
Learning Online-Aware Representations using
Neural Networks

by

Khurram Javed

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Khurram Javed, 2020

Abstract

Learning online is essential for an agent to perform well in an ever-changing

world. An agent has to learn online not only out of necessity — a non-

stationary world might render past learning useless — but also because con-

tinual tracking in a temporally coherent world can result in better perfor-

mance than a fixed solution. Despite the necessity of online learning, we have

made little progress towards building robust online learning methods. More

specifically, a scalable online representation learning method for neural net-

work function approximators has remained elusive. In this thesis, I investigate

the reasons behind this lack of progress. I propose the idea of online-aware

representations – data representations explicitly optimized for online learn-

ing – and argue that existing representation learning methods do not learn

such representations. I investigate if neural networks are capable of learning

these representations. My results suggest that neural networks can indeed

learn representations that are highly effective for online learning, but learn-

ing these representations online using gradient-based methods is challenging.

More specifically, long-term credit assignment using back-propagation through

time (BPTT) does not scale with the size of the problem. To address this,

I propose Learning with Backtracking for slowly and continually improving

representations online. The primary idea behind LwB is that while it is not

possible to compute an accurate estimate of the representation update online,

it is possible to verify if an update is useful online.

ii

Preface

Chapter 4 of this thesis is based on a NeurIPS paper I co-authored with Martha

White (Javed and White 2019) whereas preliminary work on Learning with

Backtracking — introduced in Chapter 6 — was done in a paper co-authored

with Martha White and Yoshua Bengio (Javed et al. 2020).

iii

To Mom and Dad

For always supporting me in pursuing my goals and letting me make

seemingly eccentric decisions.

iv

It is all a matter of time scale. An event that would be unthinkable in a

hundred years may be inevitable in a hundred million.

– Carl Sagan.

v

Acknowledgements

The ideas presented in the thesis have evolved over the past two years and

would not have been possible without my interactions with numerous people

in various capacities. First and foremost, I thank my advisor Martha White

who has not only guided me in my research, but also made me a clearer thinker,

a better writer, and a well-rounded researcher. Martha can cut to the essence

of an idea quickly, which benefited me immensely in refining my ideas. I’m also

grateful to her for providing me the freedom to pursue directions that excited

me. Second, I’m grateful to Rich Sutton for instilling in me a drive to work

on important problems. Rich’s unwavering commitment to doing good science

with a clear goal in mind has inspired me to aspire the same and has made my

research more fulfilling. Third, I’m grateful to Adam White for making me a

better critic of my as well as other’s work; reviewing papers with Adam has

had a profound impact on how I approach my research. Finally, I’m thankful

to Yoshua Bengio for advising me during my visit to MILA. Yoshua’s ideas

have guided my research years even before I started my masters, and working

closely with him has only increased his influence on my work.

I’m also thankful to my peers, colleagues, and friends at RLAI and Amii

for providing a stimulating and fun environment for doing research. In par-

ticular, I would like to thank Abhishek Naik, Ehsan Imani, Fernando Her-

nandez, Han Wang, Kenny Young, Matthew Schlegel, Paritosh Goyal, Raksha

Kumaraswamy, Roshan Shariff, Ryan Dorazio, Samuel Sokota, Shibhansh Do-

hare, Tian Tian, Vincent Liu, Yi Wan, and Zaheer Abbas. Raksha specifically

made the two years more fun and the never-ending winters more bearable.

vi

Table of Contents

1 Introduction 1

2 Preliminaries 7

2.1 A Brief History of Neural Networks 7

2.2 The Catastrophic Interference Problem 9

2.2.1 The success of memory based methods 11

2.3 Representation Learning in Neural Networks 12

2.3.1 Supervised representation learning 12

2.3.2 Unsupervised representation learning 13

2.3.3 Learning disentangled representations 15

2.3.4 Representation search 15

2.4 Credit Assignment Through Time 16

2.4.1 Challenges in scaling BPTT 18

3 Problem Formulation and Notation 20

3.1 Problem Formulation . 20

3.2 An Architecture for Online Learning 22

4 Learning Online-aware Representations using Gradients 24

4.1 Related Work . 24

4.2 Online-aware Meta-learning 26

4.3 Experimental Evaluation . 27

4.3.1 Baseline methods . 27

4.3.2 Online sine regression benchmark 29

vii

4.3.3 Measuring robustness to interference of the learned rep-

resentations . 32

4.3.4 Visualizing the learned representations 36

4.4 Closing Discussion on OML 37

5 Limitations of Gradient-based Representation Learning 39

5.1 Catastrophic Interference in OML Updates 39

5.1.1 Ten-state Markov Process 40

5.1.2 Implementation details 41

5.1.3 Empirical evaluation 41

5.1.4 Discussion . 42

6 Representation Learning with Backtracking 43

6.1 Representation Search . 44

6.1.1 Generate and test . 44

6.1.2 Learning with backtracking 45

6.1.3 Empirical evaluation of LwB 46

6.2 Closing Discussion . 47

7 Final Thoughts 48

References 50

Appendix A Generalizations of the Problem Formulation 58

A.1 Dynamic regret . 58

A.2 POMDP Problem Formulation 59

A.3 POMDP Architecture for Online Learning 60

viii

List of Tables

4.1 Hyper-parameters tried fro each method. RLN lr and γ are the

learning rates used to update Uφ and gW respectively . Online-

SGD uses the same lr for both whereas the other two methods

start with a γ of 3 × 10−3 and adapt it online. ω controls the

l1 regularization strength on the parameters of the PLN, and

is adapted online starting from a value of 1. All methods use

the Adam optimizer (Kingma and Ba 2015) to update the RLN

whereas Online-SGD uses Adam to updated both the RLN and

the PLN. B1 and B2 are decay rates for the first-order and

second-order running moment estimates of the gradients, and

are used by Adam. Finally, ER-RLN has additional parameters

to control the size of the buffer. These are (1) size of the buffer,

(2) the ratio of buffer updates for learning RLN to the online

updates to PLN, and (3) the size of the mini-batch of data

sampled from the buffer for a learning update. 31

4.2 Values of hyper-parameters tried for each method for investi-

gating how robust representations learned by different methods

are to interference. I report the result on the best configuration

for each method. 35

ix

List of Figures

1.1 Online tracking vs a fixed solution in a four-room grid-world.

The blue dot represents the position of the learner, and the

intensity of the color — higher is better — of a room represents

the performance of the learner in that room. I assume that the

learner cannot represent the globally optimal solution due to

limited capacity. In such a setting, an online learner can adapt

its capacity to the room it is currently in at the expense of other

rooms whereas an offline learner has to optimize for a solution

valid for all rooms simultaneously. Assuming the learner spends

more time in a room than it takes to adapt to a room change,

the online learner can perform better than a fixed solution. . . 2

1.2 Depending on the goal of the agent, different abstractions of

the same map are ideal for learning. A general-purpose road

navigation agent needs to know about the location of roads and

landmarks, but information about the position of the trees, and

rooftops of buildings can be ignored. A kayaking agent needs

even less information — a map of the waterways is sufficient.

Operating on an abstracted view that only has the necessary in-

formation is both computationally and memory efficient. More-

over, by ignoring the extraneous information, the agent can be

robust to changes that are not reflected in its abstracted view

of the world, enabling generalization. 4

x

3.1 An architecture for online learning. I decompose the online

prediction function into two components — a Representation

Learning Network (RLN) and a Prediction Learning Network

(PLN). The RLN aims to learn a representation R
d of the state

that is effective for online tracking. Given R
d, the PLN tracks

the target yt. PLN is updated at every step to incorporate feed-

back from the environment in real-time, and should represent

a method that can effectively learn online — such as a linear

regression predictor. 21

4.1 Computation graph for computing gradients for a single update

of RLN. gW is updated for k time-steps using the QPLN func-

tion, accumulating regret (or loss) for these k steps. If QPLN is

differentiable, we can compute gradients for φ to minimize this

regret using back-propagation through time (BPTT). 28

4.2 The state-vector for the OSR benchmark. The first element in

the vector is a number uniformly sampled from [5, -5], whereas

the remaining elements encode a one-hot encoded number be-

tween 1 and 50. In the picture, the encoded number is 2. That

means the target for this observation is given by T2(2.3) =

a2 × sin(2.3 + φ2), where 2.3 is in radians. 30

4.3 An exponentially decayed average of the loss for 25 million

steps. The estimate of the loss is decayed by 0.97 at every

step. OML achieves significantly lower running loss, and as a

result, regret over 25 million steps. Experience-replay performs

poorly because the target-distribution changes over-time and

the outdated data in the replay buffer is not effective for learn-

ing whereas Online-SGD suffers from catastrophic forgetting.

All results are averaged over 30 runs and the error bars are 95%

confidence intervals created by 1,000 bootstrap samples. 33

xi

4.4 Error distribution on fifty functions after learning them from

a correlated stream of data in a single pass. The function are

seen in the same order as their ID. Error on earlier functions

is higher due to interference from learning that happens af-

terward. Scratch representations are generated by a randomly

initialized RLN. Apart from OML, all methods are incapable

of learning without forgetting. OML-Transformed uses repre-

sentations that are an invertible and linear transformation of

OML representation but is still incapable of learning without

forgetting. The poor performance of OML-Transformed is in-

compatible with the idea that representations can be evaluated

by measuring how good they are at linearly disentangling fac-

tors of interests (Alain and Bengio 2017; Anand et al. 2019;

Chen et al. 2020) . 34

4.5 Visualization of representations learned by the RLN of OML,

and SGD-Online. OML-Transformed representations are a lin-

ear transformation of the OML representations. OML learns

highly sparse state representations. Additionally, representa-

tions for states that encode a different value of i do not overlap.

This allows a learner to adapt to a change in part of the tar-

get function without impacting the knowledge associated with

targets of other states. SGD-Online also learns sparse represen-

tations, but the representations for states with different targets

overlap. In-fact — as shown in the first column — a large part

of the representation space is not used by the SGD-Online to

represent any state. OML, on the other hand, effectively uses

the complete representation space while still achieving sparse

state representations. 36

xii

5.1 A ten-state Markov Process for evaluating the robustness of

OML to interference. The top-green number in every circle is

the state whereas the bottom-red number is the target. The ar-

rows represent the transition function. The two shaded states —

3 and 3.1 — are close in the input space, but have different tar-

gets. A neural network trained online in this environment would

have to deal with interference between the targets of states 3

and 3.1. 40

5.2 Average error on all states as the agent tracks in the environ-

ment using a BPTT truncation window of 5 and 25. Both curves

are a running average computed using a decay rate of 0.995. In

both cases, the learner is incapable of converging to a fixed

solution, even though it can momentarily find good solutions.

This happens because RLN updates computed on correlated

data trajectories are biased, and can interfere with each other.

Both experiments were repeated 30 times using random seeds,

and the error margins represent 95% confidence intervals using

1,000 bootstrapped samples. The k = 5 experiment updates

RLN five times more frequently than k = 25 and can learn

faster, albeit with more noisy updates. 41

xiii

6.1 Running average of the error on all states of the environment.

The OML results are taken from the previous chapter. LwB

uses proposals generated using OML with k = 5. The proposals

are generated using an RLN learning rate sampled uniformly

from {10−5, 10−4, 10−3, 10−2}. Each proposal is verified for 50

steps before accepting or rejecting it. LwB prevents harmful

updates, and can converge more robustly to achieve near zero

loss. Due to the 50 interactions needed for verification, LwB

uses nearly 90% of the interactions with environment to verify

proposals. As a result, it learns using an order of magnitude

fewer learning updates. All results are averaged over 30 runs,

and the confidence intervals represent 95% intervals constructed

using 1,000 bootstraps. 45

A.1 Architecture for online learning. I decompose the prediction

learning function into two components — a Representation Learn-

ing Network (RLN) and a Prediction Learning Network (PLN).

The RLN represents the state update function U and is re-

cursively updated to incorporated a new observation into the

state of the agent. Given U and agent state, the agent learns a

prediction learning network (PLN) represented by gW to make

predictions for a target. 60

xiv

Chapter 1

Introduction

An agent interacting in the world gets constant feedback from the environ-

ment. This feedback can either come from passively observing the environ-

ment dynamics over time, or taking actions in the environment and observing

the consequences of these actions. An agent that uses this feedback to adapt

its behavior in real-time is broadly defined as an online-learning system. An

offline-learned system, on the other hand, aims to learn a fixed solution for

achieving goals and ignores the real-time feedback from the environment for

adapting its behavior. An online learner has two distinct advantages over an

offline-learned system.

First, an online learner can track — adapt to do well in the current part of

the world at the expense of temporally distant parts. In a temporally coherent

world, tracking can achieve better performance than a fixed solution (Sutton

et al. 2007). This is because if the world is much larger than the agent — as

often is the case — the agent might not have the capacity to represent the

globally optimal solution. In such a setting, an online learner can focus its

limited capacity to specialize on the part of the world it is currently in at the

expense of temporally distant parts as shown in Figure 1.1. An offline learned

system, on the other hand, has no option but to settle on a fixed sub-optimal

solution.

Tracking is also essential if the world is non-stationary: no amount of

offline learning can be sufficient in a world that changes (Silver et al. 2008);

these changes can be due to changes in the environment — evolving seasons,

1

(a) Online tracking (b) Fixed solution

Learner

Figure 1.1: Online tracking vs a fixed solution in a four-room grid-world. The
blue dot represents the position of the learner, and the intensity of the color
— higher is better — of a room represents the performance of the learner in
that room. I assume that the learner cannot represent the globally optimal
solution due to limited capacity. In such a setting, an online learner can
adapt its capacity to the room it is currently in at the expense of other rooms
whereas an offline learner has to optimize for a solution valid for all rooms
simultaneously. Assuming the learner spends more time in a room than it
takes to adapt to a room change, the online learner can perform better than
a fixed solution.

unpredictable natural disasters — changes in other agents — evolving prey-

predator relationships — or changes in the body of the agent — increase in

friction between actuators, malfunctions due to injuries, etc. Moreover, the

set of changes has a long tail — changes can be caused by a once in a life-time

pandemic (Heaven 2020). To be robust to these changes, an offline learned

system has to anticipate them and take them into account when learning. An

online learner, on the other hand, can afford to not worry about them until

they have occurred.

Second, the performance of an online learning system is not limited by the

quality of the data-set used for learning. The learner can gather more data by

interacting with the world and fill gaps in its knowledge. Online data collection

is especially important if the data-distribution has a long tail; capturing this

long tail in an offline data-set cannot only be prohibitively time consuming

and expensive but also wasteful — the agent might never encounter some rare

cases in the long tail of the data.

A real-world example of the challenges introduced by the long tail of the

2

data-distribution is the difficulties faced by Tesla AI for training a simple stop-

sign detector. Even after collecting a large data-set of stop-signs using a fleet

of cars, they observed that there were rare instances where the system failed.

To fix this, they collected data of the failure cases, retrained the detector on

the failure cases, and repeated the process many times to capture the long-

tail of stop signs (Karpathy 2020). This human-in-the-loop learning achieved

good results but was expensive and relied on human interventions. An online

learner, on the other hand, can side-step these issues by adapting to rare cases

online. For example, if there is a peculiar stop-sign on a route that a user

takes — perhaps the sign is partially occluded by a tree and only detected by

the learner when the car passes the tree — an online learner might miss the

sign the first time it drives through the route — only seeing it after passing

the tree. However, it can learn from its mistake and correctly detect the

stop sign next time. An offline system, on the other hand, has to learn to

simultaneously deal with the set of all peculiar stop-signs in the world, wasting

useful representation capacity in the process.

In addition to learning online, an intelligent agent must learn abstrac-

tions from sensory data — representation learning — for achieving goals. (1)

Computation and memory efficiency, and (2) generalization are the two main

motivations for learning abstractions.

(1) A practical learner must use its limited capacity efficiently by discarding

sensory information not useful for achieving goals. For example, if the goal of

the agent is to learn to use banknotes for transactions, it is sufficient to learn

to authenticate them and learn to discriminate between their denominations.

All other details — such as pixel-level details and name of the founding-father

on the note — can be discarded (Epstein 2016). This allows the learner to

represent an abstracted view of the note using a fraction of the bits required

to represent the actual note.

(2) Representation learning also enables generalization. Generalization is

the ability of a learner to achieve goals in a part of the world it has never seen

before. The new part of the world — despite being different from the parts

the agent has visited in the past — might appear similar to something the

3

Figure 1.2: Depending on the goal of the agent, different abstractions of the
same map are ideal for learning. A general-purpose road navigation agent
needs to know about the location of roads and landmarks, but information
about the position of the trees, and rooftops of buildings can be ignored.
A kayaking agent needs even less information — a map of the waterways is
sufficient. Operating on an abstracted view that only has the necessary infor-
mation is both computationally and memory efficient. Moreover, by ignoring
the extraneous information, the agent can be robust to changes that are not
reflected in its abstracted view of the world, enabling generalization.

agent has seen in its abstracted view of the world. As long as the differences

between the two parts are not important for achieving goals, the agent would

generalize effectively. Examples of the two benefits of representation learning

are depicted in Figure 1.2.

We have made significant progress for learning better neural network repre-

sentations over the last decade. Neural networks trained with back-propagation

have achieved impressive results on prediction tasks — such as image classifica-

tion (Krizhevsky et al. 2012), natural language processing (Brown et al. 2020),

object detection (Girshick 2015; Redmon et al. 2016; Ren et al. 2015) — and

control tasks — learning to play Atari (Mnih et al. 2015), Starcraft (Vinyals

et al. 2019), and DOTA (OpenAI 2018). Nonetheless, existing methods have

two limitations: they are incompatible with online learning, and they do not

learn representations explicitly optimized for online-learning.

Current representation learning methods require an accurate estimate of

the gradient of a metric for updating the parameters of a neural network.

Computing this gradient online is often not possible. For example, to get a

low variance estimate of the gradient for a single learning update, OpenAI

4

Five and AlphaStar use 1 million (OpenAI 2018) and 65 thousand (Vinyals

et al. 2019) observations respectively. Similarly, the largest GPT-3 language

model uses 3.2 million samples for a single learning update (Brown et al. 2020).

Additionally, representations learned by existing algorithms are not opti-

mized for online tracking. As I shall show in later Chapter 4, representations

learned with the explicit goal of tracking — online-aware representations —

are highly effective at online learning. Conversely, representations that are not

online-aware can be poor for online adaptation even if they contain the same

information as their online-aware counterparts.

Keeping in mind the necessity of online learning and representation learn-

ing, I am interested in answering two questions in this thesis: first, can neural

networks learn online-aware representations — representations that are explic-

itly optimized for online learning, and second, can they learn these represen-

tations online.

The first question is agnostic to how the neural network is learned. I am

simply interested in investigating if, in the function class of neural networks,

there exists a solution — a set of network parameters — that can transform

the input sensory data to a vector representation that enables effective online

learning. The second question, on the other hand, pertains to how the neural

network is learned — we not only want to learn online-aware representations

but also learn these representations online.

The rest of the thesis is organized as follows. In Chapter 2, I will sum-

marize the existing work on catastrophic forgetting, representation learning,

and credit-assignment through time in neural networks. I will then define

the online prediction learning problem and give an overview of my online

learning architecture in Chapter 3. Chapter 4, will cover Online-aware Meta-

Learning (OML) (Javed and White 2019) — a gradient-based method for

learning online-aware representations that achieves impressive empirical re-

sults. Despite the success of OML, in Chapter 5, I will show that OML does

not address the interference problem in neural networks. To address the limi-

tations of OML, I will introduce Learning with Backtracking (LwB) in Chap-

ter 6. LwB is a preliminary version of a general scalable online representation

5

learning method that does not suffer from interference. Finally, in Chapter 7,

I will conclude by summarizing the key takeaways of the thesis and speculate

a future direction for online representation learning.

6

Chapter 2

Preliminaries

In this chapter, I will give a brief overview of the broader context surrounding

the work in this thesis. The broader context includes (1) a history of neural

networks and the back-propagation algorithm, (2) catastrophic interference:

reason neural networks have been ineffective for online learning, (3) a summary

of current paradigms for representation learning methods for neural networks,

and (4) an overview of the credit-assignment through-time problem.

2.1 A Brief History of Neural Networks

Neural networks are a function class loosely inspired by how the brain processes

information. A neural network consists of a set of nodes — neurons — that are

connected to neighboring nodes through incoming and outgoing edges. The

edges are represented by tunable weights. Information enters a node from the

incoming edges, is processed at the node, and forwarded to the outgoing edges

based on some criteria. These nodes can be arranged in layers, and the layers

can be cascaded to construct a deep neural network. Learning is driven by

changes in the tunable weights on the edges. Information processing in neural

networks is distributed across the nodes that only communicate through the

edges. This distributed and cascaded structure of the neural networks makes

them well suited for learning hierarchical representations.

Early work in neural networks was inspired by attempts at understanding

the learning principles in biological brains. Hebb (1949) proposed Hebbian

learning — the idea that changes in the strength of the connections between

7

neurons drive learning and if two nearby neurons fire at the same time, the con-

nection between them is strengthened. Farley and Clark (1954) — motivated

by Hebb’s work — simulated non-linear networks in a computing machine,

and showed some promising preliminary results. Later that decade, Rosen-

blatt (1958) proposed Perceptron, an algorithm for processing visual stimuli.

Perceptron was inspired by how biological beings processed visual information

and consisted of a single layer neural network — a linear classifier. It showed

promising empirical results on visual tasks. Soon after, Minsky and Papert

(1969) showed that despite the empirical success of the perceptron, it could

not represent some rudimentary functions, such as an Exclusive-OR. They

suggested that multi-layer neural networks might fix the limitation of the per-

ceptron. The negative results from Minsky and Papert (1969) discouraged fur-

ther research on neural networks, and for nearly a decade, no one knew how to

extend perceptron to a multi-layer setting. It was not until back-propagation

— independently discovered by Lecun (1985), Rumelhart et al. (1986), and

Werbos (1974) — was proposed that the neural network community found a

way to train deep neural networks.

Since then, the back-propagation algorithm, combined with more data

(Deng et al. 2009), compute, and better models (Goodfellow et al. 2014; He

et al. 2016; Hochreiter and Schmidhuber 1997; LeCun et al. 1998; Vaswani

et al. 2017) has been the driving force behind the success of neural networks.

Neural networks based systems have achieved impressive performance on a

multitude of tasks (Brown et al. 2020; Moravk et al. 2017; OpenAI 2018; Sil-

ver et al. 2017; Vinyals et al. 2019) and continue to improve with increase in

capacity and compute (Brown et al. 2020). Despite their success, however,

they have remained ineffective for online learning. One of the main reasons is

that neural networks trained with back-propagation suffer from Catastrophic

Interference.

8

2.2 The Catastrophic Interference Problem

Catastrophic interference in neural networks is the tendency of back-propagation

to over-write the existing knowledge stored in the parameters of a neural net-

work. While it is expected that new learning will interfere with previous learn-

ing to some extent, the degree of interference in a neural network trained with

back-propagation is crippling. Significant research — conducted both before

and after the deep learning revolution — has tried to address the problem,

but a robust and scalable solution is yet to be found.

The term Catastrophic interference was coined by McCloskey and Cohen

(1989). They noticed that neural networks — when trained on a new task —

performed poorly on previously learned tasks. They further showed that after

sufficient training on a new task, the performance on older tasks was as bad

as an untrained network, and relearning the older tasks a second time was not

any faster.

French (1999) studied the phenomenon in more detail and argued that

catastrophic interference in neural networks exists because of representation

overlap and weight cliffs — small changes in the parametric space causing

large changes in the output. If, while learning a new task, some of these

cliffs are traversed, the output of the network on older tasks could change

drastically, causing forgetting. French (1992) proposed node-sharpening as

a solution to address forgetting. Node sharpening only marginally helped

with interference by making neural network representations less distributed.

More recently, Ghiassian et al. (2020) and Liu et al. (2019) proposed alternate

ways for making neural network representations less distributed. Ghiassian et

al. (2020) proposed mapping the input observation to a sparse high-dimension

vector before passing it to a neural network whereas Liu et al. (2019) proposed

regularizing the neural network activations to make them more sparse and less

distributed. Both methods showed promising results for online learning and

imply that making neural networks less distributed reduces interference.

Robins (1995) took a different approach and suggested storing older data

for reducing interference. He showed that by interleaving data of older tasks

9

with the data of a new task, it is possible to significantly reduce forgetting.

When older data is not available, he proposed using synthetic data represen-

tative of the older tasks instead.

Rehearsal based methods have been extensively studied since then. Gen-

erally, they store instances of the data-stream in a buffer or the parameters of

a generative model; during learning, they interleave the most recent sample

of data with older data sampled from a buffer (Aljundi et al. 2019; Chaudhry

et al. 2019; Javed and Shafait 2018; Lin 1992; Mnih et al. 2015; Rebuffi et

al. 2017; Riemer et al. 2019; Schaul et al. 2015) or generated using a model

(Shah et al. 2018; Shin et al. 2017), and update the representation using a

combination of old and new data. More recent work has explored the possi-

bility of storing data selectively (Aljundi et al. 2019; Lopez-Paz and Ranzato

2017; Rebuffi et al. 2017); however, selective storage methods have shown to

be only marginally helpful, if at all; the simplest implementations of memory

buffers — based on recency for non-stationary problems and reservoir sampling

for stationary problems — stay competitive (Chaudhry et al. 2019; Javed and

Shafait 2018).

A different family of methods prevents interference by biasing the online

update. They identify parameters of the model useful for older tasks, and

regularize the weight updates such that weights important for older task are

less plastic (Aljundi et al. 2018; Kirkpatrick et al. 2017; Lee et al. 2017; Zenke

et al. 2017). These methods work well when it is possible to identify weights

important for older tasks (Kirkpatrick et al. 2017). However, an effective

method for identifying important parameters online is yet to be found.

Researchers have also looked at the human and animal brain for inspira-

tion. McClelland et al. (1995) suggested that dual learning systems — a fast

and a slower learner — are instrumental for mitigating interference. They

argued that in humans and animals, learning first happens in a highly plas-

tic hippocampal system and is then slowly transferred to the neocortex by

interleaving experience of multiple tasks together. Inspired from their work,

Ans and Rousset (1997) and French (1997) implemented dual systems using

neural networks and showed that they were indeed effective for reducing inter-

10

ference to some extent. Decades later, Kemker and Kanan (2017) proposed a

deep-learning version of a dual learning system that used a generative model

to consolidate knowledge from a fast learner to a slow learner. Despite their

biological motivation, these methods have not resulted in a generally effective

solution; consolidating knowledge from a fast learner to a slow learner faces

the same challenges as learning a single neural network system online.

2.2.1 The success of memory based methods

Among the above-mentioned families of methods, memory-buffer based meth-

ods have enjoyed the most success. For example, DQN (Mnih et al. 2015) —

by employing large recency based buffers — is capable of off-policy Q-learning

(Watkins and Dayan 1992; Watkins 1989) from pixels in Atari games (Belle-

mare et al. 2013). For every learning update, DQN samples an IID batch of

data from its recency buffer for learning, effectively mitigating interference.

While DQN has achieved impressive results for online learning, it has sev-

eral scalability challenges. The amount of data DQN stores in its buffer is

orders of magnitudes larger than the number of parameters in the model and

the horizon of the environment. For example, the Atari learning suite has a

maximum episode length of 18,000 frames (Machado et al. 2018) and the DQN

model has roughly 80,000 parameters (Mnih et al. 2015). The buffer, on the

other hand, stores the equivalent of 7 billion parameters (1,000,000 samples

of dimension 84 x 84). Even if the storage requirement of DQN scaled lin-

early with the horizon of the problem, the amount of storage needed for the

buffer becomes prohibitively large very quickly. Reducing the size of the buffer

adversely impacts the performance (Fedus et al. 2020).

An alternative to DQN for control is the on-policy actor-critic family of

methods (Sutton et al. 2000). Actor-critic methods, when combined with back-

propagation to learn deep networks, also suffer from catastrophic interference.

One way of avoiding interference is to collect a large batch of on-policy data —

by letting the agent run for a long time — before an update or by deploying

multiple actors in parallel on copies of the environment (Mnih et al. 2016).

These solutions are undesirable because an online learner only has access to a

11

single environment, and collecting a large batch of data for a single learning

update prevents the learner from incorporating feedback from the environment

in real-time.

To summarize, catastrophic interference is a bane when learning neural net-

work representations online using back-propagation, and decades of research

has not produced a promising solution.

2.3 Representation Learning in Neural Net-

works

Setting aside the catastrophic interference problem, significant progress has

been made in designing representation learning methods for offline learning.

2.3.1 Supervised representation learning

The first big success of representation learning with neural networks was

AlexNet (Krizhevsky et al. 2012). Krizhevsky et al. (2012) showed that a

neural network trained by minimizing a supervised objective end-to-end on

a large-scale data-set — Imagenet (Deng et al. 2009) — can learn powerful

representations of the data. Yosinski et al. (2014) studied the transferability

of Imagenet representations and found that when a new task is similar to the

Imagenet classification task, models pre-trained on Imagenet perform much

better than similar models trained on the new task from scratch. However,

they also found that if the new task is significantly different, pre-training on

Imagenet can hurt performance.

It is not surprising that representations learned by optimizing a supervi-

sory signal are ineffective for transferring to radically different tasks. A neural

network trained to minimize a supervisory signal has no incentive to keep in-

formation in the representation that is not useful for that supervised task. If

a new task relies on information that is abstracted away in the representa-

tion, the representation would be a poor candidate for solving this new task.

Yosinski et al. (2014) showed that one way around this issue is to fine-tune

the last k layers of the deep neural network on the new-tasks — where k is

12

a hyper-parameter. They reasoned that the initial layers of a deep neural

network extracted general-purpose representations that could be transferred

to radically different tasks whereas the latter layers of the network were more

task specific and needed to be fine-tuned on new tasks.

The success of deep supervisory learning provided the much-needed evi-

dence to demonstrate the representational power of neural networks. However,

supervised representation learning is not scalable. Labeling a large amount of

data is expensive and time-consuming. Moreover, offline supervised learning

methods assume that the input and target distribution is stationary, and can-

not learn representations effective for non-stationary environments.

2.3.2 Unsupervised representation learning

To deal with the scalability issues of supervised learning, the deep learning

community soon transitioned to unsupervised learning. Unsupervised learning

methods, instead of relying on targets provided by experts, construct their

target. These targets can be created by learning a generative model of the

data-distribution (Goodfellow et al. 2014; Kingma and Welling 2013) or by

target functions hand-crafted by human experts, such as in self-supervised

learning.

One of the earliest attempts at unsupervised representation learning was

to learn a compressed representation of the data using an auto-encoder (Hin-

ton and Salakhutdinov 2006; Kramer 1991; Vincent et al. 2008; Vincent et

al. 2010). An auto-encoder transforms the input data into a low dimensional

embedding R
d, and reconstructs the input from this low dimensional embed-

ding. Once the learning has finished, the embedding can be treated as a rep-

resentation capturing the important factors of the data. While auto-encoders

are appealing — they are easy to understand and scale — reconstructing the

observation in the input space — such as pixels — can force the representation

to focus on unimportant pixel-level details. For example, Anand et al. (2019)

showed that representations learned by VAEs (Kingma and Welling 2013) —

a generative model built on the principles of auto-encoders — are no better

than randomly initialized networks for one-step prediction tasks on the Arcade

13

learning environment (ALE) (Bellemare et al. 2013).

Self-supervised learning is a recently popularized subset of unsupervised

representation learning. Instead of predicting targets given by human ex-

perts — as done in supervised learning — self-supervised learning proposes to

predict auxiliary, task-independent, targets that are a function of the input

observation. Given a data-point x, a self-supervised learning task consists of

two functions f and g. The input to the model and the target label is given by

f(x) and g(x) respectively, where both f and g are hand-designed to encode

useful inductive biases. Some examples of self-supervised tasks are: extract-

ing two patches from input observation, and predicting the relative location

of the patches in the observation (Doersch et al. 2015); predicting the color

of the pixels of an image (Zhang et al. 2016); rotating the input observation

and predicting the degree of rotation (Gidaris et al. 2018); perturbing patches

of images and forcing the network to classify them as belonging to the same

class (Dosovitskiy et al. 2014); maximizing mutual information between input

and the representation (Bachman et al. 2019; Hjelm et al. 2019) etc.

Self-supervised methods can achieve similar results as supervised learning

for learning image classifiers, while using only a fraction of the labels (Chen

et al. 2020; Hénaff et al. 2019; Oord et al. 2018). However, they rely on

target functions that rely on expert knowledge and intuition. Moreover, self-

supervised methods learn representations by making one-step predictions in

the observation space; it is unclear if one-step predictions are sufficient for

learning good representations, especially when verifying that a representation

is good is a multi-step process.

Irrespective of the success and promise of unsupervised representation

learning, unsupervised learning is not consistent with the idea that the goal

of representation learning is to build abstractions for achieving goals more

efficiently. Without any knowledge of the goal, a representation learning al-

gorithm cannot distinguish between necessary and unnecessary information.

Going back to our kayaking example in Figure 1.2, an unsupervised learning

method is unlikely to abstract away details of the roads and buildings without

prior knowledge of the goal.

14

2.3.3 Learning disentangled representations

A part of the representation learning community has looked at the notion

of learning disentangled representations. The idea behind disentangled rep-

resentations is to learn a set of variables that can capture independent fac-

tors of change in the data. For instance, the color and type of a car are

independent of each other — it is possible to change one while keeping the

other constant — and would be separated in a disentangled representation

of a car. Proponents of learning disentangled representations argue that sep-

arating independent factors of change can lead to systematic generalization.

Several unsupervised methods for learning disentangled representations have

been proposed (Burgess et al. 2018; Higgins et al. 2017; Mathieu et al. 2016).

However, Locatello et al. (2019) showed that coming up with a general unsu-

pervised algorithm for disentangling factors of change is impossible. The only

way to achieve disentanglement using an unsupervised method is to incorpo-

rate assumptions about the data distribution in the representation learning

algorithm. Moreover, they showed — in a large-scale study — that exist-

ing unsupervised methods for disentangling representations do not succeed at

learning these representations.

More recent work has looked at a more principled approach to learning

disentangled representations. Bengio et al. (2020) proposed a meta-learning

objective that exploits sparse interventions — changes in one of the indepen-

dent factors of change — for disentangling mechanisms of the world. The

central idea is that a disentangled representation can allow a learner to adapt

to interventions quickly; conversely, optimizing for speed of adaptation can

help a learner find these representations. Additionally, Bengio et al. (2020)

proposed learning a causal structure between the learned abstractions of the

world.

2.3.4 Representation search

Representation search is a less popular approach to representation learning.

Instead of using back-propagation, the idea is to search for a representation

15

by continually generating new features — often randomly — and maintaining

those that improve performance. Mahmood (2017) and Mahmood and Sutton

(2013) showed that continually generating random features can improve rep-

resentations on a simple domain. They further showed that feature search can

be combined with back-propagation to improve over back-propagation alone.

These methods are promising because search is easy to scale, and can

achieve impressive results on complex tasks (Silver et al. 2017). However,

random-search could be extremely slow at discovering meaningful abstractions.

To the best of my knowledge, representation search is yet to be demonstrated

as a mechanism for learning representations in deep neural networks in a con-

vincing manner.

2.4 Credit Assignment Through Time

The last bit of preliminary knowledge required for this thesis is the problem

of credit-assignment through time. It can be informally defined as linking

the decisions and components of a learning system with outcomes, especially

when the outcomes are delayed in time (Minsky 1961). This problem arises

in a multitude of situations: studying for a test can result in better grades,

but the grades might not be announced for months after the test; storing food

at room temperature might spoil the food but only after a few days; eating

excessive junk food might increase risk of heart diseases, but the effect might

not be observable for decades. In all these examples, linking the effect with the

cause is not trivial, and requires pinpointing the actions and internal structure

of the learner — among hundreds and thousands of actions and components

— that led to the outcome.

Early work in credit assignment can be divided into two different lines of

research. One looked at assigning credit of outcomes to actions while ignoring

the internal decisions that led to the action and the other aimed to assign

the credit of error in a prediction to the internal decisions of the learner.

Sutton (1984) termed the former the temporal credit assignment problem and

the latter the structural credit-assignment problem. If the target is a function

16

of a sequence of observations — such as language translation — the struc-

tural credit-assignment can involve assigning credit to an internal decision

that happened multiple time-steps ago. Consequently, both the temporal and

structural credit-assignment problem require credit-assignment through time.

For temporal credit-assignment, Temporal-difference learning (TD learn-

ing) is one of the most successful methods. The idea behind TD learning is to

propagate credit from the outcome back to the action on every subsequent visit

to the relevant states (Sutton 1988). A learner achieves this by bootstrapping

its own belief about the world to create its targets. TD learning is light-weight,

principled, and can do arbitrary long credit-assignment in a fully incremental

way given enough interaction with the world. It can also be combined with

other incremental methods, such as eligibility traces (Sutton 1984), that use

heuristics based on recency and frequency of actions to assign credit. Finally,

TD learning can be combined with planning (Sutton 1990) to do long-term

temporal credit assignment without revisiting the states many times. One of

the earliest successes of TD methods was TD-gammon (Tesauro 1995), a rein-

forcement learning system that learned to play backgammon. Backgammon,

like most strategy games, requires temporal credit-assignments as moves can

have delayed consequences, and TD learning provided an effective solution.

The solutions to structural credit-assignment through time have also en-

joyed success over the past decades. The driving force behind this line of work

is Back-propagation through time (BPTT) (Mozer 1989; Robinson and Fall-

side 1987; Werbos 1988; Williams and Zipser 1995). BPTT, combined with

advances in recurrent neural network architectures (Cho et al. 2014; Hochre-

iter and Schmidhuber 1997), can be used to train recurrent neural networks

that predict a target that is a function of multiple observations. For example,

translation of a sentence from English to French depends on the complete sen-

tence in English and not individual words. A learner that processes text at

word level would need a mechanism to assign the credit of an error in transla-

tion to internal decisions made over multiple time-steps. BPTT has been used

to train impressive systems for language translation (Bahdanau et al. 2014),

and control (Kapturowski et al. 2018), among other tasks.

17

2.4.1 Challenges in scaling BPTT

Unlike TD, BPTT does not scale well with the delay between the internal

decisions and the outcome; The most computationally efficient implementation

of BPTT stores all the interval activation of a network at every time step. This

means that for a network with m activations (not the same as weights), BPTT

would require memory to store m × k activations, where k is the truncation

window. This might seem doable — memory is cheap — but if our end-goal is

to scale models to have trillions of parameters, requiring an order of magnitude

more memory for a single learning update is not desirable.

The memory-requirement of BPTT can be reduced at the cost of an in-

crease in computation time. For instance, Chen et al. (2016) proposed selec-

tively storing activations of past time steps. The remaining activations can be

recomputed when needed for propagating the gradients. Along similar lines,

Gruslys et al. (2016) proposed a more general algorithm that can trade-off

memory and computation to fit the needs of the user. However, even the most

memory efficient implementation of BPTT — one for which the computation

time grows quadratically with the horizon of propagation — requires storing

at-least the sensory data of a sequence. Storing sensory data for arbitrary

long sequences is also not scalable, especially for high-dimensional data. For

instance, a 1080p HD video frame has dimensions 1920×1080×3. Storing only

a thousand of these frames in an uncompressed form would require roughly 6

billion bytes of storage.

In addition to memory issues, BPTT also suffers from vanishing and ex-

ploding gradients. Back-propagation requires multiplying the gradients mul-

tiple times with numbers that are often smaller than one. This causes the

gradient to decay exponentially (Bengio et al. 1994; Pascanu et al. 2013),

making learning prohibitively slow.

Some recent work has looked at attention mechanisms (Vaswani et al. 2017)

for overcoming the vanishing gradient problem for arbitrary long sequences.

Instead of back-propagating through all past sequences, (Ke et al. 2018) pro-

posed an attention mechanism that can introduce skip connections in the neu-

18

ral network computation graph, essentially allowing the gradients to jump

back multiple time-steps. They achieve skip-connections by using an atten-

tion mechanism to make the output a function of a sparse set of past inputs.

Their method effectively addresses the vanishing gradient problem but does not

address the memory concerns of BPTT. Follow-up work by (Kerg et al. 2020)

addresses the memory concerns of BPTT to an extent. They propose using a

screening mechanism to store promising input observations for assigning credit

in the future. Their method assumes that credit for an outcome can be as-

signed to a sparse set of observations, and these observations can be identified

in advance. This is true in many cases, but untrue for others. For instance,

allocating limited capacity of a neural network to a large set of inputs is a

credit-assignment problem that requires taking into consideration the com-

plete input distribution. The capacity allocation problem can arise even if

the inputs are Markovian, and the relevancy screening does not provide an

adequate solution. Nonetheless, their work is a promising direction for scaling

BPTT to arbitrary long horizons.

19

Chapter 3

Problem Formulation and

Notation

I define the online prediction problem in terms of a Markov Process (MP).

An MP is defined by (S, p), where S is the set of states, and p : S → S =

P (St+1 = st+1|St = st) is the transition model of the world. At every time

step, the MP transitions from St to St+1 ∈ S following p.

3.1 Problem Formulation

The online prediction problem consists of a Markov process (S, p) and a non-

stationary target function ft : S → Y . The goal of the learner is to predict the

target yt ∈ Y given by ft(St), where St is the state at time-step t. At time t,

the learner outputs ŷt, an estimate of yt, and incurs a loss given by L(yt, ŷt),

where L is a cost function that returns the prediction error of the prediction.

As a result, the MP transitions to a new state St+1 and the learner receives

the true target ft(St) = yt from the world.

Given this setting, we define the goal of the learner as minimizing the error

accrued over time. Let f̂θt be the learner’s estimate of ft, where θ is a set of

tunable parameters spanning a class of functions. The accumulated error up

to time T is defined as:

20

4
a2

a3

ad

Representation Learning Network Prediction Learning Network

w3

w2

w1

wd

·
·
·

State

a1

·
·
·

Uφ gW

St

ŷt

Figure 3.1: An architecture for online learning. I decompose the online pre-
diction function into two components — a Representation Learning Network
(RLN) and a Prediction Learning Network (PLN). The RLN aims to learn a
representation R

d of the state that is effective for online tracking. Given R
d,

the PLN tracks the target yt. PLN is updated at every step to incorporate
feedback from the environment in real-time, and should represent a method
that can effectively learn online — such as a linear regression predictor.

LossT =
T∑

t=1

L(ft(St), f̂θt(St)) (3.1)

=
T∑

t=1

L(yt, ŷt) (3.2)

An alternative formulation to Equation 3.1 would be to minimize dynamic

regret (Zinkevich 2003) by subtracting the best comparator from the loss at

each step. Regret removes the irreducible error of the problem and provides a

more interpretable metric; however, computing dynamic regret requires com-

puting a sequence of optimal comparators which is not trivial for a function

class spanning deep neural networks. Nonetheless, because minimizing accu-

mulated loss also minimizes dynamic regret, I will use the term regret mini-

mization to refer to the goal of the learner even though the learner will never

compute the actual regret. I provide the dynamic regret based formulation of

the problem in Appendix A.1.

The MP formulation of the problem might seem limiting but is sufficient

to study catastrophic interference in neural networks. The solution methods

21

introduced in this thesis are general and can be extended to an MDP or a

Partially Observable MDP (POMDP). With the POMDP generalization, an

online prediction problem can represent important research problems, such as

learning a model of the world for planning (Sutton 1990), or learning General

Value Functions (GVFs) (Sutton et al. 2011). Additionally, by making the

target function f a function of the parameters of the learner — a function that

returns bootstrapped estimate of the return of a value function — the online

prediction problem can represent minimizing the online temporal difference

error (Sutton 1988). I describe the POMDP generalization of the problem in

Appendix A.2.

Finally, it is pertinent to discuss the kind of non-stationarities f can have

for effective learning to be possible. While I do not formally model the non-

stationarities f can have, it is clear that tracking an arbitrary non-stationary

target is not possible. f either has to change slowly or locally for learning to

be effective. The benchmark I consider in this thesis will use a target function

that both changes slowly and locally i.e., only target associated with a few

states changes every few steps.

3.2 An Architecture for Online Learning

The regret minimization problem defined above is fairly broad and admits a

wide variety of solution methods. In this thesis, I am going to explore a par-

ticular family of methods that learn Online-aware Representations. Defining

online-aware representations requires additional notation as follows: I decom-

pose f̂ into two functions, g and U , parameterized by W and φ respectively

such that:

f̂θ(S) = gW (Uφ(S)). (3.3)

Uφ : S → R
d — called the Representation Learning Network (RLN) — outputs

a d-dimensional representation of the state. gW : R
d → Y — called the

Prediction Learning Network (PLN) — takes the representation given by the

RLN and outputs ŷ, the estimate of the target. The decomposition of θ is

22

shown in Figure 3.1. RLN and PLN can be learned using different learning

algorithms. Let QPLN be the learning rule used to update the PLN, gW , i.e.,

Wt+1 = QPLN(φ, St,Wt,L(yt, ŷt),∇Wt
L(yt, ŷt)), (3.4)

then my architecture for online learning constraints the space of solution

methods by requiring the learner to update the PLN at every time-step us-

ing Equation 3.4. This constraint divides the solution method into two parts:

(1) an incrementally learning PLN that can adapt to changes quickly by in-

corporating feedback from the world in real-time and (2) an RLN that is

not constrained to update in real-time and can learn slowly over-time. The

constraint also rules out methods that wait and collect a batch of data for

updating the PLN. Finally, the learning method for the RLN has to deal with

a continually changing PLN. I call an RLN learning algorithm that takes into

account a changing PLN Online-aware and the resulting state representation

an Online-aware Representation of the state. Representation learning meth-

ods described in Chapter 2 — with the exception of representation search and

the disentangled representation learning work of Bengio et al. (2020) — are

not online-aware.

23

Chapter 4

Learning Online-aware

Representations using Gradients

In the previous chapter, I discussed the online prediction problem and an

architecture for learning online-aware representations. In this chapter, I will

introduce a gradient-based algorithm for learning online-aware representations

for deep neural networks. The algorithm — called Online-aware Meta-learning

(OML) — learns a representation by exploiting the fact that if the loss is twice

differentiable, the update function used by the PLN — QPLN — is itself often

differentiable with respect to the parameters of the network. For such update

functions, we can compute the gradient of the parameters of the RLN — φ —

to minimize the regret.

4.1 Related Work

OML uses meta-gradients (Bengio et al. 1991; Sutton 1992) for learning online-

aware representations. Recently, meta-learning approaches with gradient de-

scent have been introduced particularly for representation learning (Finn et

al. 2017a; Li et al. 2017), which is the most relevant to OML. In this section,

I describe this related work. Finn et al. (2017a) proposed MAML — an algo-

rithm for fast adaptation to changes in the data distribution by exploiting the

fact that an SGD update is differentiable. MAML assumes that the learner is

interested in solving a set of mutually exclusive tasks given by a distribution

D over tasks. Given this distribution, it aims to learn a network initialization

24

such that starting from this initialization, the network can adapt to any task

Ti ∼ D using a few steps of SGD. A single leaning step of MAML consists

of (1) sampling a task Ti ∼ D, (2) sampling two sets of observations and

targets — (Xtrain, Ytrain), (Xval, Yval) — from Ti, (3) updating the network to

minimize error on (Xtrain, Ytrain) using a few SGD steps, (4) measuring the

validation error of the updated network on (Xval, Yval), and finally, (5) updat-

ing the network initialization — the parameters of the network before step 3

— to minimize the validation error by differentiating through the few steps of

SGD. After sufficient learning, MAML can successfully adapt to a task in D

using few steps of SGD. One intuition behind the success of MAML is that the

learned initialization lies close to the solution manifolds of all the tasks, and

moving quickly to any of these manifolds is possible using only a few steps of

gradient updates computed using a small number of samples.

Similar to MAML, OML also differentiates through the learning update but

differs in some important ways. First, OML does not aim to learn a network

initialization. Instead, the goal is to learn the RLN such that PLN achieves

low regret. This enables OML to incorporate principled incremental learning

algorithms in PLN. Secondly, OML does not assume a distribution over tasks

and operates directly on an online stream of data.

Bengio et al. (2020) simultaneously proposed an approach similar to OML

for learning representations using gradient-based meta-learning. They pro-

posed a meta-objective that maximized the speed of adaptation to distribu-

tional shifts caused by sparse interventions on the data-generating factors.

Using this objective, they proposed to learn an encoder — similar to the RLN

— that transformed the input into a representation that was conducive to fast

adaptation. In addition to an encoder, they also proposed to learn a causal

structure on the output of the encoder. Their solution method and OML share

similarities, but are solving different problems: their goal is to discover causal

variables and the relations between these causal variables from sensory data,

whereas OML aims to minimize regret on an online prediction problem.

OML also shares similarities with IDBD (Sutton 1992) and its follow-up

work (Schraudolph 1999; Veeriah et al. 2017). IDBD (Sutton 1992) uses meta-

25

gradients to update the per-parameter step sizes for a linear predictor. By

changing the step-size of a feature, IDBD can control how important a feature

is for learning. Schraudolph (1999) extended IDBD by learning step-sizes

for non-linear networks. Veeriah et al. (2017) proposed Crossprop that uses

meta-gradients for learning the incoming weights of a single hidden layer neural

network. Unlike OML, however, Crossprop is limited to networks with a single

hidden layer. Moreover, Crossprop does not take into account multiple QPLN

updates for computing the meta-gradient.

Algorithm 1: Online-aware Meta-learning

Require: L: Loss function.
Require: S1: Initial state.
Require: T : Total interactions with the MP.
Require: k: Parameters controlling number of BPTT steps.
Require: α: Learning rate for the representation update.
Require: Uφ1

, gW1
: RLN and PLN parameters initialized as desired.

Require: QPLN : Learning rule for updating the PLN.
1: i = 1
2: m = 1
3: while i < T do

4: Linner = 0
5: for j = 1, 2, · · · , k do

6: ŷi = gWi
(Uφm

(Si))
7: yi, Si+1 = {Environment returns the target and the next state}
8: yi = fi(Si)
9: Linner = Linner + L(yi, ŷi)
10: Wi+1 = QPLN(φm, Si,Wi,L(yi, ŷi),∇Wi

L(yi, ŷi))
11: i = i+ 1
12: end for

13: φm+1 = φm − α∇φm
Linner

14: m = m+ 1
15: end while

4.2 Online-aware Meta-learning

The central idea behind OML is to update the RLN — Uφ — so that the

learned representation minimizes the regret achieved by the PLN — gW . Let

QPLN be differentiable with respect to the parameters of the RLN. Moreover,

let Lossi:j = Lossj−Lossi−1 be the loss incurred by the learner from time-step

i to j, where Lossi =
∑i

t=1
L(ft(St), f̂θt(St)).

26

At time-step c the learner’s PLN and RLN will have parametersWc and φm,

respectively. The learner can apply QPLN k times to get Wc+1,Wc+2, · · ·Wc+k.

Finally, it can then update the RLN from φm to φm+1 by minimizing Lossc:c+k

as follows:

φm+1 = φm − α∇φm
Lossc:c+k (4.1)

= φm − α∇φm

c+k∑

t=c

L(yt, f̂θt(St)) (4.2)

= φm − α∇φm

c+k∑

t=c

L(yt, gWt
(Uφm

(St))) (4.3)

where α is the learning rate for the RLN update. Recall that

Wt+1 = QPLN(φm, St,Wt,L(yt, ŷt),∇Wt
aL(yt, ŷt)) (4.4)

and the value of W at each time step is tied to φ; as a result, computing

the gradient in Equation 4.1 requires propagating gradients backward in time,

similar to BPTT. The computation graph showing the flow of gradients for

an OML update is shown in Figure 4.1 and the pseudo-code for the OML is

given in Algorithm 1. OML uses Equation 4.1 to update the RLN once every

k steps, where k is a tunable hyper-parameter.

4.3 Experimental Evaluation

I evaluate the performance of OML on an online regression benchmark. The

aim of the following experiments is to provide clear results and not to demon-

strate the performance of OML on complex tasks. Results on larger bench-

marks — omniglot and mini-imagenet — using deep-convolutional networks

are in the original OML paper (Javed and White 2019).

4.3.1 Baseline methods

I compare OML to the following baselines.

27

RLN

gWc
gWc+1

gWc+2

PLN

RLN

PLN

RLN

PLN

RLN

PLN
gWc+k

· · ·

Forward-passBackward-pass

L(yc, ŷc) L(yc+1, ŷc+1) L(yc+2, ŷc+2) L(yc+k, ŷc+k)

Uφm
Uφm

Uφm
Uφm

QPLN QPLN QPLN

Figure 4.1: Computation graph for computing gradients for a single update of
RLN. gW is updated for k time-steps using the QPLN function, accumulating
regret (or loss) for these k steps. If QPLN is differentiable, we can compute
gradients for φ to minimize this regret using back-propagation through time
(BPTT).

Online-SGD

Online-SGD uses the gradient at every time-step to update both the RLN

and PLN using the Adam optimizer (Kingma and Ba 2015). Online-SGD is

expected to suffer from catastrophic forgetting.

ER-RLN

ER-RLN uses experience replay to update the RLN, similar to DQN (Mnih

et al. 2015); unlike DQN, however, the targets for the data in the buffer cannot

be updated using a target network. This poses a challenge as outdated targets

would interfere with newer targets when learning. To avoid this issue, I only

update the RLN using the data in the buffer whereas PLN is learned using

QPLN — similar to OML — using the most recent data. This approach is

similar to the two-timescales architecture proposed by Chung et al. (2018)

and allows the ER-RLN to not suffer from catastrophic forgetting problem for

learning the RLN, while still tracking changes in the environment using the

PLN. However, the RLN update of ER-RLN does not take into account the

learning algorithm used by the PLN and is not online-aware.

28

Random-RLN

Random-RLN uses a randomly initialized RLN that is kept fixed throughout

learning. It serves as a sanity check.

4.3.2 Online sine regression benchmark

The Online Sine Regression (OSR) benchmark consists of a Markov Process

(MP) and a non-stationary target function. The state Si of the MP is a vector

of length 51. The first element of the state-vector is a real number in [−5, 5]

whereas the remaining fifty elements encode an integer between 1 and 50 in

one-hot encoded form i.e., one number in the last 50 elements of the state-

vector is 1 and the rest are zero. Si+1 is generated by uniformly sampling the

first element from [−5, 5] and changing the number i encoded in the last 50

values of the state-vector to a randomly chosen j ∈ {0, 1, · · · , 50} with 0.2

probability. i stays unchanged with the remaining 0.8 probability.

The target function f is a combination of fifty sine functions — T =

T1, T2, · · ·T50. If a state S encodes i in its last 50 elements, the target for

the state is given by Ti(S[0]), where S[0] is the first element of the state-

vector. Function Ti(x) = ai × sin(x+ φi) is generated by uniformly sampling

its amplitude ai from [0.02, 6] and phase φi from [0, π]. The loss function L

for the benchmark is the average mean-squared error between the target and

the prediction. An example of the state-vector and the associated target is

described in Figure 4.2.

The non-stationarity in the target function is created by replacing a ran-

domly chosen Ti with T
′

i at each step with 0.04 probability, where T
′

i is gen-

erated by sampling its amplitude a
′

i from [0.02, 6] and phase φ
′

i from [0, π].

This benchmark is similar to the few-shot regression benchmark introduced

by MAML (Finn et al. 2017b) with some key differences. First, it is not

episodic. Second, the changes in the target distribution are local and gradual.

On average, one of the functions Ti changes every 25 steps. Finally, the input

includes an additional variable — the function id — that is used to select the

target. Achieving low regret on this benchmark requires learning to adapt

29

Table 4.1: Hyper-parameters tried fro each method. RLN lr and γ are the
learning rates used to update Uφ and gW respectively . Online-SGD uses the
same lr for both whereas the other two methods start with a γ of 3×10−3 and
adapt it online. ω controls the l1 regularization strength on the parameters
of the PLN, and is adapted online starting from a value of 1. All methods
use the Adam optimizer (Kingma and Ba 2015) to update the RLN whereas
Online-SGD uses Adam to updated both the RLN and the PLN. B1 and B2

are decay rates for the first-order and second-order running moment estimates
of the gradients, and are used by Adam. Finally, ER-RLN has additional
parameters to control the size of the buffer. These are (1) size of the buffer,
(2) the ratio of buffer updates for learning RLN to the online updates to PLN,
and (3) the size of the mini-batch of data sampled from the buffer for a learning
update.

Name of the Method

Parameters Online-SGD ER-RLN OML

RLN lr 10−2, 10−3, 10−4, 10−5 1−2, 1−3, 1−4, 1−5 1−2, 1−3, 1−4, 1−5

γ N/A Adapted online Adapted online
B1 0.9, 0.95, 0.99 0.9, 0.95, 0.99 0.9, 0.95, 0.99
B2 0.9, 0.95, 0.99 0.9, 0.95, 0.99 0.9, 0.95, 0.99
Buffer size N/A 103, 104, 105 N/A
Mini-batch size N/A 1, 16, 32 , 64 N/A
PLN/RLN ratio N/A 0.1, 0.5, 1, 4 , 16 N/A
ω 1−2,1−3,1−4,1−5 Adapted online Adapted online

31

ized to be a vector with each element set to 3×10−3 and a scaler 1, respectively.

Both γ and ω parameters are included in φ — the parameters of the RLN.

Including γ and ω in φ allows online adaption of step-sizes as well as regular-

ization strength using meta-gradients. This online adaptation of step-sizes is

similar to a multi-step version of IDBD (Sutton 1992). k in Equation 4.1 is

equal to 25.

The hyper-parameters of all the methods are tuned independently using a

grid-search using ranges described in Table 4.1.

Results

I report the results by first finding the best set of parameters using a grid-search

over all parameters, and then running the best configuration with 30 random

seeds. The averaged results are shown in Figure 4.3. OML achieves signifi-

cantly lower regret compared to the baselines. OML also has the fewest hyper-

parameters that need to be tuned. Buffer-based ER-RLN fails to learn mean-

ingful representations, performing only marginally better than a Random-

RLN. I suspect that the outdated data in the experience replay buffer can hurt

performance more than help. Moreover, ER-RLN is not learning Online-aware

representations that take into account a changing PLN. Online-SGD, despite

the catastrophic forgetting problem associated with online back-propagation,

out-performs ER-RLN.

Is OML performing optimally? It is hard to say. While it is not possible

to achieve zero loss due to non-stationarities in the target function, it is also

not clear what is the best achievable performance for this benchmark. In

the following section, I provide some evidence that OML is performing well

because it is robust to interference.

4.3.3 Measuring robustness to interference of the learned

representations

To understand why OML performs better, I study the representations learned

by the RLNs of OML, Random-RLN, and Online-SGD. I use the RLNs learned

for 25 million steps in the previous section for each method. Additionally, I

32

Function ID

MSE

OML

Online-SGDScratch

OML-Transformed

1 503010 20 401 503010 20 40

1 503010 20 40 1 503010 20 40

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

0

2

4

6

8

MSE

Minimal forgetting

Figure 4.4: Error distribution on fifty functions after learning them from a cor-
related stream of data in a single pass. The function are seen in the same order
as their ID. Error on earlier functions is higher due to interference from learn-
ing that happens afterward. Scratch representations are generated by a ran-
domly initialized RLN. Apart from OML, all methods are incapable of learning
without forgetting. OML-Transformed uses representations that are an invert-
ible and linear transformation of OML representation but is still incapable of
learning without forgetting. The poor performance of OML-Transformed is
incompatible with the idea that representations can be evaluated by measur-
ing how good they are at linearly disentangling factors of interests (Alain and
Bengio 2017; Anand et al. 2019; Chen et al. 2020)

34

Table 4.2: Values of hyper-parameters tried for each method for investigating
how robust representations learned by different methods are to interference. I
report the result on the best configuration for each method.

Hyper-parameters Values

Learning rate 10−2, 10−3, 10−4, 10−5

l1 strength 10−2, 10−3, 10−4, 10−5

B1 0.9, 0.95, 0.99, 0.995
B2 0.9, 0.95, 0.99, 0.995

of data in a single pass. I construct the fifty sine functions, T1, · · ·T50, using

the same procedure as before — sampling their amplitude from [0.02, 5] and

phase from [0, π] — and create a single trajectory Dtraj that consists of 30

input target pairs from T1 followed by 30 pairs from T2 and so on. The input

distribution is the same as the OSR benchmark. For each of the methods,

I initialize the PLN to be zero and learn it online on Dtraj one sample at a

time using gradient-descent. I evaluate the end performance of the PLN on

an independent set of test data containing input target pairs from all fifty

functions. I tune the learning rate and l1 penalty of each method by doing

a grid search over the values described in Table 4.2, and report the results

with hyper-parameters that achieved the lowest test error averaged across all

functions. This experiment represents an extreme case of learning a stationary

distribution from a highly correlated stream of data in a single pass.

Results

I report the distribution of test error for all fifty functions in Figure 4.4 after

learning on Dtraj. Each experiment is repeated 50 times for a different set of

50 functions, and the error bars represent 95% confidence intervals constructed

by 1,000 bootstrap samples. The error on earlier functions is higher because

they suffer from more interference from future learning.

Random-RLN, Online-SGD, and OML-Transformed suffer from catastrophic

interference and only achieve a low error on the last function — T50. OML,

on the other hand, can learn all fifty functions in a single pass with little for-

getting. The discrepancy between OML and OML-Transformed is especially

35

OML

OML-Transformed

SGD-Online

Average

Representation

Random state

with i = 1

Random state

with i = 2

Average Representation

of states with i = 1

Average Representation

of states with i = 2

Figure 4.5: Visualization of representations learned by the RLN of OML, and
SGD-Online. OML-Transformed representations are a linear transformation
of the OML representations. OML learns highly sparse state representations.
Additionally, representations for states that encode a different value of i do
not overlap. This allows a learner to adapt to a change in part of the target
function without impacting the knowledge associated with targets of other
states. SGD-Online also learns sparse representations, but the representations
for states with different targets overlap. In-fact — as shown in the first column
— a large part of the representation space is not used by the SGD-Online to
represent any state. OML, on the other hand, effectively uses the complete
representation space while still achieving sparse state representations.

illuminating; it shows that representations that capture the same information

— are rank-preserving linear transformations of each other — can result in very

different performance. This goes against conventional representation learning

wisdom that evaluates the quality of a representation by linear probing —

training linear predictors till convergence on the representation (Alain and

Bengio 2017; Anand et al. 2019; Chen et al. 2020). Linear probing would be

unable to distinguish between OML and OML-Transformed representations.

4.3.4 Visualizing the learned representations

Finally, I visualize the representations learned by the RLN of OML, SGD-

Online, and OML-Transformed. Recall that the state has an integer i encoded

in the last 50 values that is used to select the target Ti. I visualize three kinds

of representations: (1) the average representation of 5,000 random samples

36

from the complete input distribution, (2) the representation of two random

samples, one with i equal to 1 and other with 2, and (3) and the average rep-

resentation of 500 random samples with i equal 1 and 2. The representations

are visualized in Figure 4.3.3. OML learns representations that are highly

sparse for a single state. Moreover, the representations of states for which i is

1 have minimal overlap with states for which it is 2. The lack of overlap in the

representation space explains why a PLN trained on the OML representations

does not suffer from interference. Transforming this representation linearly —

OML-Transformed — loses this sparsity property. Finally, while Online-SGD

also learns sparse representations, the representations for states with different

targets have significant overlap. Online-SGD also does not use a large part of

the representation space to represent any state, wasting useful capacity.

4.4 Closing Discussion on OML

The key take-away from OML is that good representations for online learn-

ing are unlikely to emerge unless representation learning optimizes for online

learning. This is evident from the fact that two representations with the same

information — one is an invertible linear transformation of the other — can

result in very different performance. Most of the existing representation learn-

ing methods, such as supervised learning, self-supervised learning, and gener-

ative modeling, learn representations by making one-step predictions that are

insufficient for differentiating between the OML and OML-Transformed repre-

sentations. It is unlikely that these methods can robustly find representations

similar to OML.

The strong performance of OML also suggests that neural networks are

capable of learning representations for continual learning. In addition to be-

ing effective on the simple OSR benchmark, OML is also effective at learning

non-interfering representations from high-dimension data (Javed and White

2019), and has been extended to learn attention based architectures (Beaulieu

et al. 2020). The OML objective has also been promoted as a solution to catas-

trophic interference by follow-up work (Johnson 2020). However, suggesting

37

that OML mitigates the catastrophic forgetting problem in neural networks is

misleading. It merely shows that neural-networks can learn online-aware rep-

resentations, and that learning online-aware representations is important. In

the next chapter, I will show the OML updates suffer from interference when

learning from a correlated stream of data, and use the results to motivate a

family of methods that verify representation updates online before committing

to them.

38

Chapter 5

Limitations of Gradient-based

Representation Learning

In the previous chapter, I showed that OML — a gradient-based online-aware

representation learning method — is effective at tracking non-stationarities

using large deep neural networks. OML does this by learning a representa-

tion that mitigates catastrophic interference. However, Online Sine Regression

(OSR) — the benchmark used to demonstrate the success of OML — had a

limitation: it did not involve long-term credit assignment. In OSR, the transi-

tion function of the environment allows jumping to an arbitrary state from any

state. Reducing interference between as few as two PLN updates is sufficient

to reduce interference between arbitrary pairs of states. What happens when

some of the states are temporally distant and lie either beyond the truncation

window of the OML update or far enough that gradients vanish (Hochreiter

et al. 2001)? I speculate that OML will not effectively reduce interference

between such states and the OML update would suffer from catastrophic in-

terference.

5.1 Catastrophic Interference in OML Updates

To test the robustness of OML to interference, I evaluate if it converges on a

stationary problem.

39

the case for the learner here — should converge to a fixed solution to achieve

near-zero error. OML, however, does not converge even after 4 million steps for

both k = 5 and k = 25. Interestingly, it does momentarily find solutions that

achieve near-zero loss on all states, but is incapable of maintaining those solu-

tions; instead, it overwrites those solutions with the biased gradient-updates

that deteriorate performance. The failure of OML is not surprising: the OML

update uses BPTT that is known to struggle when assigning credit over many

time steps. Moreover, minimizing loss over a few steps is not sufficient in this

MP because minimizing loss on state 3 might increase loss on 3.1 and vice-

versa. Increasing the truncation window of OML to k = 25 does not address

the issue either as gradients can vanish over long horizons.

5.1.4 Discussion

The failure case of OML shows that while OML can learn representations

that mitigate interference, the OML update itself suffers from interference

when learning from a correlated stream of data. Even when OML does find

solutions that achieve near-zero loss momentarily, as shown in Figure 5.2, it

is unable to identify them as good and overwrites them with poor updates.

In the next chapter, I propose a preliminary solution method that fixes the

limitation of OML by verifying that a representation update is good online

before committing to it.

42

Chapter 6

Representation Learning with

Backtracking

OML uses a local learning signal — gradient w.r.t few temporally connected

states — as a proxy to the true gradient for minimizing regret. This local

signal is often helpful, but can also hurt, as shown in the last chapter where it

prevented the learner from converging in a ten-state stationary environment.

One solution around this limitation is to better estimate the learning signal

using a large number of states. Unfortunately, as discussed earlier, this cannot

be done online in a scalable way using existing methods. Gradient propagation

through many steps is not feasible (See Section 2.4.1), and experience-replay

methods do not scale well (See Section 2.2.1).

Estimating a robust signal for updating the representation might not be

possible online, but verifying if a given representation update is useful is

straightforward — the learner can track loss accumulated over many time-

steps after the update and check if the performance has improved. I call the

process of checking if a representation update is useful verification 1. Assum-

ing that a learning algorithm proposes good representation updates at-least

sometimes, verification is all that is needed to improve a representation online

without interference. The idea of verification is a building-block of represen-

tation search.

1The term is inspired by the following blog post on the need of equipping our learn-

ers with the ability to verify their knowledge: http://incompleteideas.net/IncIdeas/

Verification.html

43

6.1 Representation Search

A search algorithm treats representation learning as a search problem. A

typical representation search algorithm proposes a solution and verifies if it

is effective. If the solution is effective, the algorithm keeps it. Otherwise, it

proposes a different solution. Mahmood (2017) and Mahmood and Sutton

(2013) proposed a method for feature learning through search called generate

and test.

6.1.1 Generate and test

Mahmood (2017) and Mahmood and Sutton (2013) proposed an algorithm

that continually replaces ineffective features with randomly generated features.

They identify ineffective features by looking at the magnitude of the weight

associated with the feature for predicting a target. Features with the smallest

weights are replaced by new features. They showed that their method can

effectively improve the quality of features over time. Moreover, it can be com-

bined with gradient-descent based learning to improve over gradient-descent

alone.

Their work, while promising, is not directly applicable to learning repre-

sentations using deep neural networks. It has two main limitations. First, it

generates new features randomly which can be slow, especially if a useful fea-

ture is a complex function of the input observation. In contrast, deep learning

systems slowly improve existing features using feedback from the environment.

Second, they assume that new features can be incorporated in the learner and

old features discarded independently of each other. The independence assump-

tion does not hold in the hierarchical features learned by deep neural networks.

In a hierarchical representation — believed to be the primary reason behind

the impressive empirical successes of neural networks — removing or adding a

feature in an arbitrary location can change many other features. Nonetheless,

the motivation behind generate and test is sound: we need scalable algorithms

for learning representations.

44

Figure 6.1: Running average of the error on all states of the environment.
The OML results are taken from the previous chapter. LwB uses proposals
generated using OML with k = 5. The proposals are generated using an RLN
learning rate sampled uniformly from {10−5, 10−4, 10−3, 10−2}. Each proposal
is verified for 50 steps before accepting or rejecting it. LwB prevents harmful
updates, and can converge more robustly to achieve near zero loss. Due to the
50 interactions needed for verification, LwB uses nearly 90% of the interactions
with environment to verify proposals. As a result, it learns using an order
of magnitude fewer learning updates. All results are averaged over 30 runs,
and the confidence intervals represent 95% intervals constructed using 1,000
bootstraps.

6.1.2 Learning with backtracking

I propose Learning with Backtracking (LwB): a representation learning paradigm

that can apply search to deep neural networks. LwB does not assume that

features are independent of each other and can slowly improve hierarchical

feature representations using feedback from the environment. To achieve this,

LwB uses a global metric — regret over time — for verifying a representation

update. Generate-and-test, in contrast, relies on a feature-level verification

metric that only makes sense for independent features.

Being a search-based method, LwB has two components: a proposal gen-

erator and a verifier. The proposal generator in LwB proposes representa-

tion updates. These updates can come from any method, including local-

random search, gradient-based updates, weight pruning, architecture changes

etc. Given a proposal, the verifier is responsible for deciding if a proposal

45

should be accepted or rejected. LwB verifies an update by making a copy of

the learning network and updating one of the copies with the proposed up-

date. The two networks — called the post-update network and the pre-update

network — estimate the regret online for m steps separately. This can be done

online for arbitrarily large m without any scalability challenges. Finally, LwB

compares the regret achieved by the two networks. If the post-update net-

work achieves lower regret, the proposed representation update is accepted.

Otherwise, the learner backtracks to the pre-update network.

The LwB, as described above, can be applied to an online prediction prob-

lem. If, however, the sequence of states depends on the actions that a learner

takes, such as in control, it would not be possible to simultaneously measure

the performance of two networks, the post, and pre-update network. Fixing

this limitation is future work, but can be done by comparing the performance

of the post-update network to a baseline performance metric, such as a running

estimate of the average reward.

6.1.3 Empirical evaluation of LwB

I evaluate LwB on the ten-state MP introduced in the previous chapter using

the same 5-layer neural network described in previous chapters. I generate pro-

posals using the OML gradients with k = 5 and verify every update proposal

for 50 steps before accepting or rejecting it. The learner has access to two mod-

els during the verification phase and must select one for making predictions.

I use the pre-update RLN for making these predictions as the post-update

RLN can result in very high regret if the proposed update is poor. An un-

intended benefit of backtracking is that I don’t have to tune parameters for

proposing learning updates for the RLN. The generator can generate proposals

by randomly sampling RLN hyper-parameters, and backtracking if the sam-

pled parameters are bad. I implement LwB by uniformly sampling the RLN

learning rate from the set {10−5, 10−4, 10−3, 10−2} for generating proposals.

I report the results in Figure 6.1. LwB can converge to achieve near-zero

loss robustly. Once LwB has converged, the verification process assures that

future updates do not catastrophically interfere with the learned knowledge.

46

6.2 Closing Discussion

LwB, as proposed here, is in a preliminary form. I made certain design choices

without exploring the alternatives. For instance, I used the biased OML gra-

dients for generating proposals for updating the RLN; OML gradients were

sufficient for the simple ten-state benchmark, but might not be sufficient in

the general case. A biased gradient-estimate can result in systematically poor

proposals. For instance, in my recent work in collaboration with others on

learning causal models, I found that gradient-based proposals consistently

tried to exploit the salient non-causal features, ignoring the more complex

underlying causal features (Javed et al. 2020).

There are two ways LwB can be applied to more interesting problems.

First, we can hand-design proposal generators that encode useful inductive

biases for the problems we care about. Alternatively, a generator can combine

multiple proposal generation methods, and explore their effectiveness online.

47

Chapter 7

Final Thoughts

My goal in this thesis was to introduce two keys ideas. The first was that

we should learn online-aware representations — representations optimized for

online-learning. The idea is supported by the observation that a linear trans-

formation of an effective representation can be ineffective for online learning.

One-step prediction based representation learning — the current norm in deep-

learning research — is incapable of distinguishing between invertible linear

transformations of representations, and cannot discover online-aware repre-

sentations. I introduced OML, one method for learning these representations,

but OML relies on BPTT which is not scalable. OML can be combined with

Learning with backtracking (LwB) to remove some of its limitations.

The second key idea is that while it is hard to compute an accurate estimate

of the representation update online, it is possible to verify if an update is useful.

LwB builds on this idea. A representation update that improves performance

in one part of the state-space can deteriorate performance in a different part.

Moreover, two temporally distant states with very different targets can appear

similar in the representation space and cause interference. The only way to

know that a representation is good is to evaluate the representation on all or

at least many of the states the learner cares about. A short-sighted method

that confidently updates the representation by looking at a few temporally

close states is likely to suffer from interference.

Existing successful methods update their representations using a mini-

batch sampled IID from past interactions (Mnih et al. 2015) or by collecting

48

a large batch of data using parallel actors (Mnih et al. 2016). Both families of

method update the representation using information from multiple states, but

existing implementations scale poorly with the size of the problem, requiring

thousands of samples for a single learning update for larger problems (OpenAI

2018; Vinyals et al. 2019). LwB incorporates information from multiple states

while staying scalable.

One problem that I did not adequately address in this thesis is how to

generate good proposals for LwB. These proposals can come from gradient-

based methods, such as OML (Javed and White 2019); gradient-free random

search, such as Perturbations with Backtracking (PwB) (Javed et al. 2020);

or even self-supervised and unsupervised methods; it is not clear what is the

best approach.

I end the thesis with some predictions. I speculate that a robust online

representation learning method would heavily rely on verification of represen-

tation updates. It could either use a combination of many proposal gener-

ators or learn the proposal generation mechanism online using some form of

meta-learning. The meta-learning problem can be formulated by modeling the

proposal generation as an optimization problem where the goal is to maximize

the probability of having a proposal accepted.

49

References

Alain, Guillaume, and Yoshua Bengio. 2017. “Understanding intermediate lay-
ers using linear classifier probes”. Workshop Track, International confer-

ence on learning representations. 34, 36

Aljundi, Rahaf, et al. 2018. “Memory aware synapses: Learning what (not) to
forget”. In European conference on computer vision. 10

Aljundi, Rahaf, et al. 2019. “Gradient based sample selection for online con-
tinual learning”. In Advances in neural information processing systems. 10

Anand, Ankesh, et al. 2019. “Unsupervised state representation learning in
atari”. In Advances in neural information processing systems. 13, 34, 36

Ans, Bernard, and Stéphane Rousset. 1997. “Avoiding catastrophic forget-
ting by coupling two reverberating neural networks”. Comptes rendus de

l’Académie des sciences-series III-sciences de la Vie. 10

Bachman, Philip, R Devon Hjelm, and William Buchwalter. 2019. “Learning
representations by maximizing mutual information across views”. In Ad-

vances in neural information processing systems. 14

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2014. “Neural ma-
chine translation by jointly learning to align and translate”. International
conference on learning representations. 17

Beaulieu, Shawn, et al. 2020. “Learning to continually learn”. European Con-

ference on Artificial Intelligence. 37

Bellemare, Marc G, et al. 2013. “The arcade learning environment: An evalua-
tion platform for general agents”. Journal of artificial intelligence research.

11, 14

Bengio, Y., S. Bengio, and J. Cloutier. 1991. “Learning a synaptic learning
rule”. In International Joint Conference on Neural Networks. 24

Bengio, Yoshua. 2017. “The consciousness prior”. arXiv:1709.08568. 30

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi. 1994. “Learning long-
term dependencies with gradient descent is difficult”. IEEE transactions

on neural networks. 18

Bengio, Yoshua, et al. 2020. “A meta-transfer objective for learning to disen-
tangle causal mechanisms”. International conference on learning represen-

tations. 15, 23, 25

50

Brown, Tom B, et al. 2020. “Language models are few-shot learners”. arXiv:2005.14165.
4, 5, 8

Burgess, Christopher P, et al. 2018. “Understanding disentangling in beta-
VAE”. arXiv:1804.03599. 15

Chaudhry, Arslan, et al. 2019. “Continual learning with tiny episodic memo-
ries”. Workshop on multi-task and lifelong reinforcement learning, ICML.

10

Chen, Tianqi, et al. 2016. “Training deep nets with sublinear memory cost”.
arXiv:1604.06174. 18

Chen, Ting, et al. 2020. “A simple framework for contrastive learning of visual
representations”. arXiv:2002.05709. 14, 34, 36

Cho, Kyunghyun, et al. 2014. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. arXiv:1406.1078. 17

Chung, Wesley, et al. 2018. “Two-timescale networks for nonlinear value func-
tion approximation”. In International conference on learning representa-

tions. 28

Deng, J., et al. 2009. “ImageNet: A large-scale hierarchical image database”.
In Computer vision and pattern recognition. 8, 12

Doersch, Carl, Abhinav Gupta, and Alexei A Efros. 2015. “Unsupervised visual
representation learning by context prediction”. In International conference

on computer vision. 14

Dosovitskiy, Alexey, et al. 2014. “Discriminative unsupervised feature learning
with convolutional neural networks”. In Advances in neural information

processing systems. 14

Epstein, Robert. 2016. “The empty brain”. Aeon, May. 3

Farley, BWAC, and W Clark. 1954. “Simulation of self-organizing systems by
digital computer”. Transactions of the IRE Professional Group on Infor-

mation Theory. 8

Fedus, William, et al. 2020. “Revisiting fundamentals of experience replay”.
arXiv:2007.06700. 11

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. 2017a. “Model-agnostic meta-
learning for fast adaptation of deep networks”. International conference on

machine learning. 24, 30

— . 2017b. “Model-agnostic meta-learning for fast adaptation of deep net-
works”. International conference on machine learning. 29

French, Robert M. 1992. “Semi-distributed representations and catastrophic
forgetting in connectionist networks”. Connection science. 9

— . 1997. “Pseudo-recurrent connectionist networks: An approach to the’sensitivity-
stability’dilemma”. Connection science. 10

51

— . 1999. “Catastrophic forgetting in connectionist networks”. Trends in cog-

nitive sciences. 9

Ghiassian, Sina, et al. 2020. “Improving performance in reinforcement learning
by breaking generalization in neural networks”. International Conference
on Autonomous Agents and Multiagent Systems. 9

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. 2018. “Unsupervised
representation learning by predicting image rotations”. arXiv:1803.07728. 14

Girshick, Ross. 2015. “Fast r-cnn”. In International conference on computer

vision. 4

Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. 2011. “Deep sparse recti-
fier neural networks”. In International Conference on Artificial Intelligence

and Statistics. 30

Goodfellow, Ian, et al. 2014. “Generative adversarial nets”. In Advances in

neural information processing systems. 8, 13

Gruslys, Audrunas, et al. 2016. “Memory-efficient backpropagation through
time”. In Advances in neural information processing systems. 18

He, Kaiming, et al. 2015. “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”. In International conference

on computer vision. 30

— . 2016. “Identity mappings in deep residual networks”. In European con-

ference on computer vision. Springer. 8

Heaven, Will Douglas. 2020. “Our weird behavior during the pandemic is mess-
ing with AI models”. MIT Technology Review, no. May. 2

Hebb, Donald Olding. 1949. The organization of behavior: a neuropsychological

theory. J. Wiley; Chapman & Hall. 7

Hénaff, Olivier J, et al. 2019. “Data-efficient image recognition with contrastive
predictive coding”. arXiv:1905.09272. 14

Higgins, Irina, et al. 2017. “beta-VAE: Learning basic visual concepts with a
constrained variational framework”. International conference on learning

representations. 15

Hinton, Geoffrey E, and Ruslan R Salakhutdinov. 2006. “Reducing the dimen-
sionality of data with neural networks”. science. 13

Hjelm, R Devon, et al. 2019. “Learning deep representations by mutual infor-
mation estimation and maximization”. International conference on learn-

ing representations. 14

Hochreiter, Sepp, et al. 2001. Gradient flow in recurrent nets: the difficulty of

learning long-term dependencies. 39

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long short-term memory”.
Neural computation. 8, 17

52

Javed, Khurram, and Faisal Shafait. 2018. “Revisiting distillation and incre-
mental classifier learning”. In Asian conference on computer vision. 10

Javed, Khurram, and Martha White. 2019. “Meta-learning representations for
continual learning”. In Advances in neural information processing systems. iii, 5, 27, 37, 49

Javed, Khurram, Martha White, and Yoshua Bengio. 2020. “Learning causal
models online”. arXiv:2006.07461. iii, 47, 49

Johnson, Khari. 2020. OpenAI’s Jeff Clune on deep learning’s Achilles’ heel

and a faster path to AGI. https://venturebeat.com/2020/02/25/
openais-jeff-clune-on-deep-learnings-achilles-heel-and-a-

faster-path-to-agi/. Accessed: 2020-08-26. 37

Kapturowski, Steven, et al. 2018. “Recurrent experience replay in distributed
reinforcement learning”. In International conference on learning represen-

tations. 17

Karpathy, Andrej. 2020. “AI for Full-Self Driving”. Youtube. Accessed: 2020-
08-26. https://www.youtube.com/watch?v=hx7BXih7zx8. 3

Ke, Nan Rosemary, et al. 2018. “Sparse attentive backtracking: Temporal
credit assignment through reminding”. In Advances in neural information

processing systems. 18

Kemker, Ronald, and Christopher Kanan. 2017. “Fearnet: Brain-inspired model
for incremental learning”. International conference on learning representa-

tions. 11

Kerg, Giancarlo, et al. 2020. “Untangling tradeoffs between recurrence and
self-attention in neural networks”. arXiv:2006.09471. 19

Kingma, Diederik P, and Jimmy Ba. 2015. “Adam: A method for stochastic
optimization”. International conference on learning representations. 28, 31

Kingma, Diederik P, and MaxWelling. 2013. “Auto-encoding variational bayes”.
arXiv:1312.6114. 13

Kirkpatrick, James, et al. 2017. “Overcoming catastrophic forgetting in neural
networks”. National academy of sciences. 10

Kramer, Mark A. 1991. “Nonlinear principal component analysis using autoas-
sociative neural networks”. AIChE journal. 13

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. “Imagenet
classification with deep convolutional neural networks”. In Advances in

neural information processing systems. 4, 12

Lecun, Yann. 1985. “Une procedure d’apprentissage pour reseau a seuil asym-
metrique”. In Cognitiva 85, Paris, France. 8

LeCun, Yann, et al. 1998. “Gradient-based learning applied to document recog-
nition”. Proceedings of the IEEE. 8

53

Lee, Sang-Woo, et al. 2017. “Overcoming catastrophic forgetting by incre-
mental moment matching”. In Advances in neural information processing

systems. 10

Li, Zhenguo, et al. 2017. “Meta-sgd: Learning to learn quickly for few-shot
learning”. arXiv:1707.09835. 24

Lin, Long-Ji. 1992. “Self-improving reactive agents based on reinforcement
learning, planning and teaching”. Machine learning. 10

Liu, Vincent, et al. 2019. “The utility of sparse representations for control in
reinforcement learning”. In AAAI Conference on Artificial Intelligence. 9

Locatello, Francesco, et al. 2019. “Challenging common assumptions in the
unsupervised learning of disentangled representations”. In International

conference on machine learning. 15

Lopez-Paz, David, and Marc’Aurelio Ranzato. 2017. “Gradient episodic mem-
ory for continual learning”. In Advances in neural information processing

systems. 10

Machado, Marlos C, et al. 2018. “Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents”. Journal of
artificial intelligence research. 11

Mahmood, Ashique. 2017. “Incremental off-policy reinforcement learning al-
gorithms”. 16, 44

Mahmood, Ashique Rupam, and Richard S Sutton. 2013. “Representation
search through generate and test”. In Workshops track, AAAI Conference

on artificial intelligence. 16, 44

Mathieu, Michael F, et al. 2016. “Disentangling factors of variation in deep
representation using adversarial training”. In Advances in neural informa-

tion processing systems. 15

McClelland, James L, Bruce L McNaughton, and Randall C O’Reilly. 1995.
“Why there are complementary learning systems in the hippocampus and
neocortex: insights from the successes and failures of connectionist models
of learning and memory.” Psychological review. 10

McCloskey, Michael, and Neal J Cohen. 1989. “Catastrophic interference in
connectionist networks: The sequential learning problem”. In Psychology

of learning and motivation. Elsevier. 9

Minsky, Marvin. 1961. “Steps toward artificial intelligence”. Proceedings of the
IRE. 16

Minsky, Marvin, and Seymour A Papert. 1969. Perceptrons: An introduction

to computational geometry. MIT press. 8

Mnih, Volodymyr, et al. 2015. “Human-level control through deep reinforce-
ment learning”. nature. 4, 10, 11, 28, 48

54

Mnih, Volodymyr, et al. 2016. “Asynchronous methods for deep reinforcement
learning”. In International conference on machine learning. 11, 49

Moravk, Matej, et al. 2017. “Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker”. Science. 8

Mozer, Michael C. 1989. “A focused back-propagation algorithm for temporal
pattern recognition”. Complex systems. 17

Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. 2018. “Representation
learning with contrastive predictive coding”. arXiv:1807.03748. 14

OpenAI. 2018. “OpenAI Five”. 4, 5, 8, 49

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. 2013. “On the diffi-
culty of training recurrent neural networks”. In International conference

on machine learning. 18

Rebuffi, Sylvestre-Alvise, et al. 2017. “icarl: Incremental classifier and repre-
sentation learning”. In Computer vision and pattern recognition. 10

Redmon, Joseph, et al. 2016. “You only look once: Unified, real-time object
detection”. In Computer vision and pattern recognition. 4

Ren, Shaoqing, et al. 2015. “Faster r-cnn: Towards real-time object detection
with region proposal networks”. In Advances in neural information pro-

cessing systems. 4

Riemer, Matthew, et al. 2019. “Learning to learn without forgetting by maxi-
mizing transfer and minimizing interference”. International conference on

learning representations. 10

Robins, Anthony. 1995. “Catastrophic forgetting, rehearsal and pseudorehearsal”.
Connection Science. 9

Robinson, AJ, and Frank Fallside. 1987. The utility driven dynamic error

propagation network. University of Cambridge Department of Engineering
Cambridge, MA. 17

Rosenblatt, Frank. 1958. “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.” Psychological review. 8

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. 1986. “Learn-
ing representations by back-propagating errors”. nature. 8

Schaul, Tom, et al. 2015. “Prioritized experience replay”. arXiv:1511.05952. 10

Schraudolph, Nicol N. 1999. “Local gain adaptation in stochastic gradient
descent”. 25, 26

Shah, Haseeb, Khurram Javed, and Faisal Shafait. 2018. “Distillation tech-
niques for pseudo-rehearsal based incremental learning”. arXiv:1807.02799.

10

Shin, Hanul, et al. 2017. “Continual learning with deep generative replay”. In
Advances in neural information processing systems. 10

55

Silver, David, et al. 2017. “Mastering the game of go without human knowl-
edge”. Nature. 8, 16

Silver, David, Richard S Sutton, and Martin Müller. 2008. “Sample-based
learning and search with permanent and transient memories”. In Inter-

national conference on machine learning. 1

Sutton, Richard S. 1984. “Temporal credit assignment in reinforcement learn-
ing”. 16, 17

— . 1988. “Learning to predict by the methods of temporal differences”. Ma-

chine learning. 17, 22, 59

— . 1990. “Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming”. In Machine learning proceed-

ings. Elsevier. 17, 22

— . 1992. “Adapting bias by gradient descent: An incremental version of delta-
bar-delta”. In AAAI Conference on Artificial Intelligence. 24, 25, 32

Sutton, Richard S, and Andrew G Barto. 2018. Reinforcement learning: An

introduction. MIT press. 59

Sutton, Richard S, Anna Koop, and David Silver. 2007. “On the role of track-
ing in stationary environments”. In International conference on machine

learning. 1

Sutton, Richard S, et al. 2000. “Policy gradient methods for reinforcement
learning with function approximation”. In Advances in neural information

processing systems. 11

Sutton, Richard S, et al. 2011. “Horde: A scalable real-time architecture for
learning knowledge from unsupervised sensorimotor interaction”. In Inter-

national conference on autonomous agents and multiagent systems. 22, 59

Tesauro, Gerald. 1995. “Temporal difference learning and TD-Gammon”. Com-

munications of the ACM. 17

Vaswani, Ashish, et al. 2017. “Attention is all you need”. In Advances in neural

information processing systems. 8, 18

Veeriah, Vivek, Shangtong Zhang, and Richard S Sutton. 2017. “Crossprop:
Learning representations by stochastic meta-gradient descent in neural net-
works”. In Joint european conference on machine learning and knowledge

discovery in databases. 25, 26

Vincent, Pascal, et al. 2008. “Extracting and composing robust features with
denoising autoencoders”. In International conference on machine learning. 13

Vincent, Pascal, et al. 2010. “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion.” Journal
of machine learning research. 13

Vinyals, Oriol, et al. 2019. “Grandmaster level in StarCraft II using multi-
agent reinforcement learning”. Nature. 4, 5, 8, 49

56

Watkins, Christopher JCH, and Peter Dayan. 1992. “Q-learning”. Machine

learning. 11

Watkins, Christopher John Cornish Hellaby. 1989. “Learning from delayed
rewards”. 11

Werbos, Paul. 1974. “Beyond regression:” new tools for prediction and analysis
in the behavioral sciences”. Ph. D. dissertation, Harvard University. 8

Werbos, Paul J. 1988. “Generalization of backpropagation with application to
a recurrent gas market model”. Neural networks. 17

Williams, Ronald J, and David Zipser. 1995. “Gradient-based learning algo-
rithms for recurrent”. Backpropagation: Theory, architectures, and appli-

cations. 17

Yosinski, Jason, et al. 2014. “How transferable are features in deep neural
networks?” In Advances in neural information processing systems. 12

Zenke, Friedemann, Ben Poole, and Surya Ganguli. 2017. “Continual learning
through synaptic intelligence”. Machine learning research. 10

Zhang, Lijun, Tianbao Yang, Zhi-Hua Zhou, et al. 2018. “Dynamic regret
of strongly adaptive methods”. In International conference on machine

learning. 58

Zhang, Richard, Phillip Isola, and Alexei A Efros. 2016. “Colorful image col-
orization”. In European conference on computer vision. 14

Zinkevich, Martin. 2003. “Online convex programming and generalized in-
finitesimal gradient ascent”. In International conference on machine learn-

ing. 21, 58

57

Appendix A

Generalizations of the Problem

Formulation

A.1 Dynamic regret

In Equation 3.1, I defined the goal of the agent as minimizing accumulated

loss over time. The online-learning community has looked at an alternative

metric: dynamic regret (Zhang et al. 2018; Zinkevich 2003). The idea behind

regret — as opposed to accumulated loss — is to remove the irreducible error

to get a more interpretable metric. In a non-stationary world, achieving zero

loss is impossible — arbitrary changes in the input or target distribution will

lead to some mistakes — and looking at the accumulated loss does not tell us

if an algorithm is ineffective at learning, or if the the irreducible error is just

high. We can define the notion of an optimal model to capture this irreducible

error. The optimal model can be defined in terms of a learning algorithm,

and an initialization of the model parameters. Let θ∗1 be the initialization

parameters for f̂ . Moreover, assume f̂θ∗
1
is being updated with the optimal

learning algorithm — one that achieves the lowest accumulated loss. Then we

can define dynamic regret as:

RegretT =
T∑

t=1

L(ft(St), f̂
θt(St)− L(ft(St), f̂

θ∗
t (St)) (A.1)

=
T∑

t=1

L(yt, ŷt)− L(yt, f̂
θ∗
t (St)) (A.2)

58

Ideally, we would want to restrict the learning update of the optimal model

to satisfy similar computation and memory constraints as our learning algo-

rithm. .

A.2 POMDP Problem Formulation

The online prediction problem can be defined in terms of a Partially Observable

Markov Decision Process (POMDP). A POMDP is defined by (S,A, r, p, e),

where S is the set of states, A is the set of actions, r : S × A × S → R is

a reward function, and p : S × A → S = P (St+1 = st+1|At = at, St = st) is

the transition model of the world. The agent takes an action At ∈ A at time

step t. As a result, the world transitions from St to St+1 ∈ S, returning a

reward Rt+1. Instead of seeing the state of the POMDP — St+1 — directly,

the agent sees an observation Ot+1 = e(St+1), where e : S → O is an unknown

function. e could be invertible — converting the POMDP to an MDP — or

non-invertible — requiring a recurrent mechanism for constructing the state.

The agent has its own internal state S
′

t at time-step t. When e is invertible,

Ot has the same information as St. Otherwise, the agent has to construct

S
′

t from partial observations O1, · · · , Ot. This can be achieved using a state-

update function U (Sutton and Barto 2018) that recursively updates the agent

state as S
′

t = U(S
′

t−1, Ot, At−1).

Similar to the MP formulation, the goal of the agent is to track a sta-

tionary or non-stationary target function ft(St, At) = yt. At time step t, the

agent outputs ŷt, an estimate of yt, and takes an action At. As a result, the

world transitions to a new state St+1 and the agent receives the target label

ft(St, At) = yt from the environment. The agent accumulates loss given by

L(yt, ŷt), where L is a loss function that returns the prediction error and the

gradient of the error. The target function f can be a function of current state of

the agent, such as a function that returns bootstrapped estimate of the return

of a value function (Sutton 1988). This formulation can represent important

prediction problems, such as learning a model of the world for planning, online

self-supervised learning, or learning General Value Functions (GVFs) (Sutton

59

f̂θ(.) = gW (Uφ(S
′

t−1, Ot, At−1), At). (A.5)

Given this decomposition, the agent has to learn two functions for mini-

mizing regret. First, it has to learn the state-update function Uφ to recursively

update its state. Second, given Uφ, the agent has to learn a predictor gW from

(S
′

t, At) to the target f t(St, At). I call Uφ the Representation Learning Net-

work (RLN) — it is learning a representation of the state of the world that can

be used for making predictions — and gW the Prediction Learning Network

(PLN) as shown in Figure 3.1.

61

	Introduction
	Preliminaries
	A Brief History of Neural Networks
	The Catastrophic Interference Problem
	The success of memory based methods

	Representation Learning in Neural Networks
	Supervised representation learning
	Unsupervised representation learning
	Learning disentangled representations
	Representation search

	Credit Assignment Through Time
	Challenges in scaling BPTT

	Problem Formulation and Notation
	Problem Formulation
	An Architecture for Online Learning

	Learning Online-aware Representations using Gradients
	Related Work
	Online-aware Meta-learning
	Experimental Evaluation
	Baseline methods
	Online sine regression benchmark
	Measuring robustness to interference of the learned representations
	Visualizing the learned representations

	Closing Discussion on OML

	Limitations of Gradient-based Representation Learning
	Catastrophic Interference in OML Updates
	Ten-state Markov Process
	Implementation details
	Empirical evaluation
	Discussion

	Representation Learning with Backtracking
	Representation Search
	Generate and test
	Learning with backtracking
	Empirical evaluation of LwB

	Closing Discussion

	Final Thoughts
	References
	Appendix Generalizations of the Problem Formulation
	Dynamic regret
	POMDP Problem Formulation
	POMDP Architecture for Online Learning

