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Abstract

Variational calculations of the ground state of positronium hydride are performed where the various

expectation values including the inter-particle distances and the non-relativistic ground state energy.

These calculations have been performed using wave function in Gaussian basis with the basis set of

1000. A good agreement with the corresponding values reported in the literature is found for different

parameters. Later, we consider the interactions in a mesonic system, referred here to as ‘tetron’,

consisting of two heavy quarks and two lighter antiquarks (which may still be heavy in the scale of

QCD), i.e. generally QaQbq̄cq̄d, and study the existence of bound states below the threshold for decay

into heavy meson pairs. At a small ratio of the lighter to heavier quark masses an expansion parameter

arises for treatment of the binding in such systems. We find that in the limit where all the quarks

and antiquarks are so heavy that a Coulomb-like approximation can be applied to the gluon exchange

between all of them, such bound states arise when this parameter is below a certain critical value. We

find the parametric dependence of the critical mass ratio on the number of colors Nc, and confirm this

dependence by numerical calculations. In particular there are no stable tetrons when all constituents

have the same mass. We discuss an application of a similar expansion in the large Nc limit to realistic

systems where the antiquarks are light and their interactions are nonperturbative. In this case our

findings are in agreement with the recent claims from a phenomenological analysis that a stable bbūd̄

tetron is likely to exist, unlike those where one or both bottom quarks are replaced by the charmed

quark.
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Preface

The idea to perform the variational calculation of the PsH using Gaussian wave function is inspired from

the following studies:

• M. Puchalski and A. Czarnecki, Phys. Rev. Lett. 101 (2008) 183001.

• M. Puchalski, A. Czarnecki and S. G. Karshenboim, Phys. Rev. Lett. 99 (2007) 203401.

The calculations presented in Chapter 2 are done separately by M. Jamil Aslam, Wen Chen and myself.

Chapter 3 is based on the published work Phys. Lett. B778, 233 (2018) that is done in collaboration

with A. Czarnecki and M. B. Voloshin [1].
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Chapter 1

Introduction

Hydrogen atom energy levels and wave functions depend on the reduced mass of the system. The stability

of a two-body system is independent of its constituents’ mass ratio. This led Stepan Mohorovic̆ić in 1934

to theorize the existence of positronium [4], a system where the proton is replaced by the positron; in 1951

it was discovered by Martin Deutsch [5]. Even before the discovery of positronium, the idea of replacing

positron with protons in more complex atoms and molecules was investigated. In almost all such cases it

is very difficult or even impossible to analytically solve the Schrödinger equation for these energy levels.

In order to check if they form a stable system, Ritz variational principle is used that often yields a set

of upper bounds that closely estimate one or more of these energy levels. This dissertation is a step

towards the study of the variational calculation of the binding energy of positronium hydride (PsH) and

the stability of a tetron (a system consisting of two quarks and two antiquarks, somewhat similar to a

positronium molecule).

In Chapter 2 of the dissertation, after giving some details of the variational principle, we use this method in

Gaussian basis and combine it with the algorithms for decomposing the Hamiltonian matrix elements and

for optimizing the wave function for PsH. Using these optimized wave functions, we calculate the various

properties, such as inter-particle distances and the non-relativistic ground state energy and compare them

with the ones calculated in [2].

Multi-quark hadrons, whose internal structure apparently goes beyond the standard template of three-

quark baryons and quark-antiquark mesons, have recently been observed in various experiments (for a

recent review see e.g. [6, 7]). All such exotic hadrons found so far contain a heavy b or c quark and a

corresponding antiquark. For this reason they all are unstable with respect to annihilation of a heavy

quark-antiquarks pair, even though their rate of dissociation into conventional hadrons can be small.

There is a whole spectrum of theoretical models for description of such resonances. In particular the most

discussed models for the mesonic ones are the molecular [7, 8], the tetraquark (a recent review can be found

in Ref. [9]) and the ‘hadro-quarkonium’ [10]. A different kind of phenomenology of multi-quark hadrons

would be accessible if there existed systems made of two heavy quarks (as opposed to a quark-antiquark

pair) and two lighter antiquarks: QaQbq̄cq̄d, that would be bound below the threshold for dissociation
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into a pair of Qq̄ mesons. Such hadrons have been discussed within the quark model for quite some

time [11, 12], and the lightest of them can decay only through the weak interaction. In view of special

properties of such systems we call them here “tetrons” implying that they in fact are stable (with respect

to auto-dissociation) mesons made of four constituents. Their stability is discussed in Chapter 3 of this

dissertation. Finally, the main results are summarized in Chapter 4.

The main text is followed by an Appendix presenting the structure of the numerical program used to solve

the non-relativistic Schrödinger equation for few-body systems.
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Chapter 2

Variational Calculation of Binding Energy of PsH

2.1 The Variational Ritz Method

The Schrödinger equation describes the dynamics of a non-relativistic quantum system. There is no

analytical solution for a Coulomb system containing more than two particles. The positronium hydride

and the tetron are both four-body systems; therefore we apply the variational method (VM) to obtain an

approximate ground state solution of the time-independent Schrödinger equation. This numerical solution

can reach high accuracy by optimizing the wave function. The variational method is guaranteed to return

an upper bound on the energy.

The ansatz used in our variational method is expressed as a linear combination of basis functions. We

employ explicitly correlated Gaussian (ECG) basis function of the type

Gm(~r) ∼ exp

−1

2

N∑
j>i=1

αmij (~ri − ~rj)2
 . (1)

The variables α in this type of functions depend on inter-particle distances |ri−rj |. The correlation factors

are adjustable parameters that require optimization such that the energy is optimized.

The Ritz method, discovered by Walther Ritz, applies the variational principle to convert the Schrödinger

equation into a generalized eigenvalue problem. This method finds the energy spectrum and the amplitude

of each basis function for a given Hamiltonian. This approach is similar to the Galerkin’s method of least

residual [13]. In general, they belong to a class of mathematical methods for converting a partial differential

equation into a matrix problem. Many ideas and techniques from linear algebra can be then applied to

solve the original equation numerically.

The amplitude of the basis function is not a variational parameter. The Ritz method computes the

amplitude for a chosen set of basis functions. The energy spectrum of the Hamiltonian depends on

the variational parameters of each basis function. Finding the lowest energy configuration is a difficult

optimization problem. We usually use 200 basis functions, each with six variational parameters so that

the dimension of the search space is large. Many optimization algorithms involve the derivatives and the
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curvature of the function. It is hard to compute the analytical form of the derivative function of the

eigenvalue in terms of the parameters in the ansatz. We choose the Powell method for a multi-dimension

optimization task as this algorithm does not require a derivative.

Our algorithm for the variational Ritz method includes the following steps,

1. Prepare the trial wave function;

2. Prepare the Hamiltonian and overlap matrix for the generalized eigenvalue problem;

3. Solve the eigenvalue problem;

4. Use the Powell method to optimize the energy;

5. Repeat step 4 until the desired convergence is reached.

We coded the algorithm above into our VM program. It is based on the Fortran program of Ref. [14] for

studying properties of positronium ion
(
Ps−

)
and positronium molecule (Ps2).

2.1.1 The Variational Principle

The variational method provides an upper bound estimation for each energy level [15]. The variational

theorem states that for any normalized state |ψ〉 (not only an eigenstate of H), the expectation value

〈ψ|H|ψ〉 is an upper bound to the exact ground state energy, Egs ≤ 〈ψ|H|ψ〉.

We begin the proof by expanding |ψ〉 on the basis of exact (unknown) eigenstates |ψn〉 of the Hamiltonian

|ψ〉 =
∑
n

cn |ψn〉 , H |ψn〉 = En |ψn〉 . (2)

Since |ψ〉 is normalized, we have

1 = 〈ψ|ψ〉 = (
∑
m

cm |ψm〉)†
∑
n

cn |ψn〉 , (3)

=
∑
mn

c∗mcn 〈ψm|ψn〉 =
∑
n

|cn|2. (4)

The expectation value of H in |ψ〉 is

〈ψ|H|ψ〉 =
∑
mn

c∗mcnEn 〈ψm|ψn〉 =
∑
n

|cn|2En. (5)
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The ground state (GS) energy (Egs) is the smallest eigenvalue

Egs ≤ En, ∀n, (6)

thus

〈ψ|H|ψ〉 ≥
∑
n

|cn|2Egs = Egs. (7)

By picking a state |ψ(α1, . . . , αn〉 depending on sufficiently many adjustable parameters, α1, . . . , αn, we

can accurately estimate the ground state energy by minimizing the variational energy E(α1, . . . , αn)

E(α1, . . . , αn) ≡ 〈ψ(α1, . . . , αn)|H|ψ(α1, . . . , αn)〉 , (8)

with respect to these parameters. The condition for finding the minimum ground state energy is the

vanishing of the gradient,
∂E

∂αi
(α1, . . . , αn) = 0, (i = 1, . . . , n). (9)

The state |ψ(α1, . . . , αn)〉 is often called a “trial wave function” or a “trial state”.

2.1.2 The Ritz method

We apply Ritz method to convert the Schrödinger equation into a generalized eigenvalue problem. This

eigenvalue problem might be considered as the matrix form of the Schrödinger equation. We write the

trial wave function as

|ψ(α1, . . . , αn)〉 =

N∑
m=1

WmGm. (10)

where Gm are the basis functions, N is the basis size, and Wm represents the weight assigned to each basis

function. The expectation value of the Hamiltonian is

〈H〉 =

∫
ψ∗Hψdx∫
ψ∗ψdx

=

∑
k,m=1W

∗
k 〈Gk|H|Gm〉Wm∑

k,m=1W
∗
k 〈Gk|Gm〉Wm

. (11)

Applying the variational condition given in Eq. (9) to the expectation value of the Hamiltonian gives

∂ 〈H〉
∂Wk

= 0,
∂ 〈H〉
∂W ∗k

= 0, k = 1, . . . N. (12)
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We define elements of Hamiltonian matrix H,

Hij = 〈Gi|H|Gj〉 , (13)

and elements of the overlap matrix S,

Sij = 〈Gi|Gj〉 . (14)

Applying the conditions (12) lead to the same N linear equations

∑
m=1HkmWm ·

∑
k,m=1W

∗
kHkmWm −

∑
k,m=1W

∗
kHkmWm ·

∑
m=1 SkmWm

(
∑

k,m=1W
∗
kSkmWm)2

= 0, (15)

∑
m=1

HkmWm =

∑
k,m=1WkHkmWm∑
k,m=1W

∗
kSkmWm

·
∑
m=1

SkmWm, (16)∑
k,m=1WkHkmWm∑
k,m=1W

∗
kSkmWm

= 〈H〉 ≈ E, (17)

∑
m=1

HkmWm = E ·
∑
m=1

SkmWm, (18)

i.e., we obtain the generalized eigenvalue problem

HW = ESW, (19)

and solve it to obtain the eigenvalue E and its eigenvector W . The lowest eigenenergy E will be our

estimate for the ground state energy with its eigenvector corresponding to the amplitude W of each basis

function in the ground-state ansatz in Eq. (10).

2.1.3 Explicitly Correlated Gaussian (ECG) basis

The heart of the variational method is the choice of a trial function. A basis function in an ansatz is either

fixed like B-splines, for example, or the basis function can contain variational parameters. We optimize

these variables in the trial function so that it converges to the lowest energy configuration. The Ritz

method computes the amplitude associated with each basis function, so only the variational parameters
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in each basis function are independent.

Basis functions can be either orthogonal or non-orthogonal. If the choice of basis function is orthonormal,

so that Sij = δij , where δij is the Kronecker delta; S is an identity matrix and eq. (19) is then simply

the standard eigenvalue problem HW = EW . An advantage of an orthonormal basis is that it simplifies

solving the eigenvalue problem.

We employ a non-orthogonal explicitly correlated Gaussian (ECG) basis. The ECG for vanishing angular

momentum is

Gm(~r) ∼ exp

−1

2

N∑
j>i=1

αmij (~ri − ~rj)2
 . (20)

In a system of several particles, ECG depends explicitly on the inter-particle distance |~ri − ~rj |, and the

correlation factor α,mij is a variational parameter. In this non-orthogonal basis, the functions differ only by

values of parameters. Since their functional form is identical, it is easier to obtain analytical expressions

for the needed matrix elements. Having analytical expressions allows us to reach high numerical precision

with a reasonable expense of the computer time. Although a single ECG produces a very inaccurate

result, we can increase the accuracy of the solution by simply using more basis functions. This can be

easily done with present computation technology. ECG provides accurate energies and expectation value

of local operators acting on small distance. The drawback of ECG in comparison with Hylleraas functions

(see Section 2.2.1) is that the ECG does not satisfy the so-called cusp condition [16].

To solve the generalized eigenvalue problem, we convert eq. (19) to

S−1HW = EW. (21)

However, this approach is not computationally favorable since the calculation of the inverse of a large

matrix is time consuming. In practice, we utilize the inverse iteration via QR decomposition method to

solve the generalized eigenvalue problem (19). We also employ QR update to speed up the optimization

process. A detailed discussion of how the general eigenvalue problem is solved can be found in the

Appendix.
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2.1.4 The Ritz method for a two state system

In case of tetrons which are composed of quarks carrying a color charge, we apply the Ritz method to a

2× 2 Hamiltonian describing the interplay of color configurations. The most general form of a real 2× 2

Hamiltonian matrix of a two state system is

H =

 ε1 γ

γ ε2

 , (22)

where ε1, ε2, γ are real operators ensuring the Hermitian property of the Hamiltonian. We substitute this

2× 2 Hamiltonian into the Schrödinger equation

H

 φ

ψ

 = E

 φ

ψ

 . (23)

The two states φ and ψ are orthogonal such that 〈φ|ψ〉 = 0. The expectation value of this Hamiltonian is

〈H〉 =
〈φ|ε1|φ〉+ 〈φ|γ|ψ〉+ 〈ψ|ε2|ψ〉+ 〈ψ|γ|φ〉

〈φ|φ〉+ 〈ψ|ψ〉
. (24)

φ and ψ are both expressed as the linear combination of a certain type of basis function

φ =

N∑
i=1

WiGi, ψ =

M∑
j=1

AjBj . (25)

Here, G and B are the basis function of φ and ψ, respectively and N and M are the basis size of φ and

ψ, respectively.

The Hamiltonian matrix and overlap matrix have the dimension (N +M)2, and the Hamiltonian matrix

contains four square block matrices

H =

 ε1 γu

γd ε2

 . (26)
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The matrix elements of the four block matrices ε1, γu, γd, ε2 are defined as,

ε1il = 〈Gi|ε1|Gl〉 , ε2jk = 〈Bj |ε2|Bk〉 (27)

γuik = 〈Gi|γ|Bk〉 , γdjl = 〈Bj |γ|Gl〉 . (28)

The overlap matrix S contains two block matrices s1 and s2 and two zero matrixes,

S =

 s1 0

0 s2

 , (29)

where the matrix elements of s1 and s2 are given by,

s1il = 〈G∗i |Gl〉 s2jk =
〈
B∗j |Bk

〉
. (30)

Substitute the equation above into eq. (24) and use the index i for φ, l for φ∗, j for ψ∗, k for ψ,

〈H〉 =

∑
i,l=1W

∗
i ε

1
ilWl +

∑
i,k=1W

∗
i γ

u
ikAk +

∑
j,k=1A

∗
jε

2
jkAk +

∑
j,l=1A

∗
jγ
d
jlWl∑

i,l=1W
∗
i s

1
ilWl +

∑
j,k=1Ajs

2
jkAk

. (31)

We first apply the variational condition, eq. (9), to the parameters of the φ function,

∂ 〈H〉
∂W ∗i

= 0, i = 1, 2, . . . , N (32)

and utilize the identity ∂W ∗
i

∂W ∗
j

= δij . Let E = 〈H〉, we have N linear equations

∑
l

ε1ilWl +
∑
k

γuikAk = E
∑
l

s1ilWl. (33)

Appling the variational condition
∂ 〈H〉
∂A∗j

= 0, j = 1, 2 . . . ,M, (34)

provides another set of M linear equations,

∑
k

ε2jkAk +
∑
l

γdjlWl = E
∑
k

s2jkAk. (35)
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Combining eq. (33) and eq. (35), we get a generalized eigenvalue problem Hx = ESx with x =

 W

A


being an eigenvector. We apply the same techniques for solving the eigenvalue and eigenvector as in the

one-component electrodynamic case.
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2.2 Positronium Hydride

2.2.1 Introduction

In 1928, Paul Dirac discovered an equation unifying the theory of special relativity with quantum mechanics

[17]. The Dirac equation describes the motion of an electron in the relativistic speed regime. One of the

most surprising predictions of this theory is the existence of an anti-particle for every particle. For example,

a positron is the antiparticle of an electron. Positron has the same mass as an electron but has an opposite

charge. Carl Anderson confirmed the existence of a positron in 1932 by analyzing cosmic rays in a cloud

chamber [18].

A natural question to ask is whether there exist neutral entities containing positrons in the universe.

John Archibald Wheeler first envisaged a class of short-lived entities composed of positrons and electrons.

They are called “Wheeler compounds” and the simplest case is positronium (e+e−) [19]. This electron and

positron pair has a structure resembling hydrogen with the central proton replaced by a light positron.

Positronium hydride (PsH) is another positronium-containing compound. PsH is a four body system

composed of a positron, a proton and two electrons. Aadne Ore was the first to demonstrate the possibility

of PsH existence [20] in 1951. He implemented the variational technique developed by Egil Hylleraas [21]

for a treatment of Helium. By taking a simple trial wave function with only 4 parameters, Ore obtained

a total binding energy 0.75251 hartree, which gives a binding energy of only 0.00251 hartree (relative to

separated hydrogen and positronium atoms).

Since then, PsH has became a subject of experimental interest and there exist many studies of its binding

energy and other parameters; these efforts are summarized in Table 1. PsH serves as a testing ground for

various computation techniques because of its three unique features. First, it is the simplest Coulombic

system for examining the ability of a positronium to couple with ordinary matter. Second, the electron-

positron correlation plays a significant role in the overall stability of a PsH. Lastly, since PsH is unstable

against positronium annihilation, the local behavior of an electron-positron collision must be described.

Standard quantum-chemistry approaches such as the Hartree-Fock method (also called Self consistent field

(SCF)) [22, 23, 24] and the configuration interaction (CI) [25, 26, 27, 22, 28] encounter challenges due to

the non-negligible electron-positron correlation. While SCF fails to predict a bound state [24], Bromley

and Saito both report a slow-convergence problem with the CI method [27, 26]. Strasburger questions the
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reliability of the CI and SCF implementing on PsH [22]. So far, successful approaches to the PsH ground

state problem have been the variational method [2, 20, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45] and the Quantum Monte Carlo method [46, 47, 48, 49, 50]. The core of the variational

method is the choice of trial basis function. Rychlewski’s book on the theory and application of explicitly

correlated wave functions provides an elaborate description of several types of functions [51]. Among them

the Hylleraas [36, 37, 38, 39, 40] and explicitly correlated Gaussians (ECG) [2, 29, 30, 31, 32] basis function

are two successful candidates. Although the variational method and Quantum Monte Carlo method have

been used to calculate the ground state energy of PsH almost exactly, the trial function contains very

many parameters, which provide little insight toward the understanding of properties of PsH. Jiang [48],

Bressanini [52], and Le Sech [53] construct a simple compact trial wave function by imposing appropriate

physical constraints on the system.

Consensus has not been reached yet regarding the structure of PsH. There are two standard pictures of

the configuration of PsH. The first is that it has a diatomic molecular structure similar to H2 with Ps

binding with H [27]. In the second, PsH is considered as a positron bound to a hydrogen negative ion,

H−e+. Saito even maintains both atomic H−e+ structure and diatomic molecular PsH structure exist [26].

Usukura, Varga, and Suzuki found the electron-positron distance to be slightly larger than in the Ps atom:

3.45ao versus 3a0 (a0 is the Bohr radius), and the average electron-nucleus is 2.31ao, which is larger than

in the hydrogen atom (1.5ao). Due to this fact, the interpretation of PsH as being simply separated into

Ps+H is not supported [32]. Frolov and Smith argue that PsH can be viewed as “the physical sum of the

positronium ion (Ps−) and a hydrogen negative ion (H−)” [34] since EPsH ≈ EPs− + EH− .

In continuation of the study of the bound state properties of the PsH, Yan, Ho [54] and Bubin, Varga [55]

took the next step of considering relativistic and QED effects to the binding energy of this system. Frolov

studied the fine and hyperfine structures of PsH [34].

Experimentally, PsH can be naturally formed and then annihilated in hydrogen star and is applicable to

astrophysical models of positron annihilation from galactic center and solar flare [56]. While PsH has been

shown to have a bound state with an energy below the lowest dissociation channel (Ps + H), it is not stable

against positronium annihilation, which happens within a time on the order of nanoseconds. Laboratory

observations of this short lifetime of PsH are not available with the present detection technology. Drachman

and Schrader find the binding energy of PsH (BPsH) to be 1.1±0.2 eV[57]. PsH was created in the collision
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between positrons and methane

e+ + CH4 → CH+
3 + PsH, 7.55eV −BPsH

→ CH+
3 + H + Ps, 7.55eV. (36)

Schrader et al estimates the binding energy of PsH by comparing the impact energy for e+ + CH4 →

CH+
3 + PsH with e+ + CH4 → CH+

3 + Ps + H. The detection of CH+
3 ion below the threshold for the

production of CH+
3 +H+Ps signals the formation of PsH. Given the large energy spread and uncertainty

of the positron beam, the accuracy of their result is limited and also this result deviates from the present

theoretical values.

2.2.2 PsH Wave function

PsH contains a heavy nucleus, a positron and two indistinguishable electrons. To construct the trial wave

function, it is necessary to consider the symmetry of the system. From the Pauli exclusion principle, the

total wave function should be antisymmetrized with respect to the exchange of two electrons. It is shown

in [36] that the triplet state of PsH is not stable against dissociation to a hydrogen and a positronium.

The total trial wave function Ψ has an antisymmetric spin part and a symmetric spatial wave function ψ,

Ψ = χ1
↑χ

2
↑(χ

3
↓χ

4
↑ − χ3

↑χ
4
↓)ψ, (37)

ψ =
N∑
i=1

ci(1 + P34)
∣∣G1234

i

〉
, (38)

where we have absorbed the factor of 1√
2
into the normalization constant ci. The indices {1, 2} are for

{p+, e+}, {3, 4} for {e−, e−} and P34 is the permutation operator for the two identical fermions. In terms

of relative coordinates, the ground state description in an explicitly correlated Gaussian basis takes the

form ∣∣G1234
i

〉
≡ exp

(
−air212 − bir213 − cir214 − dir223 − eir224 − fir234

)
, (39)

where i is the index of the basis.

The variational method optimizes the set of parameters {ai, bi, ci, di, ei, fi; i = 1, · · · , N} to obtain an

13



Table 1: Comparison of our binding energy result with calculations in the literature.

Group/Technique Terms Total E (hartree) Binding (eV)
Current work/Variational ECG 1000 −0.788870345206 1.0577

Ore (1951) [20]/ Variational exponential 2 −0.75251 0.068301

Neamtan (1962)[41] / Variational exponential 2 −0.7584 0.2286

Goldanskii(1965) [24] /SCF – −0.6677 −2.2395

Ludwig(1966)[25]/ CI 9 −0.7590 0.2449

Lebeda (1969) [42] /Variational 12 −0.7742 0.6585

Houston (1973) [44] /Variational 56 −0.7747 0.6725

Navin (1974) [43]/ Variational 17 −0.7792 0.7946

Page (1974) [45] / Variational 70 −0.78679 1.0011

Clary(1976)[28]/CI 67 −0.784161 0.929568

Ho (1978) [39]/ Variational Hylleraas 210 −0.787525 1.02112

Ho (1986) [40]/ Variational Hylleraas 396 −0.788945 1.05975

Schrader (1992) [57]/ Experiment — −0.790 1.1± 0.2

Strasburger (1995) [22]/CI — −0.7637 0.3728

Strasburger (1995) [22]/SCF – −0.6669 −2.261

Saito (1995) [23]/ Restricted Hartree-Fock – 0.776 0.70

Yoshida (1996) [50]/ DMC – −0.7891 1.06

Frolov (1997) [33]/ Variational James-Coolidge 924 −0.7891369 1.064969

Frolov (1997) [34]/ Variational Kolesnikov-Tarasov — −0.7891794 1.066126

Bressanini (1998)[47]/DMC — −0.789175 1.06601

Jiang (1998) [48]/DMC – −0.78918 1.0661

Jiang (1998)[48]/ Variational Monte Carlo 1 −0.7774 0.7456

Le Sech (1998) [53] / Variational Monte Carlo 1 −0.7723 0.6068

Strasburger (1998)[31] /Variational ECG 332 −0.789185 1.066278

Usukura (1998)[32]/ Variational ECG with SVM 1600 −0.7891965536 1.066592513

Yan (1999) [38]/ Variational Hylleraas 5741 −0.7891967051 1.066596635

Mella (1999) [49]/DMC — −0.78915 1.0653

Ryzhikh (1999) [58] / Variational ECG 750 −0.7891960 1.066577

Bromley (2001)[27]/CI 95324 −0.7867761 1.000729

Saito (2003)[26]/MRCI 13230 −0.786793 1.0019

Bressanini (2003) [52]/ Variational Monte Carlo 1 −0.786073 0.981596

Van Reeth (2004) [37]/ Variational Hylleraas 721 −0.789156 1.0655

Chiesa (2004)[46]/ QMC — −0.784620 0.942058

Mitroy (2006)[2]/Variational ECG with SVM 1800 −0.789196740 1.06659758

Bubin (2006) [29]/Variational ECG 5000 −0.789196765251 1.066598271959

Frolov (2010) [35]/ Variational semi-exponential 84 −0.788516419 1.04808511

Woods (2015) [36]/ Variational Hylleraas 1505 −0.789189725 1.066406705
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upper bound on the eigenenergy. We define a ECG basis in terms of those non-linear parameters

G(a, b, c, d, e, f) ≡ exp
(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
. (40)

The permutation operator P34 swaps indices {3, 4} giving the wave function

∣∣G1243
i

〉
≡P34

∣∣G1234
i

〉
= exp

(
−air212 − bir214 − cir213 − dir224 − eir223 − fir234

)
(41)

= exp
(
−air212 − cir213 − bir214 − eir223 − dir224 − fir234

)
(42)

= G(ai, ci, bi, ei, di, fi) (43)

and the total wave function is

ψ =
N∑
i−1

ci(
∣∣G1234

i

〉
+
∣∣G1243

i

〉
) (44)

with N signifying the number of basis functions.

2.2.3 Hamiltonian

In order to write the Hamiltonian, there are different approaches adopted in the literature. For example in

reference [59] the proton, being heavy compared to other constituents, is considered to be at rest and all

the other particles are moving with respect to it. However, in our approach, we will follow the analogy of

Ps2 where the motion of all the four bodies is considered. The corresponding Hamiltonian of this system

can be written as

Ĥ =
4∑
i=1

p̂2i
2mi

+
∑
i<j

V (rij)

=
p̂21

2m1
+

p̂22
2m2

+
p̂23

2m3
+

p̂24
2m4

+ α
∑
i<j

[
zizj
rij

]
(45)

=
~∇2
~A1

2m1
+
~∇2
~A2

2m2
+
~∇2
~A3

2m3
+
~∇2
~A4

2m4
+ α

∑
i<j

[
zizj
rij

]

where, as in Eq. (38), we use indices {1, 2} for the {p, e+} and {3, 4} for {e−, e−}. Parameters zi

correspond to the charge index which is −1 for e− and +1 for {e+, p}. We know that the masses of

electron and positron are equal and we can write m2 = m3 = m4 = m. In Eq. (45) α ' 1/137 denotes
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the fine structure constant and the kinetic energy operator is written in terms of the the LAB coordinates

~Ai. The potential energy operator is expressed in the form of inter-particle distances rij =

√(
~Ai − ~Aj

)2
.

As the trial wave function is expressed in terms of the inter-particle distances, it is necessary to write the

kinetic energy operator

T̂ = −1

2

[
∇2
~A1

m1
+
∇2
~A2

m2
+
∇2
~A3

m3
+
∇2
~A4

m4

]
, (46)

in terms of these inter-particle distances instead of the LAB coordinates. To do this, introduce the CoM

(center of mass) coordinates,

~R =
1

M

(
m1

~A1 +m2
~A2 +m3

~A3 +m4
~A4

)
, (47)

where M = m1 +m2 +m3 +m4 is the total mass. The three independent relative coordinates are

~r12 = ~A2 − ~A1,

~r13 = ~A3 − ~A1, (48)

~r14 = ~A4 − ~A1.

In terms of these coordinates, one writes

~∇ ~A1
=

∂ ~R

∂ ~A1

∂

∂ ~R
+
∂~r12

∂ ~A1

∂

∂~r12
+
∂~r13

∂ ~A1

∂

∂~r13
+
∂~r14

∂ ~A1

∂

∂~r14

=
m1

M
~∇~R − ~∇~r12 − ~∇~r13 − ~∇~r14 . (49)

Similarly,

~∇ ~A2
=
m2

M
~∇~R − ~∇~r12 ,

~∇ ~A3
=
m3

M
~∇~R − ~∇~r13 , (50)

~∇ ~A4
=
m3

M
~∇~R − ~∇~r14 .

As the motion of the CoM does not have any effect on the internal dynamics of the system, the corre-
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sponding kinetic energy operator ~∇~R can be ignored. Doing so, we have

~∇2
~A1

= ~∇2
~r12

+ ~∇2
~r13

+ ~∇2
~r14

+ 2~∇~r12 · ~∇~r13 + 2~∇~r12 · ~∇~r14 + 2~∇~r13 · ~∇~r14 ,

~∇2
~A2

= ~∇2
~r12
, ~∇2

~A3
= ~∇2

~r13
, ~∇2

~A4
= ~∇2

~r14
. (51)

Thus, the kinetic energy operator becomes

T̂ = −1

2

[
~∇2
~r12

+ ~∇2
~r13

+ ~∇2
~r14

+ 2~∇~r12 · ~∇~r13 + 2~∇~r12 · ~∇~r14 + 2~∇~r13 · ~∇~r14
m1

+
~∇2
~r12

m2
+
~∇2
~r13

m3
+
~∇2
~r14

m4

]
,

(52)

= −1

2

[
1

µ12
~∇2
~r12

+
1

µ13
~∇2
~r13

+
1

µ14
~∇2
~r14

+
2

m1

(
~∇~r12 · ~∇~r13 + ~∇~r12 · ~∇~r14 + ~∇~r13 · ~∇~r14

)]
,

where µij =
mimj

mi+mj
is the reduced mass. We adopt such units that m1 = mp ' 1836.15, m1 = m2 = m3 =

me = 1; therefore, reduced masses are µ12 = µ13 = µ14.

Hence, Eq. (52) becomes

T̂ = − 1

2µ12

[
~∇2
~r12

+ ~∇2
~r13

+ ~∇2
~r14

]
− 1

m1

[
~∇~r12 · ~∇~r13 + ~∇~r12 · ~∇~r14 + ~∇~r13 · ~∇~r14

]
(53)

The potential energy operator for PsH is

V̂ =
z1z2
r12

+
z3z4
r34

+
z1z3
r13

+
z1z4
r14

+
z2z3
r23

+
z2z4
r24

(54)

where z1 = z2 = 1, z3 = z4 = −1 are the charges of each constituent and the fine structure constant is

absorbed in the unit of length. The central potential is simply

V̂ =
1

r12
+

1

r34
− 1

r13
− 1

r14
− 1

r23
− 1

r24
, (55)

in our case.

2.3 Matrix Elements of Hamiltonian for PsH

In order to construct the general eigenvalue problem, we need to find the algebraic formula for each matrix
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element. The evaluation of matrix element involves the calculation of Gaussian integral. The fundamental

form of a Gaussian integral for all matrix elements is

I (a, b, c, d, e, f) =
〈
ψ1234
i | ψ1234

j

〉
=

∫
d3~r12d

3~r13d
3~r14 exp

(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
. (56)

In order to evaluate these integrals first shift the coordinates [60]

~r12 = ~x+ α1~y + α2~z,

~r13 = ~y + α3~z, (57)

~r14 = ~z.

The Jacobian corresponding to these transformations is 1 and the α1, α2 and α3 are constants to be

determined later. Write

~r23 = ~r13 − ~r12 = −~x+ (1− α1) ~y + (α3 − α2) ~z,

~r24 = ~r14 − ~r12 = −~x− α1~y + (1− α2) ~z, (58)

~r34 = ~r14 − ~r13 = −~y + (1− α3) ~z.

In these coordinates,

−ar212 = −a (~x+ α1~y + α2~z)
2 = −a

(
x2 + α2

1y
2 + α2

2z
2 + 2α1~x · ~y + 2α2~x · ~z + 2α1α2~y · ~z

)
,

−br213 = −b (~y + α3~z)
2 = −b

(
y2 + α2

3z
2 + 2α3~y · ~z

)
,

−cr214 = −c (~z)2 = −cz2,

−dr223 = −d (−~x+ (1− α1) ~y + (α3 − α2) ~z)
2 = −d

[
x2 + (1− α1)

2 y2 + (α3 − α2)
2 z2 − 2 (1− α1) ~x · ~y

−2 (α3 − α2) ~x · ~z + 2 (1− α1) (α3 − α2) ~y · ~z] ,

−er224 = −e (−~x− α1~y + (1− α2) ~z)
2 = −e

[
x2 + α2

1y
2 + (1− α2)

2 z2 + 2α1~x · ~y

−2 (1− α2) ~x · ~z − 2α1 (1− α2) ~y · ~z] ,

−fr234 = −f (−~y + (1− α3) ~z)
2 = −f

[
y2 + (1− α3)

2 z2 − 2 (1− α3) ~y · ~z
]
. (59)
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In line with reference [60], put α4 = 1−α2, α5 = 1−α3, α3−α2 = α4−α5 and collect the coefficients of

different dot products in Eq. (59) and later set them equal to zero without loss of generality. This leads

to

(~x · ~y) [−2aα1 + 2d (1− α1)− 2eα1] = 0,

(~x · ~z) [−2a (1− α4) + 2d (α4 − α5) + 2eα4] = 0, (60)

(~y · ~z) [−2aα1 (1− α4)− 2b (1− α5)− 2d (1− α1) (α4 − α5) + 2eα1α4 + 2fα5] = 0.

Solving the equation in (60), for α1, α4 and α5 gives

α1 (a+ d+ e) = d, =⇒ α1 =
d

a+ d+ e
. (61)

From the second line of Eq. (60),

− (a+ d+ e)α4 = −d
(
α5 +

a

d

)
,

α4 ≡ 1− α2 =
d

a+ d+ e

(
α5 +

a

d

)
, (62)

= α1

(
α5 +

a

d

)
.

Using Eqs. (61) and (62) in Eq. (60) and solving for α5 gives

α5 ≡ 1− α3 =
bd+ 2α1ad− α2

1a (a+ d+ e)

d
(
b+ d+ f − 2dα1 + α2

1 (a+ d+ e)
) ,

and using a+ d+ e = d
α1
, we get

α5 =
bd+ 2α1ad− α1ad

d (b+ d+ f − 2dα1 + α1d)
,

=
α1a+ b

(b+ d+ f − dα1)
. (63)
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Hence, from Eq. (59), we can write

−ar212 − . . .− fr234 = −a
(
x2 + α2

1y
2 + α2

2z
2
)
− b

(
y2 + α2

3z
2
)
− cz2

− d
(
x2 + (1− α1)

2 y2 + (α3 − α2)
2 z2
)

− e
(
x2 + α2

1y
2 + (1− α2)

2 z2
)

− f
(
y2 + (1− α3)

2 z2
)

(64)

= −x2 (a+ d+ e)− y2
(
aα2

1 + b+ d (1− α1)
2 + eα2

1 + f
)

− z2
(
aα2

2 + bα2
3 + c+ d (α3 − α2)

2 + e (1− α2)
2 + f (1− α3)

2
)
.

It will be easy if we can simplify the different coefficients corresponding to x2, y2 and z2 one by one:

x2 : (a+ d+ e) = αx

y2 :
(
aα2

1 + b+ d (1− α1)
2 + eα2

1 + f
)

= α2
1 (a+ d+ e) + b+ d+ f − 2α1d

=
d2

(a+ d+ e)2
(a+ d+ e) + b+ d+ f − 2

d2

(a+ d+ e)

=
F2 (a, b, c, d, e, f)

αx
≡ αy

z2 :
(
aα2

2 + bα2
3 + c+ d (α3 − α2)

2 + e (1− α2)
2 + f (1− α3)

2
)

=
(
a (1− α4)

2 + b (1− α5)
2 + c+ d (α4 − α5)

2 + eα2
4 + fα2

5

)
=
(
α2
4 (a+ d+ e) + α2

5 (b+ d+ f) + a+ b+ c− 2aα4 − 2bα5 − 2dα4α5

)
=

(
α1

(
α5 +

a

d

)2
d+ α2

5 (b+ d+ f) + a+ b+ c− 2aα1

(
α5 +

a

d

)
− 2bα5 − 2dα1

(
α5 +

a

d

)
α5

)
(65)

=
F1 (a, b, c, d, e, f)

F2 (a, b, c, d, e, f)
≡ αz

where

F1 (a, b, c, d, e, f) = abc+ abe+ abf + acd+ ade+ acf + adf + aef (66)

+ bcd+ bce+ bde+ bdf + bef + cde+ cdf + cef,
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and

F2 (a, b, c, d, e, f) = (b+ d+ f) (a+ d+ e)− d2 (67)

= ab+ ad+ af + bd+ be+ de+ df + ef.

Thus, the exponent of the Gaussian integral takes a simple form, which is

−ar212 − . . .− fr234 = −αxx2 − αyy2 − αzz2. (68)

In terms of eq. (68), we can write

I (a, b, c, d, e, f) =

∫
d3~r12d

3~r13d
3~r14 exp

(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
,

I (αx, αy, αz) =

∫
d3~xd3~yd3~z exp

(
−αxx2 − αyy2 − αzz2

)
,

=

∫
d3~x exp

(
−αxx2

) ∫
d3~y exp

(
−αyy2

) ∫
d3~z exp

(
−αzz2

)
, (69)

I (αx, αy, αz) =
π9/2

(αxαyαz)
3/2

∵
∫
dx exp

(
−γx2

)
=

1

2

√
π

γ
,

=
π9/2

[F1 (a, b, c, d, e, f)]3/2
.

In fact, the expectation values of many other operators can be derived from I(a, b, c, d, e, f) by using

Feynman’s parameters or parameter switch. We give I(a, b, c, d, e, f) the name of the fundamental form

regarding integration with ECG.

2.3.1 Overlap Integrals

The overlap matrix element Sij reads

Sij =
〈
G1234
i +G1234

j | G1234
i +G1234

j

〉
(70)

Sij =
〈
G1234
i | G1234

i

〉
+
〈
G1234
i | G1243

i

〉
+
〈
G1243
i | G1234

i

〉
+
〈
G1243
i | G1243

i

〉
. (71)

We see that each overlap matrix element is related to fundamental form of the integral I(a, b, c, d, e, f),
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〈
G1234
i | G1234

i

〉
= I (a, b, c, d, e, f) , (72)

with a = ai + aj , b = bi + bj , c = ci + cj , d = di + dj , e = ei + ej , f = fi + fj . (73)

〈
G1234
i | G1243

i

〉
= I (a, b, c, d, e, f) , (74)

with a = ai + aj , b = bi + cj , c = ci + bj , d = di + ej , e = ei + dj , f = fi + fj . (75)

〈
G1243
i | G1234

i

〉
= I (a, b, c, d, e, f) , (76)

with a = ai + aj , b = bi + bj , c = ci + cj , d = di + dj , e = ei + ej , f = fi + fj . (77)

〈
G1243
i | G1243

i

〉
= I (a, b, c, d, e, f) , (78)

with a = ai + aj , b = bi + cj , c = ci + bj , d = di + ej , e = ei + dj , f = fi + fj . (79)

2.3.2 Matrix Elements for Coulomb Potential

The Coulomb potential operator for PsH system is

V̂ =
1

r12
+

1

r34
− 1

r13
− 1

r14
− 1

r23
− 1

r24
. (80)

Similar to the overlap matrix element, the Coulomb potential matrix element is

Vij =
〈
G1234
i

∣∣∣V̂ G1234
i

〉
+
〈
G1234
i

∣∣∣V̂ G1243
i

〉
+
〈
G1243
i

∣∣∣V̂ G1234
i

〉
+
〈
G1243
i

∣∣∣V̂ G1243
i

〉
. (81)
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Again, those four terms have the exact same the format as in eq. (72-78). Given the choice of coordinate

shift, eq. (57), we can directly solve for the potential integral V14,

V14(a, b, c, d, e, f) =

∫
d3~r12d

3~r13d
3~r14

1

r14
exp

(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
(82)

=
π3

(αxαy)3/2

∫
d3~z

1

z
e−αzz2 (83)

=
2π9/2

√
πF1 (a, b, c, d, e, f) [F2 (a, b, c, d, e, f)]1/2

(84)

The other Coulomb integrals can be easily calculated by swapping the parameters. For example,

V12(a, b, c, d, e, f) =

∫
d3~r12d

3~r13d
3~r14(

1

r12
) exp

(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
(85)

=

∫
d3~r14d

3~r13d
3~r12(

1

r12
) exp

(
−cr214 − br213 − ar212 − fr234 − er224 − dr223

)
(86)

=

∫
d3~r14d

3~r13d
3~r12(

1

r14
) exp

(
−cr212 − br213 − ar214 − fr223 − er224 − dr234

)
(87)

= V14(c, b, a, f, e, d). (88)

We first rearrange our integral so that ~r12 has the same effect as ~r14, then we swap {2 ↔ 4} to arrive at

the final result.

Similarly,

V13(a, b, c, d, e, f) = V14(a, c, b, e, d, f)

V23(a, b, c, d, e, f) = V14(a, e, d, c, b, f)

V24(a, b, c, d, e, f) = V14(a, d, e, b, c, f)

V34(a, b, c, d, e, f) = V14(b, d, f, a, c, e)

2.3.2.1 Kinetic energy

We have the kinetic energy operator for the PsH system,

T̂ = − 1

2µ12

[
~∇2
~r12

+ ~∇2
~r13

+ ~∇2
~r14

]
− 1

m1

[
~∇~r12 · ~∇~r13 + ~∇~r12 · ~∇~r14 + ~∇~r13 · ~∇~r14

]
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The gradient operator is acting on the inter-particle distances. The six inter-particle displacement in the

ECGs basis are not independent. In fact

~r23 = ~r13 − ~r12

~r24 = ~r14 − ~r12

~r34 = ~r14 − ~r13

From the law of cosines

r223 = r212 + r213 − 2~r12 · ~r13,

r224 = r212 + r214 − 2~r12 · ~r14, (89)

r234 = r213 + r214 − 2~r13 · ~r14

Consider the gradient acting on the basis function

∇~r12
∣∣G1234

i

〉
= [−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14]

∣∣G1234
i

〉
∇~r13

∣∣G1234
i

〉
= [−2 (bi + di + fi)~r13 + 2di~r12 + 2fi~r14]

∣∣G1234
i

〉
(90)

∇~r14
∣∣G1234

i

〉
= [−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13]

∣∣G1234
i

〉
.

The following gradient identities are used in eq. (90),

∂rk
∂rj

= δkj ,

∂

∂rj1
r21 =

∂

∂rj1

(
rk1r

k
1

)
= 2rk1δ

jk = 2rj1 (91)

∂

∂rj1
(r1 · r2) =

∂

∂rj1

(
rk1r

k
2

)
= δjkrk2 = rj2.
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The dimension of the inter-particle displacement vector is 3. The second order differential operator for all

term is calculated as (we use δii = 3)

∇2
~r12

∣∣ψ1234
i

〉
= ~∇~r12 · ~∇~r12

∣∣ψ1234
i

〉
,

= ~∇~r12 ·
[
(−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14)

∣∣ψ1234
i

〉]
,

= −6 (ai + di + ei)
∣∣ψ1234
i

〉
+ [−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14] · ~∇~r12

∣∣ψ1234
i

〉
,

= −6 (ai + di + ei)
∣∣ψ1234
i

〉
+ [−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14] · (92)

[−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14]
∣∣ψ1234
i

〉
= −6 (ai + di + ei)

∣∣ψ1234
i

〉
+ 4

[
(ai + di + ei)

2 r212 + d2i r
2
13 + e2i r

2
14 − 2di (ai + di + ei)~r12 · ~r13

−2ei (ai + di + ei)~r12 · ~r14 + 2diei~r13 · ~r14]
∣∣ψ1234
i

〉
,

∇2
~r13

∣∣ψ1234
i

〉
= ~∇~r13 ·

[
(−2 (bi + di + fi)~r13 + 2di~r12 + 2fi~r14)

∣∣ψ1234
i

〉]
,

= −6 (bi + di + fi)
∣∣ψ1234
i

〉
+ 4

[
(bi + di + fi)

2 r213 + d2i r
2
12 + f2i r

2
14 − 2di (bi + di + fi)~r12 · ~r13

(93)

−2fi (bi + di + fi)~r13 · ~r14 + 2difi~r12 · ~r14]
∣∣ψ1234
i

〉
,

∇2
~r14

∣∣ψ1234
i

〉
= −6 (ci + ei + fi)

∣∣ψ1234
i

〉
+ [(−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13) ·

(−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13)]
∣∣ψ1234
i

〉
= −6 (ci + ei + fi)

∣∣ψ1234
i

〉
+ 4

[
(ci + ei + fi)

2 r214 + e2i r
2
12 + f2i r

2
13 − 2ei (ci + ei + fi)~r12 · ~r14

(94)

− 2fi (ci + ei + fi)~r13 · ~r14 + 2eifi~r12 · ~r13
∣∣ψ1234
i

〉
.
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~∇~r12 · ~∇~r13
∣∣ψ1234
i

〉
= ~∇~r12 ·

[
(−2 (bi + di + fi)~r13 + 2di~r12 + 2fi~r14)

∣∣ψ1234
i

〉]
=
[
6di + (−2 (bi + di + fi)~r13 + 2di~r12 + 2fi~r14)

· (−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14)
] ∣∣ψ1234

i

〉
(95)

=
[
6di + 4

[
−di (ai + di + ei) r

2
12 − di (bi + di + fi) r

2
13 + eifir

2
14[

d2i + (bi + di + fi) (ai + di + ei)
]
~r12 · ~r13 + [difi − ei (bi + di + fi)]~r13 · ~r14 (96)

[diei − fi (ai + di + ei)]~r12 · ~r14]]
∣∣ψ1234
i

〉
.

~∇~r12 · ~∇~r14
∣∣ψ1234
i

〉
= ~∇~r12 ·

[
(−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13)

∣∣ψ1234
i

〉]
=
[
6ei + (−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13)

· (−2 (ai + di + ei)~r12 + 2di~r13 + 2ei~r14)
] ∣∣ψ1234

i

〉
(97)

=
[
6ei + 4

[
−ei (ai + di + ei) r

2
12 + difir

2
13 − ei (ci + ei + fi) r

2
14

[diei − fi (ai + di + ei)]~r12 · ~r13 + [eifi − di (ci + ei + fi)]~r13 · ~r14 (98)[
e2i + (ai + di + ei) (ci + ei + fi)

]
~r12 · ~r14

]] ∣∣ψ1234
i

〉
.

~∇~r13 · ~∇~r14
∣∣ψ1234
i

〉
= ~∇~r13 ·

[
(−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13)

∣∣ψ1234
i

〉]
=
[
6fi + (−2 (ci + ei + fi)~r14 + 2ei~r12 + 2fi~r13)

· (−2 (bi + di + fi)~r13 + 2di~r12 + 2fi~r14)
] ∣∣ψ1234

i

〉
(99)

=
[
6fi + 4

[
dieir

2
12 − fi (bi + di + fi) r

2
13 − fi (ci + ei + fi) r

2
14

[difi − ei (bi + di + fi)]~r12 · ~r13 +
[
f2i + (bi + di + fi) (ci + ei + fi)

]
~r13 · ~r14

[eifi − di (ci + ei + fi)]~r12 · ~r14]]
∣∣ψ1234
i

〉
. (100)

We use eq. (89) and collect terms with the same order of inter-particle distances rnij .
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Constant Terms:
∣∣G1234

i

〉
− 1

2µ12
[−6 (ai + di + ei)− 6 (bi + di + fi)− 6 (ci + ei + fi)]−

1

m1
[6di + 6ei + 6fi]

= − 1

2µ12
[−6 (ai + bi + ci + 2di + 2ei + 2fi)]−

1

m1
[6 (di + ei + fi)] (101)

=
3

µ12
(ai + bi + ci + 2di + 2ei + 2fi)−

6

m1
(di + ei + fi) .

r212 Terms: r212
∣∣G1234

i

〉

− 2

µ12

(
a2i + aidi − bidi + aiei − ciei

)
− 2

m1
(aibi + aici − aidi + bidi − aiei + ciei) .

r213 Terms: r213
∣∣G1234

i

〉

− 2

µ12

(
b2i − aidi + bidi + bifi − cifi

)
− 2

m1
(aibi + bici + aidi − bidi − bifi + cifi) .

r214 Terms: r214
∣∣G1234

i

〉

− 2

µ12

(
c2i − aiei + ciei − bifi + cifi

)
− 2

m1
(aici + bici + aiei − ciei + bifi − cifi) .

r223 Terms: r223
∣∣G1234

i

〉

− 2

µ12

(
2d2i + aidi + bidi + diei + difi − eifi

)
+

2

m1

(
2d2i + aibi + aidi + bidi + diei + difi − eifi

)
.

r224 Terms: r224
∣∣G1234

i

〉

− 2

µ12

(
2e2i + aiei + ciei + diei − difi − eifi

)
+

2

m1

(
2e2i + aici + aiei + ciei + diei − difi − eifi

)
.

r234 Terms: r234
∣∣G1234

i

〉

− 2

µ12

(
2f2i − diei + bifi + cifi + difi + eifi

)
+

2

m1

(
2f2i + bici − diei + bifi + cifi + difi + eifi

)
.
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Finally, the matrix element for the kinetic energy operator is

〈
ψ1234
i

∣∣∣T̂ ∣∣∣ψ1234
j

〉
=

[
3

µ12
(ai + bi + ci + 2di + 2ei + 2fi)−

6

m1
(di + ei + fi)

] 〈
ψ1234
i | ψ1234

j

〉
− 2

[
1

µ12

(
a2i + aidi − bidi + aiei − ciei

)
+

1

m1
(aibi + aici − aidi + bidi − aiei + ciei)

]
·
〈
r212
〉

(102)

− 2

[
1

µ12

(
b2i − aidi + bidi + bifi − cifi

)
+

1

m1
(aibi + bici + aidi − bidi − bifi + cifi)

]
(103)

·
〈
r213
〉

(104)

− 2

[
1

µ12

(
c2i − aiei + ciei − bifi + cifi

)
+

1

m1
(aici + bici + aiei − ciei + bifi − cifi)

]
·
〈
r214
〉

(105)

− 2

[
1

µ12

(
2d2i + aidi + bidi + diei + difi − eifi

)
− 1

m1

(
2d2i + aibi + aidi + bidi + diei + difi − eifi

)] 〈
r223
〉

− 2

[
1

µ12

(
2e2i + aiei + ciei + diei − difi + eifi

)
− 1

m1

(
2e2i + aici + aiei + ciei + diei − difi + eifi

)] 〈
r224
〉

− 2

[
1

µ12

(
2f2i − diei + bifi + cifi + difi + eifi

)
− 1

m1

(
2f2i + bici − diei + bifi + cifi + difi + eifi

)] 〈
r234
〉
,

where
〈
r2ij

〉
=
〈
ψ1234

∣∣∣r2ij∣∣∣ψ1234
〉
are the expectation values of the square of inter-particle distances. In

order to calculate them, first consider

〈
r214
〉

(a, b, c, d, e, f) =

∫
d3~r12d

3~r13d
3~r14

(
r214
)

exp
(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
, (106)
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which in terms of (~x, ~y, ~z) and following the procedure of Eq. (69), become

〈
r214
〉

(a, b, c, d, e, f) =

∫
d3~xd3~yd3~z

(
z2
)

exp
(
−αxx2 − αyy2 − αzz2

)
=

π3

(αxαy)
3/2

∫
d3~z

(
z2
)

exp
(
−αzz2

)
(107)

=
4π4

(αxαy)
3/2

∫
dz z4 exp

(
−αzz2

)
.

We know that

∫
dxe−ax

2
=

1

2

√
π

a

d

da

∫
dxe−ax

2
=

∫
dxx2e−ax

2
=

1

4

√
π

a3/2

d

da

∫
dxx2e−ax

2
=

∫
dxx4e−ax

2
=

3

8

√
π

a5/2
. (108)

Thus

〈
r214
〉

(a, b, c, d, e, f) =
4π4

(αxαy)
3/2

3

8

√
π

α
5/2
z

=
3π9/2

2αz (αxαyαz)
3/2

(109)

=
3π9/2F2 (a, b, c, d, e, f)

2 (F1 (a, b, c, d, e, f))5/2

where a, · · · , f are given in Eq. (69).

〈
r212
〉

(a, b, c,d, e, f) =
〈
r214
〉

(c, b, a, f , e,d) ,〈
r213
〉

(a,b, c,d, e, f) =
〈
r214
〉

(a, c,b, e,d, f) , (110)〈
r223
〉

(a,b, c,d, e, f) =
〈
r214
〉

(a, e,d, c,b, f) ,〈
r224
〉

(a,b, c,d, e, f) =
〈
r214
〉

(a,d, e,b, c, f) ,〈
r234
〉

(a,b, c,d, e, f) =
〈
r214
〉

(b,d, f ,a, c, e) .
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2.3.2.2 Inverse Square of Inter-particle distances

Here we will calculate the matrix elements for the inverse square of the inter-particle distances, i.e., the

matrix elements of the type
〈
ψ1234
j

∣∣∣ 1
r2ab

∣∣∣ψ1234
i

〉
. With he method used above, we get

〈
ψ1234
j

∣∣∣∣ 1

r214

∣∣∣∣ψ1234
i

〉
=

∫
d3~r12d

3~r13d
3~r14

(
r214
)

exp
(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
,

which in terms of (~x, ~y, ~z) and following Eq. (69) becomes

〈
1

r214

〉
(a, b, c, d, e, f) =

∫
d3~xd3~yd3~z

(
1

z2

)
exp

(
−αxx2 − αyy2 − αzz2

)
=

4π4

(αxαy)
3/2

∫
dz exp

(
−αzz2

)
=

2π9/2

F2 (a, b, c, d, e, f) [F1 (a, b, c, d, e, f)]1/2
. (111)

Likewise, the other needed quantities can be expressed in terms of above matrix elements as

〈
1

r212

〉
(a, b, c, d, e, f) =

〈
1

r214

〉
(c, b, a, f, e, d) ,〈

1

r213

〉
(a, b, c, d, e, f) =

〈
1

r214

〉
(a, c, b, e, d, f) ,〈

1

r223

〉
(a, b, c, d, e, f) =

〈
1

r214

〉
(a, e, d, c, b, f) ,〈

1

r224

〉
(a, b, c, d, e, f) =

〈
1

r214

〉
(a, d, e, b, c, f) ,〈

1

r234

〉
(a, b, c, d, e, f) =

〈
1

r214

〉
(b, d, f, a, c, e) . (112)

The definition of a, · · · , f is given in Eq. (72 - 78). The matrix elements for the other states can be

calculated in a similar fashion to exhaust all the permutations by swapping the parameters.

2.3.2.3 Inter Particle Distances

In order to calculate the inter particle distances, we have to calculate the matrix elements of the type

〈rab〉 =
〈
ψ1234
j |r̂ab|ψ1234

i

〉
.
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Again, we will start with r14 and write the others in terms of it

〈r14〉 =
〈
ψ1234
j |r̂14|ψ1234

i

〉
=

∫
d3~r12d

3~r13d
3~r14r14 exp

(
−ar212 − br213 − cr214 − dr223 − er224 − fr234

)
,

=

∫
d3~x exp

(
−αxx2

) ∫
d3~y exp

(
−αyy2

) ∫
d3~z (z) exp

(
−αzz2

)
,

= 2π9/2
[F2 (a, b, c, d, e, f)]1/2
√
π [F1 (a, b, c, d, e, f)]2

≡ 〈r14〉 (a, b, c, d, e, f) . (113)

With the scheme used in the calculation of potential energy, we get

〈r12〉 (a, b, c, d, e, f) = 〈r14〉 (c, b, a, f, e, d) ,

〈r13〉 (a, b, c, d, e, f) = 〈r14〉 (a, c, b, e, d, f) ,

〈r23〉 (a, b, c, d, e, f) = 〈r14〉 (a, e, d, c, b, f) ,

〈r24〉 (a, b, c, d, e, f) = 〈r14〉 (a, d, e, b, c, f) ,

〈r34〉 (a, b, c, d, e, f) = 〈r14〉 (b, d, f, a, c, e) . (114)

2.3.3 Numerical Evaluation

In order to perform the numerical calculation using variational approach, a code developed by Puchalski

and Czarnecki [14], whose structure is described in the Appendix, is used to optimize values of the pa-

rameters. The code is run untill the time the basis size reaches 1000. However, if necessary, in future the

calculation can be extended to improve accuracy. Numerical values of the expectation values of different

parameters of PsH are given in Table 2.

By looking at the value of the inter-particle distances in the PsH, we can see that this molecule is slightly

more extended than the ordinary positronium atom with relative electron-positron distances (〈re−e+〉) to

be 3.48a0 and 3.0a0, respectively. The average distance of electrons from the proton
(〈
re−p

〉)
is 2.31a0

which is larger than the dihydrogen. The average distance between positron-proton
(〈
re+p

〉)
is 3.66a0

which is much larger than 1.41a0 that is the average distance between two protons (〈rpp〉) in the H2. We

see from Table 2 that these values agree with the one obtained in ref. [2].
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Table 2: Expectation values of parameters of PsH and their comparison with [2]. In our work, we compared
the values by taking both the 100 and 1000 basis.

Property Mitroy [2] Ours Ours
N 1800 100 1000

〈V 〉 / 〈T 〉+ 2 7.3×10−8 2.0×10−5 −1.1×10−6

E −0.788870618 −0.788777722 −0.7888702781

〈T−〉 0.3261733 0.3258211 0.32585599

〈T+〉 0.1368503 0.1368260 0.13683160

〈rH+e−〉 2.311526 2.3105613 2.31314158

〈rH+e+〉 3.661624 3.6587151 3.66346165

〈re−e−〉 3.574787 3.5718503 3.57698395

〈re+e−〉 3.480272 3.4782961 3.48115262

〈1/rH+e−〉 0.7297090 0.7293035 0.7292580

〈1/rH+e+〉 0.3474618 0.3474887 0.3473026

〈1/re−e−〉 0.3705549 0.3704987 0.37033136

〈1/re+e−〉 0.4184961 0.41847598 0.4184289〈
r2H+e−

〉
7.813046 7.78840188 7.8244646〈

r2H+e+

〉
16.25453 16.2021879 16.271458〈

r2e−e−
〉

15.87546 15.8193644 15.895276〈
r2e+e−

〉
15.58427 15.5482392 15.593128〈

1/r2H+e−

〉
1.207067 1.20451062 1.2056154〈

1/r2H+e+

〉
0.1721631 0.1723848 0.1720162〈

1/r2e−e−
〉

0.2139099 0.2138301 0.21364909〈
1/r2e+e−

〉
0.3491440 0.3487406 0.34906742

The binding energy (also known as the dissociation energy) is given by

Eb = −E1 + EH
1 + EPs

1

= −E1 −
3

4
a.u. (115)

where the ground state energies of hydrogen and positronium are −1
2a.u. and −

1
4a.u., respectively. (a.u.

denotes atomic units also called hartree.) From Table 1 we see that with E1 = −0.788 870 345 206 hartree

the PsH forms a stable structure with respect to auto-dissociation.

The numerical values of the other parameter of the PsH is summarized in Table 2 where 〈rij〉 represent

the expectation values of the inter-particle distances, 〈1/rij〉 the inverse of that, and the positron and

electron kinetic energy operators are written as T+ and T−, respectively. These values agree well with the

corresponding one obtained in [2].
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Chapter 3

Stability of Tetrons

A recent revival of the interest in tetrons is inspired by the observation [61] by LHCb of a double charmed

baryon Ξ++
cc ∼ ccu. The measurement of the mass of the baryon at about 3621 MeV has provided an

estimate of the effective mass of the heavy quark pair cc (with the interaction between the quarks in the

color anti-triplet state), and thus an input into phenomenological models [62, 63].

The latter models are based on the picture [11] where, due to the attraction in the color-antisymmetric

state, the heavy quark pair forms a compact, in fact a point-like, bound state. This bound state then

acts essentially as a heavy antiquark and binds either with a light quark to form a baryon, e.g. Ξ++
cc ,

or with a light antiquark pair to form a tetron, e.g. QaQbūd̄. Since the latter binding is similar to that

in respectively a heavy meson and a heavy (anti)baryon, by applying the known mass differences, e.g.

between Λc and D, or between Λb and the B-meson, the masses of possible tetrons containing cc, or

bb, or bc heavy quark pair can be estimated. In this way it has been argued [62, 63] that there are no

stable tetrons with cc heavy quark pair, but there definitely is a bbūd̄one, well below the B−B̄0 threshold,

and also likely similar weakly decaying strange tetrons [63] bbs̄q̄ with q standing for either u or d. (The

conclusion about existence of mixed bottom-charm tetrons bcq̄q̄ is uncertain in Ref.[62] and negative in

[63].) Numerical evidence for such states has been established in lattice nonrelativistic QCD [64], as well

as using the approximation of static b-quarks [65].

It is clear however that the similarity of the interaction in a tetron to that in an (anti)baryon, where a

heavy antiquark is replaced by a compact color-antisymmetric pair of heavy quarks is not exact. One

simple reason for a deviation is the spin-dependent interaction, which is suppressed for heavy quarks and

which to some extent can be accounted for [63]. The other (and less tractable) reason is that the heavy

quark pair has a finite size with the most important effect being a flip of the color state from antisymmetric

to symmetric (with the corresponding change of the color of the light antiquark pair). The existence of

these configuration was recognized in the previous studies [12, 66, 67] and was taken into account in a

series of approximations.

In what follows we treat the mixing of the color configurations explicitly within an expansion in the ratio of

the distance between the heavy quarks to the characteristic distance to the light antiquarks. The point-like
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limit [11, 62, 63] is the first term in this expansion. It naturally appears that for sufficiently heavy quark

pair with the (reduced) mass M , the characteristic size of the bound state is proportional to 1/M , while

the distance scale for the light (massless) antiquarks in a tetron is set by ΛQCD, so that the ratio of the

distance scales is proportional to ΛQCD/M . We will argue however that the effects of the deviation from

the point-like approximation are enhanced in the limit of large number Nc of colors, so that the relevant

parameter for this deviation is in fact

ξ = N6
c

(
ΛQCD
M

)4

(116)

which at Nc = 3 indicates that the point-like limit is not applicable if at least one of the heavy quarks is

the charmed one. On the other hand, this limit may work with reasonably small corrections of order ξ for

tetrons with the bb quark pair.

Furthermore, it appears that a stable tetron does not exist if the parameter ξ is of order one or larger.

To establish this behavior, we consider in Section 3.4 the limit where all the quarks and the antiquarks

are asymptotically heavy, so that the relevant distances for bound states are short. One can then apply

the Coulomb-like limit for the gluon exchange among all constituents, with a non-relativistic Hamiltonian

describing the interplay of color configurations. The two scales are introduced in this model by considering

the quarks Q as having mass M that is larger that the mass m of the antiquarks q̄. The ratio f = m/M

is a variable parameter. 1 The bound state problem in this model is solved by a numerical variational

calculation; on the other hand it is analyzed in terms of an expansion in the size of the heavy bound QQ

pair. We find that an analog of the parameter (116) in this solvable model is

ξc = N6
c f

4. (117)

On the other hand we find from the numerical calculation that a stable tetron in this system exists only

when the ratio f is smaller than a certain critical value fc(Nc),

fc ≈ a/N
3
2
c (118)

where the coefficient a is or order one, numerically a ≈ 0.77. It is thus plausible that the condition for
1We consider, for simplicity, the situation where the heavier quarks are the same as well as the lighter antiquarks are

the same. The consideration can be generalized to different masses in the limit of a strong mass hierarchy by introducing
appropriate reduced masses.
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existence of a stable tetron is a small value of the expansion parameter [in this model ξc in Eq. (117)]

describing the deviation from the point-like model for the pair of heavy constituents.

Unlike in the solvable model with Coulomb-like forces, interactions in a system containing light u, d,

or s quarks cannot be described by a potential. However some features of a gluon exchange can be

applied to such systems in the limit of large number of colors Nc with the usual assumption [68] that,

as Nc increases, the coupling αs decreases, so that the product Ncαs stays of order one. We discuss the

parameters describing a tetron in this limit in Section 3.5.

3.4 A solvable model with superheavy quarks

We consider a system of two heavy quarks Q with mass M and two lighter (but still heavy) antiquarks

q̄ with mass m each. For the start we assume no statistics symmetry constraints, e.g. assuming that the

quarks are not identical, even though they have the same mass. The odd numbered positions ~r1and ~r3

refer to quarks, while the even ones ~r2and ~r4 are those for the antiquarks. The gluon exchange potential

between the color constituents at positions ~ri and ~rj is

Vij = T a(i)T
a
(j)dij (119)

with T a(i) being the color generators acting on the constituent at ~ri, and dij in the Coulomb limit is given

by

dij =
αs

|~ri − ~rj |
(120)

The condition for the system to be colorless can be satisfied with two configurations of the sub-systems

described by the color combinations:

Ψ = (q̄(2)αQ
α
(1))(q̄(4)βQ

β
(3))/Nc

φ = (q̄(4)αQ
α
(1))(q̄(2)βQ

β
(3))/Nc (121)

where α and β are color indices in the fundamental representation of the color group SU(NC). Clearly

in the Ψ configuration the color singlets are
(
q̄(2)Q(1)

)
and

(
q̄(4)Q(3)

)
while in Φ they are

(
q̄(2)Q(3))

)
and(

q̄(4)Q(1))
)
.
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Figure 1: One-gluon exchanges in a tetron.

We derive the equation for the potential resulting from one-gluon exchanges among the constituents of a

tetron.

Consider two types of gluon exchanges: between a quark and an antiquark, shown in Fig. 1 (a) and

between a quark and another quark, Fig. 1 (b). The other four type are trivially related to these two.

In the Coulomb gauge, the dominant one-gluon scattering amplitude is

iM =

[
ψ̄αig(ta)αβγ

0ψβ ]
i

k̄2
[ψ̄ρig(ta)ρσγ

0ψσ
]
, (122)

where k̄ is the three-momentum carried by the gluon. We neglect the energy exchange since it is of a higher

order of smallness in the case of Coulomb-like gluons [69]. The color coupling constant is g, αs = g2

4π .

Color matrices in the fundamental representation are denoted by ta; a useful identity is
∑

a(t
a)αβ(ta)ρσ =

1
2(δασ δ

ρ
β −

1
Nc
δαβ δ

ρ
σ) [70].

Consider now the gluon exchange in Fig. 1(a) when the initial state is

ψ =
1

Nc

(
q̄(2)αQ

α
(1)

)(
q̄(4)βQ

β
(3)

)
=

1

Nc
δµ2µ1δ

µ4
µ3

(
q̄(2)µ2Q

µ1
(1)

)(
q̄(4)µ4Q

µ3
(3)

)
. (123)

For the color indices in the final state we use indices νi with a subscript i = 1 . . . 4 describing the number

of the constituent. Constituents 3 and 4 are spectators, not affected by this gluon exchange. We get the
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following structure of the final state,

iM12 → i
g2

~k2

∑
a

(ta)µ1ν1 (ta)ν2µ2δ
µ3
ν3 δ

ν4
µ4

1

Nc
δµ2µ1δ

µ4
µ3

= i
g2

~k2

1

2
(δµ1µ2δ

ν2
ν1 −

1

Nc
δµ1ν1 δ

ν2
µ2)

1

Nc
δµ2µ1δ

ν4
ν3 (124)

= i
g2

~k2

N2
c − 1

2Nc

1

Nc
δν2ν1δ

ν4
ν3 → i

αs
|~r1 − ~r2|

N2
c − 1

2Nc

1

Nc
δν2ν1δ

ν4
ν3 (125)

where the last step transitions from momentum to configuration space. The color structure 1
Nc
δν2ν1δ

ν4
ν3 is

again that of a Ψ state: since the {12} pair is a color singlet in the initial state, a gluon exchange within

that pair leaves it a singlet. The potential is obtained from the scattering amplitude by flipping its sign,

V12 = −N
2
c − 1

2NC

αs
|~r1 − ~r2|

. (126)

We recognize the attractive Coulomb potential with the coupling constant enhanced by the color factor
N2

c−1
2Nc

equal 4
3 for Nc= 3. The result contributes −N2

c−1
2Nc

d12 to the upper left term of the potential in eq.

(129)

The exchange in Fig. 1(b), again with Ψ as the initial state, contributes to the potential

V13 =
αs

|~r1 − ~r3|
1

2
(δµ1ν3 δ

µ3
ν1 −

1

Nc
δµ1ν1 δ

µ3
ν3 )δν2µ2δ

µ4
ν4

1

NC
δµ2µ1δ

µ4
µ3 (127)

=
αs

|~r1 − ~r3|
1

2Nc
(δν2ν3δ

ν4
ν1 −

1

Nc
δν2ν1δ

ν4
ν3 ). (128)

Here we see both Ψ (the last term) and Φ (the first). This exchange contributes − d13
2Nc

to the diagonal and

d13
2 to off-diagonal terms in the left column of the potential in eq. (129). In the same way we derive all

the remaining dij terms in the potentials.

The sum of pairwise one-gluon exchanges among the four constituents results in the potential that can be

written in terms of ψ and φ as

V

 Ψ

Φ

 =
1

2

 −N2
c−1
Nc

(d12 + d34)− 1
Nc
p p

q −N2
c−1
Nc

(d14 + d23)− 1
Nc
q


 Ψ

Φ

 , (129)
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where we have used the notation

p = d13 − d23 + d24 − d14, q = d13 − d34 + d24 − d12. (130)

The potential matrix in Eq. (129) is not symmetric, because the color states Ψ and Φ in Eq. (121) are

not orthogonal

〈Φ|ψ〉 = 〈ψ|φ〉 =
1

Nc
. (131)

Orthogonal (and normalized) states can be chosen as

u =
1√

2(1 + 1/Nc)
(Ψ + Φ), w =

1√
2(1− 1/Nc)

(Ψ− Φ), (132)

and the one-gluon exchange potential (129) in the basis of these states reads as

V

 u

w

 = −1

4

 N2
c−1
Nc

r − Nc−1
Nc

(p+ q)
√
N2
c − 1s√

N2
c − 1s N2

c−1
Nc

r + Nc+1
Nc

(p+ q)


 u

w

 (133)

where

r = d12 + d34 + d14 + d23, s = d12 + d34 − d14 − d23. (134)

The Hamiltonian with the potential (133) clearly has a Z2×Z2 symmetry under switching of the positions

of the quarks, ~r1 ↔ ~r3, and (independently) switching the positions of the antiquarks, ~r2 ↔ ~r4. The

symmetry of the u and w components is opposite; e.g. if the w component is even under swapping of

quarks then the u component has to be odd. This implies that the eigenstates of the Hamiltonian can be

classified in terms of the symmetry of the w component: w++, w−−, w+− and w−+.

Furthermore, one can readily see that the states u and w contain the diquark (anti-diquark) pair of a

definite color symmetry: symmetric in u and antisymmetric in w.2 In particular, at Nc = 3 the u state

contains a color sextet diquark (anti-sextet anti-diquark) pair, while the state w contains the anti-triplet

diquark (triplet anti-diquark) pair configuration. Thus it is the latter w component that is present in the
2The color and coordinate symmetry properties of the components certainly become essential for identical quarks with

the constraint of the Fermi–Dirac statistics. It should be noted however that even for identical quarks the constraints
from the statistics can be satisfied by the appropriate spin state symmetry of the quarks. Thus, due to the suppression of
spin-dependent interaction of heavy quarks, these constraints do not affect the conclusions about existence of stable bound
systems in the limit of heavy quarks. Naturally the appropriate symmetry of the spin states constrains the overall quantum
numbers, e.g. JP of the tetron.
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phenomenological analyses of Refs. [62], [63]. When the heavier quarks Q are close to each other, the

term d13 becomes dominant, (p + q)≈ 2d13, and one recovers from eq. (133) the attraction in the color

antisymmetric state,3

V13 = −Nc + 1

2Nc
d13. (135)

This attraction binds the Q quarks into a compact Coulomb-like system with the size and energy becoming,

at large Nc,

rQQ ∼ (Mαs)
−1, EQQ ∼Mα2

s (136)

Clearly, at large M such distance scale is small in the scale Rq of the dynamics of the lighter antiquarks

in the considered system, and one can consider an expansion in the ratio rQQ/Rq. In the zeroth order of

this expansion, i.e. at vanishing rQQ, the off-diagonal terms in eq. (133) vanish and there is no mixing

between the w and u components, and thus one can set u = 0. Then the leading at large Nc interaction

for the lighter antiquarks is that with the heavier quarks. After setting ~r3 = ~r1 in the proportional to Nc

part of the diagonal term in eq. (133) one finds the potential

VqQ = −Nc

2
(d12 + d14), (137)

describing an independent Coulomb-like interaction of the two lighter antiquarks with the compact QQ

system. Naturally, the latter interaction corresponds to spectra of two independent Qq̄ Coulomb-like

quarkonia, with the distance and energy scale set as

Rq ∼ (mNcαs)
−1, Eq ∼ mN2

c α
2
s. (138)

It is also clear that the ground state in both the potential (135) and (137) is spatially symmetric, so that

the overall ground state of the tetron is of the type w++ under the Z2 × Z2 symmetry.

Due to the binding between the heavy quarks by the potential (135) the resulting four-quark system is

stable under decay to two quarkonium mesons. It should be noted however that this binding is only sub

leading in terms of the large Nc counting, as can be seen by comparing the expressions (135) and (137).

Thus the discussed ‘hierarchy’ of the binding energies is only applicable if the ratio f of the masses is small
3It can be also mentioned that in the same limit of closely separated heavier quarks their interaction in the color symmetric

state (the u component) is a repulsion: V13 = (Nc − 1)d13/2Nc.
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enough at a fixed Nc. In other words there is a critical value of this ratio fc(Nc) above which the described

approximation fails. In order to evaluate the behavior of fc(Nc) we consider here the effects arising at a

finite ratio rQQ/Rq. We find that the main effect arises due to non-vanishing off-diagonal elements in the

potential (133): √
N2
c − 1(d12 + d34 − d14 − d23) ∼ NcαsrQQ/R

2
q . (139)

This term can be considered as small as long as the energy shift that it produces in the second order is

small in comparison with either of the energy scales [in eq. (136) or 138]. One can readily verify that

using the energy scale imposes a more stringent bound on f = m/M :

(
NcαsrQQ/R

2
q

)2
/E2

QQ ∼ N6
c (m/M)4 � 1 (140)

so that the applicability of the discussed expansion fails at f > fc(Nc) with fc given by eq. (118). In

particular the absence of a stable bound state at larger mass ratio makes highly unlikely existence of a

“double bottomonium” occasionally discussed in the literature (see e.g. Ref. [71], [72], [62]).

By performing a numerical variational calculation we find that the lowest bound state in the system is of

the w++ type and exists only when the ratio in eq. (140) is small so that the mass ratio f is smaller than

the critical value described by eq. (118) (see Fig. 2 ).4 The results for the values of fc at which the bound

state disappears at different NC are shown in Fig. 3.

We computed the data points in Fig. 3 with a generalization of the algorithm developed for the positronium

molecule [14]. We use the potential V in Eq. (133) in a non-relativistic Schrödinger equation. We work

in the rest frame of the tetron. Both wave-function components u and w are represented as a sum of

Gaussian trial functions of all six inter-particle distances, for example

ψu =

NB∑
k=1

ckexp(−
∑
i,j

aijkr
2
ij), (141)

where rij are the pair-wise distances between the constituents, and NB is the size of the basis of trial

functions. We use NB = 200 for each of the two components. (Much larger bases can be employed if

higher precision is warranted.) Thus there are 2 × 6NB = 2400 variational parameters aijk. We adjust
4We note in passing that a shallower bound state of the type w−− also exists at sufficiently small f , while no bound states

of mixed symmetry w+− or w−+ are found in our analysis.
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Figure 2: Extra binding energy of a tetron (in units of the total binding of two independent Qq̄ mesons)
as a function of the antiquark/quark mass ratio f . The state with the symmetry w++ (circles) is bound
strongly than w−− (triangles). Even the state w++ is no longer bound when the mass ratio exceeds about
fc ≈ 0.152. The number of colors is Nc = 3.

them to find a configuration minimizing the ground-state energy.

A challenge in this calculation is a slow convergence very near the threshold. This may explain the slight

spread of the data points around the fitted curve in Fig. 2.

3.5 Tetron with superheavy quarks and massless antiquarks

A potential description, and even more in terms of a Coulomb-like potential, is not applicable for the

interaction of light u, d, s quarks, and other methods have to be invoked. In this section we consider a

system of two very heavy quarks QQ with mass M each, and two massless anti-quarks q̄q̄ (which are not

necessarily identical, e.g. ūd̄ ). Although literally the potential model of the previous section does not

apply, some essential features of the interaction in eq. (133) are retained, in particular a Coulomb-like
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Figure 3: Mass threshold fc for tetrons as a function of the number of colors. The curve is the fit of the
numerically computed values of fc to the formula in eq. (118).
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potential treatment of the interaction between the heavy quarks. Namely, the one gluon exchange between

the heavy quarks still produces a compact bound state in the potential (135) with the relevant parameters

described by eq. (136). This interaction, essential at large M , is however only sub-dominant in the large

Nc limit, in which limit the dominant effect (of order one) is the interaction between the light and heavy

constituents. The heavy-light mesons Qq̄ are formed and the estimate (138) for the relevant characteristic

size and energy scale is replaced by

Rq ∼ Λ−1QCD, Eq ∼ ΛQCD. (142)

Moreover, the mixing between the w and u components, although not describable by a potential analog of

the non-diagonal components in eq. (133), retains the following features. It is of order one in the limit of

large Nc and it vanishes at zero spatial separation rQQ between the heavy quarks. Thus one can estimate

the amplitude of the mixing in the linear order of the expansion in rQQ as

〈u|H|w〉 ∼ rQQ/R2
q ∼ rQQΛ2

QCD (143)

The perturbation parameter for the mixing is then evaluated as

ξ ∼ | 〈u|H|w〉 |
2

E2
QQ

∼
Λ4
QCD

M4α6
s

(144)

which results in the estimate in eq. (116)
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Chapter 4

Conclusion

In the first part of the work presented here, we used the variational method in Gaussian basis and com-

bined it with the algorithms for decomposing the Hamiltonian matrix elements and for optimizing the

wave function for PsH. Using these optimized wave functions with 1000 basis, we calculated the various

properties, such as inter-particle distances and the non-relativistic ground state energy and compare these

quantities with the one calculated in [2]. Our result for the binding energy is comparable to the one

calculated in [2, 55].

In the second part of the work, we discussed the stability of mesonic four quark system QaQbq̄q̄, where

Q and q denote the heavy and light quarks respectively. We found that the parameter ξ in eq. (116),

similarly to ξc in (117), controls the applicability of the treatment of tetron starting from a compact bound

diquark made of the heavy quarks. A perturbative expansion in the spatial separation is possible when

this parameter is (formally) much less than one, and generally this expansion becomes invalid once the ξ

is of order one. Our calculations in the solvable model with heavy quarks however revealed not only that

the expansion becomes inapplicable when ξc is of order one, but no stable bound tetrons arise at all. We

interpret this behavior as that the leading at large Nc dipole force [the off-diagonal terms in the potential

(133)] results in a strong mixing between the w and u components. Such mixing essentially randomizes

the total color of heavy diquark, so that a residual net interaction between the heavy constituents largely

cancels between the color symmetric and antisymmetric configurations. We thus conclude that it is highly

likely that in a more realistic tetron with light quarks the existence of a stable bound state is also controlled

by the parameter ξ, and the stability does not exist if ξ is of order one or larger.

It is certainly of a primary interest to understand the status of tetrons with the heavy constituents being

the actual b and c quarks. Using the criterion based on the estimate in eq. (116) one readily concludes

that for the ccq̄q̄ and bcq̄q̄ systems, where the reduced mass M in the heavy diquark is determined by

the charm quark mass, there is essentially no chance that the parameter ξ is small. Thus we confirm the

finding of the earlier studies [12] that it is highly unlikely that there are stable tetrons with such quark

structure.

The parameter ξ from eq. (116) is more likely to be small enough, if M is proportional to the mass of
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the b quark. Due to the inherent uncertainty in this estimate for a nonperturbative system it would be

impossible to unambiguously claim existence of stable tetrons of such type, based solely on this estimate.

However we believe that there is a strong indication that if stable tetrons do exist, the only possibility for

them is to be of the double bottom type. At this point we find an agreement with the conclusions based on

purely phenomenological estimates in Refs. [62, 63]. It is certainly understood [63] that an experimental

observation of double bottom tetrons can be quite challenging. However a search for them may be well

worth the effort, as the tetrons possibly present a very unconventional form of hadrons that are stable

with respect to strong decay.

Clearly, the smallness of the parameter ξ, or its analog, requires existence of two strongly separated mass

scales, whose ratio can ensure that the binding effect in the color antisymmetric state due to heavy masses

is not eliminated by a larger in Nc destabilizing mixing between the color states. We notice absence of such

hierarchy of scales for four-quark systems with only the heavy b and c quarks, e.g. bbc̄c̄, so that we do not

expect existence of stable tetrons of such type. The same negative conclusion applies to four-quark systems

with hidden heavy flavors, such as a double bottomonium bbb̄b̄, or double charmonium, ccc̄c̄ systems.
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Appendix A: Documentation of the Variational

Method coded in Fortran

We apply the variational method to numerically solve the non-relativistic Schrödinger equation for a few-

body system. One can define the properties of a system of particles such as the mass and charge of

each particle and our program (we call it VM) finds the ground state energy and its corresponding wave

function. The VM uses the inverse iteration method to solve the generalized eigenvalue problem and it

only returns the lowest eigenstate. Our optimization algorithm searches iteratively the best parameters for

an ansatz. The program will terminate when the result reaches a desired accuracy specified by the user.

The wave function contains essentially all the information about the system. We can extract the property

of system by calculating the expectation value of the corresponding operator from the wave function.

Figure (4) shows the directories and files contained in VM.

The main file of VM is the VM.f file. It utilizes four modules which are “Tables”, “PRMTS ”, “bodysym” and

“optimize”. The “Tables”, “PRMTS ” modules are all located in the file mystd/prmts.f and they contain

all the global variables used throughout the program. The module “bodysym” contains the definition of

the physical system of interest. A definition of a new particle system must use this name. The module

“Optimize” locates in VA04AD.f file. This module contains two subroutines: “ loopsearch”, which manages

the Powell method optimization scheme (PMOS), and “VA04AD”, which is an algorithm for non-derivative

minimization and is taken from the Harwell Subroutine Library [73]. In each iteration of PMOS, VA04AD

is used to tune the variables of a single basis function while keeping others constant. PMOS also utilizes

the QR update procedure to speed up the program.

A standard workflow of the VM program is as follows:

1. Defining the physical system;

2. Solving the system to obtain the wave function; and

3. Repetitively optimizing the ansatz until the precision criteria are reached.
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Figure 4: Directories and files contained in VM. The boxes with dash line represent a folder and every
rigid box is a Fortran file. The blue arrows point to the files which are called by the given file. The blue
boxes are used to order the process of the main program. Mystd/prmt.f contains global variables and
constants used throughout the program, thus a red arrow is used. The 5 files in the mystd directory are
taken from ref. [3].

53



Defining the physical system

A quantum few-body system is specified via a module locating at the “/VM/system” folder. Each mod-

ule contains recipes for calculating the matrix elements. In order to construct the Hamiltonian matrix

correctly, users provide the essential information of a system such as the number of particles, the mass

and charge of each particle, and an initial guess of the energy of the system. Users also specify the sym-

metrization rules in order to calculate the matrix element successfully. The function “matrele” calculates

the Hamiltonian matrix elements (hm) and overlap matrix element (om, calculated by “overlap” function).

The Hamiltonian matrix elements consist of the kinetic energy (calculated by “kin_part” function) and

the potential energy (calculated by “pfv ” function) terms.

Solving the system

We select the correct module to compile. This can be done by switching the argument of the variable

system= [name of the file without extension] in the file VM/makefile. We run the program through a

command $ make , then $ ./main. Every time the PMOS finds a lower energy state, the magnitude and

error of this energy is displayed. VM stores the wave function parameters in outdata/WF.dat file.

The implemented eigensolver affects VM’s accuracy and speed. In the following chapter, we discuss the

algorithms used in our eigensolver.

Eigensolver

VM constructs the general eigenvalue problem by using the “hamlnorm” subroutine. This file calculates

matrix elements according to the supplied recipes and parameter from the ansatz. There are two situa-

tions. In the first case, we calculate every matrix element and this case happens in the beginning when

the Hamiltonian and overlap matrix are blank. Then VM calls the “eigen” subroutine to solve for the

lowest eigenstate and eigenvector. Specifically, it uses the inverse iteration method together with the QR

decomposition and the back substitution method to solve the general eigenvalue program.

In the second case, VM only calculates the arrays of matrix elements affected by the updated parameters.

At this time, VM calls the QR update recipe instead of performing a new QR decomposition. Whenever

the “eigen” function finds a lower energy state, it automatically writes all parameters of the ansatz to the
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output file “outdata/WF.dat”.

Inverse iteration

To solve the generalized eigenvalue problem eq. (19), we employ the inverse iteration method [3]. This

procedure only determines one eigenenergy and its corresponding eigenvector. In the nth iteration, we

have a trial eigenvector, |ψn〉 and an estimation of the eigenenergy En. The next step is to solve |χn〉 from

the following linear system,

(H − EnS) |χn〉 = S |ψn〉 (145)

It can be shown that the new eigenvector |χn〉 will be closer to the true eigenvector corresponding to the

true energy E than |ψn〉 by a factor of (E −En)−1[3]. In the next iteration, we use the normalized vector

|ψn+1〉 =
|χn〉√
〈χn|χn〉

(146)

as our new trial vector. We update our estimate of the eigenenergy to

En+1 = En +
〈χn|S|ψn〉
〈χ0|S|χ0〉

. (147)

The eigenvector converges rapidly after several iterations. Since we are only interested in the ground

state, we have the advantage of keeping the initially guessed eigenenergy En consistent throughout the

calculation. The initial value of En should be a lower bound estimation of the system’s energy level.

QR Decomposition

We solve the linear system eq. (145) by using the QR decomposition and the back substitution method.

The goal of QR decomposition is to decompose a matrix into a product of an orthogonal matrix Q and

an upper triangular matrix R

(H − EnS) = QR, (148)

where Q has the property

QTQ = I. (149)
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We use the Numerical Recipe routine NR::qrdcmp to complete this step [3]. The Numerical Recipe routine

utilizes Householder transformation. The linear system eq. (145) is rewritten as

R |χn〉 = QTS |ψn〉 . (150)

The back substitution method solves a linear system Ax = b where A is an upper triangular N×N matrix.

It begins with the last row, where the value of |χn〉 [N ] is given. Then it moves to the second last equation

and back-substitutes the value of the previously calculated off-diagonal terms to calculate the |χn〉 [N−1].

It repeats the process until all the components of |χn〉 have been obtained. When we keep En to be a

constant, it keeps the matrix (H − EnS) to be the same so that the matrix QR is also the same in every

inverse iteration.

QR update

We only alternate one basis function at a time in the PMOS. The other basis functions are kept constant

if they have not been selected for this round. If we alter the parameter of the kth base function, it will

affect the kth row and the column of the Hamiltonian and overlap matrix. Our goal is to find a new QR

decomposition for the perturbed linear system eq. (145)

(H ′ − EnS′) |χn〉 = S |ψn〉 . (151)

It turns out there is method called QR update, which relates QR matrix of the perturbed matrix to the

old one. The QR decomposition is an O(N3) algorithm, and the QR update is an O(N2) algorithm [3].

There exists a speed advantage at higher dimensions. The QR update has the advantage of choosing the

QR decomposition method for solving the generalized eigenvalue problem coupling with the PMOS.

The QR update works if the change of the linear system eq. (145) is in the form,

A′ → A+ ~S ⊗ ~T ; (152)

~S and ~T are vectors, a matrix W = ~S ⊗ ~T denotes the outer product of ~S and ~T , such that Wij = ~Si ~Tj .
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In our case, the change is

(
H ′ − EnS′

)
= (H − EnS) + ~V ⊗ ~ek + ~ek ⊗ ~V , (153)

~ek is the Cartesian basis vector. The updated vector ~V is constructed from the influenced arrays of the

Hamiltonian matrix and overlap matrix as following

~Vi =


(H ′ik − EnS′ik)− (H ik − EnSik)

1
2 [(H ′ik − EnS′ik)− (H ik − EnSik)]

i 6= k

i = k

. (154)

We apply the QR update method twice to find new Q′ and R′ matrices for Q′R′ = H ′ − EnS′. Luckily,

the QR update is also a standard routine[3].

Optimization

Powell method Optimization Scheme (PMOS)

We implemented an efficient serial optimization scheme as shown in Fig. (5). In the initialization stage,

VM prepares the initial trial wave function and constructs the Hamiltonian matrix and the Overlap matrix

eq. (13, 14). It also computes the corresponding eigenvalue. Then, VM enters a “while loop” and it stops

when the accuracy of the variational energy reach the desired criteria. During each iteration, VM employs

the Powell method to find the optimal parameters which give the lowest variational energy. The Powell

method fine tunes the parameters of only one basis function at a time while keeping other parameters

constant. Every time VM finds a lower energy, it synchronizes the table recording the parameters of the

wave function with the trial function giving the lowest energy found so far.

Powell Method

We minimize the eigenenergy which is a function of the parameters in a single basis function. Calculation

of the gradient of the eigenenergy is not practical. We choose the Powell method to solve this optimization

problem. This multidimensional and non-derivative minimization method consists of sequences of line

minimizations. The definition of this sub-algorithm is given in Numerical Recipes [3]: “Given as input the
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Figure 5: Powell Method Optimization Scheme (PMOS).
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vectors P and n, and the function f of one variable, find the scalar λ that minimizes f(P +λn), replace P

by P +λn and then replace n by λn.” Successive minimizations is applied along a set of directions. Those

directions have to be “non-interfering” such that the minimization along one direction is not diminished

by the subsequent minimization along another direction. A mutually conjugate set of directions has the

desired property. Given a function f, the two vectors u and v are conjugate if

u ·A · v = 0 (155)

where A is the Hessian matrix of f at a point P which serves as the origin of the coordinate system,

[A]ij ≡
∂2f

∂xi∂xj
|P . (156)

In other words, the minimization along a new direction v will make the gradient of the function f , which

is ∇f = A · v in this case, stay perpendicular to u. If any two vectors in a given set of directions are

conjugate, this set is called mutually conjugate with respect to f . Powell first came up with a procedure

for producing N mutually conjugate directions. This procedure is described by the Numerical Recipes [3]

as follows:

“Initialize the set of directions ui to the basis vectors, ui = ei, i = 1, . . . , N , repeat the following sequence

of steps until your function stops decreasing:

• Save your starting position as P0.

• For i = 1, . . . , N move Pi−1 to the minimum along direction ui and call this point Pi.

• For i = 1, . . . , N − 1, set ui ← ui+1.

• Set uN ← PN − P0.

• Move PN to the minimum along direction uN and call this point P0.”

59


