
Deep Convolutional Networks for Image Classification

by

Bing Xu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Bing Xu, 2016

Abstract

Image classification is an important problem in machine learning. Deep neural

networks, particularly deep convolutional networks, have recently contributed

great improvements to end-to-end learning quality for this problem. Such

networks significantly reduce the need for human designed features in the

image recognition process.

In this thesis I address two questions: first, how best to design the archi-

tecture of a convolutional neural network for image classification; and second,

how to improve the activation functions used in convolutional neural networks.

I review the history of convolutional network architectures, then propose an

efficient network structure named TinyNet that reduces network size while

preserving state of the art image classification performance.

For the second question I propose a new kind of activation function, called

the Randomized Leaky Rectified Linear Unit, which improves the empirical

generalization performance of the now widely used Rectified Linear Unit. Also,

I make an explanation of the difficulty of training deep sigmoid network. The

thesis culminates in a demonstration of the TinyNet architecture with Ran-

domized Leaky Rectified Linear Units, which obtains state-of-art results on

the CIFAR-10 image classification data set without any preprocessing.

To further demonstrate the generality of the results, I apply the general

convolutional neural network structure to a different image classification prob-

lem, with completely different textures and shapes, and again achieve state-

of-art results on a data set from the National Data Science Bowl competition.

ii

Acknowledgements

I would like to thank Prof. Dale Schuurmans, Prof. Yoshua Bengio and Prof.

Carlos Guestrin for supporting my research and providing truly freedom re-

search environment.

I would like to thank Tianqi Chen, Ian Goodfellow, David Warde-Farley,

Naiyan Wang, Mu Li, Ruitong Huang, Min Lin, Yifan Wu, Ying Xu and Fan

Xie for your numerous help in both life and research difficulty. We make great

projects together. Without you I cant image how the world would be like.

I would like to thank Jack Deng, Ben Hamner, Bangyong Liang, Yi Huang,

Kyunghyun Cho, Cheng Wang, Robert Cowen, David Rousseau, Zhengdong

Lu and Nicholas Leonard for your truly help & advice while I am facing H1-B

catastrophe, which is the greatest challenge before I end school life.

At last I would like to thank my parents Yi Xu, Jinfeng Tong, my brother

Lei Xu and my girlfriend Jingjing Xie. You give me continuous support and

love while I am far away from you.

iii

Table of Contents

1 Introduction 1
1.1 Thesis Contribution . 3
1.2 Publications and Public Competitions 5

2 Background 6
2.1 Machine Learning and Neural Networks 6

2.1.1 Loss Function . 7
2.1.2 Logistic Regression and Softmax Regression 8
2.1.3 Gradient Descent . 9
2.1.4 Multi-Layer Perception 9
2.1.5 Convolutional Network 11
2.1.6 Activation function . 14
2.1.7 Back-propagation . 14
2.1.8 Momentum . 15
2.1.9 Learning Rate Schedule 16
2.1.10 Weight Decay . 17
2.1.11 Dropout . 17
2.1.12 Pre-training . 18

2.2 Heterogeneous Parallel Computing 18
2.3 Benchmark Datasets . 19

2.3.1 CIFAR-10 and CIFAR-100 19
2.3.2 ImageNet . 20

3 Toolkit System Design 23
3.1 Introduction . 23
3.2 cxxnet . 24

3.2.1 Module Design . 24
3.2.2 Multi-GPU and distributed support 26

3.3 MXNet . 27
3.3.1 System Design . 27
3.3.2 Engine . 28
3.3.3 Key-value Store . 31

3.4 Evaluation . 31
3.5 Conclusion . 32

4 Structure Design 33
4.1 Introduction . 33
4.2 Empirical Structure . 34

4.2.1 LeNet5 . 34
4.2.2 AlexNet . 35
4.2.3 VGGNet . 37

4.3 Maximum Depth Structure . 39
4.4 Network in Network and Inception 41

iv

4.5 Constrained Time Structure 43
4.6 Tiny ImageNet Network . 44
4.7 Conclusion . 49

5 Activation Functions 50
5.1 Introduction . 50
5.2 Saturated Activations . 51
5.3 A Generalized Family of Rectified Activation Functions 52

5.3.1 ReLU . 53
5.3.2 Leaky ReLU . 53
5.3.3 Parametric ReLU . 53
5.3.4 Randomized Leaky ReLU 54

5.4 Batch Normalization . 55
5.5 Explaining the Difficulty of Training with Sigmoids 56

5.5.1 Random Initialization Methods 56
5.5.2 The Reason for Sigmoid’s Failure to Converge 58

5.6 Experiment on CIFAR-10 . 59
5.7 Experiment on CIFAR-100 . 62
5.8 Conclusion . 64

6 Application to Plankton Classification 65
6.1 National Data Science Bowl 65
6.2 Network Design . 66
6.3 Result . 67
6.4 Conclusion . 68

7 Conclusion 70
7.1 Future Work . 70

7.1.1 Structure Theory . 70
7.1.2 Activation Function Theory 71
7.1.3 Convolution Network with Memory 71

7.2 Final Thought . 72

Bibliography 73

v

List of Tables

2.1 CIFAR-10 and CIFAR-100 reference test-error 21
2.2 ILSVRC reference validation top-5 error 22

3.1 Comparison to other popular open source deep learning platforms 28

4.1 LeNet and Maxout MNIST Net 35
4.2 AlexNet structure . 36
4.3 VGG-E Network . 38
4.4 Inception Network Structure Surpass Human Vision 42
4.5 CIFAR-10 Result on each combination module 47
4.6 Tiny ImageNet structure . 48
4.7 Network comparison . 48

5.1 Tiny CIFAR-10 structure . 60
5.2 Activation function and result 60
5.3 CIFAR-100 Inception Network with Different Non-linearity . . 63

6.1 NDSB Network-1 . 67
6.2 NDSB Network-2 . 68
6.3 LogLoss of National Data Science Bowl 68

vi

List of Figures

2.1 A two hidden unit network transform 10
2.2 Stride 1 convolution example 12
2.3 Stride 3 convolution example 12
2.4 Convolution with random kernel 13
2.5 Max Pooling example . 14
2.6 Receptive field example . 14
2.7 CIFAR-10 and CIFAR-100 classes and sample image (Taken

from CIFAR-10 homepage) . 20
2.8 Eskimo husky class sample . 21
2.9 Alaskan malamute class sample 21

3.1 Overview of simplified system 25
3.2 Forward pass computation graph of a sample neural network

with 2 branches. 26
3.3 Backward pass computation graph of a sample neural network

with 2 branches. 26
3.4 Left: The engine constructs a dependency graph and then it

executes using multithreads; Right: data synchronization by a
two-level parameter server. 29

3.5 Left: peak memory usages for different memory allocation strate-
gies; Middle: performance by varying number of GPUs; Right:
validation accuracy versus time when scaling from a single GPU
to 4 machines with 8 GPUs in total, each point means one data
pass. 32

4.1 Sample LeNet structure . 34
4.2 Spatial Pyramid Pooling . 38
4.3 Naive Inception module . 42
4.4 Inception with dimension reduction 42
4.5 Experimental Inception module combination 45
4.6 TinyNet on Android Phone 49

5.1 Sigmoid Activation and Tanh Activation 51
5.2 Sigmoid gradient and Tanh gradient 52
5.3 ReLU, Leaky ReLU and RReLU 53
5.4 Sigmoid* Activation and Tanh Activation 59
5.5 Sigmoid* gradient and Tanh gradient 59
5.6 ReLU and ReLU with Batch Normalization learning curve . . 61
5.7 RReLU and RReLU with Batch Normalization learning curve 61
5.8 Tanh and Tanh with Batch Normalization learning curve . . . 61
5.9 ReLU and RReLU learning curve 62
5.10 ReLU + Batch Norm and RReLU + Batch Norm learning curve 62
5.11 ReLU and RReLU Inception Network learning curve 63
5.12 Sigmoid* and ReLU Inception Network learning curve 63

vii

5.13 Tanh and Sigmoid* Inception Network learning curve 64

6.1 NDSB image example (Taken from homepage) 66

viii

Chapter 1

Introduction

Machine learning is a subfield of artificial intelligence. A widely accepted

definition of machine learning is: “A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P

, if its performance at tasks in T , as measured by P , improves with experience

E” [49].

For the image classification task (T), the experience E will consist of the

raw pixels values of given images (in format of a matrix or multi-channel

matrix). More accurately, in this work, E will be a set of single/multi-channel

matrices in Rc×m×n where c is the channel, and m and n are the height and

width correspondingly. The measurement P will be the classification error

rate or multi-class log-loss.

For a long time, image classification has been considered to be a difficult

task for machine learning. Researchers have had to design complex features in

order to reduce the difficulty of training a classifier. Scale Invariant Feature

Transform (SIFT) [45], Speeded Up Robust Features (SURF) [3], Histogram of

Oriented Gradients (HoG) [15] and Fisher Vectors [54] have been quite popular

feature extraction algorithms in the last decades. However none of these were

able to push large scale image classification results to surpass human ability.

Another drawback is that, for different datasets, researchers have had to design

a different sets of features.

A natural question is whether can we design an end to end learning al-

gorithm which is able to learn features, rather than classify based on human

1

expert designed features.

Three decades ago, the idea of “back-propagation” [58] suggested that a

neural network could learn a hidden representation by running error propa-

gation. A large number of end to end learning systems blossomed in the few

years after the back-propagation algorithm appeared. Researchers designed

Text-To-Speech [62], self-driving car controllers [56] and other neural network

systems with little domain knowledge. Around that time, a special network

structure—the convolutional network—was proposed and achieved state-of-art

results in a handwritten number classification task [37].

In the 1990s and early 2000s, neural networks almost disappeared from

researchers’ attention. The reasons include:

1. hardware limits on computational power,

2. difficulty in training (gradient vanishing and exploding),

3. lack of theory for non-convex optimization,

4. learning from hand engineered features performed better in practice than

end to end neural network training.

By the end of the 2000s, neural networks came back again. Hardware

improvements, especially the development of heterogeneous computing, solved

the first problem. Unsupervised pre-training and new activation functions

made it easier to train a very deep networks, solving the second problem.

Although there is still no breakthrough in non-convex optimization, in most

cases, first order gradient optimization is good enough for training neural

network; the third problem remains, but recent progress has not depended on

it.

In 2012, three researchers from the University of Toronto, Alex Krizhevsky,

Ilya Sutskever and Geoffrey Hinton, achieved a dramatic breakthrough in large

scale image classification by using a deep neural network [34]. The deep neural

network they used, which is later referred to as “AlexNet”, is an end to end

learning model. Without any human designed features, their neural network

was able to learn a hierarchy of features from raw pixel values. Since then, in

2

many learning scenarios “deep learning” has become a standard approach in

both industry and computer vision research.

However, AlexNet is not the end of the story. Researchers have trained

deeper and deeper networks to achieve better classification results, even sur-

passing human level. There are now a few famous empirical network structures,

but there is still a lack of general guidelines for designing network structures.

1.1 Thesis Contribution

There are three core contributions in this thesis:

1. I am the main contributor of a popular deep convolutional network

toolkit, called cxxnet (https://github.com/dmlc/cxxnet). The cxxnet

toolkit has been starred nearly 1000 times on Github. The cxxnet toolkit

is designed for large scale image classification tasks. Compared to other

popular toolkits like Caffe [31], cxxnet uses few library dependencies.

Also it is the first distributed deep convolutional toolkit. This toolkit

greatly reduces the barrier of using deep convolutional networks for im-

age classification.

2. I then co-developed an even faster and friendlier general neural net-

work toolkit after cxxnet, called “MXNet”(https://github.com/dmlc/

mxnet). MXNet has been starred more than 2500 times. MXNet pro-

vides a consistent user experience for developing deep learning algorithms

of different flavors. A user can construct a neural network from a sym-

bolic interface, or build it from basic tensor operations, or use a mixed

approach. More details will be provided in Chapter 3.

3. I performed a full investigation of deep convolutional network structure

design. I have surveyed famous network structures and some unpublished

network design theories, then designed a new structure called TinyNet.

The TinyNet model greatly reduces computational complexity while still

achieving state-of-art performance. I have successfully deployed this net-

work on an Android smartphone.

3

https://github.com/dmlc/cxxnet
https://github.com/dmlc/mxnet
https://github.com/dmlc/mxnet

4. I propose a new randomized activation function that empirically per-

forms well on many datasets. In all my experiments, the new random-

ized activation function works better than the widely used rectified linear

unit.

5. I figured out the reason why sigmoid networks fail in training deep neural

networks, and solved the sigmoid network training problem without pre-

training.

The main hypotheses that I investigated in this thesis are:

1. Can a practical deep learning toolkit be developed that supports efficient

distributed training, simple tensor and symbolic interface, and efficient

execution on mobile devices? Can an alternative activation function be

devised that surpasses the state of the art rectified linear unit (ReLU)

in both convergence speed and classification accuracy?

The main claims this thesis supports are:

1. TinyNet is the first network architecture to achieve state-of-art image

classification result with a model size under 10MB, making it suitable

for deployment on a mobile device.

2. The difficulty of training a deep sigmoid network is due primarily to

improper initialization and poor learning rate choices, rather than the

saturation properties of the sigmoid function.

The outline of this thesis is:

• Chapter 2 introduces some background on machine learning, neural net-

works, heterogeneous computing and the design of cxxnet.

• Chapter 3 compares the designs of cxxnet and MXNet, then compares

the performance of MXNet and cxxnet, showing that MXNet achieves

significantly better results than cxxnet.

4

• Chapter 4 reviews the topic of structure design, describing what I have

learned about these structures. By using the lessons learned, I designed

a network called TinyNet, which is tiny enough to run on a mobile device

with state-of-art result.

• Chapter 5 empirically evaluates the most popular activations on TinyNet.

I have found that the most widely used activation, the Rectified Linear

unit, is not the best choice. I propose a new kind of activation function

that exploits randomness to reduce over-fitting.

• Chapter 6 applies deep convolutional neural networks to the problem

of large scale image classification. I achieve state-of-art results on the

plankton classification problem.

1.2 Publications and Public Competitions

This thesis is based on the following peer-reviewed papers:

• Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Zheng Zhang. MXNet: A Distributed Deep

Learning Framework for Efficiency and Flexibility, Learning System Work-

shop in Advances in Neural Information Processing Systems (NIPS),

2015. (Chapter 3)

• Bing Xu, Naiyan Wang, Tianqi Chen and Mu Li. Empirical Evalua-

tion of Rectified Activations in Convolutional Network, Deep Learning

Workshop, International Conference of Machine Learning (ICML), 2015.

(Chapter 5)

The software and network structure design method were used in public

competitions:

• National Data Science Bowl, 2015. 2nd place (out of 1049).

https://www.kaggle.com/c/datasciencebowl

Total Prize: $175,000

5

Chapter 2

Background

2.1 Machine Learning and Neural Networks

Machine learning is a subfield of artificial intelligence. Machine learning aims

to design algorithms that are able to learn from data automatically, and reduce

the workload of human beings.

There are three kinds of machine learning: supervised learning, unsuper-

vised learning and reinforcement learning. In this thesis, we focus on super-

vised learning.

Various approaches to supervised learning problems can be treated as se-

lecting an appropriate loss function and regularizer, then selecting a suitable

optimization method to minimize their combination.

Successful application of machine learning involves many factors, from the-

oretical correctness to engineering. Engineering includes two perspectives:

feature engineering and software engineering. Feature engineering requires do-

main experts to design special features based on given data to make machine

learning algorithms work better, while software engineering makes training

possible on large scale data.

Although machine learning combined with human feature engineering has

been a successful approach in the past, an important goal is to learn features

from data directly rather than from human designers every time. We refer to

learning features from raw data as representation learning. Both supervised

learning and unsupervised learning can involve representation learning.

Although there are many learning algorithms that are able to learn repre-

6

sentations, currently neural networks are the most successful and widely used

approach.

2.1.1 Loss Function

In classification, cross-entropy and negative log likelihood (NLL) are often used

as the loss. Also, we can use Kullback-Leibler divergence (KL-Divergence) as

the loss function. Formally, cross-entropy is defined as:

ε(yi, ŷi) =

{
− log(ŷi) if yi = 1
− log(1− ŷi) if yi = 0

(2.1)

We can treat the NLL loss as an extension of the cross-entropy loss from

binary to multi-class classification. If we assume y is a one-hot vector that

indicates which class an example belongs to, where i is label, yi = 1 and

otherwise is 0, The NLL loss is

ε(y, ŷ) = −
N∑
i

yilog(ŷi) (2.2)

where N is the total number of classes.

The KL-divergence DKL(P ||Q) is a measure of the information lost when Q

is used to approximate P . Formally, it is described as:

ε(y, ŷ) = DKL(P ||Q)

=
∑
i

log

(
Q(y|x)

P (y|x)

)
Q(y|x)

=
∑
i

log

(
yi
ŷi

)
yi (2.3)

The gradient of the KL-divergence loss is:

∂εKL(yi, ŷi)

∂ŷi
=

∂

∂ŷi
yi(log(yi)− log(ŷi))

=
∂

∂ŷi
(−yi log(ŷi))

=
∂εNLL(yi, ŷi)

∂ŷi
(2.4)

From Equation 2.4 we know that minimizing negative log likelihood loss is

exactly the same as minimizing KL-divergence.

7

2.1.2 Logistic Regression and Softmax Regression

Logistic regression has been proposed as a method for estimating the proba-

bility of an event as a function of several independent variables [70]. It has

been widely used in real world applications to learn binary classifiers for tasks

such as spam filtering [8], social network analysis [40] and click prediction [57].

Logistic Regression uses a logistic function to transform the output of a

linear function into the range [0, 1]. Formally we have

ŷ = σ(h(x)) (2.5)

where ŷ is the output of logistic regression, σ is the logistic function:

σ(x) =
1

1 + e−x
(2.6)

and h(x) is linear transform function:

h(x) = W Tx+ b, where W ∈ RN , b ∈ R (2.7)

Softmax regression is an extension of logistic regression for multi-class clas-

sification problems. The softmax function is defined as:

ŷi = softmax(x) =
eW

T
i x+bi∑

j e
WT

j x+bj
(2.8)

where ŷi is the ith outputs probability prediction.

For numerical stability, usually we use

ŷi = softmax(x) =
eW

T
i x+bi−m∑

j e
WT

j x+bj−m
(2.9)

where m = maxj(W
T
j x + bj). The output ŷi is a number in the range [0, 1]

which indicates the probability that the input example belongs to class i.

After we select a classification model, we can select a suitable loss. For

logistic regression we can use the cross-entropy loss. For softmax regression,

we can use the NLL loss. The final step is choosing an optimization method

to minimize the loss.

8

2.1.3 Gradient Descent

Gradient descent is a first-order optimization algorithm used to find a local

minimum of an objective function. The gradient descent algorithm is given in

Algorithm 1.

input : loss function ε, learning rate η, dataset with N examples X, y,
model F (θ, x)

output: An optimal θ which minimize ε
while not converged do

ŷ ← F (θ, x);

θ ← θ − η · 1
N

∑N
i=1

∂ε(y,ŷ)
∂θ

;

end
Algorithm 1: Gradient Descent

If training time is a bottleneck, we will use the stochastic gradient descent

method [6] given in Algorithm 2.

input : loss function ε, learning rate η, dataset X, y, model F (θ, x)
output: An optimal θ which minimize ε
while not converge do

Shuffle X, y;
foreach xi, yi in X, y do
ŷi ← F (θ, xi);

θ ← θ − η · ∂ε(yi,ŷi)
∂θ

;
;

end
Algorithm 2: Stochastic Gradient Descent

There is also a popular form of gradient descent called “mini-batch” gradi-

ent descent that divides the training data into many small batches of size 64,

128 or more, then runs stochastic gradient descent over each mini-batch (com-

puting the sum of gradients within each mini-batch) to optimize the model.

Choosing the correct mini-batch size is also a factor in successfully opti-

mizing by using gradient descent.

2.1.4 Multi-Layer Perception

Logistic regression and softmax are linear classification algorithms that will

fail when the data is not linearly separable. To solve such problems, we can

9

use manually crafted feature, kernels, boosting or multi-layer perceptions.

In general, a multilayer perception model stacks multiple non-linear trans-

formations. Each layer is in the form of Equation 2.10

hn = σ(W T
n hn−1 + bn) (2.10)

where hn is the output of the nth layer, σ(x) is a nonlinear activation function,

and Wn, bn are the parameters for this layer. For h0, hn−1 is the input data X.

On top of a multi-layer perceptron sits a logistic transform layer or soft-

max transform layer to transform output into the range [0, 1]. The gradient

of the loss function can then be propagated down the model to update the

parameters.

If we set all of the transformations σ to the sigmoid function (Equation 2.6),

we can treat the multi-layer perceptron as multiple layers of logistic regression

models.

By simply using a two layer network, we can visualize how the network

transforms the input [4] [12].

input hidden output

dim:2 dim:2 dim:1
activation: sigmoid activation: sigmoid

Figure 2.1: A two hidden unit network transform

From Figure 2.1 we find that non-linearly separable data is transformed

10

into linearly separable data in the hidden layer without any human designed

features.

The data representation in hidden layer is also called a learned “represen-

tation”. Successful examples of learning by using a learned representation in

hidden layers includes image tracking [72], image captioning [69] and word

embedding [48].

2.1.5 Convolutional Network

While a fully connected multilayer perceptron is a universal function approx-

imator that can approximate any continuous function on compact subsets of

Rn [29], there are three problems with using a shallow architecture:

First, for real world high resolution images, using a fully connected layer

will make the number of parameters in the model explode. For example, for

a color image with 224x224 pixels and 3 color channels, if we want to map it

to 256 dimension by using a single layer fully connected network, the weight

matrix will have 38 million parameters. It will take too much memory and

computation power to compute such a large matrix multiplication.

Second, a fully connected network is prone to over-fitting [65]. Although

it is able to approximate any function, it is also able to learn a function that

exactly fits any noise in the training data, which will lead to poorly fitting the

test data.

Third, a fully connected network is only a general function approximator

that does not exploit any domain knowledge. It would be more efficient if we

could design a network that incorporated some domain knowledge.

A convolutional network is able to address all three of these problems.

Yann LeCun and other researchers originally proposed convolutional networks

as part of a famous network structure, LeNet-5, that was used to success-

fully solve the handwritten digital classification problem [38]. Formally, for a

two dimensional image I and a two dimensional convolution kernel Km,n, the

11

output S is:

s[i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[m,n]K[i−m, j − n]

=
∑
m

∑
n

I[i−m, j − n]K[m,n] (2.11)

Additionally, a stride parameter can be used to specify how far the kernel

is moved between successive measurements of the input image. To illustrate,

consider Figures 2.2 and 2.3, which show how a 1x3 kernel with different stride

lengths is applied to a 1x6 input.

1x3 Kernel 1 2 -1

1x6 Input
1 -1 2 -2 0 3

-5 5 -2 -5

Figure 2.2: Stride 1 convolution ex-
ample

1x3 Kernel 1 2 -1

1x6 Input
1 -1 2 -2 0 3

-5 -5

Figure 2.3: Stride 3 convolution ex-
ample

The use of convolution leverages three important ideas to aid learning:

sparse interaction, parameter sharing and equivariance of representation [4].

Sparse interaction arises from using a kernel that is smaller than the input, in

which case each output is only connected to a small region of the input instead

of the entire image. Parameter sharing arises from the use of the same kernel

everywhere. In this way, a convolutional network greatly reduces the number

of parameters, which reduces the risk of over-fitting. Equivariance refers to a

property where the magnitude of a change to the input will result in the same

magnitude of change to the output. In image processing, blurring, sharpening

and edge-detection can all be performed by using a convolution operation;1

by using a convolutional network, we are therefore able to learn an optimized

kernel for image classification. These properties of convolutions address the

three problems identified above. Figure 2.4 shows two convolutional network

1Examples of convolution operations on images can be found at: https://en.

wikipedia.org/wiki/Kernel_(image_processing)

12

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)

results with a random 3x3 kernel. From the example we can see that even a

random kernel is able to detect edges and levels in images.

Figure 2.4: Convolution with random kernel

Pooling is another important idea that can be used in convolutional net-

works. Pooling is also called “down sampling” if the stride is greater than

1. Instead of using a weighted kernel, pooling uses either a max or average

function to calculate a summary over a region. In particular, for each region

R, the output of an averaging pooling unit is the mean of element a in the

region:

sj =
1

|Rj|
∑
i∈Rj

ai (2.12)

while the output of a max pooling unit is:

sj = max
i∈Rj

ai (2.13)

Randomness can also be used in pooling, although it is not very popular

yet. Interestingly, Stochastic Pooling [73] and Fractional Max-Pooling [21]

have been shown to have some regularization effect.

Applying pooling will lose local responsiveness, as shown in Figure 2.5 (left

is the original image, and right is a max-pooled image). The receptive field of

a neuron is defined over the input image; for example, as shown in Figure 2.6.

In this example, which uses a 1x3 kernel for convolution, the receptive field

of a neuron in the first layer is 3, while the receptive field for a neuron in the

second layer is 9, which covers the entire input image in this example.

13

Figure 2.5: Max Pooling example

1x9 Image

1x3 convolution

1x3 convolution

Figure 2.6: Receptive field example

2.1.6 Activation function

Without using non-linear activation functions in each layer, both fully con-

nected and convolution neural networks merely compute linear transforma-

tions, hence no matter how many layers are stacked, such a model would still

just implement a linear function.

The sigmoid function has been used as the standard nonlinear transforma-

tions in neural networks for more than 30 years, but it turns out that training

neural networks with these activations is hard. Recent results have suggested

that piece-wise linear functions are a better choice in terms of making opti-

mization easier. I discuss this issue in more depth in a later chapter.

2.1.7 Back-propagation

Back-propagation [59] is the fundamental method used for training neural net-

work models. By using back-propagation, one can easily calculate the gradient

of the parameters from the top to the bottom layers. The ability to efficiently

14

compute the gradient allows one to use gradient descent to optimize the pa-

rameters in the whole network. For a multi-layer perception, if the network

structure is a directed acyclic graph, we can simply use the chain-rule to effi-

ciently calculate the gradient from the top to the bottom layers, as shown in

Algorithm 3.

input : A network of l layer, each layer’s activation function σl and
output hl = σl(W

T
l hl−1 + bl), output of the network ŷ = hl

Compute gradient g of output layer:
g ← ∂ε(y,ŷ)

∂ŷ
;

for i← l to 0 do
Calculate gradient for current layer;
∂ε(y,ŷ)
∂Wl

= ∂ε(y,ŷ)
∂hl

∂hl
∂Wl

= g ∂hl
∂Wl

;
∂ε(y,ŷ)
∂bl

= ∂ε(y,ŷ)
∂hl

∂hl
∂bl

= g ∂hl
∂bl

;

Do gradient descent using ∂ε(y,ŷ)
∂Wl

and ∂ε(y,ŷ)
∂bl

;

Propagate gradient to lower layer;

g ← ∂ε(y,ŷ)
∂hl

∂hl
∂hl−1

= g ∂hl
∂hl−1

;

end
Algorithm 3: Back-propagation

Algorithm 3 shows back-propagation for a single path network. For a multi-

path network, a topological sort is required to determine the back-propagation

sequence. For a layer with multiple outputs, the gradient is the sum of all

gradients propagated down from above.

2.1.8 Momentum

Momentum [55] is a method for accelerating gradient descent, particularly

stochastic gradient descent. The idea is to use a moving average of the pa-

rameter gradient instead of just using the current real gradient:

vt = βvt−1 − η5 F (θt−1) (2.14)

θt = θt−1 + vt (2.15)

where θ denotes the model parameters, v is the momentum of the gradient, β

is a momentum factor, and η is the learning rate for the tth round of training.

Usually, we use a fixed momentum factor of 0.9 during all of the training

processes.

15

Nesterov’s Accelerated Gradient [51] is also widely used. Although it was

originally derived for non-stochastic gradients, the derivation of Nesterov’s

Accelerated Gradient as momentum for stochastic gradient descent can be

derived as [67]:

vt = βvt−1 − η5 F (θt−1 + βvt−1) (2.16)

θt = θt−1 + vt (2.17)

Nesterov’s Accelerated Gradient is able to help successfully train neural

network models without the need for sophisticated second-order methods [67].

2.1.9 Learning Rate Schedule

Generally, if we use a large learning rate η (Equation 2.14, Equation 2.16,

Algorithm 1, Algorithm 2), we can make training converge faster, but too

large a choice of η will lead to divergence. Small η values are more likely to

get trapped in local minima. To ensure that training converges, we need to

reduce the learning rate while training [6].

There are three commonly used methods to schedule the decrement of the

learning rate: constant, factored, and exponential decay. The learning rate is

scheduled to change after ς steps.

The constant schedule reduces learning rate according to a manually de-

fined step function with arbitrary ς.

The exponential schedule calculates the learning rate as:

ηt = η0 · γt/ε (2.18)

where η0 is the initial learning rate, t is the current training round, and γ is a

decay factor in the range (0, 1)

The factored schedule is similar to the exponential schedule but in a step

function format:

ηt = η0 · γbt/εc (2.19)

By using the constant or factored schedules, we can easily judge the learn-

ing rate decay effect by visualizing the learning curve. Commonly, one uses

γ = 0.1 to reduce the learning rate 10 times at each stage.

16

2.1.10 Weight Decay

Weight decay is also commonly used in the neural network community to

perform L2 regularization during training. Regularization is essential for pre-

venting over-fitting and improving model generalization. Formally, the L2

regularizer for a function F (θ, x) is given by:

Ω(θ) = ||θ||2 (2.20)

ε̂(F (θ, x), y) = ε(F (θ, x), y) +
1

2
λΩ(θ) (2.21)

The resulting gradient for weight θ is:

∂ 1
2
λΩ

∂θ
= λ · θ (2.22)

Weight decay is the default regularization method used for training neural

networks. Usually we set λ to 0.0004. If there is extra normalization, such as

Dropout and Batch Normalization (which will be discussed in a later chapter),

a smaller λ will accelerate training.

2.1.11 Dropout

Dropout is a regularization method first proposed in [26]. Dropout dramat-

ically reduces the overfitting of neural networks and improves generalization

performance. Dropout has quickly become a default component of neural net-

work training methods. Formally, training with Dropout for layer l is expressed

by:

r
(l)
j = Bernoulli(p) (2.23)

ĥ(l) = r(l) ∗ h(l) (2.24)

where h(l) is the original output of layer l, and ĥ(l) is the new output of layer

l with Dropout. To obtain a deterministic result at test time, we use the

expectation as output:

E[ĥ
(l)
j] = p ∗ 0 + (1− p) ∗ h(l)

j (2.25)

= (1− p) ∗ h(l)
j (2.26)

17

The expectation is an approximate average of exponentially many dropped out

models [65]. This also explains why using Dropout will improve generalization

performance, since it can be interpreted as an average over a large ensemble.

2.1.12 Pre-training

Training a deep neural network with a pre-training technique was responsi-

ble for renewing interest in “deep learning”. Layer-wise pre-trained Restricted

Boltzmann Machines [25] and pre-trained auto-encoders [5] were used as weight

initializers for supervised deep network models. However, pre-training is now

rarely used, since a better understanding of the appropriate activation func-

tions and better random initialization [18] [24] has made direct supervised

training more effective.

2.2 Heterogeneous Parallel Computing

Training a neural network requires a massive amount of floating point oper-

ations. However, current central processing units (CPUs) are still not fast

enough for floating point computing. At Google, a distributed system with

at least 2,000 CPUs, called “DistBelief” [17], is used for training deep neural

networks. Luckily, for others, we are able to build similar distributed sys-

tems by accessing high performance graphics processor units (GPUs) as an

alternative to using a massive number of CPUs. We refer systems that use

more than one kind of processor as heterogeneous computing [63]. The idea

of heterogeneous computing comes from the beginnings of personal comput-

ing. Thirty years ago, the first heterogeneous processor, the Intel 8087, known

as the “x87 floating-point coprocessor”, provided extra float point computing

power to Intel 8086 processor to accelerate its mathematical operations. Mod-

ern GPUs are able to run many more threads than a CPU. For example, an

NVIDIA K80 GPU has 4,992 Compute Unified Device Architecture (CUDA)

cores. By running in parallel, this card is able to provide 8.76T single precision

floating-point operations per second (FLOPS) [52]. By comparison, one of the

most advanced CPUs, the Intel Xeon E5-2699v3 CPU with 18 cores, is able

18

to provide 0.8T FLOPS [47], which is 10 times slower than a single advanced

GPU. The floating point performance of a single K80 GPU is as capable as

IBM ASCI White, the fastest supercomputer in the world in 2001 [36].

To train a neural network, we need to accelerate three kinds of operations:

1. element-wise operations, eg. activation,

2. matrix multiplication, eg. W Tx, and

3. convolution and max-pooling operations.

NVIDIA provides a highly optimized library cuDNN [11] for standard ac-

tivation functions, and fully connected, convolution and pooling layers. For

special operations, we need to write our own parallel CUDA-C programs.

In a CUDA-C program, a special function, called a “Kernel”, is used to

specify a single thread function. After we set the grid and thread block to in-

dicate how to map a thread to data, we can then launch the kernel to calculate

result [32].

2.3 Benchmark Datasets

To evaluate image classification performance, I consider some standard datasets.

I choose two datasets to use as benchmarks: CIFAR-10 and ImageNet. CIFAR-

10 is used for fast evaluation classification performance on small images; Ima-

geNet is used for large scale evaluation on a real-world high-resoulution image

classification problem. I did not choose MNIST here because even a sim-

ple convolutional network is able to achieve 0.77% error on the test set; it is

meaningless to fit such a saturated dataset.

2.3.1 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-1002 dataset [33] is a tiny natural image dataset

that contains 10/100 classes. Each image in CIFAR-10 and CIFAR-100 is a

32x32 RGB image (Figure 2.7). There are 50,000 training images and 10,000

2CIFAR-10 and CIFAR-100 Homepage: http://www.cs.toronto.edu/~kriz/cifar.

html

19

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

test images. Images are taken from natural scenes, then reduced to a small

size and low resolution.

The weakness of the CIFAR-10 and CIFAR-100 dataset is obvious: the

images are quite different from real world images, both in size and resolution.

Some of the images are even unrecognisable for a human being.

Figure 2.7: CIFAR-10 and CIFAR-100 classes and sample image (Taken from
CIFAR-10 homepage)

There are special normalization methods for improving classification per-

formance on CIFAR-10/100, including global contrast normalization and ZCA

whitening [33]. In my experiment settings, I focus on representation learn-

ing and perform none of these special preprocessing steps. All networks are

trained directly from raw pixel values.

The tests errors of reference models are given in Table 2.1.

2.3.2 ImageNet

ImageNet is a dataset with high resolution images of natural scenes. In to-

tal there are 14,197,122 images in 21,841 classes. The classes are organized

20

Model CIFAR10 CIFAR-100
Human [1] 6% n/a
Deeply-Supervised Nets[39] 8.23% 34.57%
Maxout Network [20] 10.35% 38.57%
Stochastic Pooling Convnet[73] 15.13% n/a
Dropout Convnet[26] 15.6% n/a
SVM with HoG, etc manual feature 58% n/a
KNN with Hog, etc manual fetaure 75% n/a

Table 2.1: CIFAR-10 and CIFAR-100 reference test-error

into a WordNet hierarchical structure, where each node of the hierarchy is

depicted by hundreds or thousands of images3. The ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [60] is an image classification contest

that led to the creation of this dataset. Here I use “ImageNet” to indicate the

ILSVRC classification and localization dataset, which is a subset of the full

ImageNet dataset. This subset contains 1.28 million image in 1,000 classes

for training, 50 thousand images for validation, and 100 thousand images for

testing. The labels for the test data are isolated on a test server, while the

validation labels are accessible to the public.

Figure 2.8: Eskimo husky class
sample

Figure 2.9: Alaskan malamute class
sample

ILSVRC is the largest openly accessible image dataset with labels. Fig-

ure 2.9 shows two images from two different classes in the ImageNet dataset. It

is considered to be the hardest image classification problem currently available.

Error is measured by top-5 error, which means each model should generate 5

3ImageNet: http://www.image-net.org/

21

http://www.image-net.org/

top predictions for a given image; if one of these 5 predictions is correct, there

will be no penalty.

Model Top-5 Error (Ensemble)
Inception-BN [30] 4.90%
Deeper VGG/PReLU [24] 4.94%
Human [60] 5.1%
GoogLeNet (2014 Winner) [68] 6.7%
VGG (2014 2nd)[64] 7.3%
Clarifai (2013 Winner, no open method) 11.7%
AlexNet (2012 Winner)[34] 16.4%
Fisher Vector + SVM (2011 Winner) [53] 25.7%

Table 2.2: ILSVRC reference validation top-5 error

Table 2.2 shows the top-5 errors for reference models. Note that these

results are all generated by multi-model averaging and single image multi-test.

Single model and single image test results will produce worse scores.

22

Chapter 3

Toolkit System Design

3.1 Introduction

Practical toolkits are important in current deep learning research. High per-

formance and flexible toolkits have significantly boosted the research and ap-

plication progress of deep learning.

Most open source deep learning systems are wrappers on top of a low-level

heterogeneous numerical library, for example Lasagne1 and Keras2. In this

chapter, I will focus on two systems I co-developed that fully support both

low-level and high-level functions.

The main challenge of toolkit system design includes:

1. Cross domain knowledge.

Designing a good deep learning toolkit requires knowledge in deep learn-

ing, numerical computing, heterogeneous parallel computing, system I/O

and distributed computing.

2. Balance in flexibility and performance.

For a special use toolkit, for example, supporting only linear models, it

is easy to optimize performance. However, deep learning models require

flexible architectures. Flexibility raises the requirements for memory

optimization and computation optimization.

1Lesagne: https://github.com/Lasagne/Lasagne
2Keras: https://github.com/fchollet/keras

23

https://github.com/Lasagne/Lasagne
https://github.com/fchollet/keras

As part of my thesis research I co-developed two deep learning system:

cxxnet3 and MXNet[10].

The cxxnet project was started in 2013 by Tianqi Chen and me, and ended

in mid 2015. For the cxxnet project, I designed and implemented the I/O

module, updater module and layer module, and some of the backend hetero-

geneous code. The cxxnet toolkit has been starred by more than 1,000 times

on Github, notable users include UCSD and Tencent.

The MXNet project started in mid 2015. For the MXNet project, I mainly

designed and implemented the operator module and the NDArray module. I

also contributed to MXNet on Android and MXNet.js (the JavaScript version

of MXNet). The MXNet has been starred more than 2,500 times on Github.

3.2 cxxnet

3.2.1 Module Design

The goal behind designing a deep convolutional neural network toolkit was to

make a reusable toolkit with minimal dependencies. Also I wanted to modu-

larize the toolkit to make it easy to use as a fundamental infrastructure in real

systems. None of the currently available open source toolkits satisfied these

demands, so, with my collaborators, I decided to develop such a toolkit.

At a high level, cxxnet is composed of four separable modules (in UML

format, Figure 3.1):

• Data Iterator Module

• Layer/Connection Module

• Updater Module

• Network Module

The data iterator module is used to load serialized data. Instead of using a

database, I find that a binary fixed size sequence storage is simple but efficient

enough. Also contiguous loading from a disk with threaded cache can maximize

3cxxnet: https://github.com/dmlc/cxxnet

24

https://github.com/dmlc/cxxnet

Network Module

Forward()

Backward()

ExtractFeature()

Prediction()

Evaulation()

Data Iterator

IsHead()

Next()

Updater

BeforeUpdate()

Update()

Connection

Layer *layer

vector<Tensor> inputs

vector<Tensor> outputs

Forward()

Backward()

Layer

Forward()

Backward()

InferShape()

vector<Connection> conn

Figure 3.1: Overview of simplified system

the I/O performance. By using this design, I can achieve similar performance

to using SSD directly, while also avoiding the use of a database.

Layers and connections form the basic elements in a neural network. The

layer/connection module is highly reusable with a uniform logic. The layer

component provides the standard forward and backward operations. I have

made the layer stateful in cxxnet, which means that all weights, gradients and

internal random masks are stored inside of a layer.

The updater module provides an abstraction of first order gradient opti-

mization methods. For a given weight and gradient, it runs gradient descent

or Nesterov’s accelerated gradient algorithm. The updater is also associated

with a parameter server to support multi-GPU or distributed training.

The network module provides a way to schedule the running of the layers.

This can be organized by a simple queue or a directed acyclic graph. An

example is shown in Figure 3.3. The schedule is determined by a topological

sort of the dependency graph. For forward propagation through the network,

the schedule ensures sequential running layer by layer. For back propagation,

it follows the reverse dependence order. The network module is also treated as

glue for different modules: the data iterator feeds a data batch to the network,

the network module conducts forward and backward propagation of each layer,

then the updater is scheduled to update weights in each layer. Some additional

wrapper functions like prediction and feature extraction are also provided in

network module.

Each module instance is implemented by inheriting from an interface class

so that a module class can be replaced without any other change to the code.

25

convolution

activation

flatten to 2D

softmax

convolution

activation

concatenate

flatten to 2D

data

Figure 3.2: Forward pass computa-
tion graph of a sample neural net-
work with 2 branches.

convolution

activation

flatten to 2D

softmax

convolution

activation

concatenate

flatten to 2D

data

Figure 3.3: Backward pass compu-
tation graph of a sample neural net-
work with 2 branches.

3.2.2 Multi-GPU and distributed support

As the complexity of neural networks is growing, and we have more data

available for training, it has become infeasible to train on a single GPU; we

need multiple GPUs to make training faster.

There are two ways to utilize a multi-GPU architecture: model parallelism

and data parallelism. The main idea behind model parallelism is to parti-

tion the model, then use different workers to train different parts of model;

for example, by running different layers on different cards. Data parallelism

is achieved by partitioning the data; for example, by dividing a large batch

into several smaller batches, then using different workers to train on different

batches.

The benefit of model parallelism is that the model will converge in the

same manner as training on one card. However, transmitting data between

26

different cards will require high traffic bandwidth. Moreover, a busy card can

hold up other cards if its results are not ready. Therefore, it is hard to achieve

a reasonable speed-up ratio by just using model parallelism.

Unlike model parallelism, data parallelism involves using each card to run a

full model but with smaller batch sizes. A full batch is partitioned into smaller

batches, then run on different cards. In this way each batch can be processed

at full speed; the drawback is that the weights have to be synchronized after

each local gradient update. During synchronization, all cards remain idle while

we transmit the model weights between cards. If the model is large, this will

also require very high traffic bandwidth. There is also a problem with ensuring

convergence to a high quality solution if we do too many data partitions.

In cxxnet, I decided to use data parallelism because recent network struc-

tures have been significantly reduced and involve reasonable numbers of pa-

rameters. This allows nearly a linear speedup to be achieved by using data

parallelism.

3.3 MXNet

After developing cxxnet, I then developed a second generation toolkit, MXNet,

with my collaborators. MXNet combines the advantages of other recent toolk-

its. A comparison is shown in Table 3.1.

MXNet was initiated and designed in collaboration with authors from the

cxxnet project, Minerva [71] and purine2 [44]. The MXNet project reflects

what we have learned from these past projects. It combines the best aspects

of existing toolkits, while being efficient, flexible and memory efficient.

3.3.1 System Design

Tensor Interface

MXNet provides a foundation for tensor computation that works closely with

the binding languages’s own tensor libraries. For example, MXNet’s python

binding is compatible with numpy.ndarray. Furthermore, MXNet simplifies

GPU programming; an example is shown in the left of Figure ??. In ad-

27

MXNet[10] Caffe [31]
Core Language C++ C++
Binding Language Python/R/Julia/JavaScript Python/Matlab
Device CPU/GPU/ARM CPU/GPU
Multi-machines

√
×

Tensor Interface
√

×
Symbolic Differentiation

√
×

Torch7 [13] Theano [2]
Core Language Lua Python
Binding Language - -
Device CPU/GPU/FPGA CPU/GPU
Multi-machines × ×
Tensor Interface

√ √

Symbolic Differentiation ×
√

Table 3.1: Comparison to other popular open source deep learning platforms

dition, MXNet can automatically parallelize code execution, as discussed in

Section 3.3.2 below.

Symbolic Interface

The symbolic interface further simplifies the development of deep learning

algorithms. One can construct a neural network in a few lines of codes by using

the provided layers and operators. MXNet also supports tensor computations

on the symbols; for example, assume out1 is the output of a network, and

out2 is the output from another network of the same size. Then one can

define a combined network that sums the results by using combined = out1

+ out2. MXNet provides automatic differentiation, so it is able to train any

constructed symbols. For example, one can create a feed forward network

from the symbolic description then fit it to data by using training on a GPU:

mx.fit(mx.FeedForward(combined, mx.gpu()), train data, ...)

3.3.2 Engine

All workloads, including both computation and data transfer are pushed into

the backend dependency engine for execution. The function Push accepts three

parameters: the operation, the list of variables this operation will read and

the list of variables it will write. For example, to execute A = B×C, one calls

28

codes engine

a = 2

b = a + 1 c = a + 1

d = b × c

thread 1 thread 2

a = 2
b = a + 1
c = a + 1
d = b × c

worker0

dev0 dev1

cpu

worker1

dev0 dev1

cpu

server0 server1

level 1:

level 2:

Figure3.4:Left:Theengineconstructsadependencygraphandthenitexe-
cutesusingmultithreads;Right:datasynchronizationbyatwo-levelparame-
terserver.

Push({A=B*C},{B,C},{A}).

UnlikethepredecessortoolkitMinerva[71], MXNet’senginecanspecify

anadditionalwritedependencytoeasememorymanagement,andallowspe-

cialoperationssuchasgeneratingrandomnumbers.Consideranexampleof

initializingtwotensorsA=uniform(−1,1)andB=uniform(−1,1).Thede-

pendencebetweenthesetwooperationsisthattheybothmutatetherandom

seed. Nowonecanguaranteethecorrectexecutionorderbyplacingawrite

dependencetotherandomseedvariable.

ThefunctionPushreturnsimmediatelyaftertheoperationispushedinto

theexecutionplan.Itistheengine’sjobtoguaranteetheactualcomputations

arefinishedwhentheresultsareneeded.Suchanapproachtolazyevaluation

istransparenttotheusers,theydonotneedtoawareofit.Inaddition,

iteliminatesthedependencetothebindinglanguage’sperformance,which

merelyissuescommandstotheengine.Thisapproachfurtherofferstheengine

moreoptimizationopportunities.

CombinedOperators

Multipleoperatorscanbegroupedintoasingleoperatortoreducebothsystem

overheadandtemporalmemoryallocation. Forexample,eventhoughthe

expression2×A+1containstwooperations,itcanbeexecutedbyasingle

BLAS(BasicLinearAlgebraSubprograms)functioncallwithoutallocating

temporarymemoryfor2×A.Furthermore,MXNethashandcraftedtemplates

formorecomplexoperators,suchasalayerinaneuralnetwork,tofurther

29

improve efficiency.

Parallel Execution

A well-optimized operator is often able to use the full power of a device, e.g. the

matrix multiplication in BLAS often achieves 100% CPU utilization. But there

usually exists multiple resources such as CPUs, GPUs, and memory/PCIe

buses. The engine therefore uses multiple computation threads to execute the

pushed operations to ensure better resource utilization. To achieve this, the

engine first builds a directed acyclic graph (DAG) using the read and write

dependencies. Next, it performs a topological sort then organizes the results

by randomly and repeatedly swapping two sequentially unconnected nodes, to

avoid creating bad deterministic plans. Then the engine traverses the graph

and assigns unconnected nodes to different threads for parallel execution. An

example is shown in the left of Figure 3.4.

Squeezing Memory Consumption

Device memory is a major limited resource, particularly for consumer level

GPU cards. For example, there is a 3x improvement in GFLOPs (giga floating-

point operations per second) from NVIDIA GTX 580 GPU to NVIDIA GTX

980 GPU, while the memory capacity has only been increased from 3GB to

4GB. A naive allocation strategy that allocates memory for every node is

not desirable. On the other hand, saving the results to main memory every

time can severely harm performance due to limited (PCIe) bus bandwidth.

With the dependency graph, we can compute the lifetime of each operation,

namely the time period between the creation and the last time being used, and

reuse memory for non-intersected nodes. However, an ideal allocation strategy

requires O(n2) time complexity, where n is the number of nodes. MXNet’s

engine therefore uses two heuristics with linear time complexity to allocate

memory. The first heuristic is called inplace. It simulates the procedure of

traversing the DAG, and keeps the number of dependent nodes that are not

used so far. Once a node’s number goes 0, the engine recycles its memory.

The main disadvantage of this procedure is that it only simulates a single

30

thread and may add extra dependencies (overlapped memory) between nodes

that can be run in parallel. The second heuristic, called sharing, solves this

problem by allowing two nodes to share memory only if they cannot be run in

parallel. In particular, each time it finds the longest path (all nodes there are

depended) in the graph that has not been previously assigned, and performs

the allocation.

3.3.3 Key-value Store

MXNet uses a key-value (KV) store for synchronizing data across devices.

This is used to push a KV pair (e.g. gradient g) into the store, to pull a value

from the store (e.g. weight w), and to set a customized updater to the store

for merging the pushed value (e.g. a weight updater w = w − ηg).

The KV store is implemented by a two-level parameter server [42] [41],

which is shown on the right of Figure 3.4. A level 1 server manages the data

synchronization between the devices on a single machine, while a level 2 server

manages multi-machine synchronization.

3.4 Evaluation

I evaluated MXNet on the ILSVRC12 dataset [60], which consists of approxi-

mately 1 million images and 1,000 classes. I trained an Inception network [30]

with batch normalization [30] (defined in Chapters 4 and 5) using stochastic

gradient descent for optimization. I fixed the learning rate, momentum, and

weight decay to 0.05, 0.9, 10−5, respectively, and selected the largest batch

size that fits into GPU memory. All machines I used were equipped with two

or four NVIDIA GTX 980 cards. MXNet is compiled with CUDA 7.5 and

CUDNN v3, and used the python binding.

First show the peak memory usage in the left of Figure 3.5. As one can see,

the naive allocation is indeed costly. There is a 25% reduction for the inplace

strategy, while the sharing strategy is even better, with a 47% reduction. This

reduction is due to the fact that the Inception network has several long parallel

paths. Combining both heuristics reduces half of the GPU memory usage.

31

naive inplace sharing both
0

1

2

3

4

5

m
e
m

o
ry

 u
s
a
g
e
 (

G
B

)

1 2 4
0

100

200

300

400

#
 o

f
im

a
g

e
s
 /
 s

e
c

of GPUs

CXXNet

MXNet

10
0

10
2

0.2

0.3

0.4

0.5

0.6

0.7

time (hour)

a
c
c
u

ra
c
y

single GPU

4 x dual GPUs

Figure 3.5: Left: peak memory usages for different memory allocation strate-
gies; Middle: performance by varying number of GPUs; Right: validation
accuracy versus time when scaling from a single GPU to 4 machines with 8
GPUs in total, each point means one data pass.

Next compared MXNet against its predecessor CXXNet, which only uses

a naive engine. The results are shown in middle of Figure 3.5. Both MXNet

and CXXNet scale well from 1 GPU to 4 GPUs with 3.9x and 3.7x speedups,

respectively. MXNet is always 40% faster than CXXNet however, because

MXNet’s engine can effectively run multiple operations in parallel, which is an

essential advantage for the deep Inception network evaluated.

Finally in right of Figure 3.5 the results for scaling from a single GPU to

four machines with 8 GPUs in total. A nearly 7x speedup is achieved thanks

to asynchronous communication. However, I also observed a slow down in the

rate of convergence, which may due to a larger batch size.

3.5 Conclusion

I have co-developed two deep learning toolkits, CXXNet and MXNet, and

evaluated them. The second, more refined toolkit, MXNet, is easy to use, pro-

vides both tensor computation and symbolic interfaces, and supports multiple

languages. It is efficient in both computation and memory usage, and scales to

multiple machines. I have shown promising results on a state-of-the-art large

scale deep learning application using a complex deep model. After completing

MXNet, the predecessor toolkit CXXNet has been deprecated.

32

Chapter 4

Structure Design

4.1 Introduction

Designing a good network structure has long been considered a difficult chal-

lenge. Although the target task needs to be considered when designing a

structure, understanding some general principles is definitely helpful to avoid

common errors.

For a convolutional network architecture, there are four important factors

to consider: depth (the number of convolutional layers), width (how many

filters are in each convolutional layer), filter size, and stride. In the GoogLeNet

architecture, there is an additional factor: path. The effect of the path is not

well understood, but researchers at Google have invented a complex algorithm

to generate such multi-path network topologies to achieve strong performance

[68].

If we only consider the traditional “single-path” networks, a simple and

naive approach to improving classification accuracy is to make the network

deeper and wider. However this is not the best strategy in every scenario.

First, a “deeper and wider” network costs much more computation at training

and test time. In industrial and commercial scenarios, the training and test

times also have to constrained. Also if we want to push the limits of accuracy,

current results suggest that it is not necessarily true that deeper and wider

networks always generalize better.

In this chapter I will first review the important current network structures

that have achieved state of the art results in object recognition, including

33

LeNet5, AlexNet and VGGNet. Then I will review a preliminary theoretical

study of the “depth” of such networks. Next I will introduce an approach

for constraining time on a single path network, introducing the “Network in

Network” and GoogLeNet’s Inception module. This study will lead to the

design of a network that requires only 40% of the floating point operations

of AlexNet, yet achieves slightly better performance. This new model only

requires 7.9MB to store, which is sufficiently small to use on a mobile phone.

4.2 Empirical Structure

4.2.1 LeNet5

LeNet-5 is the first successful attempt to train a “deep” network [38]. Since

then, state-of-art network structures have been heavily influenced by LeNet-5.

For example, the state-of-art network for MNIST/CIFAR-10/CIFAR-100 in

2013 [20] is similar to the LeNet-5 structure but is deeper and uses a better

activation function.

Input Image
Feature Maps

Convolution Layer Pool Layer

Many Small Feature Map

Repeat conv/pool layers fully connected layers

Figure 4.1: Sample LeNet structure

Figure 4.1 shows a sample LeNet structure. In LeNet like structures, each

convolutional layer is followed by a pooling layer, then an activation layer. Re-

peating this structure many times generates many small feature maps. Finally

the feature maps are flattened and fed into a traditional multi-layer perception

structure. Table 4.1 shows the LeNet-5 structure network structure.

Using the CXXNet toolkit, training LeNet on MNIST takes 28 seconds to

achieve 0.77% error on the test-set.

In modern convolutional networks, rather than mapping to a pooling layer

directly, the convolutional layers are first stacked. The reasons for the im-

34

layer filter size kernel size stride
convolution 20 5x5 1
max pooling - 2x2 2
tanh activation - - -
convolution 50 5x5 1
max pooling - 2x2 2
tanh activation - - -
fully connected layer 500 - -
linear classifier

Table 4.1: LeNet and Maxout MNIST Net

proved performance of recent networks over LeNet is described in the following

sections.

4.2.2 AlexNet

AlexNet is short for Alex Krizhevsky’s winning network in the ILSVRC-2012

competition [34]. AlexNet has 60 million parameters, consisting of 5 convolu-

tional layers, 3 max pooling layers and 3 fully connected layers. It achieved

a 45.7% improvement in top-1 error over the winning ILSVRC-2011 method

(using Fisher Vector and SVM) [61].

AlexNet is famous for not only pushing the results on image classification

to a new level, but also for the feature representation it produces in the last

fully connection layer, which has also boosted performance on other related

vision tasks. Transfer learning based retrieval, detection, tracking and image

captioning have all been improved simply by taking the AlexNet representation

as input.

The AlexNet structure is shown in Table 4.2. Each convolutional layer and

fully connected layer is followed by an activation layer. In AlexNet, the ac-

tivation function used is the rectified linear (ReLU) function instead of tanh.

AlexNet also introduced a new channel-wise normalization layer: local re-

sponse normalization (LRN). The idea of LRN is to normalize adjacent filters

in same layer. Formally the normalization bix,y to activation aix,y in layer i at

position (x, y) is defined as

35

bix,y = aix,y/

k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(ajx,y)
2

β

(4.1)

Due to the limitations of GPUs in 2012, AlexNet introduced a concept of

“group” to divide each layer between two cards. As hardware developed in

the meantime, we can now fit such networks in a single card so few people use

the “group” structure now.

layer filter size kernel size stride
convolution 96 11x11 4
max pooling - 3x3 2
relu activation - - -
lrn - - -
convolution 256 5x5 1
max pooling - 3x3 2
relu activation - - -
lrn - - -
convolution 384 3x3 1
relu activation - - -
convolution 384 3x3 1
relu activation - - -
convolution 256 3x3 1
relu activation - - -
fully connected 4096 1x1 1
relu activation - - -
dropout
fully connected 4096 1x1 1
relu activation - - -
dropout - - -
linear classifier - - -

Table 4.2: AlexNet structure

The contribution of AlexNet includes:

• Using the non-saturating ReLU nonlinearity.

• Using Dropout to prevent over-fitting.

• Stacking convolution layers instead of following max-pooling.

36

These contributions have influenced all following structure designs. ReLU,

Dropout and stacked convolutional layers are basic elements of current con-

volutional networks in the “deep learning” era. However, local response nor-

malization is not widely used, since it has not proved to be advantageous in

further testing [9].

4.2.3 VGGNet

VGGNet is a general name for the network structures produced by the Visual

Geometry Group at the University of Oxford. The most famous VGGNet

structure is the winner of the ILSVRC-2014 competition, which used 19 layers

in a “deep” convolution network. The key finding behind the VGGNet studies

is that a 3x3 filter size is the most effective for convolutional layers.

layer filter size kernel size stride
convolution 64 3x3 1
relu activation - - -
convolution 64 3x3 1
relu activation - - -
max pooling - 2x2 2
convolution 128 3x3 1
relu activation - - -
convolution 128 3x3 1
relu activation - - -
max pooling - 2x2 2
convolution 256 3x3 1
relu activation - - -
convolution 256 3x3 1
relu activation - - -
convolution 256 3x3 1
relu activation - - -
convolution 256 3x3 1
relu activation - - -
max pooling - 2x2 2
convolution 512 3x3 1
relu activation - - -
convolution 512 3x3 1
relu activation - - -
convolution 512 3x3 1
relu activation - - -

37

convolution 512 3x3 1
relu activation - - -
max pooling - 2x2 2
convolution 512 3x3 1
relu activation - - -
convolution 512 3x3 1
relu activation - - -
convolution 512 3x3 1
relu activation - - -
convolution 512 3x3 1
relu activation - - -
max pooling - 2x2 2
fully connected 4096 1x1 1
relu activation - - -
dropout
fully connected 4096 1x1 1
relu activation - - -
dropout - - -
linear classifier - - -

Table 4.3: VGG-E Network

Table 4.3 shows the VGG-E Network structure, which is the deepest VGG

Network. Without good initialization methods, such deep networks have to

be trained by using pre-training.

However, with careful initialization tricks, one does not need to perform

these pre-training steps. We will discuss initialization in later chapter.

max pooling: 7x7 max pooling: 3x3 max pooling: 2x2 max pooling: 1x1

Previous Layer

concat

Figure 4.2: Spatial Pyramid Pooling

Based on the VGGNet network structure and better initialization methods,

38

the researchers as MSR Asia were able to train even deeper and wider networks

that included spatial pyramid pooling [23]. With this architecture, they were

the first group to surpass human-level performance on ImageNet classification.

The detailed changes they developed include:

• For input size 224x224, use a convolutional layer with 96 filters, filter

size=7x7, and stride=2 instead of the original two 3x3 convolution layers

and one max pooling layer.

• For input size 112x112, only keep one max pooling layer.

• For input size 56x56, add two 3x3 convolution layers, and add 128 more

filters for each layer.

• For input size 28x28, add two 3x3 convolution layers, and add 256 more

filters for each layer.

• For input size 14x14, add two 3x3 convolution layers, and add 384 more

filters for each layer.

• Replace the last max pooling layer to spatial pyramid pooling structure

(Figure 4.2).

Currently, except GoogLeNet, all announced networks that surpass human-

level performan on the ImageNet task are variants of VGGNet, but with more

filters (wider), more convolutional layers (deeper), and a few additional aug-

mentations.

4.3 Maximum Depth Structure

After witnessing so many successes of “deep” networks, a natural question is

whether deeper is always better? How deep a network should one use? Unfor-

tunately, there is currently no evidence to support the naive suggestion that

“deeper is better”. Some specially gated network structures, like the Highway

network [66], can make a 100 layer network trainable, but the performance

gain is not worth the computing cost.

39

One of my team-mates in the National Data Science Bowl competition

has developed an unpublished preliminary theory of how to design very deep

convolution networks [7]. He proposes two constraints for finding the maximum

depth of a network, and proves that there is an unique optimal solution under

certain conditions. In practice, network structures generated by this theory

achieve state-of-art results on CIFAR-10/CIFAR-100. In the National Data

Science Bowl competition, this network structure’s result is about 4% better

than VGGNet. The two novel constraints are quite straightforward:

1. The receptive field size should not be larger than the image size.

2. The value c-value = Real filter size
Receptive field size

should not be too small.

The first constraint is necessary to permit generalization: if a filter spans

the full image, it no longer needs to learn generalizable patterns. Empirically,

adding an extra layer that lets the receptive field size exceed the image size

increases the risk of over-fitting and hurts performance [7].

The second constraint arises from learning capacity considerations. It

based on the observation that if the spatial relationship in the input pattern

exceed the filter size, then this convolution will lose its learning capability [7].

Formally, the maximum depth problem is: Given a z by z image, the filter

size is set to k by k, and the minimum c-value is set to t. Then the full network

is divided in n stages, where for each stage a, there are ai stacked convolutional

layers followed by one max pooling layer. The objective and constraint can be

written as follows:

max
n,{ai}

n∑
i

ai (4.2)

st.
l∑

i=1

ai2
i−1 ≤ 2lk

t(k − 1)
where l = 1, 2, ..., n (4.3)∑

i

ai2
i−1 ≤ z

k − 1
(4.4)

The optimal solution given by the report [7] is then determined as follows.

Assume the image size z = 2m−1k/t, and relax {ai} from positive integers to

positive real number, the optimal solution is:

40

n = m (4.5)

a1 =
k

(k − 1)t
,a2 = · · · = an =

1

2a1

(4.6)

This is the first public algorithm that indicates a principled approach for

designing deep architectures for image processing tasks. Again, this result is

preliminary and there should remain opportunity to make further improve-

ments.

4.4 Network in Network and Inception

The Network in Network [43] is a new model design compared to the previous

models. It brings two innovations:

1. Using a multilayer perception convolution.

2. Using global average pooling.

The multi layer perception convolution uses multiple 1x1 convolutions to

increase the depth of the network and increase the learning capacity of a single

convolution layer. The consequence of more learning capacity is the potential

to over-fit, so the multi layer perception convolution layer is often regularized

by Dropout.

The use of global average pooling contributes a significant change over the

previous models: Instead of reducing the feature map to a small size then

flattening it to generate a feature vector, global average pooling runs average

pooling on a large feature map to generate a final low dimensional feature

vector. Unlike other network structures with a multi layer perception on the

feature vector, this approach only needs to use a linear classifier over a global

average pooling feature vector.

The Inception module was first proposed as part of the GoogLeNet model

[68], which was the winner of the ILSVRC-14 competition. Unlike the previous

structures, GoogLeNet uses Inception modules—a multiple path convolution

41

Previous Layer

1x1 convolution 3x3 convolution 5x5 convolution 3x3 max pooling

Filter concat

Figure 4.3: Naive Inception module

Previous Layer

1x1 convolution 1x1 convolution 1x1 convolution 3x3 max pooling

Filter concat

3x3 convolution 5x5 convolution 1x1 convolution

Figure 4.4: Inception with dimen-
sion reduction

sub-network—instead of a single convolution layer. Figure 4.3 shows the basic

Inception module.

GoogLeNet and the Inception module are heavily inspired by the Net-

work in Network model outlined above [43]. The “reduce” layer in the In-

ception module is exactly an instance of a Network in Network. Overall, the

GoogLeNet model consists of stacking Inception modules, then using global

average pooling to generate a feature map, plus one or more linear classifiers.

GoogLeNet reduces the number of parameters by 90% from AlexNet.

Using multiple linear classifiers at different depths in a network is also

called “Deeply supervised network” [39].

It is believed that the GoogLeNet structure is generated by an algorithm

internal to Google rather than handcrafted [68]. I have observed some changes

between the 2014 and 2015 GoogLeNet (Table 4.4), the latter of which sur-

passes human level performance in ImageNet classification:

1. A batch normalization (defined in Chapter 5) layer is used after every

convolution layer.

2. The 5x5 convolution is abandoned. Instead, a dual 3x3 convolution is

used in each Inception module.

3. Average pooling is introduced into the Inception module.

Overall, the Inception Network achieves excellent performance using a lim-

ited number of parameters. In practice, training of the Inception network

is able to be parallelized, so by using multiple GPUs, one is able to train a

state-of-art model quickly.

42

type kernel/ #1x1 #3x3 #3x3 double double pool
stride reduce #3x3 #3x3 + proj

reduce
convolution 7x7/2 64
max pool 3x3/2
convolution 3x3/1 64 192
max pool 3x3/2
Inception (3a) 64 64 64 64 96 avg + 32
Inception (3b) 64 64 96 64 96 avg + 64
Inception (3c) stride 2 0 128 160 64 96 max
Inception (4a) 224 64 96 96 128 avg + 128
Inception (4b) 192 96 128 96 128 avg + 128
Inception (4c) 160 128 160 128 160 avg + 128
Inception (4d) 96 128 192 160 192 avg + 128
Inception (4e) stride 2 0 128 192 192 256 max
Inception (5a) 352 192 320 160 224 avg + 128
Inception (5b) 352 192 320 192 224 max + 128
avg pool 7x7/1

Table 4.4: Inception Network Structure Surpass Human Vision

4.5 Constrained Time Structure

In the AlexNet paper [34], the authors write that “All of our experiments

suggest that our results can be improved simply by waiting for faster GPUs

and bigger datasets to become available.” Over the next 3 years, given the

emergence of faster GPUs, great performance improvements have indeed been

observed by stacking more layers based on AlexNet. However these deeper and

wider models are more time-consuming to train than AlexNet. In industrial

applications, both classification performance and time are important consider-

ations. The Microsoft Research Asia Vision group has investigated the trade

off [22], by considering possible layer replacements. Formally, we can estimate

complexity of a convolutional network in big-O notation as:

O(
L∑
l=1

nl−1 · s2
l · nl ·m2

l) (4.7)

where L is total number of layers, nl is number of filters in layer l, sl is filter

size and ml is output feature map size.

The MSR Asia group investigated the influence on performance of several

43

factors, including filter number (width), layer number (depth) and filter size.

By replacing a layer type without changing the big-O complexity, they have

achieved some insight into the design trade offs for a single path convolutional

network:

1. Depth is important. To constrain time, one can replace a 5x5 convolution

layer with two 3x3 convolution layers, or replace one 3x3 convolution

layer with two 2x2 convolution layers.

2. The number of filters can also be reduced to constrain time. With the

same complexity, a 3x3 layer with fewer filters performs better than a

2x2 layer with more filters.

3. The pooling stride should be set to 1, while making the convolution

stride greater than 1 will enable the use of more filters.

4. Delayed pooling improves performance.

Following these practical observations, I modified the AlexNet (Table 4.2) into

one 7x7 convolutional layer and 10 2x2 convolutional layers without increasing

complexity. However these new models require much more memory due to the

increase in depth, while also using more parameters than AlexNet. These

considerations make it difficult to accelerate training for such a model.

4.6 Tiny ImageNet Network

Although convolutional neural networks have become a core technology for

modern computer vision tasks, if one wants to run such networks on robots or

mobile phone, we have to carefully constrain memory, parameter count, and

computation cost. A goal would be to have a model with similar or better

performance than AlexNet, but with better memory cost, less computation

and less parameters. Currently none of the previous models are able to satisfy

these requirements:

1. The VGGNet has nearly the best performance, but the resource require-

ments are extensive and desktop computers are not able to handle it.

44

2. The original constrained time model has better performance than the

baseline AlexNet, but it costs too much memory and the model size is

too large.

3. GoogLeNet/Network in Network limits the parameter number, but the

computation cost remains too high.

From these observations, GoogLeNet provides the best starting point be-

cause we then only need to constrain computation cost. However the perfor-

mance trade offs of Inception module in GoogLeNet are still not well under-

stood.

We want to know how different parts of the Inception module influence

the resulting classification performance. To investigate this issue, I broke

the Inception module into several components, forming variants of the basic

module, then replace all Inception modules in the basic network by using new

variants. To train these models, I used the same hyper parameters for the

ILSVRC classification task but with fewer learning rate schedules.

Details of these new Inception modules are given in Figure 4.5:

• Module-A is the baseline. It is similar to VGG-16 but with fewer layers.

The entire network is built by single path 3x3 convolution layers.

• Module-B adds a dual 3x3 path to Module-A.

• Module-F uses a single path 3x3 convolution layer but the filter number

is the sum of Module-B’s two convolution layers’ filter.

• Module-C changes one path in Module-B to a 5x5 convolution layer.

• Module-E changes the 5x5 path in Module-C to a 1x1 convolution.

• Module-D adds a 1x1 convolution dimension reduction layer (Network

in Network) to Module-A.

• Module-J adds an extra Network in Network path to Module-D.

• Module-G adds an averaging pooling path to Module-A.

45

Module-A (VGGNet)

Module-B

3x3 conv

3x3 conv 3x3 conv

Module–C

3x3 conv 5x5 conv

Module–D

3x3 conv

3x3 reduce

Module–E

1x1 conv 3x3 conv

Module–J

3x3 conv

3x3 reduce

3x3 conv

3x3 reduce

Module–G/H

3x3 conv avg/max pool

Module–I

3x3 conv

avg/max pool

proj

1x1 conv
3x3 conv

3x3 reduce

3x3 conv

3x3 reduce avg/max pool

proj

Module–K(Inception)

Module–F (merge CNN-B)

3x3 conv

3x3 conv

3x3 conv

Figure 4.5: Experimental Inception module combination

• Module-H adds a max pooling path to Module-A.

• Module-I adds a projection layer on top of the pooling layer.

• Module-K merges Module-E’s 1x1 path, Module-J’s dual 3x3 Network

in Network path, and Module-I’s pooling/projection layer.

The experimental results are shown in Table 4.5. I have some observations

based on these experiments:

1. Module-K (Inception module)’s performance is best overall.

2. Replacing one of the double 3x3 convolution paths to a 5x5 convolution

path improves classification performance a little, but almost doubles the

46

Module Type Train Error Test Error Time Cost
Module-A 8.216% 12.50% 1x
Module-B 6.67% 11.54% 4.94x
Module-C 6.29% 11.24% 8.42x
Module-D 12.08% 15.77% 1.48x
Module-E 6.88% 10.90% 2.26x
Module-F 6.93% 13.34% 2.64x
Module-G 83.68% 83.14% 3.64x
Module-H 86.69% 85.14% 3.64x
Module-I 7.19% 11.75% 2.45x
Module-J 9.71% 14.16% 3.38x
Module-K 5.45% 10.20% 7.35x

Table 4.5: CIFAR-10 Result on each combination module

computation cost. I think this is the reason that [30] switches to a double

3x3 path from original combination of a 3x3 path and a 5x5 path.

3. Adding a 1x1 convolution projection to the pooling path is important

for allowing successful training.

4. Although the 1x1 convolution dimension reduction layer doubles the

depth of module, just adding dimensionality reduction does not improve

performance.

5. The results for Module-E indicate that an extra 1x1 path plays an impor-

tant role in improving classification performance. Meanwhile, compared

to other changes, the computational cost for this change is reasonable.

Now, I can take things a step further based on the work of [22]. Above

I assessed the independent contributions to performance of each path in an

Inception module. I found that a 1x1 convolution path provided the most obvi-

ous performance gains within reasonable additional time costs. In an opposite

consideration, if time complexity allows, I am able to add a 1x1 convolution

to the network to improve performance. In light of these considerations, I

designed a tiny network structure, shown in Table 4.6.

This tiny network requires only 40% of the floating point operations used

by AlexNet for a forward pass. A detailed comparison is given in Table 4.7.

47

type kernel/stride output 1x1 3x3 pool
convolution 7x7/2(A), 9x9/4(B) 56x56x64
max pool 3x3/2 28x28x64
convolution 3x3/1 28x28x96
module-1 28x28x64 32 32
module-2 28x28x80 32 48
module-3 stride 2 14x14x160 80 max
module-4 14x14x160 112 48
module-5 14x14x160 96 64
module-6 14x14x160 80 80
module-7 14x14x144 48 96
module-8 stride 2 7x7x240 96 max
module-9 7x7x336 176 160
module-10 7x7x336 176 160
avg pool 7x7/1 1x1x336

Table 4.6: Tiny ImageNet structure

The memory cost is calculated assuming a batch size of 128.

Model Parameter Model Size Memory Test Error Complexity
(Equation 4.7)

AlexNet 60M 212 MB 1X 19.80% 1X
VGG-16 138M 528 MB 3.5X 10.69% 22.6X
GoogLeNet 5M 45.3 MB 3.4X 10.01% 3.07X
Kaiming Net 95M 303 MB 2.2X 15.70% 1.28X
TinyNet-A 1.54M 7.9 MB 1.2X 21.00% 0.40X
TinyNet-B 1.56M 7.9 MB 1.2X 17.00% 0.42X

Table 4.7: Network comparison

Finally I used TinyNet-B as the final design for TinyNet. I designed this

model based on the following observations:

1. Depth contributes to memory cost directly.

If one doubles the depth of the network, in the current design, the mem-

ory cost will be doubled. Therefore, it is not wise to make the network

very deep. If one wants to make the network deeper without adding

extra complexity, each 3x3 convolution layer can be changed to two 2x2

convolution layers.

2. Use an extra 1x1 path.

48

I introduced an extra 1x1 path to improve classification performance—a

lesson learnt from the investigation of the Inception module. If using the

filter setting from GoogLeNet directly, the complexity will be 1.3 times

that of AlexNet. Instead, I reduced nearly half of the original filters from

AlexNet.

3. A higher resolution input leads to better results.

Compared to TinyNet-A, which uses a 128x128 input image size, TinyNet

uses an input image size of 256x256 and performs 9.5% better with nearly

no additional cost. The only difference between TinyNet-A and TinyNet

occurs in the first layer kernel size and stride.

I have successfully deployed TinyNet using the CXXNet toolkit on an An-

droid smartphone. Some image labeling tests on random real world images

are shown in Figure 4.6.

Figure 4.6: TinyNet on Android Phone

4.7 Conclusion

In this chapter, I investigated the structure of convolutional networks for image

classification. By reviewing current work on network structure and the recent

49

evolution of network design, I uncovered some general principles for how to de-

sign a suitable convolution network. Finally, I designed an ImageNet network,

called TinyNet, that is much more efficient than AlexNet while still achieving

improved classification accuracy.

In next chapter, we will discuss how activation function influence classifi-

cation performance.

50

Chapter 5

Activation Functions

5.1 Introduction

In addition to depth, one of the key characteristics of modern deep learning

system is the use of non-saturated activation functions (e.g. ReLU) to replace

their saturated predecessors (e.g. sigmoid, tanh). Saturated means the acti-

vation function is bounded and with 0 gradient at the bound. The advantage

of using non-saturated activation function lies in two aspects: The first is to

solve the so called “exploding/vanishing gradient problem” [27]. The second

is to accelerate the convergence speed.

Among the non-saturated activation functions, the most notable is the rec-

tified linear unit (ReLU) [50], shown in Figure 5.3. Briefly, it is a piecewise

linear function that clips the identity function, pruning the response on the

negative domain to zero while retaining the identity on the positive domain.

It has the desirable property that its activations are sparse: it is commonly

believed that the superior performance of ReLU comes from the sparsity [19].

However, there remain two important questions regarding the ReLU activa-

tion: First, is sparsity the most important factor for a good performance? Sec-

ond, can we design a better non-saturated activation that can exhibit superior

performance to ReLU?

In this chapter, I will review the classical saturated activation functions and

the recent rectified linear activation function. Then, inspired by Dropout, I will

introduce randomness into the activation function to define a modified form of

ReLU activation. I also propose the Sigmoid* function, which avoids vanishing

51

problem of the original sigmoid function. My findings suggest that, despite

being the most popular activation function, ReLU is not the end of story:

three types of (modified) leaky ReLU consistently outperform the original

ReLU. However, the reason for their superior performance still lack rigorous

justification from a theoretic standpoint.

5.2 Saturated Activations

For models of biological neurons, activation corresponds to the expected firing

rate as a function of the total input currently arising from incoming signals via

synapses [16]. By observing neuronal activation in animals, the sigmoid func-

tion is often selected as an activation function, to squash the output signal into

(0, 1) [35]. The hyperbolic tangent is also often used as an activation function,

since it squashes the input into the range (−1, 1). Figure 5.1, Figure 5.2 show

the sigmoid and hyperbolic tangent functions and their gradients.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

−0.5

0.5

1

x

y
y = sigmoid(x)
y = tanh(x)

Figure 5.1: Sigmoid Activation and Tanh Activation

For a long time it is believed both the sigmoid and hyperbolic tangent

functions have the problem of “exploding/vanishing gradients” when back-

propagating through a deep network.

It is easy to show that the maximum value of the sigmoid gradient is 0.25,

which means that if weight ‖w‖ = 1, the lower gradients in the network will

decrease in factor 1
4

after each sigmoid layer. The hyperbolic tangent still has

the same problem of gradient vanishing because it reaches its maximum value

of 1 when x is 0. Otherwise, if there is no constraint on the weight normal,

52

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

−0.5

0.5

1

x

y
y = 5sigmoid(x)
y = 5tanh(x)

Figure 5.2: Sigmoid gradient and Tanh gradient

the weights can become very large, and backpropagation leads to gradient

explosion. Also, each layer’s input changes during training, which makes the

problem even harder. This phenomenon is also referred as internal covariate

shift [30].

Rectifiers address these problems, but the use of rectification makes the

neural network less biological. Batch normalization is also used to address

these problems from another perspective.

5.3 A Generalized Family of Rectified Activa-

tion Functions

I have investigated a broader class of activation functions, namely the rectified

unit family. In particular, I have investigated the leaky ReLU and its variants.

In contrast to ReLU, which completely drops the negative part, the leaky

ReLU assigns a non-zero slope to this region. The first variant is called para-

metric rectified linear unit (PReLU) [24]. In PReLU, the slopes of the negative

part are learned form data rather than predefined. The authors claimed that

PReLU is the key factor of surpassing human-level performance on ImageNet

classification [60]. The second variant, which was introduced and investigated

as part of this thesis research, is called the randomized rectified linear unit

(RReLU). In RReLU, the slopes of negative parts are randomized in a given

range during training, then fixed during testing. On small scale data, like

NDSB, I have found that the RReLU activation can reduce over-fitting due to

53

its randomized nature. These activation functions in the rectified unit family

are shown in Figure 5.3.

x

y
yi = xi

yi = 0 x

y

x

y
yi = xi

yi = aixi

ReLU Leaky ReLU/PReLU Randomized Leaky ReLU

yji = xji

yji = ajixji

Figure 5.3: ReLU, Leaky ReLU and RReLU

5.3.1 ReLU

The rectified Linear activation (ReLU) was first used in Restricted Boltzmann

Machines [50]. Formally, the rectified linear activation is defined as:

yi =

{
xi if xi ≥ 0
0 if xi < 0.

(5.1)

5.3.2 Leaky ReLU

The leaky rectified linear activation (Leaky ReLU) was first introduced in the

acoustic model proposed by [46]. Mathematically, it is defined as

yi =

{
xi if xi ≥ 0
xi
ai

if xi < 0,
(5.2)

where ai is a fixed parameter in range (1,+∞). In the original paper, the

authors suggest to set ai to a large number like 100. Beyond this setting, I

have also experimented with smaller ai = 5.5 in my investigation.

5.3.3 Parametric ReLU

The parametric rectified linear (PReLU) was originally proposed by [24]. The

authors reported that the PReLU activation led to superior performance than

the ReLU activation in a large scale image classification task. The PReLU

activation is the same as the leaky ReLU (Equation 5.2) with the exception

54

that ai is learned during training via back propagation. Formally, the Leaky

ReLU Activation (Equation 5.2) can be rewritten as:

yi =

{
xi if xi ≥ 0
aixi if xi < 0,

(5.3)

During back propagation, we need to optimize the parameters ai simultane-

ously with the other weights in the network. The gradient of ai for one layer

is:
∂ε

∂ai
=
∑
yi

∂ε

∂yi

∂yi
∂ai

(5.4)

where ε represents the object function, and the term ∂ε
∂yi

is the gradient prop-

agated from the higher layer. The gradient of the activation is:

∂yi
∂ai

=

{
0 if yi ≥ 0
xi if yi < 0.

(5.5)

5.3.4 Randomized Leaky ReLU

The randomized leaky rectified linear activation (RReLU) is the randomized

version of the leaky ReLU. I first proposed and investigated this activation

function during the Kaggle NDSB Competition with my teammates. The

main feature of the RReLU activation is that, during the training process, the

aji value is a random number sampled from a uniform distribution U(l, u).

The randomized leaky ReLU is inspired by Dropout. For the negative

slope, I use a random slope during training, instead of training or setting

it arbitrarily. During testing, this activation is similar to averaging models;

the resulting procedure resembles an ensemble approach that can hopefully

improve performance. Formally, the RReLU is given by

yji =

{
xji if xji ≥ 0
xjiaji if xji < 0,

(5.6)

where

aji ∼ U(l, u), st. u < 1, l < u (5.7)

In the test phase, we take the average of the aji values in training, as in

Dropout [65] , and thus set aji to l+u
2

to achieve a deterministic result.

55

5.4 Batch Normalization

Batch Normalization [30] has recently been proposed for accelerating GoogLeNet

training. Strictly speaking, batch normalization is not an activation function.

By normalizing and shifting each mini-batch after every convolution or fully

connection layer, an original deep network with saturated activations becomes

trainable. This normalization also accelerates training of networks with non-

saturated activation functions. During the normalization and shift processes,

batch normalization is also attempting to learn some parameters. Formally,

for a input batch with m example, B = {x1, ..., xm}, the output of batch

normalization, yi, for example xi in the batch is calculated in following steps:

µB =
1

m

m∑
i=1

xi (5.8)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (5.9)

x̂i =
xi − µB√
σ2
B + ε

(5.10)

yi = γx̂i + β (5.11)

where µB and σ2
B is mean and variance of current batch, x̂i is normalized result,

γ and β are shift parameter need to be learned. The gradient is calculated as

follows:

∂ε

∂x̂i
=

∂ε

∂yi
· γ (5.12)

∂ε

∂σ2
B

=
m∑
i=1

∂ε

∂x̂i
· (xi − µB) · −1

2
(σ2

B + ε)−3/2 (5.13)

∂ε

∂µB
=

(
m∑
i=1

∂ε

∂x̂i
· −1√

σ2
B + ε

)
+

∂ε

∂σ2
B

·
∑m

i=1−2(xi − µB)

m
(5.14)

∂ε

∂xi
=

∂ε

∂x̂i
· −1√

σ2
B + ε

+
∂ε

∂σ2
B

· 2(xi − µB)

m
+

∂ε

∂µB
· 1

m
(5.15)

∂ε

∂γ
=

m∑
i=1

∂ε

∂yi
· x̂i (5.16)

∂ε

∂β
=

m∑
i=1

∂ε

∂yi
(5.17)

56

Batch normalization is designed to fix the internal covariate shift phe-

nomenon. It makes a deep network with saturated activation functions train-

able. Also, it accelerates the training of deep networks with ReLU activation

functions.

5.5 Explaining the Difficulty of Training with

Sigmoids

Modern neural network initializations are based on controlling the output/gra-

dient variance, to prevent the exponential vanishing/explosion that hampers

subsequent training.

5.5.1 Random Initialization Methods

Formally, for a single layer in neural network with activation function f , in a

forward pass we have

xl = f(yl−1) (5.18)

yl = Wlxl + bl (5.19)

where yl−1 is the previous layer’s output, xl is the current layer l’s input, Wl

is the weight matrix in layer l, and bl is the bias respectively.

Consider the hypothesis that all weights are initialized mutually indepen-

dently, share the same distribution, and are zero mean. Also assume there are

nl connections in layer l. Then in a forward pass we have:

V ar[yl] = nlV ar[wl]V ar[xl] (5.20)

and in a backward pass we have:

V ar

[
∂ε

∂yl

]
= nl

∂xl+1

∂yl
V ar[wl]V ar

[
∂ε

∂xl+1

]
(5.21)

while

∂xl+1

∂yl
= f ′(yl) (5.22)

57

Xavier’s Initialization

Xavier’s initialization [18] is based on two hypotheses:

1. A dense neural network with symmetric activation f will have f ′(yl) ≈ 1

when yl = 0

2. The variance is constant in both the forward and backward directions;

that is:

V ar[yl] = V ar[yl−1] (5.23)

V ar

[
∂ε

∂yl

]
= V ar

[
∂ε

∂yl−1

]
(5.24)

Considering these two hypotheses, we have

nlV ar[wl] = 1 (5.25)

nl+1V ar[wl] = 1 (5.26)

Therefore, an approximate solution for V ar[wl] is

V ar[wl] =
2

nl + nl+1

(5.27)

Kaiming’s Initialization

Kaiming’s initialization [24] is specialized for ReLU under the hypotheses:

1. The mean of xl is zero, which, with Equ. 5.20, implies

V ar[yl] = nlV ar[wl]E[x2
l] (5.28)

2. If the activation f is ReLU, wl−1 has a symmetric distribution around

0, and bl = 0, we will have:

E[x2
l] =

1

2
V ar[yl−1] (5.29)

V ar[yl] =
1

2
nlV ar[wl]V ar[yl−1] (5.30)

58

For a network with L layers, the variance of the output will then be

V ar[yL] = V ar[x]

(
L∏
l=1

1

2
nlV ar[wl]

)
(5.31)

Similarly, for back propagation, with the previous hypotheses, the variance

of the gradient is given by:

V ar

[
∂ε

∂x1

]
=

∂ε

∂xL

(
L∏
l=1

1

2
n̂lV ar[wl]

)
(5.32)

where 1
2
n̂lV ar[wl] = 1 is sufficient to prevent exponential vanishing and ex-

ploding.

5.5.2 The Reason for Sigmoid’s Failure to Converge

Assume the network inputs, x, have mean 0. At 0, the Taylor expansion of

the Sigmoid function is:

f(x) =
1

2
+
x

4
+
x2

48
+ . . . (5.33)

To simplify the problem, approximate the sigmoid function at 0 with f(x) =

1
2

+ x
4
. Then we will have

f ′(0) = 0.25 (5.34)

V ar[xl] =
1

16
V ar[yl−1] (5.35)

This violates the requirements of the previous initialization methods:

1. Xavier’s initialization assumes f ′(yl) ≈ 1 when yl = 0.

2. Kaiming’s initialization assumes E[x2
l] = 1

2
V ar[yl−1].

To fix these problems, we can modify the original sigmoid activation to

Sigmoid∗(x) = 4Sigmoid(x)− 2 (5.36)

Figure 5.4 and Figure 5.5 show the difference between the Sigmoid* and

Tanh functions.

59

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

x

y
y = sigmoid∗(x)
y = tanh(x)

Figure 5.4: Sigmoid* Activation and Tanh Activation

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

−0.5

0.5

1

x

y
y = 5sigmoid∗(x)
y = 5tanh(x)

Figure 5.5: Sigmoid* gradient and Tanh gradient

5.6 Experiment on CIFAR-10

I have evaluated these activation functions by using a subnet from the TinyNet

model developed above (Table 4.6); the network structure is shown in Ta-

ble 5.1. I reduce learning rate by factor 1
10

at epoch 20. Here I removed the

first convolution and pooling layers to make the network accept an input of

28x28 pixels.

The classification results using different activations is given in Table 5.2.

Here I considered activation with and without batch normalization. From the

table one can make the following observations:

1. RReLU is best both with batch normalization and without batch nor-

malization.

2. Saturated activation functions are worse than any member of the rectified

family.

60

type kernel/stride output 1x1 3x3 pool
convolution 28x28x64 96
module-1 28x28x64 32 32
module-2 28x28x80 32 48
module-3 stride 2 14x14x160 80 max
module-4 14x14x160 112 48
module-5 14x14x160 96 64
module-6 14x14x160 80 80
module-7 14x14x144 48 96
module-8 stride 2 7x7x240 96 max
module-9 7x7x336 176 160
module-10 7x7x336 176 160
avg pool 7x7/1 1x1x336

Table 5.1: Tiny CIFAR-10 structure

3. Batch normalization consistently improves performance

4. Batch normalization cannot be used as an activation function on its own.

Activation Train-Error Test-Error
sigmoid 90.0% 90.0%
tanh 13.17% 19.84%
relu 2.89% 11.89%
prelu 1.25% 9.70%
leaky relu (a = 7.5) 0.94% 9.26%
rrelu 2.01% 9.06%
sigmoid + batch norm 8.33% 12.37%
tanh + batch norm 1.58% 9.71%
relu + batch norm 0.22% 8.30%
leaky relu (a=7.5) + batch norm 0.72% 8.44%
prelu + batch norm 0.45% 8.25%
rrelu + batch norm 0.63% 7.98%
batch norm 13.87% 17.24%

Table 5.2: Activation function and result

From the Tanh learning curve (Figure 5.8), ReLU learning curve (Fig-

ure 5.6) and RReLU learning curve (Figure 5.7), we can see that batch nor-

malization does improve performance and makes convergence faster.

Comparing the ReLU and RReLU learning curves in Figure 5.9, one can

observe that RReLU converges faster. However, with batch normalization

61

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

epoch

error
ReLU + Batch Norm train
ReLU + Batch Norm test

ReLU train
ReLU test

Figure 5.6: ReLU and ReLU with Batch Normalization learning curve

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

epoch

error
RReLU train
RReLU test

RReLU + Batch Norm train
RReLU + Batch Norm test

Figure 5.7: RReLU and RReLU with Batch Normalization learning curve

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

epoch

error
Tanh train
Tanh test

Tanh + Batch Norm train
Tanh + Batch Norm test

Figure 5.8: Tanh and Tanh with Batch Normalization learning curve

(Figure 5.10) the difference is reduced.

Also I find that batch normalization cannot be used as a non-linear acti-

vation function on its own.

62

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

epoch

error
ReLU train
ReLU test

RReLU train
RReLU test

Figure 5.9: ReLU and RReLU learning curve

5 10 15 20 25 30 35 40

0.2

0.4

0.6

0.8

1

epoch

error
RReLU + Batch Norm train
RReLU + Batch Norm test
ReLU + Batch Norm train
ReLU + Batch Norm test

Figure 5.10: ReLU + Batch Norm and RReLU + Batch Norm learning curve

5.7 Experiment on CIFAR-100

In order to address vanishing/explosion problem, in this experiment I choose

the 33 layer Inception-BN [30] network, but removed Batch Normalization. I

manually reduce learning rate by factor 1
10

at epoch 40. I choose the CIFAR-

100 dataset, since this problem is more challenging than CIFAR-10. Here the

networks were initialized by using Xavier’s initialization [18]. I also remove

dropout in these experiments. The numerical result is shown in Table 5.3

There is no doubt that the Sigmoid activation fails to converge under vari-

ance based initialization. Moreover, from these numerical results and learning

curves, one can make the following observations:

1. With variance based random initialization, tanh and Sigmoid* still con-

63

Activation Train Test
ReLU 0.998282 0.662619
Sigmoid* 0.893982 0.591162
Tanh 0.969449 0.619924
RReLU 0.997602 0.716262
Sigmoid n/a n/a

Table 5.3: CIFAR-100 Inception Network with Different Non-linearity

5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.4

0.6

0.8

1

epoch

error
RReLU train
RReLU test
ReLU Train
ReLU test

Figure 5.11: ReLU and RReLU Inception Network learning curve

5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.4

0.6

0.8

1

epoch

error
Sigmoid* train
Sigmoid* test
ReLU Train
ReLU test

Figure 5.12: Sigmoid* and ReLU Inception Network learning curve

verge well in a 33 layer network. This suggests that the current under-

standing of the consequences of saturated activations is not accurate.

2. It is observed for activation functions that are able to converge from

random initialization, the coefficient of term x in Taylor Series at 0+ is

1.

64

5 10 15 20 25 30 35 40 45 50 55 60

0.2

0.4

0.6

0.8

1

epoch

error
Sigmoid* train
Sigmoid* test

Tanh train
Tanh test

Figure 5.13: Tanh and Sigmoid* Inception Network learning curve

This experiment also suggests that the commonly ignored issue of ”random

initialization” plays an important role in neural network training. As a con-

sequence, for past 20 years, many have failed to train deep Sigmoid networks.

Put together, these observations suggest that we need to jointly consider the

effects of initialization, activation and optimization in neural network training.

5.8 Conclusion

In this chapter, I analyzed four rectified activation functions and proposed

the Sigmoid* activation function. My findings strongly suggest that the most

popular activation function, ReLU, is not the end of the story: Three types of

(modified) leaky ReLU all consistently outperform the original ReLU. Under

Batch Normalization, RReLU still outperforms ReLU. However, the reasons

for this superior performance still lacks rigorous justification from a theoret-

ical standpoint. I also developed an explanation for the vanishing problem

with sigmoid activations, and used this to develop a modified Sigmoid* func-

tion. This modified activation appears to correct the problem with sigmoid

and demonstrates competitive perforance with Tanh. How these activations

perform on large scale data still needs to be investigated, which remains an

open question worth pursuing in the future.

65

Chapter 6

Application to Plankton
Classification

6.1 National Data Science Bowl

The National Data Science Bowl (NDSB)1 is a competition where the problem

is to classify plankton animal images. Measuring the population of plankton

animals is important for understanding the ocean ecosystem. The Hatfield

Marine Science Center at Oregon State University provided the training data

for this competition. The data [14] consists of grey scale images of various

sizes, distributed among a total of 121 classes. The training data consisted of

30336 images, while the test data contained more than 10 thousand images.

The classes are not mutually exclusive: minor differences in animal age and

side shape will make the image belong to different classes.

I used this dataset to check the generalization capability of deep network

models. My team achieved 2nd place over one thousand teams in this compe-

tition. The solution I developed for the Science Bowl with my teammates did

not involve any prior knowledge or special design for the problem. I designed

one core network structure and activation function used on all networks during

this competition.

1National Data Science Bowl Competition: https://www.kaggle.com/c/

datasciencebowl

66

https://www.kaggle.com/c/datasciencebowl
https://www.kaggle.com/c/datasciencebowl

Figure 6.1: NDSB image example (Taken from homepage)

6.2 Network Design

During this competition, I focused on training very deep networks since the

aim was to achieve better performance without any time constraints. The

network design was mainly based on (Equation 4.5). The detailed network

structure is shown in Table 6.1 and Table 6.2. For reference, I also used

GoogLeNet (Table 4.4) and the TinyNet (Table 4.6) to evaluate alternative

network structures, using the same hyper parameters as for training on the

ImageNet data.

The first network’s complexity is 12× compared to AlexNet while the sec-

ond network’s complexity is 6× compared to AlexNet. I considered three

learning schedules; for learning rate 0.01 I ran 400 epochs, and for learning

rate 0.001 and 0.0001 I ran 80 epochs.

For this problem, I ignored the problem specification, and used simple

affine transformations to perform data augmentation. These augmentations

included rotation, translation, rescaling, flipping, rescaling and shearing. I

used multiple tests to obtain final result: For a single image, I performed 100

random augmentations then averaged the 100 prediction results.

67

type kernel/stride output
convolution 5x5/1 128x128x16
max pooling 3x3/2 64x64x16
convolution 3x3/1 64x64x32
convolution 3x3/1 64x64x32
convolution 3x3/1 64x64x64
convolution 3x3/1 64x64x64
convolution 3x3/1 64x64x128
convolution 3x3/1 64x64x128
convolution 3x3/1 64x64x128
convolution 3x3/1 64x64x128
max pooling 3x3/2 32x32x128
convolution 3x3/1 32x32x256
convolution 3x3/1 32x32x256
convolution 3x3/1 32x32x256
convolution 3x3/1 32x32x256
max pooling 3x3/2 16x16x256
convolution 3x3/1 16x16x512
convolution 3x3/1 16x16x512
convolution 3x3/1 16x16x512
convolution 3x3/1 16x16x512
max pooling 3x3/2 8x8x512
convolution 3x3/1 8x8x512
convolution 3x3/1 8x8x512
avg/max pooling 8x8/1 1x1x512
softmax 1x1x121

Table 6.1: NDSB Network-1

6.3 Result

The result is shown in Table 6.3. These result are reported by the online

testing server directly. The GoogLeNet and TinyNet models were able to

achieve results that rank them in the top 100 among competitors. The two

maximum depth networks, NDSB Network-1 and NDSB Network-2, were able

to achieve a top-10 ranking in the competition.

68

type kernel/stride output
convolution 5x5/1 144x144x16
max pooling 3x3/2 72x72x16
convolution 3x3/1 72x72x32
convolution 3x3/1 72x72x32
convolution 3x3/1 72x72x64
convolution 3x3/1 72x72x64
convolution 3x3/1 72x72x128
convolution 3x3/1 72x72x128
convolution 3x3/1 72x72x128
convolution 3x3/1 72x72x128
max pooling 3x3/2 36x36x128
convolution 3x3/1 36x36x256
convolution 3x3/1 36x36x256
convolution 3x3/1 36x36x256
convolution 3x3/1 36x36x256
max pooling 3x3/2 18x18x256
convolution 3x3/1 18x18x512
convolution 3x3/1 18x18x512
max pooling 3x3/3 6x6x512
convolution 3x3/1 6x6x512
convolution 3x3/1 6x6x512
avg/max pooling 6x6/1 1x1x512
softmax 1x1x121

Table 6.2: NDSB Network-2

Network LogLoss on Test Data
NDSB-Net 1 0.606
NDSB-Net 2 0.609
VGGNet 0.631
GoogLeNet 0.710
TinyNet 0.759

Table 6.3: LogLoss of National Data Science Bowl

6.4 Conclusion

In this competition study, I found that, even though we ignored the problem

details in designing the deep network models, the general design of a deep con-

volution network was able to achieve very good results. The maximum depth

network design is able to provide state-of-art results, albeit with significant

69

computational cost. In this competition, the first place team proposed Cyclic

pooling2, but their single model performance was not significantly better than

our best competitors.

2First place team method: https://benanne.github.io/2015/03/17/plankton.html

70

https://benanne.github.io/2015/03/17/plankton.html

Chapter 7

Conclusion

In this dissertation I designed an efficient network structure that is able to

replace the widely used AlexNet. I also proposed a new randomized activation

function that improves the performance of convolutional networks. By using

good structure designs and a new activation function, I was able to design

a state-of-art network for plankton image classification. The end-to-end con-

volutional neural network is able to learn from raw pixel information on this

problem, without any hand crafted features.

7.1 Future Work

I think that, in the future, the most important work that remains to be done

in this area is to develop a theory of deep network learning. Without any

theory, empirical progress makes the research seem more like an evolutionary

process rather than science. Also, I think that using convolution networks to

perform classification on image sequences, like videos, will also be a topic of

growing importance.

7.1.1 Structure Theory

Currently, work on deep learning still relies heavily on empirically successful

network structures. Although I have outlined some results in designing deep

network architectures, I was still able to design an efficient TinyNet. There

remains a gap in the theory behind network structure.

From LeNet-5 to VGGNet, we have witnessed how network depth can

71

dramatically improve classification performance. We now know how to train

much deeper single path networks, but unfortunately, the cost of training these

networks remains unacceptable in many commercial settings.

GoogLeNet and its Inception module provide a new view on how to design

convolutional networks. Google suggests that there is a theory about sparsity

that guides how to design an efficient network topology, but it is not revealed.

I think it is important to investigate the theory behind network structure,

including sparisty, to better understand why and how it this works inside a

neural network.

7.1.2 Activation Function Theory

Similar to the case of network structure, the theory for activation functions is

lacking in the literature. The use of saturated activation functions arises from

a mere analogy with neurons, and lacks mathematics theory. The piece-wise

linear activation functions, also known as “rectifiers”, perform much better

in practice than saturated activation functions. The current explanations for

this success point to the sparsity induced by the ReLU activation, but the

Leaky ReLU and its variants outperform the original ReLU, suggesting that

the real benefit may not arise from output sparsity. However, with Batch

Normalization, the specific activation functions become less important but

still worth to investigate.

7.1.3 Convolution Network with Memory

Currently, all of the convolutional neural networks considered in this thesis are

feed-forward networks. Such networks are able to classify single static images.

For an image sequence, such as a video, one requires a network that can

contain a longer memory. One solution to such problems is to use a recurrent

neural network. However, current recurrent neural networks are focused on

fully connected layers. A low hanging fruit would be to use a pre-trained

convolutional neural network as a feature encoder, replacing the classifier with

a recurrent network structure, for example, as in long short term memory [28].

72

A even more interesting question is how to modify a convolution layer with

recurrent memory. Comparing an encoder based recurrent structures with this

structure is also an open problem that is worth investigating.

7.2 Final Thought

In the three years since AlexNet appeared, traditional image classification has

“almost” become a solved problem. Convolutional neural networks now sur-

pass even human level performance on many datasets. The recent emergence

of “deep learning” is more like the success of heterogeneous computing: the

convolutional network was invented in 1989, and long short term memory was

invented in 1997. Without powerful GPUs, it would not be possible to train

these large neural network models on such large data sets. Although one can

continue to pursue such an evolutionary process, because we will have even

more powerful GPU, this is not what we should expect as serious researchers.

Nevertheless, deep neural networks are now rapidly being adopted in indus-

trial applications, broadening the use of artificial intelligence at a faster pace

than ever before.

73

Bibliography

[1] Karpathy Andrej. Lessons learned from manually classi-
fying cifar-10. https://karpathy.github.io/2011/04/27/
manually-classifying-cifar10/, 2011. [Online; accessed 09-June-
2015].

[2] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian
Goodfellow, Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley,
and Yoshua Bengio. Theano: new features and speed improvements.
arXiv preprint arXiv:1211.5590, 2012.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up ro-
bust features. In Computer vision–ECCV 2006, pages 404–417. Springer,
2006.

[4] Yoshua Bengio, Ian J. Goodfellow, and Aaron Courville. Deep learning.
Book in preparation for MIT Press, 2015.

[5] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al.
Greedy layer-wise training of deep networks. Advances in neural infor-
mation processing systems, 19:153, 2007.

[6] Léon Bottou. Stochastic gradient descent tricks. In Neural Networks:
Tricks of the Trade, pages 421–436. Springer, 2012.

[7] Xudong Cao. A practical theory for designing very deep convolution
neural networks. 2015.

[8] Ming-wei Chang, Wen-tau Yih, and Christopher Meek. Partitioned logis-
tic regression for spam filtering. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
97–105. ACM, 2008.

[9] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Return of the devil in the details: Delving deep into convolutional nets.
arXiv preprint arXiv:1405.3531, 2014.

[10] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet:
A flexible and efficient machine learning library for heterogeneous dis-
tributed systems. arXiv preprint arXiv:1512.01274, 2015.

[11] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

74

https://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
https://karpathy.github.io/2011/04/27/manually-classifying-cifar10/

[12] Olah Christopher. Neural networks, manifolds, and topology. https:
//colah.github.io/posts/2014-03-NN-Manifolds-Topology/, 2014.
[Online; accessed 19-May-2015].

[13] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS Work-
shop, number EPFL-CONF-192376, 2011.

[14] Robert K. Cowen, S. Sponaugle, K.L. Robinson, and J. Luo. Planktonset
1.0: Plankton imagery data collected from f.g. walton smith in straits of
florida from 2014-06-03 to 2014-06-06 and used in the 2015 national data
science bowl (nodc accession 0127422). http://data.nodc.noaa.gov/
cgi-bin/iso?id=gov.noaa.nodc:0127422, 2015.

[15] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, volume 1, pages 886–893.
IEEE, 2005.

[16] Peter Dayan and Laurence F Abbott. Theoretical neuroscience, volume
806. Cambridge, MA: MIT Press, 2001.

[17] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in Neural Information
Processing Systems, pages 1223–1231, 2012.

[18] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training
deep feedforward neural networks. In International conference on artificial
intelligence and statistics, pages 249–256, 2010.

[19] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
networks. In Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics. JMLR W&CP Volume, volume 15, pages 315–
323, 2011.

[20] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville,
and Yoshua Bengio. Maxout networks. arXiv preprint arXiv:1302.4389,
2013.

[21] Benjamin Graham. Fractional max-pooling. arXiv preprint
arXiv:1412.6071, 2014.

[22] Kaiming He and Jian Sun. Convolutional neural networks at constrained
time cost. arXiv preprint arXiv:1412.1710, 2014.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyra-
mid pooling in deep convolutional networks for visual recognition. arXiv
preprint arXiv:1406.4729, 2014.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classifi-
cation. arXiv preprint arXiv:1502.01852, 2015.

[25] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. Science, 313(5786):504–507, 2006.

75

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0127422
http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0127422

[26] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[27] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen net-
zen. Master’s thesis, Institut fur Informatik, Technische Universitat,
Munchen, 1991.

[28] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[29] Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural networks, 4(2):251–257, 1991.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[31] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[32] David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Newnes, 2012.

[33] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Computer Science Department, University of Toronto,
Tech. Rep, 1(4):7, 2009.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS, pages 1097–
1105, 2012.

[35] Simon Laughlin. A simple coding procedure enhances a neuron’s informa-
tion capacity. Zeitschrift für Naturforschung c, 36(9-10):910–912, 1981.

[36] Lawrence-Livermore-National-Laboratory. Asci white: The world’s
fastest computer - meeting the challenge of stockpile steward-
ship. https://computation.llnl.gov/casc/sc2001_fliers/ASCI_
White/ASCI_White01.html, 2001. [Online; accessed 06-June-2015].

[37] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[38] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[39] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and
Zhuowen Tu. Deeply-supervised nets. arXiv preprint arXiv:1409.5185,
2014.

76

https://computation.llnl.gov/casc/sc2001_fliers/ASCI_White/ASCI_White01.html
https://computation.llnl.gov/casc/sc2001_fliers/ASCI_White/ASCI_White01.html

[40] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting pos-
itive and negative links in online social networks. In Proceedings of the
19th international conference on World wide web, pages 641–650. ACM,
2010.

[41] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing
Su. Scaling distributed machine learning with the parameter server. In
Proc. OSDI, pages 583–598, 2014.

[42] Mu Li, David G Andersen, Alex J Smola, and Kai Yu. Communica-
tion efficient distributed machine learning with the parameter server. In
Advances in Neural Information Processing Systems, pages 19–27, 2014.

[43] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv
preprint arXiv:1312.4400, 2013.

[44] Min Lin, Shuo Li, Xuan Luo, and Shuicheng Yan. Purine: A bi-graph
based deep learning framework. arXiv preprint arXiv:1412.6249, 2014.

[45] David G Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[46] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlin-
earities improve neural network acoustic models. In ICML, volume 30,
2013.

[47] MICROWAY. Detailed specifications of the in-
tel xeon e5-2600v3 haswell-ep processors. https:
//www.microway.com/knowledge-center-articles/
detailed-specifications-intel-xeon-e5-2600v3-haswell-ep-processors/,
2015. [Online; accessed 06-June-2015].

[48] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities
in continuous space word representations. In HLT-NAACL, pages 746–
751, 2013.

[49] Tom M Mitchell. Machine learning. McGraw-Hill Boston, MA:, 1997.

[50] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted Boltzmann machines. In ICML, pages 807–814, 2010.

[51] Yurii Nesterov. A method of solving a convex programming problem with
convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27,
pages 372–376, 1983.

[52] NVIDIA. Tesla gpu accelerators for servers. http://www.nvidia.ca/
object/tesla-servers.html, 2015. [Online; accessed 06-June-2015].

[53] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier. Large-
scale image retrieval with compressed fisher vectors. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 3384–
3391. IEEE, 2010.

[54] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the
fisher kernel for large-scale image classification. In Computer Vision–
ECCV 2010, pages 143–156. Springer, 2010.

77

https://www.microway.com/knowledge-center-articles/detailed-specifications-intel-xeon-e5-2600v3-haswell-ep-processors/
https://www.microway.com/knowledge-center-articles/detailed-specifications-intel-xeon-e5-2600v3-haswell-ep-processors/
https://www.microway.com/knowledge-center-articles/detailed-specifications-intel-xeon-e5-2600v3-haswell-ep-processors/
http://www.nvidia.ca/object/tesla-servers.html
http://www.nvidia.ca/object/tesla-servers.html

[55] Boris Teodorovich Polyak. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics and Mathemat-
ical Physics, 4(5):1–17, 1964.

[56] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural
network. Technical report, DTIC Document, 1989.

[57] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of
the 16th international conference on World Wide Web, pages 521–530.
ACM, 2007.

[58] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, DTIC
Document, 1985.

[59] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Cognitive modeling, 5, 1988.

[60] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 2015.

[61] Jorge Sánchez and Florent Perronnin. High-dimensional signature com-
pression for large-scale image classification. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages 1665–1672.
IEEE, 2011.

[62] Terrence J Sejnowski and Charles R Rosenberg. Parallel networks that
learn to pronounce english text. Complex systems, 1(1):145–168, 1987.

[63] Amar Shan. Heterogeneous processing: a strategy for augmenting moore’s
law. Linux Journal, 2006(142):7, 2006.

[64] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[65] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research, 15:1929–
1958, 2014.

[66] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. High-
way networks. arXiv preprint arXiv:1505.00387, 2015.

[67] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In Proceed-
ings of the 30th International Conference on Machine Learning (ICML-
13), pages 1139–1147, 2013.

[68] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

78

[69] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan.
Show and tell: A neural image caption generator. arXiv preprint
arXiv:1411.4555, 2014.

[70] Strother H Walker and David B Duncan. Estimation of the probability
of an event as a function of several independent variables. Biometrika,
54(1-2):167–179, 1967.

[71] Minjie Wang, Tianjun Xiao, Jianpeng Li, Jiaxing Zhang, Chuntao Hong,
and Zheng Zhang. Minerva: A scalable and highly efficient training plat-
form for deep learning, 2014.

[72] Naiyan Wang and Dit-Yan Yeung. Learning a deep compact image rep-
resentation for visual tracking. In Advances in Neural Information Pro-
cessing Systems, pages 809–817, 2013.

[73] Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization
of deep convolutional neural networks. arXiv preprint arXiv:1301.3557,
2013.

79

	Introduction
	Thesis Contribution
	Publications and Public Competitions

	Background
	Machine Learning and Neural Networks
	Loss Function
	Logistic Regression and Softmax Regression
	Gradient Descent
	Multi-Layer Perception
	Convolutional Network
	Activation function
	Back-propagation
	Momentum
	Learning Rate Schedule
	Weight Decay
	Dropout
	Pre-training

	Heterogeneous Parallel Computing
	Benchmark Datasets
	CIFAR-10 and CIFAR-100
	ImageNet

	Toolkit System Design
	Introduction
	cxxnet
	Module Design
	Multi-GPU and distributed support

	MXNet
	System Design
	Engine
	Key-value Store

	Evaluation
	Conclusion

	Structure Design
	Introduction
	Empirical Structure
	LeNet5
	AlexNet
	VGGNet

	Maximum Depth Structure
	Network in Network and Inception
	Constrained Time Structure
	Tiny ImageNet Network
	Conclusion

	Activation Functions
	Introduction
	Saturated Activations
	A Generalized Family of Rectified Activation Functions
	ReLU
	Leaky ReLU
	Parametric ReLU
	Randomized Leaky ReLU

	Batch Normalization
	Explaining the Difficulty of Training with Sigmoids
	Random Initialization Methods
	The Reason for Sigmoid's Failure to Converge

	Experiment on CIFAR-10
	Experiment on CIFAR-100
	Conclusion

	Application to Plankton Classification
	National Data Science Bowl
	Network Design
	Result
	Conclusion

	Conclusion
	Future Work
	Structure Theory
	Activation Function Theory
	Convolution Network with Memory

	Final Thought

	Bibliography

