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ABSTRACT

! The velocity and attenuatio% of longitudinal sound
propagating in single crystals of hq% He4 at a molar
volumé of 17.4 cm3 werebmeasured'begween 0.25 K and melting,
and at frequencies of 5, 15 and 25 ﬁHz. All samples showed
an éxgremely,large dispersiop and iﬁ.most'cases a large
velocity anomaly extending from between 1l and 1.8 K down
to the lowest temperatures. A£ higher fréquencies the
anomaly was reduced in magnitude and it shifted to lower
temperatures. The anomaly was usually positive, but in
two cases it was negative and in two other cases was not
~present at all. The attenuation was 0.01 cm_l or less‘
near melting and increased up to 100 times.byithe lowest
temperature, except\fd&fthe two'cfystals without velocity
. ~anomalies; these showed no dramatic rise in aﬁtenuétion.
- The attenuation increased with frequency.' Several fheories
. involving second sound, zero sound, dislocations and

superfluidity are invoked in order to explain the effects.

None was successful.
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CHAPTER 1

INTRODUCTION .
3

Solid helium was originally studied with the
expectation that it would prove to be the simplest and
most ideal of all solids. For some physical properties
these hopes have béen at least qualitatively realized,
but in other respects the behaviour of solid helium v
deviates dramaticglly from that of more normal solids.

Most'of'these unusual effects can be attr%buted
to.the quantum nature of Félium. BecauseAthevatoms are

very light, and interact only tﬁrough a weak Van der Waals

potential, they possess a very large zero point energy and

N
_experience such large excursions from their lattice sites

that the wave functions of neighbouring atoms everlap to . .

a significant extent. The symmetry of the wave functions

-~

J
then becomes important so that liquid He3, a fermi particle

(2 protons, 1 neutron and 2 electrons) has markedly dif-

H .
ferent properties from liquid He4, a bose particle

> ’ A

(2 protons, 2 neutrons, 2 electrons). .Thé localization
'éf the atomé on latticeysites in thé solid reduces the
overlap sd that the differences between the two isotopes
are more éubtle in the solid state. |

Since it has a lower boiling point than any other

L

substance, helium can be purified to an extremely'high

degree with simple techniques. Only disorder-~type

~



deferts will then be present. “As well, single crystals:
of;so]{% helium are relatively easy to grow, and it is a
"dielectric. For these several i1.:asons, research on solid
helium is largely free of)the many spurious effécts which
plague the study of other more complex solids. Transport
properties in particular may be observed under the.nearly
ideal conditions which are difficult and expensive to
attain in other crystals. A lightly damped second sound
mode may be ‘propagated while the thermal conductivity
exhlblts the pronounced umklapp maximum and well-defined
Poiseuille flow reglon typlcal of very pure dielectrics.

Solid helium has amr extraordinarily high compres-
51b111ty, enabllng observatlons to be taken, overra wide
range of molar volumes (the volume is halved W1tn the
application of 1500 bar of pressure) Of thermodynamlc
1nterest 1s the fact that solid helium's high compre551b1—
llty allows 1ts propertles to be measured at. an essentlally
constant volume. |

The present work may be considered in part to be
the third‘stage of a long term nroject to measure the
temperature, volume and frequency dependence of the attenu-
ation of sound in solid helium. I believe the data con- )
tained in this work to be the first reliable measurements
of attenuation, particularly at.higher temperatures.

Tne most important goal of this work is to examine
in greater detail the anomalous behaviour of the sound

velocity which was discovered in this laboratory by Franck

w



and Hewko (1973) and further investigated by Wanner and
Mueller (1974) and Wanner et al.(l976); The original aims
were'to observe'the anomaly with much greater precision
and to extend the measurements to lower temperatures. The
-high guality of the ult{asonic traﬂsducers used enabled

me to successfully excite and observe the third and fifth
harmonics of the fundamental frequency. This allowed not
only the dispersion in solid helium to be measured for the
first time in the long wavelength limit, but also the
frequency dependence of the attenuation and the'velocity
anomaly."

’ Preliminary results of this work have alreaéy

been published elsewhere (Calder and Franck (1977)).



CHAPTER 2

THEORY

For the study of classical lattice dynamics and
sound propagation I have found particularly useful books
by Maradudin et al. (1971), éorn and Huang (1954),

Musgrave (1970) and Reissland (1973), with supporting
material from Nyef(1957). There are available numerous
useful reviews of quantum lattice dynamics including those:
by Guyér (1969), Koehler 21975) and Glyde (1976).

The most recent reyiews of £hg properties of solid
helium are the works of Wilks (1967), Keller (1969),
Trickey et al. (1972) and Glyde (1976). Theories of the
various contribiutions to the temperature dependence of tﬁe
sound velocity and attenuation can be found in Bhatia

(1967), Truell et al. (1969) and especially Maris (1971).

2.1 Classical Lattice Dynamics

It is obvious ffom_numerOUS experiments like the‘
present one that sound aoes propaéate in bulk solid helium
in the long wavelength'limit. With this Qbseréétéon in

. mind, we can confidently go ahead and use the relations of
contiﬁuum mechaﬁics as‘déveloped in section 2.3 in order
to relate the velocity of sound to sgch macroséopic
properties of the crystal aé the'elastié constants. How-

ever ‘in order to use acoustic modes effectively as probes

of the properties of a solid on the_atomic scale, we need

.

.
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a microscopic theory of lattice dynamics. ‘Although clas-
sical lattice dynamics are totally inadequate to describe
solid helium, even with anharmonic corrections, a brief
outline still serves as a us ful introduction to the
methods required when dealing with solid helium. \

. Each atdm sits in the potential well created by
all other a;oms in the érystal. If the atoms make only

very small excursions from ‘their equilibrium positions,

then the potential may be expanded into the harmonic form:

2 L
ja v T ul, u’ (2.1-1)
sg Y3 Ho

vV = vo + Lk
: au

where there is summation over repeated indices and ugl‘

represents the scalar displacement of atom s- in unit
cell & in the direction Jj. Higher order terms may be

added to (2.1-1) to give anharmonic corrections. The

total kinetic energy, for atoms of mass Ms is:

- v o ’ -
T= %M oulo0l. (2.1-2)

The equations of motion can then be easily found from

Lagrange's equations giving,

"Sl - T 252;5'2' .‘_Jslll. (2.1-3)



6
. . 2
where pl3t o 9V _ (2.1-4)
. st;s' 8uj au] ’
st s'e! 0
and henceforward there is no summation over s only.
Késuming only central forces are present, and
using the Bloch condition,
8 _ .ig-g l -5)
ugg(t) = e"= = u_ (t), (2.1-5)
we find, . ‘ :
< Mglgq(t) = = Dgg (D) rugi g (1), (2.1-6)
where ¢ ié the wave vector and, .
- ig,h -
st-(g) = st';he == (2.1-7)
}3 -
Assume a plane wave solution:
iwt :
gsq(t) Esqe (2.1-8)
so we have finally,
2 _ _
[Dgge (D)= M 0™ (q) 6, 1] Ugrg = 0 (2.1-9)

where §__, is the Kronecker delta and I the identity
as a function of g by

One can now find w

matrix.
solving the secular equation,

/

/

/



) !
2
(@) - Mow™(@)s__.I| = 0. - (2.1-10)

g
This equation has 3n solutions where n is the number of
pParticles in one unit cell and the three refers to
j =1, 2, 3, the three polarizations of the vibrations. -

\

The group velocity is defined as,

.=V ey, | 2.1-11
&5 = Yqruy(Q), . ( )

but usually what one measures is the phase velocity yj,'

defined by,

wj(g) = Yj(g)'g . _ (2.1-12) .

In the case where there is nd dispersion; the phase velo-
city is iaentical with the group velocigy. |
In the long wavélength limit (i e. for small g),

_ .(q) in (2.1-10) can be expanded in powers. of q

(Maradudin et al (1971)) and (2.1~ ~=10) can, after some

lengthy algebra, be written 1n the form,

. . 2 ) R
+ C' - . -1-
l(casxu C Oqu)quu pwJGaB[ (2.1-13)
"where C and ¢! {are complicated functions of the
derivatiyes of D .(q) Equation' (2.1-13) provides a -

link between lattice dynamics and the continuum model

-~

N



discussed in section 2.3. [
- We can gain further insight into classical lat-
tice dynamics by forming the Hamiltonian of the system in

the harmonic approximation from (2.1-1) and (2.1-2) and

diagonalizing it to give:

H=3%I [lpki|? ¥ w2 ki) laki) |2 (2.1-14)
= kj 3 ' .
where
ugy = E(s2aiki) alks),  (2.1-15)
ad, = £(staski) p(kI), . (2.1-16)
and wz(]_(j) ='Dz(;zs'-2' E?"(S,Q,(I;]_(_jfg(s'll_a";}_{'j')Gk_kn ,
(2.1-17)
with E(stask]) = Ms—;i ea(Kj)e'iE°&s . (2.1-18)

o~ .
‘>Using (2.1~18) in (2.1-17) along with the Bloch theorem

once again we find:

[

©

[D(kj) - mw>(ki)Ilu(ki) = O, (2.1-19)

as in equation (2.1-9).
Equation (2.1-14) then gives the Hamiltonian for
a harmonic oscillator sé_that the quantized 1attice modes,

or phonons, obey Bose-Einstein statistics.



2.2 The Lattice Dynamics of Solid Helium

In most normal crystals the harmonlc approx1m;tlon
used in equatlon (2.1-1) is a good one As long as the
.klnetlc energy of a partlcle is only, §'small'fraction of
.the depth of the potential_well, then\th? parficle remains
verf near to the bottom of the potential well, where (2.1-1)
is valid. Small excursions from (aV/auK\= 0 can usually
be accounted for with small anhagmonicfcéxrections to
equation (2.1-1). J |

The interatomic forces for helium(aré the Van der
.Waals forces, whlch are very weak for the tlghtly bound

electronlc shell around helium atoms. A simple approxi_‘w-A

mation is the Lennard-Jones potential:

V(r) = 4e [o/0)1? - (o/1) 5], o (2.2-1)

L4

as shown by the dashed_curvekof figure 1.. From the
virial coefficients of helium gas, it is found that the
helium potgptial has a very shallow well of € = 10.2 K
and a very .extended hard cofe.with o = 2.556%. If
(2.2-1) is uséd in equation4(2.l—10), then the sound
velccity predicted by (2.1—103 is four times larger than
that found experimentally. Cléssical lattice dynamics
also predic. a2 molar volume too smail by half and a com-
pressibility o times too small. On the other hand,
heat capacit a- rmal conductivity behave quite

normally, so t-=- sort of long range correlations
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Figure 1 Interatomic potential well in solid helium-4 at 17.4 cm3/mole.



must be preéent.

At P = 0, T = 0, the kinetic energy of a solid
arises solely from the zero point eneréy €o° In the case
of helium €y = V(ro), wheré r = 21/6-0, so that solidi—
fication will only take place wirth the application of a
substantial pressure (at least‘25 bar). If the heliqm
atoms were to sit at the bottom of the potential well
created by neighbouring atoms, then the large excursions

resulting from the zero point dynamic energy would bring

neighbouring atoms' hard cores into close contact. Thus

the atoms move farther apart so that we have the situation

shown in figﬁre 1. In this model, the atoms sit at local
potential maxima so that their vibrational fréquencies

w v 2n(V"(r)/m)k become imaginary,{as first calculated by
DeWette and Nijboer (1965). Thus we have a complete
breakdown of classical lattice dynamics.

Any successful lattice dynamical theory must take
into account not only the long range correlations, or
phonons,(but also the short range correlations of neigh-
bouring. atoms which move in a cooperative manner in order
to minimize wave function overlap.

The method which allows the simplest physical
interpretation (Nosanow (1964, 1966), Fredkin and Wert-
hamer (1965)), assumes the wavefunctién proposed by

Jastrow (1955):

11



y = 2¢i(ri-ziﬁigﬁ f(ri—rj), | (2.2-2)
wherex¢i(ri) are the single particle wave functions local-
ized at lattice sites Qi, while f(ri—rj) is a Jgstrow
function describing the short rangé correlation between
pérticles i and j. A useful analytic form for f(r) is:

£(x) = e XVI(T) | (2.2-3)

where K 1is a variational parameter. Now ¢ is so

close to a Gaussian that we let

' -Ar12/2 : .
¢i(ri) = e (2.2-4)

and if ¥ is used in the first term of a cluster expan-

sion for the energy E (i.e. in a variational approach),

E = IWHg o | (2.2-5)
Sy

then we find
. ) | 5 )
e EA- I w 3 +.Z. Jo Veff,(r") (2.2-6)

where

o =10 ».(r.) . : (2.2-7)
i

12

s,



13

Veff (rij) is an effective potential given, for two-body

interactions, by, s

2
Veff(rij) e f (rij)[v(rij) -

-

Then K and A are varied to minimize E.

Now the long range correlations must be properly
accounted for by uging éelf—consistent phonon theory
(Nosanow and Wertﬁamer (1965), De Wette et al. (1967)).
This is essentially a Hartree method in which the fre-

quency w becomes a variational parameter so we set

, .
002 _
eff (Tig) Sury o . (2.2-3)

LN S A
Jw

kA i<j

Then w,, are given by the determinant of the dynamical

matrix

. 2
b ) =Ltp (e EE /2 Vers i)
af = m 13 auiaauJB ’
~ (2.2-10)
i.e. IDaB —'wzdasl = 0, (2.2-11)

ion (2.2-11)'resembles/equation (2.1-10) very
closely. Only the dynamicaé'matrix is defined differently
than in equation (2.1—7?/50 that the second deri#ativés

of the potentiai are #?& averaged_iﬁ order to account for

;



1

long pénge correlations, while an effective potential is

used /to allow short range correlations. With these re-

normalized force constants we have a quasiharmonic resuii\\\\;f\\\-_

which we can still speak of phonons as good excitatiops
n solid helium. |

Several improvements have Been made by using
higher order terms in the cluster expansion of equation
(2.2-5) (Hetheringtdn et al. (1967)), by using a fully
correlated wave function rather than a Gaussian approgi—
mation (Koehler (1967)) and by including higher order
anharmonic terms in équatioﬂ (2.1-1) (Koehler (1968),
Roehler and Werthamer (1972)). Other recent developments
in the dynamics of quantum crystals are discussed bf‘

Giyde (1976) and Koehler (1975). Most of these have been

applied only to He3.

2.3 Wave Propagation in Ideal Elastic Solids '

An excellent reference work upon which I have
relied heavily for the contents of this section is the

book by Musgrave (1970).

' If ui(xj) is the displacement in the i direction
“as a function of xj, the position within a continuous
elastic medium, then for small valués of the displacement

we define the strain tensor as

(Bui Bu.)*
€.. = k[T 4 . ©(2.3-1)
1] axj X

ESF 739

ARG 5 o SRR P e o e

e AT Sy e
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As well, the stress Gij is defined as the force per unit

area acting in the i direction upon a surface with

normal in the j direction. For small strains Hooke's

a

law holds so that in general:

Oij = cijkz €rg (2.3-2)

.

where the elements of the tensorlcéjkl‘dgf called the
. €lastic stiffness constants, and from dynamic considera-
tions,
2%y .

“igke T e, (o0

(2.3-3)
By symmetry arguments the number of independent elastic
constants can be §ubstantiallyvreduced. Using the Voiét
notation where cijkl becomes a 6x6 matrixtgnd'index pairs
becomé single indices accbrdiﬁg to the.prescription :

‘11 -1, 22 + 2, 33 + 3, 25 or 32 + 4, 31 or 13 » 5, 12

4 \
or 21 + 6, cij‘for a crystal with hexa¢onal symmetry is:

\

[0} ©13 &3 O 0 0 ‘
€2 ©11 ©3 O 0 0
iy - z13 :13 :33- Z z Z ) (2. 3-4)
44 » ‘
0 0 o 0 Caqg O
o 0 oo 0 kleyy-eyy)




16
The force on an infinitesimal volume is

(2.3-5)"

so that upon substituting (2.3-1) and (2.3-2) into
(2-3-5), we find,

azuk

C.. —— - .

ijki axzaxj i

. If we assume a plane wave form for u

/' . T
K]

U, = Ak exp i (3-5 - wt), (2.3—?)

, ,
'Cijkl 459, ~ pu Gik|= 0 (2.3-8)

is the resulting secular equation from which w(g) may be
obtained. Equation (2.3-8) is identical to equation
(2.1-10) . Séveral authors including Zener (1936), Gold
(1950) and Musgrave (1954) have solQéd equation (2.3-8)
explicitly for the hexagonal case. They find that the
velocity surfaces have cylindrical symmetry aboﬁt the
c-axis so that all velocities may be expressed in terms of
a single angle <y between the c-axis and the direction of RN
propagation. There are three mutually rerpendicular \f\\\

polarizations: a pure transverse mode Tl’ a quasi-
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RN

traverse (i.e. predominantly transverse) mode T2'and a

quasi-~longitudinal mode L. These phase velocities v are

~

given by
pv2 = M(c Fc )Sin2Y + c coszy (2.3-9)
T, . 11 ~12 44 .
DV2 = k[ (c,,*+c )Sinzy + (c,.+C )cészy -¢(v)]
T, 11 744 : 33744
: ' (2.3-10)
2

‘ . 2 ,f 2
vy %[(c11+c44)s1n + (cy3tcylcos y + ¢(y)],

N o y (2.3-11)

£ ‘ . : .
= 2 _ _ 2_. 4 _ 2___4
where ¢“(y) = (cll c44) sin’y + (c33 944)‘cosvy +

.2 2 2
+. 28in“ycos Yﬂbll c44)(c44-c33) + 2(cl3+c44) 1.

(2.3-12)

. The velo;itieg for a molar volume of 17.4 cm3 are i}lus-
trated in figure 2, using the elastic constants calculated
in'appéndix 1.

Without loss of generality we may set the azimu-"
.thal angle equal to 90°, so that the polarizations are

given by

[

By = (1, 0, 0) ‘ (2.3-13)
SR

(. ). =0 ‘ | (2.3-14)
LTy 1 | o

——
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(pL,Tz)z = f(pVZ,ClJ,Y)/[l + fz(pvz',cij’Y)];i

' (2.3-15)
= [1- 21% _ 2,2 X

(PL,T2)3 = [1 (pL'\Tz)2 12 = [1 + £7(pv ,cij,y)]

' | (2.3-16)

\

c,,FC, . ?V
where f(pvz,c..,y) =k Ell:zlz tany x
1) 13" 44

2 . 2 2 2
pVT=C,4,siny [c33-2(cl3+c44) /(c11+c12)]cosdy

X

pv2-c COSZY - Y(c,,-C; )sinzy ]
a4 11712 \
(2.3-17)

The angle & which the direction of polarization makes
with the direction of. pure transverse Or longitudinal
vibration is shown in figuré 3 as a function of orienta-

tion 'y for the T2 and L modes at a molar'volﬁme of

17.4 cm3, The angle between the polarization vector and

the c-axis is y-§, since the ‘c—axis, the polarization

vector and the propagation direction are coplanar.
In general the direction of propagation qf sound

is not perpendicular to the transducer but is at some

angle A from the normal direction:

[(c,,-C )2 - 4c 2]2 sinzycoszy %
_ 11 712 44
cos Ay = § 1+ 7 2 733
[(cll-clz) sin“y + 4c,, cos ]

(2.3-18)

19
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2 4 . 4 ‘ -k
" cos A = [1 + (1 _<m.)> <p2 + P3 _ l)]
T,,L 2 . 2 2 . @
2 pv sin”y cos Y.
(2.3-19)

where'pz,p3 are the polarization directions. The beam
deviations for a molar volume of 17.4 cm3 are given in

figure 3.

2.4 Thermodynamic Quantities

Several thermodynamic quantities of interest are

closely related to the sound velocity-.

Compressibility and Elastic Constants

The compressibility can be defined at constant
temperature (isothermal) or constant entropy (adiabatic)

as (Nye (1957})),

P T T T
o1 /EY) _ ©11%C12 4cy,+2c3, :
T~V %),  ,T _ T ,T _ T .2 " '
| TlT o (epyterplesy T 2(e3)
' (2.4-1)
S . S 4.8 .,.8 a
IRt (av) _ Cyptcypm4c3tacss -
s T~ v\3F). 7 75 .8 .8 _ ,85,2" 7
S (cyy*eyyleys - 2(eys)
(2.4-2)

. where cg. and‘cig“are elastic constants defined
isothermally and aaiabatically, Using some simple thermo-
dynamic relations, thé difference between adiabatic and

isothermal elastic constants is easily shown to be
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i

3

(cf.-c?.)/c'.r. = (Cp=Cy) /Cy 4, (2.3-3)

whefe Cp, and Cy are the heat capadities at cqgstant
pressure and constant volume. For the.qase of He4,‘where
the ratio of the lattice parameters c/a is independent.
of volume,‘then as shown'by Franck and Wannéf'(1970),

v,

€11 + 5 =*{c33 + C, 3 (2.4—4)
so the compressibility becomes
|<-,=‘3/(c33 + 2c13). (2.4-5)
Debye Temperature
The specific heat of a Debye solid at low
temperatures is (Maradudin et al. (1971)),
4 3
_ 12w T I -
CV = 5 NkB (5) : 3 ‘\ (2.4-6)

® 1is a function of volume: only for the ideal Debye solid,
but for real soiids it is also a slowly varying function of
teméerature;- The Debye temperature at T = 0 is related

to the sound velocities (not’necessarily at T = 0) by

Nus |
- h 3N . _
% = x; (W) D - (2.4-7)
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where the Debye velocity is:

‘ " -1/3 |
- -3 -3 -3, df :
v, = [f(VL + v * Vp o ) 137 | - :

D
(2.4-8)

Grineisen Constant

~n .
The Griineisen constants are in general defined

by .
| alnwkj

Y3 T ERV (2-479)

Note that since the dynamical matrix in (2.1-10) is

independent 6f volume, y,. will only be non-zero for an
' , 'kJ ’

'

anharmonic solid. - Now from (2.4—7), (2.4-8) and (2.1-12),
p

if ij is independent of k and j, then wevhave only one

Griineisen constant given by

3200
y o= ol | (2.4-10)

o o) 94nv.
If a system can be described by a reduced equatién of
state,

$(V) = ¢_(V)-E[T0 (NI, (2.4-11)

Il

©
o+
=
o
3

where usually @(V)

34nd _ V_ 3P (2.4-12)
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Second Sound

The propagation of second sound may be 1nderstood
on an elementary level by using the method of Wa:d and
Wilks (1952) with the Boltzmann equation of Callaway

(1959) :

af
at

+ S povs = r A (2.4-13)

olTe]
~lo
[
A
4

Th.and Ty are the total relaxatibn times for resistive
and momentum-conserving phonon processes. The resistive
p;ocesses relax the dis%ribufion to fO and the conserva-"
tive forces rglax it to %A‘ Defining the energy Qensity

as:

@ E = fcpfd’p, - (2.4-14)

it is easily shown that,

2 2 57

§—§+%—a—f-§—v13=o. (2.4-15)
at u : '

Thus second sound is a damped oscillation of the energy

‘density. We assume a plane wave solution,

I

R

E=E_ + El'el(“t‘KfE’ ' (2.4-16)

Then the real and imagihary'parté‘of the wave number

24



k- are: ] |
K ; 3 /1v1/02c 2 + 1 ! (2.4-17)
r c|2\/: /07Ty - :
Ve
. 3
. w3 , 2_ 2 _ _ .
.and ki = 2 [}( /1+1/9 Ty )] . (2.4-18)

If wrhsl, then,kr/kiml;and we have diffusive propagation.

i€

But if wTd>>l, then,

c,y = w/k_ = c/V3 . (2.4-19)
_ V3 w 1 ; | e
and Oy, = T35 - ol Z)?; . (2.4- ¢

The second sound velocity has been calculated for severa.

3

polarizations of phonons in an isotropic material by

sussmann and Thellung (1963) to be:

2

L .3, ¢ -5 '
c (1 vy Y/ (L viT) - (2.4-21)

W+

c. has also been calculated for the more general aniso-

2
tropic case by Beck (1975), Banerjee and Pao (1974)
Hewko (1973) and Hardy (1970).

. The statistical average implied by the relaxation

time approximation of equation (2.4-13) must be taken

over a time much longer than the total relaxation time.
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i.e. w(f;l + r;l)‘l << 1. (2.4-22)
Now (wTU)—l<<1, so (2.4-22) is satisfied only if -
wTN<<l. ' . (2.4—2?)

Thus we have a window for second sound propagation, as

originally shown by Guyer and Krumhans%J(1964):

wTg<<l<<wt . ' (2.4-24)

2.5 Adiabatic Sound Propagation

In order for sound to propagate adiabatically
(in quasi-equilibrium), the heat which flows across one
wavelength must be much less than that required to equal-

ize the temperature (Bhatia (1967)).

i.e. Ql << 02, _ _ (2t5—1)
C..v ,

= ~ L _v D -

where Ql = xAT/v —_3 T .vDruAT | (2.5-2)
C

- P A -

and Q2 = %AT‘:T.E . (2.5 3)
3n . CP v_ 2

Therefore Wy << =5 E; (VD) AV | . (2.5-4)

Equation (2.5-4) means that sound probagates adiabati-
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cally at high temperatures or low frequencies.

From a microscopic viewpoint, a sound wave in an
ideal crystal will be attenuaged and shifted in Velocity
for three separate reasons, each 6perative'under a differ-
ent set of conditions. At low temperatures the sound
waves béhave\like a beam of phonons which is scattered
by the thermal.phonons. This mechanism will be discussed
in section 2.7. At higher temperatures, wTN<l, a longi-
tudinal wavé will create a periodic density'va:iation so
that regions of compression are warmérvthan those of
rarefactibn. Heat 1is tben conducted irreversibly between
these regions either through normal diffusive heat con-
auction or through second,sound'prbpagation, as discussed
in section 2.6.

‘Also at higher temperatures, when wrt<<l (adia-
batic region), the phonon gas is strained by the passage
of the sound wave. The phonon frequenciés will be locally
modified through equation (2.4-9) and then will relax
‘towards their equilibrium valve, so that'energy is dis-
sipated. Several authors have investigated this mechan-
'ism,“including Akhieser (1939), Pomeranchuk (1941),

Bommel and Dransfeld (1960), Woodruff and Ehrenreich (1961)
and Maris (1967, 1971). |

In this temperature range a Boltzmann transport
equatiﬁn approach is valid. Assumin§ only umklapp pro-

cesses are important, and that ij is a constant for all



modes, Woodruff an ©hvenreich (1961) find the attenuation

is given by,

il v : e
a = 3 5 eWT . (2f5 5)

Maris (1971) has calculated the adiabatic velocit§ v, in
this region to be:

1
v_-v_ =

a ‘o 2pVv kZ Yo (k) Nw(k]) [n(kj) + %] - C,T x
J

x (<Y2(k3)> = <y (ki)>H)} ' (2.5-6)

where n(kj) is the phonon occupatien number,

Yo (k1) = vg (kj) - 3?;;«—- . eY(I_gJ)-Kd. ' (2.5-7)
_ 1 dw (k3) P
vs (k1) = - Ty Seg ea-(KJ)fKB[ ‘(2.5—8)

‘and <f(kj)> is f(kj) averaged over the heatiédpacities of
all phonon modes. e(KJ) is the polarization of khe gpund
wave gJ; g is a unit vector in the K direction, and e;B\
. is the strain tensor. Equation (2.5-8) is similar to

(2.4-9). For the case of an isdtropic material obeying

a reduced equation of state, (2;5—6) reduces to:



/

y- 44ny (2.5-9)

- = X
Va™Vo T 2pvv - awnv | U

Inciuding one higher order term in the internal energy U

(Maradudin et al, (1971)), (2.5-9) implies:

av/v & aT? + br®. | (2.5-10)

2.6 Sound Propagation at Intermediate Temperatures

At this point the various phonon scattering
processes must be éxamined'more closely (see Reissland
(1973)). Resistive.prOCesseé are of séveral types. Scat-
tering from impurities’is usually insignificant in helium
becqgge of the high purity obtainaple. A discussioﬂ of -
scattering from other lattice imperfections such as_dis-
locations ahd vécancies will be left to seéfions z.é and .

2.9. Phonons in an ideal crystal still expérfence

umk lapp scattering:

) k, = ! ke + K, . (2.6-1)

o

where k, and k. are initial and final phonon momenta {

3

while K is a rebiprocal lattice vector. Energy is always

A
conserved:

Lowg =1 wg . | (2.6-2)



For an n-phonon process, at least one phonon .must have
kx| > |K/(n-1)]|, so that at low temperatures umklapp

processes become unimportant.

If K= 0 in (2.6fl), then we have normal processes.

For three-phonon processes when the: frequency of the

sound wave_ws << kT/N, then (2.6-2) becomes

a

w' = w + Wy = + (VEm)-ég . (2.6-3)

Using, the group velocity'\_/g and the phase velocity yp
defined by (2.1-11) and (2.1-12), w' - w will have a

maximum value of

Do = lyg &3 [-lakl , (2.6~4)

o

. . (2.6-5)

ad A = =
an W= w Iyp

Therefore |y |k | = v (k3) -8k < |y, Ged) |- [ek| .
(2.6-6)

Therefore three phonon processes are only possible if

for some thermal phonons. kj, “

Iyg(EJ’) 2 f‘.’plsound, (2.6~7).

i.e. there must be anomalous dispersion in order that a

longitudinal sound wave may interact via three-phonon -

»
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processes.

Now by intermediate temperatures I mean:

wTN<l and TN<TU . (2.6-8)
'This region may not exist at sufficiently high frequencies,
but it could be extended if anomalous dispersion is pre-

sent. If (2.6-8) is satisfied, Maris (1971) gives:

2 .
a = w Tk <'Y(}_(J)> 2. 1 (2.6"9) .
5 , 2_ 2
2pv 1+w T )
° A
wT
and v =v, + 2 ki) 2 s, (2.6-10)
< 2pv l1+w TO

where «x 1is the thermal éonductivity and

RS 3v2 <v_2(kﬁ)> .
6 = 2 2 7~ 1
cvv <vi(ki) e v_(k3)/v©(kj)>
9 : (2.6-11)

Several other autﬁors (Guyer (1966), Niklasson (1970),
Baﬁ;tjee'and Pg% (1974)) have made calculations in this
region.‘r

Both norﬁal heat diffusion and second soundv

iy ‘ EI — -
propagation contribute to the attenuation when wTo>>l. s
" .

"

—For a simple isotropic material,

v 2
_ 2 _12) _12)
.= 5\7 T, ” (2.6-12)



where 1T is the relaxation time found from the thermal
conductivity and thoroughly discussed by Guyer and

Krumhansl (1966) and Hogan et al. (1969). Figure 4 shows

»

the relaxation t: s 1 and T in helium at 124.4

N’ 'u
bar and for a 1 cm wide specimen. The curves are extra-
polated from the data of Hogan et al. (1969) and Lawson et

al. (1973) in appendix 2. Although for the frequencies

used in this work we are never in the intermediate\EEerr—

%

ature region, the relaxation times are not definitive

since different methods of measurement consistently g%ve‘

i

different results (Rogers (1972), Berman et al. (1966),

Bertman et al. (1966)).

~

L

2.7 Sound Propagation in the Low Temperature Limit
In the low temperature limit (wt>>1) we might
(3]
expect isothermal sound propagation. However in order to

even speak of a sound wave we must have a wavelength much

greatér than the mean free path:.

X >> 2 or wt << 1. o T (2.7-1)

The isothermal region is never reached since normal sound

propagation breaks down at the same poin} that second
2 ) NG

sound propagation breaks down (equation (2.4-24)).
As the relaxation time becomes very large the

phdnqns no longer interact with the léttice except at

32
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boundaries and so they propagate balligtically. The
sound wave may then be treated as a beam of low-energy
phonons which populat% a particular state N(KJ). These
phonons are scattereé and the enérgy levels change only
through the anharmonicity of the crystal. Maris (1967,
1971) has done é perturbation calculation and finas that

this so-called zero sound velocity is given by

~ Y2.. C.T .

_ eff v _
vZ - Va ZOVV - (2.7 2)

where 5
2 _ /Y (kI E-v (k) , o,
Yeff "\ T =Xy kTt <y (k3)> - <y(kj)> <,
-~ =g =] P _

(2.7-3)

v_ is the adiabatic velocity from (2.5-6) and P
signifies>p:inci$al part.

Therefore there should be a shift in velocity
‘near wt v 1. Together the second an@'tﬂird terms of
(2.7-3) are positive while the first.term is positive for
normal dispergion and either pdsitive or negative for
anomalous dispersion.

In order to calculate attenuation in the low
temperature,régimé; the effeqts of scattering from
phonons of various polarizations must be considered. The
calculations are very lengthy but in general (Maris (1971)),

an o7t ‘ . (2.7-4)
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2.8 Dislocations

Because of solid helium's high purity, disloca-
tions and vacancies (section 2.9) are the only lattice
defects we need consider.

If disloéations are pihned.atlnodes (interséctions)
then they can only slip between pinning points so that
under the influence of a low amplitude straiﬁ'field we
have a situation not unlike a vibrating string. This
model has been investigated by Granato and Licke (1956,

\

1966) who find,

K wd ‘
a(w) = . P (2.8-1)
21V, [(moz_mz)z = (ed) 2]
w 20,2
Av (w) K o '
- _k . (2.8-2)
v, 27 [(woz_wz)z = ed) 2]
Here w, = n/L , o (2.8-3)
2 2
N 26/p(1-v) = 2v _“/(1-v), (2.8-4)
W
and K = AA_n°R? ; |  (2.8-5)

where & is the length of the dislocation between pinn-
ing points, G = C44 1s the shear modulus, v = c13/c33,
is Poisson's ratio, d « Tn, where n v 5 (B:ailsford

(1972)) is a damping factor, A is the total length of



dislocations per unit volume, AO = 4(1-\))/1r2 and Rzy
is an orientation factor given by
2 . ' '
R® = siny cosy cos¢ . : (2.8-6)

¢ is the angle between the slipbplane and slip direction.

Not all dislocation loops are of the same length 1%
so some distribution must be used such as that proposed by

Koehler (1952):

N(e) dae = A e TMPan ' (2.8-7)
L
Then a = AE J palw) e ¥ ay (2.8-8)
L (o]
and v _ A J g Avilw) o =2/L 4. (2.8-9)
v 2 v ‘
o) L ° 0

Wanner et al. (1976) have approximated equation
(2.8-9) by realizing that there are.,only small contribu-
tions to Av/v from very long loops (£>>L) and very short

loops (2<<£c) where,

b= n/w = 26/ (-w)Wf1F L (2.8-10)

3

As well, loops.just»slightlY-larger and slightl:/jraller

than lc effectively cancel one another. Therefere only

36



37

d X .
two short ranges of {, one larger and one smaller than

£ , have much effect and we may write:

C
4v 2R2 A A (kz—l)v '
Av _ 0 2 1
v " 3 2.2 T3l (2.8-11)
) i) w”+d (k“-1) “w”+d ‘

In (2.?-10) AZ > Al and k 1is an additional parameter

fixed by the dislocation length distribution:

2
2 c :
k =8 /<t.> = -S f N(2) dg . (2.8-12)
c 1 Al
o]

t

For an exponential distribution,

2 ~-L /1L )
k = £ %— (1-e <y , ' (2.8-13)
l R
N
| -2 /L | .
My = A(l+2_/L) e (2.8-14)
and A, = A - A (2.8-15)

2.9 Vacancies ana Superflﬁidity in Solid Helium

A recent review of vaéahcies in solid heiium may
be found in Glyde (1976). as originally shown by Hether-
ington (1968) vacanciés in solid hefium are non-lﬁéalized
as a conseqﬁence of the very lérge atomi; motioné. There

is then a band of vacancy energies with its mean value -



being the usual local vacancy formation energy e . The
total tunnelling rate to all other sites may then be

estimated through the uncertainty principle to be,
. 1 2Ae) _
t = oo (fﬁ— ’ . (2.9-1)

where Ae is one half of the bandwidth. Hetherington

-1

calculated Ae v 6K and f N 3xlollsec in Heg. Values

for He? are similar (Miyoshi et al. (1970)).

In He3, the non-localized vacancies will have a
very short mean free path ~ a, since the uncorrelated_
spins do not provide a periodic background (Glyde (1976}).
However‘in He4, the rapidlj tunhelling vacancies can
take on wave-like properties kAndreev and Lifshitz (1969),
Guyer et al. (1971)), but only when they cgn'travel‘Several
lattice sites during one phonon period,

i.e. T < ht/k = 2Ae/k . - (2.9-2)

Andreev and Lifshitz (1969) have estimated that vacancies.

will propagate as waves when the diffusion coefficient is

v

greater for non-localized vacancies than for localized

ones,

i.e. T < 0 (Aese)t/? . (2.9-3)
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Also the repulsive interaction energy between vacancies

must be less than the bandwidth so
T < e /in (mc?/ae) (2.9-4)

where m 1is the atomic mass and c 1is the sound velocity.

Then for nearest neighbours the energy spectrum is
e(g) = e, + 2mhzt cos qa/2 , (2.9~5)

where zt again is the bandwidth. The calculated band-
width is quite insensitive to volume (Guyer et ?l.(l971))r

The existence of the vacancy wave energy band
énd of bound vacancy states (Andreev (1975)) will modify
the phonon épectrum near the band edges and at éo i»4A“
and e, t 2Ae (Kondratenko (1976)). Howevef it would
fortuitous if these energies occurred near the sound wave
ffequency;

We might.expect that the large zero point motion
in solid helium would result in the presence of a finite
number of vacancies even a% T = 0, so that we.may have a
Bosé condensate and a superfluid sblio (Andreev and
Lifshitz (1969), Chester (1970)). Then there will be four

sound propagation branches with the three normal modes

having spectra:

39



w_ (k)

S 2, s .. 2,
ST (p3 cos y/ + Py sin“y")

w(k) = w (k) +
(2.9-6)

for a hexagonal crystal. y' is the angle between the

c-axis and the direction of polarization (y - §), while
pi is the superfluid density in direction 1i:
03 = p - (a%e/31 T C(2.9-7)

Estimates of p_/p range all the way from 1078 (Guyeki
| (1971)) to 0.2 (saslow (1976)) -

The ex1stence of zero point defects may not be
necessary (Leggett (1970)) for superfluidity in the solid,
although it would enhance the effect. Saslow (1977) has
done: an extensive microscopic and hydrodynamlc treatment
of the problem from this viewpoint. He shows that a
superfluld velocity cannot be developed from a Galllean
transformation on a perlodlc materlal. Thetefore it
would be extremely difficult to detect true superfluid
flow. However there will still be a smgll effect on the
sound velocity:

2 2

vh o= v, (1 - 8 vi/(voz—vi)] _ (2.9-8)

where v, is the fourth sound velocity given by

2 s
‘ 'V4 = p (au/ap)sle o _ - - (2.9-9)

40
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and § =1 ~ p—l S(ap/as)u

p is the chemical potential,

S 1s the entropy.

+
€

€

p_

(80/8&11)8,IJ

(2.9-10)

is the strain and
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CHAPTER 3

" EXPERIMENT

3.1 Cryogenic Systems

The two major experimental requirements for the
study of solid helium are a refrigeration system and a

pressure handling system..

3.1-1 Cryostat

The low temperature end of the cryostat is shown
in figure 5. The préssure cell.was bolted onto a graphite
énd copper support column which was attached to the He4
pot. The weight of the pressure cel}] did not allow it to
be supported by the delicate dilution refrigerator.

. Copper rings at several stages provided convenient loca-
tions for thermal anchoring. | ‘

Cooling to about 1 K was obtained by circulating
gas through the dilution refrigg;ator while pumping on the
He4 pot. Under normal operating conditions the He4
would last for several days without a refill. In order
to reach lower temperatures the gas mixture of approxi-
mately 072 moles He3 and 0.5 moles.He4 was condensed ,
through the still. Then tﬁe still was pﬁmped slowly until
the temperature.of about 0.5 K was reached. At this point

circulation was started, the still heater turﬁed on to

about 1 mW and the dilution refrigerator commenced
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operation. When the tempetature reached a stable minimum
the still heater power was reduced to 0.25 mW and recomr-
densation of He3 was stopped. The refrigerator then

continued in a one-shot mode to the lowest temperatures

‘attainable.

Without the presence of the pressure cell, its

support column and the pressure line the refrigerator

.

. reached gﬂminimum temperature of approximately 40 mK.

With the experiment in place, 240 mK was the lowest pos-
sible témperature.

The cooling power of a dilution refrigerator is

E

given by Betts (1968) as

0 = 1oﬁ3RTD2 , (3.1-1)

e~

where ﬁ3 is the wirculation rate in moles/sec, R 1is the

gas constant and T,. is the temperature of the mixing

D
chamber. The circulation rate was measured with a leWr
) . ‘ ]
meter of the type described by Almond et al (1972) to be

6x10-5 moleé/saé. Then equation (3.1-1) becomes

) S " . 4 _ 2

e T Q = 5x10 Th erg/sec. (3.1-2)
,

Most of the heat input was determined to be flowing

through the solidified helium in the pressure line. From

Hogan et al. (1969) the thermal conductivity for T s 1 K
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and in a tube of inner diameter d. is given by
Kk =Lc v, adnN 0 (3.1-3)
3 D ! -

where a is a numerical constant slightly larger than 1.
Then for a line of length L anchored at the He4 pot of

temperature To, the heat flow is

N

Q = 4:3x107 d3 (Toé-TD4)/L erg/sec.‘ ~ (3.1-4)

_ Equating (3.1-2) and (3.1-4), we find: -\

.2 '
TD = 8.6x10

2 a7 /. | (3.1-5)

For L _ 40 cm, d = 0.03 cm and TO-= 1.2 K, then TD'= 80 mK.
With all other heat 1§s§es included, the experiment shouidl
still cool to at least 100 mK. The cause of this large
discrepancy was‘only fohnd after the present data had been
ré%brded. Thfougﬂ a miscalculation the thermal anchor

at the HeA had far too small a conductivity (approximately
40-AT erg/sec). Thié is negligible compared to the heat
inputfof 2000 erg/éec calculated from (3.1-2) with ‘

T, v 0.2 K. ' |

| ‘The illustration of the pumping systems in f e

€ 13 self-explanatory. I should only‘add that the rather

- .. volume (2 litreS) of the first lfquid nitrogeﬁ trap
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.

accounted for the quantity of gas required in the circu-
lation system. The volume of the trap containing the
molecular sieve was 250 m%, and of the storage volume,

90 2.

3.1-2 Pressure Cell

The pressure cell or bomb (figure 7) was construc-
ted of hardened beryllium copper to hold pressures of
300 bar and to maintain the helium at cogstant volume.
The inner diameter is 28 mm while the distance from the
%-inch transducer to the mirror can be varied from 7 to 10
mm. With this arrangement even sigﬁals~hith,the maximum
beam deviation (see section 2.3) éan be observed without
ény losses through hitting the side wall. Such a situa-
tion is essential in order to-maké‘quantitétive'measure—
ments of ultrasonic éttenuation.

The plate from which the‘transdﬁcer was suspendéd

was tightly held between a ledge and a split rihg‘circ;ip-

\
"by 12 set screws. Six screws, three pushing and three\

pﬁlling; were used to hang the transducer assembly fro
this plate. The reflecting mirror was made of BeCu and
polished flat to % wavelengtﬁ of sodium light. After it

threads were coated with Stycast 2850 GT epoxy (Emerson:

and Cummings Inc.) it was screwed into place. The entire

cell was then bolted onto a copper plate on the support .

structure (figure 5), 7ith the transducer end down. The
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Figure 7 High pressure ’cell and ultrasonic assembly.
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pressure line and rf miniature coaxial cable (Lake
Shore Cryotronics Type A) were entered into the bomb
through separate high pressure feedthroughs.

The pressure capillary was a CuNi tube of 0.3 mm
i.d. and 0. 5 mm o.d. leading as far as the hellum bath
and from there a large tube was led out of the cryostat to
an external ballast volume (about 2x104 times the vqQlume
of the bomb). The helium used in the pressure system was

purified by passing it through liquid helium.

»3,1-3 Crystal Growth

Using the following procedure, high quality crys-
tals were obtained for about half of the attempts.

The bomb was first warmed up to several degrees
above the melting point and then slowly cooled by circu-
lating gas through the dilution refrigerator. The pressure
line was heated by passing 3 ma through‘the‘80 Q manganin
wire wound around it. This heater had several ‘-ra turns
near the bomb end.

The progress of the solidification procese in the
bomb was followed‘by monitoring the ultrasohic signal. As
solidification commenced, the echoes visible in the liguid
disappeared entirely. As the liquid~-solid interface
reached the traneducer, the echo train for the solid
abpeared. At this point the gas circulation rate was

raised to increase the cooling rate. A few crystals were
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cedure were discarded. with the bomb heater then switched

off, the current through the'préssure line heater was

at constant pressure.' Superior crystals have pfeviously
been grown by this method (Franck and Hewko (1973)). 1n
-fa few cases where crystals were accidenﬁaly‘grown at
iconstant volume, the ultrasonic echoes alﬁost entirely
disappeared. Once the temperature of the bomb began to

fall rapidly, solidification was assumed to be completed.
Allvheaters were then switched off ang gas circulation was

. v

stopped. The entire process lasted 6-8 hours.
i _We‘havewnp direct evidence for thelquality of the
;cryéfals,.but thereMgféthd“réasonsmﬁgr Supposing that we
had génerélly high quality specimens. éﬁéwiérgé»numgerw-wﬁww‘m
of clean eéhoes visible (as many as 175 for crfstal aA8-d)
imply a small number of cryste defects which, if Present,
would adversely affect the attenuation. Some very low
anglé grain boundaries could be present but.these dfe of
little importance .in ultrasonics as long as they are not

too numerous: As well, the range -of absolute velocities
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observed (1nclud1ng dlscarded crystals) was 735- 840 m/sec;

this spans almost the entire range of velocities expected

’

(see figure 2).

3,2 Thermometry

The principal secondary thermometers were con-
structed from 220 2, 0.5 Speer carbon resistors (Black et
al. (1964), Oda et al. (1974)), whose resistance was
measured by an S.H.E. model ARB automatic resistance
bridge. Power dissipation was typically 10"ll - 16-12
watts. The_thermometers were prepared by grinding the
outer coatings from the resistors and covering them with
‘thinned GE varnish (#7031) Whieh was baked on at 90°C.
The resistors were ineepteé and varnished into machined
copper blocks whichfwe;e,screwed to the copper support
plate, to the bpmﬁnand‘to the still. The 42 AWG manganin
wire leads'yefe thermally anchered at the hixing chamber,
the heepjegehangers, the still and the He4 pot.}

’ »A The thermomeﬁers were'calibreted in two ways.
‘i;itially a CMN paramagnetic thefmometer was constructed
(Abel'e£ al, (1964), Fisher (1972)) and the susceptibility
measured with a Hartshorn—type'mutual inductance bridge
(Maxwell (1965))f' The CMN salt pill was calibrated
against the vapoer pressure of He4 at temperatures above
/

l K. As there were some problems reading the bridge this

method was not entirely satisfactory so the thermometers -



i

were later compared to an S.H.E. germanium resistance
thermometer calibrated from 30 mK to 5 K and measured on
the ARB bridge. This thermometer was held in a machined
copper block with Cornipg silicoﬁe vacuum grease. This
later calibration raises tﬁe temperatures recorded with

the data in this work by about 40 mK.

3.3 Ultrasonics

3.3-1 Transducer Assembly

The ultrasonic etalon, as supplied by Valpey-
Fisher, was a %-inch diameter quartz transducer with a

fundamental frequency of 5 MHz. It was overtone polished

to provide good excitation of high@%ihgfmonics, and coated
on both siaes with a thin film of AuCr alloy. As can be
seen in figure 7, the front of the transducer was held at
the rim by a brass flange 3 mm thick and 25 mm in diameter
with a 10 mm diameter hole in éhe centre. Six radial
grooves were scored‘on the back of the flange to prevent
.an'uhwanted Pressure build-up. The flange and_the bottom
end of the main body of the transducer assembly were pol-
ished flat to 2 fringes of sodium light. Six- screws held
the flange to the body. Backing the transducervwas a
brass piston polished to 2 fringes of éodium light and;\
inserted into a teflon sleeve. The piston was bevelied

at the top to dampen reflections in the brass while the
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teflon sleeve had a 2° bevel so that it would be self-
levelling. With the teflon sleeve in place the piston
had the rf lead wire attached to it and then was spring-
loaded into the large brass cylinder {25 mm diameter)
which formed the main body of the assembly.

Optically polisheF surfaces and the qhoice of a
spring of the p?oper size and force constant were found
to be crucial for the attainment of a good ultrasonic

signal.

Vs

The as Ny mounted W1th1n the bomb by three

~

B

3.3-2 Electronics”
Figure 8 is a block diagram of the electronics.

The. technique employed was a modifiad pulse-echo-overlap
.-method as described by May (1958), Chung et al. (1969),
-Pabadakis (1964, 1967) and Van Nest et al. (1969). The
heart of the system is a hlghly stable (to better than
1 part in 107 per day) frequency\synuhe51zer, model 5100
by Rockland Instruments. It operates at a frgquency_ V-

in the neighbourhood of 50 kHz such that -

1/v = 2D/v , (3.3-1)

where v is the sound velocity and D is the distance

«

from transducer to mirror. This signal is divided by a
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factor of 100 or 1000 in a MATEC 121 decade divider -
dual"delay generator and is used to trigger the rf pulse
generator-wide band amplifier (MATEC 6600 witﬂ‘plug—in
760). The rf pulSe is‘sent.by 50 @ coaxial-cable through
a system of two passive tuning networks, one §upplied by
MATEC (ﬁodel 60) and the secohd a twin-tee stub tuner
network (Wanner (1970)). The pulse is sent to the trans-
ducer a;d the returning echoes again pass througﬁ the
tuning networks to be amplified by the model 6600. The
resulting signal is applied to the y-axis of a Hewlett-
Packard 182C oscilloscope with plug-ins 1808A and 1825A.
The oscilloscope is triggered with the undivided pulse-
shaped signal from the frequency Synthesizer. If one uses
the continuous delay on the oscilloscope trigger circuit,
any part of the pulse train may be observed. Because of
the image retention of the oscilloscope screen and the
human eye, the rf contents ofaall.ec%oes may be observed
. simultaﬁeously and will all appear to bé lin;d up if
equation (3.3-1) is satisfied (as_in figure 9(b) ). Then
theivelbcity is 2Dv. If the velocity or'trigger frequency
changes theﬁ the echoes éhift relative to one anothef a§$
seen in figure 9(c,d)’. As Qell, the oscilloscope may be
internally triggered‘in order to view the entire echo
train (figure 9(a)). " .

When the siénal-to-noise ratio'became small, a

, )
double negative strobe was.applied/to‘phe

e

—

z—axis of the

-
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oscilloscope. The two strobe pulses were delayed by the
(dua&\gelay generator sb that they were synchronous with
any t&h\seledted echoes. Then only those two echoes
remained visible on thinoscilloscope screen while other
echoeé and most of the noise were deleted.

Some attempt was made to meésﬁre attenuation with
a MATEC 2470A attenuation recérder. It automatically
measures the decremént“bétweenAtwo pre-selected echoes'gnd
contiﬁuously copiés_it ont> a chart recorder. The~preéencé
of the highly ppn—exp0nen£ial echo envelopé (see section .
3.3-4) limited the usefulness of this method. Instead the

attenuation was determined by photographing the echo tre

with a Hewlett-Packard 197A oscilloscope camera and m&hu-

'-~allyumeésuring the decrement

The initial pulse hac an amplitude of 200%to 400
Vvpp and a width of approximat=ly 7 us. The‘reéﬁtitioﬁ-

rate was v/lOOfat higher temperatures and v/1000 at lower

temperatures. There was no discernible power dependen@eﬁjﬁ

of the velocityggpén changing”either the pulse height or
repetitioh rate. . :

Véfy'careful tuqﬁﬁg of both passive netwquS"was
necessary in order to obtain the best signal and éartialiy

coméensate*for the very large acoustic mismatch (over 100)
T ' TE

befween Qﬁgftz and solid helium.
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3.3-3 Method

Initially the cell was filled with methanol and
the resulting ultrasonic echoes wcre observed. The de-
gree of non-parallelism between the transducer and reflec-
tor was monitored by watching the echo envelope (section

. 3.3-4). The push-pull screws were then acjus’ ~d and

]

_\tightened to leck_;he transducer in place, purallel to the

e . LS 3

Measurements were taken flrsi in 11qu1d helium

‘-,wh'le th&<cell was malntalned in equilibrium w1th the

fhellum bath through the medium of He exchange gas in the

- vacuum,can."From the known velocity v. in the liquid

L

(Vlgnos and Falrbank (1966) .as corrected by Wanner (1970)

- and Abraham et ai.(l970)); the transducer to reflector

» distanee D was determined‘froﬁ D = vh/Zv. It was assumed
that D changed little upon freezing so that the absoYhte
velocity could then be'detei;ihed in the solid. Thence-
forth only ehang - in velocity, or changes in v, needed
to be recorded. - | | |

The true condltlon for overlap is given by

McSkimin and Andreatch (1962) as,

e

% - 2pD° % . T (3.3-2)

Here p is the number of round trlps belween trlgqer

pulses (usually p=1), £ is the rf frequency and n =0
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when succeeding echoes are correctly superposed. The
oscilloscope can be triggered with n # 0 so that each

echo is displaced by n rf periods relative to the pre-

61

vious echo. The rf oscillations will still appear ﬁlighed

and for long pulses o _.hort -.cho trains the effect will

not be obvious. How:ver f-om (3.3-2) it can be seen tnaﬁ

o

-

if f 1is varied, the .lap condltlon will not be: ; k‘

)ﬂd

filled if n # 0. McSklmln s method ‘then is to vary f
for several overlaps in order to find the one independent
of f. In practice this choice was always confirmed by
comparing 1l/v Qith“the average time between echoes along
the entire pulse train. McSkimin's criterion was applied_
at each different rf frequency. ' |
Once"the absolute velocity was determlned thé

temperature wgs slowly lowered and v was adjusted regu-
larly in ordef to keep the echoes in alignment and to n
follow the same rf oscillations over the entire temperature
range. Measuréments for any one rf frequency were per-

rmed over é~period of two days, égéen repetitively over -
qgrféin feéperature ranges. LK Some crystals were ﬁyc;ed

with respect to témperature and frequeﬁt?~with excellent

reproducibility.

3.3-4 Errors in Measurement

Thé;ﬁncertainty in the measurement of D, and

therefore ih,the‘absolute velocity, is 0.1%, based on the,

i

4

=y

g‘;
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reproducibility of the measuréments. vThe largest errors

in the determination of the orientation arise from the
extrapolation aof the elastic constants to 17.4 cm3 St
(apgfndix 1).  This ig esfimated to be about 2%, since

the extrapolation to 16 cm’ (Reese et al. (1971)) is porfeCt K
to better than 5%. The error in orientation is very

much a function of the velocity, because of the wide vari-

ation in dv/dy (figure 2). For 42° <y £ 90°, the velocity

is dodbie—valued. In these cases & most likely orié%tation

is chosen by observing-fhe inferference pattern. A pattern

similar to that‘seen in the liquid was considered to arise

from ari orientation with a small beam deviation (figutéj3ii

For orientations wigﬁ a large A, the beam will samgié,;~"

different part of ihe reflector and so the interference4l;

pattern will change. The measuring error in Av/v varies

inversely with the number of ec@oes observed; In practice
‘the error for 100 echoes is about 2x10-6 and:%br 2 echoes .
(as measured at low temperatures).about leo-ﬁgnghe
limiting factors are the jitter in the trigger pulses and
various small effects”ghich are dependen; upon echo
number .- | \

The f;nite pulse’léngth causes variations in

transit time for different parts of the pulse (Merkulov

: wL
i A-& ..

and Tret'yakov (1975)) so that there was an observed ) e
velocity change of about 2-3x10"° across the pulse. This

error is effectively eliminated by3alwéys following the

S

w
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same rf oscillations near the centre of the pulse at all
temperatures.

Also exerting a small influence on the sound
propagation is diffraction of the beam. This effect has
been investigated by a number of authors (Seki et al
(1956) , Khimunin (1975), Papadakis (1966, 1972)). 'Papada—
kls (1966)‘has made calculations for anisotropic materials
so his results are of the greatest interest to the present

work. Diffraction of the beam results in a wave front

ER it e
74
o A.,-.} o (G v

which is no longer planar, and varying with distance
travelled, so that there is a phase shift in the detected
signal. As well tpe wave will interfere with itself at

the transducer, causing an apparent change in attenuation.

" This last effect is negligible when compared with other

problems 1nvolved in measurlng the attenuation in solid

helium. 1In general the phase shift is a complicated.

P

function of wavelength A, transducer diameter a and
distance travelled 2z, but the phase shift is~approxiq.
mately linear in § = zA/a2 for S < 0.5 (at 5 MHz,

w

S = 0.023 n, where n is the number of round trips). The-

iproportionality constant varies with the anisotropy, But
;is always:smaller in solid helium (where the anisotropy

-“parameter b = Vg of Waterman (1959) is 0.25 along the .

*

c~axls and 0 12 cos w in the basal plane, Y being the
azxmuthal aw e% than in 1sotrop1c 11qu1d helium (b = 0).

Tﬁe lafgest lnflmence of dlffractlon in the present work



is on the meaéurements of diépersion:f The changes in
Av/v in the liquid should be about -~4xl()-5 between 5 and 15
and about -6x10"° between 15 and 25 MHz. The effect in
_the solid will always be less and'rarely more than half
of that in the liquid.
| The greatest geometricél_effect, especiaily with
respect to attenuation measurements, arises from a lack
of parallelism between the transducer énd the reflector.
This problem has been investigated in a rather simple way
by Truell et al. (1969) and Abraham et al. (1969). The
present calculations are much more detailed.

Rigorously we begiﬁ wiéh an initial velocity
distribution on the transducer Im fo (#,y;t). ‘Then the
Fourier transform is:

F (r,6;w) = J e-iwtfe(r,e;t)dt. : " (3.3-3)

o)
The phase delay of the nEE echo for attenuation &  and
velocity c¢ is: - ’

v
: [

¢n(:;6;w) = (w/c - ia) x (distance travelled).

(3.3-4). "

Then the Fourier transform for the nEE echo is:

Folr,0iw) = F&(r,e;w) e-i¢n(r167“), (3.3-5)

e



Finally, the received signal for the nEE echo will be:

] a/2 2n
_ 1 int 4 .
Im fn(t) = 37 f dwe ;;7 J rdr j dan(r(B,w),. ,
. " £
® © © (3:3-6)

where a 1is the diameter of the transducer.

Generally, for reasonably long pulses, the centre
of the pulse may be treated as monochromatic so that the
precedipg/method islonly required when considering the
ends of the pulse. Then we may write, for a fundamental

frequency Q ,

§/2 27
£ (t) = -2 f rdr f dee 0 (T 8i) e (1 .4,
n 2 0
Ta
© © (3.3-7)
‘ In the simpié%ﬁf&ébe;-”
, L 1it, 0<t<T . :
V£ (r,0;t) = | (3.3-8)
: 10 . otherwise. .

If the reflector is tilted relative to the transducer, as

in figure 10(a), then:

L 0; = ¢ L Y - v T
¢ (r,6;w) w(tn+2f_n 5 cos6) i(v, + 2v; 7 cosb), o
, ” ﬂ (3.3-9)
where t = 2np/c v, = 2nai | B
(- v —
tn = nd/c v . naq:
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~ Transducer - Reflector Arrangements

(a) Tilted Reflector
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Figure 10  Transducer-reflector configurations

66



67

Then equation (3.3-7) may be integrated to give

-\ i )
n 2]|J.(a t")]
_ . 10 n . - (1)
Im fn (t) = e B t,l sin[Q(t tn) +51 + n, ].
- on
(3.3-10)
Here 61 = arctan wO/Q = wo/Q 3
W = ac
o}

—-— L
n_. (1) = arg Jl(Qotn)

- and Jn is the Bessel function of order n. Then the rf
wave is modulated by an amplitude Ze— n|J1(Qotr'1)]/' tﬁl
and phase-shifted by §; + hn(l). The maxima and minima
of this envelope may be calculated exactly, but since the

effects are only important when a is small, we may

2y . . -
simply write that to first order in wo/Q, the maxima
occur at
[
. Wy
J, (at!') at! .
1 n’ _ n -
J (Qt') - v +2 4 (3-3 ll)
0 n n
and the minima at , :
= 0. (3.3-12)

Jl(th)

ﬁ,
i
WERCERA R A e ¥ iad m Sl s LT
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If vn<<2, then we have

= & | .
Noax = 0d (0,.5.14, 8.42, 11.62, 14.6, Ny ' |
\ (3.3-13)
= S (3.8
Noin = ad (3.83, 7.02, 10.17, 13.32, ...)

Then for any two selected echoes n,y and n,, the true
. attenuation o is given in terms of the "measured"
N .

1 N
attenuation a' as,

Qn[Jthg )/Jl(tﬂ )] + ln(nl/nz)

2 1
a = a' +
_\ 2D(n2 nl) "o
-ﬁ \ L (3.3-14)
To first order in wo/Q,
tan n (l)”= (w /D -Qt'T (Qt') /T, (Qt') ]
. n o’ ” no .n 1 n’*° ' -
’ (3.3-15) '

Then for two echoes ny and n,, the measured velocity is

larger than the actual velocity by

- 1 Yo
g Qtn JO Qtn

w
AC = —c—. __9. L 1 - 'R 2 _
<~ 20 @ |Yn, FooET Ty FaEr |- (3.3-16)

b -

The transducer does not neéeésarily vibxaté in a
piston—likermanner_as iﬁ equation (§.3-8) (Papadakis
(1971)), especially if cf%mpéd at the edge. A simple case
to treat mathematically is: JR L

\



/h\f\ 0
.
(12472 /a2) oift, 0<t<T
fo(r;t) = ' (3.3"17)
. 0, otherwise. - :
) n 4]J2(Q;té)|  eteet 1agan (2
Then Im £ (t) = e ——=———— sin [Q(t-t )+6,+n """1.

Rk
on

(3.3-18)

2

It

2 N
where 62 arctan IZQwO/(Q +w0 )1 -lZwO/Q

(2)

and nn

arg J2(Qot$) .

..1_ 1
Then the maxima occur at

Qtr'l/(vn+4) o , : !!9)

Jo ('%:1:1) /34 ()

and the minima at

v : _ ) | | | | ) .
Iy (atl) = 0. g . (3.3-20)
' J
n. =-2 [5.14, 8.42, 11.62, 14.80 ]
min = 53 .14, 8.42, .62, 180, ...
. e | .
and Npax = od [0, 6.38, 9.76, 13f02, 16.22, ...].
L ]
zn[Jz(ﬂtnz)/Jl(Qtnl)]+2 2r}(nl/nz)
Also, a = a' + ’

2D(n2-n1)
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[} ]
g, (@t ) g et )
and, é._c_ == .__C__. .ui).. Qt' l - t' l -
c oD ° @ n F (ot ) Cn F@mer oy |
2 nl_ 2 2 n2

(3.3-23)

Equation (3.3-17) is not necessarily an accurate descrip-
tion of the true ph%sical situation, but (3.3-18) suggesté
tha&fqualitatively Jny deviation from a piston-like velo-
éity distribution will result in an'even larger apparent
attenuation than that given by (3.3-10);

The velocity corrections 61 andyéz-are nég&igible
when measuring dispersion since mo‘<< Q. The error in y
velpcity between succéssive echoesv(equation (3.3-.0) or.
(3.3-23) is less than 5x107¢ for o = 0.1 ~m"' and for
low n.

Instead of being tilted, the'reflector may be

" curved as in figure 10(b) where the curvature of the reflec-

tor is given by’ '

y o z = % 2, | © T (3.3-24)
Then the angle of reflection en_with the normal to the

transducer for the nth echo can be shown to obey the

recursion relation
3
en = 2(1—28D)6n_l - eh~2, | (3.3-25)

u

with © =0
[0]



- 2, 2 3
and . Gl = 28 (r +ro+2rrocose) '

‘Where r, arises from the beam deviation {(section 2.3):

ro = D tan A. . (3.3-26)
2 2 .2 -
Let 0 2 =0.%2u 2 (1-28D) /48D (1-8D) . (3.3-27)
n 1 n
Then U = 2(1-28D) U _y - U _, (3.3-28)
where U =0 ’ : i
(]
}
U. = [1-(1-28D)2%1% .

)
B Q . ' " .
fﬁg Equation (3.3-28) defiqes the Chebyshev polynomials of

the second kind. Then the phase shift for the nth

reflection is

N

' @ r2+r§+frrocose
¢n(§:97w) =3 [2nD‘+ 15 (1=FD) X

n : ‘ .

x ] lu_(1-280) - U,_; (1-28D)1%1- dv, .
m=1 ’ ‘ )
(3.3-29)

. where we ignore the. slight variation in attenuation from

differences in reflector to transducer distance. Then
. R '

]
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using (3.3-8) and (3.3-29) in (3.3-7), .
.~a/2 2V2\

vV, q T +ro
fn(t) _ Q% e1Q(t-tn) f dr.r exp {}1 z B({I=gpy *
a” v 0

o 2 Q 2z, n u
x mzi(um_um l) }'Jo [E“ —BTT:__) Zl m Vm-1) ]

(3.3-30)"
If We define
z = L E [U_(1-28D) -U_ . (1-28D}] 2
n 2cD mel . M m-1 o .
. (3.3f31)"

and use a series representation for Jo’ then it fseeaéy to

‘show (ﬁanéen_(lQ?S)),»thaE £ (t) becomes:
. . L5
: ge” Vo it al
Im £ (t) = 8¢ 2 p(—2 ]2 ig r )l sin [Q(t- -t )+n (3)]
o 2 4
azc, o -
N t3;3f32)

3 3
where P  is the non-central ch1 ~-sgquare probablllty :

functlon (Abramow1tz et al. (1964)) and

2 L
iz_a : o % .

n(3)——— arg P (

|

‘P is given by

amn ETIE T 50 BRI A = U W £

L7200

A0
"
s

PR



:‘\ Sy " 2 . 2
. P(igna2/4lziicnr§) = 1-e ;gn(ro/z + a‘/8)

-

e 8

P is difficult to evaluate, bui‘for rd<<é/2’

P 1~

& W
Therefore,

. e o -
|P| = 2[sin ¢_ a%/16) 11 -. oL By (3.3-36)

Then the maxima of |P|/z  occur at:

tancna?/ls

3 -

or

N~

Ba

(iéhrg/z)k(icnaz/s)j w

K131 (3.3—34)

ooy

L T2 , :
_e—lcna /8 (1 - c§r§a2/16]. (3.3-35)

g

SN

“»

Vi N e oa@

s o - T (3.3-38)
c oy l ) -
n -
Q 5 « .2
5aD (U_-U_ -]
2cb m=1 ®om 1

Py

2n

- - «

e [n t,q (1-8D) /20U, (}-BD)]. )

g

3

= (¢ a’/16) [1-- £2r2a%/16.], § (3.3-37) .
ne . O . ST G
lb ) B3 0 23

i
e\
o
;

R




)sin 2n/2BD = 4BD [<n + 18 24'(3*- 4;: 6.268,%9.42, 12,57, ...)1, . |

B LU

ﬁ' : - ’ p l .

= L mg+ L1 sin 2n/3ED 7 . . (3.3-39)
c 4D T
PO i
[ ] ' R .
Therefore to find B8, solve: : "

sin 2/2Bb = n + 2°€-r(1-16r2/a%) (0, 4.49, 7.73, ...)1,
“<§. Bfla

&ﬁ - - : .. (3.3-40)

where n?¥ refers to a maximal echo. . -~

. 4
e ¥V

NErE L

Aode TR . .
,‘l"‘ . oty )
The:ginima-in lPI/cn oqcur:whqn.gna2/16~=\Mﬁ, or

Y

1

o ) iy ) e T w,_ . o s
‘ ' R y
J 16c . 3.

: t') o ,j E . .,-.
Lo

By - :

\

_ ) .
Finally, using equation (326&36),1 : : : |
& (3) 7 C . ) 5 9 Kc r a/%?“égst a2/8 -
"“h =’z - arctan @ot(;na /I§J, 1+ p— \
Lo Sy T 1= -cos; a /8
i : RN ,-._"(43.*-‘3—4 2)
K To- ‘ . »
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o CHAPTER 4

SR " RESULTS , R

S

4.1 Velocity*cf Sound

4,1-1 'High'Temperature Region : ,@%j »&

All crystals were measured at a volume of 17 4
o]
0.05.cm /mole. The Vargest error in the~determ1nat10n.of.
L
the absoluée.veloc1ty arlses from any changes in the

!

B -8
transducer to reflector %ﬁgtancg Dx This error was
tp

estlmated fgom measuremé&ﬁédﬁ¥ “bg on shcce881ve crystals

r-'v

to be 0.1%. ,The accuracy of the veloc;t' for, pﬂrposé&
|

of of%entatlon determlﬂ%tLen is estlmated to be better

v
“

“ wﬂnan 2%. l‘“.-,,,.‘ : ' & \"‘, o A C‘?

3

5]

Curvqf of velocxty v (leld@ﬁ.by an arbltrary . ST

wév ) verSu§§temperature .are shown for ten crystals‘ln P

< .
W ,

-flgures ll to 29 : Forvthe flrst four Samples,‘measurﬁx[ s

ments were only taken at Sj‘(“fhwhlle all thrge frequen—

‘c1es d 5, 15 &hd 25 MHz were -sed for the last six.

. The curves are least squares fits of quatlon
(2 5- 10) to the data p01nts in the high temperature .region
.only Equatlon (2.5~ 10) was obeyed very well 1anll cases
with the constants hav1ng the values listed 'in table 1 .
and ;1lustrated in figure 21. - : T
. As is apparent from figure 21; the scatter in the
ualues‘of ‘a‘ and b i§.toc large to allow:-a meaﬂingful

. . v-75.-
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Crystal

. Al-b
A2-b
A4-d
AS5-a
A6-b
A6-c
Ab-e

A6-f

A7-a

A7-b
A7-c
A7-d
AT-e
A7-f
A8-a
A8-b
A8-c
° A8-d

A8-e

A8-f

J

y(°)

43
29
20

24

46

69

82

42

78

81

TABLE 1
rf Freq. v_(T=0 a , - b 6
(MHz) (cm}s) (cm/s-K ') (cm/s~K )
5 76416 -4.35 1 0.076
5 80951 -3.45 0.052
5 83447 ~1.74 -0.123
5 32392 -1.53 ~0.082
5 75450 -4.39 6.076
.15 75396 -3.76 ° 0.01;
5 ' 75112 -2.91 -0.071
15 75048 -4.42 0.062
5 76176 —5:48 -0.067
15 7sieo -3.93 -0.017
25 76160 -4.54 0.046
5 76027 -4.41 0.035
15 75998 -4.76 0.072
25 75990 -4.02 -0.003
5 75856 -4.00 ~0.003
15 75827 -4.13 0.032
25 75839 ©-4.19 0.028
5 75970, -3.79 .-0.065
15 75948 -4.27 0.048
25 75963 -4.57 0.071

87



calculation of thevtemperatufe deéendence of the elastic
constants. However both a and b clearly reach
maximum values at intermediate angles with minima at

Yy = 0° and 90°. ‘Very,approximafeiy it can be estimated
" that, |

N3

o -5.4 _ . ~6,.6 o
A033/c33 = (321)x10 T (3t1)x10 T ‘ (4.1-1)

[N

and Acp /ey = - (8:2)x107°1t - 201 0 %L 4a1-2)

Ac44/c44 will have a very large T6 arm, ar .lready found
in bcc He3 (Wanner et ali(l973)). Table 1 also shows a
fairly consistent trend to largepT4 contributions and
towards more~p6$itive—going T6 terms at higher frequencies.
A very large dispersion of'-2xlO_4 to ‘—8x10—4 |
(as extraéolated to T = 0) between 5 and 15 MHz, and
somewhat less between 15 and 25 MHz, is observed over the
entire measﬁred temperaturg’ragge below ﬁélting. - There
.ié'a slight tendequ for the~éispersion to become smaller °
at highe. températures.. In most crystals the dispersion
is normal; bgt because -it is sode five orders. of magﬁi-
tude larger than expected ffom a‘simp;e sine curve, the
dispérsion must necessarily become anomalous at some
higher frequency. In fact two crystals, As-a and A8-d
(figures 19 and 20), do show positive dispersion at 25 MHz.

[
To ensure that the observed frequency dependence was not
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'y

an instrumental effect, measurements were also taken in

< )

the liqdid at 4.1 K, where the dispersion was found to

be -6x10"> between 5 and 15 MHz and -1x10 > betwecn

15 and 25 MHz. These results agree well with the expected

effects of beam diffraction (section 3.3). h
The dispefsion has no discernible dgﬁéndence>

upon orientation.

4..-2 Low Temperature Region

Although the dispersion contiriues to the lowest
temperatures, in’most crystals it changes dramatically as
the temperature is reéduced because of an anomaly in the
sound velocity which begihs at some temperature between
1l and 1.8 K (at 5 MH;) and continues to thg)lowest
measured temperaturé. The anomaly has been abserved
previously (Franck and Héwko (1973) , Wanner and Mueller

(1974), Wanner et al, (1976)) . 7Within the anomalous region
N

the deviation from the extrapolatéd adiabatic velocity is
as much as Av/v = 3x10-3. The anomaly can be either

positive-going. (the most common situation), or negative,
as seen in' the two samples Ai-b and A8-a (figures 11 and

19). Perhaps most striking of all are cryétals A6-b
*

" and A7-a (figures 15 and 17) which show no signs of any

<

1

anomaly at all.

Neither the magnitudes nor the onset temperatures

of the anomaligs exhibit any dependence upon orientation.
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Many crystals show a small negative~going anomaly in the
temperature range just above the onset temperature. 1In
ﬁost cases the velocity reaches at¢constant value after
experiencing a very rapid chénged Crystals A8-a and A8-d
shéw a velocity beginning to return towards the adiabatic
value at the lowest temperature. These.aré the same two
samples in which anomalous.dispersion Qas observed at
25MHz. b

The anomalies exhibit a marked frequency depend-
ence. At 15 MHz they become\smaller and move to tempera-
tures some 15 to 35% lower, and at és MHz are smaller
again and at the same or a slightly lower temperature.
The small high €emperature ;nomgly becomes larger at
hig!.er frequencies, especially in cryétal A8-4.

4.2 Attenuation of Sound

w

4.2-1 The Echo Envelope

i
In order to obtain a &eliable value for the

attenuation when it is small, the effects of interference

must be included as outlined in section 3.3-4. Figures

22-23 show the echo train as pQg:?graphed on the oscillo-
\

écope screen for liquid helium at 4;1 K and for seven

~
N

crystals near melting.

Two difficuities arise. If the flector is

'

tilted then the beam will wander further‘in tﬁe -x
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) Q
direction (as in figure 10(a)) with each reflection until
it will finally disappear for

(’
' n = a/(2pd)* . (4.2-1)

‘At’ 5 MHz this will occur a£
n=7nt ' - (4.2-2)

where nmax is the echolnumber of the first maximum.-

Typically then the signal should‘disappear for n v 40,

but it obviously does not.' This difficulty is avoided if

the reflector is shaped as in figure 10(b). Secondly, for

a tilted reflector,  the interval from n = 0 to the first

minimum should be approximately twice as long as. from the

-

first minimum to the first maximum. Such a feature is
not always observed,‘as for crystal A6-b in figure 22.
Again, the curved reflector is less restrictive and can
fit the observed envelope reasonably well over the first
two maxiﬁa. The attenuation, then, is analyzed using

equations (3.3-32) to (3.3-42).

B in.equation (3.3-24) ranged from 5x10™° to

10-4 cmfl, corresponding to a radius of curvature of

4 4

10" to 2x104 cm. This compares with a radius of &~ 10° cm
expécted‘from‘thé elastic modulus of befy lium copper.

It is interesting to note that the attenhation near. the
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melting point, about 0.01 cm~l, is only 4% of the values

1 that one would obtain by looking

of around 0.25 cm~
only at the echoes previous to’ the first minimum, as was

done by Hiki and Tsuruoka (1976).

4,2-2 Attenuation Results

Figures 24-25 show the echo train at low tempera-

tures for six crystals, as well as the 15 MHz and 25 MHz
signals for crystals A8-d near melting. Attenuation as a
funétion of temperature and ffeguency is illustrated in
figures 26-31.

For most crystals the attenuation follows a con-
sistent pattern. At higher temperatures it rises gradu-
ally with decreasing temperature and then more quickly
as the onset of the velocity anomaly is approached. It
continues to rise to thé lowest femperatures measured.
There is a suggestion of an attenuation peakvin some
crystals at low temperatures, especially at 15 MHz, but
the large measu;ement uncertainties preclude any definite
conclusion. The attenuation increases by as much as 100

v

times between melting and 0.3 K. Most interesting are .

the two crystals A6-b and A7-a. The absence of an anomalyf

in these is dramatically donfirmed by the attenuation,
which increases only slightly to the lowest accessible
temperatures. At 5 MHz most crystals which show 100 or

so echoes at melting have only 2-4 remaining at 0.3 K.
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These two exceptions still show 40-60 visible eghoés at
that temperature.

There is a consistent rise in attenuation with
inéreasing frequency, especially between 5 and 15 MHz,
where a 1is as much as 20 times larger at the higher
frequency. The 25 MHz results generally show a still
higher value, although the uncertainties ére rather large
at thié'frequency.
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CHAPTER 5
DISCUSSION OF RESULTS

5.1 Dispersion

For a simple linear chain model one wéuld only
expect a velocity change of Av/v A 10-9 between 5 and 15
MHz. The observed clffect is five orders of magnitude
larger and so caAnot continue very long before somey
anomalous ‘dispersion sets in at higher f?equencies. 'In
fact two crystals, A8-a and A8-d, do already show such
anomalous dispersion between 15 and 25 MHz. We cannot
predict the extent of the positive dispersion, particular-
ly if 1t rangeg ‘all the way up to thermal energies (1n
‘this experiment kT/hw ~ lO ). If this were so then Q<1
to much lower temperatures than'expected from thermal
measuremenfs, since three phonon scattering‘processes
would be allowea (section'2.6); In liquid helium such an
effect has been descrlbed by Benin (1976) Wehner (1974)
and Marl (1973). They calculate that the existence of
both‘small—angle three phonon scattering‘and wide—angle

scattering formed from many back-to-back small-qngle

- collisions result in a region of second sourd pPropagation

existing well into the wt>1 régime. TRe transition to ’

ballistic propagation also becomes more omplicaﬁed.
There ' s eYldence of wide-angle scatterln in solid helium,

1
as dlscussgd by Rogers (1972). \\\\
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It is uncertain from the data if the large dis-
persion is in some wa} linked to the velocity anomaly.
On -the one hand, the crystals which exhibit no anomaly
still have a large dispersion, bdt on the other hand it
may be significant that the tWwo crystals which show tﬁe
velécity anomaly beginning to disappeér at low tempera-
tures also exhibit positive dispersion at 25 MHz.

Rl

5.2 The Adiabatic Region

Equation (2.5-10) is a very good r;;?;sentation of
tﬁe adiabatic behaviour of thé sound vel;city. Unfortun-
ately (2.5-9) does not work at all. Ahlers (1970) obtaiﬁed
the Griineisen constant from specific.heat as:

Qo

vy = 1.02 + 0.083 V. (5.2-1)

Then [y = d&n y/d&n V]V _ 15.4 = 1.81 , (5.2-2)
so that (2.6-10) predicts a velocity increasing with ¢
rising téﬁpérature. Obviously then the use of an AVeraged
Grineisen constant may be valid for thermél measurements,
but it breaks down completely when the sound velocity“is
considered; then equaﬁion (2.5-6) must be used. Uﬁfor—
tunately almost nothing is known about the Griineisen
constants for individual modes.

1

Because the constants a and b are frequency

~
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and orientation dependent, the assumption of a reduced.
equation of state which led to (2.6-10) .is inValid.l This
conclusion has been reached preuiouSly by Jarvis et al

(1968) .

{ w | . . ,
From figure 4 we see that wTu%l\for 5 MHz sound

5.3 The‘Velocity Anomaly

in the temperature range 1.5<T<1.8 K. f is corresponds
roughly to the onset temperatures of the veloc1ty anomaly
in various crystals. However flgure 4 predlcts that the
anomaly should begin at a 10% higher temperature for

15 MHz sound; the opposite behaviour is observed. The
large TN does not permit any region wTt <l<wTU although

it may be that Wy <l down to 1.2 K (Rogers (1972), Bert-
man et al. (1966), Franck and Hewko (1973)) Still there
would be at best be only a very narrow second sound
window and none at all for higher ‘frequencies, unless
there is some interaction with the "driftless" type of
second sound which, according to Hardy (1970), can propa-
gate at low“temperatures. In an& case the.effect predict-

ed by equation (2.6-10) is only about Av/v ’\:»10_4 at 1.2 K

and decreases as T4.
The transition to zero sound is more complicated.
In equa*““nn (2.7-3), assume an isotropic material with a

unigque vy -
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2 Kev _(kj) S
Then (Yiff) (2 , (5.3-1)
Qg -v, (ki) P

If the dispersion is given by
w=ck [1-6(k)], &§(k)<«<l, (5.3-2)

then (5.3-1) becomes,

~

2 ..
Yeff) _ /11-8(k)+68(K)~k§' (k)+K8' (K)]cosh
LY 1-11-8 (k) +8 (K) k&' (k) +K$ ' (K) [cos6/ P
' (5.3-3)
Now using a Debye model with x - phw, X = BhQ,
and after performing the angular integration,’
Y 2 *p
eff 15 -
. = - R -
( Y ) ‘ —;T j [%p%l&k/ehc) 8 (X/Bhc) +
o . v
] ' eX 4dx
+ x§' (x/Bhc)/Bhc - X5'(X/Bhc)/Bhc| + 2] ——§--2 .
' (e™-1)
(5.3-4)

We can approximate (5.3-4) by assuming an approximately

constant value for the logarithmic factor (the x =1

value) for x >’ael where a is an arbitrary constant such

that: -

(ena) "L >> o > 1. (5.3-5)

107
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Then
, S ol \ -
fr 15
(._;i_> = -;;.Z. pf (&n% |8 (x/Bhc) - S (X/Bhc) +

o]

+ xé'(x/BhC)/th - XG'(X/th)/Bﬁcf + 2] x2 dx

/, a A

T 1 - MAnk(6(1/8hc) . -5 (x/8hc) + §' (1/8hc) /et
= X8'(X/Bhc) /Bhc]. - (5.3-6)

If we choose simple normal dispersion,

5(k) = ak? | ‘ (5.3-7)
then,
2 3A
Yeff = - 1 - 3n ) (5.3-8)
Y 2(Bﬁc) :

Fron (5.3-8), (Yeff/Y)2 V2.5 for T =1 K and

-16.

A = 2x10 This value is too small to produce the

g.observed anomaly, even above 1 K, and the T4 temperature
dependence would make it negligible below 0.5 K -

A reductlon in the normal relaxation tlme could é}
affect the zero sound régime as well as the second sound :%V
region, but again the anomaly should shift to a hlghefr\
temperature for a higher frequency

The Granato-Liicke dislocation theory (equation
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2.8-11) can be made to fit the data well in almost all
cases. However this?®is not‘surprising when one considers
that there are five parameters (Al, A2, k and g and n in
q = ng) that can be varied. 1In fact éhere'are only four
independent parameters if (2.8-13) is used. But for an
exﬁonential distribution, k > 2, contrary to what Wénner
et al. (1976) find in at least one case.

When (2.8-11) was fitted to the data, n varied
_between 2.7 and 5, thle g was of the order of ].0_7
dyne—sec/cmz. This yalue is three orders of magnitudé

larger than expected from Brailsford (1971) where g is

given as,

) .
E(5)8 /Nk R(0) _
( ) L (5.3-9)

where £ is the R!emann zeta function, B8 is a numerical

constant = l.2x104, b is the Burgers vector and R(0) is

given in terms of the dislocation contribution to the

“

thermal resistance WD as:

.

' _ 2 . k _
R(0) = WT /A|T=0“ . : (5.3-10)

Since dislocations generally lie in the basal plane of
hexagonal,crystalé, especially when, the ratio of lattice
parameters c/a is thé,ideal spherical atom value, (Hirth

and Lothe (1 . )), then we let b = a. From Klemens (1958),

/.
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y
W= —D_ ap2 (5.3-11)

D 4233

The 'g v gx10” 11 dyne sec/cmz.

A was of the order of lO cm , an order of
magnitude smaller than Wanner et al, (1976) found. 'Ror
the two crystals A6~b and A7-a only an upper bound for A
of lO cm-'2 can be used. We can estlmate the dislocation
density from the mosaic spread (Hirsch (1956)) seen in
neutron scattering experiments (Minkiewicz et al. (1973)).
The lower bound for this estimate would be 2x105 cm—z,
but this figure is a gross underestimation because it
assumes that all dislocations bend in the same direction.
An upper bound calculated by assuming a random distribu-
tion, should be much closer to the actual value, this
procedure gives A~ 2x109 cm—2. I'conclude that A is
in the range 107-108 cm—z, The small unphysical A
needed for a fit to. the data compensates for the
unphysically large g  required. -

Although'almost any set of data could be fitted
well on its omn, the 5-MHz constants did not give a good
fit at 15 MHz or 25 MHz for the same sample. The magni-
tude of the obserued anomaly did not decrease as fast as
the approximately w;z variation predicted by the theory.

More significvant was the temperature of the anomaly,

represented by the onset temperature or the temperature

-

hs
o~

110
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TM of maximum slope d(Av)/dT. From (2.8-13), TM for any

one crysta¥ is given quite accurately by : "

“TMn/w = constant. (5.3-12)

Equation (5.3—12) predicts that the aromaly should occur
ét a temperature 20\to 50% higher at 15 MHz than at 5 MHz,
but in all cases the anomafy shifts to a temperature 15
to 35% Iower. This afgument rules as decisively agains£
the dislocation tneory as against‘any relaxation time
theory discussed previously in thi; section. In fact any
resonance type of theofy will rﬁn afoul of this same
objection - the unusual frequency dependence of. the
anémaly. .

Finally -it should bé noted that although (2.8-11)
allows for a negative- or positive-going anomaly, the.
negative-going interval must occur af a higher temperature,
so that once d(Av)/dT<0, it cannot be pgsitﬁ&e again at at
lower temperature. This predicted behaviour is contfa— _
dicted by crystal Aé—d.

Saslow (1977) has estimated a velocity change of
Av/v=10"4 from equation (2.9-8). Equation (2.9-10) can

3
.be written:
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=1 - 1 ( ) + T : (5.3-14)
€11 |

where a is théﬂthermal expansion coefficient. For a
perfect crystal the bracketteé term in (5.3-14) is zero.
If Schottky vacancies with energy of formation ¢ are

present in a concentration of

n/N = ¢ -9/kT , (5.3-15)

from Miyoshi et al. (1970) and Reich (1963),
14 -6 " .

¢ = v i (5.3-16)

approximately so that ¥
Tav 6o n) 4 o _

& . (1 + kT.N) de | . (5.3-17)
Using (5.3-17) in (5.3-14), we find finally:

5 - __ + _i —9/kT . (5.3-18)

From Jarivs et al. (1968), a is approximately 6x10"5 T3

k1 at, 17. 4//,3>mole. ¢ is 50 *10K, so that:

4

8 = 2x10” #f 300 | -50/T i (5.3-19)
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At 2K, 5 = 3x10”% and at 1 K is 2{10_5. The large volunme
dependence of ¢ more or less rules out vacancies_as
making a significant contribution to the crystal proper-
ties at this density. As with zero sound, the T4 temper-
ature dependence of the effect should obliterate it below
1l K. Also c4 /cl < 1, so that the effect is reaily
rather small (and negat}ve), although»the'fact thet c42
~rises with decreasing temperature could moderate the
T4”dependenee in (5.3~19). (
| In general the velocity anomaly and‘other observed
effects follow no discernible pattern from crystal to
crystal. There does not appear ‘to be\any dependence upon’
Oorientation. Although the crystals were grown all in the
Same manner, one is led to examine defect mechanisms'since
defect types and concentrations can var{j}x The range of
dislocation den51t1es found from the GranZto—Lﬁche-theo;y
. appears too low. 1In equilibrium the vacancy concentration
is much tooylow. One cannet however rule out other non-
eqiilibrium defects such as clusters of vacancies or stack-.
ing faults. Unfortunately almost nothing dis known about

these structures in solid- helium.
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5.4 Attenuation

From equation (2.5-5), the“Attenuation in the

adiabatic region will be
o s ax10”8 1 16-6/T 71 (5.4-1)

or 2x10—5 cm_1 at 3.5 K and 7x10-4 cm_1 at 1.8 K. It
would of course “be impossible to\measure such small

attenuations. The difficulty of matching impedances to

- obtain a good signal for the higher harmonics must almost

certainly have contributed to the measured attenuation

incfeasing faster than linearly with frequency.

\

In a hypothetical second sound region, the attenu- .
&

ation from equation (2.6-9) and figqure 4 would be:

a = 8x107° i/ ¢ |  (5.4-2)
At T=1K, a fhen would be 0.25 cm ' or more, which is
near the measured values. However this attenuatien should
drop with decreasing temperature as far as the Poiseuille
flow maximum. The~atténﬁation is not f:equency dependent.
Generally all theories fail because of the
continuatioqnof the high attenuation over such a large
temperature range. For the dislocation theory also

(fFrom (2.8-1)), when d<uw,

a «da« Tt 0 (5.4-3)



so that the attenuation should be fafling rapidly by the
time the plateau in .the vélocity is reached. This situa-
tion does not occur. One expeéts thit there will eventu-
ally be an atten;aﬁion peak and a + 0 as T + 0, but this

behaviour has not yet been obseived.
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CHAPTER 6

CONCLUSIONS

There is a very large frequency dispersion at all
temperatures in pure single crystals of‘hcp selid He4.
" The dispersion is usually normal, but both direct and
indirect evidence exists for anomalous dispersion at or
above 25 MHz. The longitddinal sound velocity rises with
decrea91ng temperature until an anomaly sets 1n between
1 and l 8 K. The velocity changes very rapldly with
‘temperature bver a range of 0.5 —:J X and then levels off

3

adiabatic) =1 v 1-3 x10 7.

Two crystals show a deviation from this plateau below

to a constant value with (v/v

a@pgt 0.3 K. 1In most sahpies fhe anomaly is positive,
but two crystals show a negatlve anomaly while two others'
exhlblt no anomalous behaviour at all. The’ anomaly | |
;becomes smaller and moves to lower teyperatures as the
frequency is increased;

The attenuation is very smali in solid heliﬁm
near meltinq, generally 0601 cm-l or less. Very\carefhl
conSLderatlon must be given to the echo envelope when
measurlng these low attenuatlons. The attenuation rises
as the temperature is reduced, slowly at flrst and then
more qulckly as the velocity anomaly is reached The

\
attenuation. continues to rise to at least 0.25 K or lower.

There is no theory at present which can explain

- 116 - o .-
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the behaviour of the velocity and attenuation in the
anomalous region. All theories fail completely on two
counts: the anomaly moves to lower temperatures as the
freqﬁency is increased; the attenuation continues to be
very large down to 0.25 K.

Future work should proceed in three dlrectlons-
to lower frequencies, to lower temperatures and to an
1nvestlgat;on of transverse souﬁd propagation. Most
useful of ell would be a similar experiment done on very
pure He3 in both the hcp phase (to see if isotopic

effects are important) and the bcc phase (to observe the

significance of the crystal structure).
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APPENDICES

Al Extrapolation of Elastic Constants

Data for this extrapolation were t;keh froh Wanﬁer
and Franck (1970); Greywall (1971) and Crepeau et al.
(1971) . ' |

There are several useful relations amoné—the

glastic constants. From Franck and Wanner (1970),

c + ¢ = C + Cne v . (Al-1)
11 12 JE; 33 . )

If (Al-1) is used in the expression for compressibility
. 4 _

~gH

Ut

‘(Nye (1957)), then r -
- D
Ky = 34(033 + 2013) . ' o (Al=2)

N

cpq Was fitted to an empirical relatiqﬁ using all data

(but especially those of Greywall‘which were séread over

a wide volume range) to give: )

.

. el o= 4.236x101te TV/3:01T 0 (a1-3)
S .
Then for almost all data, C11 and €12 were found on

average to be simply related according to:

cll/c12 = 1,78 £ 0.02. (Al-4)
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From equations’ (Al-1) to (Al-4), the four elastic constants
c;l, Cigv €13 ang €35 .Can be calculated if Kp 18 knowgf
For this purpose the data of Jarvis et al.(3968) was found

to be fitted very well by

K =

o = 4.2513x10712 V/3.0703 (A1-5)

In order to calculate Chqr We look at the Debye velocity
V. given by “

N,

v = [/ (v, 2+ v. " 4y 73 aas12n71/3,
L T T .
. » ] 2
(Al1-6)
as in equation (2.4-8). Now,
ha v = i!) Vi ~(Al-7)
: D h 3N K

and OO is given empirically by Ahlers (1970) as:

4

0, (V) = 68.56 (v/14.208) 2" %2 exp [-0.083(v-14.208)].
> a (Al1-8)
Then, using equations (2.3-9) to (2.3-12) for the sound
velocities, C44 ©an be calculated on a computer once the
other four elastic constants are known. |
_I-could place a great deal of confidence in tﬁe

extrapolation to 17.4 cm3/mole beéause éxtending the
extrapolftion ai‘l the gay to 16 ,éit\3/m0'1e gave a'val_ue for

4
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é

€33
from neutron scattering (25.4x10B dyne/cmz).

Some representative values for the elastic

constants are given in table 2.

A2 Extrapolation of Relaxation Times

From the measurements of Hogan et al. (1969) at
85 and 126 atmospheres and the more accurate measurements
of Lawson and Fairbank‘(1973) at 85 atm., the normal

relaxation time is

<

T (1) = (2.0220.1) X 10712

ymy 3
(QD/T) sec.
(A2-1)
The thermal conductivity in the umklapp scattering region
was fitted accurately by the expressions:

. ep/byT ' | .
_A‘Le . *

A
[
1

(A2-2)
op/by T
e

il

g = By
with b, = 2.58 and by =-4.62. The coefficients Ay’
and A, are functions of pressure. The data is scapl ip‘

this respect. However Hogan et al.do find that

only‘7% higher than that found by Reésé et al (1973).

127

A, (85 atm) = 112 erg/cm-sec-K, A4(8§) = 2310 erg/cm-sec-K,

A, (53.4) = 0.61 Ay (85) and A;(126) = 1.5.A+(85).,

. . \
We can estimate that for a melting pressure P and



Volume

" {(em”/mole)

21
20.5

20

19
18.5
16
17.5
17.4
17

16

TABLE 2

ELASTIC CONSTANTS

11

€12

€13

33

C44q

(all in units of 10%_dyne/cm?)

8.49

11.83

11.606

19.42

27.28

2.11

2.61

2.96

128
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pPropagation either pérallel or perpendicular to the.

c-axis,
A(P) = (p/85)1-03 A(as) . (A2-3)
Now, . T =.3KV/CVVD2 , N (A2-4)
so we have finally: '
. N 1.73x10_8 v ~92 3. (E_f l.OS\EeD/Z.SBT
U v 2 ‘T “85) . P !
D )
(A2~5)

_ 3.57x1077 v p) 3 (g_) 1.05 eGD/4-%2T
T 85

(A2-6)

Equaéions (Ag—l), A2-S) and (A2-6) are plotted on
figur; 4. |

The total relaxation time T is calcu;ated from
the fqllowing relations of Hogar. et al. and Guyer and
Krumhansl (1966): ' |

(a) Boundary scattering region (vt >>d, v.t,.>>d)

N DU

T = ad/vy where a > 1. | ) (A2-7)

(b) Poiseuille flow region (v_ 71 _<<d, TU>>d2/VD2TN)

DN
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5 2, 2 E
T =3z d/vy Ty (A2-8)
. P
(c) Umklapp region (TN<<TU, TU(<dQ
(A2-9)

The total relaxation time 1 is shown for a cell width

”

\

d =1 cm by the dashed lines in figure 4 after interpol-

ating equations (A2-7) - (A2-9).



