the IS, WS, and OS dataflows are also discussed. An automated framework, MAGNet, to

generate an accelerator for a neural network has been proposed in [59]. Using this framework, an

accelerator can achieve up to 40 fJ/op and 2.8TOPS/mm2 in a 16nm FinFET technology.

In most of the DNN accelerators, the layers are processed iteratively. However, by

processing each layer to completion, the accelerator must use off-chip memory to store

intermediate data between layers as the intermediate data is too large to fit on on-chip memory.

Alwani et al. [60] explored the dataflow across layers and proposed the Fused-layer CNN

accelerator. In a Fused-layer accelerator, neurons in multiple layers which depend on generated

intermediate data are processed once. This increases the data reuse across the layers. The data

dependency between the two layers can be seen in Fig. 2.9. Layer 1 output features (Tile 1’ and

2’) can be further processed to generate layer 2 outputs, which avoids the storage requirement

and memory read-write operations for layer 1 output features (Tile 1’ and 2’). For example, Tile

1 input data processed through layer 1 generates Tile 1’ data. Instead of storing the Tile 1’ data

in global or external memory, layer 2 computations can be performed to generate the green

pixels (layer 2 output). To generate the red pixels at layer 2, only a small amount of data needs to

be read from the higher-level memory. The overlapped data can be reused by storing it in the

local memories. Fused-layer method avoids the storage requirement of intermediate results (layer

1 outputs) externally. If multiple processors run in parallel, the intermediate results can be reused

across the processors without read/write to external memory. Based on this principle, Shao et al.

[19] proposed the SIMBA accelerator based on a multi-chip-module (MCM). In the MCM, small

chiplets (i.e., small chips) are integrated at the package level. Each chiplet has a 4x4 PE array

with weight stationary dataflow. The SIMBA integrates 36-chiplets, each with 4 TOPS peak

performance, to achieve up to 128 TOPS peak and 6.1 TOPS/W [19].

32

Figure 2.9. Example of fusing two convolutional layers.

2.3.3 Sparsity-based Accelerators.

The computational and memory requirement of a DNN model can be reduced through

pruning without significant loss of accuracy. In pruning, at the time of training, any insignificant

weights are made to zero. The pruned weights (or zeros) can be in a regular structure or random.

In regular structure pruning, also called structured sparsity, a neuron will be removed (i.e., all the

weights connected to the neuron are set to zero). The pruning in structure sparsity can be at the

level of neuron, filter, or channel of the filter. In unstructured pruning, all the insignificant

weights which are random across the weight tensors, are made to zero. The unstructured pruning

is simple; it can be done by adding a regularization to the training algorithm. But, due to

unpredictable zero patterns in unstructured sparse models, it requires complicated hardware

design to compress the non-zero weights and skip zero multiplication. Over time, researcher

found complex algorithms for structured pruning where a complete neuron, filter or channel of

filters are removed. The architecture for structured sparsity is simple.

Albericio et al. [12] proposed the Cnvlutin architecture to exploit the sparsity in feature

maps. Computation with zeros in the inputs are eliminated by indexing the input data. Non-zero

input data along with index value are supplied to compute unit. Based on index value, the

compute unit selects the corresponding weight from filters and performs multiplication. The

33

controller fills the index buffer on the fly such that it does not consume extra clock cycle. To

further increase the acceleration, Cnvlutin prunes near-zero outputs during inference to increase

the sparsity of the next layer’s input data. Experiments with several CNNs, including AlexNet,

GoogleNet, and VGG-19, showed 1.2–1.6× throughput increases over DaDianNao [47] without

any loss in accuracy on ImageNet data. The Cnvlutin reported an area overhead of 4.5% over

DaDianNao. Judd et al. [13] proposed Cnvlutin-2 architecture, an extension of Cnvlutin by

exploring both input and weight sparsity. Cnvlutin-2 is further optimized to reduce the memory

bandwidth.

Eyeriss [15] also explored the sparsity in inputs to reduce energy consumption. MAC

units corresponding to the zero inputs are inactivated by a gating method (disable). The gating

method saves energy but does not increase the throughput. Eyeriss V2 [58] can process the sparse

data directly in the compressed format for both the weights and activations, and therefore is able

to improve both processing speed and energy efficiency with sparse models.

Han et al. [45] deep-compressed the model by pruning the redundant connections and by

enabling multiple connections to share the same weight. Deep compression uses threshold-based

pruning, quantization, and Huffman coding techniques to reduce the overall size of the model to

fit on the chip memory. Han et al. [17] proposed an energy-efficient inference engine (EIE) to

accelerate deep compressed model’s inference. To exploit the sparsity and reduce the memory

bandwidth, the data is compressed using a variation of the compressed sparse column (CSC)

format. For each column (Mj) of matrix M, a vector v that contains the non-zero weights, and

another equal length vector z that encodes the number of zeros before the corresponding entry in

v, are stored. Each entry of v and z is represented by a four-bit value. If more than 15 zeros

appear before a non-zero entry, then a zero is added in vector v. For example, the following

column [0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3] is encoded as v = [1, 2, 0, 3], z

= [2, 0, 15, 2]. Weight matrix distributed across the PEs and stored in a compressed format. The

EIE performs the sparse matrix × sparse vector operation by scanning vector a (activations) to

find its next non-zero value aj and then broadcasting aj along with its index j to all PEs. Each PE

then multiplies aj by the non-zero elements in column Wj. Compared with DaDianNao, the EIE

has 2.9x, 19x, and 3x better throughput, energy efficiency, and less area respectively [17].

34

Parashar et al. [18] proposed the SCNN accelerator for compressed-sparse convolutional

neural network. Weights and activations are compressed with variants of the CSR methods used

in [17]. For example, as shown in Fig. 2.10, multiple 3x3 filters are compressed into a data

vector (row-wise), containing non-zero filter values and an index vector. In the index vector, the

first value represents the number of non-zero elements in the data vector, followed by the

number of zeros before each value in the corresponding data vector. Multiplication between

compressed weights and activations is performed like dense matrix multiplication. The output

activation’s index is calculated based on the inputs and weight’s index at accumulation buffers

using crossbar connections. The SCNN accelerates a CNN by 2.7x while still being 2.3x more

energy-efficient (compared to the uncompressed network).

Figure 2.10. Weight compression in SCNN

With zero skipping implementation for sparse models, a small to significant percentage

of the MAC units may be end up in the inactive state to synchronize with other PEs. Zhang et al.

[61] used parallel associative search to maximize the even distribution of data across the MAC

units and implemented it in SNAP accelerator. The SNAP maintains an average of 75%

hardware utilization. Similarly, Lee et al. [62] proposed the LNPU architecture for sparse DNN

model learning. The LNPU has an input load buffer module which distributes the workload

evenly to the PEs, accounting for irregular sparsity. The overall MAC utilization increased in the

LNPU. Lin et al. [63] proposed a Dual-core deep learning accelerator based on compression,

zero skipping, and Fused-layer techniques.

Zhang et al. [14] proposed the Cambricon-X architecture to exploit the sparsity in filter

weights by adding a buffer control module. The buffer control module includes an indexing

35

module that selects and transfers the useful input neurons (neurons corresponding to non-zero

weights in the filter) to PE. A PE stores the compressed filter weights locally and performs the

computation asynchronously. Cambricon-X reported a 7.23x speedup and 6.43x energy saving

against the DianNao accelerator.

The architectures presented above are unstructured sparsity-based, but the unstructured

sparsity in weights needs complex decode module to decompress the weights and calculate the

respective activation index. Based on this observation, Zhou et al. [64] showed that the pruning

block of weights in a DNN model reduces the irregularity in weight sparsity. Zhou et al. [64]

proposed a Cambricon-S accelerator that uses structured sparsity in weights and encoded to

achieve a higher compression ratio. Cambricon-S reported 1.71× speed and 1.37× energy

efficiency compared to the Cambricon-X.

2.3.4 Hybrid implementation techniques

With increasing complexity in the neural network architectures, the required computing

power far exceeds what is achievable with today’s technology [65]. Hence alternative

technologies like analog computation, photonic and quantum computing are being explored. The

new technologies are mainly applied at the ALU level in DNN accelerators to improve the speed

and energy efficiency. Therefore, this section (i.e., Section 2.3.4) can be seen as an extension to

the ALU-based accelerator classification (Section 2.3.1).

In the ML hardware implementation, the processor-memory bandwidth is often the main

bottleneck that limits the achievable energy efficiency. Due to the interconnect loss and signal

integrity issues, the data transfer is not as efficient as the data processing. Note that the

technologies are optimized for either data processing (processor technology) or storage (memory

technology). Therefore, DRAM ICs are used for storage, and processor ICs are used for

processing. Bringing them closer through advanced packaging can reduce energy penalties due

to the data movement. But Processing-near-memory or Processing-in-memory (PIM) can reduce

the data movement. The hybrid memory cube (HMC) technology lets vertical integration of

DRAM memories on logic circuits and enables near-data processing. Neurocube [66] and Tetris

[67] are two DNN accelerators based on HMC. Given that the DRAM ICs are optimized for data

storage, they are few generations behind the logic CMOS devices in terms of computational

efficiency. Therefore, analog computation can be an attractive alternative to conventional digital

36

computation. For instance, multiplication can be directly integrated into the bit-cells of an

SRAM array [24].

In recent years, memristors (or programmable resistive elements) show promising

performance improvements. In memristors, weight values are stored as the resistor’s

conductance, and multiplication is performed based on Ohm’s law

i G V=  (2-4)

where V is the input voltage, G is the resistor’s conductance, and i is the output current

equivalent to the multiplication result. Fig. 2-11 shows a schematic of the memristor crossbar in

which currents in a column are added together. Using Kirchhoff’s current law, the resulting

current (I) can be expressed as follows.

 ,j k j

k

I i= (2-5)

Substituting the i value from Eq. 2-4, we obtain

, ,j j k k

k

I G V=  (2-6)

The output current
jI in Eq. 2-6 is equivalent to a neuron output in the neural network.

Therefore, the memristor crossbar can be used to implement neural networks. Figure 2.11 shows

memristor implementation of a vector matrix multiplication, ()V W . The digital input X is

converted into an analog input V using a DAC converter. The weight values, W, are programmed

as the resistor’s conductance. The output currents are converted back to the digital domain using

ADC converters. The resistive crossbar implementation can reduce the data movement energy.

The resistive memory can be implemented using different technologies such as Resistive

RAM (ReRAM), Phase-Change Memory (PCM), floating-gate charged-trap memory,

SpinTransfer Torque Magnetic Random-Access Memory (STTMRAM), and Ferroelectric Field-

Effect Transistor (FeFET) [68]. ReRAM is a popular technology used in resistive crossbar array

implementation for neural networks. The two major limitations of this technology are small

tunable conductance range and the parasitic voltage drop across the array. But more importantly,

their non-linear and hysteretic behavior limits their usage for applications where higher precision

would be needed. Ultimately, to interface with the digital part of the CNN, we need a DAC to

37

convert the digital inputs to analog voltages and an ADC to convert the summation output

voltage/current to digital. The accuracy of such MAC units is limited by the ADC and DAC

resolutions as well as other circuit noises. The conductance range and noise levels define the

weight precision, and eight-bit weight precision remains at the upper limit using a single non-

volatile memory device [68]. The low-precision parameters can still produce similar accuracy in

inference, but are generally not sufficient for training. The conductance is always positive, and

hence only positive weights can be implemented. For negative-valued weights, w, two weights,

w1 and w2, whose difference is equal to w (𝑤 = 𝑤1 − 𝑤2) are implemented, and resulting output

currents are subtracted. A few proposed analog NN architectures are PRIME [69], ISAAC [70],

Memristive Boltzmann machine [71], Newton [72], PUMA [73], and mCNN [74].

Figure 2.11. Resistive memory crossbar implementing vector-matrix multiplication Y X G=  .

V denotes the input voltage vector (analog equivalent of X); G denotes the conductance of

memory equivalent to weights, and I denote the resultant output currents (analog equivalent of

Y). DAC: Digital to Analog conversion block, ADC: Analog to Digital conversion block.

In some mixed-signal accelerators, the computational units are partially implemented in

the analog domain. Cao et al. [75] proposed a hybrid digital mixed signal computing platform

38

using a Time-Division Mixed signal (TD-MS) multiplier. It usea s 5b TD-MS multiplier and

extends to higher precision (6 to 8- bits) using shift and add. Bankman et al. [76] proposed a

mixed signal binary CNN processor which performs multiplication in the digital domain and

summation using switched capacitor neurons. The weights and input data are represented in

binary form hence multiplication in the digital domain is efficient. Detailed reviews on analog

neural network accelerators can be found in [68, 77].

Similar to the memristors, the digital data in these analog accelerators has to be converted

into analog using DAC before processing in the analog domain. After processing, the result has

to be converted back to digital domain using an ADC. The DAC and ADC converters consume

more energy with an increase in precision. For higher-precision data, energy consumed by

converters can nullify the advantage gained with analog computations and the overall

performance may degrade compared to the digital domain. The MAC unit does not always need

the ADC or DAC elements, but in most cases, the non-idealities of the analog MAC require

digital calibration and correction that mandates ADC and DACs. Like analog accelerators,

photonic accelerators are also being explored to enable faster computation with improved energy

efficiency [65]. A detailed discussion of such solutions is beyond the scope of this work.

However, these solutions also face the same resolution challenges as other analog solutions that

limit their usage to certain applications.

2.4 Evaluation

In this section, we present the performance evaluation of a few selected architectures.

Most existing research works use measures such as chip area, throughput, latency, and power

efficiency for performance comparison. An accelerator proposed for a specific DNN model (e.g.,

sparsity, kernel size) may not translate its benefits to other DNN models. For example, the

performance of sparsity-based accelerators significantly degrades on the denser models due to

the presence of additional encode and decode modules. Similarly, the weight stationary data flow

typically performs better on the convolutional layers compared to the fully-connected layers

because of weight reusability in the convolutional layers. A similarr performance trend is

observed in the variable-precision accelerators (ALU-based), where both the latency and the

power consumption increase compared to the fixed-precision accelerators on a DNN model

running at full-precision. Therefore, it is essential to understand the advantage and drawbacks of

39

each method of accelerator implementation (e.g., ALU-based, RS, WS, OS, and sparsity-based

accelerators).

Parashar et al. [78] proposed a software framework known as Timeloop to estimate the

energy-efficiency of an accelerator architecture on different workloads without physical

implementation. It is claimed that the Timeloop framework can give over 95% accuracy

compared to the actual physical implementation of hardware. Therefore, the Timeloop

framework was used to measure the performance of a few architectures. Before considering

Timeloop, the framework performance on Eyeriss architecture with AlexNet layer 1 workload is

verified with manual calculations, the difference is within 5%. Manual calculation uses a similar

method proposed by Yang [79]. The workload (AlexNet layer 1) is mapped manually on Eyeriss

architecture. The parameters (inputs, weights, and partial sums) are stored across the memory

hierarchy (DRAM, global buffer, and RF files) such that minimum data read-write operations (or

maximum data reuse) are performed. The final output is written back to DRAM. The number of

memories read or write operations of each parameter at all levels of the memory hierarchy are

counted. In the calculation, we consider that the 16-bit MAC consumes 2.20pJ per operation

(obtained from the Timeloop software). Note that the energy consumed for read/write operation

at different levels of memory is calculated based on 45nm CMOS technology [78] (DDR4

technology for external memory access). The energy required to read data from RF is assumed to

be equal to one MAC operation. The manual calculations require 840 𝜇𝐽 to process AlexNet

layer 1 on Eyeriss, and the Timeloop reports 866 𝜇𝐽 . The advantage of using the Timeloop

framework is the optimal workload mapping on an architecture. Therefore, we will be using the

Timeloop framework to evaluate the performance.

In a DNN model, the size of parameters varies from layer to layer. Let I, W, and O denote

the size (in Kbytes) of a convolution layer's inputs, weights, and outputs. In general, O > I, W in

the initial few layers. This is because a large number of feature maps (typically known as the

depth of the layer) are generated at the initial layers. In the later layers, the size of output features

O is reduced. Hence, in the last layers, W >> O in general.

The size of parameters can affect the performance of an architecture. Therefore, five

different convolutional workloads, which can generalize to a broad range of workloads (with

different filter sizes, convolution strides, etc.,) are considered for evaluation in this section. The

40

configuration of these five workloads is shown in Table 4. The workload, calculated as number

of computations in a layer, increases from CONV1 to CONV5.

Table 2.4. Example of five workload configurations in terms of Input (I), Output(O), and

Weight(W) sizes. TOTAL-PARAM: Total number of Parameters, I+W+O (in millions).

TOTAL-COMPUT: Total number of computations (in millions).

PARA-

METERS
CONV1 CONV2 CONV3 CONV4 CONV5

INPUT (I) 225X225X3 227X227X3 64X64 X128 17X17 X256 33X33 X96

WEIGHTS (W) 5X5X3X96 11X11 X3X96 1X1X128X256 3X3X256X384 3X3X96X256

OUTPUT (O) 111X111X96 55X55 X96 64X64 X256 15X15X384 31X31 X256

STRIDES 2 4 1 1 1

TOTAL-PARAM 1.34 0.47 1.6 1.04 0.57

TOTAL-

COMPUT
88 105 134 199 212

Using the Timeloop framework, the energy performance of three different architectures

on the five workloads was calculated. The three architectures considered are Row Stationary

(RS), Weights Stationary (WS), and Output Stationary (OS) architectures with the same number

of resources (e.g., MACs and memory) available. The allocated resources are based on the

existing hardware accelerator EYERISS [15]. The availableon-chipp global buffer is set to

128KB and 256 (16x16) PEs, and the local buffer at each PE is 440 bytes. The local buffer is

used to store weight, and partial outputs in the RS, WS, and OS architectures. In the RS

architectures, the local buffer is partitioned into three parts and is used to store inputs, weights

and outputs. In WS, the local buffer is used to store only weights, whereas OS architectures store

only partial outputs. The latency is calculated based on the number of clock cycles required to

process. The clock frequency is 200MHz (assuming 45nm CMOS technology).

Two performance parameters, latency and energy, are calculated for all three

architectures on 5-different workloads using the Timeloop framework, and results are shown in

Fig. 2.12. In the Timeloop framework, the mapper (e.g., a compiler) searches for the optimum

workload map on the architecture. The search algorithm requires the performance criteria to

select the best match. We choose latency and energy as the optimization criteria. In Fig. 2.12(a),

the amount of computation increases monotonically from CONV1 to CONV5, but the energy

consumption of the architectures does not always increase with computations. This is because

data transfer contributes a significant part of the total energy. For example, between CONV4 and

41

CONV5, there is a slight reduction in the total energy consumption despite increased

computation due to less data transfer. Therefore, the energy efficiency of an architecture depends

on both computations and the number of parameters. From Fig. 2.12(b) and (c), it can be

observed that the RS architecture has the lowest latency (combining all layers), and the WS

architecture consumes the least energy.

Figure 2.12. Performance of three different architectures: (a) energy consumption in different

workloads. (b) architecture latency on all workloads. (c) architecture total energy consumption.

The dataflow efficiency depends on how much the parameters are reused within the local

memory once they have been read from the external memory. In the convolution operation, the

filter properties (height (R), width (S), and channel (C)) define the data reusability. For example,

in a convolution with a 3×3 sized filter, one input can be reused to calculate nine partial products

42

(with nine weights) corresponding to nine outputs. Therefore, the performance of the RS, WS,

and OS dataflows are evaluated with filter size, as shown in Fig. 2.13. In this figure, the

workload of CONV5 is varied by changing the filter size from 1×1 to 11×11.

Figure 2.13. The RS, WS, and OS performance with variation in filter size. Note that the Latency

and MAC utilization in the OS and WS are same, and their plots coincide (dotted black line).

The total computations increase with the filter size and require more processing energy.

From Fig. 13, it can be observed that energy consumption rises with filter size for all the

architectures. But the energy consumption of the RS and OS architectures increases more than

that of the WS architecture. To understand the energy variation, we looked at the energy

consumption of DRAM, global buffer, local buffer access, and MAC unit per computation. The

MAC unit and local buffer consume similar energy across the filters. The DRAM and global

buffer access energy varies with filter size, as shown in Fig. 2.14. For filter 1x1, the WS and RS

architectures consume a similar amount of energy (as seen in Figs. 2.13 and 2.14) because when

the filter size is 1x1, the weight reuse is identical in both the architectures. The input data

reusability increases with filter size but requires more local memory to store the filter weights. In

43

the WS architecture, the local memory is allocated primarily for filter weights and can keep all

the weights for even large-size (11x11) filters. Therefore, the DRAM access energy per

computation decreases for the WS with increasing filter size, as shown in Fig. 2.14. The local

memory is primarily allocated for partial products in the OS architecture and shared with all

three parameters in the RS. The OS and RS architectures may not have sufficient space in the

local memory for large-size filters, and hence the increased data reusability with filter size does

not significantly affect the DRAM access energy, as shown in Fig. 2.14. The WS architecture

requires less DRAM and global memory access energy, which means it maximizes the data reuse

within the local memory and requires less access to the higher-level memory. Therefore, the WS

consumes less energy among all architectures with filter size increase, as shown in Fig. 2.13.

Figure 2.14. Energy consumption and MAC utilization in the WS, OS, and RS architectures for

different filter sizes. R and S are the number of rows and columns, respectively.

The MAC utilization of the RS varies with the filter size, as shown in Fig. 2.14 (see the

dotted lines). In RS architecture, the PEs are connected in such a way that the inputs are reused

in diagonal PEs, and partial sums are accumulated across vertically connected PEs, as shown in

Fig. 2.7 (the directions can be configured). When mapping the workload on the PE array, a few

44

PEs may end up unallocated. For example, in mapping a 3x3 filter on four PEs, three rows of

filters can be stored in three PEs and accumulate the partial products to get the convolution

output. The fourth PE is unused and can be used to calculate the next output, but the partial

product must be stored in the memory and be read in the next cycle. The additional energy

required for the partial product memory read-write can defeat the advantage of using the fourth

PE. Therefore, only three PEs are used for calculations, and fourth one is left ideally. Due to only

three PEs being utilized effectively, more clock cycles are required to complete the convolution.

To fully use the PEs in the RS dataflow, the array size should be multiples of the filter size. In

this experiment, the PE array size is 16x16, which is not multiples of 3, 5, 7, 11 (i.e., the filter

size). Therefore, the MAC utilization of RS dataflow varies with filter size (see the dotted green

line in Fig. 2.13). The decrease in MAC utilization increases the latency as, shown in Fig. 2.13.

For filter sizes from 5 to 11, the latency of the RS increases more compared to the WS or OS

because of the drop in the MAC utilization. The latency difference between the RS and WS/OS

is small at filter size 5 (~0.8) compared to the difference at filter size 3 (~1.4) because of the

increase in the MAC utilization for RS.

The convolution stride is another parameter that can affect the data flow. With a stride of

greater than one, the input features may not be reusable in two neighboring output feature (pixels)

computation. For example, with the stride of one, six input pixel values (i23, i33, i43, i24, i34, i44)

out of nine can be reused for the next window, as shown in Fig. 2.15(a). In the convolution with

a stride of two, only three input pixel values (i24, i34, i44) out of nine can be reused for the next

window, as shown in Fig. 2.15(b). On the other hand, in the convolution with a stride of three,

there are no common pixel data in the consecutive windows, as shown in Fig. 2.15(c). Therefore,

the input data reusability depends on the stride value, and there is no reuse of input data in

consecutive output feature calculation if the stride value is more than the filter size.

45

Figure 2.15. Impact of convolution strides on the input data reusability. (a), (b), (c) represent

input feature maps with filters (colored boxes) imposed on it to show consecutive convolution

windows with stride values of 1, 2, and 3, respectively.

Note that it is important to understand dataflow architectures’ efficiency with stride

variation. In this experiment, the stride size is varied from 1 to 4 in the CONV4 workload. The

total energy consumption depends on the type of workload and filter size, as shown in Fig.

2.12(a) and 2.14. Hence, instead of comparing the total energy, we compare the energy

normalized to stride one in respective architectures. The normalized energy here indicates the

change in energy due to the change in the stride value. The DRAM access energy increases by

about 120% in the WS architecture as stride value changes from 1 to 4, as shown in Fig. 2.16.

The DRAM access energy changes because of the change in the input data reusability and may

require reading the full window of input data at each cycle, as shown in Fig. 2.15. In the RS

architecture, a row of inputs is stored in the connected PEs and used in the later computations, if

not in consecutive computations. Therefore, the DRAM access energy changes more in the WS

compared to the marginal change in the RS. The total energy changes with DRAM access energy,

more than 20% increase in the WS, and marginal change in the RS, as shown in Fig. 2.16.

Therefore, for large stride values, the RS has better data reusability compared to the OS and WS

architectures.

46

Figure 2.16. Energy variation in the RS, WS, and OS with stride variation for CONV4 workload.

Figure 2.17. Performance of DNN architectures with different precisions and sparsity levels. The

sparsity-based accelerators are denoted with star marks and dense models with plus sign. Small

size mark indicates real-time performance, and large size mark indicates peak performance.

47

Note that most accelerators reviewed in the previous section vary in terms of the

available MAC units, memory size, dataflow implemented, and workload used. Therefore,

energy and latency parameters are insufficient to evaluate or compare the existing accelerators. It

is difficult and time-consuming to implement all existing accelerators on the Timeloop

framework, keeping the same resources, to obtain the performance metrics for comparison

purposes. In the ALU-based accelerators, the MAC implementation enables performance

improvement. Hence, the ALU-based accelerators can be evaluated by comparing single MAC

units. Camus et al. [30] analyzed precision scalable MAC units from different accelerators.

Similarly, the performance improvement in sparse-based accelerators is defined by the sparse

encoder and decoder modules. To observe the trend in ALU and sparse-based accelerators, the

power vs speed plot of a few accelerators is shown in Fig. 2.17. The data for Fig. 2.17 has been

obtained from a standard repository [80]. In the Fig. 2.17, the small size marks indicate the real-

time performance, and the large size marks indicate the peak performance. The ALU-based

accelerators evaluated for at least two precisions are considered. From Fig. 2.17, it is observed

that the sparsity-based accelerators consume less power (star marks in Fig. 2.17). The advantage

of sparse architectures depends on the sparsity in the input data. For highly sparse data, the

additional cost of encoder/decoder can be overcome by the computational advantage (i.e.,

smaller number of MAC operations after zero skipping). Running a dense model on a sparse

accelerator can degrade the performance. Therefore, it is crucial to evaluate the sparse

accelerator with varying sparsity (e.g., from 5% to 90%). Precision can also affect the power and

speed of an architecture. Low-precision accelerators provide high speed at lower power (see the

blue and red color marks in Fig. 2.17). In sub-word parallel architectures, by running at half-

precision, the speed can be doubled at the same amount of power ([32], [33], [58]) or power can

be reduced at the same speed ([31]). The binary and INT4 precision architectures can achieve

high speed at low power but have limited applications.

2.5 Conclusion

Understanding the factors affecting the performance of an DNN accelerator is vital to

develop an energy-efficient accelerator. In this study, three major areas ALU, dataflow, and

sparsity are identified as potential areas to improve the overall performance of a DNN

accelerator. The existing architectures were classified into four categories. The advantages and

48

drawbacks of each category are discussed. A variable precision ALU can take advantage of sub-

word parallel processing for low-precision DNN models to improve overall throughput or to

reduce the power requirement. But a precision-variable ALU comes with a complex

configuration circuit. An efficient data flow can improve the arithmetic intensity and memory

bandwidth requirement. The dataflow efficiency can vary from layer to layer or with filter size.

The sparse models can reduce the power requirement by skipping zero multiplication but

increase the latency per MAC operation. Three dataflow architectures are evaluated. The

dataflow efficiency depends on the workload. Hence, the dataflow must be chosen based on the

accelerator application. The classification is discussed in Section 2.3. will help the readers in

selecting the best technique at different levels in architecture. An efficient DNN accelerator

should have a precision-variable ALU, flexible dataflow for all types of layers in a DNN model,

and explore the sparsity with simple control circuitry.

49

Chapter 3

An Iterative MAC Model

In the previous Chapter, we identified three key areas: arithmetic logic unit, data flow,

and sparsity that have the potential to improve the overall performance of a hardware accelerator.

In addition, hybrid (mixed analog and in-memory) architectures were discussed for high-speed

implementation. The efficiency of the dataflows was evaluated. In this Chapter, we further

explore the arithmetic logic unit architectures. It is generally known that the training of DNNs

requires higher precision compared to inference. As a result, few hardware accelerators support

DNN training. In this Chapter, we propose a low-precision iterative MAC unit-based accelerator

intended for inference which can also be used to train the DNN model. The proposed MAC unit

can provide good performance and flexibility.

3.1 Introduction

As observed in Chapter 2, the DNN models have been modified by researchers to

optimize the performance of hardware accelerators, such as throughput, latency, memory, and

power requirements. The two most popular techniques are parameter quantization and parameter

reduction. In parameter reduction, the number of distinct weights in a DNN model is reduced.

Parameter reduction utilizes different compression techniques and reduces on-chip memory

requirements [45]. Parameter quantization leads to a reduction in bit length (precision) to

represent weights and activations. The DNN models are typically quantized to fixed-point to

implement on embedded systems. The fixed-point arithmetic unit takes the least number of

resources. Therefore, various DNN accelerators have been proposed based on fixed-point ALUs.

However, problems arise when offline training is required. Existing fixed-point-based

accelerators do not support training. In this Chapter, we look at fixed-point ALU

implementations for inference that can also train the DNN model.

3.2 Precision requirements

The training phase requires calculation and backpropagation of the error gradients

through the network. The weights (W), error gradient (), and weight gradients (W)

50

generally have a large dynamic range during the training. Therefore, the training of a DNN

model is typically done in single precision (i.e., 32-bit Floating-point, FL32) format. However, in

the inference mode, the model parameters do not change. The range of weights is known before

the deployment of the DNN model. For example, Fig. 3.1 shows the weight distribution of two

convolutional layers, conv1 and conv3, and two fully-connected layers, fc7 and fc8, of AlexNet

[81]. Note that the weights are small in value and have a normal distribution (a similar kind of

variation is observed in many standard networks, such as VGG-16, GoogleNet, and ResNet). The

weights of a DNN model typically follow a normal distribution. Inside a DNN, the mean and

variance of the distribution vary from layer to layer. To represent weights from such distributions,

FL32 format is not necessary. Lower bit width data formats can effectively represent such

weights. Bit length requirements for DNNs can be greatly reduced with only slight variations in

the accuracy. FL32 (32-bit length) weights can be represented in FL8 (8-bit length) without loss

of DNN precision [81].

Figure 3.1. Weight distributions in four different layers of AlexNet. conv1 and conv3 are

convolutional layers and fc7, fc8 are fully-connected layers [81].

51

 There are different ways to quantize the model parameters. One simple way is to use

fixed-point representations with enough bit width. The fixed-point operations do not need any

conversion or scaling operations to obtain the result. Hence, a fixed-point arithmetic unit can

provide the lowest latency with less power consumption within a smaller area. In dynamic fixed-

point format, the binary point position is arbitrary and requires scaling after an arithmetic

operation. Other quantization approaches include binary, ternary, lower bit-width floating, and

non-linear (e.g., logarithmic) quantization. The binary and ternary representations of parameters

lead to better hardware performance but degrade accuracy and model capabilities [44]. Non-

linear quantization reduces the bit lengths but requires relatively complex arithmetic hardware

units. Hence, fixed-point hardware is preferred inside an accelerator.

The accuracy loss of AlexNet with different quantization formats is shown in Table 3.1.

The weights and activations are quantized to different bit lengths, and the accuracy drop with

respect to FL32 representation is shown in Table 3.1. It is observed that the reduction of bit

length from 32-bit to 8-bit results in a marginal loss of accuracy [22, 45, 83]. Binarization (i.e.,

1-bit representation) of AlexNet results in an accuracy loss of more than 20% which is

undesirable [87]. Non-linear quantization can produce similar accuracy as FL32 but makes the

MAC unit design complex. The deep compression model [45] can reduce the weights to 8 bits,

and activations to 16 bits without affecting the accuracy. Dynamic fixed-point quantization can

also produce good accuracy but requires scaling after an arithmetic operation [22, 83].

Quantization-aware training approaches [82] have been proposed in the literature, which can

reduce the accuracy loss arising due to quantization.

A well-optimized DNN model may require different bit lengths at different layers within

the model. For example, the optimized bit length requirements for a five layers Convnet (three

convolutional and two fully-connected layers) are 8-7-7-5-5 bits, respectively [42]. In other

words, no standard precision is likely to be optimal for all the layers or models. Therefore, a

flexible DNN hardware accelerator (or the associated MAC units) should be able to support all

possible bit precisions.

Parameter quantization helps in implementing pre-trained DNN models in embedded

systems. However, problems arise when on-the-job training is required. The model might need

training with domain-specific or confidential data for performance optimization. The weight

gradients generally have small values (in a large range) and calculating these values may require

52

high-precision ALU units. Micikevicius et al. [92] used mixed-precision to train a network. The

weights, activations, and gradients are stored in IEEE half-precision (FL16) format, and a master

copy (original) of weights are stored in single-precision (FL32) format. The weight gradients are

added to the master copy of weights after each iteration, and then the updated weights are

converted to half-precision for the next iteration. The approach works for various models,

including convolutional neural networks and recurrent neural networks.

Table 3.1. Different methods to reduce numerical precision for AlexNet, accuracy measured for

TOP-5 error on IMAGENET data [24].

Reduction Strategy

Bit width Accuracy

loss vs. FL32

(%)
Weights Activations

Dynamic

Fixed-point

Without fine-tuning [83] 8 10 0.4

With fine-tuning [22] 8 8 0.6

Fixed-point

Quantization

(only weights)

Binary Connect [84] 1 FL32 19.2

Binary Weight Network [84] 1* FL32 0.8

Ternary Weight Network [41] 2* FL32 3.7

Trained Ternary Quantization

[85]
2* FL32 0.6

Fixed-point

Quantization

(both weight

and activations)

XNOR-Net [86] 1* 1* 11

Binarized Neural Networks [87] 1 1 29.8

DoReFa-Net [88] 1* 2* 7.63

Quantized Neural Networks [37] 1 2* 6.5

HWGQ-Net [89] 1* 2* 5.2

Non-linear

Quantization

LogNet [90]
5 (conv)

4 (fc)
4 3.2

Incremental Network

Quantization [91]
5 FL32 -0.2

Deep Compression [45]

8 (conv)

4 (fc)
16 0

4 (conv)

2 (fc)
16 2.6

* Quantization is not applied to first and/or last layers

Wang et al. [93] trained AlexNet with ImageNet data using FL8-bit format weights and

activations except for the first and last layers. In the implemented MAC unit, multiplication is

done in FL8, and accumulation in FL16 registers. A speedup factor of 2~4× is achieved without

any loss in accuracy. Das et al. [94] proposed a shared exponent representation of tensors and

developed a Dynamic Fixed-Point (DFP) scheme, which uses INT16 tensors with a shared 8-bit

tensor-wide exponent to represent the parameters. It uses an Integer Fused-Multiply-and-

53

Accumulate (FMA) unit for computation. An overall 1.8× speedup in training throughput is

achieved compared to the baseline FL32 performance.

It has been shown [81, 92, 93, 94] that the training phase requires higher bit-precision

compared to inference. Therefore, an accelerator designed for training is generally inefficient if

also be used for inference. Accelerators designed for training consume more power and less

throughput than those intended for inference. Consider the backpropagation equations used for

the network training as given below:

1 1 '[] (())l l lW f v n + +=  (3-1)

1() () ()L L L

ji j iw n n x n  − =   (3-2)

The computation of the local gradients (l) involves at least one forward pass parameter, i.e.,

the weight (𝑊𝑙) and/or activation (𝑥𝑙−1). The
' (())f v n of most widely used ReLu function

inside a DNN model is 1. The weight and activation parameters used in the local gradient

calculation are the same values used in the forward pass (inference mode). This suggests that the

gradient parameters may need higher precision, but one of the operands (e.g.,
1lW +
 in Eq. (3-1))

involved in gradient calculation can be represented in lower precision. Therefore, a high-

precision multiplication unit is not necessary for training. For example, assume that the forward

path is calculated in 8-bit integer (INT8) representation, meaning the weights and activations are

represented in INT8. In backpropagation, even though gradients are represented in FL16 format,

a full FL16×FL16 multiplier is not needed. A FL16×INT8 multiplier unit is enough. Further, if

we can represent FL16 with an 8-bit mantissa and 8-bit exponent, then the multiplication can be

simplified as ((8-bit mantissa) × INT8) *exponent. This way, the floating-point multiplication

can replace with a lower-precision fixed-point multiplier. Replacing the floating-point

multiplication with fixed-point in the hardware improves the latency and power efficiency

exponentially.

Apart from the above proposed precision models, researchers around the world are

exploring different solutions to the training step using the integer representation of gradients,

without affecting the convergence. In this Chapter, we propose a flexible iterative MAC unit

optimized for inference that can be used to train a DNN.

54

3.3 Iterative MAC Unit

It has been shown in the literature [16, 50, 51] that a high-precision MAC unit can be

implemented using lower precision MAC units. In this section, we use this approach to design a

low-precision MAC unit that can be used for DNN inference and can be used recursively to train

a DNN. A 16×16-bit multiplication can be implemented using four 8×8-bit MACs in parallel or

one 8x8-bit MAC in serial, as shown in Fig. 3.2. Figure 3.2(a) shows the parallel implementation,

all the four partial products are calculated in parallel and scaled results are added. Figure 3.2(b)

shows the serial implementation, one 8-bit multiplier is reused in time to calculate four partial

products. The parallel method consumes more resources and space but has less latency (single

iteration) whereas the serial method consumes fewer resources but has higher latency (four

iterations).

Figure 3.2. A 16-bit MAC implementation. (a) Parallel implementation using four 8-bit MAC

units, (b) Serial implementation using a single 8-bit MAC.

55

It is possible to obtain identical outputs by the two approaches in Fig. 3.2. However, in

the serial method, it may be possible to reduce the computations if some error in the output

calculation is allowed. For example, consider two INT16 numbers: 6,244C = and 3,272D = .

The number C and D can be represented by two INT8 numbers as follows

' 8 ''

' 8 ''

2

2

C C C

D D D

=  +

=  +

here ' '' ' '', , ,C C D D are 8-bit numbers. ' ',C D are MSB 8-bits and '' '',C D are LSB 8-bits. For

6,244C = , ' 24,C =
'' 100.C = Similarly, for 3,272,D =

' 12,D = '' 200D = . The exact result

C D is 20,430,368. If the multiplication is performed using just the upper bytes, 'C and 'D ,

and scaled appropriately, we will obtain
16() 2C D   = 18,874,368, which is 92% of the exact

result. Further, calculating the two more partial products ' ''C D (=1,228,800) and '' 'C D

(=307,200) and adding it to the first product with appropriate scaling (28), the result is

20,410,368, which is 99.9% of the exact result. The calculation of the lower byte partial product

(4th partial product) can be skipped if a 0.1% error is acceptable in the final value. In other words,

with the allowance of error in the final output, some partial products can be omitted.

As the DNN models are error resilient up to a certain level, we can reduce the number of

partial products required to be calculated. The parallel implementation is not advantageous

because all four partial products are calculated simultaneously. In the serial implementation, if

we can calculate the partial products one after another, starting from the product of upper bytes,

we can eliminate partial product calculation using lower bytes. Hence, fewer calculations result

in less power consumption and low latency. The serial implementation can also be extended to

any higher-precision MAC operation without any additional multipliers. The serial

implementation with a threshold limit for lower partial products calculation is called an iterative

MAC unit. In the iterative MAC, the upper byes’ partial product is calculated first. The iterative

MAC has the required flexibility and can take advantage of error resilience to reduce the latency

and power consumption of the hardware.

56

Figure 3.3. Proposed 8-bit iterative MAC implementation for 16×16-bit multiplication.

An 8-bit iterative MAC unit is shown in Fig. 3.3. Partial product using upper bytes is

calculated first. The partial product is compared with the set threshold value. If the partial

product exceeds the threshold value, no more iterations are calculated. The scaled partial product

is the approximate output. If the partial product is less than the threshold value, then the next

partial product is calculated and compared with the threshold. The process is continued until the

threshold condition is satisfied or all the four partial products are calculated. For a 16-bit

multiplication, minimum one iteration and maximum of four iterations are required. To optimize

the usage of hardware resources, it is crucial to know when all partial products should be

calculated and when some partial product calculations can be omitted. That means the optimal

threshold value is important in the iterative MAC performance. To obtain some statistical results

on MAC operations, we performed an experiment. We generate normalized 16-bit data x in the

range [1,1]− . It is hard to simulate with all possible combinations for 16×16 MAC, the result

matrix size goes beyond 16 GB. Therefore, we are considering
2x calculation using the proposed

8-bit iterative MAC unit. The
2x calculation can show possible minimum and maximum errors

with iterative MAC. Three kinds of results are calculated and plotted in Fig. 3.4(a). The blue line

shows the output obtained using single iterations ()C D  , the green line shows the output

obtained using three iterations (, ,)C D C D C D        and the red line shows the output obtained

using all four iterations (, , ,)C D C D C D C D           . Note that all outputs were scaled (by 82 or

162) appropriately. As all three output values are very close, the lines are indistinguishable in Fig.

3.4(a). To see the difference, a zoomed version is shown in Fig. 3.4(b). It is observed that the red

57

line is parabolic as expected as it shows the 2x function. The blue line shows results for the high

byte only, any change in the lower byte value does not reflect the squared value. The squared

(blue) value is constant for all adjacent input values whose difference is in the low byte. The

green line has a better approximation to 2x because it includes any change in lower byte values

through the additional partial products (,)C D C D     .

Figure 3.4. 16-bit square value calculation using an 8-bit iterative MAC unit. (a) input vs squared

plot of all three results, red indicates full MAC, green indicates three iterations and blue indicates

one iteration result. (b) zoom in version of (a) at smaller input values.

The error percentage of the squared values calculated for one (blue) and three (green)

iterations are shown in Figures 3.5(a) and (b). Figure 3.5(a) shows the error over the entire range

of the input ([-1 1]). It is observed that the percentage error is very small for high values of | |x .

58

A zoomed version of Fig. 3.5(a) at smaller values of | |x is shown in Fig. 3.5(b). Figure 3.5(b)

shows that for input values 0.15x  , the squared values calculated in one iteration are within 5%

error (blue line). Note that when we multiply two numbers with uniform probability density

function in the range [1,1]− , the probability that both operands have a magnitude greater than

0.15 is 72% (0.85 0.85= ). In other words, in 72% of the cases, one iteration is sufficient to

produce a multiplication result within a 5% error. The error exceeds 5% in the remaining 28% of

cases. Note that, as shown in Fig. 3.5(d), the percentage error is high when x becomes small. For

example, when 0.05x = , the error is around 15%. In other words, when the input is small, the

error may be too large to ignore. To obtain a more accurate output, smaller input values require

more than one iteration. To simplify the iteration threshold, the size of the value in the first

iteration (that is, the high-byte product) is checked. Subsequent iterations are calculated if the

value is less than 5% of the maximum possible absolute value. For example, if the first iteration

produces 16-bit output then the maximum absolute value in signed 16-bit representation is 32768,

and 5% of it is 1639. The threshold value is set to 1639 for an 8-bit iterative MAC, assuming a 5%

error can be tolerated in DNNs. If the first iteration value is less than 1,639, the subsequent

iterations are performed. The iteration results are scaled by a factor of 216, which makes the

remaining partial products insignificant in the approximated result. The least sixteen bits of the

32-bit register are zeros in a single iteration (blue) calculation. The results can be compressed to

a lower size by eliminating zero storage to save memory space. The error in single iteration

calculations can be reduced by approximating the least 16 bits with some random data. But the

approximation eliminates the possibility of data compression. Therefore, we are not seeking any

approximations to reduce the error in partial products. We can choose either input value (based

on Fig. 3.4) or partial product value as the threshold for further MAC iterations. We choose a

partial product value based (i.e., 1639) as the threshold for further experiments in this work.

59

Figure 3.5. 16-bit square value calculation using 8-bit iterative MAC unit (a) percentage of error

in square value using single iteration (blue) and three iterations (green) with respect to full

precision MAC. (b) zoom in version of (a) at smaller input values.

3.4 Experiments

In this section, we evaluate the performance of the proposed iterative MAC unit for

training and testing a popular DNN known as LeNet-300-100 [95]. As shown in Fig. 3.6, LeNet-

300-100 is a fully-connected neural network with two hidden layers. The first and second hidden

layers contain 300 and 100 neurons, respectively. LeNet-300-100 was initially proposed to

classify digit images in the MNIST dataset [99]. The MNIST dataset has 70,000 images, each

60

28x28 pixels in size, with each image containing a handwritten digit between 0 and 9. The output

layer of LeNet-300-100 has ten neurons to classify an input image into one of the ten digits (0 to

9).

Figure 3.6. LeNet-300-100 network architecture [95].

For the evaluation of the LeNet-300-100 implementation, the MNIST dataset was divided

randomly into three sets: training (50,000), validation (10,000), and testing (10,000) images. The

training set is used to train the model (i.e., update the model parameters), and the validation set is

used to check the performance of the model as the training progresses. The validation data is

used to evaluate the model after every iteration. In each iteration, A set of 1000 training images

are fed to the network to train the parameters and then a validation set is applied to measure the

accuracy with the updated parameters. The validation accuracy typically improves over the

iterations, which means parameters move toward the optimal solution. The validation error (=1-

validation accuracy) graph gives an idea about network convergence. After several iterations, the

validation accuracy does not improve further, meaning the network converges to an optimal

solution/parameters. The optimal parameters might vary based on the weights initialization and

training order. Sometimes, the training is stopped before the validation error reaches a very

small value (zero) to avoid overfitting the model to the training data. The performance of the

trained model is evaluated based on unseen test data, and its accuracy is measured.

61

The LeNet-300-100 was trained and tested with four different precision models, as shown

in Table 3.2. Training and testing were simulated in the MATLAB environment. In the first

model, the network was trained using single-precision floating-point (FL32) representation for

all parameters and data, such as weights, activations, and gradients. This model was used as the

reference model to measure the performance of the other models (with fixed-precision

representations).

Table 3.2. Four different precision models used for performance evaluation. Note that the Fourth

model uses the iterative MAC, whereas the First, Second, and Third models use the regular

MAC.

Model Forward Path Backpropagation

First model
Weights – FL32

Activations-FL32

Weights – FL32

Local gradient – FL32

Weight gradient – FL32

Second model
Weights – FX8

Activations-FX8

Weights – FL32

Local gradient – FL32

Weight gradient – FL32

Third model
Weights – FX8

Activations-FX8

Weights – FX8

Local gradient – FX40

Weight gradient – FX32

Fourth model
Weights – FX8

Activations-FX8

Weights – FX8

Local gradient – FX40

Weight gradient – FX32

 In the second model, the forward propagation parameters (e.g., weights, and activations)

are represented in the INT8 format, and the parameters for the backpropagation are in the FL32

format. Note that in the forward path, all arithmetic operations (e.g., multiplications and

additions) are done in single-precision floating-point, and the output is quantized to INT8 to use

at a later layer. The third model uses a fixed-point format in both forward/inference and

backpropagation. A 32-bit accumulator is used in the forward path. Different bit lengths are used

at different levels, as shown in Table 3.3. The weights and weight gradients are represented using

a 32-bit format, and local gradients are represented using a 40-bit format. The bit lengths used in

the third model are not fully optimized as these are the numbers that arise when observing the

parameter ranges during the first model training. All computations are performed using the full

MAC unit (red line in Fig. 3.4). The fourth model is similar to the third model, but all

calculations are performed using an iterative MAC unit with a threshold of 5%. The fourth model

replicates the proposed idea of using an iterative MAC unit.

62

Table 3.3. Parameters’ precision in the third and fourth models. Here Partial

() () ()ji j iw n n x n =  .

Parameter Fixed-point

Bits/ (sign, integer, fraction)

Weights (Forward path) 8 / (1, 0, 7)

Activations (Forward path) 8 / (1, 0, 7)

Local gradient δj 40 / (1, 16, 23)

Weight gradient ()jiw n 32 / (1, 0, 31)

Partial weight gradients ()jiw n 32 / (1, 8, 23)

Weights (Stored) 32 / (1, 0, 31)

 The convergence curves for all four models are shown in Fig. 3.7. The validation error

(=1-validation accuracy) vs. iteration curve is used to show the convergence during the training.

As expected, the first model converged to the best solution. The second model has the largest

validation error because it accumulates weights in floating-point and quantizes to INT8 bits for a

forward pass. Due to the quantization at each iteration, the weight updates may not reflect the

next iteration forward pass, causing the weights to oscillate at local minima. The convergence

rate for the third and fourth models is higher than the first, which is suitable for small training

datasets but can lead to local minima. The third and fourth models converge at a similar rate and

have similar validation and test error, implying that the iterative MAC with a threshold of 5% is

as efficient as using a full-size MAC unit.

Table 3.4. Accuracy measured for all four models.

Model Training accuracy (%) Testing accuracy (%)

First model 97 96

Second model 74 77

Third model 85 87

Fourth model 86 87

63

Figure 3.7. Convergence plots of all four models trained.

The trained models are evaluated with 10,000 test images. The results for the Top-1 test

and training accuracy for all four models are shown in Table 3.4. As expected, the first model

gives the best accuracy. The second model has the lowest accuracy because of the weight

quantization at each iteration. The weight updates may not reflect the next iteration forward pass,

causing the weights to oscillate at local minima. The third and fourth models have better

accuracies than the second and lower accuracy than the first models. The accuracy of the third

and fourth models can be further improved with higher bit length in the forward path. The

simulation results show that a model can be trained with an iterative MAC.

In the fourth model, during the training, the number of iterations the MAC unit is reused

to calculate the local gradient are shown in Fig. 3.8. Figure 3.8 shows the percentage of

multiplications requiring the MAC unit to go to a second, third, fourth and fifth iteration (based

on 5% threshold value) to calculate 40×8-bit multiplication (local gradient in 40-bit and weight

in 8-bit). As the training progresses, the percentage of multiplications requiring the fifth iteration

increases due to the decrease in the magnitude of the local gradient. Figure 3.8 shows that the

second and third iterations are always required instead of 28% in square value calculation (Fig.

64

3.4 and 3.5). The local gradient distribution in layers 2 and 3 are plotted in Fig. 3.8 show that the

gradient values are not uniformly distributed; most of the gradients are concentrated near zero

(very small values). Hence, the second and third iterations are required for almost all the

calculations in Lenet-300-100 model. We can also observe that as the gradient distribution is

wider in layer 3, the third iteration requirement goes below 90% whereas more than 95% in layer

2. The required iterations might vary depending on the network depth and type.

Figure 3.8. Percentage of multiplications in layer 2 and 3 local gradient calculation required

second, third, fourth and fifth iterations of iterative MAC unit. The second and third iterations

number are similar so only blue line is visible.

65

Figure 3.9. Local gradient distribution in layers 2 and 3 of the fourth model.

The simulation results do not generate any insightful information regarding the latency

and power reductions. In order to generate those results, the design needs to be implemented on

the hardware. For hardware implementation, the existing dataflows discussed in Chapter 2 are

ineffective for iterative MAC implementation. In all existing dataflows, full operands (i.e.,

8/16/32-bit values) are read from memory for computation, but for an iterative MAC unit, only

the upper byte or MSB 8-bits are read first. We may or may not read the next byte value (next 8-

bit data) based on the partial product magnitude. Eliminating unnecessary memory accesses for

lower-byte data can reduce the memory bandwidth requirement and memory access energy.

Therefore, a better dataflow architecture is needed to fully understand the advantages of the

iterative MAC at the hardware level.

3.5 Conclusions

In this Chapter, we proposed a low-precision iterative MAC unit-based accelerator for

DNN implementation. The proposed accelerator can be used for inference and training the DNN.

The popular LeNet-300-100 network was implemented using different precision models, and the

performance of the proposed iterative MAC was evaluated. Experimental results show that the

iterative MAC is as effective as a full MAC unit because of the error-resilient nature of neural

networks.

66

Chapter 4

Conclusion and Future Work

The DNNs have been shown to deliver state-of-the-art performance in many applications,

such as computer vision, medical diagnosis, security, robotics, and autonomous vehicles. The

application complexity determines the DNN model size, and large DNN models require more

computational power. Therefore, domain-specific hardware accelerators are needed to provide

high computational resources with superior energy efficiency and throughput within a small chip

area.

In Chapter 2, we identified three major areas: ALU, dataflow, and sparsity, in hardware

architectures that can potentially improve an accelerator's overall performance. Existing ASIC

hardware accelerators for inference are broadly classified into four categories. Each area offers

multiple optimization techniques to improve the overall architecture performance. The

advantages and drawbacks of each category are discussed. It is difficult to compare the existing

accelerators just based on speed and energy as each accelerator has its own specifications, such

as a number of MAC units, on-chip memory size, sparsity in data, and the DNN model. The

classification model can help to identify appropriate performance parameters and benchmarks for

accelerators. Three major dataflow architectures are evaluated. We found that the dataflow

efficiency depends on the workload. Weight-stationary dataflow gives better energy efficiency

and row-stationary dataflow has low latency for dense convolutional layers. The performance

varies with convolutional stride and filter size. Hence the dataflow must be chosen based on the

accelerator application.

DNN deployment on the embedded system requires generality in embedded hardware to

produce an optimal performance on DNN models quantized for different precisions. The

embedded system should be able to fine-tune the model with the sensor data i.e., training offline.

In Chapter 3, we proposed an iterative MAC unit to add precision flexibility and training

capabilities to the accelerators. In the iterative MAC, a small MAC unit is reused in time to

achieve higher-precision MAC functionality. The number of iterations of the small MAC can be

reduced by tracking the error magnitudes. The iterative MAC effectiveness in inference accuracy

67

and convergence rate at training are measured by simulating the LeNet-300-100 model. The

simulation results show that it is as effective as a full MAC unit.

4.1 Future Research Directions

The simulation results of the iterative MAC unit do not give any insights on latency and

power reductions. To determine latency and power requirements, we need to implement the

DNN model in hardware. For hardware implementation, the existing dataflows discussed in

Chapter 2 are ineffective for iterative MAC implementation. In all existing dataflows, full

operands (i.e., 8/16/32-bit values) are read from memory for computation, but for an iterative

MAC unit, only the upper nibble or MSB 8-bits are read first. We may or may not read the next

nibble value (next 8-bit data) based on the partial product magnitude. Eliminating unnecessary

memory accesses for lower nibble data can reduce the memory bandwidth requirements and save

memory access energy. Therefore, an alternative dataflow which can accesses the upper and

lower nibble data independently is needed to fully understand the advantage of the iterative

MAC at the hardware level.

68

References:

1. McCarthy, J. J. (2020). What Is Artificial Intelligence? Artificial Intelligence for Audit,

Forensic Accounting, and Valuation, 37–49. https://doi.org/10.1002/9781119601906.ch3

2. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84-90.

https://doi.org/10.1145/3065386

3. Pierson, H. A., & Gashler, M. S. (2017). Deep learning in robotics: a review of recent

research. Advanced Robotics, 31(16), 821–835.

https://doi.org/10.1080/01691864.2017.1365009

4. Berman, D. S., Buczak, A. L., Chavis, J. S., & Corbett, C. (2019). A Survey of Deep

Learning Methods for Cyber Security. Information, 10(4), 122.

https://doi.org/10.3390/info10040122

5. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C.,

Jodoin, P., & Larochelle, H. (2016). Brain tumor segmentation with Deep Neural

Networks. Medical Image Analysis, 35, 18–31.

https://doi.org/10.1016/j.media.2016.05.004

6. Chen, C., Seff, A., Kornhauser, A., & Xiao, J. (2015). Deepdriving: Learning affordance

for direct perception in autonomous driving. In Proceedings of the IEEE International

Conference on Computer Vision (pp. 2722-2730).

https://doi.org/10.1109/ICCV.2015.312

7. Otter, D. W., Medina, J. S., & Kalita, J. (2021). A Survey of the Usages of Deep

Learning for Natural Language Processing. IEEE Transactions on Neural Networks and

Learning Systems, 32(2), 604–624. https://doi.org/10.1109/tnnls.2020.2979670

8. Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J. M., Merolla, P. A.,

Imam, N., Nakamura, Y., Datta, P., Nam, G., Taba, B., Beakes, M. P., Brezzo, B., Kuang,

J. B., Manohar, R., Risk, W. P., Jackson, B. L., & Modha, D. S. (2015). TrueNorth:

Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

34(10), 1537–1557. https://doi.org/10.1109/tcad.2015.247439

9. NVIDIA Deep Learning Accelerator. (n.d.). http://nvdla.org/index.html

10. Deep-Learning Processor Unit - 3.0 English. (n.d.). https://docs.xilinx.com/r/en-

US/ug1414-vitis-ai/Deep-Learning-Processor-Unit

11. Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal, G., Bajwa, R., Bates, S. H.,

Bhatia, S. K., Boden, N., Borchers, A. T., Boyle, R. J., Cantin, P., Chao, C., Clark, C. D.,

Coriell, J. M., Daley, M. J., Dau, M., Dean, J., Gelb, B., . . . Yoon, D. H. (2017b). In-

Datacenter Performance Analysis of a Tensor Processing Unit. Computer Architecture

News, 45(2), 1–12. https://doi.org/10.1145/3140659.3080246

12. Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N. E., & Moshovos, A.

(2016). Cnvlutin: Ineffectual-neuron-free deep neural network computing. ACM

SIGARCH Computer Architecture News, 44(3), 1-13.

https://doi.org/10.1145/3007787.3001138

13. Judd, P., Lascorz, A. D., Sharify, S., & Moshovos, A. (2017). Cnvlutin2: Ineffectual-

Activation-and-Weight-Free Deep Neural Network Computing. ArXiv (Cornell

University). http://arxiv.org/pdf/1705.00125.pdf

https://doi.org/10.1002/9781119601906.ch3
https://doi.org/10.1145/3065386
https://doi.org/10.1080/01691864.2017.1365009
https://doi.org/10.3390/info10040122
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/tnnls.2020.2979670
https://doi.org/10.1109/tcad.2015.247439
http://nvdla.org/index.html
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Deep-Learning-Processor-Unit
https://docs.xilinx.com/r/en-US/ug1414-vitis-ai/Deep-Learning-Processor-Unit
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3007787.3001138
http://arxiv.org/pdf/1705.00125.pdf

69

14. Zhang, S., Du, Z., Zhang, L., Lan, H., Liu, S., Li, L., ... & Chen, Y. (2016, October).

Cambricon-X: An accelerator for sparse neural networks. In 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO) (pp. 1-12). IEEE.

https://doi.org/10.1109/MICRO.2016.7783723

15. Chen, Y. H., Krishna, T., Emer, J. S., & Sze, V. (2016). Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of

Solid-State Circuits, 52(1), 127-138. https://doi.org/10.1109/JSSC.2016.2616357

16. Moons, B., Uytterhoeven, R., Dehaene, W., & Verhelst, M. (2017). 14.5 envision: A

0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable

convolutional neural network processor in 28nm fdsoi. In 2017 IEEE International Solid-

State Circuits Conference (ISSCC) (pp. 246-247). IEEE.

https://doi.org/10.1109/ISSCC.2017.7870353

17. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., & Dally, W. J. (2016).

EIE: Efficient inference engine on compressed deep neural network. ACM SIGARCH

Computer Architecture News, 44(3), 243-254. https://doi.org/10.1145/3007787.3001163

18. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J.,

Keckler, S. W., & Dally, W. J. (2017). SCNN: An accelerator for compressed-sparse

convolutional neural networks. ACM SIGARCH Computer Architecture News, 45(2),

27-40. https://arxiv.org/pdf/1708.04485.pdf

19. Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., ... & Keckler,

S. W. (2019). Simba: Scaling deep-learning inference with multi-chip-module-based

architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture (pp. 14-27). https://doi.org/10.1145/3352460.3358302

20. Hashemi, S., Anthony, N., Tann, H., Bahar, R. I., & Reda, S. (2017). Understanding the

impact of precision quantization on the accuracy and energy of neural networks. Design,

Automation, and Test in Europe. https://doi.org/10.23919/date.2017.7927224 diannao

21. Sakr, C., Kim, Y., & Shanbhag, N. R. (2017). Analytical guarantees on numerical

precision of deep neural networks. International Conference on Machine Learning, 3007–

3016. http://proceedings.mlr.press/v70/sakr17a/sakr17a.pdf

22. Gysel, P., Motamedi, M. H. K., & Ghiasi, S. (2016b). Hardware-Oriented Approximation

of Convolutional Neural Networks. ArXiv (Cornell University).

https://arxiv.org/pdf/1604.03168.pdf

23. Albanie,. (n.d.). GitHub - albanie/convnet-burden: Memory consumption and FLOP

count estimates for convnets. GitHub. https://github.com/albanie/convnet-burden

24. Sze, V., Chen, Y., Yang, T., & Emer, J. (2017). Efficient Processing of Deep Neural

Networks: A Tutorial and Survey. Proceedings of the IEEE, 105(12), 2295–2329.

https://doi.org/10.1109/jproc.2017.2761740

25. Colangelo, P., Nasiri, N., Nurvitadhi, E., Mishra, A. K., Margala, M., & Nealis, K. (2018).

Exploration of Low Numeric Precision Deep Learning Inference Using Intel® FPGAs.

Field-Programmable Custom Computing Machines.

https://doi.org/10.1109/fccm.2018.00020

26. Talib, M. A., Majzoub, S., Nasir, Q., & Jamal, D. F. (2021). A systematic literature

review on hardware implementation of artificial intelligence algorithms. The Journal of

Supercomputing, 77(2), 1897–1938. https://doi.org/10.1007/s11227-020-03325-8

https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ISSCC.2017.7870353
https://doi.org/10.1145/3007787.3001163
https://arxiv.org/pdf/1708.04485.pdf
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.23919/date.2017.7927224
http://proceedings.mlr.press/v70/sakr17a/sakr17a.pdf
https://arxiv.org/pdf/1604.03168.pdf
https://doi.org/10.1109/jproc.2017.2761740
https://doi.org/10.1109/fccm.2018.00020
https://doi.org/10.1007/s11227-020-03325-8

70

27. Guo, K., Zeng, S., Yu, J., Wang, Y., & Yang, H. (2019). [DL] A Survey of FPGA-based

Neural Network Inference Accelerators. ACM Transactions on Reconfigurable

Technology and Systems, 12(1), 1–26. https://doi.org/10.1145/3289185

28. Li, Z., Wang, Y., Zhi, T., & Chen, T. (2017). A survey of neural network accelerators.

Frontiers of Computer Science, 11(5), 746–761. https://doi.org/10.1007/s11704-016-

6159-1

29. Chen, Y., Chen, T., Xu, Z., Sun, N., & Temam, O. (2016). DianNao family: energy-

efficient hardware accelerators for machine learning. Communications of the ACM,

59(11), 105–112. https://doi.org/10.1145/2996864

30. Camus, V., Mei, L., Enz, C., & Verhelst, M. (2019). Review and Benchmarking of

Precision-Scalable Multiply-Accumulate Unit Architectures for Embedded Neural-

Network Processing. IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, 9(4), 697–711. https://doi.org/10.1109/jetcas.2019.2950386

31. Reuther, A., Michaleas, P., Jones, M. P., Gadepally, V., Samsi, S., & Kepner, J. (2019).

Survey and Benchmarking of Machine Learning Accelerators. ArXiv (Cornell

University). https://doi.org/10.1109/hpec.2019.8916327

32. Du, Z., Guo, Q., Zhao, Y., Zhi, T., Chen, Y., & Xu, Z. (2020). Self-Aware Neural

Network Systems: A Survey and New Perspective. Proceedings of the IEEE, 108(7),

1047–1067. https://doi.org/10.1109/jproc.2020.2977722

33. Chen, Y., Xie, Y., Song, L., Chen, F., & Tang, T. (2020). A Survey of Accelerator

Architectures for Deep Neural Networks. Engineering, 6(3), 264–274.

https://doi.org/10.1016/j.eng.2020.01.007

34. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M. S., Berg, A. C., & Fei-Fei, L. (2015). ImageNet Large

Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3),

211–252. https://doi.org/10.1007/s11263-015-0816-y

35. Chen, Q., Xin, C., Zou, C., Wang, X., & Wang, B. (2017). A low bit-width parameter

representation method for hardware-oriented convolution neural networks. International

Conference on ASIC. https://doi.org/10.1109/asicon.2017.8252433

36. Horowitz, M. (2014). 1.1 Computing’s energy problem (and what we can do about it).

International Solid-State Circuits Conference. https://doi.org/10.1109/isscc.2014.6757323

37. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016b). Quantized

neural networks: training neural networks with low precision weights and activations.

Journal of Machine Learning Research, 18(1), 6869–6898.

https://jmlr.org/papers/volume18/16-456/16-456.pdf

38. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M. F., Howard, A. W., Adam, H., &

Kalenichenko, D. (2018b). Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference. Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.2018.00286

39. Wu, S., Li, G., Chen, F., & Shi, L. (2018). Training and Inference with Integers in Deep

Neural Networks. International Conference on Learning Representations.

https://arxiv.org/pdf/1802.04680.pdf

40. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized

Neural Networks. Neural Information Processing Systems, 29, 4107–4115.

https://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

https://doi.org/10.1145/3289185
https://doi.org/10.1007/s11704-016-6159-1
https://doi.org/10.1007/s11704-016-6159-1
https://doi.org/10.1145/2996864
https://doi.org/10.1109/jetcas.2019.2950386
https://doi.org/10.1109/hpec.2019.8916327
https://doi.org/10.1109/jproc.2020.2977722
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/asicon.2017.8252433
https://doi.org/10.1109/isscc.2014.6757323
https://jmlr.org/papers/volume18/16-456/16-456.pdf
https://doi.org/10.1109/cvpr.2018.00286
https://arxiv.org/pdf/1802.04680.pdf
https://papers.nips.cc/paper/6573-binarized-neural-networks.pdf

71

41. Li, F., & Liu, B. (2016). Ternary Weight Networks. ArXiv (Cornell University).

https://doi.org/10.48550/arxiv.1605.04711

42. Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., Jerger, N. E., Urtasun, R., &

Moshovos, A. (2017). Proteus: Exploiting precision variability in deep neural networks.

Parallel Computing, 73, 40–51. https://doi.org/10.1016/j.parco.2017.05.003

43. NVIDIA T4 Tensor Core GPUs for Accelerating AI Inference. (n.d.). NVIDIA.

https://www.nvidia.com/en-us/data-center/tesla-t4/

44. Wang, E., Davis, J., Zhao, R., Ng, H., Niu, X., Luk, W., Cheung, P. Y. K., &

Constantinides, G. A. (2019). Deep Neural Network Approximation for Custom

Hardware: Where We’ve Been, Where We’re Going. ACM Computing Surveys.

http://arxiv.org/pdf/1901.06955

45. Han, S., Mao, H., & Dally, W. J. (2015d). Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding. ArXiv (Cornell

University). https://arxiv.org/pdf/1510.00149.pdf

46. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014). Diannao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning. Computer

Architecture News, 42(1), 269–284. https://doi.org/10.1145/2654822.2541967

47. Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N.,

& Temam, O. (2014). DaDianNao: A Machine-Learning Supercomputer. International

Symposium on Microarchitecture. https://doi.org/10.1109/micro.2014.5

48. Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y., & Temam,

O. (2016). ShiDianNao: Shifting vision processing closer to the sensor. Computer

Architecture News, 43(3S), 92–104. https://doi.org/10.1145/2872887.2750389

49. Daofu, L., Chen, T., Liu, S., Zhou, J., Zhou, S., Teman, O., Feng, X., Zhou, X., & Chen,

Y. (2015). PuDianNao: A Polyvalent Machine Learning Accelerator. SIGPLAN Notices,

50(4), 369–381. https://doi.org/10.1145/2775054.2694358

50. Shin, D., Lee, J., & Yoo, H. (2017). 14.2 DNPU: An 8.1TOPS/W reconfigurable CNN-

RNN processor for general-purpose deep neural networks. International Solid-State

Circuits Conference. https://doi.org/10.1109/isscc.2017.7870350

51. Lee, J., Kim, C., Kang, S., Shin, D., Kim, S., & Yoo, H. (2018). UNPU: A 50.6TOPS/W

unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-

precision. International Solid-State Circuits Conference.

https://doi.org/10.1109/isscc.2018.8310262

52. Kim, E. K., Del Barrio, A. A., Kim, H., & Bagherzadeh, N. (2021). The Effects of

Approximate Multiplication on Convolutional Neural Networks. IEEE Transactions on

Emerging Topics in Computing, 10(2), 904–916.

https://doi.org/10.1109/tetc.2021.3050989

53. Ansari, M., Cockburn, B. F., & Han, J. (2021). An Improved Logarithmic Multiplier for

Energy-Efficient Neural Computing. IEEE Transactions on Computers, 70(4), 614–625.

https://doi.org/10.1109/tc.2020.2992113

54. Carmichael, Z., Langroudi, H. F., Khazanov, C., Lillie, J. S., Gustafson, J. L., &

Kudithipudi, D. (2019). Deep Positron: A Deep Neural Network Using the Posit Number

System. Design, Automation, and Test in Europe.

https://doi.org/10.23919/date.2019.8715262

https://doi.org/10.48550/arxiv.1605.04711
https://doi.org/10.1016/j.parco.2017.05.003
https://www.nvidia.com/en-us/data-center/tesla-t4/
http://arxiv.org/pdf/1901.06955
https://arxiv.org/pdf/1510.00149.pdf
https://doi.org/10.1145/2654822.2541967
https://doi.org/10.1109/micro.2014.5
https://doi.org/10.1145/2872887.2750389
https://doi.org/10.1145/2775054.2694358
https://doi.org/10.1109/isscc.2017.7870350
https://doi.org/10.1109/isscc.2018.8310262
https://doi.org/10.1109/tetc.2021.3050989
https://doi.org/10.1109/tc.2020.2992113
https://doi.org/10.23919/date.2019.8715262

72

55. Olsen, E. (2018). RNS Hardware Matrix Multiplier for High Precision Neural Network

Acceleration: “RNS TPU.” International Symposium on Circuits and Systems.

https://doi.org/10.1109/iscas.2018.8351352

56. Samimi, N., Kamal, M., Afzali-Kusha, A., & Pedram, M. (2020). Res-DNN: A Residue

Number System-Based DNN Accelerator Unit. IEEE Transactions on Circuits and

Systems I-Regular Papers, 67(2), 658–671. https://doi.org/10.1109/tcsi.2019.2951083

57. Chen, Y., Emer, J., & Sze, V. (2016b). Eyeriss: A Spatial Architecture for Energy-

Efficient Dataflow for Convolutional Neural Networks. 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA).

https://doi.org/10.1109/isca.2016.40

58. Chen, Y., Yang, T., Emer, J., & Sze, V. (2019). Eyeriss v2: A Flexible Accelerator for

Emerging Deep Neural Networks on Mobile Devices. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 9(2), 292–308.

https://doi.org/10.1109/jetcas.2019.2910232

59. Venkatesan, R., Raina, P., Zhang, Y., Zimmer, B., Dally, W. J., Emer, J., Keckler, S. W.,

Khailany, B., Shao, Y. S., Wang, M., Clemons, J., Dai, S., Fojtik, M., Keller, B.,

Klinefelter, A., & Pinckney, N. (2019). MAGNet: A Modular Accelerator Generator for

Neural Networks. International Conference on Computer Aided Design.

https://doi.org/10.1109/iccad45719.2019.8942127

60. Alwani, M., Chen, H. Y. H., Ferdman, M., & Milder, P. (2016). Fused-layer CNN

accelerators. 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). https://doi.org/10.1109/micro.2016.7783725

61. Zhang, J., Lee, C., Liu, C., Shao, Y. S., Keckler, S. W., & Zhang, Z. (2019). SNAP: A

1.67 — 21.55TOPS/W Sparse Neural Acceleration Processor for Unstructured Sparse

Deep Neural Network Inference in 16nm CMOS. Symposium on VLSI Circuits.

https://doi.org/10.23919/vlsic.2019.8778193

62. Lee, J., Lee, J., Han, D., Park, G., & Yoo, H. (2019). 7.7 LNPU: A 25.3TFLOPS/W

Sparse Deep-Neural-Network Learning Processor with Fine-Grained Mixed Precision of

FP8-FP16. International Solid-State Circuits Conference.

https://doi.org/10.1109/isscc.2019.8662302

63. Lin, C., Cheng, C., Tsai, Y., Hung, S., Kuo, Y., Wang, P. G., Tsung, P., Hsu, J., Lai, W.,

Liu, C., Wang, S., Kuo, C., Chang, C., Lee, M., Lin, T., & Chen, C. (2020). 7.1 A 3.4-to-

13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator for Versatile AI

Applications in 7nm 5G Smartphone SoC. International Solid-State Circuits Conference.

https://doi.org/10.1109/isscc19947.2020.9063111

64. Xuda, Z., Du, Z., Guo, Q., Liu, S., Liu, C., Wang, C., Zhou, X., Li, L., Chen, T., & Chen,

Y. (2018). Cambricon-S: Addressing Irregularity in Sparse Neural Networks through A

Cooperative Software/Hardware Approach. International Symposium on

Microarchitecture. https://doi.org/10.1109/micro.2018.00011

65. De Lima, T. F., Peng, H., Tait, A. N., Nahmias, M. A., Miller, H. L., Shastri, B. J., &

Prucnal, P. R. (2019). Machine Learning with Neuromorphic Photonics. Journal of

Lightwave Technology, 37(5), 1515–1534. https://doi.org/10.1109/jlt.2019.2903474

66. Kim, D., Kung, J., Chai, S. M., Yalamanchili, S., & Mukhopadhyay, S. (2016).

Neurocube: A Programmable Digital Neuromorphic Architecture with High-Density 3D

Memory. 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA). https://doi.org/10.1109/isca.2016.41

https://doi.org/10.1109/iscas.2018.8351352
https://doi.org/10.1109/tcsi.2019.2951083
https://doi.org/10.1109/isca.2016.40
https://doi.org/10.1109/jetcas.2019.2910232
https://doi.org/10.1109/iccad45719.2019.8942127
https://doi.org/10.1109/micro.2016.7783725
https://doi.org/10.23919/vlsic.2019.8778193
https://doi.org/10.1109/isscc.2019.8662302
https://doi.org/10.1109/isscc19947.2020.9063111
https://doi.org/10.1109/micro.2018.00011
https://doi.org/10.1109/jlt.2019.2903474
https://doi.org/10.1109/isca.2016.41

73

67. Lu, H., Wei, X., Lin, N., Yan, G., & Li, X. (2018). Tetris: re-architecting convolutional

neural network computation for machine learning accelerators. Proceedings of the

International Conference on Computer-Aided Design. 1-8,

https://doi.org/10.1145/3240765.3240855

68. Xiao, T., Bennett, C., Feinberg, B., Agarwal, S., & Marinella, M. J. (2020). Analog

architectures for neural network acceleration based on non-volatile memory. Applied

Physics Reviews, 7(3), 031301. https://doi.org/10.1063/1.5143815

69. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y., & Xie, Y. (2016). PRIME:

A Novel Processing-in-Memory Architecture for Neural Network Computation in

ReRAM-Based Main Memory. 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA). https://doi.org/10.1109/isca.2016.13

70. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M.,

Williams, R., & Srikumar, V. (2016). ISAAC: A Convolutional Neural Network

Accelerator with In-Situ Analog Arithmetic in Crossbars. 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA).

https://doi.org/10.1109/isca.2016.12

71. Bojnordi, M. N., & Ipek, E. (2016). Memristive Boltzmann machine: A hardware

accelerator for combinatorial optimization and deep learning. High-Performance

Computer Architecture. https://doi.org/10.1109/hpca.2016.7446049

72. Nag, A., Balasubramonian, R., Srikumar, V., Walker, R. M., Shafiee, A., Strachan, J. P.,

& Muralimanohar, N. (2018). Newton: Gravitating Towards the Physical Limits of

Crossbar Acceleration. IEEE Micro, 38(5), 41–49.

https://doi.org/10.1109/mm.2018.053631140

73. Ankit, A., Hajj, I. E., Chalamalasetti, S. R., Ndu, G., Foltin, M., Williams, R. S.,

Faraboschi, P., Hwu, W., Strachan, J. P., Roy, K., & Milojicic, D. S. (2019b). PUMA: A

programmable ultra-efficient memristor-based accelerator for machine learning inference.

InProceedings of the Twenty-Fourth International Conference on Architectural Support

for Programming Languages and Operating Systems, 715-731.

https://doi.org/10.1145/3297858.3304049

74. Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J., & Qian, H. (2020).

Fully hardware-implemented memristor convolutional neural network. Nature, 577(7792),

641–646. https://doi.org/10.1038/s41586-020-1942-4

75. Cao, N., Chang, M., & Raychowdhury, A. (2019). 14.1 A 65nm 1.1-to-9.1TOPS/W

Hybrid-Digital-Mixed-Signal Computing Platform for Accelerating Model-Based and

Model-Free Swarm Robotics. International Solid-State Circuits Conference.

https://doi.org/10.1109/isscc.2019.8662311

76. Bankman, D., Yang, L., Moons, B., Verhelst, M., & Murmann, B. (2018). An Always-On

3.8uJ/86% CIFAR-10 Mixed-Signal Binary CNN Processor with All Memory on Chip in

28-nm CMOS. IEEE Journal of Solid-State Circuits, 54(1), 158–172.

https://doi.org/10.1109/jssc.2018.2869150

77. Tsai, H., Ambrogio, S., Narayanan, P., Shelby, R. M., & Burr, G. W. (2018). Recent

progress in analog memory-based accelerators for deep learning. Journal of Physics D,

51(28), 283001. https://doi.org/10.1088/1361-6463/aac8a5

78. Parashar, A., Raina, P., Shao, Y. S., Chen, Y., Ying, V. A., Mukkara, A., Venkatesan, R.,

Khailany, B., Keckler, S. W., & Emer, J. (2019). Timeloop: A Systematic Approach to

https://doi.org/10.1145/3240765.3240855
https://doi.org/10.1063/1.5143815
https://doi.org/10.1109/isca.2016.13
https://doi.org/10.1109/isca.2016.12
https://doi.org/10.1109/hpca.2016.7446049
https://doi.org/10.1109/mm.2018.053631140
https://doi.org/10.1145/3297858.3304049
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/isscc.2019.8662311
https://doi.org/10.1109/jssc.2018.2869150
https://doi.org/10.1088/1361-6463/aac8a5

74

DNN Accelerator Evaluation. International Symposium on Performance Analysis of

Systems and Software. https://doi.org/10.1109/ispass.2019.00042

79. Yang, T., Chen, Y., Emer, J., & Sze, V. (2017). A method to estimate the energy

consumption of deep neural networks. Asilomar Conference on Signals, Systems and

Computers. https://doi.org/10.1109/acssc.2017.8335698

80. K. Guo, W. Li, K. Zhong, Z. Zhu, S. Zeng, S. Han, Y. Xie, P. Debacker, M. Verhelst, Y.

Wang. Neural Network Accelerator Comparison, [Online]

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

81. Lai, L., Suda, N., & Chandra, V. (2017). Deep Convolutional Neural Network Inference

with Floating-point Weights and Fixed-point Activations. ArXiv (Cornell University).

https://arxiv.org/pdf/1703.03073.pdf

82. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M. F., Howard, A. W., Adam, H., &

Kalenichenko, D. (2018). Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference. Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.2018.00286

83. Ma, Y., Suda, N., Cao, Y., Seo, J., & Vrudhula, S. (2016). Scalable and modularized RTL

compilation of Convolutional Neural Networks onto FPGA. Field-Programmable Logic

and Applications. https://doi.org/10.1109/fpl.2016.7577356

84. Courbariaux, M., Bengio, Y., & David, J. (2015). BinaryConnect: training deep neural

networks with binary weights during propagations. Neural Information Processing

Systems, 28, 3123–3131. https://arxiv.org/pdf/1511.00363

85. Zhu, C., Han, S., Mao, H., & Dally, W. J. (2016). Trained Ternary Quantization. ArXiv

(Cornell University). https://doi.org/10.48550/arxiv.1612.01064

86. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks. Lecture Notes in Computer

Science, 525–542. https://doi.org/10.1007/978-3-319-46493-0_32

87. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized

Neural Networks: Training Deep Neural Networks with Weights and Activations

Constrained to +1 or -1. ArXiv (Cornell University). https://arxiv.org/pdf/1602.02830.pdf

88. Zhou, S., Wu, Y., Zekun, N., Zhou, X., Wen, H., & Zou, Y. (2016). DoReFa-Net:

Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.

ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1606.06160

89. Cai, Z., He, X., Sun, J., & Vasconcelos, N. (2017). Deep Learning with Low Precision by

Half-Wave Gaussian Quantization. Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.2017.574

90. Miyashita, D., Lee, E. A., & Murmann, B. (2016). Convolutional Neural Networks using

Logarithmic Data Representation. ArXiv (Cornell University).

http://export.arxiv.org/pdf/1603.01025

91. Zhou, A., Yao, A., Guo, Y., Xu, L., & Chen, Y. (2017). Incremental Network

Quantization: Towards Lossless CNNs with Low-Precision Weights. ArXiv (Cornell

University). https://arxiv.org/pdf/1702.03044.pdf

92. Micikevicius, P., Narang, S., Alben, J. M., Diamos, G., Elsen, E., Garcia, D. A., Ginsburg,

B., Houston, M. J., Kuchaiev, O., Venkatesh, G., & Wu, H. (2017). Mixed Precision

Training. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.1710.03740

https://doi.org/10.1109/ispass.2019.00042
https://doi.org/10.1109/acssc.2017.8335698
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://arxiv.org/pdf/1703.03073.pdf
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.1109/fpl.2016.7577356
https://arxiv.org/pdf/1511.00363
https://doi.org/10.48550/arxiv.1612.01064
https://doi.org/10.1007/978-3-319-46493-0_32
https://arxiv.org/pdf/1602.02830.pdf
https://doi.org/10.48550/arxiv.1606.06160
https://doi.org/10.1109/cvpr.2017.574
http://export.arxiv.org/pdf/1603.01025
https://arxiv.org/pdf/1702.03044.pdf
https://doi.org/10.48550/arxiv.1710.03740

75

93. Wang, N., Choi, J., Brand, D., Chen, C., & Gopalakrishnan, K. (2018). Training Deep

Neural Networks with 8-bit Floating Point Numbers. Neural Information Processing

Systems, 31, 7675–7684.

https://papers.nips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf.

94. Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D. D., Avancha, S., Banerjee, K.,

Sridharan, S., Vaidyanathan, K., Kaul, B., Georganas, E., Heinecke, A., Dubey, P.,

Corbal, J., Shustrov, N., Dubtsov, R. S., Fomenko, E., & Pirogov, V. O. (2018). Mixed

Precision Training of Convolutional Neural Networks using Integer Operations. ArXiv

(Cornell University). https://arxiv.org/pdf/1802.00930

95. Deng, L. (2012). The MNIST Database of Handwritten Digit Images for Machine

Learning Research [Best of the Web]. IEEE Signal Processing Magazine, 29(6), 141–142.

https://doi.org/10.1109/msp.2012.221147

96. Shawahna, A., Sait, S. M., & El-Maleh, A. (2018). FPGA-based accelerators of deep

learning networks for learning and classification: A review. IEEE Access, 7, 7823-7859.

97. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

98. Machupalli, R., Hossain, M., & Mandal, M. (2022). Review of ASIC accelerators for

deep neural network. Microprocessors and Microsystems, 89, 104441.

https://doi.org/10.1016/j.micpro.2022.104441

99. Deng, L. (2012). The mnist database of handwritten digit images for machine learning

research. IEEE Signal Processing Magazine, 29(6), 141–142.

https://papers.nips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://arxiv.org/pdf/1802.00930
https://doi.org/10.1109/msp.2012.221147
https://doi.org/10.1016/j.micpro.2022.104441

