Studying Dependency Updates and a Framework for Multi-Versioning in
Docker Containers

by
Sara Gholami Ghasem Abad

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science
in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

(©) Sara Gholami Ghasem Abad, 2020

Abstract

Containerized software systems are becoming more popular and complex as they are
one of the essential techniques that enable cloud computing. One of the enabling
technologies for containerized software systems is the Docker framework. Docker
is an open-source framework for deploying containers, lightweight, standalone, and
executable units of software with all their dependencies (packages and libraries) that
can run on any computing environment. Docker images facilitate deploying and
upgrading systems as all of the dependencies required for a software package are
included in an image. However, there exist several risks with running Docker images
in production environments. One risky situation can occur when upgrading images,
as an upgrade may result in many changing packages or libraries at once.

Therefore, in this thesis, we study the Docker images and analyze them to identify
the risks of package changes. Also, we propose our solution, DockerMV, to mitigate
this risk by running multiple versions of an image at the same time.

In this first part of this thesis, we analyze the official Docker image repositories
that are available on Docker Hub, Docker’s public registry that holds Docker images.
For each image in these repositories, we extract details about its native, Node, and
Python packages. Afterward, we investigate which types of applications have more
package changes in their image upgrades. We find that, depending on the type of
applications, the package changes have different trends. For example, Operating sys-
tems and Base Images repositories have a lower median number of changes. However,
Analytics and Application Services repositories have the highest median number of

package changes. Our findings show that practitioners should be extra cautious when

i

doing in-place upgrades of images of such applications in their production environ-
ments.

In the second part of this thesis, we provide a solution for mitigating this risk
by applying software multi-versioning to Docker images. We present DockerMV, an
open-source extension of the Docker framework that supports multi-versioning for
containerized software systems. We demonstrate the usefulness of DockerMV from
the performance point of view and test it on two open-source subject systems. In
particular, we demonstrate how DockerMV can be used to balance the workload be-
tween Docker images that contain different versions of the same application. In both
experiments, DockerMV maintained the system’s performance while using a limited

set, of resources.

il

Preface

The research of this thesis has been conducted in the Analytics of Software, GAmes,
and Repository Data (ASGAARD) lab led by Dr. Cor-Paul Bezemer and the Perfor-
mant and Available Computing Systems (PACS) Lab led by Dr. Hamzeh Khazaei.

Chapter 2 has been submitted as S. Gholami, H. Khazaei, and C.P. Bezemer.
Should you Upgrade Official Docker Hub Images in Production Environments? [EEFE
Software. 1 was responsible for data collection and analysis, as well as the manuscript
composition. Dr. Bezemer and Dr. Khazaei were the supervisory authors and were
involved with concept formation and manuscript composition.

Chapter 3 is published as S. Gholami, A. Goli, C.P. Bezemer, and H. Khazaei,
2020, April. A Framework for Satisfying the Performance Requirements of Container-
ized Software Systems Through Multi-Versioning. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering (pp. 150-160) [26]. I was
responsible for the development of the framework, conduction of both sets of exper-
iments and the manuscript composition. A. Goli assisted with the Znn application
experiments and contributed to manuscript edits. Dr. Bezemer and Dr. Khazaei were
the supervisory authors and were involved with concept formation and manuscript

composition.

v

Acknowledgements

I would like to thank all the people who contributed in some way to the work described
in this thesis. First and foremost, I would like to express my sincere gratitude to Dr.
Cor-Paul Bezemer for his overarching advice, encouragement, and support throughout
my study. Your guidance always puts things in perspective, and I am deeply indebted
to you.

I am also extremely grateful to Dr. Hamzeh Khazaei for his valuable advice and
support. I would like to thank my thesis examiners, Dr. Marek Reformat and Dr.
James Miller, to accept being part of my thesis examiners.

Thanks to all of my friends in both the ASGAARD and PACS labs who helped
me in the last two years with their kind supports. I would like to especially thank
Alireza Goli, one of my labmates in the PACS lab, who helped me conduct some
experiments.

To my family and friends who have supported me on my journey through my
studies, you have my sincerest thanks. To my mother, Fariba, and my brother,
Mahdi, thank you for everything you have done to support me in my life. 1T would

like to thank my partner, Armin, for his unparalleled patience, care, and support.

Table of Contents

1 Introduction and Background 1
1.1 Introduction 1
1.2 Containerized Software Systems 3
1.3 Docker 4

1.3.1 Docker Container)
1.3.2 Docker Architecture 5
1.3.3 Docker Hub o 6
1.4 Outline. 7

2 Should You Upgrade Official Docker Hub Images in Production En-
vironments? 8
2.1 Abstract 8
2.2 Introduction 9
2.3 Background 10

2.3.1 Docker 10
232 DockerHubo 11
24 Methodology 13
2.4.1 Selecting Repositories 13
2.4.2 Collecting Image Tags 15
2.4.3 Collecting Packages and Latest Update Dates 15
2.4.4 Identifying Package Changes 15
25 Results. o 17

vi

2.6 Related Work 20

2.6.1 Security Analysis of Package Changes in Docker 20
2.6.2 Package Updates 21
2.7 Threats to Validity 23
2.7.1 Internal Validity, 23
2.7.2 External Validity 23
2.8 Conclusion 23
2.9 Acknowledgements Lo 24

A Framework for Satisfying the Performance Requirements of Con-

tainerized Software Systems Through Multi-Versioning 25
3.1 Abstract 25
3.2 Imtroductiono 26
3.3 Background 28
3.3.1 Containerized Software Systems 29
3.3.2 Managing Containers 30
3.4 A Motivating Example 31
3.5 Our Approach 32
3.5.1 Implementation 0oL 32
3.5.2 Load Balancing L0 34
3.5.3 On the Necessity of Our Approach 36
3.6 Experimental Setup 37
3.6.1 Subject Systems. 37
3.6.2 Introducing Multi-Versioning in the Subject Systems 38
3.6.3 Experimentso 38
3.6.4 Workload 40
3.6.5 Deployment of the Subject Systems 41
3.6.6 Load Balancing L. 42

vil

3.7 Experimental Evaluation 43

3.7.1 Experiments with the TeaStore Application 44

3.7.2 Experiments with the Znn Application 44

3.8 Related Work 46
3.8.1 Software Multi-Versioning 46

3.8.2 Software Multi-Versioning for Containerized Systems 46

3.8.3 Performance Engineering of Containerized Systems 47

3.9 Threats to Validityo o 48
3.9.1 External Validity 48

3.9.2 Internal Validity 48

3.9.3 Construct Validity 49

3.10 Conclusion Lo 50

4 Conclusions & Future Work 52
4.1 Conclusions 52
4.2 Future Worko 53
Bibliography 54

viii

List of Tables

2.1
2.2
2.3

3.1

3.2
3.3

Docker Hub’s repository types as of April 2020 13
Docker Hub official repositories categories 17
The packages with the most often changes 22

A description of the experiments that we conducted for the TeaStore

and Znn applications 40
Description of the containers in the experiments 42
Description of the virtual machines 42

X

List of Figures

1.1
1.2
1.3

2.1

2.2

2.3

2.4

2.5

2.6
2.7

3.1

3.2

3.3

3.4

Docker search trend from 2013 to 2020
Container creation process for the MongoDB application [42]

Docker architecture

Docker Hub consists of collections of images that can be pulled and
used to create and run Docker containers.
Overview of our data collection process for our study on package
changes in Docker Hub repositories
Pull counts and star counts of the official and community repositories.
The red dot indicates the median value.
An example of branches in a repository over time
Median number of upgrades in each category
Median number of downgrades in each category

Median number packages in each category

High-level architecture of the TeaStore application with multi-
versioning of the Recommender microservice.
High-level architecture of a regular service in Docker where requests
are load balanced in a Round Robin manner.
High-level architecture of a service with multi-versioning where re-
quests are balanced based on a rule-set.

High-level architecture of the Znn application.

11

13

3.5

3.6
3.7

3.8

3.9

Containerized deployment of Znn in which we have two different ver-
sions of the Media service.
Shape of the Znn application workload
The TeaStore application experiments and the distribution ratio of
traffic using software multi-versioning and adaptive load balancing . .
The Znn application experiments using only the multimedia vs only
the text version of the service. Note that the scales on the y-axes are
different.o
The Znn application experiment using software multi-versioning and

adaptive load balancing

x1

39
41

44

45

Abbreviations

API Application Programming Interfaces.
DockerMV Docker with Multi-Versioning.

OCI Open Container Initiative.

OS Operating System.
REST REpresentational State Transfer.

VM Virtual Machine.

xil

Chapter 1

Introduction and Background

1.1 Introduction

Containerization is a popular technology that allows developers to create and de-
ploy applications in a faster way. Containerization involves packaging software code
and all of its dependencies to run on any computing environment [33]. One of the
technologies that enable containerization is the Docker framework, which facilitates
the development, deployment, and shipment of the containerized software systems.
Docker containers are running instances of Docker images [17], which are composed
a software application and its libraries and packages. As a result, Docker images
make developing and upgrading the software application easier, as all of the required
packages come with the source code. However, for the same reason, Docker images
bring additional threats to the system. In each upgrade, many packages could change
together, which could result in poor performance and security [57, 64, 65].

There have been studies on the risks that are introduced to the client’s systems by
upgrading their packages [37, 44, 55, 62]. For instance, a study on the available pack-
ages in the Maven repository showed that one-third of major package upgrades and
one-third of minor package upgrades contain breaking changes [55]. Major upgrades
could have incompatible Application Programming Interface (API) changes and mi-
nor upgrades often add backward compatible functionality [52]. Similarly, a study on

the Node.js packages showed that there are breaking changes in the minor and patch

upgrades [44] (e.g., patch changes have backward compatible bug fixes [52]). These
changes in packages can lead to poor performance or security vulnerabilities in the
client’s system [37]. In addition, some aspects of packages such as performance are
often not tested very well [8, 41]. As a result, unexpected package changes after a
Docker image upgrade could result in a reduced software experience, e.g., in terms of
performance and security.

In this thesis, we focus on the Docker framework and identify the application
types that introduce more threats to their clients as a result of package changes. In
addition, we propose our solution to mitigate the identified threats using software
multi-versioning. We conducted the two following studies:

Research Study 1: Should You Upgrade Official Docker Hub Images in
Production Environments?

In this study, we focus on the official Docker repositories on Docker Hub and analyze
the images in these repositories for changes to their native (operating system), Node,
and Python packages. In this work, we quantify how many packages are changing in
each type of Docker Hub repository.

Research Study 2: A Framework for Satisfying the Performance Re-
quirements of Containerized Software Systems Through Multi-Versioning

One approach to prevent having poor performance in a system after upgrading
its packages is to keep the previous version along with the upgraded version and
gradually switch to the later version. Therefore, in our second study, we focused
on extending the Docker framework with multi-versioning (through our proposed
DockerMV framework), which facilitates having different versions of an image under
one service. In this study, we focused on the performance point of view and showed
how multi-versioning could help to satisfy the system’s performance requirements
while maintaining the quality of the service at an acceptable level with a limited set
of resources.

The results of our first study could help to understand how package changes are

happening in different types of applications, which can help developers of container-
ized software systems in decision making about upgrading the container images in a
production environment. Also, developers can use DockerMV to facilitate the deploy-

ment of their systems with a customizable load balancer.

1.2 Containerized Software Systems

Containerization is a major trend in software development. Containerization is the
encapsulation of software code and all of its dependencies so that it can run on any
computing environment or infrastructure [33]. The following are some of the popular

container technologies:

e Docker containers are one of the most popular open-source container tech-
nologies [32]. Docker containers do not require an Operating System (OS) per

application as they share the host OS kernel, which makes them lightweight [17].

e Unikernels optimize the resources required by a container at runtime. Uniker-
nels can boot and run on their own without requiring a host OS or external

libraries [60].

e LXD is a container platform that is build and operated using the same tools
as VMs. However, LXD containers can achieve similar runtime performance as

other containers and improved utilization in comparison to VMs [60].

e OpenVZ is a container platform for running a complete operating system.
OpenVZ requires both host and guest OS to be running Linuzx as it shares the
host OS kernel. OpenVZ is faster and more efficient than traditional VMs [60].

e Rkt (pronounced Rocket) containers came from CoreOS to address security

vulnerabilities in early versions of Docker [60].

e Windows Server Containers are the same as Linuz containers for Microsoft

100+

80

60|

40+

Search interest

20+

0

2013-01 2015-04 2017-07 2019-10

Figure 1.1: Docker search trend from 2013 to 2020

workloads. Microsoft enabled container technology on core windows OS. How-

ever, these containers are only available on Windows 10, Server 2016, and

Azure [60].

e Hyper-V Containers can bring a higher degree of security by hosting Win-
dows Server Containers. Hyper-V containers can be used when higher security
and isolation are required, but it would reduce the host’s efficiency and density.
Hyper-V containers are built and managed in a similar way to Windows Server

Containers [60].

1.3 Docker

Docker is a framework for developing, deploying, and shipping applications, which
separates the application from the infrastructure. Docker provides the ability to run
applications in loosely isolated environments called containers [18]. Docker initially
used to be a closed-source framework under the name dotCloud Inc., but in March
2013, it was released as an open-source project by Docker Inc [20]. Figure 1.1 shows
Docker’s significant popularity rise based on the Google search trend from 2013 to
2020 worldwide, where a popularity value of 100 is the maximum popularity for the

term, and the rest of the data is normalized based on that.

DockerFile Containers

FROM ubuntu Container 1
docker build docker run
RUN apt-get update » Docker Image » | Container 2
.
RUN apt-get install mongodb :
Container n

Figure 1.2: Container creation process for the MongoDB application [42]

1.3.1 Docker Container

A Docker container is a lightweight, standalone, and executable unit of software that
packages software code and all of its dependencies (packages and libraries) to run in
any computing environment [17]. Figure 1.2 shows the process of creating a container
for the MongoDB application. First, a DockerFile, a text file containing all of the
commands for creating a container [19], is used to build a Docker image. Then,
a Docker container is created based on a Docker image, which means that Docker

containers are running instances of Docker images.

1.3.2 Docker Architecture

Docker has two important components: the Docker Engine, the virtualization tech-
nology, and the Docker Registry which is a service for sharing Docker images. Fig-
ure 1.3 shows the Docker architecture and how these components interact.

Docker Engine is a client-server application with three major components: the
Docker client, the Docker daemon, and the REpresentational State Transfer (REST)
API. The Docker daemon listens for the Docker API requests and manages Docker
objects such as images, containers, and volumes. Besides, Docker daemons can com-
municate with each other to manage Docker services. The Docker client is the main
way in which most users interact with Docker, enabling them to run commands. As
can be seen in Figure 1.3, the Docker client communicates with the Docker daemon

through the REST API and Docker daemon communicate with the Docker registry

Docker Client Docker Host Docker Registry

docker build~ = .
=~ Docker daemon }\ Repository A
u.--""". B S
docker pull “.,." S
Images \ Repository B
N > Repository C
A PSR Image A

NN L~ .
<)

\

I:‘ Docker Engine Component

Figure 1.3: Docker architecture

or Docker objects to execute a command. For example, the docker build command
is used to build an image, or the docker run command creates a container from
an image. As a result, the Docker client and Docker daemon can run on the same
machine or can connect remotely. Also, a Docker client can communicate with more
than one Docker daemon.

A Docker Registry is where Docker images are stored. There are private and
public registries where users can use either of them. Docker Hub is Docker’s default
public registry, which is used by default when commands such as docker push (i.e.,
to upload an image to the registry) and docker pull (i.e., to download an image

from the registry) are executed [18].

1.3.3 Docker Hub

As explained, Docker Hub! is a Docker registry, which is a centralized resource storing
Docker images. Docker Hub contains over 3 million repositories. In addition to
Docker Hub, there used to be Docker Store and Docker Cloud, which were other
Docker registries to share or sell Docker images [16, 47]. However, since December
2018, Docker Store and Docker Cloud were merged into Docker Hub [45], and Docker

Certified and Verified images were added to the Docker Hub. Currently, Docker Hub

Thttps://hub.docker.com/

has four types of repositories:

e Community repositories are created by the community users of Docker Hub,

which means anyone with an email address can create a community repository.

e Verified repositories are developed and maintained by verified third-party soft-

ware vendors.

e Official repositories are reviewed and published by a team sponsored by Docker
Inc. These repositories provide base operating systems, programming lan-

guages, databases, and other application services.

o (ertified repositories are a subset of verified repositories that had passed some

additional Docker quality, best practices, and support requirements.

1.4 Outline

The rest of this thesis is as follows: Chapter 2 presents our study on Docker Hub
images and the risks of upgrading these images. Chapter 3 contains the study on
DockerMV, which is our proposed solution for maintaining the performance require-
ments of containerized software systems with multi-versioning. Finally, Chapter 4
concludes this thesis and highlights our findings and the potential future works of our

study.

Chapter 2

Should You Upgrade Official
Docker Hub Images in Production
Environments?

2.1 Abstract

Containerized software systems are a crucial technology in cloud computing. With
the growth of these systems, containerized software systems become more complicated
and complex to manage. Docker is one of the most popular containerization technolo-
gies. Docker allows a user to deploy Docker images, software code that is packaged
with the packages it depends on, to create and run containers. While Docker images
facilitate the deployment and in-place upgrading of an application in a production
environment by replacing its container with one based on a newer image, many in-
ternal dependencies could change at once during such an image upgrade, which can
potentially be a source of risks.

In this chapter, we study the official Docker images on Docker Hub, Docker’s official
image registry, and explore how internal packages are changing in these images. We
analyze the native, Node, and Python packages in Docker images, and investigate
which types of applications tend to have the most changes to their dependencies.
Our findings can help developers, who want to do upgrades on Docker images in

their systems, to make a more cautious decision regarding the unwanted changes that

could happen in their system.

2.2 Introduction

Containerization is a popular approach to deploy software systems [33]. One of the
enabling technologies for containerization is Docker, an open-source framework to
deploy containers in different computing environments [11]. Docker containers are
composed of an image that encapsulates software code and all its required package
and library dependencies [33]. As a result, deploying Docker containers into a produc-
tion environment and applying in-place upgrades by replacing them with containers
created from newer images is easy. However, with every upgrade of a Docker image,
many packages could change at once, which could e.g., result in reduced performance
or security of the application.

Several related works studied the Docker images available on Docker Hub from a
security point of view [57, 64, 65]. For instance, Shu et al. [57] studied over 300,000
Docker images for the spread of vulnerabilities from one image to another image that
uses it. They found that images inherit security vulnerabilities from their parent
image. Similarly, Zerouali et al. [64] showed that vulnerabilities in npm packages
might impact Docker images.

Besides the potential security risks in Docker images, there is another potential
risk, which is the risk of changing many components of a system at once. The risk of
package changes was studied in different environments and languages such as Maven,
Node.js, and Java [37, 44, 55, 62]. These studies show that package changes can
lead to broken functionality, poor performance, or security vulnerabilities in the ap-
plications that depend on the packages. In addition, other studies show that certain
aspects of packages, such as performance, are often not well-tested [8, 41]. As a result,
although applying in-place upgrades on Docker images is easy, it can put the whole
system at risk through issues that are caused by internal packages.

In this chapter, we study the package changes in official Docker images (images

9

reviewed by the Docker team) in the Docker Hub registry. We focus on the native
(operating system), Node, and Python packages and investigate which types of appli-
cations tend to have more package changes.

Our study shows how frequent changes are happening in the packages used by
different types of applications on Docker Hub. Our study helps to raise awareness
with developers of containerized software systems of the necessity of being cautious
when upgrading Docker images in a production environment.

The rest of the chapter is organized as follows. Section 2.3 provides background
information about Docker and Docker Hub. Section 2.4 describes our methodology.
Section 2.5 presents our findings. Section 2.6 provides an overview of the related
work. Section 2.7 explains the threats to the validity of our work, and Section 2.8

concludes our chapter.

2.3 Background
In this section, we provide background information about Docker and Docker Hub.

2.3.1 Docker

Docker!

started as an open-source project in 2013 as a Platform-as-a-Service com-
pany [43]. Docker is a container virtualization technology [4] that puts together sev-
eral kernel-level technologies such as LXC and Cgroups to facilitate the deployment
and use of containers. Docker provides interfaces to create and deploy containers.
Docker containers are lightweight, packaged applications that can run on different
computing environments without modification. Docker relies on two major compo-
nents: the Docker Engine, which is the virtualization technology, and Docker Hub,
a service for sharing Docker images [11].

Docker containers are created from Docker images by executing the docker run

command. Docker Hub is where Docker images are stored by default, which means

Thttps://www.docker.com/

10

https://www.docker.com/

Docker Hub

Repository
A

i docker pull docker run

RepoBs ftory = Image » Container

Repository
C

Figure 2.1: Docker Hub consists of collections of images that can be pulled and used
to create and run Docker containers.

that by default docker push uploads an image to Docker Hub and docker pull
downloads an image from Docker Hub. Figure 2.1 shows how images in Docker Hub are
used for creating containers. First, an image is pulled from Docker Hub by executing
the docker pull command, and then by executing the docker run command the
image is used to create a container. Each image is created based on a DockerFile,
a text file consisting of a series of commands to create an image. Listing 2.1 shows
an example of a DockerFile. In the first line, Ubuntu is used as the base image,
meaning that the packages required for Ubuntu are added to the final image. Then
lines 3 and 4-6 install Python and Node.js, which means that packages required for
these languages will be added to the final image. In general, the used packages in
an image are either packages that are native to a Linux distribution such as debian,
arch, or alpine, or packages that are installed by popular package managers such as

PyPy, npm, or CRAN [64].

2.3.2 Docker Hub

As explained, Docker Hub? is Docker’s default registry for finding and sharing con-
tainer images. Docker Hub is a collection of repositories. Currently, there are over 3

million repositories in Docker Hub. Each repository is a collection of images, which

https://hub.docker.com/

11

https://hub.docker.com/

- w [-

© [*4 ~ (=] w

un
(=]

Listing 2.1: Example DockerFile

FROM ubuntu

RUN apt—get install —y software—properties—common python
RUN add—apt—repository ppa:chris—lea/node.js

RUN apt—get update

RUN apt—get install —y nodejs

RUN mkdir /var/www

ADD app.js /var/www/app.js

CMD ["/usr/bin/node", "/var/www/app. js"]

allows users to share container images with other users, such as their team members

or customers. Images in a repository are identified by unique user-identified tags.

The following four types of repositories are available on Docker Hub. Table 2.1 gives

an overview of the frequency with which these types occur at the time of writing.

1. Community repositories are maintained and delivered by community developers,

including all users with a Docker Hub account. As a result, there is no guarantee
on security, maintainability, or following best practices for development in these
repositories. More than 99% of the Docker Hub repositories are community

repositories.

. Verified repositories are published and maintained by verified third-party pub-

lishers such as IBM or Microsoft [45]. There are 339 verified repositories on

Docker Hub.

. Official repositories are reviewed and published by a team that is sponsored

by Docker Inc. Docker community members can contribute to developing the
official images. Images in the official repositories exemplify DockerFile best
practices and ensure that security updates are applied in a timely manner. As

can be seen from Table 2.1, there are 160 official repositories.

4. Certified repositories are a special type of verified repository that are built

12

Table 2.1: Docker Hub’s repository types as of April 2020

A

Docker Hub

Selecting
repositories

160 official
repositories

Y

,/

A\

Repository type # of repositories Proportion
Community 3,354,643 99.9%
Verified 339 < 1%
Official 160 < 1%
Certified 51 < 1%
. D\ - q N /" Identifyi BN
ke e e e .
Break_do_wn
Docker Hub Docker Hub inrtetfgf:sgl?ess
Pull 37K Sort images in
images branches
Retrievil
repoesirtlgrvy":ggs 1
Extract Get 37K latest Idelr:tify
packages update dates sﬁ;ngg:
I
37K it List of ki
erston Stz Fats
\/\ \ dates]
) A 4 L %

Which types of applications tend to
have more package changes?

Figure 2.2: Overview of our data collection process for our study on package changes
in Docker Hub repositories

2.4 Methodology

following best practices, tested and validated against the Docker Enterprise

Edition platform and APIs, passed security requirements and are collaboratively

supported [45]. There exist 51 certified repositories on Docker Hub.

In this section, we present our methodology for studying package changes in official

Docker Hub images.

Figure 2.2 displays the steps of our methodology: selecting

repositories, collecting image tags, collecting packages and latest update dates, and

identifying package changes. We detail each step below.

2.4.1 Selecting Repositories

In the first step, we select a set of repositories to study. We selected the Docker Hub

official repositories as these 160 repositories are considerably more popular than the

13

o)
; =)
1.2M+ : ‘%ﬁ 2979 i‘ﬁ%fg
e ®
160K+ (f 7y
v [o8 e\
22K+ g 1 402 %8 8 gfoigj
?

3K+

Star counts

53 loé

B
o
o
+

Pull counts

w
w
()]
s
o
2o

o

o
o

Community | ¢
Official
Community

(a) Number of pull counts in official and com- (b) Number of star counts in official and com-
munity repositories munity repositories

Figure 2.3: Pull counts and star counts of the official and community repositories.
The red dot indicates the median value.

other types of repositories. Figure 2.3a shows the number of pull counts for official and
community repositories. Docker Hub does not provide this information for verified
and certified repositories. As can be seen, the median number of pull counts for
the official repositories is 10 million, while the median number of pull counts for the
community repositories is 45 and varies from 1 pull to 10 million.

Similarly, Figure 2.3b presents the number of star counts for both official and
community repositories, where the median number of star counts is 271 for the official
repositories and 0 for the community repositories. Both of these figures are evidence
of the popularity of the official repositories. In addition, as Docker Inc. sponsors
a team to verify and publish the official repositories’ content, users can be more
confident about the credibility of the images in the official repositories. Therefore,
we focused our study on the official repositories.

In our study, we did not consider the Scratch and OpenSUSE repositories as they

did not contain images. Hence, we study 158 repositories in total.

14

2.4.2 Collecting Image Tags

In the second step, we get the list of available tags for each repository. We used the
code available on the Source{d} GitHub page® with a few modifications to retrieve all

available tags. We collected a list of almost 37K tags from all the official repositories.

2.4.3 Collecting Packages and Latest Update Dates

In our third step, we download images one by one and analyze their packages. We
focused on the native, Node, and Python packages in this study. Native packages
are packages used by the operating system, which is Linuz. Node and Python pack-
ages are the packages installed for Node.js and Python applications. In our study,
all repositories contained native packages. In addition, six repositories used Node
packages, six repositories used Python packages, and two repositories used both Node
and Python packages. Similar to the previous step, we used the Source{d} code to
analyze the available packages in each image. In addition to the list of packages, we
collected the latest update date for each image by executing the docker inspect

command.

2.4.4 Identifying Package Changes

In the last step, we study the package changes when upgrading an image. We split
the images in each repository into versioning branches, as images in different branches
might use different packages, and comparing them would not be insightful. Figure 2.4
shows an example timeline of how branches could evolve in a repository. In this exam-
ple repository, there is a branch with the alpine ending, which indicates those images
are using alpine, a Linuz distribution. As the branches may progress independently,
we should not compare images from different branches. For example, we did not
compare 1.1-alpine to 1.1.1 as they are from different branches. After identifying

the branches, we sorted the images in each branch based on their latest update date.

3https://github.com /src-d /datasets

15

https://github.com/src-d/datasets

1.1 1.1.1 1.2 1.21

1.1-alpine 1.2-alpine 1.2.1-alpine 1.3-alpine

/ \ > Time
\ 3.0 3.1 3.1.1 3.1.2

2.0 2.1 2.1.0

Figure 2.4: An example of branches in a repository over time

However, there were cases in which several images were updated on the same day. In
these cases, we manually sorted the images based on the versioning specified in the
tags. As tag names do not follow any naming convention, we could not automate
this process. Some repositories used the release date as their version number (e.g.,
20200415), and some used semantic versioning to indicate major, minor, and patch
releases (e.g., 1.13.2).

In addition, the tags in TomEFE, NeuroDebian, ROS, BuildPack-Deps, and Adop-
tOpenJDK repositories were not clear to divide into branches. For example, in the
ROS repository, all of the tags are names, such as lunar-perception-stretch, melodic-
perception-stretch, and melodic-perception. Therefore, we excluded these five reposi-
tories from our analysis.

Finally, we compared the packages used in each image with its adjacent image in
the same branch to identify any major, minor, or patch upgrades or downgrades. To
determine if a change is upgrade or downgrade, we compared the group of numbers
and characters in the package versioning. For instance, a version change from 1.5.0
to 2.0 or from 1.3-a to 1.3-b are upgrades. Also, a change from version 2.1.0 to
2.0 or from 3.3-b to 3.3-a are downgrades. In addition, we needed to determine if a
change is major, minor, or patch. Based on the semantic versioning definition [53],
major changes make incompatible API changes, minor changes add functionality in
a backwards compatible manner, and patch changes make backwards compatible bug

fixes. To identify each type of change, we separated the numbers in the version tags.

16

Table 2.2: Docker Hub official repositories categories

Category Example repositories # of repositories
Analytics Telegraf, Logstash 4
Application Frameworks Mongo-express, Drupal 21
Application Infrastructure Nginx, HTTPd 14
Application Services Ghost, Elasticsearch 25
Base Images Ubuntu, Alpine 16
Databases Redis, MySQL 15
DevOps Tools Consul, SonarQube

Featured Images AmazonLinux, Registry

Messaging Services NATS, LightStreamer 4
Monitoring Kapacitor

Operating Systems CentOS, Debian 15
Programming Languages Python, Golang 20
Storage Couchbase, Memcached 4

If the first set of digits were different, then the change is major. If the second set of
digits were different, then it is a minor change. Otherwise, it is a patch change. For
example, version 1.2.0 to 2.0 is a major change, while a change from version 1.2.0 to
1.3.1 is a minor change, and a version change from 1.2.0 to 1.2.1 is a patch change.

Table 2.2 shows the categories of the official repositories on Docker Hub with two
example repositories and the number of repositories in each category. From the 153
official repositories, 115 belong to one or two of these categories. We categorized 38
official repositories that did not belong to any category as Others. We used these

categories to compare the package changes in repositories of different categories.

2.5 Results

This section presents the results of our study on which types of applications tend
to have more package changes in official Docker images. As Docker images facilitate

deployment and upgrading of an application system in a production environment, it is

17

important to study whether package changes are more likely across different types of
applications. Therefore, practitioners can use this information to make more careful
decisions regarding upgrading an image in a production environment.

There is a median of 8.6 upgrades per image across official Docker images.
We considered the median number of changes because median values do not get af-
fected by the outliers. Figure 2.5 displays the distribution of major, minor, and patch
upgrades in images of different categories. The Application Services applications have
a median number of 1.4, 2.2, and 11.1 major, minor, and patch upgrades, respectively,
which are the highest medians across categories. More specifically, in the Application
Services category, the ZNC application has the highest number of upgrades (6.2 ma-
jor upgrades, 21.9 minor upgrades, and 79.2 patch upgrades). The Analytics category
has the second-highest median number of major (0.6) and patch (8.1) upgrades, and
the third-highest median number of minor (1.5) upgrades. Afterward, the Program-
ming Languages, Application Infrastructure, and Databases categories have the next
highest median number of patch upgrades.

There is a median of 2.1 downgrades per image across official Docker
images. Figure 2.6 illustrates the distribution of major, minor, and patch down-
grades per image across different categories. The Analytics applications with 0.4, 0.8,
and 3.8 have the highest median number of major, minor, and patch downgrades.
The Application Infrastructure, Application Services, and Programming Languages
categories have the second-highest median number of package downgrades in major,
minor, and patch changes, respectively.

Images of Analytics applications are the least stable. The official images
specify a median of up to 36 third-party packages. Figure 2.7 shows the median
number of packages per image specified in each category. As can be seen, the Oper-
ating Systems and Base Images categories have the lowest median number of pack-
ages, which is why these applications also have the lowest median number of package

changes in both upgrades and downgrades. The images in the Operating Systems

18

Il Major upgrade
1 Il Minor upgrade
Il Patch upgrade

| i‘+ IS

Figure 2.5: Median number of upgrades in each category

[$;)
w

[y
©

(o))

o

Number of upgrades per image

=
.-
—

o

AnalyticsH
Application Frameworks
Application Infrastructure *
Application Services+
Base Images
Databases |
DevOps Tools
Featured Images|
Messaging Services
Monitoring
Operating Systems+
Others
Programming Languages
Storage-

and Base Images applications tend not to add many additional packages and pro-
vide the base operating system in an image. Although the images in the Application
Services category have one of the highest median numbers of packages changes, the
median number of packages used in these applications is not the highest. In contrast,
applications in the Analytics category have the highest median number of package
changes and total packages used in the images. This finding suggests that images for
the Analytics applications are less stable than images for other types of applications.

The packages that are changed the most often are common utility pack-
ages. There are over 9K different packages used in the official Docker images. Ta-
ble 2.3 shows the top 10 packages with the most number of changes across Docker
official repositories with a description of the package and the number of applications
that used these packages. As can be seen, the ones with the highest number of changes
are utility packages. In many cases, when upgrading a system, we do not want to
upgrade several other utility packages unless absolutely necessary, as such upgrades
might cause incompatibilities. In addition, newer versions of these utility packages

may contain bugs. Therefore, practitioners need to carefully check the packages which

19

w
w

Il Major downgrade

I Minor downgrade
Il Patch downgrade
l o]
o o o
: i . o E
i om
/)) 0 /

fury
©o

o
o
o

=

o
oo
00 o
o @

o

HIlH

Number of downgrades per image
[e)]

ii i ! i . %
i i : z
0] - 22l Bz ==
n 0 0 0 0 0 ‘ 0 ")
ke 1] 4] 1] ° 4] o} 2 I o o
B o o [l 3 o) o = g ©
> S © © e © S S 2 s 5
[E Qo E [frur} 0 o
g () © w0 [0} = > o o
c & = 3 3 = & c A 0
< [} T o o =]
s & S5 § & 2 = @
- [— —
=1 @ a 2 S) =
S © @© ©
= () w0 [}
a w 4] o
Q o
< =

Programming Languages{ —lill——

Application Framework
Application Infrastructur

Figure 2.6: Median number of downgrades in each category

are changing in an image upgrade and consider the consequences on their system.

Summary: Practitioners need to be cautious when doing in-place upgrades of
images from the official Docker Hub repositories as in all studied applications,
many packages are changing.

2.6 Related Work

In this section, we discuss the related work to our study. More specifically, we discuss
prior work on the security analysis of package changes in Docker images and package

changes in different environments and languages.

2.6.1 Security Analysis of Package Changes in Docker

There have been several studies on package upgrades in Docker images. However,
they all focus on the security aspect [57, 64, 65]. Shu et al. [57] developed a framework
to discover, download, and analyze images for security vulnerabilities and the prop-
agation of the vulnerabilities from parent images to their children. They analyzed

more than 300,000 Docker Hub official and community images and found that there

20

Others

Median number of packages per image
= = N N w w
o (6, o (6, o w o w
Analytics

Databases

Monitoring

DevOps Tools

Base Images N

Featured Images G

Messaging Services

Operating Systems

Application Frameworks
Application Infrastructure
Application Services

Programming Languages
Storage NN

Figure 2.7: Median number packages in each category

are more than 70 vulnerabilities in each image on average, where child images have
20 more vulnerabilities. Zerouali et al. [64] empirically studied the use of JavaScript
packages in Docker images. They analyzed 961 images from three official repositories,
which used Node.js packages. They found that all of the official images which used
Node packages have security vulnerabilities with an average of 16 vulnerabilities per
image, suggesting that Docker deployers should keep their JavaScript packages up to
date.

All the prior studies focused on the Docker images from the security point of view.

In contrast, we study Docker images to identify package changes as a potential risk.

2.6.2 Package Updates

There have been studies on package dependencies in different environments and lan-
guages [37, 44, 55, 62]. Kerzazi et al. [37] studied botched releases in an application for
1.5 years. Botched releases are releases that cause abnormal behaviors such as poor
performance, crashes, or hangs in the system after deployment into the production

environment. Based on their study, about 22.5% of the releases are botched releases,

21

Table 2.3: The packages with the most often changes

of
L. applications
Package name Description # of changes that used
them
tzdata Time zone and daylight-saving 4096 106
time data
base-files Debian base system miscellaneous 3794 104
files
libsystemd0 Provides interfaces to various sys- 3446 87
temd components
libudev1 Provides access to udev device in- 3437 88
formation
openssl Cryptography —and SSL/TLS 3035 102
toolkit
curl Command line tool for transfer- 2633 75
ring data with URL syntax
libe-bin Utility programs related to the 2560 97
GNU C Library
gpgv GNU’s tool for secure communica- 2435 99
tion and data storage
libc6 GNU C Library 2315 85
apt Command line package manager 2307 99

which can significantly affect the systems that are using this application. As another
example, Raemaekers et al. [55] conducted a study on version changes of the jar files
in Maven repository where about one-third of the major changes and one-third of the
minor changes had at least one breaking change. Breaking changes are vital as they
can have a significant impact on the client’s software system and lead to compilation
errors and crashes. In a study by Mezzetti et al. [44] on Node.js libraries, they found
that 5% of the packages have been affected by breaking changes due to a minor or
patch update in their dependencies. Xavier et al. [62] studied breaking changes in
updates of 317 Java libraries, where 14.8% of changes caused incompatibilities with

previous versions.

22

The previous studies investigated the effect of package changes in different envi-
ronments and languages such as Node.js, Maven, and Java. In contrast, in our study,

we analyze Docker images to identify package changes in official images.

2.7 Threats to Validity
In this section, we discuss the threats to the validity of this study.

2.7.1 Internal Validity

To sort the images in each repository, we first separated the images into possible
branches. This process has been done manually as there is no concept of branch
defined on Docker Hub. We did not include repositories in our study when we were
not sure about the branches. Future studies should investigate automated approaches

for identifying branches from version numbers.

2.7.2 External Validity

In this study, we analyzed the Docker Hub images for their native, Node and Python
packages. Although we extracted the native packages for all of the images, only
six repositories used Node packages, six repositories used Python packages, and two
repositories use Node and Python packages. Therefore, future studies should analyze

changes in Docker images for other types of packages (such as R packages that are

managed by CRAN).

2.8 Conclusion

In this chapter, we studied the official Docker Hub repositories and analyzed over 37K

images in these repositories for their native (operating system), Node, and Python

packages. Our study shows that all studied applications have changing packages.
Although the Operating Systems applications did not have many package changes,

it could be due to the fact that these types of applications do not use many third-party

23

packages and provide the base operating system. Therefore, even a few changes in
these applications are important as they are used as the base image in other images.
In addition, common utility packages are changing the most often among all the
packages. In many cases, these packages are not essential to the main application, so
one could wonder whether it is worth to risk breaking the system for.
In conclusion, we advise practitioners to take extra caution when doing in-place
upgrades on Docker images as in all studied applications, several packages are chang-

ing.
2.9 Acknowledgements

Special thanks to Source{d} for providing valuable code for data collection and anal-

ysis.

24

Chapter 3

A Framework for Satisfying the
Performance Requirements of
Containerized Software Systems
Through Multi-Versioning

3.1 Abstract

With the increasing popularity and complexity of containerized software systems,
satisfying the performance requirements of these systems becomes more challenging
as well. While a common remedy to this problem is to increase the allocated amount
of resources by scaling up or out, this remedy is not necessarily cost-effective and
therefore often problematic for smaller companies.

In this chapter, we study an alternative, more cost-effective approach for satisfy-
ing the performance requirements of containerized software systems. In particular,
we investigate how we can satisfy such requirements by applying software multi-
versioning to the system’s resource-heavy containers. We present DockerMV, an open
source extension of the Docker framework, to support multi-versioning of container-
ized software systems. We demonstrate the efficacy of multi-versioning for satisfying
the performance requirements of containerized software systems through experiments
on the TeaStore, a microservice reference test application, and Znn, a containerized

news portal. Our DockerMV extension can be used by software developers to introduce

25

multi-versioning in their own containerized software systems, thereby better allowing

them to meet the performance requirements of their systems.

3.2 Introduction

As the popularity and complexity of software systems increase, it becomes more chal-
lenging to satisfy the performance requirements of such systems. For example, one
common problem that may happen for a web-based software system is the Slashdot
effect. The Slashdot effect is a resource allocation problem that happens when a
high-traffic website posts a link to a low-traffic website [1]. If the low-traffic website
is not capable of handling the sudden increase in traffic, it may experience prolonged
response times or unavailability, thereby violating the website’s performance require-
ments. One common remedy to this problem is to allocate more server resources to
make sure that the performance of the website satisfies the requirements. However,
this approach can become very expensive and could add high over-provisioning costs,
which not every project can afford. An alternative solution could be to have different
versions of the services provided by the website. For instance, if the website had
lightweight versions of some of its essential, resource-heavy components, it could use
them during the high load to reduce its resource usage while maintaining reason-
able response times. A similar example of this software multi-versioning concept has
been used by Google’s Gmail, which has a lightweight HTML-based version that is
used when the user’s browser does not support the feature-rich but resource-heavy
JavaScript-based version [28]. By falling back on the lightweight version, the user
would still be able to use Gmail, albeit at a reduced quality of service.

Software multi-versioning is traditionally applied to mission-critical systems, such
as flight or nuclear power plant control systems, to improve their dependability, relia-
bility or fault tolerance [5, 6, 24, 36]. As these systems are often monolithic, software
multi-versioning requires maintaining several full versions of the system, making it

a costly process. As a result, software multi-versioning has never been widely used

26

for non-critical systems, as the cost of maintaining several versions usually does not
outweigh the benefits for non-critical systems.

However, the advent of systems with containerized architectures, such as
microservice-based ones, opens many new opportunities for applying software multi-
versioning. As these systems are divided into smaller components that each run
inside their own container, we can apply software multi-versioning to a component
rather than the whole system. Figure 3.1 shows an example of an architecture of a
microservice-based application (the TeaStore application [39]) in which the Recom-
mender microservice uses multi-versioning. For every request, the system can select
at runtime whether the LightWeight or HeavyWeight version of the Recommender
microservice will be used to fulfill the request.

In this chapter, we examine how software multi-versioning can help satisfy the
performance requirements of containerized software systems. We conduct two exper-
iments on the performance of two containerized systems under varying loads. In the
first experiment, we study the TeaStore application [39], which is a reference applica-
tion for benchmarking and testing microservices. We applied multi-versioning to its
Recommender service to simulate an accurate but resource-heavy recommendation al-
gorithm, and a less accurate but more lightweight version. In our second experiment,
we study a containerized three-tier online news application (the Znn application [13])
where our adapted version of the Znn application reduces the level of service during
the high load by using different versions of the content-providing component.

To implement our experiments, we present an extended version of the Docker
container platform (DockerMV) that allows the creation of multi-version services by
deploying several containers for each version of the service. To allow service develop-
ers to control the load balancing between the multiple versions of their service in a
transparent manner, DockerMV provides a rule-based load balancer which can be con-
figured at the service-level rather than at the system level. Hence, by using DockerMV,

developers can extend their own containerized systems with multi-versioned services

27

Registry
_ 7 N
> Persistence Recommender

____ ~
o ~

~

C) Microservice
——3 The WebUI service issues calls HeavyWeight

——> Communication of services with Registry

Connection to a provided interface
== ==% atthe Persistence service

Access and caching for the store’s HeavyWeight,,

relational database k /

Figure 3.1: High-level architecture of the TeaStore application with multi-versioning
of the Recommender microservice.

in a manner that is transparent to the rest of the system.

The rest of the chapter is organized as follows. Section 3.3 provides background
information about containerized software systems, microservices and managing con-
tainers. Section 3.4 presents a motivational example for our approach. In Section 3.5,
we present the concept of our approach. In Section 3.6, we explain our experimen-
tal setup. Section 3.7 discusses the results of our experiments. Section 3.8 gives an
overview of the related work, and Section 3.9 explains the threats to the validity of

our work. Finally, Section 3.10 concludes the chapter.

3.3 Background

In this section, we provide background information about containerized software sys-

tems and managing containers.

28

Service S4

Response
—_—

Request Load
Balancer

[
b

Figure 3.2: High-level architecture of a regular service in Docker where requests are
load balanced in a Round Robin manner.

3.3.1 Containerized Software Systems

One of the essential techniques that enable cloud computing is virtualization [50],
which is used to create virtual environments in which processes or services are iso-
lated from each other [7], thereby allowing multi-tenancy of hardware resources |9,
35]. Traditionally, virtualization is achieved using a hypervisor. A hypervisor is a
process to create and run virtual machines (VMs) on a host system, making it appear
that each VM is using its own independent hardware resources. Some well-known ex-
amples of hypervisors are VMware ESX, KVM, Xen, and Hyper-V [2, 43, 59]. When
using hypervisors for virtualization, each virtual machine runs its own operating sys-
tem (OS) on the host system, which makes the virtual machines resource-heavy and
severely limits the number of virtual machines that can run in parallel on a single
host.

A recent advancement in virtualization techniques is the advent of lightweight
software containers, which share the OS, binaries and libraries of the host system.
As a result, containers are smaller and more lightweight than virtual machines that
are started by a hypervisor. Hence, it is possible to run hundreds of containers on a
single host machine. Also, as these containers use the host’s OS, they can be started

much faster [7].

29

Microservices

Microservices are a popular architectural approach for creating containerized software
systems which is inspired by service-oriented computing [23]. In the microservices ar-
chitecture, the system is developed from a set of small independent services [46].
While microservices can be deployed in virtual machines, the best way to leverage
their full potential is to run them inside containers [7, 58]. The independence of
microservices allows developers to work on them separately and use the most suit-
able technology to develop each of them [46]. Also, microservices can be modified
independently as the requirements of the system change. Microservices communi-
cate through RESTful APIs or a message-based protocol, which allows to scale an

application quickly by replicating the microservice that is under heavy load [38].

3.3.2 Managing Containers

A popular framework for deploying software containers is the open source Docker
container platform.! Docker combines several kernel-level technologies such as LXC
and cgroups to enable the deployment and reuse of highly portable, lightweight con-
tainers [43]. A Docker container is a runtime instance of a Docker image. A Docker
image specifies everything that is necessary to run an application as a container, for
example, which libraries should be enabled in the container and how they should be
configured [17]. When Docker executes in swarm mode [22], (replications of) con-
tainers are started as services that are part of a larger, service-based system (e.g., a
microservice-based one) [21]. Figure 3.2 shows the high-level architecture of a service
S1 that consists of n exact replicas of containers that run version V; of the service. The
load balancer balances the traffic to the service in a Round Robin-manner between its
n containers. One of the main benefits of a Docker service is that the service appears
as a single unit to other parts of the system, regardless of the number of replicated

containers it consists of. Hence, other parts of the system need not be aware of the

thttps:/ /www.docker.com/

30

https://www.docker.com/

load balancing.

One downside of Docker services is that all the containers of a service are exact
replicas. In the next section, we present a motivating example in which it would be
beneficial to have a service that consists of containers that run different versions of

the service.

3.4 A Motivating Example

Erica is a developer who works for an e-commerce start-up company that sells prod-
ucts online. The start-up company has migrated all of its software systems to con-
tainerized ones. As the start-up has limited financial resources, it is important to
run their systems in a cost-effective manner. FErica is responsible for designing the
algorithm that recommends new products to the customers based on the customer’s
shopping cart, the customer’s order history, or the popularity of the items. FErica
suggested several algorithms for the recommendation system, each with their own
strengths and weaknesses. While the algorithm needs to be fast, it should provide
high quality recommendations as well.

Unfortunately, Erica noticed that the performance requirements of one the software
systems could not be satisfied when the recommendation algorithm was enabled.
Erica’s first solution was to increase the allocated server resources. However, the start-
up company cannot afford these extra costs. Instead, Erica decided to implement
two versions of the algorithm; one resource-heavy version that provides high quality
recommendations, and one lightweight version that provides lower quality but still
acceptable recommendations. Hence, by switching between the algorithms as the
availability of resources allows, the system can make the trade-off between resource
usage and recommendation quality. For example, when there is a sale event happening
on the website the lightweight algorithm can be used, to ensure the recommendation

algorithm does not consume too many resources.

31

Listing 3.1: The original docker service create command. We omitted the argu-
ments that are not relevant to our work for clarity.

1|$ docker service create [SOPTIONS] SIMAGE [SREPLICATION]

3.5 Owur Approach

Software multi-versioning is the concept of developing and running several different
versions of a software system or component to improve one or more of the system’s
quality attributes. Our approach is to apply software multi-versioning to the contain-
ers of a service in a containerized software system. To deploy multi-version services,
we need to deploy multiple containers, each of which are instantiated from different
container images. Our goal is to implement multi-versioning in a transparent man-
ner, i.e., users of the services and/or containers are not aware of the multi-versioning.
Hence, our multi-version containers should form a unified service which can be treated

like a regular single-version service.

3.5.1 Implementation

To implement our approach, we extended the Docker framework into the DockerMV
framework. To create a service with the original Docker framework, the docker
service create command in Listing 3.1 is used. The original command takes the

following parameters:

e $OPTIONS: Optional parameters that can be used to configure container-specific

parameters, such as the environment variables and the memory limit.
e $IMAGE: The image from which the container should be created.

e $REPLICATIONS: The number of replications of the container that should be

created.

The command in Listing 3.1 will create a service that consists of $REPLICATIONS

exact copies of the container that is created from the $IMAGE image with the con-

32

figuration options specified in $0PTIONS. The docker service create command in

Listing 3.1 does not support multi-versioning. Therefore, we extended the command’s

implementation to accept multiple images with different replication and configura-

tion parameter values. Listing 3.2 shows the extended command, which allows the

creation of multi-version Docker services. In particular, the extended command al-

lows the creation of a Docker service that consists of SREPLICATIONS; + ... +

$REPLICATIONS,, containers, that were created from n images. In addition, the

extended docker service create command supports the following parameters:

In

Network: The name of the overlay network to connect the containers to each

other (fixed for all containers in the Docker service) (Required).

Name: The Docker service name (fixed for all containers in the Docker service)

(Required).

Environment variables: The environment variables (fixed for all containers

in the Docker service) (Optional).

Memory: The memory limit for a container (Optional).

Swap memory: The swap memory limit for a container (Optional).
CPU: The number of CPUs for a container (Optional).

Container port: The port that the containers of the Docker service will listen

on (fixed for all containers in the Docker service) (Required).

Rule-set: The location of the user-defined rule-set.

our extended command, the network, name, environment variables, and

container port parameters have the same value across all containers of the service.

However, the memory, swap memory, and CPU can be configured differently for each

container in the service. Listing 3.3 shows an example invocation of the extended

33

Listing 3.2: The extended docker service create command

$ docker service create [SJOPTIONS]
2 $IMAGE; SREPLICATIONS;

—_

$IMAGE,, SREPLICATIONS,,

N

Listing 3.3: An example invocation of the extended docker service create
command that deploys two versions of the teastore-recommender service.

$ docker service create

2 e REGISTRY_HOST=host_IP e REGISTRY_PORT=10000
3 e HOST_NAME=host_IP e SERVICE_PORT=3333

4 10.2.5.26 Network recommender 8080 1g 1g 0.2 rules.txt

5 sgholami/teastore—recommender:HeavyWeight 1

6 sgholami/teastore—recommender:LightWeight 1

-

command (which is part of our DockerMV extension). In particular, two versions of
the teastore-recommender service are started (one replication of each), that are
connected to the recommender network. Each of the containers initializes four envi-

ronment variables (REGISTRY HOST, REGISTRY PORT, HOST NAME and SERVICE PORT).

3.5.2 Load Balancing

Figure 3.2 shows an example architecture of a Docker service. As shown in Figure 3.2,
a Docker service has a load balancer that distributes the incoming requests between
the service’s containers. As these containers are created from the same image, the
load balancer usually distributes the incoming traffic in a round-robin manner (i.e.,
an equal amount of traffic to each container) [22]. Figure 3.3 shows the architecture of
a service that consists of containers made from different images. As these containers
are created from different images, they may perform a similar task at different quality
of service levels, e.g., comparable to our motivating example in Section 3.4. Hence, it
may no longer be desirable to distribute the traffic in a round-robin manner. Instead,
we would like to balance the load based on performance metrics of the service, such as

median response times or CPU utilization. Therefore, we implemented a rule-based

34

Listing 3.4: Format of the rules for the load balancer

$METRIC SOPERATOR $THRESHOLD ,
2 (version $VERSION_NAME perc=$PERCENTAGE;)+

-

Listing 3.5: Example rule for the load balancer

1|RT > 0.4,
2 version recommender:HeavyWeight perc=40;
3 version recommender:LightWeight perc=60;

load balancer in our services. We used a customized version of NGINX? as the load
balancer amongst the different replications of a service’s containers. Our customized
load balancer has a user-defined rule-set which defines how to balance the incoming
traffic to satisfy a system’s performance requirements. Listing 3.4 shows the format
of the rules for the load balancer.

The parameters in the rule in Listing 3.4 are as follows:

e $METRIC: The metric that is used to check whether a rule should fire. Currently

only RT (median response time) is supported.

e $0PERATOR: The relational operator (<, <, >, > or ==) that is used in the

condition to check whether a rule should fire.

e $THRESHOLD: The threshold for the metric that is used in the condition to check

whether a rule should fire.
e $VERSION_NAME: The name of one of the versions of the service.

e $PERCENTAGE: The percentage of requests to be directed to the container (be-

tween 1 and 100).

Listing 3.5 shows an example rule, in which 40% of the requests are directed to

the first container (i.e., the HeavyWeight version of the service), and the second

Zhttps://www.nginx.com

35

Load Response
———————
Balancer

Figure 3.3: High-level architecture of a service with multi-versioning where requests
are balanced based on a rule-set.

(Light Weight) container handles the other 60% of the requests. We recalculate the
median response time every five seconds from NGINX’s log file. NGINX uses this
median value to decide which rule should be used when balancing the incoming traffic.
NGINX saves the $time_local, and $request_time for each of the incoming requests.
The $time_local returns the local time of the machine, and we use that time to
identify the requests which were received in the last n seconds. The $request_time

is the elapsed time since the first bytes were read from the client.

3.5.3 On the Necessity of Our Approach

One could argue that software multi-versioning could easily be achieved using if-
statements inside a service’s source code, or by simply starting multiple services (i.e.,
one for each version). However, source code-based solutions have the disadvantage
that they clutter the source code, making maintenance and understanding of the
code more challenging. In addition, starting multiple services causes software multi-
versioning to no longer be transparent, which has obvious (negative) consequences for
the other parts of the system. For example, the system now needs to be aware of more

complex load balancing requirements. Hence, our approach is necessary to provide

36

(Media Service)

Request Load

Response
f————
Balancer

s
L_J

Figure 3.4: High-level architecture of the Znn application

multi-versioning in containerized systems in a transparent, non-cluttered manner.

3.6 Experimental Setup

In this section, we elaborate on our experimental setup. The goal of our experiments
is to study the benefits of software multi-versioning for satisfying the performance

requirements of containerized software systems.

3.6.1 Subject Systems

In our experiments, we study the TeaStore [39] and the Znn applications. The
TeaStore application is a reference microservice application that can be used for
performance testing and benchmarking. The TeaStore application simulates an on-
line store that is composed of six microservices (see Figure 3.1). Every microservice
runs inside its own container. In addition, the database runs inside its own container.

The Znn application [13] is a three-tier web-based news portal that can be used for
testing and benchmarking of self-adaptive applications. The Znn application contains
a pool of web servers, a MySQL database with news-related text and multimedia
contents, and a load balancer that receives requests from clients and distributes them
among the web servers in a Round Robin manner. The high-level architecture of the
Znn application is shown in Figure 3.4. The source code of the TeaStore® and the

Znn* applications are both publicly available.

3https://github.com/DescartesResearch/TeaStore
4https://github.com/cmu-able/znn

37

https://github.com/DescartesResearch/TeaStore
https://github.com/cmu-able/znn

3.6.2 Introducing Multi-Versioning in the Subject Systems

To introduce multi-versioning in the TeaStore application, we adapted the
Recommender service, which is designed to return recommendations based on the
user’s history and items in their shopping cart (similar to our motivating example in
Section 3.4). The TeaStore application provides several algorithms and trains them
once the service is first launched. To conduct our experiment, we selected one of the
algorithms, which is the SlopeOne algorithm, and forced retraining every two min-
utes. The multiple retraining is applied to simulate a higher load and pressure on the
system in which the Recommender service is replicated (and hence retrained) on sev-
eral containers. The retraining causes slower response times of the Recommender. As
a result, we use two versions of the Recommender in our experiment, one with regular
retraining (HeavyWeight) and another with a single training (LightWeight). Fig-
ure 3.1 shows the architecture of the TeaStore application with the multi-versioned
Recommender service.

The Znn application returns news articles that contain multimedia contents (such
as a video that is sent by the web server). Therefore, when the load of the system
increases, the system’s median response time rises (as the network bandwidth becomes
a bottleneck). Hence, we created two different versions of the web servers. The first
version provides the original news article along with its multimedia contents, while
the other version of the service returns only the text contents of the news. Figure 3.5
shows the high-level architecture of the containerized version of the Znn application

with multi-versioning.

3.6.3 Experiments

We conducted three experiments for each of the subject systems:

e Ideal Case Experiment: In this experiment, we tested the “ideal case” for

each of the systems, i.e., the case in which all requests are served by the heavy-

38

{ Media Service

Request Load - Response
Balancer
Multimedia

Webservery,

Multimedia
(. L
Figure 3.5: Containerized deployment of Znn in which we have two different versions
of the Media service.

weight versions of the services. Hence, for the TeaStore application all requests
are served by the Recommender that is constantly retrained, and for Znn all re-

quests receive a multimedia response.

e Worst Case Experiment: In the second experiment, we tested the worst-case
setup (in terms of quality of service, i.e., we only used the lightweight versions
of the services) for each of the subject systems. For the TeaStore application,
the worst case is to use only the Recommender service with a single training. In

the Znn application, the worst case is to return only the text responses.

e Adaptive Experiment: Finally, we studied how multi-versioning together
with an adaptive balancing of the workload can help to satisfy the performance
requirements. For each of the subject systems, we deployed both of the versions
of the services and balance the load based on a customized rule-set. In this
setup, we used our extended version of Docker (DockerMV) along with our

customized NGINX load balancer.

These experiments are summarized in Table 3.1. To demonstrate our approach,

we defined the performance requirements as follows:

39

e For the TeaStore application, we set 450 milliseconds as the upper limit for the

median response time.

e For the Znn application, we set 1 second as the upper limit for the median

response time.

Both of these performance requirements were defined empirically based on the ideal
and worst case experiments. Please note that the exact choice of performance require-
ments does not matter much—our sole purpose in this chapter is to demonstrate the

efficacy of software multi-versioning to satisfy performance requirements.

Table 3.1: A description of the experiments that we conducted for the TeaStore and
Znn applications

TeaStore Description Znn Description

Ideal case experiment Recommender with multiple Multimedia responses only
training

Worst case experiment Recommender with single Text responses only
training

Adaptive experiment Adaptive load distribution Adaptive load distribution

3.6.4 Workload

We used Apache JMeter,” a tool for load testing web applications to generate work-
loads for our experiments.

For the TeaStore application, we generated the workload using the JMeter script
that is provided by the TeaStore developers and modified it to add more items to
the shopping cart to put more pressure on the Recommender service. We generated
a workload of 100 users who concurrently send HTTP requests to the TeaStore
application for different purposes such as opening the home page, logging in, or adding

items to the cart. This workload continued for 1,000 seconds. Each user sends an

Shttps://jmeter.apache.org

40

https://jmeter.apache.org

N
o
o

=
9]
o

100

[0,
o

Number of active users

N\

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

o

Figure 3.6: Shape of the Znn application workload

HTTP request to the server and receives an HTML page, and as soon as the user
receives a response, they send the next request.

For the Znn application, we generated a workload that sends HT'TP requests and
simulates multiple users sending requests to the Znn application concurrently. Fig-
ure 3.6 shows the shape of the workload and the number of active users during each
of the two-hour experiments. For instance, at the highest peak where the number
of active users is 200, it means that 200 threads concurrently send requests to the
servers, and when they get a response, they send another request. We use the same

workload across the experiments for each of the subject systems.

3.6.5 Deployment of the Subject Systems

Table 3.2 shows the description of the containers that we used for the experiments. We
limited the containers’ memory, swap memory, and CPU to stop them from growing
too much and allocating all of the available resources. These limits were defined based
on our experience with the subject systems.

We provisioned one virtual machine in the Compute Canada cloud® and one virtual

machine in the Cybera Rapid Access Cloud” to run our containers for both of the

Shttps://www.computecanada.ca/research-portal /national-services/compute-canada-cloud
"https://www.cybera.ca/services /rapid-access-cloud/

41

https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud
https://www.cybera.ca/services/rapid-access-cloud/

Table 3.2: Description of the containers in the experiments

Swap

Name Docker Image Memory Memory CPU
HeavyWeight- sgholami /teastore- 1G 1G 0.4
Recommender recommender:Heavy Weight

Light Weight- sgholami/teastore- 1G 1G 0.4
Recommender recommender:Light Weight

Multimedia alirezagoli/znn- 1G 1G 0.4

multimedia:v1

Text alirezagoli/znn-text:v1 1G 1G 0.4
NGINX sgholami/nginx-monitoring unlimited unlimited unlimited
NGINX official ~ NGINX unlimited unlimited unlimited
MySQL alirezagoli/znn-mysql:v1 unlimited unlimited unlimited

experiments. In particular, we ran the JMeter script on the Compute Canada cloud
and the subject systems on the Cybera cloud. Table 3.3 summarizes the configurations
of our virtual machines.

Table 3.3: Description of the virtual machines

Cloud Instance VCPUs Memory OS
Cybera Experiment 4 8GB Ubuntu-18.04
Compute Canada JMeter 4 15GB Ubuntu-18.04

The source code of the DockerMV and more details about our experiments can be

found on the project’s GitHub repository [27].

3.6.6 Load Balancing

For the TeaStore application, we set the rules presented in Listing 3.6 for NGINX to
balance the load between the versions of the Recommender service. Listing 3.7 shows
the set of rules for the Znn application. Both rule sets were defined empirically based

on observations during preliminary runs of the experiments.

42

Listing 3.6: NGINX rule set for the TeaStore application

1|RT < 0.1,

2 version recommender:HeavyWeight perc=99;
3 version recommender:LightWeight perc=1;

4 RT < 0.25,

5 version recommender:HeavyWeight perc=90;
6 version recommender:LightWeight perc=10;
71RT < 04,

8 version recommender:HeavyWeight perc=80;
9 version recommender:LightWeight perc=20;
10/ RT >= 0.4,

11 version recommender:HeavyWeight perc=70;
12 version recommender:LightWeight perc=30;

Listing 3.7: NGINX rule set for the Znn application

|RT < 0.1,

2 version znn—multimedia:vl perc=99;
3 version znn—text:vl perc=1,

4RT < 0.2,

5 version znn—multimedia:vl perc=80;
6 version znn—text:vl perc=20;

71RT < 0.3,

8 version znn—multimedia:vl perc=70;
9 version znn—text:vl perc=30;

10/ RT < 0.6,

11 version znn—multimedia:vl perc=40;
12 version znn—text:vl perc=60;

13 RT < 0.8,

14 version znn—multimedia:vl perc=30;
15 version znn—text:vl perc=70;

16| RT >= 0.8,

17 version znn—multimedia:vl perc=20;
18 version znn—text:vl perc=380;

3.7 Experimental Evaluation

In this section, we discuss the results of our experiments for each subject system.

43

—— Lightweight Recommender (with single training)
—=— Heavyweight Recommender (with multiple training)
Adaptive distribution

N Threshold of 450 ms
el
E S Y1.00
o 650 cg™
I 82095
£ 600 ad
= o 2 0.90
@ 550 =
@ 15085
S 500]
& 450 ! g 53 0%
9] . 82075
o <o
= 400 \AY « 8070
© oI
5 350 © »0.65
) += O
s 0 200 400 600 800 1000 8 0 200 400 600 800 1000
Time (seconds) Time (seconds)

(a) Median response time of the TeaStore (b) The ratio of requests responded by the
application HeavyWeight version of the service

Figure 3.7: The TeaStore application experiments and the distribution ratio of traffic
using software multi-versioning and adaptive load balancing

3.7.1 Experiments with the TeaStore Application

Figure 3.7a shows the median response times of the TeaStore application in our ex-
periments. We illustrated the result of all tests in one plot as the range of their values
is close, and it is possible to observe the changes in all of them together. Figure 3.7b
shows the ratio of requests that were responded to by the HeavyWeight version of the
Recommender service. We observe that the median response time fluctuates around
our performance requirement threshold as the load balancer distributes the load be-

tween the HeavyWeight and Light Weight versions of the service.

3.7.2 Experiments with the Znn Application

Figure 3.8a shows the median response time of the ideal case for the Znn application
when we are using only the multimedia version of the service. During this exper-
iment, the median response time of the application goes up to around 25 seconds,
which indicates that the resources for the application are severely under provisioned.
Figure 3.8b shows the median response time of the worst case experiment, which
shows that the available resources can easily handle this type of traffic. However,
the quality of service is considerably reduced since all requests are handled by the

text version of the service. Figure 3.9a shows the median response time when using

44

“» 25000

m
-
o
o
=]

20000

®
=}
S

15000

o
=3
=)

10000

N
o
=)

5000

N
=3
S

§ s

0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (seconds) Time (seconds)

Median Response Time (ms)

Median Response Time (m

=)

(a) The median response time when running (b) The median response time when running
only the multimedia-version of the service only the text version of the service

Figure 3.8: The Znn application experiments using only the multimedia vs only the
text version of the service. Note that the scales on the y-axes are different.

o

2000

= =
1) o
S =3
S S
© 0 o0 o o oo =
o

o
o
o
Ratio of requests responded
by multimedia service

Median Response Time (ms)

o
N

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (seconds) Time (seconds)

(a) The median response time when running (b) The ratio of requests responded by the
the services with multi-versioning and using multimedia version of the service
the rules defined in Listing 3.7

Figure 3.9: The Znn application experiment using software multi-versioning and adap-
tive load balancing

software multi-versioning to balance between the multimedia and text version of the
service. In addition, Figure 3.9b shows the ratio of the requests which were responded
to by the multimedia server in the adaptive experiment. Figures 3.9a and 3.9b show
that the system deals with the increases in workload by balancing the majority of
the requests (first approximately 50-70% and then approximately 80%) to the text

version of the service.

Summary: Multi-versioning allows us to satisfy the performance requirements
of subject systems while maintaining a level of Quality of Service that is as high
as possible using the given resources.

45

3.8 Related Work

In this section, we discuss prior work that is related to ours. In particular, we discuss
related work on software multi-versioning, software multi-versioning for containerized

systems, and performance engineering of containerized systems.

3.8.1 Software Multi-Versioning

Until now, software multi-versioning has been used for several purposes, such as
improving a system’s security [10, 25, 40, 51], safety [30], reliability [14], and avail-
ability [29]. In these cases, software multi-versioning is often used as a means to
achieve software redundancy, i.e., to have several different versions of the software
that are functionally equivalent, yet different in terms of e.g., implementation or used
implementation language.

Larsen et al. [40] studied the effect of automated software redundancy on a system’s
security. Franz et al. [25] used software multi-versioning as a defense mechanism for
a system. The idea of their approach is that as the system has several versions, it
is harder to figure out for the attackers which version they are attacking. Therefore,
they have less chance to succeed in their attack, which increases the system’s security.
Persaud et al. [51] used software redundancy by using Genetic Algorithms to enhance
the security of the system. Cigsar et al. [14] considered software multi-versioning as
an approach to improve the reliability of repairable systems. Gracie et al. [30] stated
that there have been designs for using redundancy for safety purposes. Gorbenko et
al. [29] used software multi-versioning for a web service to extend its functionality

and improve its attributes such as availability and reliability.

3.8.2 Software Multi-Versioning for Containerized Systems

In containerized systems, software multi-versioning has been used mostly for purposes
such as enhancing the fault tolerance. [61, 67], security, and reliability [66] of the sys-

tems. For example, Wang et al. [61] suggested the idea of applying multi-versioning

46

to critical components of cloud-based software to improve the fault tolerance of the
system. Wang et al. proposed an approach to find the critical components of the sys-
tem and apply software multi-versioning only to those critical components to reduce
the cost and complexity of software multi-versioning while improving the system’s
fault tolerance. Also, Zheng et al. showed that software multi-versioning can be used
to improve the reliability [66] and fault tolerance [67] of service-oriented systems.
However, the choice of using multi-versioning can affect the quality of service of the
system. Therefore, Zheng et al. formulated the reliability requirements as an opti-
mization problem and proposed a heuristic algorithm to maintain the quality of the
system by solving this optimization problem.

All prior studies on applying software multi-versioning to containerized software
systems focused on improving the reliability of a system. We are the first to study
the benefits of software multi-versioning for satisfying the performance requirements

of a system.

3.8.3 Performance Engineering of Containerized Systems

Recently, performance engineering researchers have started to study performance en-
gineering for microservices. For example, Heinrich et al. gave an overview of the
challenges of performance engineering microservices [31]. They identified performance
testing, monitoring and modeling of microservices as the main performance engineer-
ing challenges. Performance testing microservices is challenging, as the services are
developed and maintained independently. Therefore, Camargo et al. [12] presented
an approach to automate the performance testing for microservices. In this approach,
each microservice provides a test specification that was used for performing the tests.
Jindal et al. [34] addressed performance modeling of microservices by capacity plan-
ning. They identified a microservice’s capacity to find the appropriate resource needed
for the microservices. As a result, the system would not violate the performance re-

quirements. Amaral et al. [3] studied two models for microservices architecture using

47

containers. They compared the performance of CPU and network for the master-slave
and nested-container models to provide a guide for system designers.

A large body of the existing performance engineering work for containerized sys-
tems is about the performance of cloud systems. As performance engineering for
cloud systems is a very broad topic, a thorough discussion of this body of work is
outside the scope of this chapter, and we refer the reader to one of the excellent sur-
veys on this topic, e.g., the ones by Xu et al. [63] or Nuaimi et al. [49]. Also, Ruan et
al. [56] studied the performance of cloud systems by using containers from different

perspectives.

3.9 Threats to Validity

In this chapter, we studied how software multi-versioning can help to satisfy the per-
formance requirements of containerized software systems. In this section, we discuss

the threats to the validity of this study.

3.9.1 External Validity

The Choice of Subject Systems. We studied two open source applications, one
of which is a microservices application (the TeaStore application), and the other is
a more traditional three-tier application (the Znn application). The Znn application
is not originally a containerized application, although based on our experience, many
three-tier applications are containerized in a similar manner as we did in this study.
While we aimed to select systems that are representative for larger groups of systems,
future studies should investigate how well software multi-versioning works for a wider

range of systems, such as industrial systems.

3.9.2 Internal Validity

The Choice of Performance Requirements. The performance requirements that

we used in our experiments were defined empirically based on the ideal and worst

48

case experiments. As our purpose in this chapter is to demonstrate the efficacy of
software multi-versioning to satisfy performance requirements, the exact values of
the requirements do not matter much. There could exist characteristics that make
some requirements more difficult to satisfy than others. For example, if a light weight
version of a service already has difficulties to satisfy a performance requirement given
the available resources, software multi-versioning will not help much (since the load
balancer will simply divert all traffic to the light weight version). Hence, future studies
should further investigate how the choice of performance requirements impacts the
efficacy of software multi-versioning to satisfy those requirements.

The Choice of Load Balancing Rules. As the focus of our work is to demon-
strate the efficacy of software multi-versioning for satisfying performance require-
ments, and not to present a novel load balancing technique, in our experiments the
load balancing is done by a simple static approach. Users of DockerMV can easily
adapt the load balancing rules to implement more advanced load balancing tech-
niques for their own systems, such as those proposed by Niu et al. [48], Radojevic
et al. [54] or Dasguptaat al. [15]. While our experiments show that the used simple
rule sets can already yield satisfactory results, future studies should investigate how

to optimize the rules on a per-system and per-workload basis.

3.9.3 Construct Validity

The Choice of Performance Metric. We chose median response time as our
performance metric as it the primary metric that is used for measuring the user-
perceived performance. Future studies should consider how software multi-versioning
can benefit other performance metrics, such as CPU utilization or memory usage.
The Overhead of Software Multi-Versioning. We did not measure the over-
head that is added by introducing software multi-versioning to containerized systems.
However, given that the additional load balancing is fairly simple and straightforward,

there should not be a significant amount of additional overhead introduced.

49

3.10 Conclusion

Traditionally, software multi-versioning has been applied only to mission-critical sys-
tems due to the high cost of maintaining multiple versions of the software. Recently
the increase in popularity of containerized software systems has opened many new
opportunities for the application of software multi-versioning, as the technique can
be applied to smaller parts of these systems.

In this chapter, we study how software multi-versioning can help to satisfy the
performance requirements of containerized software systems. In summary, our chapter

makes the following contributions:

e A demonstration that software multi-versioning can effectively be ap-
plied to satisfy the performance requirements of containerized soft-
ware systems. We show through experiments on two open source applications
that software multi-versioning can effectively be applied to containerized sys-
tems to satisfy performance requirements while maintaining a quality of service-

level that is still acceptable given the available resources.

e A framework to deploy services with software multi-versioning. We
extended the Docker container platform to allow the creation of multi-version
services. Our DockerMV platform supports custom rule-based load balancing
between the versions of a service that can be controlled by the service devel-
oper, and hence is transparent to the other parts of the system. Our DockerMV

implementation is publicly available [27].

We are one of the first ones to study the benefits of software multi-versioning for
containerized systems. In particular, we are the first to demonstrate how software
multi-versioning can help to satisfy the performance requirements of such systems.
Our expectation is that our DockerMV platform can help to satisfy other nonfunctional

requirements of containerized software system, such as dependability, reliability, avail-

50

ability and security requirements. Hence, future studies can leverage our platform to
investigate how software multi-versioning can be applied to further help satisfy the

nonfunctional requirements of containerized software systems.

51

Chapter 4

Conclusions & Future Work

4.1 Conclusions

In this section, we highlight our contributions and findings in each of our studies.

In Chapter 2, we investigated the updates in the official Docker repositories on
Docker Hub and focused on how native, Node, and Python packages are changing in
different types of applications. We found that all studied applications had chang-
ing packages. In addition, we found that the type of application affects the median
number of package changes. For instance, the Operating Systems and Base Images
repositories had a low median number of changes, while Application Services and
Analytics repositories had the highest median number of changes. However, practi-
tioners need to take caution when doing in-place updates on images from different
applications, as all of them have some package changes in their image updates.

In Chapter 3, we proposed our solution to mitigate some of the identified threats in
our previous study. Our approach to preventing having poor performance as a result
of updating system packages is to maintain the previous version of the system along
with the updated version and gradually move to the updated version. Therefore, we
implemented DockerMV, an extension of Docker framework with multi-versioning, to
deploy multiple versions of an image under one service. In this study, we focused on
the performance point of view and demonstrated that containerized software systems’

performance requirements could be satisfied using software multi-versioning. We con-

92

ducted two sets of experiments on two open-source applications as our subject systems
and showed that the performance requirements could be met while maintaining an

acceptable level of quality of service.

4.2 Future Work

The following is a list of possible future directions for research that follow from the

work presented in this thesis:

e Future direction 1: Automatically identifying development branches.
In our first study, we manually divided the images of each repository into
branches. Further work is required to automate the branching of the images in

each repository to be able to analyze more repositories.

e Future direction 2: Quantifying the risk of package changes through
other metrics (e.g., performance). Until now, prior work only quantified

the risk of package changes from a security point of view.

e Future direction 3: Using DockerMV to satisfy other nonfunctional re-
quirements. We used DockerMV to satisfy the performance requirements of
containerized software systems. However, DockerMV can be used for satisfying
other nonfunctional requirements such as availability, reliability, dependability,

and security.

e Future direction 4: Improving DockerMV’s load balancing algorithm.
Currently, DockerMV uses a user-defined set of rules to distribute the traffic.
The process of selecting these rules and the thresholds can be tedious, hence it
should be automated. Machine learning approaches can be used to learn the

workload and predict it to make a better load distribution.

53

Bibliography

1]

[11]

S. Adler, “The Slashdot effect: An analysis of three internet publications,” Linuz
Gazette, vol. 38, no. 2, 1999.

Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in cloud
computing: State of the art and research challenges,” IFEE Transactions on
Services Computing, vol. 11, no. 2, pp. 430-447, 2017.

M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder,
“Performance evaluation of microservices architectures using containers,” in
Proceedings of the 14th International Symposium on Network Computing and
Applications, 2015, pp. 27-34.

C. Anderson, “Docker [software engineering],” IEEE Software, vol. 32, no. 3,
pp- 102-¢3, 2015.

A. Avizienis and J. P. Kelly, “Fault tolerance by design diversity: Concepts and
experiments,” Computer, no. 8, pp. 67-80, 1984.

A. Avizienis and J. C. Laprie, “Dependable computing: From concepts to design
diversity,” Proceedings of the IEEE, vol. 74, no. 5, pp. 629-638, 1986.

D. Bernstein, “Containers and cloud: From LXC to Docker to Kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

C.-P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich, P. Jamshidi,
W. Shang, A. van Hoorn, M. Villavicencio, J. Walter, et al., “How is perfor-
mance addressed in DevOps?” In Proceedings of the 10th ACM/SPEC Interna-
tional Conference on Performance Engineering, ACM, 2019, pp. 45-50.

C.-P. Bezemer and A. Zaidman, “Multi-tenant SaaS applications: Mainte-
nance dream or nightmare?” In Joint ERCIM Workshop on Software Evolu-
tion (EVOL) and International Workshop on Principles of Software Evolution
(IWPSE), ACM, 2010, pp. 88-92.

H. Borck, M. Boddy, I. J. De Silva, S. Harp, K. Hoyme, S. Johnston, A. Schw-
erdfeger, and M. Southern, “Frankencode: Creating diverse programs using code
clones,” in Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (SANER), IEEE, vol. 1, 2016, pp. 604
608.

T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967, 2015.

o4

[12]

[13]

[14]

[25]

[26]

A. de Camargo, I. Salvadori, R. d. S. Mello, and F. Siqueira, “An architecture
to automate performance tests on microservices,” in Proceedings of the 18th In-

ternational Conference on Information Integration and Web-based Applications
and Services, ACM, 2016, pp. 422-429.

S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness of the
Rainbow self-adaptive system,” in Proceedings of the 9th Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), IEEE, 2009, pp. 132-141.

C. Cigsar and Y. Lim, “Modeling and analysis of cluster of failures in redun-
dant systems,” in Proceedings of the 2nd International Conference on System
Reliability and Safety (ICSRS), IEEE, 2017, pp. 119-124.

K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, and S. Dam, “A genetic
algorithm (GA) based load balancing strategy for cloud computing,” Procedia
Technology, vol. 10, pp. 340-347, 2013.

Docker Inc., Docker Cloud, https://www.docker.com /sites / default / files /
Docker%20Cloud.pdf, Accessed: 2020-05-27.

Docker Inc., Docker container, https:/ /docs.docker.com /glossary / 7term =
container, Accessed: 2020-05-27.

Docker Inc., Docker overview, https://docs.docker.com/get-started /overview/,
Accessed: 2020-05-27.

Docker Inc., DockerFile reference, https://docs.docker.com /engine /reference/
builder/, Accessed: 2020-05-27.

Docker Inc., dotCloud, Inc. is now Docker, Inc. https://www.docker.com /
docker-news-and-press/dotcloud-inc-now-docker-inc, Accessed: 2020-05-27.

Docker Inc., How services work? https://docs.docker.com/engine/swarm/how-
swarm-mode-works/services/, Accessed: 2020-05-27.

Docker Inc., Swarm mode key concepts, https:/ /docs.docker.com /engine /
swarm/key-concepts/#load-balancing, Accessed: 2020-05-27.

N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, and L. Safina, “Microservices: Yesterday, today, and tomorrow,” in
Present and ulterior software engineering, Springer, 2017, pp. 195-216.

D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister,
M. A. Vouk, and J. P. J. Kelly, “An experimental evaluation of software redun-

dancy as a strategy for improving reliability,” IEEE Transactions on Software
Engineering, vol. 17, no. 7, pp. 692-702, 1991.

M. Franz, “E unibus pluram: Massive-scale software diversity as a defense mech-
anism,” in Proceedings of the New Security Paradigms Workshop, ACM, 2010,
pp. 7-16.

S. Gholami, A. Goli, C.-P. Bezemer, and H. Khazaei, “A framework for satis-
fying the performance requirements of containerized software systems through
multi-versioning,” in Proceedings of the ACM/SPEC International Conference
on Performance Engineering, 2020, pp. 150-160.

55

https://www.docker.com/sites/default/files/Docker%20Cloud.pdf
https://www.docker.com/sites/default/files/Docker%20Cloud.pdf
https://docs.docker.com/glossary/?term=container
https://docs.docker.com/glossary/?term=container
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://www.docker.com/docker-news-and-press/dotcloud-inc-now-docker-inc
https://www.docker.com/docker-news-and-press/dotcloud-inc-now-docker-inc
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
https://docs.docker.com/engine/swarm/key-concepts/#load-balancing

[31]

[32]

[33]

[34]

[38]

S. Gholami, A. Goli, C.-P. Bezemer, and H. Khazaei, DockerMV, https://
github.com /pacslab/DockerMV, Accessed: 2020-05-27.

Gmail Help Center, Gmail help, https:/ /support.google.com /mail /answer /
150497hl=en, Accessed: 2020-05-27.

A. Gorbenko, V. Kharchenko, and A. Romanovsky, “Using inherent service
redundancy and diversity to ensure web services dependability,” in Methods,
Models and Tools for Fault Tolerance, Springer, 2009, pp. 324-341.

E. Gracie, A. Hayek, and J. Borcsok, “Evaluation of FPGA design tools for
safety systems with on-chip redundancy referring to the standard IEC 61508,”
in Proceedings of the 2nd International Conference on System Reliability and

Safety (ICSRS), IEEE, 2017, pp. 386-390.

R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S.
Schulte, and J. Wettinger, “Performance engineering for microservices: Research
challenges and directions,” in Companion of the 8th ACM/SPEC International
Conference on Performance Engineering (ICPE), ACM, 2017.

M. Heusser, 30 essential container technology tools and resources, https:/ /
techbeacon . com / enterprise - it / 30 - essential - container - technology - tools -
resources-0, Accessed: 2020-05-27.

IBM Cloud Education, Containerization, https://www.ibm.com/cloud/learn/
containerization, Accessed: 2020-05-08.

A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud mi-
croservice applications,” in Proceedings of the 10th ACM/SPEC on Interna-
tional Conference on Performance Engineering, ACM, 2019, pp. 25-32.

J. Kabbedijk, C.-P. Bezemer, A. Zaidman, and S. Jansen, “Defining multi-
tenancy: A structured mapping study on the academic and industrial perspec-
tive,” Journal of Systems and Software (JSS), vol. 100, pp. 139-148, 2015.

J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing design
diversity to achieve fault tolerance,” IEEFE Software, vol. 8, no. 4, pp. 61-71,
1991.

N. Kerzazi and B. Adams, “Botched releases: Do we need to roll back? Em-
pirical study on a commercial web app,” in Proceedings of the IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering
(SANER), IEEE, vol. 1, 2016, pp. 574-583.

H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh, A. Tizghadam, and
A. Leon-Garcia, “Elascale: Autoscaling and monitoring as a service,” in Pro-

ceedings of the 27th Annual International Conference on Computer Science and
Software Engineering, IBM Corp., 2017, pp. 234—240.

56

https://github.com/pacslab/DockerMV
https://github.com/pacslab/DockerMV
https://support.google.com/mail/answer/15049?hl=en
https://support.google.com/mail/answer/15049?hl=en
https://techbeacon.com/enterprise-it/30-essential-container-technology-tools-resources-0
https://techbeacon.com/enterprise-it/30-essential-container-technology-tools-resources-0
https://techbeacon.com/enterprise-it/30-essential-container-technology-tools-resources-0
https://www.ibm.com/cloud/learn/containerization
https://www.ibm.com/cloud/learn/containerization

[39]

[42]
[43]

[44]

[52]

J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and S.
Kounev, “Teastore: A micro-service reference application for benchmarking,
modeling and resource management research,” in Proceedings of the 26th IEEFE

International Symposium on the Modelling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, ser. MASCOTS 18, IEEE, 2018.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “ SoK: Automated soft-
ware diversity,” in Proceedings of the 35th IEEE Symposium on Security and
Privacy, IEEE, 2014, pp. 276-291.

P. Leitner and C.-P. Bezemer, “An exploratory study of the state of practice
of performance testing in Java-based open source projects,” in Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering,
ACM, 2017, pp. 373-384.

J. Luu, “A deep dive into Docker Hub’s security landscape- A story of inheri-
tance?” Master’s thesis, 2019.

D. Merkel, “Docker: Lightweight Linux containers for consistent development
and deployment,” Linuxz Journal, vol. 2014, no. 239, p. 2, 2014.

G. Mezzetti, A. Moller, and M. T. Torp, “Type regression testing to detect
breaking changes in Node.js libraries,” in Proceedings of the 32nd European Con-
ference on Object-Oriented Programming (ECOOP 2018), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

J. Morgan, Introducing the new Docker Hub, https://www.docker.com /blog/
the-new-docker-hub/,; Accessed: 2020-04-17.

D. Namiot and M. Sneps-Sneppe, “On microservices architecture,” Interna-
tional Journal of Open Information Technologies, vol. 2, no. 9, pp. 24-27, 2014.

P. Nguyen, Docker Store program and policies, https:/ /success.docker.com /
article/store, Accessed: 2020-05-27.

Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,” in [FEFE
Conference on Computer Communications (INFOCOM), 2018, pp. 198-206.

K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi, “A survey of
load balancing in cloud computing: Challenges and algorithms,” in Proceedings

of the 2nd Symposium on Network Cloud Computing and Applications, 2012,
pp. 137-142.

C. Pahl, “Containerization and the PaaS cloud,” IEEFE Cloud Computing, vol. 2,
no. 3, pp. 24-31, 2015.

B. Persaud, B. Obada-Obieh, N. Mansourzadeh, A. Moni, and A. Somayaji,
“Frankenssl: Recombining cryptographic libraries for software diversity,” in

Proceedings of the 11th Annual Symposium On Information Assurance. NYS
Cyber Security Conference, 2016, pp. 19-25.

T. Preston-Werner, Semantic versioning 2.0.0, https://semver.org/, Accessed:
2020-05-27.

57

https://www.docker.com/blog/the-new-docker-hub/
https://www.docker.com/blog/the-new-docker-hub/
https://success.docker.com/article/store
https://success.docker.com/article/store
https://semver.org/

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

T. Preston-Werner, Semantic versioning 2.0.0, https://semver.org/, Accessed:
2020-04-24.

B. Radojevic and M. Zagar, “Analysis of issues with load balancing algorithms
in hosted (cloud) environments,” in Proceedings of the 34th International Con-
vention MIPRO, IEEE, 2011, pp. 416-420.

S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning and impact
of breaking changes in the Maven repository,” Journal of Systems and Software,
vol. 129, pp. 140-158, 2017.

B. Ruan, H. Huang, S. Wu, and H. Jin, “A performance study of containers in
cloud environment,” in Asia-Pacific Services Computing Conference, Springer,
2016, pp. 343-356.

R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on Docker
Hub,” in Proceedings of the 7th ACM on Conference on Data and Application
Security and Privacy, ACM, 2017, pp. 269-280.

J. Turnbull, The Docker book: Containerization is the new virtualization. James
Turnbull, 2014.

VMWare Inc., Hypervisor, https://www.vmware.com/topics/glossary/content /
hypervisor, Accessed: 2020-05-27.

R. Wadsworth, Beyond Docker: Other types of containers, https://www .
contino.io/insights /beyond-docker-other-types-of-containers, Accessed: 2020-
05-27.

L. Wang and K. S. Trivedi, “Architecture-based reliability-sensitive criticality
measure for fault-tolerance cloud applications,” IEEE Transactions on Parallel
and Distributed Systems, 2019.

L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact analysis
of API breaking changes: A large-scale study,” in Proceedings of the IEEE 24th
International Conference on Software Analysis, Fvolution and Reengineering

(SANER), IEEE, 2017, pp. 138-147.

F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance overhead
of virtual machines in cloud computing: A survey, state of the art, and future
directions,” Proceedings of the IEEFE, vol. 102, no. 1, pp. 11-31, 2014.

A. Zerouali, V. Cosentino, T. Mens, G. Robles, and J. M. Gonzalez-Barahona,
“On the impact of outdated and vulnerable JavaScript packages in Docker im-

ages,” in Proceedings of the IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), IEEE, 2019, pp. 619-623.

A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the rela-
tion between outdated Docker containers, severity vulnerabilities, and bugs,” in
Proceedings of the IEEE 26th International Conference on Software Analysis,
FEvolution and Reengineering (SANER), IEEE, 2019, pp. 491-501.

58

https://semver.org/
https://www.vmware.com/topics/glossary/content/hypervisor
https://www.vmware.com/topics/glossary/content/hypervisor
https://www.contino.io/insights/beyond-docker-other-types-of-containers
https://www.contino.io/insights/beyond-docker-other-types-of-containers

[66]

[67]

Z. Zheng and M. R. Lyu, “Selecting an optimal fault tolerance strategy for re-
liable service-oriented systems with local and global constraints,” IEEE Trans-
actions on Computers, vol. 64, no. 1, pp. 219-232, 2013.

7. Zheng, M. R. T. Lyu, and H. Wang, “Service fault tolerance for highly reliable
service-oriented systems: An overview,” Science China Information Sciences,
vol. 58, no. 5, pp. 1-12, 2015.

59

	Introduction and Background
	Introduction
	Containerized Software Systems
	Docker
	Docker Container
	Docker Architecture
	Docker Hub

	Outline

	Should You Upgrade Official Docker Hub Images in Production Environments?
	Abstract
	Introduction
	Background
	Docker
	Docker Hub

	Methodology
	Selecting Repositories
	Collecting Image Tags
	Collecting Packages and Latest Update Dates
	Identifying Package Changes

	Results
	Related Work
	Security Analysis of Package Changes in Docker
	Package Updates

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Acknowledgements

	A Framework for Satisfying the Performance Requirements of Containerized Software Systems Through Multi-Versioning
	Abstract
	Introduction
	Background
	Containerized Software Systems
	Managing Containers

	A Motivating Example
	Our Approach
	Implementation
	Load Balancing
	On the Necessity of Our Approach

	Experimental Setup
	Subject Systems
	Introducing Multi-Versioning in the Subject Systems
	Experiments
	Workload
	Deployment of the Subject Systems
	Load Balancing

	Experimental Evaluation
	Experiments with the TeaStore Application
	Experiments with the Znn Application

	Related Work
	Software Multi-Versioning
	Software Multi-Versioning for Containerized Systems
	Performance Engineering of Containerized Systems

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Conclusion

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

