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ABSTRACT

This thesis deals with the study of bounded-input bounded-
output (BIBO) stability of certain classes of nonlinear discrete-
data systems using the methods of Functional Analysis. Sufficient
conditions for the BIBO stability of such systems are established
employing the contraction mapping principle. The systems considered
include those with the nonlinearity in the feedback path, as well as
in the forward path. A system with a slope restricted nonlinearity
is also studied. The method for finding the input and output bounds
for stability in a speciql case of nonlinearity is discussed. Finally
a method for generating the system solution by a process of successive
approximations is given. It is shown that the solution comes out in
the form of a discrete Volterra type series, whose convergence is

assured in the region in which the BIBO stability conditions derived,

are satisfied.
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CHAPTER 1

INTRODUCTION

Discrete-data systems, or sampled-data systems as they are
commonly called, have come to play a significant role in present-day
control technology. Although the use of sampled-data in control systems
was recognized quite early in the history of feed-back control systems,
interest in the analysis and design of sampled-data systems began perhaps
in the early forties, when during the war, problems connected with radar
tracking systems were encountered. The advent of the digital computers
and their incorporation 'into control systems have given a fillip to
the study of sampled-data systems, as the basic operation of such

computers by necessity tends to reduce them to sampled-data systems.

An important area of investigation into the behavior of these
systems is the determination of conditions for system stability. For
this purpose sampled-data systems may be broadly divided into two
categories: the linear sampled-data systems and the nonlinear sampled-
data systems. For linear sampled-data systems the formulation of both
necessary and sufficient conditions for system stability have been
exhaustively investigated. However, many sampled-data systems of
practical importance are nonlinear for which formulation of conditions
for system stability is far from being complete, although it has focussed

the attention of many recent investigators.

Much of the work done in this field deals with the direct

application of Liapunov's second method extended to systems of difference
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*
equations1 . Although this is the most general of all known methods of

stability analysis of nonlinear systems, it suffers from some arbitrariness

in the choice of suitable functions.

A few years ago the Rumanian scientist V.M. Popov developed
an entirely new approach to the classical problem of absolute stability
by working in the frequency domain. Popov's results which originally
applied to autonomous continuous systems with nonlinearities confined
to specified gain sectors, have been extended to discrete-data systems
by Tsypkinz. Jury and Lee3-5 further extended the application of
Popov's method to nonlinear sampled-data systems, and by placing
constraints on the slope of the nonlinearity obtained less conservative
results than did Tsypkin. All these stability criteria could only
predict absolute stability of the null solutionm, which means that
sampled inputs which tend to zero fast enough produce outputs which

tend to zero,

Another very important kind of stability is the requirement
that bounded inputs produce bounded outputs, usually referred to as
bounded-input bounded-output (BIBO) stability. This thesis is primarily
concerned with the stability of certain classes of nonlinear discrete-
data systems in the BIBO sense. For linear systems uniform asymptotic
stability of the autonomous system implies BIBO stability as a direct
consequence. In general this is not true for nonlinear systems and
many counterexamples have been constructed6. Also a nonlinear system
can exhibit local BIBO stability even though it may not be BIBO

stable in a global sense.

*
Numbers placed above the line of text refer to the references.



In a recent paper Iwens and Bergen7 have shown that the
condition given by Jury and Lee3 for the absolute asymptotic stability
of certain classes of autonomous nonlinear sampled-data systems establishes
absolute BIBO stability as well., Apart from this reference, available
technical literature provides little evidence of much work having been

done in the area of BIBO stability of nonlinear discrete-data systems.

In this thesis the problem is approached in an altogether
different way. The method of analysis is based on the fixed-point
property of certain contraction mappings in Banach space. . Although this .
concept is well established in Functional Analysis and cognate branches .
of modern mathematics, its application to the study of stability and
convergence problems arising in nonlinear system analysis is relatively
new. Observations on the use of this approach has been made by several
authors in the past - Kalman and Bertraml, Zamess, and Sandbergg, to name
a few. On the application side papers by Desoerlo, Leon and Andersonll
and Leibovic12 may be mentioned. Recently the BIBO stability of a class
of nonlinear continuous data systems has been successfully investigated
by Christ:ensen13 using the same principle. However, as far as the BIBO
stability of nonlinear discrete-data systems is concerned, this approach
does not seem to have been attempted so far, though methods based on
contraction mapping have been used in a different way to investigate

asymptotic stability in the large of such systemsl4’15.

The objective of this thesis is to extend the technique of
contraction mapping to obtain sufficlient conditions for the BIBO
stability of different classes of nonlinear discrete-data systems.

Some of the results have been presented by the author in a paper



entitled "Contraction mapping applied to stability analysis of a class
of nonlinear discrete-data systems”, at the Second Asilomar Conference

on Circuits and Systems, October 196816.

Chapter II considers the stability of linear discrete-data
systems from a functional point of view. The mathematical concepts

and functional nontations involved are introduced in this chapter.

Chapter IIL deals with the stability analysis of nonlinear
discrete-data systems with a polynomial type of nonlinearity. The
contraction mapping theorem is stated and proved, and its application
for obtaining sufficient conditions for the BIBO stability of the

systems considered is explained.

In Chapter IV the method of computation of input and output
bounds in a special case of the nonlinearity, is discussed. Numerical

examples illustrating the procedure are also given.

The analysis of systems with a slope restricted nonlinearity
is treated in Chapter V. A criterion for the BIBO stability of such
a system is stated and proved. Its application 1s i1llustrated with the
aid of a numerical example and the results compared with those obtained

by the criterion of Jury and Lee3.

Chapter VI considers the generation of the actual system
solution by a process of successive approximations, leading to a discrete
Volterra type series, and shows how the stability conditions derived

establishes the convergence of such a series,

In conclusion the advantages and disadvantages of the method
of contraction mapping are discussed, and suggestions for future

investigations in this field given.



CHAPTER II

STABILITY OF LINEAR DISCRETE-DATA SYSTEMS

2.1 Introduction.

The main aim of this chapter is to discuss the BIBO stability
of linear discrete-data systems from a functional point of view, as this
forms the basis for the development of the conditions for the stability
of the nonlinear discrete-data systems considered later. This is
essentially a time domain approach, and involves the representation of
the system as a linear mapping in a function space and defining a norm
for the linear operator which effects the transformation. Before
introducing the functional notation, however, the more conventional
time domain representation of the system will be first discussed, as

also the Z-domain representation.

2.2 Conventional Time Domain and Z-Domain Representation of Linear

Discrete—-Data Systemsl7—19.

A conventional linear single-loop discrete-data system is

shown in Fig. 2.1.

r-—/)&’--’ C*(t)
r(e)  ton e(t) ¢ exer) | g(e) L . e
T

Fig. 2.1 A Linear Discrete-Data System.



G(s) 1s the transfer function of the linear plant assumed
to be situated in the forward path. The sampler with uniform period T ,

and shown as a switch, is a device such that:

e*(t) = e(t) ) &(t-nT)
n=o

= ) e(nD)§(t-nT) . (2.1)
n=0
That is it produces a train of impulses, the area of which being the
value of the sampled variable at the sampling instant nT . Note that
the input to the sampler is the continuous error function e(t) assumed

to be zero for t < 0 , whereas the output is a discrete valued function

of t , defined at the discrete instants t = nl, n = 0,1,2,...5,¢ &

I1f now equation (2.1) is Laplace transformed one gets:
s T
e*(g) = Z e(nT)e nls (2.2)

n=o0

since the Laplace transform of the impulse &(t-nT) i1s equal to e-nTB .

Letting eTS = z , equation (2.2) may be written as:

e(nT)z_n . 2.3)
)

e*(s) = e(z) =

8 ='% log =z

-8

n

Equation (2.3) defines the Z-transform of the input function e(t) .

Consider now the forward path of the system shown in Fig. 2.1.
The input to G(s) 1is e*(t) , a train of impulses with amplitudes
e(nT) at t = nT , whereas the output is c(t) , a continuous

function of time. Since our analysis is confined to the discrete



function space, a fictitious sampler is introduced at the output
synchronized with the input .sampler for obtaining the sampled output,

which is denoted by c*(t) . A relation between c*(t) and e¥*(t)
may be obtained as follows:

Suppose a unit impulse is applied to G(s) at t =20, the
output response would be g(t) , the impulse response of G , and the
output of the fictitious sampler would be:

gk(t) = ) gI)s(t-nT) . (2.4)
n=o
Hence if e*(t) 1is applied to G , the output sample c(nT) at

t = nT , would be the effects of all samples e(nT) , e(nT-T) ,

vees e(T), e(0) . That is:
c(nT) = e(0)g(nT) + e(T)g (nT-T) + ... +-e(nT)g(0) . (2:5)

Equation (2.5) may also be written as:

n
c(nT) = Z e (kT)g (nT-kT)
k=0

n
= } g(kT)e(nT-kT) (2.6)
k=0

ck(t) will be then given by:

© n ’
ck(t) = Z [ z e(kT)g(nT-kT) | §(t-nT) (2.7a)
n=o0 L k=o ‘ 4
® n 1
- Z [ Z g (kT)e(nT-kT) §(t-nT) . (2.7b)
n=0 - k=o -

Thus the output samples can be obtained from the input samyles



by a process of summation defined by equation (2.7a) or (2.7b). This

operation is called the convolution summation.

The foregoing can be related to the Z-domain approach in the

following way:
Taking the Laplace transform of equation (2.4) yields:

-]

G*(s) = Z g(nT)e_nTS (2.8)
n=o

i.e. 6(z) = | g@Dz " . (2.9)
n=o0

Equation (2.9) defines the Z-transfer function of G(s) .

-nTs

Now multiplying both sides of equation (2.5’ by e ’
and taking the summation for n = 0 to =:
I T s T s -nTs
Z c(nT)e nis Z e(0)g(nT)e nis 4 ‘z e(T)g(nT-T)e
n=0 n=o n=o
$ .o+ ] e@Dg@)e ™ (2.10)
n=o
or
2 c(nT)e-nTs = Z g(nT)e-nTs [e(0) + e(T)e—TS +
n=o n=o
+e@De ?™ + .. (2.11)
from which,
Z c(nT)e-nTs = Z g(nT)e-nrrs z e(nT)e-nTs (2.12)
n=o n=o n=o

or
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c*(s) = G*(s)e*(s) . (2.13)
Using the Z-transform notation, (2.13) may be written as:
c(z) = G(z)e(z) (2.14)

Equation (2.14) is the Z-domain equivalent of equation (2,7a). Thus it
igs seen that convolution in the time domain is equivalent to multiplication

in the Z-domain.

Now consider the closed-loop system of Fig. 2.1. To obtain
the sampled response to any arbitrary input r(t) , one may proceed as

follows: It is easy to see that,
e(z) = r(z) - c(z) . (2.15)

Substituting (2.15) into (2.14) and simplifying:

c(z) = ifgég%zy . r(z) - (2.16)

Putting Efgﬁé%zy = H(z) one may write:

c(z) = H(2)x(2) (2.17)

a relation which is analogous to equation (2.14). Here H(z) * 1s called
the overall Z-transfer function of the closed-loop system. The correspond-

ing time domain relationship between c*(t) and r*(t) will then be

given by:
L r =»n
ck(t) = ) [ )} h(kT)r(nT-kT)] & (t-nT) (2.18)
n=o L k=0

where h(kT) = Z-lH(z) , the inverse Z-transform of H(z) . Note that
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h(kT) 1is the same as the sampled impulse response of the closed?loop
system at t = kT . Given H(z) one method of obtaining hk(KT) 1is to

apply Cauchy's integral formula:

h(kT) = 2—11;5 ¢ H(z)2" tdz
r

= Sum of the residues of I-I(z)zk-l

at the poles of H(z)zk-l . (2.19)

2.3 The Functional Representationzo’ZI,

The natural representation for any system is a correspondence
between input and output elements. The classical time -domain relation-
shiﬁ between the sampled input and the sampled output given by equation
(2.18) for the linear discrete-data system of Fig. 2.1, for example is
one such representation. Here the emphasis is on the response of a
particular system to a particular input. . In order to obtain a qualitative
understanding of the properties and behavior of systems in general, a
characterization that yields a mathematical model compatible with a large
class of systems and a large class of inputs is called for. This is the
aim of the functional approach. This approach utilizes as its tools the
concept of abstract spaces and operations on such spaces. The input
and output functions are identified as belonging to an abstract ‘space,
endoved with a mathematical structure suited to the type of analysis

desired, and the behavior of the system studied in this setting.

The space best guited for the purpose of our analysis is the
Banach space. This space is chosen as 1t facilitates the application

of the contraction mapping theorem, when the stability of the nonlinear
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discrete-data systems is considered. The following definitions will

clarify what is meant by a Banach space.

Definition 1: A collection of elements together with a certain
structure of relations between elements or of rules of manipulation and

combination, the whole supporting a mathematical development is often

called a space.

Definition 2: A space X is said to be a linear (or vector)
space if addition and scalar multiplication are defined on X satisfying
the commutative, associative and distributive laws. The scalar multi-

plication is related to some associated field of scalars, usually denoted
by F .

Definition 3: A space X is sald to be a metric space, if
we associate with any two points Xy X, of X a distance function or

metric such that:
(a) d(xl,xz) >0, if % # Xy o
(b) d(xl,xz) =0, 1if and only if X, = X,y .
(c) d(xl,xz) = d(xz,xl) .
(d) d(xl,xz).i d(xl,x3) + d(x3,x2) for every X, € X .

Definition 4: A norm on a linear space X 1s a real valued

function, whose value at X Wwe denote by IIxll , with the properties:
() fixllzo0.
®) |x)|#0, if x# 0.
© lxy + %l < llxgll+ lixyll -

@ |lax|| = |allx|l, for all ae F.
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Definition 5: A linear space on which a norm is defined becomes
a metric space if we define d(xl,xz) = ”xl - x2” . A linear space which

is a metric space in this way is called a normed linear space or a normed

vector space.

Definition 6: A sequence {xn} in a metric space is called

a Cauchy sequence if d(xn,xm) >0 as m and n > .
Definition 7: If a metric space X has the property that
every Cauchy sequence in X has a limit in X , X is said to be

complete.

Definition 8: If a normed linear space is complete it is

called a Banach space.

The input and output functions r*(t) and c*(t) are real
valued functions of time defined only at the discrete ingstants t = nT ,
n=21,2,..., , on the interval o <t <., They are thus sequences
in a sequence space, say Y , which is a linear space. The definitions

of addition and multiplication by scalars in this space are as follows:
~ . * = ® * = ®
Addition: If x {xn}n=o and y {yn}n-o , then

(- -
* * * *
z* = x*% + y* | where 2z* = {zn}n=o > 2, =X, +y,

-4 -]
. * = -
Multiplication: ax* = a{x } _ {ax } oo s 2 eF .

If furthermore, r*(t) and c*(t) are bounded, then they
belong to the space of bounded sequences, say F , which is a subspace

of Y. F 1s a Banach space if we define the norm:

x*|| = 8up |x*| , =x*eF . (2.20)
=gt <o
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Hereafter r*(t), c*(t) will be written as r*¥ , c¢* .and

their norms as R*, C* if r*, c* ¢ F .

In the general situation when r*, ck ¢ Y , the relation
between them may be looked upon as a transformation in the linear space

Y , and hence can be represented by the functional equation:
c* = Bkr* (2.21)

where B* is an operator which maps the linear space Y into itself.

This operator is said to be linear, if:

(a) B*(xl* + xz*) = B*xl* + B*xz* , any x.*%, x2* €Y.

(b) B*(ax*) = aB*x*, any x* e Y, and any a e F.
B* is then called a linear operator on Y.

For the discrete-data system shown in Fig. 2.1, the input-out-
put relationship described by the equation (2.18) can be easily verified
to be a linear operation in Y . Hence we can represent this relation-
ship by the functional equation (2.21), where B* is a linear operator
defined by equation (2.18). B¥ will be called the convolution summation
operator.

Now suppose, r*, c¥e F , then B* becomes a linear operator
in a Banach space, and maps ¥ > F . How this concept is tied in with

the stability of the linear system, and further properties of B* , if

the system is stable, are discussed in the next section.

2.4 Stability of Linear Discrete-Data Systems.

The following definition of stability will be adopted in this
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discussion: A discrete-data system is sald to be stable in the BIBO
sense if for any bounded input the corresponding sampled output is bounded,
and for every real € > 0 there exists a real 6&(e) > 0 such that when-

ever two inputs rl*, rz* are less than 6&(e) apart, i.e.

Hrl* - rz*“ < §(c) , the corresponding outputs c *, c* are less than
¢ apart, i.e. "cl* - c2*H <e.

Referring now to the linear mapping c* = B*r* , the first
part of the above definition implies that, 1if the system is stable,
r*, c* belong to the space of bounded sequences; 1i.e. they belong to
the Banach space F , and Bk : F+ F . The second part of the

definition further demands that the mapping B* : F > F is continuous.

Since B* 1is linear and continuous, B¥* is bounded; i.e. a constant

M < » exists such that:
|Bre*|| < Mllz*]| . (2.22)

The smallest M for which (2.22) holds 1is called the norm of the linear

operator B* , denoted by |B*|} .

According to the above definition |B*| possesses the follow-

ing properties:
| Bre*|| < || B*(] = (2.23)

for any arbitrary r* , and there exists an re* for each € > 0

such that:
[ase 2l > o+l - ol - (2.26)

An alternate expression for the norm of B* 1is:
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B[l = sSup [Brrx| . (2.25)
T*|[ <

This can be shown to be true as follows:22

If ||r*] <1, then:
IB*r*|| < [|B*[l|x*] < |B*|
and therefore,

Sup [|B*r*|| < [B*]| (2.26)
=+l <1

on the other hand there exists an re* for every € > 0 , such that:

Is*r x| > (B%] - ezl -
If we put
r *
r.* = €
1 ”re*"
then

1
3%, *1 = ey 2o )
1
> IE| d x|l - ellz*|

= ||B*]| - ¢
Since ”rl*" =1, we have:

Sup [[Bar|| > [[Br *| > [|B*]| - €
ll e+l <1

and therefore:
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Sup ||B*r*| > |[B%| . (2.27)
|| e <1

From (2.26) and (2.27) it immediately follows that:

IB%|= sup [|B*r*|| . (2.28)
r¥|<1

2.5 Computation of ||B*|| for a Given Linear Discrete-Data System.

For computational purpose it 1s necessary to evaluate an
expression for the norm of B* in terms of the system parameters for
any given linear discrete-data system, known to be stable. To do this
we go back to the explicit time domain representation of the linear

discrete-data system given by equation (2.18), viz.:

o n
ck = ] [ ) h(kT)r(nT—kT{]G(t—nT) . (2.29)

n=o | k=0

From (2.29):

©w [ n
le*|| = suwp |1 [.Z h(kT)r(nT—kT% 6(t-nT)|

—o<t<wo Inmo | k=o

n
= Sup | ] h(KT)r(aT-kT)
o<n<w k=0

J |n(km)| Sup |r(aI-kD)|
k=0 o<n<e

| A

= J |h(xT)| Sup |r*|
k-o =00 t <o

T |nD| flex|| . (2.30)
k=0
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Since

nk = Rikrk

IB#| = Sup ||B*r*|| = Sup fe*] . (2.31)
Il e4] <1 | % <1

From (2.30) letting |[r*| =1,

- -]

sup [le*]| < I |h(kD)]
[| %] <2 k=0

- <]

I|B*] < I |n@xD)| . (2.32)
k=0

A classical argument can now be used to show that:

-4

|B%]| = § |nGkD| .
k=o

To ‘o this choose an element c(nT) of the sequence ¢k , n large.

n
c(aT) = ] h(kT)r(nT-kT)
k=0

n
= § h(nT-kT)r(kT)
k=0

For this n , choose r(kT) = Sgn h(nT-kT) = + 1 . Then

n n
e@T) = )} |h(I-kT)| = ] |h(kD)|
k=0 k=0

Then
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n
[ e*|| = ||B*x*|| > I [|aGT)| .
k=0
Therefore

n
|B*|| = sup HB*r*” > ) |h(kT)| , for any n .
r* <1 k=0

-]

i.e. B* > I |h(kT)| . (2.33)
k=0

From (2.32) and (2.33) it follows that:

0

B[ = } [|n(kT)| . (2.34)

k=0

Hereafter [B*| will be denoted by H* . Given H(z) a method for

finding an upper bound for H* 1is discussed below.

It willﬂbe assumed that H(z) 1is expressible as a ratio of
two polynomials in z , and the number of zeros of H(z) 1s at least
one less than the number of poles. This is usually the case in most
physical systems, and the impulse response of such a system will be

zero at t = 0 ; in other words h(kT) = 0 , when k= 0, so that

o«

H* = ) |hT)| .

k=1
Let
n n
P(z) 121 pizn—i K‘izl pizn_i
z = =
H(z) = q(z) - 5 ” - - (2.35)
Z qizn n (z-zi)

i=o i=]1
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where 2z, are the n poles of H(z) . Here we are assuming that H(z)

has only simple poles. It may, however, be mentioned that the results

can be extended to multiple poles also.

Applying equation (2.19), for k >0:

h(kT) = Sum of the residues of H(z):o:k_1
at the poles of H(z) . (2.36)
The residues for the rth pole will be:
n
n-1
K z P.2
e | EEEE e j=) T k-1
m —_— 2 = .z
Q(=) n r
z > 2
r I (z -zi)
i=]
igr
k-1
c 2. (2.37)
where c, igs the coefficient of zrk_1 and is a constant for all k.
Hence
-]
gt = ] |h(kD)]
k=1
"Z° ‘z‘ k-1
- CrZr
k=1 ' r=1

: B k-1
< 11 ezl .
k=1l 1r=1

Since we have assumed H(z) 1s the overall Z-transfer function of a

stable discrete-data system |zr| <1l.
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® k-1 o] v k-1
T, Y e llz,| = 3| I lellzl
kzl m1 ¢ F o1l ke1r T OOF
i rzl le,|
r=1 1-1lz,
Hence
O R
B < ) T . (2.38)
r=l r

The right hand side of inequality (2.38) gives an upper bound for H*




CHAPTER III

STABILITY OF NONLINEAR DISCRETE-DATA SYSTEMS

3.1 Introduction.

In this chapter we will develop sufficient conditions for the
BIBO stability of a specific class of discrete-data systems with a
single continuous nonlinearity. Two such systems will be considered:
in system A, the nonlinearity will be assumed to be situated in the feed-
back path, and in.system B it will be assumed to be in the forward path.
Since the method of analysis of both systems is almost similar, the
analysis of system A will be done in detail, while that of system B
will be done more briefly. In either case the boundedness of the out-
put is studied only at the discrete instants of sampling. The general
method of approach is to first express the discrete output of the systems
as a mapping of a Banach space into itself, and obtain sufficient
conditions for the existence.of a fixed point within a bounded region
in the space making use of the contraction mapping theorem of Functional
Analysis. The theorem will be stated and proved as the analysis of

system A 1s developed.

3.2 System A: Description and Assumptions.

The configuration of system A is shown in Fig. 3.1. It is a
single-loop negative feedback system with a single nonlinear element N
in the feedback path. The sampler is situated in the forward path and

has a constant period of T . It is followed by a linear plant G,
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which may be made of continuous controlling devices, continuous and/or
discrete compensating networks as well as a zero order hold. r, c, and
e denote the input, output and error signals respectively; they are
real valued continuous functions of time ¢t . rk, c* and e* denote
the corresponding discrete sampled functions. r 1is assumed to be

bounded.
X
r__/ '——’ c*
] T
r + e e*
: Jg———— G : - C

Fig. 3.1 Nonlinear Discrete-Data System A

The nonlinear gain function ¢(c) 1is assumed to be continuous
and further satisfies the condition $(0) = 0 , which permits its

representation in the form:

N i
¢(c) = K,c + ) Kc (3.1
i=2

where Kl’ Ki are constants, and N a finite integer. Thus ¢(c) may
be looked upon as consisting of a linear part proportional to c , and
a nonlinear partcontaining all the higher order terms in c . If the
higher order terms were not present the system reduces to a linear
system with linear gain Kl in the feedback path; the system will

then be said to have been linearized. The BIBO stability conditions



23

to be derived for the nonlinear system will be based on the assumption

that the linearized system is BIBO stable.

3.3 Functional Representation of System A.

Let G(s8) be the transfer function of the linear plant G ,
and G(z) the corresponding Z-transfer function. Consider the linearized
system first. It is shown in Fig. 3.2
.__._//\& ——p= C *

0
* T
e e

—o ! G(s) - -C

Fig. 3.2 Linearized System Corresponding to System A

Let <, be the continuous output of the linearized system
for the input r , and co* be the corresponding sampled output.
Also let H(z) be the overall Z-transfer function of the linearized

system. Then it can be easily deduced from Z-transform theory that:

G(z)
H(z) = 1+ KlG(z) (3.2)

and

co(z) = H(z)x(z) . (3.3)
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Inverse transforming equation (3.3) into the time domain and-using

functional notafion:
c * = B¥r (3.4)

where B* 1is the convolution summation operator. Since we have assumed
that the linearized system is stable, co* is bounded whenever r*
is bounded, and B* dis a bounded operator; i.e. ||B*| is finite.

[B*| can be determined using the formula:

- -]

|B*|| = B* = } |h(kT)| (3.5)
k=0
where
h(kT) = 2 TH(z) , (3.6)

H(z) being defined by equation (3.2).

Also let

4

=0 for t <O

F = {x* Sup [x*| < =) (3.7)
© —00< <o
- Z x(nT)8(t-nT) for t >0
\ n=o0 J
This is a Banach space (essentially &_ )y 1if:
[x*]| = sup |x*| . (3.8)

—oo <o

In this setting, for our stable linearized system, whenever r* ¢ F ,

co* e F; and B* : F+F ., In other words B* 1s a mapping of the

Banach space F into itself.
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Now consider the nonlinear system A. Referring back to Fig. 3.1,

it is clear that the error signal e 1s given by the relation:

N i
em=r - ¢(c) =1 - ch - Z Kic- . (3.9)
i=2

The input to G i1s the sampled error signal e* , and

N

e*x = ¢k - ¢*(c) = r* - ch* - Z Kic*i . (3.10)
1=2
Laplace transforming equation (3.10):
q i
e*(s) = r*(s) - K c*(s) - ! Ke* )(s) . (3.11)
i=2
Rewriting equation (3.11) in Z~transform notation:
X i
e(z) = r(z) - Kje(2) - } Kc* ) (z) . (3.12)
‘ im=2 '

Multiplying both sides of equation (3.12) by G(z) , and remembering

that:
e(2)G(z) = c(z) and 1—4-_95(?;—(-2—)- - H(z)

the following expression for c(z) may be derived:

N
c(z) = H(z)x(z) - H(2) ° ( ) Kic*i )(z) . (3.13)
i=2

Transforming equation (3.13) into the time domain and using the operator
notation:

N
c* = Bkr* - B¥ Z K c*1 (3.14)
=2t
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with r* fixed, equation (3.14) defines a relation of the form
c* = Ac* (3.15)
where A 1is a nonlinear operator, such that

N
Ack = B¥rk - BX J K c* . (3.16)
1m2 1

3.4 Conditions for the BIBO Stability of System A.

Whether the system represented by equation (3.14) is BIBO stable
is' equivalent to asking under what conditions does it have a solution
c* belonging to F, 1f r* e F; or when does A have a fixed
point in F for each r* ¢ F. To answer this question, we resort to
a contraction mapping theorem23, which is stated and proved next. The
statement of the theorem is slightly modified to suit our purpose, but

the proof is essentially the same as that given in reference 23.

THEOREM: Let F be a Banach space, and let A be a mapping

of F into F . Let S be a sphere contained in F of centre X

and radius a , such that:
(1) [lax; - ax, | < A%, - x,]| (3.17)
for every X1 X, € S, andsome A : 0 <A <1
(11) “Axo - xo” < (1-2)a (3.18)

then there is a unique fixed point x in S , that is a point for

which Ax = x .

Condition (i) will be called the contraction condition, and
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condition (i1) the fixed point condition.

PROOF: Define the sequence {xn} which is given recursively

by:

x_ = Ax n=1,2,... (3.19)

n n-1?

(and in which X, is the vector of our hypothesis). By hypothesis

X, and X, lie in the sphere S . If:
g = =gl < € - Ja, §=1,2,...,n (3.20)
(so that Xys Xgy cees ¥y lie in S), then:

Ix_py = % < Uxgeg =+ 1%y =
<llax - ax _+@-2Da . (3.21)
But
lax_ - ax o0l < M=, - %4
= Mlax _, - ax Ll

2
2 A “xn-l = xn_zll
= An"xl - xon

<A"@-Ma . (3.22)
It follows that:

“xn+l = xo” = AP -Ma+ Q- AMa

- (1 - 2", (3.23)



28

so that X lies in S for every n . We see also that because

% 4y = %0l A%y - % (3.24)
we have
n+r-1
"xn+r - xn” = Z “ xj+l - xj ”
Jj=n
co
LD EIE Y
gha THHL T
AR

< 1 - A ”xl = xoll . (3.25)

For r > 1, the sequence {xn} is a Cauchy sequence, X X as

n+», and x belongs to § .

Since Ax is continuous on S (by contraction condition,
which is a Lipchitz condition) we now let n + = in X, -<Axh_l and
get

x = Ax . (3.26)

There cannot be a second point y 1in. S for which y = Ay

for if there were we would have:
% - yll = |ax - ayll < Alx = yll <llx -yl (3.27)

which is impossible. The proof is now complete.

In order to apply the above theorem to our nonlinear mapping
A, we must first make sure that A maps the Banach space F into F .
This means that in equation (3.16) defining the mapping A , Ac* should

belong to F , 1f r* and c* belong to F . That it is indeed so

can be shown as follows:
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Let
N i
Ack* = B*r* - B¥ Z Kic*
i=2
= Bkrk — B*Tc* (3.28)
where
N i
T :ck+ ). R jc* .
i=2

It has already been shown that B* : F +~ F , 1f r*e F .
Also T : F~+~F, if c*e F, since.

N { N 1
[ Te*| = lliZ2 Ke* || < Zz R [ e*]” < = (3.29)

{m=

Therefore it follows that A : F -+~ F , if r¥*, ck e F .

Next we have to choose a sphere S in F , with centre X,
and radius 'a' such that the contraction and fixed point conditions
are satisfied in S . To do this we arbitrarily pick x,  as the out-
put co* of the linearized system .for an input r* € F ; that 1is we
let X, = co* = B*r* , and proceed to determine the conditions to be
satisfied by r* and 'a' , in order that the contraction and fixed
point conditions are satisfied in S . The choice of co* as the centre
of the sphere S is justified on the basis that the nonlinear system A
may be looked upon as a perturbed version of the linearized system, and
hence if it has a fixed point for a given r* ¢ F , that fixed point
is likely to be in a neighbourhood 'a' of the solution of the linearized

system for the same input r* ¢ F .

Consider now the contraction condition. Let cl*, c2* be
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any two points belonging to S . Then the contraction condition may be

stated as:

| Ae, * - Acy*|| < Alley* - e s A:0<a<cl (3.30)

From equation (3.16):

lace,* - Acyr
% ) ket - ] Ko #
= | B* K,c %= - B* K, c, *
=2 172 122 171
N
i i
i”B*" Z ”Ki(cz* - cl* )”
1=2
N i-1
i-1-k k
R R
(L, TRale™ = o™ L e 2
N i-1
i-1-k k :
E.H*”cz*- cl*" 122 IKil kz "cl*" "c2*|| . (3.31)
= -o

* * :
Since Cq%s Cp* € S :

”cl*la ”cz*l f."co*" +a
= ||B*r*| + a

< liB*|lle*] + a

= H¥R* + g (3.32)
o ”Acl* - Acz*"
N i-1
<Be* - e* § [k [ (a*Re+a) 117K (arara) ©
i=2 k=0

N
<Eex - e * L IR 1 (H*R*a) T, (3.33)
1=2
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Hence (3.30) will be satisfied if:
N 1-1
H*"cz* - cl*" 122 |Ki|i(H*R*+a) :_A”cl* - c2*" . (3.34)

Since "cz* - cl*” = "cl* - cz*" , (3.34) 1s equivalent té:

1 1-1
B* [ |R | L(EFRMa)T T <A . (3.35)
i=2
Now consider the fixed point condition. With co* as the

centre of the sphere S , this may be stated as follows:

lAc * - co*” <(@1-Na . (3.36)

Since
co* = Bkrk (3.37)
e *] < m*r . (3.38)

Also it follows from equation (3.16) that:

N
Ac * = ¢ * - B* } K o (3.39)
(o] o {m2 1o

Transposing co* to the left hand side and taking norms on both sides:

N .
i
eyt = etl = 1% 1 Kietl

|a

[ 1 IR et
B* K c *
{m2 1 o)

¥ 1
B* )[R | (ERR)T . (3.40)
1m2

Ia
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Hence (3.36) will be satisfied if:

N
B* ] (K] @xrnl < 1 - va . (3.41)
i=2
Recapitulating, given an aribtrary input r* e F, with
|| e*|| = R* , inequalities (3.35) and (3.41) give the sufficient conditions
for the nonlinear mapping expressed by equation (3.16) to have a fixed
point c* in a neighbourhood 'a' of the solution of the stable

linearized system for the same input r* . Moreover, since c* belongs

to the sphere S , an upper bound for c* 1is given by:

llc*|l < B¥R* + a . (3.42)

We are now in a position to state the following theorem which
embodies sufficient conditions for the existence of a region in which

the system A exhibits bounded-input bounded-output stability:

THEOREM 1: The system A, satisfying the conditions set forth
in section 2.2, and driven by an arbitrary imput r , with "r*” = R*

possesses a bounded sampled output c* in a neighbourhood 'a' of the

golution of the stable linearized system for the same input r , if

a A :0<A<1l, exists such that the following inequalities are

satisfied:
3 1-1
B* § R, [1(H*R*a)T T < ) (3.43)
i=2
q i
B¢ )[R @m0 < Q- Na . (3.44)

i=2
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An upper bound for c* 1is then given by:

| c*|| < BH¥R* + a . (3. 45)

3.5 Conditions for the BIBO Stability of System B.

System B differs from system A in that the nonlinearity is
situated in the forward path instead of in the feedback path. The
configuration of system B is shown in Fig. 3.3, and that of the

corresponding linearized system in Fig. 3.4.

+, e N $e) g ¢*e) | ¢ .
T '

Fig. 3.3 Nonlinear Discrete-Data System B

r—-');‘—-»c*

K.e K.,e * °

< 1o ¥ 1lo . o LIV

1 T
Fig. 3.4 Linearized System Corresponding to System B
The equation for the gain is:
N i

¢(e) = Kle + Z Kie (3.46)

i=2
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where

e=r-c¢ . (3.47)

The linearized system is assumed to be stable as before. The overall

Z-transfer function of the linearized system 1is:

KlG(z)

if;ffzazzy (3.48)

H(z) =
The equation for the nonlinear system can be derived as follows:

c(z) = G(2)¢(e)(2)

N
- 6@ [Kpe() + [ R, e*) ()]
im=

N
= KG(2)[r(z) - e(2)] +G(z) ( ) Ke¥)(z) . (3.49)
i=2

Transposing-—KlG(z)c(z) to the left hand side, and dividing both sides

by 1+ KlG(z) :

K,G(2)r(2)

KlG(z) N
(2) = ————
¢ 1+ KG(@)

1
1+ K 6(2) ¢ [ Rie*)(2)

+ 3
1m2

1

N
= H(z)r(z) + - H(z)( | K,etl)(z) . (3.50)
5 1m2 1

Inverse transforming (3.50) and using operator notation:

1 X 1
ck = Bkrx + o— Bk ) K ex” (3.51)
1 i=2

where

ek = rk - ck | (3.52)
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elation of the form:

ck = Ac* (3.53)
where A is a nonlinear operator, such that:
1 q 1
Ac* = B*r# +-E— B* z Kie* . (3.54)
1 i=2

It is easy to show as before that A maps a Banach space F

into F i1if «r*, c* e F .

To investigate the existence of a fixed point for the mapping

A in a sphere S with centre co* = B*r* , and radius 'a' consider

Let c¢.,%*, ¢

first the contraction conditionm. * be any two points in

1?72
the sphere S . Let el*, e2* be the sampled error functions
corresponding to cl*, c2* .
From equation (3.54):
HAcl* - Acz*"
T PR
= =— || B* K,e,* - B* k,e %
K1 I =2 i1 122 i2
L el 3 IR Gt - e
< = ||B* K, (e, * - e, *7)
Kl 122 i1 2
N i-1
1 i-1-k k
-—-—H* z "K(e*—e*) Z e* e*"
K1 1=2 i1 2 k=0 1 2
N i-1
1 i-1-k k
2% B¥e * - ey*| 122 X, | kZ e I7 " e*l™ . (3.55)
L] -o
Note: Since the linearized system is assumed to be stable, Kl has got

to be positive; hence, the absolute value sign is not put on K1 .
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Now for a given r* it follows from equation (3.52) that:

“el* = ez*” = ” cl* - CZ*H (3.56)
e *ll < &% + fley*| (3.57)
ley*l| < R* + [ley*|| (3.58)

Since cl*, cz* € S, we also have:
" cl*"’ " c?_*" X H¥R* + a (3.59)

Therefore

"el*" < R* + H¥R* + a (3.60)
e Il < R + H¥R* + 2 . (3.61)

Making use of (3.56), (3.60) and (3.61) we may write:

”Acl* - Acz*"
1 x 1ol 1-1-k K
<z Bleg* - oyt I I Ixj| I (Re+H*R*+a) (R*+H*R*+a)
1 =2 k=0
1 X 1-1
= EI H¥|c * - e *| 1-2-2 |R, | 1(R*+H*R*+a) . (3.62)

In order to satisfy the contraction condition we require:
lAc,* = Acy*|| < Afley* - e ¥, A O0<r<1 . (3.63)

By virtue of (3.62), (3.63) will be satisfied if:

N
1 1-1
'lq HH| e * - e *| 122 |k, |1 (RA+H*R*a) ™" < Mley* - c2*|| (3.64)
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or if:

1 N i~
T B I | |1 (RE+H*RY+a)
1 =2

oo, (3.65)

Now consider the fixed point condition, which requires that:

| Ac * - e ¥l < (1-Na . (3.66)

If eo* is the sampled error corresponding to co* , 1t

follows from equation (3.54) that:

R = % 4 — B% E : * 7
Ac Cc K B Kle . (3.6 )

Transposing co* to the left hand side and taking norms on both sides:

1 3 1
lacy* - ¥l = Iz 3% L Kot
clow 1 gl (3.60
Tt i=2 °
But
e *|l < &% + [l *]
< R' + HSR® (3.69)
Therefore
N
| ac * - c *| 55%1 B 122 R, | (R* + grrt) L | (3.70)

Hence the fixed point condition will be satisfied if:

N
Logx § IxMae+ gt < (1 - VDa . (3.71)

Ki  qmp 1

-
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Thus inequalities (3.65) and (3.71) are sufficient for the
mapping A to have a fixed point c* inside the sphere S . Since

c* 1lies inside S , an upper bound for c* 1is given by:

lex| < H*R* + a . (3.72)

We may now state the following theorem concerning the bounded-

input bounded-output gtability of system B.

THEOREM 2: The system B, conforming to the description and
assumptions set forth at the beginning of this section, and driven by
an arbitrary input r , with [[c*|] = R* , possesses a bounded sampled

output c* 1in a neighbourhood a' of the solution of the stable

linearized system for the same input r , if a A : 0 <A <1l, exists

such that the following inequalities are satisfied:

1 N i-1

&= H® ) |Ki|i(R* + H*R* + a) <A (3.73)
1 im2

.l N i

= ;LI IKiI (R* + H*}R¥*)™ < (1 -A)a . (3.74)
1 4=2 |

An upper bound for c¢* 1is then given by:

| c*|| < H*R* + & .. (3.75)



CHAPTER IV

COMPUTATION OF INPUT AND OUTPUT BOUNDS

4.1 Introduction.

In the last chapter we formulated the sufficient conditions
for the existence of a bounded output for two different types of non-
linear discrete-data systems. In practice we are interested in
determining the maximum value of R* for which the sytems exhibit a
bounded output. To do this we have to choose the optimum values of
'a' and A which give the maximum value of R* satisfying the
contraction and fixed point conditions. This has to be done only by
trial and error in the general case of the nonlinearity. However, 1f
the nonlinear part of the gain function consists of a single nth
degree term a direct approach is available to determine the maximum
value of R* to ensure a bounded output, and the corresponding upper

bound for the output. This method will be described in the following

sections, together with numerical examples to 1llustrate the computational

procedure.

4,2 Input and Output Bounds for System A with a Single nth Degree

Term in. the Nonlinearity.

The above system differs from the general system in that the.

nonlinear gain function is given by:
¢$(c) =Rie+Kc", n>22 . (4.1)

The equation for c* will then be:
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ck* m BRrk - B*Knc*n . (4.2)
The contraction condition reduces to:
alt#|K_| (Herk + &)™ < (4.3)
and the fixed point condition to:
H*IKn|(H*R*)n <(lL-MNa . (4.4)
Note that A : 0 <A <1l, and a?> 0 . Letting
a = bH*R* (4.5)
inequality (4.3) may be written as:
nH*[K_| (H*R* + pErR%)™ L < 2

or

cH*[K_| arn) L + p)* T <2

or

|xn|u*<u*n*)“‘1_<_ . (4.6)
n(l + b)

Similarly inequality (4.4) may be written as:

H*lxnl(n*n*)“ < (1 - \)bH*R¥

or

|Kn|H*(H*R*)n-l < (1-Mb . (4.7)
Let
|Kn|u*(H*(H*R*)“'1 -x . (4.8)
Then (4.6) implies
x < A (4.9)

=~ a1 + )t
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(4.7) implies

x< (1-2)b . (4.10)

To find the maximum value of x , satisfying (4.9) and (4.10)
note that for a given n , and b > 0 , the right hand side of (4.9)
is an increasing function of A , whereas the right hand side of (4.10)
is a decreasing function of A . Hence for a given n and b, x will
be a maximum for that value of A at which the two curves:

A

—7 @&nd y = (1 - A)b intersect .
n(l + b)

Similarly for agiven n and A, 0 <A < 1, the right hand
side of (4.9) is a decreasing function of b , whereas the right hand
side of (4.10) is an increasing function of b . Hence for a given n

and A , x will be a maximum for that value of b at which the two

curves:

A
n(l + b)

and y = (1 - A)b intersect .

n-1

Therefore when A and b are both varied for a given n , the

maximum value of X will iie on the curve of intersection between the

two surfaces:

rrpeece B

and will correspond to the maximum height of that curve, from the

A=b plane.

To obtain Ynax proceed as follows:
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At the point of {ntergsection of the two surfaces:
—— - @b
n(l + b) '
from which:
n-1
z mb(l + b) . (4.11)

nb (1 + b)“"1 +1

Note that from (4.11) it is obvious that the condition 0<aAa<l is

gatisfied for a given n and b >0 . Also
y=(-2b

b
- ) (4.12)
mb(l + )P+ 1

The condition for y to be maximum are:

dy .
==0, (4.13)
and
42
£f <0, (4.14)
db

for the value of b for which (4.13) holds.

Differentiating (4.12) with respect to b , and equating to

zero we get:

L -n@m- DLEA+ B =0 . (4.15)

The positive real root of equation (4.15) gives the value of
b for which y is a maximum. It may be observed that the left hand
gide of equation (4.15) is a decreasing function of b , for b > 0,

and since it is equal to 1 when b =0, the equation possesses oneé
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and only one positive real root. Moreover, it can be easily verified
that for this root the second derivative of y with respect to b is

less than zero. Substituting this root in equation (4.12) we get the

maximum value of y .

Since Ymax represents the maximum value of x , satisfying
the inequalities (4.9) and (4.10), and x is given by equation (4.8)
we may conclude that the maximum value of R* satisfying both the
contraction and fixed point conditions is given by the inequality:
b

|k_|E*qarre) ™t < o —— (4.16)
n mb_(L+b)" ~+1

where bo represents the positive real root of equation (4.15). From
(4.16) it follows that the best possible bound on R¥* for the system

to exhibit a bounded output is given by the following inequality:

L
1 bo et
R* < s - ! (4.17)
* - —-—
|x_[H*{nb (1 + Db )" = + 1}
The corresponding bound on. c* is then given by:
C* < H*R* + a
= H¥R*(1 + b)
1
‘ bo n-1
< (1+ bo) (4.18)

% n-1
|KnIH {nb (L +b )" " + 1}

Numerical Example 1:

As a numerical example consider the nonlinear discrete-data
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'—_J?_—’ c*
1-¢"T° . 1 _c
8 s+l
Z.0.H. Linear
- Plant
¢(c)
c
Nonlinearity
p(c) = c+K3c3

Fig. 4.1 Discrete-Data System with a Cubic Nonlinearity
in the Feedback Path.

It has a cubic type of nonlinearity represented by the gain function:
3

Referring to equation (4.1) this corresponds to the case when K, = 1,
and n =3 . The forward path of the system contains a sampler with

period T = 1 second, followed by a linear plant consisting of a zero
order hold and a controller with transfer function E%T.’ so that the

7-transfer function of the linear plant may be written as:

-Ts

l-e . 1
G(z) = Zl s s + 1]
l - e_T
z - e
0.632
2 - 0,368 (4.20)

and
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(4.21)

Inverse transforming H(2z) :

h(kT) = Z Residues of H(z)zk—l' at the poles of H(z)zk-1 . (4.22)

Ingerting numerical values and evaluating the residues:

=0, for k=0
h(kT) k-1 (4.23)
= 0.632 (~0.264) for k>0

Hence -

H* = ) | h(xT)|
k=0

- 7 |o.632 (-0.266"7|

k=1
- 0.632 | 0.2647%
k=1
-0.86 . (4. 26)

Now for n = 3 , equation (4.15) reduces to:
1 - 6b2(L+Db) =0 . (4.25)

(4.25) is a cubic equation, solving which we find that it has a positive
real root = 0.35 . Hence. bo = 0.35 . Now letting H* = 0.8 , n=3
and b = 0.35 in inequality (4.17) the maximum permissible sampled

input to ensure the existence of a bounded sampled output will be

given by:
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N

1 0.35
0-88| Ik l0.86{3 x 0.35 1.352 + 1

R*

1
= 0.435 [ky] 2 . (4.26)

To obtain the corresponding bound on the sampled output use

inequality (4.18) and obtain:

N f =

c* < 0.795 |K3| . (4.27)

Note that the optimum value of A in this case is 0.66 from

equation (4.11) by letting n = 3, and bo = 0.35 .

Inequality (4.26) can also be used to find the permissible
maximum value of |K3| for a specified bound on R* ., For example in
the case of a unit step input R*= 1, and |K3|max works out to

0.188 , and the corresponding bound .on C* becomes 1.83 from (4.27).

An example of the same system, where the solution obtained by
solving the difference equation of the system by means of a recurrencé
relation for the case K3 = 0,1, and a unit step input, may be found
in reference 24. In that example, c*max occurs at the end of the
first sampling period; and is equal to 0.632 . Using the contraction
ﬁechnique outlined above the bounds for R* and C* work out to 1.37

and 2.5 when K3 = 0.1, which are consistent with the results

obtained in reference 24.
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4.3 Input.and Output Bounds for System B with a Single nth Degree

Term in the Nonlinearity.

For the above system the nonlinear gain function is given by:
n.
d(e) = Kle + Kne sy n2>2, K1 >0 (4.28)

and the equation for c* is:

ck = Brrk + i— B% K e*® (4:29)
1 n

The contraction condition reduces to:

1

o= nHX[K_| (R + HARE + a1 < (4.30)
1 n B

and the fixed point condition to:

% H*[K_| (R* + H*R®)" < (1 - Ma . (4.31)
1 n

Now we let

a = b(R* + H*R¥*) .

Then inequality (4.30) may be written as:
%— nH*|R_| (R* + B*RO)PH(L + ™t <
1 n -

or

IKn| n-1 A
X H*(R* + H*R¥) < - . (4.32)
1 n(l +b)

Similarly inequality (4.31) may be written as:

IKn| n-1
X H¥*(R* + H#R%*) < (1L -A)b . (4.33)

1
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Letting

,Knl n_l
Bk (R* + HARY)T = x (4.34)
1

(4.32) implies

A
@+ o)t (435

(4.33) implies

x< @-2Mb . ' (4.36)

Note that the inequalities (4.35) and (4.36) are the same as
inequalities (4.9) and (4.10) for system A considered in section 4.2,
though x in this case represents a different quantity. The maximum
value of x for which the inequalities (4.35) and (4.36) are satisfied
can therefore be found as before, and the condition for BIBO stability

of the system reduces to:

IK l n-1 bo
K“ H*(R* + H*R¥) < (4.37)

1 m (L+b)¥ T+
(o] [o]

where b° is the real positive root of equation (4.15).

From (4.37) it can be easily deduced that the best bound for

R* for the existence of a bounded sampled output is given by:

n-1
1 K1 ?o

—— : (4.38)
1+ B |g] B*ab (1 + bo)“'l + 1}

* <

The corresponding bound on C* 1s given by:
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c* j_H*R* + a
= H¥R* + b(R* + H*R*)

< H* + b(1l + H¥) R*

< [——Ei——'+ b ] Kl bo
* -
Ll + H o |Kn|H*{nb°(l + bo)n 1 + 1} . (4.39)

Numerical Example 2:

As a numerical example we will consider the nonlinear

g

|———/ VY — = c*

- ]
r+o e ‘¢(e) X 1-o-T8. 1 T _
- e T 8 s+l ¢
Nonlinearity Z.0.H. Linear
b(e) = e+K333 . Plant

Fig. 4.2 Discrete-Data System with a Cubic Nonlinearity
in the Forward Path.

discrete-data system shown in Fig. 4.2. It will be observed that the
linesr part of the system is the same as that of the system considered
in sxample 1; the nonlinearity is however situated in the forward path

instead of in the feedback path. The nonlinear gain function is given

by:

o(e) = e + K3e3 . (4.40)

The period T of the sampler is again assumed to be 1 second. Since

the linearized system corresponding to the above system is the same as
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that of the one considered in example 1, H* = 0.86 , for this system

as well., Also n=3, K1 =1, and bo = 0,35 . Substituting these

values in inequality (4.38) the maximum permissible sampled input to

ensure the existence of a bounded sampled output will be given by:
1

2
1 0.35

1.86 [k,10.86 {3 x 0.35 x 1.35

R* < 5

+ 1}

| =

< 0.2 ixsl . (4.41)

The corresponding bound on the sampled output can be obtained

using inequality (4.39). It is given by:

1
2
cs < (282 + 0.35] 9.33 >
: IK3|0.86 {3 x 0.35 x 1.35° + 1}
. -1
< 0.478 |K3i 2 (4.42)

As before, inequality (4.41) can be used to find the permissible

maximum value of |[K,| for a specified bound on R* , Thus in the case

of a unit step input: |K3|max works out to 0.04 , and the correspond-

ing bound on C* becomes 2.39 £from (4.42).



CHAPTER V

STABILITY OF A DISCRETE-DATA SYSTEM WITH A

SLOPE RESTRICTED NONLINEARITY

5.1 Introduction.

In this chapter we will present and prove a criterion for
the bounded-input bounded-output stability of a class of discrete-data
systems with a slope restricted nonlinearity. The proof is based on
the principle of contraction mapping. ‘A numerical example is worked
out to illustrate the application of the criterion, and to discuss its

implication in relation to some existing results.

5.2 System Description.

The configuration of the system considered is shown in

Fig. 5.1(a).

r"‘—’/x. _—— c*
X ) %

z = ¢(e) I AR G(s) - C

oy /2

g < dee) ¢
de

1 2

Fig. 5.1(b)

Fig. 5.1 Class N Nonlinear Discrete~Data Sjstem
(a) System Configuration (b) Gain Function.
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The nonlinear gain function ¢(e) (shown in Fig. 5.1(b)) 1s assumed to

be continuous and differentiable, and further satisfies the condtions:

$(0) = 0 (5.1)
0<K1<9-f;—§_3)—<x2 . (5.2)

Note that (5.1) and (5.2) imply that ¢(e) 1is confined to the gain

gector [K,, K,] t.e. 0 <K, < lel < K. . The rest of the system
1’ 72 1 e 2

comprises a sampler with period T , followed by a linear plant with

transfer function G(s) . Negative unity feedback is assumed. The

system so described will be designated as belonging to the class N .

5.3 Stability Criterion for N .

Let ¢{e) be replaced by a linear gain K , and the

resulting linear system designated Ly L . Define

H* lh@D)|

"
e~ 8

k=o

where h(kT) 1is the closed-loop impulse response sequence of L.

Then the stability criterion for N may be t.rmulated as follows:

THEOREM 1l: A nonlinear discrete-data system belonging to
the class N 1is BIBO stable, if a positive K exists for which

K K
1L is stable, and K - * < Kl and K2 <K +-ﬁ; .

PROOF: Choose a K for which L is stable; this implies
that, if the input - output relation of L 1s represented by the linear

functional equation:
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c* = B¥r% (5.3)
where B* is the convolution summation operator, then:
“B*” = H* < © , (5.4)

Note that in (5.3) r*, c* denote the sampled input and output respectively,
and since I 1is stable r*, c* belong to a Banach space F , equipped

with the uniform norm [x*| = Sup [x*| , and (5.4) defines the nom
' ‘ x* ¢ F

of B* , induced by the norm defined in F .

Now consider the nonlinear system N . From Z-transform theory:

c(z) = ¢(e) (2)G(2)
= Ke(2)G(z) + ¢(e) (2)G(2) - Ke(z)G(z)

= K[r(z) - c(2)16(2) + ¢(e)(2)G(z) - Ke(2)G(z) . (5.5)

Transposing - Kc(z)G(z) to the left hand side, dividing both sides by

1 + KG(z) , and putting iféséé%zy = H(z) , (5.5) reduces to:

e(z) = B(D)r(2) + H(z) (2~ e(a)] . (5.6)
Inverse transforming (5.6) and using'the operator notation:
c* = B*r* + B*[Eiﬁfl - e*] (5.7)
Since for a given r* ,
ek = rk — c*k (5.8)

(5.7) defines a relation of the form:
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c* = Ac* (5.9)
where A 1is a nonlinear operator, such that:
ple*)
Ac* = Bkr¥ + B*[ " e*] . (5.10)

Now if r*, cke F, A maps F > F . This can be shown as

follows:

Jack] = [lmxex + Brex [g - 2E2 - 11

< foxlf o] + IBellex | [£S2] + 11 . (5.12)

Note that in (5.11):

(1) ||B*|| = H* < = , since L is stable.
(2) |r*]| <>, as r* e F.
(3) |le*| j.Hr*H + |e*|| , £from (5.8)

<o, as r¥%, c*eF.

*
(4 “QﬁS_l” <K, <o which is a consequence of the
e* 2

A

hypotheses (5.1) and (5.2).

Thus all quantities on the right hand side of (5.11) are

bounded, and hence HAc*H < » , which means A : F -+ F .

We can therefore apply the contraction mapping theorem to
determine the conditions under which the mapping A has a fixed point
in F . To do this we choose the output co* of the linear system L

to a bounded input r , as a first approximation for the solution
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of the nonlinear system N for the same input r , and

show that a sphere S with a finite radius 'a' , centred on co*
exists in which the fixed point condition is always satisfied. Next
we apply the contraction condition to the points inside this sphere,

and obtain the requirement for the existence of a fixed point in S .

Consider first the fixed point condition which states:
| ac * - c°*|| <(l-2a, A:0<Ar<l . (5.12)

- Since L 1is stable co* is bounded; so also is eo* the corresponding

sampled error. Also:

co* = B¥r* (5.13)

Hence from equation (5.10):

¢(eo*)
- B*eo* —_—-11. (5.14)

Therefore

o(e *)

1
eyt - et < Iile 01| 3 | 2r

+ 1] . (5.15)

Note that in (5.15):

(1) ||B*|| = H* < = , since L ds stable.

(2) Heo*" <~ , since e * 1s bounded.

¢(e_*)
o |
[o]

< K, <» , which 18 a consequence of the

2
hypotheses (5.1) and (5.2)
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Thus all quantities on the right hand side of the inequality

(5.15) are bounded, and hence "Aco* - co*" is bounded. Therefore a

finite 'a' exists, for A : 0 < A <1, satisfying the fixed point

condition given by« (5.12).
H

Now consider the contraction condition which states:
"Acl* - Acz*" j_l"cl* - c2*” (5.16)

for every cl*, c2* €e S, and some A : 0 < A < 1.

Choose some cl*, c2* e S . Let el*, e2* be the sampled

error functions corresponding to cl*, c2* . For a given r* it

follows from (5.8) that:

" cl* - cz*” = “el* - e2*“ . (5.17)
Also from (5.10):
“Acl* - Acz*”
[¢(e1*) $(e,*) 7
= {|B* X - el* - B* X - ez*‘
d(e,*) - ¢(e2*)
i " B*" L K = (el* - ez*)
, ale®) - $lep®) ]
o (il vy
¢(e1*) - ¢(e2*)
< H¥e * - e*| [l Lo R 1 . (5.18)

From (5.17) and (5.18) it follows that the contraction condition will

be satisfied 1f:
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¢(e1*) - ¢(ez*)
mxfe * - ep*| | % GF-m S Meg* - ep*l (5.19)
$(e *) - ¢(e,*) N
1 2 .
d(e *) - ¢(e,*)
A 1 2 A
i.e. -aF < R (e % - ") -12u (5.21)
d(e *) - ¢(e,*)
AK 1 2 AK
i.e. R - fw < eF oo SR+E - (5.22)
Now by the mean value theorem:
*) - *
* ) - ¢4 . dile) (5.23)
- * [ .
el* €2 de eme * e * ¢ §
m m
Hence (5.22) will be satisfied if:
_K  dé(e) g 4 XK
K-y < Spo-<K+gg . (5.24)

Since by hypothesis Kl <'2$-§-:-l < Kz , and A : 0<A<1l, 1t follows

from (5.24) that the contraction condition will be satisfied if:

K K
K--ﬁ-;<Kl and K2<K+-ﬁ-; . (5.25)

Hence condition (5.25) alone is sufficient for the mapping A to have
a fixed point in F for every bounded input r . In other words
system N is BIBO stable if (5.25) is satisfied. This completes

the proof of the theorem.
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5.4 Numerical Example 1.

To illustrate the application of the criterion, congider the

nonlinear integral-control sampled-data system show in Fig. 5.2.

I__J>$__,. C*
| T
- i
pe) Vo 1T L 1 —
T s s(s+l)
zZz.0.H.

Fig. 5.2 Nonlinear Integral-Control Sampled-Data System

Let ¢(e) be replaced by some linear gain K , for which the
resulting linear system L 1s stable. The problem is to pick the
optimum value of K which gives the widest possible bounds for the
slope of the nonlinearity for the BIBO stability of the system. To

do this the behavior of H* when K 1is varied is to be studied. The

procedure is as follows:

The Laplace transform of the total linear part is given by:

1 - e—Ts
G(s) = 5 . (5.26)
8°(s + 1)
The corresponding Z-transform is:
-T
T l-e
G(z) 7 -1 7 (5.27)

z - e
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from which it can be determined:

KG(z)

H(z) = TF7RG(2)

K[ (The T-1)z + l-e ~=Te ']
2 T T - - 2
z° + [(T+e -1)K-l-e ]z + K(1-e "-Te )+e

z. be roots of the characteristic equation:

Let 2

Zl,

2 + [(The T-1)k-1-e Tz + K(1-e T-Te T)yte T = 0 . (5.29)

Since L 1is stable K should be such that |zll <1, and |22| <1l.
In order to find the range of values of K , for which Izll, |z,| are
less than 1 , we may use the following criterion applicable to a

quadratic polynomial p(z) , with real coefficients and the coefficient
of z2 unityzs:

The necessary and sufficient conditions for p(z) to have

no zeros outside the unit circle are:

lpCo)| < 1 p(1) >0 p(-1) >0 . (5.30)

The three conditions of (5.30) applied to the polynomial on

the left hand side of equation (5.29) lead to the relations:

IR(1-e T-Te Ty+e | < 1 (5.31)

T(1-e DK > 0 (5.32)
-T

g « —2{ite ) . (5.33)

T(1e T)-2(1-e 1)
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From (5.32) it is obvious that K has to be positive. From (5.31) it

follows that:

1 < R(1me T-te T+ T < 1 (5.34)
or
el . 1-e L i (5.35)
- -T .. -T -T _ =T
1-e ~Te l-e "~Te

Since (5.32) has to be satisfied (5.31) reduces to the requirement:

1-e—T
0 <K< R . (5.36)
l-e "~Te

Hence for stability K should be such that (5.33) and (5.36) are satisfied.
By giving various values for T it can be seen that for small values of

T, (5.36) gives the upper bound for K , whereas for larger values of

T, (5.33) gives the upper bound for K . We will confine our discussion
to the case when T is small, 1i.e. of the order of 1 or 2 seconds.

In this case the bound on K for stability will be given by inequality
(5.36). For this range of values of K , the roots z1s 29 of the
characteristic equation (5.29) may be real and unequal, real and equal

or complex conjugate. By equating the discriminant of (5.29) to zero,

and solving for K we can determine the value of K for which

The value of K thus obtained turns out to be:

Zl 22 .

-T
K = 1-e (5.37)

(14T-e"Ty+2 /r(1-e

.

It can be easily verified that for values of K in the range 0 to that
given by equation (5.37) z1s 2, are real, unequal and positive, whereas

for values of K greater than that given by equation (5.37) upto the
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1imiting value for stability given by (5.36) 205 2, are complex conjugate.

Thus we can say Z,, z, are:
(1) Real, unequal and positive 1if:

1-e—T
0 <K< . (5.38)

(14T-e Ty+2 VI(1-e"T)

(2) Real and equal if:

=T
K = 1-e i (5.39)

(11—~ Ty+2 VI (1-eT)

(3) Complex conjugate if:

T -T
1-e <K < 1-e . (5.40)

T . -T
(1+T-e'T)+2 /r(1-eT) 1-e "-Te

Consider case (1). Let zq > 2z, Inverse transforming

H(z) using the residue theorem:

N\

o, for k=0 .

h(kT) = § K [(T+e-T—1)(zlk-zzk)+(1-e_T-Te_T)(zlk-l—zzk-l)] . (5.41)

Z172%,
{ for k>0 .
Hence
H* = § |a(kT)| = ] h(D) . (5.42)
k=0 k=1

Note that the absolute value sign can be dispensed with in sumning the

series, as z;, %, are real and positive, and 2y > 25 » which ensures
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.ll,w.

Moreover, each of the geometric geries can be separately summed and are

convergent because of the fact 205 2 are less than 1 . Performing
the summation we get:
) R(kT)
k=1
(Te T-1)z,  (T+e -1)z -T -T T _-T
- K 1 _ 2 1-Te -e = _1-Te -e
z,-2, L l—zl l—z2 1-z1 1-22
~ -T -T . ~-T
_ X (T+e —l)(zl—zz) . (1-e "-Te )(zl-zz)
z,-2, i (1-zl)(l-zz) (1-21)(1—22)
-T
KT(l-e ) (5.43)

(1—zl-z2+zlzz)

Since ) are the roots of the equation (5.29) we have:

-T -T
—(zl+22) K(T+e "-1)-e -1

and
-T -T -T
z,2, = K(l-e -Te ")+e .

Substituting (5.44) and (5.45) in (5.43):

o RT(1-e %)
1+K(T+e_T—l)-e_T-1+K(1-e_T-Te-T)+e-T
KT(l—e_T)
KT(l—e'T)
- l [ ]

(5.44)

(5.45)

(5.46)

Now consider case (2). Here 2z, =2, =2, (say). Application

of the reside theorem in this special case yields:
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0, for k=0.

h(KT) = (5.47)
R[(T+e -1)kz_ 1+<1-e’T-Te'T)<k-1)zok‘2] for k>0 .

o0

. oHe= ] |nGD]

k=0
cree Ty ] ke K hR@eT-TE Ty 7 Dz 2. (5.48)
k=1 k=1
Note that
2 kz 7t and ] -1z 7
k=1 k=1
are the first derivatives of the geometric series
) zok and ) zok_l
k=1 k=1
respectively, and hence their sums are
z
1= and G b5
z=z 2=z
0 o
respectively. Performing the differentiation we get:
] ke e —— (5.49)
k=1 (1-z )
o
and
-1z <7 -1 . (5.50)
k=1 (1-z )

Substituting (5.49) and (5.50) in equation (5.48):
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- K(Tt+e "=1)+K(1-e " =Te T)

H*
2
(l-zo)
-T
E(_]'_'i_% . (5.51)
1-2z +z
o ‘o
Since zo = z1 = 22 we have:
2z = —(z,+z,) = K(T+e -1)-e -1 (5.52)
o 172 y
and
2 -T -T -T
z = =22, % K(l-e "-Te ")+te . (5.53)

Substituting (5.52) and (5.53) in (5.51) we get as before:

H* = 1 ., (5.54)

As for case (3), h(kT) can be found as in case (1); but
it is difficult to get an expression for H* 1in a closed form. However,
an estimate for H* can be found using equation (2.38). One may also
conjecture that H* increases from 1 to « as the complex roots move

from z, to the circumference of the unit circle.

The above analysis shows that as long as K 1s such that

21y 29 are real, H* = 1 , and the permissible bounds for Q%éﬁl

are given by:

0 < %2&) < X . (5.55)
The best bounds are got when 2y ™2y % 2,3 i.e. when
-T
K = 1-e : (5.56)

(1+T-e-T)+2 /T(l—e’T)
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These bounds for various values of T are shown in Table 1.

TABLE 1

BEST BOUNDS FOR g%éﬁl FOR BIBO STABILITY

USING CONTRACTION MAPPING

Sampling period T (in seconds) 1 2 3 4 5

Bounds for 9—3{9—: 0 < i&*—éﬂ < 0.42 0.31 0.26 0.22 0,19

5.5 Comparison with some Existing Results:

In this section we will compare the results obtained above with
those obtained by the application of a frequency domain criterion,
originally proposed by Jury and Lee3 for the absolute asymptotic
stability of a class of nonlinear discrete-data systems, but later shown
to be sufficient for the absolute BIBO gtability as well by Iwens and
Bergen7. The type of system considered by them has the same configuration

as that represented in Fig. 5.1(5), but the constraints on the nonlinear

gain function ¢(e) are:

$(0) =0 (5.57)
0 < iéﬂl. < K (5.58)

< K! . ) (5.59)

ldg(e)
de
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It may be mentioned that (5.59) implies that:

K <K' . (5.60)

The criterion states that a sufficient condition for the absolute
asymptotic as well as BIBO stability of the type of system considered

is that the following relationship is satisfied on the unit circle for

some non-negative gq :
1 K' 2
Re G(2)[1+q(z-1)] + ¥ - ——‘12 [(z=1)G(2) | >0 . (5.61)

In the above G(z) 1s the Z-transfer function of the linear plant in the

forward path of the system.

Jury and Lee in their paper3 consider the same system that
has been discussed in section 5.4 above, as an example to illustrate the
application of their criterion., By drawing the loci of G(z) ,
(z-1)G(z) and (2-1)G(z) -~§LW(z—l)G(z)|2 for z = exp (JWT) and
several values of K' , th2y deduce that the stability criterion for

this particular example can be reduced to the following inequality:

T 1 K' .2
_(3+1)+E+q('r—2—-'r)_>_o . (5.62)

Then they assert that if K and K' are restricted to:

K<K' <32 (5.63)

there always exists a non-negative q for which (5.62) is satisfied.
Thus the condition for stability (both asymptotic as well as BIBO)

of the system reduces to the requirement that the absolute value of the



67

slope of the nonlinearity is less than %-. Table 2 gives the bounds

on the slope of the nonlinearity for stability for various values of

T . For comparison, the corresponding bounds on the slope obtained by

the contraction mapping technique are also given in the same table.
TABLE 2

BEST BOUNDS FOR E%é&l FOR BIBC STABILITY

(JURY'S METHOD VS CONTRACTION MAPPING)

Sampling period T (in seconds) 1 2 3 4 5

Stability theorem

de(e)
ot tury ind Lee [4eed) < 1 0.67 0.50 0.40
Stability via 0 < ig_éﬁ < 0.42 0.31 0.26 0.22 0.19

contraction mapping

It murt be conceded that the results obtained via contraction
mapping are quite conservative compared with those of Jury and Lee.
In fact, Jury and Lee state in & f£rot note to their papera, that
Professor Y.Z. Tsypkin has indicated that condition (5.59) may be

replaced by the more general condition:

- ()
< e < K! (5.63)
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which gives still better bounds for K' for stability. However, as
far as the contraction mapping method is concerned, the important point
to be noted is that within the bounds given by the method, the actual
solution of the system can be generated by a process of successive
approximations, starting from the solution of the linear system as a
first approximation, and using equation (5.10) recursively; and the

convergence of the process is assured. Jury's method does not possess

this advantage.



CHAPTER VI

GENERATION OF SYSTEM SOLUTION

6.1 Introduction.

In this chapter we will discuss the generation of the solution
of a nonlinear discrete-data system, satisfying the contraction and fixed
point conditions, by a process of successive approximations. It will be
shown that the process results in a discrete Volterra type series, whose

convergence is assured in the region in which the contraction and fixed

point conditions hold.

6.2 Derivation of the Solution.

To illustrate the derivation of the solution consider the
discrete-data system with a single cubic type of nonlinearity in the

feedback path. The general configuration of the system is shown in

Fig. 6.1.
N,
'__./’1)'_., c*
+ 1 T=l
r - JS—-—-— G(s) - C
T=]1
¢(c)
c
Nonlinearity
s(c) = cHke>

Fig. 6.1 Discrete-Data System with a Cubic Nonlinearity
in the Feedback Path
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It will be readily recognized that the system discussed in
example 1, chapter 4.2 belongs to this type. For convenience the
sampling time will be normalized, so that for the rest of the
derivation it is understood that T = 1 . The functional equation for

c* for the system is:

c* = B¥*r% - B*Kc*3 . 6.1)

For numerical evaluation, it is more convenient to rewrite the above

equation for the output at the end of the nth sampling period thus:
c(n) = Br(n) - BK[c(n)]> (6.2)

where B represents the convolution summation operator for that

sampling instant. B 1is defined by the relation:

n
Bx(n) = ) h(n-k)x(k) (6.3)
k=0

where h(k) represents the impulse response of the linearized system

h sampling period. If equation (6.2) is solved

at the end of the k°
for c(n) we can determine the sampled outputs at the various sampling

instants, by substituting n =1, 2, ..., etc. in the solution.

In deriving the solution we will be making the assumption
that all initial conditions are zero, and the linearized system
corresponding to the given system is stable. This means that for the

linear case, i.e. when K =0 , the solution is:

n
c(n) = } h(n-k)r(k) . (6.4)
k=0
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Since r(n) is such that the contraction and fixed point
conditions are satisfied, we can generate the solution of the system
by a process of successive approximations, starting from the solution
of the linearized system as a first approximation, and using equation
(6.2) recursively. Let the output of the linearized system at the end

of the nth sampling period be denoted by co(n) . Then:

n
c () = ! h(n-k)r(k) (6.5)
k=0

will be our first approximation for the solution of (6.2). Substituting

(6.5) on the right hand side of (6.2), we obtain the second approximation

for c(n) , viz, cl(n) .

n n k 3
c;(m = ] h(a-k)r(k) - K )) h(n-k)[ L hk-k)rk;)| . (6.6)

k=0 k=0 k1=o

The last term in (6.6) can be written in the following way:

k=o k.=0

n r k 3
K J h(n-k) [ I h(k—kl)r(klﬂ
1

n k k k
=K J h(n—k)[ I h(k-k)r(k)) ] hk-kyr(k,) ) h(k—k3)r(k3)]
kwo kl=° kzzo k3fo

kK k k k
=K ] I I I n=kdh(k-kDh(k-ky)h(k-ky)r(k,)r(k,)zr(k,)

kwo kl-o kz-o k3-o

n n n n
=k J I 1 ) h(n~k)h (k-kDh(k=k,)h(k=kq) |
k.=0 k,=0 k. =0| k = max
170 ¥p%0 %4 .o e
1252053

r(kl)r(kz)r(ka) . (6.7)
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The last expression in (6.7) is obtained by rearranging the order of

summation.

Let us now define:

n
hy = ! h@-k)h(k-k h(k-k)h(k-kz) . (6.8)
k = max
kysky kg
Then (6.7) becomes:
n k 3
K ] h(n-k) [ I hk-kp)r(k,)
k=0 kl=o
n n n
(6.9)

= K Z z Z. h3r(k1)r(k2)r(k3)

kl=o kzno k3=o

and substituting (6.9) into (6.6) we obtain:

n n n
L L mgr(kre)r(y) . (6.10)

n
c;(m) = ] h(n-k)r(k) -K ]
k=0 kl-o kz-o k3 o

If we desire higher order approximations we must then
We will

substitute equation (6.10) into the right hand side of (6.2).

then obtain the solution of equation (6.2) in the form of a discrete

Volterra type series as follows:
n n n n
ctn) = }J h-k)r(k) -K [ J ) hork)rk,)rk,)
371 2 3
k=o k,=o k,=o k_=o
(6.11)

+c|.+ono .
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The above series is analogous to that obtained by Barrett26
for a continuous system with a single cubic nonlinearity. The system

discussed by him is described by the following differential equation:

L&y + ey (0) = x(0) (6.12)

where € 18 a constant and

L(dt L(p) P +a1p +...+am (6.13)

815 855 eses B being constants. x(t) 1is the continuous input and

y(t) the output. Letting h(t) be the impulse response of the
linear part of the differential equation (6.12), and assuming that

for t <0, x(t) =y(t) =0, (6.12) can be converted to a nonlinear

integral equation:

t t
y(t) + f En(t-w)y>(u)du = [ h(t-uwx(u)du . (6.14)
[o] (o]

If we denote the convolution operation by the symbol B , the above

equation can be written as:

y(t) + Bey>(t) = Bx(t) (6.15)

or alternately:
y(t) = Bx(t) - Bey (£) . (6.16)
Comparing equation (6.16) with equation (6.1) or (6.2) it

will be readily seen that they are analogous to each other. Proceeding

by the method of successive approximations, Barrett gets the Volterra
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series solution for the equation (6.14) as:

t t t t
y(t) = [ h(t-u)x(u)du - / / / 5h3x(ul)x(u2)x(u3)dulduzdu3
o o o o

+ ..., (6.17)

where
t
h3 = jo h(t-u)h(u—ul)h(u-uz)h(u—u3)du . (6.18)
NOTE: In the solution given by Barrett the limits of integration have
been shown as from - ® to <« ; however, since x(u) =0 for u<0,

and h(t-u) =0 for u >t , it is enough if the integration is

performed over the finite range 0 to t .

Comparing (6.17) and (6.11) the analogy between the continuous
Volterra series solution and the discrete Volterra series solution will
be evident. Mo?eover, the contraction mapping principle shows that
the series represented by the equation (6.11) exists, is unique and is
convergent in the region in which the cuntraction and fixed point

2

conditions hold.

The validity of the Volterra series representation of the
solution of a discrete-data system can be justified on the same basis
.as has been done for the continuous-data systems by Christensen27.
The following extract from reference 27 will be relevant to our

discussion:

"When can it be inferred that a Volterra series exists and

is convergent for a given system if the contraction mapping principle
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gshows that system to exhibit bounded input bounded-output stability?
The answer to this question is that the given system in addition to

having a unique solution must also be analytic.

To be more specific, consider the usual form of the Volterra

series:

-] -] o«

hyy(t-wdu + [ [ hylug,upy(e-up)

-0 -0t

x,(e) = [

| A | hi(ul,...,ui)y(t-ul).;.‘

y(u--ui)dul...dui (6.19)

which gives an output xl(t) for a given input y(t) to the system in

question. Brilliant28 showed that 1if:

"hi" - f eeof |hi(ul,...,ui)|du1...dui< @ (6.20)

for all 1 such that (6.19) can be cast into the form:

v 1
X, < 1 gy (6.21)
i=0

where the right side of (6.21) is a convergent series then the given
system is an analytic system."

For a discrete-data system, the discrete Volterra series

analogous to (6.19) would be:
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n n n
em) = ] h@r(a-k) + ] [ hylk ,ky)r(nk))r(n-k,)
k=0 k =0 k=0

n n
+oo+ 1o T ongGg,eek)rek) . or(emk )

k,=0 k,=0
1 i (6.22)

Note that in (6.22) the integrals have been replaced by summations.

Moreover, since we are making the assumption r(n) = 0 for n <0,

and r(n-k) =0 for k > n, the summation need be performed only

over the finite range 0 to n .

(6.22) cén also be written as:

n n n
em) = [ hrmk) + [ [ hylnky,n-k)rlk))rlk,) +
k=0 , kl-o kz-o
n n
vee* L eee I hi(ackg,e.omek)r(k)).er(ky) oo
kl-o k,=0 o

| i (6.23)

Note that (6.23) corresponds to the series (5.11) generated by the
process of iteration.
By analogy with the continuous case, the condition for

analyticity of the discrete-data system may be stated as follows:

If

| = J oo I |h(kyy.eink)] <@ (6.24)
e kpmo ko + U

8

for all i such that (6.22) can be cast into the form:
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le@l < I lnllem)® (6.25)

i=0

where the right hand side of (6.25) is a convergent series then the

given discrete-data system is an analytic system.

Consider now the series generated in (6.11), It is readily
recognized that this series can be cast into the form (6.25). Thus the
system considered is analytic. As for the uniqueﬁess of the solution,
the contraction mapping principle shows that the solution generated 1is
unique in the region in which the contraction and fixed point conditions

hold. Hence it can be stated that a convergent Volterra series solution

exists for the system considered.



CHAPTER VII

CONCLUSION

Z1, Summary.

In this thesis we have treated the bounded-input bounded~output
stability of certain classes of nonlinear discrete-data systems using
the methods of functional analysis, in particular, the contraction mapping
principle. After discussing the stability of linear discrete-data systems
from a functional point of view, sufficient conditions for the BIBO
stability of discrete-data systems with a single polyndmial type of
nonlinearity have been developed using the contraction mapping technique.
The results have been stated in the form of two theorems applicable to
two different types of systems with nonlinearities located in different
. parts of the systems. A method of computing the bounds on the system
inputs and outputs for stability in a special case of the nonlinearity
has been presented, together with numerical examples to illustrate the
technique. Another type of system investigated is the one with a slope
restricted nonlinearity. A sufficient criterion for the BIBO stability
of such a system has been formulated, and its application also illustrated
using a system which has been treated by Jury and Lee by a frequency
domain method. Finally a method of generating the solution of a non-
linear discrete-data system, satisfying the contraction and fixed point
conditions, by a process of successive approximations has been given.
It has been shown that the process results in a discrete Volterra type

series, whose convergence 1s assured in the region in which the
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contraction and fixed point conditions hold.

7.2 Comments and Suggestions.

Since the contraction condition is a strong requirement, the
stability bounds obtainable by this method are bound to be on the
conservative side. The frequency domain method is superior in this
respect, as is observable in the case of the example discussed under
slope restricted nonlinearity. But the most important advantage of the
contraction mapping method lies in the fact that once the stability
region is found, it enables one to generate the system solution by a
process of successive approximations, starting from an initial estimate
within the region, and the convergence of the process is assured. The
frequency domain method does not possess this advantage. Moreover, the
frequency domain criteria stipulate that the nonlinearity must be
entirely contained in a certain sector; they thus usually refer only to
global stability. The contraction mapping method can, however, be
nnlied to study local stability, particularly when the nonlinearity is

explicitly given in a functional form, such as a polynomial.

Although the contraction mapping technique presented in this
thesis deals exclusively with a single-input single-output system, it
is believed that the method can be generalised and made applicable to
multiple-input multiple-output systems. It is also believed that by
choosing suitable norms, it should be possible to investigate asymptotic
stability, as well a3 stability in between sampling period. These are

some of the avenues open for research in this area.

In conclusion the author wishes to state that the main
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contribution of this thesis in the field of Control Engineering is the
exploitation of some of the basic principles of Functional Analysis for
the investigation of the BIBO stability of a class of nonlinear
discrete-data systems. The scope of the thesis is perforce confined to
theoretical exposition, though the author realises that the value of the
investigations could have been enhanced by supplementing it with some
computer simulation results;this could perhaps form part of a separate

project for future investigations.

Some attempt has been made to bring out the practical importance
of BIBO stability, by choosing standard practical models such as the
integral control servo to illustrate the application of theory. Since,
for practical purposes, the mere assurance of BIBO stability is not
enough, an attempt has also been made to obtain an estimate for the
input and output bounds in the examples discussed in Chapter IV, In the
present state of the development of the nonlinear theory, it is indeed
difficult to obtain exact bounds; it is hoped future work in this area

will help to resolve this difficulty.

Finally the author wishes to remark that while the practising
engineer i1s apt to have little patience with theoretical work, it is
still a rewarding field as even the purest of pure mathematics has

the habit of eventually finding its way into application.
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