
Signal Processing for Impairment Control in Fiber
Optic Communication

by

Abbas Abolfathimomtaz

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Communications

Department of Electrical and Computer Engineering

University of Alberta

© Abbas Abolfathimomtaz, 2024



Abstract

Fiber optics is the only infrastructure capable of handling the large data traffic

in the backend of many modern communication systems. However, the higher

growth rate of data traffic compared to that of fiber system achievable data rate

(ADR) raises significant concerns about meeting future demands. Recognizing

this potential shortage, many researchers have recently directed their efforts

towards increasing fiber ADR.

Fiber ADR is primarily limited by system impairments, which are rooted

either in Kerr nonlinearity or the suboptimality of the transmitter/receiver.

In the first half of this thesis, we focus on controlling Kerr nonlinearity, while

the second half is dedicated to addressing another impairment occurring due

to the suboptimal receiver structure.

Kerr nonlinearity is a power-dependent impairment that introduces non-

linear interference noise (NLIN). Based on existing fiber models, Kerr non-

linearity depends on the statistical properties of the power launched into the

system; therefore, by controlling the launched power, one can reduce NLIN.

One of the main factors impacting signal power behavior in a communica-

tion system is the constellation from which symbols are drawn. In the first

completed work, we formulate the impact of power fluctuation on NLIN with

respect to the launched symbols. We then demonstrate that by properly pair-

ing the transmitted symbols in the wavelength division multiplexing (WDM)

channels, we can minimize power fluctuation and consequently reduce fiber

NLIN.
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In the next completed work, we design the signal power spectral density

(PSD) to minimize NLIN. Fiber models express NLIN power based on the

PSD of the signal launched into the fiber. Thus, a rational question is: what

is the optimal PSD that minimizes NLIN? By formulating the problem as an

optimization problem, we find the optimal PSD that minimizes system NLIN,

which differs from that achieved by the commonly used raised cosine pulse.

The suboptimal structure of the existing transmitter/receiver also limits

fiber ADR. One of these suboptimalities is the order of the phase noise and

dispersion compensators. While an optimal receiver should compensate for

receiver laser phase noise before dispersion compensation, the lack of phase

information before the dispersion compensator forces the incorrect compensa-

tion order. This suboptimal order gives rise to equalization-enhanced phase

noise (EEPN), which restricts system performance at high baud rates and

over long distances. To address the problem of EEPN, in the third completed

work, we introduce a new formulation of EEPN that enables its compensation.

We then provide two digital signal processing (DSP)-ready implementations

of this compensator applicable to different receiver structures.

In the final completed work, we design a carrier phase estimator (CPE) that

can extract receiver laser phase noise information before dispersion compensa-

tion. Our design leverages the fact that fiber chromatic dispersion causes the

positive and negative excess bandwidths of the pulse to propagate at different

velocities. This velocity mismatch, along with the fact that both positive and

negative excess bandwidths are modulated with the same information, enables

us to observe the receiver laser phase variation over time after proper signal

processing. Our proposed CPE prevents the generation of EEPN by allowing

the optimal sequence of dispersion and receiver laser phase noise compensa-

tions.
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Education is not the learning of facts, but the training of the mind to think.

– Albert Einstein, 1879–1955.
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Chapter 1

Introduction and Background

Fiber optics is the primary infrastructure for handling immense data traf-

fic in the backbone of communication systems [1]. As emerging technologies

demand substantial communication capacity, concerns about meeting future

demands arise [2]. Consequently, enhancing fiber achievable data rate (ADR)

and overcoming the limitations of this channel is crucial [3]–[5].

One of the primary factors limiting fiber ADR is fiber nonlinearity, known

as the Kerr effect [6]. Increasing the power launched into the fiber to achieve

a higher signal-to-noise ratio (SNR) also increases nonlinearity effects, ulti-

mately reducing the effective SNR. This behavior fundamentally restricts the

attainable SNR and, consequently, ADR. Naturally, reducing nonlinear im-

pairments for the same launched power can increase ADR in practice, which

is the goal of Chapters 2 and 3.

Another cause of fiber ADR degradation is the suboptimality of the trans-

mitter/receiver enforced by practical considerations. In particular, we focus

on the interaction between the dispersion and phase noise compensators. Al-

though compensation for laser phase noise and dispersion ideally should occur

in the reverse order of their occurrence [7], dispersion is compensated first

due to practical challenges facing the carrier phase estimator (CPE). Practical

CPEs utilize a sequence of known symbols, referred to as pilots, to estimate

and mitigate the phase noise in the received symbol sequence. Extracting the

pilots requires compensating for dispersion first, leading to a suboptimal se-

quence of compensations and the occurrence of equalization-enhanced phase

1



noise (EEPN) [8]. Depending on the bandwidth and system reach of the fiber,

EEPN can severely affect system performance [9]. In Chapters 4 and 5, we

focus on developing two novel digital signal processing (DSP) techniques to

overcome the EEPN challenge.

Before delving into the details of our completed work, we believe that re-

viewing the fundamentals of a fiber communication system will facilitate un-

derstanding the challenges and solutions presented in this thesis. Therefore,

in this chapter, building upon electromagnetic and communication theory, we

first review the fundamentals of fiber optics as a communication channel. Next,

we examine the impairments associated with this channel and describe suit-

able transmitter and receiver structures to address these challenges. Instead

of providing a full derivation, our formulation is used solely to explain the

properties of fiber based on well-known communication theories. This chapter

serves as a foundation for better understanding the upcoming chapters, where

we discuss our solutions to the nonlinearity and EEPN challenges.

1.1 Historical Perspective

From a historical perspective, fiber communication emerged in 1966 through

the pioneering work of Kao and Hockham [10], demonstrating a significant

reduction in glass attenuation. Ten years later, the first communication system

based on fiber optics was implemented [11]. During this era, data transmission

relied on on-off keying signaling and was predominantly conducted through

multimode fibers [12]. Due to fiber attenuation and the absence of inline

amplifiers, the system’s reach was limited to tens of kilometers.

In the 1980s, the first inline optical amplifier, known as the erbium-doped

fiber amplifier (EDFA), was introduced [13]. This amplifier greatly extended

the system’s reach. EDFAs allowed us to amplify attenuated optical signals

every 50–100 km, thereby increasing the system reach to thousands of kilome-

ters.

Another breakthrough that occurred in the 1980s was the adoption of wave-

length division multiplexing (WDM) systems, which were designed to fully

2



utilize the available bandwidth of fiber [14]. In a WDM system, the fiber

bandwidth is divided into orthogonal wavelength channels, with each channel

dedicated to a user. At the time, WDM system increased the fiber ADR by a

factor of 1000.

In the modern era, starting in 2000, the advent of powerful DSP units has

enabled the design of intricate transmitter and receiver structures specifically

tailored to address fiber channel impairments [15]. Consequently, the primary

focus has shifted towards enhancing spectral efficiency through sophisticated

signal processing techniques. For instance, powerful DSPs allow for electronic

dispersion compensation at either the transmitter or receiver end, thereby

substantially reducing the impact of nonlinearity compared to inline dispersion

compensation [16].

1.2 Overview of Fiber Optic Communication

A communication system is a combination of hardware and protocols designed

to transmit data between two or more entities. This structure comprises three

main components: transmitter, channel, and receiver. The transmitter modi-

fies the state of a physical channel that connects it to the distant receiver(s).

Based on this channel state, the receiver estimates the transmitted data [17].

In fiber optic communication systems, the channel consists of a glass fiber that

acts as a waveguide for optical pulses.

The primary advantage of using fiber as a communication channel is its

low attenuation. Generally, attenuation varies with signal wavelength. Fiber

optics offer exceptionally low attenuations in certain regions, notably the C-

band, ranging from 1530 nm (195.2 THz) to 1560 nm (192.2 THz) [18]. A

WDM system, analogous to frequency division multiplexing (FDM), divides

this band into multiple frequency channels, allowing different users to transmit

their data on each. These channels typically have a bandwidth between 40 GHz

to 200 GHz, resulting in 20 to 100 WDM channels available within a single

fiber.

WDM systems can be categorized based on different features, including

3



the system reach. System reach is a critical parameter in WDM systems,

determining the complexity of transmitters and receivers, modulation formats,

critical channel impairments, and achievable data rates. Table 1.1 categorizes

WDM systems based on their system reach and provides an overview of the

challenges each category faces.

System Class Reach Challenges
Access up to 60 km Limited DSP
Short Reach 40-500 km Dispersion
Long-haul 500-2000 km Nonlinearity, Dispersion
Ultra-long-haul 2000-6000 km Nonlinearity, Dispersion
Submarine more than 5000 km Severe Nonlinearity

Table 1.1: WDM system classes based on the system reach

Since the advent of fiber communication, various system structures have

been utilized, including direct detection [19] and coherent detection [20]. In

this dissertation, we focus on the most advanced technology: the coherent

WDM system. In this structure, each channel provides at least two dimensions:

in-phase and quadrature-phase components. Additionally, fiber polarization

and fiber mode can be utilized to generate new dimensions.

A typical coherent WDM system structure is presented in Figure 1.1. As

depicted, components in this structure operate in either the electrical or op-

tical domains. While the frequency range of the electrical domain is around

hundreds of gigahertz, the optical domain operates at frequencies of hundreds

of terahertz.

In the optical domain, narrowband lasers are employed to generate a pure

carrier at dedicated wavelengths for each channel. Subsequently, optical mod-

ulators, based on Mach-Zehnder interferometer (MZI), modulate the laser out-

put according to the electrical communication signal received from the trans-

mitter [21]. The resulting modulated light pulses are then launched into the

fiber.

The fiber channel is divided into spans of 50 km to 100 km, each equipped

with an EDFA to amplify the light pulse. These amplifiers compensate for

fiber attenuation, enabling long-haul transmission.
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Figure 1.1: WDM structure based on the coherent receiver

Finally, at the receiver side, a combination of the local laser, photodetector

(PD), and trans-impedance amplifier(TIA) extract the transmitted signal and

transfer it to the electrical domain.

In the following sections, we study the properties of the different compo-

nents of a WDM system and explain the suitable transmitter and receiver

structures in more detail.

1.3 Fiber as a Waveguide

Optical fiber is a silica-based dielectric medium acting as a waveguide for

optical pulses. An optical cable consists of three main cylindrical sections:

the core, cladding, and jacket, as shown in Figure 1.2. The core has a higher

refractive index, denoted as n0, compared to the cladding, nc. According

to Snell’s law, the light entering the fiber core will reflect from the interface

between the core and cladding if the incident angle is less than [22]:

θA = arcsin
√︂

n2
0 − n2

c . (1.1)

The total internal reflection enables the light to remain confined within the

fiber core. Apart from facilitating light reflection, the cladding plays a crucial

role in minimizing waveguide loss, especially when nc is selected to be close

to n0 [23]. Although the jacket does not contribute to signal transmission, it

protects the fiber against physical damage. It is crucial to acknowledge that
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Figure 1.2: Different sections of an optical fiber

achieving a guided pulse within the fiber necessitates requirements beyond

(1.1), demanding a more advanced analysis of the fiber, as presented in the

following.

Like any electromagnetic wave traveling in a dielectric medium, light prop-

agation inside the fiber is governed by Maxwell’s equations, expressed as [24]:

∇ · E = ρf , (1.2)

∇ ·B = 0, (1.3)

∇× E = −∂B

∂t
, (1.4)

∇×H = J+
∂D

∂t
, (1.5)

where E and H are the electric field and magnetic field, respectively. Current

density and charge density are represented by J and ρf , respectively. In ad-

dition, D and B are the flux densities resulting from the propagation of the

electric and magnetic field inside the medium. For a nonmagnetic medium

such as fiber, based on the constitutive relation, we have:

D = ε0E+P, (1.6)

B = µ0H, (1.7)

where ε0 represents the vacuum permittivity and µ0 denotes the vacuum per-

meability, while P stands for the polarization density vector.
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By substituting (1.6) and (1.7) into Maxwell equations, the wave equation

of the electric field inside the fiber can be derived as:

∇×∇× E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
. (1.8)

In order to fully determine the electric field inside the fiber, a new equation

relating E and P is still required. Due to the directional behavior of the silica

crystal, the total polarization density vector in the fiber, P, satisfies the tensor

relation expressed as:

P = ε0

(︃
χ(1) · E+ χ(3)...EEE

)︃
, (1.9)

where χ(i) represents the i-th order susceptibility [25]. Due to the crystalline

structure of silica, the polarization P is influenced by susceptibilities of odd

orders exclusively. Moreover, susceptibilities higher than third order are typi-

cally deemed negligible. Equations (1.8) and (1.9) are sufficient to determine

the behavior of the incident light in the fiber.

Here, we should note that the electric field propagates in ẑ direction and

can have components in x̂, ŷ or both directions. To simplify our discussion,

let us assume that the electric field has only one component in the x̂ direction.

With this assumption, and based on (1.9), the frequency-dependent dielectric

constant can be defined as:

ε(ω) = 1 + χ(1) +
3

4
χ(3)
xxxx|Ex|2. (1.10)

Based on the definition of the dielectric constant ε = (n + jαc/2ω)2, the

refractive index, n, and absorption coefficient α of silica can be expressed as:

n(ω) = 1 +
1

2
Re{χ(1)(ω)}+ 3

8n
Re{χ(3)

xxxx(ω)}|Ex|2, (1.11)

and

α(ω) =
ω

nc
Im{χ(1)(ω)}+ 3ω

4nc
Im{χ(3)

xxxx(ω)}|Ex|2, (1.12)

respectively [25]. As seen in (1.11), the refractive index depends not only on the

frequency but also on the electric field intensity, |Ex|2, introducing nonlinearity
7



Figure 1.3: Guided modes in fiber optic. SMSF are designed to only allow
linearly polarized (LP) mode of LP01

into the system. The frequency dependency of the refractive index, n(ω),

leads to chromatic dispersion, which broadens an unchirped signal in the time

domain. Let us consider the plane wave equation traveling in a dispersive

medium as:

E(t, z) = x̂E0 cos (Bz − ω0t), (1.13)

where E0, ω0 and B are the field amplitude, wave frequency and wave num-

ber, respectively. Because of the ω-dependent propagation velocity, the wave

number B is a function of frequency. To capture this dependency, the wave

number is represented using a Taylor expansion around ω0 as:

B(ω) = n(ω)
ω

c
= β0 + (ω − ω0)β1 +

1

2
(ω − ω0)

2β2 +
1

6
(ω − ω0)

3β3 + · · · .
(1.14)

The Taylor coefficients βi are called dispersion coefficients. Among these co-

efficients, β1 and β2 carry important physical meanings. β1 determines the

group velocity, while β2 explains the broadening of the pulse along the fiber.

β2 is known as the phase group velocity dispersion (GVD) coefficient.

Even when a light wave enters the fiber, satisfying (1.2), it can either be

guided by the fiber structure or radiate out of the fiber. The guided wave

must exhibit oscillatory behavior inside the core and exponential decay in

the cladding, while satisfying (1.8) and the boundary conditions imposed by
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the fiber structure. The electric field distribution on the cross-section of the

fiber that satisfies these requirements is called a fiber mode and is represented

by F (x, y). In other words, fiber modes can be defined as the electric field

intensity distribution of the light that can travel inside a cylindrical fiber for

long distances. Figure 1.3 demonstrates the most important modes of the fiber.

Depending on the core diameter, a fiber can support one or more modes. While

fiber modes are orthogonally polarized and can be used to create orthogonal

communication channels, they have different propagation velocities that can

cause modal dispersion in a multi-mode pulse. In modern fibers, only the first

mode is allowed by choosing the fiber core diameter to be less than 10 µm [25].

1.4 Fiber Model for Communication

Although Maxwell’s equations and the wave equation sufficiently describe light

propagation inside the fiber, they are complex to work with, and the insights

into communication systems they provide are limited. In the following, we

review the most widely accepted fiber model that serves as a tool for commu-

nication purposes.

1.4.1 Nonlinear Schrödinger Equation

In the WDM system structure depicted in Figure 1.1, both the output of

the transmitter and the input of the receiver are baseband signals. From a

communication perspective, the combination of the laser and MZI serves as

an oscillator and mixer, upconverting the baseband signal to the dedicated

frequency slot. Since the information is encoded within the baseband signal,

our primary interest lies in studying the evolution of this signal along the fiber

rather than focusing on the actual electric field, which necessitates the use

of Maxwell’s equations. This objective can be effectively achieved using the

nonlinear Schrödinger equation (NLSE). In other words, the NLSE provides a

simplified representation of Maxwell’s equations tailored to the transfer of the

baseband signal through the fiber structure [26].

Let us denote the baseband signal of the transmitter as A. Given the low-
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pass signal A and the fiber mode F (x, y), the electric field launched into the

fiber can be expressed as:

E(r, t) =
1

2
x̂ (F (x, y)A(t) exp (j2πf0t) + c.c.) , (1.15)

where c.c. denotes the complex conjugate of the preceding terms. Substituting

(1.15) into (1.8) and simplifying the resulting equation with respect to the fiber

properties, NLSE can be derived as [25]:

∂A

∂z
+ β1

∂A

∂t
+ j

β2

2

∂2A

∂t2
+

β3

6

∂3A

∂t3
+

α

2
A = jγ|A|2A, (1.16)

where α represents fiber attenuation, βis are the dispersion coefficients defined

in (1.14), and γ is the nonlinear parameter defined as follows:

γ(ω) =
ωn
∫︁∫︁∞

−∞|F (x, y)|4dxdy
c
∫︁∫︁∞

−∞|F (x, y)|2dxdy
. (1.17)

It is important to note that dispersion, attenuation, and nonlinearity param-

eters depend on the fiber type and the dedicated wavelength band. Table 1.2

represents these parameters for non-zero dispersion-shifted fiber (NZDSF),

standard single-mode fiber (SSMF), and pure-silica-core fiber (PSCF).

Fiber Type αdB (dB/km) β2 (s2/m) γ (1/W/m)
SMSF 0.2 −16.7× 10−27 0.013
PSCF 0.17 −20.1× 10−27 0.008
NZDSF 0.22 −3.8× 10−27 0.015

Table 1.2: Parameters for different fiber types

The NLSE consists of three terms that account for different fiber properties.

The term j β2

2
∂2A
∂t2

describes fiber dispersion, while α
2
A is responsible for fiber

attenuation. Finally, the term jγ|A|2A arises from fiber nonlinearity. In the

next section, we will study these terms and their effects on communication

signals in detail.

It is important to note that (1.10) is suitable for single polarization fibers.

Considering two polarizations, the effect of the other electric field components

on the dielectric constant should also be considered. Doing so, (1.10) can be
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rewritten as:

εx(ω) = 1 + χ(1) +
3

4
χ(3)
xxxx

(︃
|Ex|2+

2

3
|Ey|2

)︃
,

εy(ω) = 1 + χ(1) +
3

4
χ(3)
xxxx

(︃
2

3
|Ex|2+|Ey|2

)︃
. (1.18)

Following the same procedure as for single polarization fibers, the NLSE for a

two-polarization fiber becomes a coupled equation as:

∂Ax

∂z
+ β1

∂Ax

∂t
+ j

β2

2

∂2Ax

∂t2
+

β3

6

∂3Ax

∂t3
+

α

2
Ax = j

8

9
γ
(︁
|Ax|2+|Ay|2

)︁
Ax,

∂Ay

∂z
+ β1

∂Ay

∂t
+ j

β2

2

∂2Ay

∂t2
+

β3

6

∂3Ay

∂t3
+

α

2
Ay = j

8

9
γ
(︁
|Ax|2+|Ay|2

)︁
Ay,

(1.19)

This version of the NLSE, observing a two-polarization fiber, is referred to

as the Manakov equations [27].

The NLSE can easily explain fiber impairments important for communi-

cation systems, as we do in Section 1.5. However, in the general case, the

closed-form solution of the NLSE is not known. Different approximations

or numerical methods are proposed, such as the Volterra series [28] and the

split-step Fourier method (SSFM) [29]. The latter method is studied in the

following subsection.

1.4.2 Numerical Solver

Since the NLSE does not have a closed-form solution, we need to use a nu-

merical solver to find the output waveform of a fiber. The SSFM is the most

widely used numerical solver for NLSE. In this section, we explain the SSFM

numerical method, its accuracy, and important parameters [29]–[31]. All the

simulation results in the upcoming chapters are based on this method.

To explain the SSFM, we need to define two linear and nonlinear operators

as:

D = −β1
∂

∂t
− j

β2

2

∂2

∂t2
+

β3

6

∂3

∂t3
− α

2
, (1.20)

and

N = jγ|A|2, (1.21)
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respectively. Using these operators, the NLSE expressed in (1.16) can be

rewritten as follows:
∂A

∂z
= (D +N)A. (1.22)

Let us assume D and N are two z-independent operators defined over a step

size of h. Then the solution to this equation can be written as:

A(t, z + h) = exp ((D +N)h)A(t, z). (1.23)

Based on the fact that D and N are noncommuting operators, the exponential

of their sum can be found using the Baker–Hausdorff formula as [32]:

(1.24)
exp (Dh)exp(Nh) = exp

(︃
Dh+Nh+

1

2
[Dh,Nh] +

1

12
[Dh−Nh, [Dh,Nh]] + · · ·

)︃
,

where [a, b] = ab − ba. Considering h small, we can ignore all the right-hand

side terms except for Dh+Nh. Therefore, for a small step size, (1.22) can be

written as:

A(t, z + h) = exp (Dh) exp (Nh)A(t, z). (1.25)

From this equation, we can infer that over a short step size, the linear and non-

linear operators defined in (1.20) and (1.21) can act separately. Additionally,

we should note that the linear operator can operate easily in the frequency

domain by replacing ∂
∂t

with −jω in (1.20) to obtain:

D = −jβ1ω + j
β2

2
ω2 − j

β3

6
ω3 − α

2
. (1.26)

Therefore, from a complexity point of view, the linear operator needs to oper-

ate in the frequency domain, while the nonlinearity operates in the time do-

main. As a result, for each step of the SSFM, transferring between time and

frequency domains is required, resulting in considerable computation. There-

fore, efficient implementation of the SSFM and choosing the optimal step size

is of great importance.

The step size determines the accuracy of SSFM in solving NLSE. It is

crucial to choose a step size smaller than the walk-off length between the fre-

quency channels in the WDM system. Figure 1.4 demonstrates the maximum
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Figure 1.4: Uniform step size for SSFM to accurately simulate a WDM system
with 5 channels. These step sizes are determined so that the walk-off length
remains larger than the SSFM step size.

step size for different channel numbers and channel bandwidths that guarantee

SSFM accuracy.

1.5 Fiber Channel Impairments

From a communication standpoint, important fiber impairments can be di-

vided into two categories: linear and nonlinear. In addition to the fiber impair-

ments, component noises also impact the WDM system. Figure 1.5 illustrates

a flowchart depicting these impairments. In the following section, building

upon the discussions in the previous sections, we will explain fiber impair-

ments. Understanding these impairments is crucial for designing an effective

fiber communication system.

1.5.1 Fiber Linear Impairments

Linear impairments, such as attenuation and dispersion, play a significant

role in defining the primary properties of fiber as a communication channel,

including channel bandwidth and system reach. However, because of their

linearity, these impairments can be easily compensated for without imposing
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Figure 1.5: Various impairments in a WDM system. This chart is based on
the discussions in [25].

critical limitations on the achievable spectral efficiency.

Attenuation

Attenuation causes the signal to lose its power as it propagates inside the

fiber. Fiber attenuation stems from intrinsic material absorption, extrinsic

impurities absorption, and scattering [23].

As mentioned, the very low attenuation of silica fiber (around 0.2 dB/km)

enables long-reach transmission. Figure 1.6 presents the fiber attenuation at

different wavelengths. In this figure, the peak at 1390 nm is due to the OH ions

as impurities in the fiber [25]. As observed, the fiber provides low attenuation

in two regions, making it perfect as a communication channel. The first region

is the O-band centered at λ = 1300 nm. This band was initially preferred for

optical systems, as fiber dispersion is small in this region. The other region

with low attenuation is centered at λ = 1550 nm, known as the C-band.

Modern systems typically utilize this band. Notably, the C-band offers even

lower attenuation compared to the O-band. It spans from λ = 1536 nm to

λ = 1565 nm, providing a bandwidth of 3.6 THz.

To gain a better understanding of the impact of attenuation on commu-

nication signals, let’s determine the gain of the EDFA for a typical span of

100 km as an example. To do this, we neglect dispersion and nonlinearity in
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(1.16), simplifying the NLSE to:

∂A

∂z
+

α

2
A = 0. (1.27)

For this case, the output of the fiber is:

A(t, z) = A(t, 0) exp
(︂
−α

2
z
)︂
. (1.28)

As observed, the fiber exponentially attenuates the signal amplitude. If the

fiber attenuation is α = 0.2 dB/km, then over every 100 km, the fiber atten-

uates the signal by a factor of 10. Therefore, amplifiers need to amplify the

signal for every span by the same factor.

We should note that in the NLSE, α has the dimension of m−1. On the

other hand, fiber attenuation is usually reported as αdB with the dimension

of dB/km. To convert αdB to α, we can use the following relation based on

(1.28):

αdB = −10

L
log10

(︃
Pout

Pin

)︃
= − 10

1000
log10

(︃
exp

(︂
−α

2
× 1000

)︂2)︃
= 4.34α.

(1.29)
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Dispersion

In the following, using the dispersion coefficients β1 and β2 defined in (1.14),

we explain the main implications of the dispersion, including group velocity,

pulse broadening, and walk-off phenomenon.

Group Velocity indicates the velocity at which the envelope of the electric

field propagates. Group velocity is determined by β1. To better explain the

impact of β1, we simplify the NLSE to only include β1, resulting in:

∂A

∂z
+ β1

∂A

∂t
= 0. (1.30)

The solution of this equation can be easily found as:

A(t, z) = A(t+ β1z, 0). (1.31)

As observed, the envelope of the electric field, A, propagates with the velocity

of vg =
1
β1
.

Pulse Broadening is a direct implication of the GVD parameter, β2.

Considering only β2 in (1.16), the NLSE can be rewritten as:

∂A

∂z
+ j

β2

2

∂2A

∂t2
= 0. (1.32)

By transforming this equation into the frequency domain, the solution can be

easily found as: ˜︁A(ω, z) = ˜︁A(ω, 0) exp(︃−j
β2

2
ω2z

)︃
. (1.33)

Based on this solution, we can conclude that dispersion does not change the

signal power spectral density (PSD), but it does alter the temporal pattern.

As an example, let us consider that the launched pulse has a Gaussian

shape and is defined as:

A(t, 0) = exp

(︃
− t2

2T 2

)︃
. (1.34)

Inserting (1.34) into (1.33), the output of the fiber for a Gaussian pulse is:

A(t, z) =
T√︁

T 2 − jβ2z
exp

(︃
− t2

2(T 2 − jβ2z)

)︃
. (1.35)

As observed, dispersion broadens this pulse by a factor of
√︁
1 + z|β2|/T 2.
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Figure 1.7: Temporal evolution of the raised cosine pulse along a dispersive
channel.

As another example, Figure 1.7 represents the temporal evolution of the

raised cosine signal along a dispersive channel defined by (1.32). Based on this

simulation, the following can be concluded:

• Dispersion reduces the peak power by broadening the pulse energy in

the time domain.

• After a few spans, the pulse shape approaches a Gaussian pulse.

• Pulse width broadens linearly with the system reach.

Walk-Off Phenomenon is another implication of the GVD parameter,

β2. GVD causes different frequency channels to have different group velocities

proportional to their central frequency. To explain this phenomenon, let us

consider two frequency channels as:

A(t, 0) = A1(t, 0) exp (ω1t) + A2(t, 0) exp (ω2t). (1.36)

Inserting (1.36) into (1.32) and separating the frequency channels by filtering,

we can write the equivalent separated channels as:

∂Ai

∂z
− j

β2

2
ω2
iAi − ωiβ2

∂Ai

∂t
+ j

β2

2

∂2Ai

∂t2
= 0, (1.37)

17



-10 -8 -6 -4 -2 0 2 4 6 8
10

15

20

25

Linear Region Optimal Region Nonlinear Region

Figure 1.8: Effective SNR of a typical fiber optic communication system.

for i = 1, 2. As observed, for frequency channels, there exists a group velocity

proportional to the carrier frequency, −ωiβ2, even if β1 = 0. This phenomenon

causes the WDM channels to have different propagation velocities.

Let us consider two pulses with duration T at different frequencies ω1 and

ω2. Due to the walk-off phenomenon, these two pulses pass each other over a

distance given by:

dwalk-off = 2T

⃓⃓⃓⃓
1

ω1β2

− 1

ω2β2

⃓⃓⃓⃓
(1.38)

meters. This distance is known as the walk-off length [25].

1.5.2 Kerr Non-Linear Impairments

As mentioned earlier, the power dependency of the reflective index (1.11),

causes Kerr nonlinearity. Due to the Kerr nonlinearity, SNR in the fiber is

not a monotonic function of channel power. In fact, increasing the channel

power increases the nonlinearity effects and eventually reduces the effective

SNR. As an example, Figure 1.8 demonstrates the effective SNR for different

channel powers. As observed, based on the channel launch power, we can in-

vestigate the effective SNR in three regions. In this figure, for powers less than

−2 dBm, the system is in the linear region where the dominant impairment

is the amplified spontaneous emission (ASE) noise. It is evident that with in-

18



creasing channel power, the effective SNR increases accordingly. For channel

powers around 2 dBm, the maximum achievable SNR is attained. The opti-

mal channel power refers to the power that achieves the maximum achievable

SNR. Finally, for channel powers higher than 4 dBm, the nonlinearity effects

dominate and reduce the effective SNR.

The primary fiber impairments arising from Kerr nonlinearities include

self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave

mixing (FWM). In the following, we will explain the mechanisms and impacts

of these impairments [23], [25].

Self-Phase Modulation

The primary intensity-dependent nonlinear effect in fiber systems is SPM.

Considering a WDM channel, SPM is an intensity-dependent phase shift that

affects the channel proportionally to its intensity [23].

Let us assume a zero dispersion and lossless fiber for which NLSE becomes:

∂A

∂z
= jγ|A|2A. (1.39)

Without loss of generality, we consider the solution to this equation as:

A(t, z) = V (t, z) exp(jϕ(t, z)), (1.40)

where V and ϕ are two real-valued functions representing the envelope ampli-

tude and phase, respectively. By inserting this into (1.39) and separating the

real and imaginary parts of the result, we obtain:

∂V

∂z
= 0, (1.41)

and
∂ϕ

∂z
= jγ|V |2. (1.42)

As observed, while the amplitude of the time domain representation remains

unchanged along the fiber, the spectrum of the pulse changes due to the new

phases generated by SPM [25].

The interaction between SPM and dispersion is also of great importance.

In a dispersive fiber (β2 < 0), dispersion causes the time domain representa-

tion of the pulse to broaden. Therefore, it reduces the pulse power, thereby
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Figure 1.9: Evolution of the raised cosine pulse in dealing with SPM (right)
with and (left) without dispersion.

weakening SPM. Figure 1.9 demonstrates the propagation of the same pulse

used in Figure 1.7 in the presence of both SPM and dispersion. As observed,

spectral broadening due to SPM is reduced considerably in the presence of

dispersion. This is why, since 2010, dispersion-uncompensated links have been

widely used due to their lower nonlinear effects.

It is important to note that, on average, SPM causes a phase rotation in

the received constellation as follows:

∆ϕSPM = γPchL, (1.43)

where P is the WDM channel power and L is the fiber length. This phase

rotation necessitates the use of the phase estimation in a fiber receiver when

nonlinearity presents.

Cross-Phase Modulation

In contrast to SPM, where phase modulation is caused by the intensity of

the channel itself, XPM involves phase modulation due to the intensity of

neighboring channels [33].

To derive the XPM formulation, we need to consider at least two frequency
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channels, as follows:

A = A1 exp (−ω0t) + A2 exp (ω0t). (1.44)

Substituting (1.44) into (1.16) and filtering the frequency channels, we obtain

[34]:

∂A1

∂z
+ β11

∂A1

∂t
+ j

β21

2

∂2A1

∂t2
− β31

6

∂3A1

∂t3
+

α

2
A1 = jγ(|A1|2+2|A2|2)A1, (1.45)

∂A2

∂z
+ β12

∂A1

∂t
+ j

β22

2

∂2A2

∂t2
− β32

6

∂3A2

∂t3
+

α

2
A2 = jγ(2|A1|2+|A2|2)A2. (1.46)

In (1.45), the term |A1|2 is responsible for SPM, while the term 2|A2|2 repre-

sents XPM. As observed, the impact of XPM on phase modulation is twice

that of SPM. It is important to note that XPM only changes the phase of

neighboring channels and does not transfer energy between these channels.

Four-Wave Mixing

FWM is a scattering process in which power from four frequency channels can

interact with each other [35]. To understand the origin of FWM, we need to

start from (1.9). As seen in the tensor-based definition of the polarization den-

sity vector, three electric field components can affect the polarization density

vector, affecting the fourth electric field.

Considering the electric field with four frequency components as [36]:

E =
1

2
x̂

4∑︂
k=1

Ek exp
(︁
j(β(k)z − ωkt)

)︁
+ c.c., (1.47)

we can write the polarization density vector affecting the fourth electric field

as:

(1.48)P4 =
3ε0
4

χ(3)
xxxx

[︁
|E4|2E4+2(|E1|2+|E2|2+|E3|2)E4+2E1E2E3 exp (iθ+)

+ 2E1E2E
∗
3 exp (iθ−) + · · ·

]︁
,

where:

θ+ = (β(1) + β(2) + β(3) − β(4))− (ω1 + ω2 + ω3 − ω4), (1.49)

θ− = (β(1) + β(2) − β(3) − β(4))− (ω1 + ω2 − ω3 − ω4). (1.50)
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While in (1.48), |E4|2E4 and 2(|E1|2+|E2|2+|E3|2)E4 are responsible for SPM

and XPM, respectively, 2E1E2E3 exp (iθ+) and 2E1E2E
∗
3 exp (iθ−) are known

as FWM. These terms significantly affect the system only when the phase-

matching condition is satisfied. The phase matching for θ+ is hard to achieve,

but for θ−, it is enough to have:

β(1) + β(2) = β(3) + β(4), (1.51)

ω1 + ω2 = ω3 + ω4. (1.52)

This requirement can be easily met in the case where β2 = 0. Therefore, FWM

can affect the system performance when zero-dispersion fibers are used. How-

ever, the phase-matching condition is typically not satisfied in other practical

scenarios, rendering FWM negligible.

1.5.3 Component Noise

In practice, WDM components, including transceivers, receivers, lasers, and

amplifiers, are not ideal and introduce noise to the system. In the following,

we will explain the important sources of noise in a fiber system.

ASE Noise

EDFAs are used as a main component in WDM systems to amplify the signal

after each span. The optical amplifier also adds ASE noise to the light pulse

[37]. The amount of this noise is usually characterized by the EDFA noise

figure, NF .

The ASE noise can be modeled by a circular symmetric Gaussian process

with the following PSD [38]:

GASE = NFh
c

λ
(G− 1), (1.53)

where h is Planck’s constant, λ is the light wavelength, and G is the EDFA

gain.

Laser Phase Noise

The lasers used in transmitters and coherent receivers introduce phase noise

to the optical system. The laser phase noise follows a Wiener process, and
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consequently, the output of the laser exhibits a Lorentzian spectrum with a

linewidth commonly denoted as ∂ν. Therefore, we can model the laser phase

output as [39]:

ϕ =

∫︂ t

−∞
n(ν)dν (1.54)

where n is a Gaussian random process with zero mean and a variance of ∂ν/2π.

1.6 Electrical Domain

In any communication system, the transmitter and receiver should be designed

to cope with channel impairments efficiently. Fiber transmitters and receivers,

in particular, are designed to handle the impairments we discussed earlier in

this chapter. In the following, we review the transmitter and receiver struc-

tures suitable for fiber communication [18], [23], [25], [40].

1.6.1 Transmitter

The primary goal of the transmitter is to map the input sequence of data

into a certain set of waveforms to be sent into the fiber channel. Figure 1.10

demonstrates a typical fiber transmitter structure. Below, we briefly review

the components required on the transmitter side.

Similar to any other communication channel, source coding is the first

stage in fiber transmitters. Source coding removes unwanted redundancies

in the input data and represents the data in binary format [41]. Conversely,
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channel coding adds redundancy to the bit stream to detect and correct any

errors caused by channel impairments [42].

The distribution of the transmitted signal can affect channel quality and

capacity. The distribution matcher block changes the source distribution to

the desired distribution. In fiber optics, the transmitted distribution can be

optimized to achieve different goals, such as:

• Increasing the QAM achievable data rate by shaping the distribution to

capture the Gaussian distribution [43]–[46].

• Reducing channel nonlinearity effects [47]–[49].

Changing the distribution of the source is mainly referred to as probabilistic

shaping [50], [51].

Next, the mapping block converts the bit sequence into a constellation.

A constellation is a set of points in an N -dimensional space that uniquely

represents a block of bits. Analogous to probabilistic shaping, constellation

points can be chosen so that the desired distribution fits the output signal

[52]–[54]. This method is referred to as geometric shaping. The dimension

of the constellation depends on the orthogonal subspaces that the channel

can provide. In fiber optics, different features, including phase, frequency,

polarization, mode, and time, can be used to generate orthogonal bases.

Constellation points are still discrete values that need to be modulated

over a band-limited pulse shape. In other words, a pulse shape transforms the

discrete constellation points into a continuous domain suitable for transmitting

over the channel. Based on classical communication theory, we want the pulse

shape to be band-limited and satisfy the Nyquist zero-intersymbol interference

(ISI) criterion. The widely used pulse shape in fiber optics is the root-raised

cosine pulse, defined as:

G(f) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |f |≤ 1−β

2T√︃
1
2

[︂
1 + cos

(︂
π T

β

(︁
|f |−1−β

2T

)︁)︂]︂
if 1−β

2T
< |f |≤ 1+β

2T

0 otherwise,

(1.55)

where T is the symbol period and β is the pulse roll-off factor [17].
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In some applications, a pre-compensator is implemented in the fiber trans-

mitter. This block can be used to compensate for transmitter laser phase noise

or to collaborate with the receiver to compensate for fiber dispersion [55]–[57].

1.6.2 Coherent Receiver

In general, a coherent receiver is a receiver with a local oscillator capable of

extracting the in-phase and quadrature components of the signal [20], [58]. In

fiber optic systems, in addition to the in-phase and quadrature-phase extrac-

tion, a local laser is used to:

• Produce enough power to drive the photodetector,

• Downconvert the received signal, enabling the ADCs to work in the

baseband.

A typical fiber coherent receiver is presented in Figure 1.11.

As seen, at the beginning of the receiver chain, timing information is ex-

tracted based on the Gardner [59] or Godard Algorithm [60]. This is important

because the performance of the rest of the receiver chain depends on the correct

timing information.

Receiver algorithms, such as phase recovery, are based on pilots. To enable

these algorithms, dispersion needs to be compensated for first. Therefore, a

channel compensator is implemented before these blocks. The channel com-

pensator should at least compensate for dispersion [61]. It is important to
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note that due to the long impulse response caused by dispersion, the disper-

sion compensator requires the most computation and power resources. Digital

backpropagation 1, as the most effective channel compensation method, should

also be implemented here [62]–[64]. This compensator can compensate for both

dispersion and nonlinearity at the cost of intractable complexity.

In the next step, the matched filter is implemented to extract the received

symbols. The matched filter, in addition to the pulse shape used on the receiver

side, takes the effect of channel filtering into account [17].

The multiple-input and multiple-output (MIMO) block is responsible for

determining the state of polarization and extracting the polarization channels

[65], [66]. It can also exploit the diversity in multi-mode fiber systems to

increase fiber capacity [67].

Next, the pilot-based carrier phase recovery compensates for the transmit-

ter and receiver laser phase noises. Also, this block compensates for the phase

rotation caused by nonlinearity [68]–[70].

Finally, the received symbols are fed to the channel decoder and source

decoder to undo the effects of their counterpart blocks and extract the raw

data fed to the transmitter.

1.7 Thesis Overview

In this chapter, we reviewed fiber impairments and the structure of existing

transmitters and receivers designed to cope with them. While fiber impair-

ments and their mechanisms have been extensively explored, creating a com-

munication system that can handle these impairments simultaneously remains

an open challenge. In particular, we focus on the interaction between I) dis-

persion and nonlinearity and II) dispersion and laser phase noise, aiming to

improve signaling techniques.

The first part of my work focuses on nonlinearity control in the presence

of dispersion. In this scenario, a practical nonlinearity compensator is not yet

1Digital backpropagation is a compensation technique where the received signal is
launched into a fiber with parameters of the opposite sign. Since a fiber with negative
nonlinearity does not exist, this fiber is implemented digitally by numerically solving NLSE.
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known. Therefore, reducing the nonlinearity impairment is of great impor-

tance. Based on the Gaussian noise model (GN) [71] and enhanced Gaussian

noise model (EGN) [72], constellation and pulse shape impact fiber nonlinear-

ity. Consequently, a natural question arises regarding how constellations and

pulse shape should be designed to minimize nonlinearity.

In Chapter 2, we demonstrate that the fiber nonlinearity effect is depen-

dent on the accumulated power launched into the WDM channels. We model

the accumulated launched power and investigate the impact of constellation

design on fiber nonlinearity effects. Through mathematical analysis, we show

that controlling the fluctuations in the launched power enables achieving the

same noise power at longer distances. Building upon this concept, we intro-

duce a grouping technique for digital subcarrier systems aimed at reducing

nonlinearity.

In Chapter 3, we first employ the calculus of variations to identify the op-

timal band-limited pulse shape that minimizes fiber nonlinearity effect based

on the GN model. However, for practical considerations, a pulse shape must

also fulfill other communication requirements such as zero-ISI and rapid decay

over time. To address this, we develop a general pulse shape model and formu-

late the problem of finding the minimum non-linear interference noise (NLIN)

pulse, subject to the mentioned constraints, as a convex optimization prob-

lem. By solving this optimization problem, we introduce the optimal pulse

shape aimed at reducing the nonlinearity effect in fiber optical communication

systems.

In the second part of my work, I focus on equalization-enhanced phase

noise. This impairment occurs due to the interaction between the receiver

laser phase noise and the dispersion compensator. Generally, phase noise and

dispersion operations do not have an associative property; therefore, compen-

sating for these impairments should be done in the opposite order of their

occurrence. However, as we discussed in Section 1.6.2, compensating for dis-

persion before pilot-based DSP blocks is crucial. Therefore, the dispersion

compensator comes after the phase noise estimator and carrier phase recovery.

This suboptimal order of compensators causes the phase noise to be amplified
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in the dispersion compensator, causing EEPN [9].

In Chapter 4, we demonstrate that EEPN can be mitigated through signal

processing. We derive the compensation expression and propose two different

compensators depending on the availability of the receiver phase noise. Our

study shows that by employing a simple time-variant finite impulse response

filter, one can effectively compensate for EEPN.

In Chapter 5, we introduce a novel carrier phase recovery that not only

estimates receiver phase noise distinguished from the transmitter phase noise

but also can operate before the dispersion compensator. These two unique

features allow for the optimal order of phase and dispersion compensation,

avoiding EEPN.

Finally, Chapter 6 serves as a conclusion to this discussion and offers sug-

gestions for future research directions.
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Chapter 2

Constant Power Constellation
Grouping

2.1 Introduction

Based on existing fiber channel models such as GN [71] or EGN [72], NLIN

depends on the behavior of the power launched into the fiber. Reducing the

power or its fluctuation can enhance system immunity against nonlinearity

impairments. This is why many studies use phase shift keying (PSK) signaling

to increase system reach due to its constant launched power [73]–[75]. PSK

constellations, however, suffer from a low ADR. As a solution, using a 4-

D PSK to achieve better data rates is proposed [76]. However, generating

and detecting 4-dimensional PSKs needs high hardware and computational

complexity. This is because high-resolution analog-to-digital converters and

sophisticated timing recovery between the x- and y-polarizations are required.

Shaping methods can also be used to control power fluctuation and reduce

the fiber nonlinear noise. Shaping gain for nonlinear fiber is studied in [77],

where the authors suggest hyper-ball shaped constellations implemented on

different time slots. This shaping strategy is explored further in [51] and the

authors suggest moving to 4-dimensional symbols instead of only using the

time dimension. Many works follow this path and try to propose multidimen-

sional symbol shaping methods to enhance the nonlinear behavior of the fiber

[78]–[81]. While these methods are developed based on the memory-less as-

sumption of the fiber channel, in [82], a finite state machine source is proposed
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to further increase the shaping gain by taking the fiber memory into account.

Based on the memory assumption, one can also suggest constant composition

distribution matching (CCDM) to reduce the power fluctuation and decrease

the fiber nonlinearity effects since the energy of any symbol blocks is constant

[83]. Unfortunately, because the fiber memory is limited, the CCDM block size

cannot be large enough and therefore, the tradeoff between nonlinear gain and

the capacity loss limits the CCDM benefits. Another shaping strategy stems

from the EGN model, where it has been observed that the constellation’s

4th moment, called kurtosis, has a great impact on the fiber nonlinear noise

[72]. To control the nonlinear noise, many works suggest developing temporal

shaping methods to limit the constellation kurtosis. In [84], a kurtosis-limited

sphere shaping method is proposed. Despite the nonlinear gain that shap-

ing methods achieve, these methods, including multidimensional ball-shaped

constellations or kurtosis-limited modulations, restrict themselves to only one

WDM channel and neglect the potential of using neighboring channels to re-

duce the nonlinearity effects.

Spherical codes are another well-known approach to reducing the peak-to-

average power ratio and mitigating fiber nonlinearity impairments. Spherical

codes are defined as a set of codewords equidistant from the origin in an N-

dimensional space [85]. These codewords are selected such that the projection

of each codeword onto the others is minimized. While there has been significant

work done on spherical codes [86], [87], the direct relationship between the bit

sequence in spherical codes and the power fluctuations of the signal launched

into the fiber is not well defined.

In this chapter, we propose controlling the power fluctuation by design-

ing a new signaling technique that we refer to as constant power constellation

grouping (CPCG). We first use NLSE to show that the fiber nonlinearity effect

depends on the accumulated power of all the WDM channels. Therefore, to

control the nonlinearity impairments, we can reduce the fluctuation of the ac-

cumulated power launched into the WDM channels by correlating the symbols

launched into the WDM systems. To this end, we combine the constellations

that correspond to these channels in such a way that the accumulated power of
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the transmitted symbols remains constant for any system use. We analytically

show that using the CPCG technique, one can achieve the same noise power

at longer distances in comparison with the quadrature amplitude modulation

(QAM) family. Also, launching constant power enhances the system ADR for

the same distance.

The CPCG technique can be applied to many base constellations. Further-

more, shaping techniques can be used along with CPCG. In this work, we im-

plement the CPCG technique for the 16-QAM constellation. We also conduct

a simulation study to investigate our proposed signaling method. Simulation

results confirm our theoretical findings. We show that our CPCG technique

on a system based on 16-QAM constellation increases the system reach and

that for long system reaches, CPCG increases the system ADR. We also show

that compared to PSK, for the same system reach, our solution offers a higher

system ADR.

The rest of this chapter is organized as follows: In Section 2.2, we describe

the system model. Section 2.3 finds the accumulated power model and shows

the impact of the constellation design on the power fluctuation in a WDM

system. Based on our findings, we proposed our CPCG technique to achieve

better power properties in Section 2.4. Simulation results are discussed in

Section 2.5. Finally, Section 2.6 concludes this chapter.

2.2 System Model

As for any electromagnetic wave in a dielectric medium, propagation of light

pulses inside the fiber is governed by Maxwell’s equations. By considering the

fiber’s physical properties, we can simplify Maxwell’s equations for the slowly

varying part of a modulated signal as explained in Section 1.4.1. The result

is called the nonlinear Schrödinger equation which can be found in (1.16) and

repeated here for convenience as:

δA(t, z)

δz
+ j

β2

2

δ2A(t, z)

δt2
+

α

2
A(t, z) = jγ|A(t, z)|2A(t, z), (2.1)

where A is the signal envelope propagating in z direction, β2 represents group

velocity dispersion, α is the attenuation parameter, and γ captures the non-
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linearity [88].

In this chapter, we focus on the nonlinear effects right after launching the

signal into the fiber. While dispersion can spread the signal energy and reduce

nonlinear effects after a few spans, nonlinearity can cause severe issues at the

beginning of the fiber. Therefore, in this chapter, whenever we refer to A, we

mean A = A(t, 0).

Considering a WDM system, the available bandwidth is divided into fre-

quency separated channels. Therefore, the signal envelope A in (2.1) can be

expressed based on the WDM scheme as:

A =
N∑︂
i=1

Aie
j2πfit, (2.2)

where Ai is the i-th channel signal and fi is the i-th channel central frequency.

Also, N is the number of the WDM channels.

Substituting (2.2) into (2.1) yields the pulse propagation equation for the

WDM channels, separately. One can derive the channel-wise NLSE by keeping

SPM and XPM terms as:

δAi

δz
+ βi1

δAi

δt
+ j

β2

2

δ2Ai

δt2
+

α

2
Ai = jγ(2

N∑︂
k=1

|Ak|2−|Ai|2)Ai, (2.3)

where βi1 is the first order dispersion coefficient for the i-th channel. This

formulation is also called XPM based NLSE or coupled NLSE [89], [90]. If β2

in (2.1) is measured for f0 then βi1 can be expressed as [91]:

βi1 = (fi − f0)β2. (2.4)

As seen in (2.3), the nonlinear term for a channel depends not only on

the launched power into the channel of interest, but also on the sum of the

power in the other channels. Throughout this work, we refer to this term as

accumulated power, P (t), and define it as follows1:

P (t) =
N∑︂
k=1

|Ak( t)|2. (2.5)

1This equation assumes the orthogonality of the WDM channels holds true during the
propagation inside the fiber. If the nonlinearity effect is too strong it may cause a frequency
channel to penetrate into its neighbors. In this case, the orthogonality does not hold true.
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In theory, we can compensate the fiber linear and nonlinear impairments by

using (2.1) or (2.3) with the knowledge of all the received channels. However,

in a typical WDM system, users have access only to their own channels. This

forces us to treat the accumulated power term as a destructive unknown in

the receiver.

In this work, we investigate the statistical behavior of the accumulated

power term, P , and focus on reducing its impact on the system performance.

2.3 Accumulated Power and Its Impact

In this section first, we find the statistics of the accumulated power term.

Then, we show the impact of the accumulated power term on the system

performance. To this end, we start by modeling the pulse train launched into

the channels and gradually consider the impact of different fiber impairments

influencing a WDM system.

2.3.1 Accumulated Power Model

Assuming a pulse shape g(t), the signal launched into channel i can be ex-

pressed as:

Ai(t) =
∑︂
k

mikg(t− kT ), (2.6)

where k corresponds to time index and T is the symbol duration. Also, mik

is the symbol sent in time index k and channel i. In a dense WDM system

with a large number of channels, channels are not synchronous and hence

their initial launch time is random. Besides, the channels experience different

velocities according to their β1 in (2.4). Therefore, at a given time, t0, channel i

contributes to the accumulated power term experiencing a random time delay,

τi. It is enough to consider τi with a uniform distribution in the interval of

[0, T ). This is because in our study, only the relative position within a symbol

duration matters. Considering random time delay and the model in (2.6),

accumulated power (2.5) at a given time, t0, can be expressed as:

(2.7)P (t0) =
N∑︂
i=1

|Ai(t0 − τi)|2 =
N∑︂
i=1

⃓⃓⃓⃓
⃓∑︂

k

mikg(t0 − kT − τi)

⃓⃓⃓⃓
⃓
2

.
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Figure 2.1: Accumulated power distribution for 11 channels carrying 16-QAM
symbols on root raised cosine pulse shape. As seen, a Gaussian approximation
is quite accurate for the accumulated power. Based on (2.8) and (2.9), we
expect the mean and standard deviation to be 0.107 and 0.023, respectively.
The simulated values based on a true WDM simulation are 0.107 and 0.023.
It is worth mentioning that (2.8) and (2.9) use no approximation while the
distribution is only fitted. This is why we observe a slight difference in the
fitted curve while the mean and variance value predicted by (2.8) and (2.9)
are accurate.

Accumulated power term consists of many random variables such as time

delays τi and transmitted symbols mik. Based on the central limit theorem,

the distribution for P (t0) can be approximated using a Gaussian distribution.

Simulation results depicted in Figure 2.1 also support this claim. This figure

demonstrates the distribution of P (t0) for a WDM system with 11 channels

loaded with root raised cosine pulse shape and its approximated Gaussian

distribution.

Assuming a Gaussian distribution, the mean and variance are sufficient to

describe accumulated power behavior at a given time. In Appendix A.1, we

show that the mean value, µ, of (2.7) can be found as:

µ = N

q∑︂
k=−q

∫︂ T

0

1

T
g2(t− kT )dt, (2.8)

where we assume the pulse shape, g(t), is non-zero only in [−qT, qT ] and the
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average power of the constellation is one, E{|m|2} = 1. As seen in (2.8), the

mean value of the accumulated power depends on the pulse shape while the

constellation has no effect.

In Appendix A.2, we find the variance of the accumulated power, σ2, as:

(2.9)

σ2 = ζN

q∑︂
k=−q

∫︂ T

0

1

T
g4(t− kT )dt

+ 4N

q∑︂
k0=−q

q∑︂
k1=k0+1

∫︂ T

0

1

T
g2(t− k0T )g

2(t− k1T )dt−
µ2

N
,

where

ζ = E{ 1

N

N∑︂
i=1

|mi|4}. (2.10)

As seen, the variance of the accumulated power depends on the fourth moment

of the accumulated symbol power of the used constellations. In other words, we

can reduce the fluctuations of the accumulated power by designing and using

a group of constellations with smaller ζ. As an example, we evaluate (2.9) for

a typical root raised cosine pulse shape (roll-off factor = 0.1, T = 1.1× 10−10

sec, P0 = 0.01 W) as:

V ar{P (t0)} = N(6.63ζ − 3.76)× 10−5. (2.11)

This equation shows the significant impact of ζ on power fluctuation.

To better understand ζ, let us find its value for typical constellations. The

minimum value of ζ is 1 for any constellations with constant energy such as

PSKs. In case of 2-D M-QAMs, we can substitute the constellation symbols,

described as:

mp,l =
(2p− k − 1) + (2l − k − 1)j

1
k

√︂∑︁k
p′=1

∑︁k
l′=1(2p

′ − k − 1)2 + (2l′ − k − 1)2
, (2.12)

into (2.10) and express ζ as:

ζ =
k2
∑︁k

p=1

∑︁k
l=1 ((2p− k − 1)2 + (2l − k − 1)2)

2(︂∑︁k
p=1

∑︁k
l=1(2p− k − 1)2 + (2l − k − 1)2

)︂2 , (2.13)

where k2 = M and p, l ∈ 1, 2, · · · , q. For large M , ζ tends to 1.4. Table 2.1

shows ζ’s value for commonly used QAM constellations.
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M = 4 M = 16 M = 64 M = 256 M = 1024
ζ 1 1.32 1.381 1.3953 1.3988

Table 2.1: ζ value for M-QAM constellation

Accumulated power is a function of time; therefore, to complete the statis-

tical model, we should consider the accumulated power as a random process

and find the auto-correlation function. As shown in Appendix A.3, the auto-

correlation of this random process can be expressed as:

(2.14)

R(l) = ζN

q∑︂
k=−q

∫︂ T

0

1

T
g2(t− kT )g2(t− l − kT )dt

+N

q∑︂
k0=−q

q∑︂
k1=k0+1

∫︂ T

0

1

T

(︂
g(t− k0T )g(t− l − k1T )

+ g(t− k1T )g(t− l − k0T )
)︂2
dt− µ2

N
.

As seen, the auto-correlation function depends on both ζ and the pulse shape,

g(t). For a typical pulse shape the concentration of the power is on the main

lobe and hence the auto-correlation function is approximately non-zero only

for |l|< 2T . Figure 2.2 also supports this argument. Symbol duration, T ,

is negligible in comparison with pulse propagation time. Therefore, we can

approximate the accumulated power term by a white Gaussian process.

2.3.2 Impact of the Accumulated Power on Nonlinear-
ity

In the last subsection, we showed that the accumulated power term can be

approximated by a white Gaussian process and derived the statistics with re-

spect to the constellation design parameter, ζ. Here, we concentrate on the

impact of the accumulated power term on the system performance. For the

sake of simplicity, let us assume a nonlinear fiber with the following prop-

agation equation by omitting the dispersion coefficients from (2.3) resulting

in:
δAi

δz
= jγ

(︂
2P (t)− |Ai|2

)︂
Ai. (2.15)
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Figure 2.2: Auto-correlation function of the accumulated power term for 11
WDM channels. As seen, auto-correlation function is almost zero for |l|> 2T .

In the following discussions and simulations we will continue to consider dis-

persion effects again.

Based on our discussion in Subsection 2.3.1, accumulated power P (t) can

be modeled by a white Gaussian process with mean and variance defined in

(2.8) and (2.9), respectively. Let us represent this model using a standard

(zero-mean, unit variance) Gaussian random variable, Nn, as:

P (t) = µ+ σNn, (2.16)

where µ and σ2 are defined in (2.8) and (2.9), respectively. Now, we can solve

(2.15) analytically as:

Ai(t) = Ai(0)e
jϕi , (2.17)

where

ϕi = γzµ− γ|Ai|2+γϕl + γσ

∫︂ z

0

Nndz. (2.18)

The term γσ
∫︁ z

0
Nndz represents the nonlinear phase noise (NLPN) and can

be considered as a Wiener process since Nn is a standard Gaussian random

variable [92]. Furthermore, ϕl models the phase noise due to the transmitter

and amplifiers noise. Following [93], we also consider ϕl as a Wiener process.

The terms zµ and γ|Ai|2 are constant or known to the receiver. They cause
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the constellation to rotate. We assume the receiver can compensate for this

rotation and hence neglect these terms. Therefore, the power of the remaining

phase noise can be expressed as:

Pϕi
= γ2(σ2 + σ2

l )z, (2.19)

where σ2
l represents the power of ϕl. Here, we argue that based on (2.9), σ2 is

a linear function of ζ. Therefore, by reducing ζ, we can decrease σ, and hence

z can increase while maintaining the same phase noise power. In other words,

for the same constellation, we can achieve the same noise power at longer

system reach when we reduce ζ using CPCG. For example let us consider two

cases where we reduce σ2
1 to σ2

2 by reducing ζ by a factor of 1.4 using CPCG.

Based on the numerical values in (2.11) we can say:

σ2
2 = 0.52σ2

1. (2.20)

Also, we assume the linear noise power is twice the nonlinear noise in the

optimal launched power [71]:

σ2
l = 2σ2

1. (2.21)

For the same phase noise power, we can equate (2.19) for both σ2
1 and σ2

2 and

find the system reach ratio for these two cases as:

z2
z1

=
σ2
1 + σ2

l

σ2
2 + σ2

l

. (2.22)

Substituting (2.20) and (2.21), the system reach ratio in (2.22) is 1.19 which

means CPCG generates the same noise power at a 19% longer distance when

we reduce ζ by a factor of 1.4. With the same argument, CPCG based on 16-

QAM generates the same noise power at a 16% longer distance in comparison

with 16-QAM.

From another point of view, we can reduce nonlinear phase noise by using

constant power constellations and hence increase the system’s ADR at the

same distance.
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2.4 Constant Power Constellation Grouping

In the last section, we investigated the effects of the constellation design on

power fluctuation, system reach, and fiber nonlinearity impairment. In this

section, we answer the question of how to achieve the best ζ from an existing

constellation.

PSKs are one of the well-known classes of the constant power constellations.

PSKs have ζ = 1 and hence take full advantage of nonlinearity impairment

reduction due to lower power fluctuation. However, two limiting factors make

PSK not a good choice for today’s fiber systems: (i) PSKs in low-dimension

spaces offer a low ADR. (ii) higher-dimensional PSKs need high computation

for creation and detection. In this section, we introduce CPCG as a technique

to achieve constant power constellations with better properties than PSK.

CPCG allows a set of channels to send only combinations of symbols with

a predefined constant accumulated power. Let us assume we have N con-

stellations as X1, · · · , XN and call them base constellations. For the sake of

simplicity, in this work, we assume all of the base constellations are the same.

We transmit the symbols of these constellations, (x1, · · · , xN), over N parallel

channels, where xi represents the symbols of Xi constellation. With CPCG,

we are only allowed to transmit combinations of symbols with constant accu-

mulated power. Let us form a set containing all combinations of symbols with

constant accumulated power and call it constant power constellation set, Sc.

In mathematical form, the constant power constellation set is as follows:

(2.23)Sc =
{︂
(x1, x2, ..., xN)

⃓⃓⃓
xi ∈ Xi for i = 1 · · · , N,

N∑︂
i=1

|xi|2 = N
}︂
.

This definition might resemble sphere coding, but we should remember that

sphere codes are defined as a set of bits known as codewords, whereas our

definition is based on constellation symbols. While the symbol energy directly

impacts the behavior of the launched power, the impact of the codewords on

the launched power is not well defined.

Transmitting symbols combinations in a constant power constellation set

on N parallel channels causes the accumulated power of the symbols to remain
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Figure 2.3: Block diagram of a system suitable for proposed CPCG. Based on
the input bitstream, encoder chooses one of the combinations, (x1, x2, · · · , xN),
in the constant power constellation set (2.23) and transmits them on N parallel
channels. In this scheme the accumulated power launched into the system is
constant.

a predefined value, N . To implement these parallel channels, we propose send-

ing data by interleaving N symbols and sending them in parallel as depicted

in Figure 2.3. These parallel channels can be implemented using polarization

and/or frequency orthogonality. Within a set of parallel channels any channel

selection for CPCG is allowed since the accumulated launched power into the

main system remains constant.

CPCG introduces constant accumulated power as a constraint and hence

reduces the source’s entropy. We mathematically represent the reduction in

the information content of the source caused by CPCG by defining a grouping

efficiency for N joint constellations as:

θ(N) =

H

(︃
X1, X2, · · · , XN

⃓⃓⃓⃓∑︁N
i=1|Xi|2= N

)︃
∑︁N

i=1H(Xi)
, (2.24)

where H(X) is the entropy of the random variable X.

In the following subsections first, we study the entropy of a CPCG sys-

tem and how to maximize the efficiency. Later, we introduce the 16-QAM

constellation as a candidate to implement the CPCG technique in the real

world.
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2.4.1 Grouping Performance

In this subsection, we investigate the entropy of a CPCG system and find the

ultimate ADR in such a system. As a starting point, let us define entropy per

channel for N grouped constellations as:

Hp(N) =

H

(︃
X1, X2, · · · , XN

⃓⃓⃓⃓∑︁N
i=1|Xi|2= N

)︃
N

. (2.25)

Based on the chain rule, we can write (2.25) as:

Hp(N) =
N∑︂
i=1

H

(︃
Xi

⃓⃓⃓⃓
X1, · · · , Xi−1,

∑︁N
i=1|Xi|2= N

)︃
N

. (2.26)

One can simply show this sum is bounded as:

0 ≤ Hp(N) ≤ max

{︃
H(X1), · · · , H(XN)

}︃
. (2.27)

Furthermore, the series Hp(N) is a monotonic function of N because:

(2.28)

H

(︃
Xi

⃓⃓⃓⃓
X1, · · · , Xi−1,

N∑︂
i =1

|Xi|2 = N

)︃
≥

H

(︃
Xi+1

⃓⃓⃓⃓
X1, · · · , Xi,

N∑︂
i=1

|Xi|2 = N

)︃
.

Therefore, the sum in (2.26) is convergent and we can denote the convergence

value as η for largeN . In mathematical form, we can write, limN→∞ HP (N) = η.

This allows us to conclude the following for large enough N :

H

(︃
X1, X2, · · · , XN

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2= N

)︃
= Nη. (2.29)

Also creating any other power level which is realizable with countable con-

stellation combinations would result in HP (N) = η for large N . The proof is

provided in Appendix A.4. Therefore, we can write:

H

(︃
X2, · · · , XN

⃓⃓⃓⃓ N∑︂
i=2

|Xi|2= N − |X1|2
)︃

= (N − 1)η. (2.30)
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We can find η by applying the chain rule to (2.29) and substituting (2.30) as:

(2.31)

Nη = H

(︃
X1, X2, · · · , XN

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2=N

)︃

= H

(︃
X1

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2=N

)︃
+H

(︃
X2, · · · , XN

⃓⃓⃓⃓ N∑︂
i=2

|Xi|2=N − |X1|2
)︃

= H

(︃
X1

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2=N

)︃
+ (N − 1)η.

Therefore:

(2.32)η = H

(︃
X1

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2=N

)︃
.

The constant power constraint in (2.32) can reduce the entropy of X1. In other

words, η ≤ H(X1). However, for a well-chosen base constellation η approaches

H(X1) as N increases because the condition is automatically satisfied. As an

example, we will find the probability of the symbols for a 16-QAM based CPCG

in the next section. As N grows, the symbols become equiprobable which

means constraint has no effect and by relaxing it we can write η = H(X1).

Now, we can conclude from (2.32) that ultimately for a large enough N ,

the reduction in the entropy due to the grouping vanishes and each channel

transmits data at its maximum possible entropy. In other words grouping

efficiency tends to one for a large N or limN→∞ θ(N) = 1, where θ is defined

in (2.24). In short, for better performance of a CPCG design, we need to

increase the number of the channels.

2.4.2 16-QAM Based CPCG

Until now, we supposed there is a base constellation that satisfies the con-

stant accumulated power condition. Here, we work on 16-QAM as one of the

candidates for the base constellation. This constellation has been already em-

ployed in long-reach fiber systems. Symbols in a 16-QAM constellation can be

categorized into three groups based on their power. These groups are shown

in Figure 2.4 as A,B and C. An interesting property of these groups is that

the accumulated power of any pairs of (a, c), (c, a) or (b, b) is constant where
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Figure 2.4: 16-QAM constellation with three groups of symbols with the same
power level A,B,C. This groups satisfy the constant accumulated power as
|a|2+|c|2= |b|2+|b|2= 2, where a ∈ A, b ∈ B, c ∈ C.

a ∈ A, b ∈ B and c ∈ C. Therefore, to implement a CPCG of two 16-QAMs

(N = 2), one can freely choose a symbol from the first 16-QAM to be sent on

one channel and select one of the groups on the second channel such that the

accumulated power stays constant.

For a pair of two 16-QAMs, the constant power condition allows us to

transmit a total of 96 pairs of symbols. If we consider all of these 96 combi-

nations of symbols with equal probability, we can transmit up to log2 96
2

= 3.29

bits/symbol/channel in this scheme. The total number of available symbols in

groups of N 16-QAM constellation with constant accumulated power is given

by:

(2.33)|S16-QAM|=

{︄∑︁N/2
i=0

(︁
N
2i

)︁(︁
N−2i

(N−2i)/2

)︁
22i+2N , N ∈ even∑︁(N−1)/2

i=0

(︁
N

2i+1

)︁(︁
N−2i−1

(N−2i−1)/2

)︁
22i+2N+1 , N ∈ odd,

where, |·| represents the set cardinality. Then for a 16-QAM based CPCG,

grouping efficiency would be:

θ16-QAM =
log2(|S16-QAM|)

4N
. (2.34)

Based on our argument in Subsection 2.4.1, we expect (2.33) to have an asymp-

tote of 24N .

Furthermore, we can find the symbol probabilities in a 16-QAM constant

power constellation set for the symbols from the sets A,B,C in Figure 2.4 as
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(N ∈ even):

(2.35)Pb(N) =

∑︁N/2
i=0

(︁
N
2i

)︁(︁
N−2i

(N−2i)/2

)︁
22i+2N+1i

8N
∑︁N/2

i=0

(︁
N
2i

)︁(︁
N−2i

(N−2i)/2

)︁
22i+2N

,

and

Pa(N) = Pc(N) =
1

8
− Pb(N). (2.36)

Numerical results show that for large N we have:

lim
N→∞

Pa(N) = lim
N→∞

Pb(N) = lim
N→∞

Pc(N) = 1/16. (2.37)

Therefore, in a constant power constellation set, symbols probabilities are

equal for large N . We used this result in interpreting (2.32).

The main reason for the uniform distribution of the symbols in this setup

is to choose a constant power for the symbols that is equal to their average

power. However, choosing a lower value for the constant power will alter

the distribution of the symbols, and one might even achieve shaping gains by

emphasizing symbols with lower energy.

Figure 2.5 demonstrates the grouping efficiency for 16-QAM based CPCG.

Based on this figure, as the number of constellations increases, grouping effi-

ciency tends to one which means the entropy of each CPCG becomes equal to

a 16-QAM constellation.

Another interesting aspect of the CPCG is the channel capacity for a paired

constellation. Accepting the Gaussian noise model for the fiber impairments

[71], [72], we find the capacity of the CPCG for an additive white Gaussian

noise channel. In general, the required calculation for more than 4 grouped

channels is intractable. We use Ungerboeck method [94] to find the capac-

ity with low complexity based on a Monte Carlo approach. Based on this

method, the capacity for the constant power constellation set, Sc (2.23), can

be calculated as:

CSc = log2(|Sc|0)−
1

|Sc|0

|Sc|0−1∑︂
k=0

E
{︂
log2

|Sc|0−1∑︂
i=0

exp(−|ak + n− ai|2 − |n|2

2σ2
)
}︂
,

(2.38)

where ai is the i-th combination in Sc and n is an N-dimensional Gaussian

noise with variance of σ2
n. To further reduce the complexity, we calculate the
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Figure 2.5: Grouping efficiency for 16-QAM. As seen, by increasing the number
of the constellations, entropy loss due to grouping is compensated. Increasing
the number of constellations from 2 to 6, reduces the grouping loss to less than
half.

capacity of the sign bit and symbol amplitude separately. Figure 2.6 represents

the normalized capacity of the channels,
ISc

N
, for constant power constellation

set. We use this figure to find the capacity of CPCG in the fiber setting in

Section 2.5 by calculating the equivalent SNR. As seen, CPCG offers lower

entropy in comparison with 16-QAM but approaches the 16-QAM capacity

as N increases. As for 10 and 14-PSK constellations, please note that both

CPCG and PSK constellations produce ζ = 1. Hence, when comparing with

PSKs, for fairness, we picked PSKs with the same entropy with CPCG N = 2

and N = 12 which are PSKs with 10 points and 14 points respectively. We

called these equivalent PSKs. As seen, CPCGs provide a higher capacity in

comparison with their equivalent PSKs.

2.5 Simulations

In this section, we first describe the system configuration we use to validate

our proposed signaling scheme. Then, we present and discuss the simulation

results.
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Figure 2.6: Capacity for CPCGs. As seen, the CPCG technique can approach
QAM constellations by increasing the dimension. The CPCG technique also
offers higher capacity in comparison with the equivalent PSK constellation in
lower SNR.

2.5.1 Simulation configuration

The optical system we consider in this study works as follows: on the trans-

mitter side, we first generate a constant power constellation set and for each

channel use select one of the possible constant-power combinations randomly.

This symbol combination is modulated on the raised cosine pulse with a roll-

off factor of 0.1 and time duration of T0 = 1.1−10 sec. Then these pulse trains

are launched into a digital subcarrier multiplexing system with 8 channels of

11.95 GHz in both polarization with a baud rate of 144 GBaud as described

in [95]. Finally, the resulting signal is launched into a dual-polarization fiber.

Table 2.2 demonstrates the specifics of this fiber. Fiber attenuation is com-

α β1 β2 γ
0.2 dB/km 0 s/m −20× 10−27s2/m 0.013 (mW )−1

Table 2.2: Fiber parameters for the central channel of a hypothetical terrestrial
link

pensated using in-line EDFA every 100 km. EDFA’s noise figure is 5 dB. This
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fiber system is simulated based on (2.1) using SSFM [29] to solve the Manakov

equation [91]. The SSFM step size for the fiber simulator is set to 500 meters.

On the receiver side, dispersion is compensated first and then frequency

channels are extracted. Next, constellation rotation due to the fiber nonlin-

earity is calculated and canceled. Afterward, we calculate the received symbol

points using matched filters. Our results are based on Monte Carlo evaluation

method with 216 trials. Results are reported for the x̂ polarization of the fifth

frequency channel.

2.5.2 Simulation Results

In this section, we present the simulation results for maximum achievable SNR,

system reach, and ADR in a CPCG design.

Maximum Achievable SNR

Nonlinearity in fiber causes abnormal behavior of the achievable SNR. Kerr

nonlinearity is proportional to the launched power; therefore, we cannot in-

crease SNR unlimitedly by launching more power into the fiber. In this simu-

lation, we find the achievable SNR for the constellations with different ζs over

a 6000 km fiber. Results are shown in Figure 2.7. Here, we emphasize that

ζ = 1 corresponds to PSK and CPCG. As seen, signaling schemes with smaller

ζ achieve higher SNRs and shift the maximum achievable SNR to the higher

launched power. This can be interpreted to better immunity against nonlin-

earity which was predicted in (2.19). Higher SNR allows us to achieve higher

ADR. On the other hand, higher launched power empowers us to increase span

length between EDFAs for the same minimum acceptable signal power before

amplification. This means the total number of EDFAs in the system can be

reduced and hence the system experiences lower ASE noise. We can show that

for an increase of λ dB in the launched power, span length can be increased

by λ
α
where α is the fiber attenuation parameter. Using a signaling technique

with ζ = 1 instead of 16-QAM shifts the maximum SNR by 0.5 dB to a higher

power which means a 2.5 km increase in span length for the assumed fiber.
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Figure 2.7: Using signaling techniques with smaller ζ results in i. achieving
higher maximum SNR and ii. shifting the maximum SNR point to higher
launched powers.

System reach

Our findings in (2.19) predict a linear relationship between noise power and

system reach when the nonlinearity effect is dominant. To investigate reach-

noise relation and compare the impact of the traveled distance on constellations

with different ζs, we plot the noise power versus system reach in Figure 2.8. In

this simulation, we use the optimal launched power of the base constellation,

16-QAM, at each distance for all the methods. It is worth mentioning that

all the CPCG family with different N produces the same ζ = 1 and hence

the same noise power. For the comparison, we also plot the noise power

for CCDM [83] (block length of 128 and energy of 110) and kurtosis-limited

sphere modulation (K-ESS, block length of 128 and maximum kurtosis of

4360) [96]. For a fair comparison, CCDM and K-ESS methods are chosen to

provide a source entropy very close to CPCG2. These results confirm the linear

relation between noise power and system reach. Also, the CPCG technique

offers lower noise power as expected based on (2.19) because it results in

lower ζ in comparison with CCDM and kurtosis-limited sphere modulation.

2CPCG N = 12 provides a source entropy of 3.78 bits/symbol while CCDM and K-ESS
have 3.82 bits/symbol.
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Figure 2.8: Noise power at different distances. This figure confirms the linear
relation between noise power and system reach. In this simulation, the CPCG
technique experiences the same nonlinear noise at 14% longer distances in
comparison with its base constellation, 16-QAM. For example, CPCG at 4000
km causes a noise power the same as 16-QAM at 3500 km (as indicated by
arrow A1). Arrows A2 and A3 also show increases from 4830 km and 6250 km
to 5500 km and 7000 km, respectively.
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Figure 2.9: ADR at different distances. The CPCG technique offers higher
ADR at longer distances in comparison with its base constellation, 16-QAM.
For N = ∞, CPCG technique increases the system reach by 14% as indicated
by A1 and A2 where CPCG increase the system reach from 3280 km and 4620
km to 3750 km and 5250 km, respectively for the same ADR as 16-QAM. For
N = 12, CPCG starts beating 16-QAM at 4200 km and increases the system
reach by a factor of 10% at 6000 km as indicated by arrow A3.

The CPCG technique experiences a noise power the same as 16-QAM at 1.14

longer distances. Based on Section 2.3.2, we expect this increase to be by a

factor 1.16. We explain the difference by putting emphasis on the neglected

dispersion effects in the theoretical discussion in Section 2.3.2. To gain a

better insight into system reach, we find the ADR we get at different distances.

Figure 2.9 represents the results for the different numbers of the constellations.

Here, we can conclude that 16-QAM ADR drops rapidly in comparison with

CPCG. This causes CPCG to offer higher ADR at longer distances despite

their lower entropy. As seen, when we completely compensate for the grouping

entropy loss by using large enough group, N = ∞, system reach increases by

14% in comparison with 16-QAM for the same ADR. When the fiber length

is more than 4200 km, CPCG N = 12 outperforms 16-QAM, meaning that it

achieves the same ADR as 16-QAM at longer distances. For instance, CPCG

N = 12 at 6600 km has the same ADR as 16-QAM at 6000 km. This can
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Figure 2.10: ADR for different signalling schemes. CPCG can achieve a higher
data rate in comparison with 16-QAM for a large number of channels.

be interpreted as a 10% increase in the system reach. In addition, lower-

dimensional CPCG offers higher ADR in comparison with 16-QAM at longer

distances.

Achievable Data Rate

As explained in Section 2.4, the entropy reduction due to grouping can be

mitigated by increasing the number of the constellations. Figure 2.10 demon-

strates the ADR for a fiber length of 6000 km. As seen, for the case of two

paired channels, we have a reduction in ADR in comparison with 16-QAM.

At this reach, 6-D CPCG technique beats 16-QAM. On the other hand, the

ultimate aADR (CPCG N = ∞) suggests that by compensating the entropy

loss of the CPCG scheme, we can achieve a higher data rate using CPCG in a

fiber system in comparison with 16-QAM.

2.6 Conclusion

In this chapter, we concentrated on increasing system tolerance against fiber

nonlinearity by reducing the signal power fluctuation. We mathematically

tracked the impact of the power fluctuation and showed the contribution of

the constellation design on the system nonlinearity. Then we introduced a
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constant power constellation grouping technique that achieves the minimum

possible variance of the launched power. This scheme outperforms its constant-

power counterparts in both complexity and efficiency. We showed that this

signaling method can achieve the QAM efficiency as the number of the chan-

nels increases. We also theoretically showed that using our proposed signaling,

one can achieve the same noise power at longer distances using CPCG in com-

parison with the QAM constellation. We also showed that for a given distance,

the proposed scheme can offer a higher ADR than its QAM counterparts. This

can be attributed to the higher SNR that constant launched power can provide

in the fiber systems.
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Chapter 3

Minimizing Fiber’s Nonlinear
Interference Noise by Designing
Launched Signal PSD

3.1 Introduction

According to the GN model, NLIN is dependent on the PSD of the signal

launched into the WDM system [72]. In a general communication system, two

primary factors affect the signal PSD: (i) the second moment of the constel-

lation from which the transmitted symbols are drawn and (ii) the modulating

pulse used to convert these symbols into continuous-time signals. Therefore,

the design of the modulating pulse PSD can effectively reduce NLIN in fiber

systems. While numerous constellations have been proposed to mitigate fiber

nonlinearity [97]–[100], less attention has been given to the design of pulses

for NLIN reduction.

In this study, our focus lies in designing the pulse PSD to minimize NLIN.

A common concern regarding pulse design for fiber communication arises from

the alteration of the pulse’s temporal shape by dispersive fiber shortly after

launch, potentially rendering pulse design ineffective. However, it is crucial

to differentiate between the pulse’s temporal shape and its PSD. While the

pulse’s temporal behavior undergoes drastic changes as it travels through the

fiber, its PSD, the primary factor influencing NLIN, remains nearly unchanged

throughout the entire channel. Therefore, designing the pulse PSD can effec-

tively minimize NLIN over the entire fiber channel.
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In our approach, we first utilize the calculus of variations to determine the

band-limited pulse PSD that minimizes NLIN based on the GN model. We

demonstrate that the optimal band-limited pulse, aimed at reducing nonlin-

earity, features a flat PSD spanning the entire available bandwidth. However,

despite the effectiveness of this pulse in minimizing NLIN, it is not a practical

pulse (e.g., it introduces ISI). Therefore, our next step involves imposing more

constraints on the pulse design.

For practical considerations, in addition to (i) band-limitation, we intro-

duce two constraints on the pulse shape [17]: (ii) the pulse should not introduce

ISI, and (iii) it should exhibit rapid decay over time. We develop a compre-

hensive model for the pulse that meets these criteria and evaluate the NLIN

power using the GN model. We formulate an optimization problem aimed

at identifying the pulse PSD that minimizes NLIN. Our analysis reveals that

for very small and very large excess bandwidths, the optimal pulse for mini-

mizing NLIN remains the flat PSD pulse, even while satisfying the practical

constraints. However, for the general case with arbitrary excess bandwidth,

we express the problem as an optimization problem and numerically solve it.

Our formulation and pulse optimization are performed in the frequency

domain. To present a new angle, we study our pulse in the time-domain too.

This study provides a deeper understanding of why this pulse has its desirable

properties. In particular, we show that our pulse better spreads the signal

energy over time.

To investigate the performance of our proposed pulses, we conduct a simu-

lation study based on SSFM [29]. Our simulation focuses on system tolerance

against nonlinearity and compares our pulses with some other existing pulses.

In all cases, our pulse generates the lowest NLIN in the fiber system. In

short, our results confirm that compared to other pulses, our pulse increases

(i) the maximum achievable SNR, (ii) the optimal launched power, and (iii)

the system reach.

The remainder of this chapter is organized as follows: Section 3.2 provides

the necessary background. In Section 3.3, we delve into the requirements for

the pulse shape, present the general pulse model, and outline the optimization
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process to determine the optimal pulse shape for minimizing NLIN. Section 3.4

offers insights into the nonlinearity gains that our pulse achieves based on a

time domain approach. Simulation results are presented and discussed in

Section 3.5, followed by the conclusion in Section 3.6.

3.2 Background and System Model

3.2.1 Related Works

While there has been less emphasis on pulse design compared to constellation

design for addressing fiber nonlinearity, some recent studies have suggested

tailored pulses specifically for fiber communication. In the following, we review

some of these studies.

In [101], the authors test the performances of different pulse shapes and

suggest using the Gaussian monocycle and Scholz’s monocycle to achieve a

better bit error rate performance. Also, in [102], the authors compare the non-

linear performance of the non-return to zero and return to zero pulse shapes

with different duty cycles. Their study interestingly reveals a trade-off be-

tween spectral efficiency and nonlinearity tolerance. In addition, an analytical

approach to design airy pulses for fiber communication is proposed in [103].

Based on the GNmodel, the nonlinear noise has small components at higher

frequencies [71]. Using this fact, an M-shape pulse is proposed in [104]–[106]

that provides higher SNR than raised cosine (RC) by putting emphasis on

high frequencies and interfering less with the nonlinear noise.

The polynomial pulse is also claimed to have an improved nonlinearity

performance because of its fast decay rate and low peak-to-average ratio[107],

[108]. In all these studies, for practical reasons, the pulses are chosen to be

ISI-free and band-limited.

While these studies confirm the impact of pulse shapes on fiber nonlinearity,

they lack an analytical approach to identify the optimal pulse for this purpose,

leaving the problem as an ongoing challenge.
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3.2.2 System Model

In this study, we consider a fiber system based on the SSMF with β2, α,

and γ as group velocity dispersion, attenuation, and nonliterary parameters,

respectively [26]. The propagation of light pulses in this channel is governed

by the nonlinear Schrödinger equation expresed in (1.16) and repeated here

as:
δa

δz
+ j

β2

2

δ2a

δt2
+

α

2
a = jγ|a|2a, (3.1)

where a(t, z) represents the signal traveling in z direction at time t.

In this system, fiber attenuation is compensated for by EDFAs [109]. We do

not use inline dispersion compensation components, as is the case in modern

systems, to enhance nonlinearity tolerance.

Considering the pulse shape as h(t) and the transmitted symbols of si

where i represents the symbol index in time, we can express the transmitted

signal a, over the central channel of the WDM system as:

a(t, 0) =
√︁

Pg

∑︂
i

sih(t− iT ). (3.2)

Here, we assume that h(t) has unit energy and Pg represents the channel

power. Given the assumption of independent and identically distributed (i.i.d.)

transmitted symbols, we can express the channel PSD before launch as:

G(f) = Pg|H(f)|2, (3.3)

where H(f) is the Fourier transform of the pulse shape, h(t). Furthermore,

considering other channels in the WDM system, the launched signal PSD is:

GWDM(f) = Pg

N/2∑︂
i=−N/2

G(f − if0), (3.4)

where we assume there are (N + 1) WDM channels with central frequency of

if0 for −N
2

≤ i ≤ N
2
.

As we show in the next subsection, based on the GN model, the NLIN

power is a function of GWDM. According to (3.4), GWDM is itself a function of

the pulse PSD, G(f). Therefore, our objective in this study is to design a pulse
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PSD, G(f), that minimizes the NLIN power. Furthermore, we design our pulse

PSD to satisfy classical communication requirements such as band-limitation

and zero-ISI.

Throughout this work, we denote the time domain functions and their

Fourier transform using lowercase and uppercase letters, respectively.

3.2.3 Gaussian Noise Model

Because of nonlinearity, the propagation of the signal inside the fiber causes

NLIN. GN models the NLIN PSD using the following expression [72]:

(3.5)GNLIN(f) =
16

27
γ2L2

eff

∫︂ +∞

−∞

∫︂ +∞

−∞
GWDM(f1)GWDM(f2)

GWDM(f1 + f2 − f)ρ(f1, f2, f)χ(f1, f2, f)df1df2,

where GWDM(f) is the PSD of the WDM signal launched into the fiber de-

fined in (3.4). Also, ρ and χ are the functions that capture the fiber non-

degenerate FWM efficiency and NLIN accumulation in multi-span links, re-

spectively. These functions are pulse-shape independent and are defined as:

(3.6)ρ(f1, f2, f) =

⃓⃓⃓⃓
⃓1− e−2αLsej4π

2(f1−f)(f2−f)β2Ls

2α− j4π2(f1 − f)(f2 − f)β2

⃓⃓⃓⃓
⃓
2

L−2
eff ,

and

(3.7)χ(f1, f2, f) =
sin2 (2Nsπ

2(f1 − f)(f2 − f)β2Ls)

sin2 (2π2(f1 − f)(f2 − f)β2Ls)
,

where Ls and Ns are the span length and the span number, respectively. Also,

Leff is defined as:
(3.8)Leff = (1− e−2αLs)/2α.

The NLIN expression in (3.5) clearly demonstrates the dependency of NLIN

on the signal PSD, GWDM(f).

3.3 Pulse Shape Design

This section begins by determining the optimal band-limited pulse PSD based

on the GN model using the calculus of variations technique. The resulting
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pulse, however, may not be practical for communication systems. Therefore,

we later add practical constraints for zero-ISI and fast decay on the band-

limited pulse.

3.3.1 Optimal Band-limited Pulse for Nonlinearity

In this subsection, we determine the optimal band-limited pulse PSD, G(f),

that minimizes nonlinearity based on the GN model in a densely packed WDM

system. For now, no other constraints are put on the pulse shape.

Required by the WDM system, we assume the pulse shape bandwidth is

limited to (1+β)/2T , where T is the symbol period and β ∈ [0, 1] is the pulse

excess bandwidth, which represents the percentage of the bandwidth allocated

for a specific design. Therefore, we have:

G(f) = 0, for |f |≥ 1 + β

2T
. (3.9)

To initiate the pulse PSD design process, we calculate the NLIN power

interfering with the received symbol energy after the matched-filter as:

PNLIN =

∫︂ +∞

−∞
GNLIN(f)G(f)df. (3.10)

Substituting (3.5) and (3.4) into (3.10), we can calculate the NLIN power

based on G(f), as:

(3.11)
PNLIN =

16

27
γ2L2

effP
3
g

N/2∑︂
i1=−N/2

N/2∑︂
i2=−N/2

N/2∑︂
i3=−N/2

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞

G(f1 − i1f0)G(f2 − i2f0)G(f1 + f2 − f − i3f0)G(f)
ρ(f1, f2, f)χ(f1, f2, f)df1df2df.

Because we assume a densely packed WDM system in this subsection, f0 =

(1+β)/T . Equation (3.11) directly represents PNLIN in terms of the pulse PSD,

G(f). Additionally, for a normalized symbol energy, we impose the following

constraint on the pulse PSD: ∫︂ +∞

−∞
G(f)df = 1. (3.12)

To minimize (3.11), we apply the calculus of variations technique.
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As the starting step, we introduce a transformation to incorporate the

constraint in (3.12) automatically. This transformation facilitates the opti-

mization problem significantly. Given that G(f) is a nonnegative function, we

represent it as:

G(f) = U2(f) + ζ, (3.13)

where U(f) represents the auxiliary unconstrained functional and −U2(f) ≤ ζ

for f ∈ R. Additionally, by applying the constraint from (3.12) to (3.13), we

can determine ζ as:

ζ =
T

1 + β
− T

1 + β

∫︂ +∞

−∞
U2(f)df. (3.14)

Substituting (3.14) into (3.13), we obtain:

G(f) = U2(f) +
T

1 + β
− T

1 + β

∫︂ +∞

−∞
U2(f)df. (3.15)

This transformation automatically satisfies the constraint in (3.12). It is im-

portant to note that there is not necessarily a one-to-one correspondence be-

tween G(f) and U(f). However, for any given G(f), we can identify at least

one corresponding U(f) 1. Therefore, solving the optimization problem based

on U(f) and finding its associated G(f), if it exists, is sufficient.

By substituting (3.15) into (3.11), we aim to find the functional U(f) that

minimizes PNLIN. Based on the calculus of variations technique, we introduce a

scalar, ϵ, and a free function, η(f), such that any given U(f) can be expressed

as follows:

U(f) = Uopt(f) + ϵη(f). (3.16)

Here, Uopt(f) represents the optimal U(f) that minimizes (3.11). By substi-

tuting (3.16) into (3.15) and (3.11), PNLIN becomes a function of the scalar

ϵ, with its minimum occurring at ϵ = 0. Therefore, we can employ Newton’s

calculus to locate this minimum with respect to ϵ. Given that this minimum

is at ϵ = 0, the following criterion holds true for any η:

δ

δϵ
PNLIN

⃓⃓⃓
ϵ=0

= 0. (3.17)

1For instance, consider U(f) =
√︁
G(f).
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This criterion serves as a method for determining Uopt(f). In Appendix B.1,

we demonstrate that the sole function satisfying this criterion is U(f) = 0

which results in the following by substitution in (3.15):

G(f) =

{︄
T

1+β
|f |< 1+β

2T

0 else.
(3.18)

In addition to minimizing nonlinearity, this pulse achieves zero-ISI for two

cases: β = 0 and β = 1. Therefore, achieving the minimum possible NLIN

and the zero-ISI is possible with this pulse for very low excess bandwidth

(for β = 0) or very high excess bandwidth (for β = 1). However, for ar-

bitrary values of β, the optimal NLIN pulse, given in (3.18), introduces ISI

and is, therefore, impractical for most communication systems. In the next

subsection, we will also impose practical constraints on the pulse shape while

attempting to minimize NLIN.

3.3.2 Pulse Shape Requirements and Model

A practical pulse needs to satisfy the following fundamental criteria [17]: (i)

it must be band-limited, (ii) it should result in zero ISI, and (iii) the pulse

shape should decay faster than λT
πt

to avoid strong ISI in case of timing error.

Here, λ controls the decay rate. In this subsection, we establish a pulse model

satisfying these criteria. We also relax the dense WDM assumption, i.e., f0 ≥

(1 + β)/T .

To have a band-limited pulse, it is enough that the pulse PSD, G(f),

satisfies the condition expressed in (3.9). Also, in [17], it is shown that for

zero ISI, we need:

(3.19)g(iT ) =

{︄
1 i = 0

0 else.

This zero-ISI criterion is based on the assumption of using a filter matched to

the pulse shape, h(t), on the receiver side. This criterion guarantees that only

one symbol contributes in each pulse sample at t = 0,±T, · · ·.

The following is a general model for a pulse that satisfies the requirements
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in (3.9) and (3.19):

(3.20)g(t) = sinc

(︃
t

T

)︃
.

∫︂ β
2T

0

X(f)cos(2πft)df,

where X(f) is a free function which can be nonzero only in [0, β
2T
) and with

the following constraint:

(3.21)

∫︂ β
2T

0

X(f)df = 1.

This constraint guarantees a normalized symbol energy as from (20), it is clear

that g(0) = 1, i.e., (3.12) holds true. Also, in Appendix B.2, we show that to

satisfy the third criterion, it is enough to have the following:

(3.22)

∫︂ β
2T

0

|X(f)|df ≤ λ,

where λ > 0 controls the decaying rate.

Considering the band-limited, zero-ISI, and fast decay properties, the pulse

model becomes (3.20), and finding the optimal G(f) reduces to selecting X(f)

that minimizes (3.11).

3.3.3 Pulse Optimization

In this subsection, we numerically optimize the pulse PSD, G(f), based on the

model discussed in the previous subsection, considering an arbitrary excess

bandwidth.

As the first step, to convert our problem into a well-defined discrete opti-

mization problem, we utilize the Riemann sum approximation for the integral

in (3.20). Consequently, we can define a discrete design parameter Xj as

follows:

Xj = X

(︃
(2j − 1)β

4MT

)︃
, (3.23)

where M represents the number of grid points in the Riemann sum. Addition-

ally, using the same technique, (3.20) can be approximated as follows:

(3.24)g(t) =
β

2MT
sinc

(︃
t

T

)︃ M∑︂
j=1

Xjcos

(︃
2π(2j − 1)βt

4MT

)︃
.
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In the frequency domain, we can represent (3.24) as follows:

G(f) =
β

4M

M∑︂
j=1

Xj

(︃
rect

(︃
fT − (2j − 1)β

4M

)︃
+ (rect

(︃
fT +

(2j − 1)β

4M

)︃)︃
,

(3.25)

where rect(f) is the rectangular function defined as:

rect(f) =

⎧⎪⎨⎪⎩
1 |f |< 1

2
1
2

|f |= 1
2

0 else.

(3.26)

Substituting (3.25) into (3.11) results in the NLIN loss function expressed

in (3.27) based on the discrete design parameter, Xi. Furthermore, through the

application of the same Riemann approximation for the constraints in (3.21)

and (3.22), we can formulate the optimization problem for minimizing NLIN

as follows:

Minimize

PNLIN =
M∑︂

j1=1

M∑︂
j2=1

M∑︂
j3=1

M∑︂
j4=1

Xj1Xj2Xj3Xj4θ(j1, j2, j3, j4), (3.27)

Subject to:

M∑︂
i=1

Xi =
2MT

β
, (3.28)

M∑︂
i=1

|Xi|≤
2λMT

β
, (3.29)
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where θ(j1, j2, j3, j4) is defined as:

θ(j1, j2, j3, j4) =
16

27
γ2L2

effP
3
g

(︃
β

4M

)︃4 ∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞

.

N/2∑︂
i1=−N/2

(︃
rect

(︃
f1T−i1f0T− (2j1 − 1)β

4M

)︃
+rect

(︃
f1T−i1f0T+

(2j1 − 1)β

4M

)︃)︃

.

N/2∑︂
i2=−N/2

(︃
rect

(︃
f2T−i2f0T− (2j2 − 1)β

4M

)︃
+rect

(︃
f2T−i2f0T+

(2j2 − 1)β

4M

)︃)︃

.

N/2∑︂
i3=−N/2

(︃
rect

(︃
(f1 + f2 − f)T − i3f0T − (2j3 − 1)β

4M

)︃
+ rect

(︃
(f1 + f2 − f)T − i3f0T +

(2j3 − 1)β

4M

)︃)︃
.

(︃
rect

(︃
fT − (2j4 − 1)β

4M

)︃
+ rect

(︃
fT +

(2j4 − 1)β

4M

)︃)︃
· ρ(f1, f2, f)χ(f1, f2, f)df1df2df .

(3.30)

The loss function in (3.27) is a polynomial of degree four. Furthermore,

stemming from the physical meaning of PNLIN, we infer that (3.27) is always

nonnegative on its domain. In [110]–[112], it is shown that a nonnegative

polynomial, such as PNLIN, can be expressed as a sum of squared polynomials:

PNLIN =
∑︂
i

(qi(X1, · · · , XM))2 , (3.31)

where qi is a polynomial to be determined using semidefinite programming.

This technique is commonly referred to as the sum of squares (SOS). The

result of SOS is in a format suitable for convex optimization. Furthermore, the

constraints in (3.28) and (3.29) are convex. Therefore, we have the flexibility

to utilize any convex optimization toolbox [113], [114] or a gradient descent

algorithm [115] to efficiently solve the optimization problem given in (3.27)-

(3.29) after applying the SOS technique.

Considering a typical 3000 km fiber system with parameters expressed in

Subsection 3.5.1, the optimal pulse PSDs in the frequency and time domains

for three different values of β and λ = 2 are depicted in Fig. 3.1. Additionally,

the numerical values of X for various β values are provided in Appendix B.3.
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Figure 3.1: (a) to (c): Time domain representation of the optimal pulse PSD.
(d) to (f): Frequency domain representation of the optimal pulse PSD. As-
sumed fiber system parameters are given in Subsection 3.5.1.

3.4 Discussion on the Designed PSDs

So far, our formulation and pulse optimization were performed in the fre-

quency domain. Thinking in the time-domain, however, one may find our
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results counter-intuitive. More specifically, since the fiber is a highly disper-

sive channel, the pulse shape very quickly changes over the fiber length and

one may think that any attempt on pulse design is misguided.

In this section, we provide a time domain study of our pulse to ease this

tension. Earlier, thinking in the frequency domain, we clarified that this work

designs the PSD of the pulse and that dispersion does not change the PSD.

Here, we stay focused on time domain. and provide a new understanding of

why our proposed pulse has its desirable properties.

The pulse PSD plays an important role in the pulse time domain behavior

in a dispersive channel. It is important to note that in a dispersive channel,

after traversing a few spans, the temporal shape of the pulse converges towards

its spectrum. Consequently, the pulse can be approximated as [16], [116]:

h(t, z) ≈
√︃

j

2πB2z
exp

(︃
− jt2

2B2z

)︃
H

(︃
t

B2z
, 0

)︃
. (3.32)

As seen, the pulse in the time domain at distance z, h(t, z), is expressed based

on the frequency domain representation that is broadened by a factor of B2z,

H( t
B2z

, 0). This approximation can be explained by the fact that the dispersive

channel separates the frequency components of the pulse over time. Therefore,

we anticipate observing the pulse spectrum in the time domain. For example,

Fig. 3.2 illustrates the intensity of the optimal pulse with β = 0.5 propagating

in a dispersive fiber channel. As depicted, after traversing a few spans, the

temporal shape starts to resemble the spectrum of the pulse and maintains

this shape throughout the rest of the fiber except for broadening. Therefore,

the pulse PSD has a direct impact on the signal time domain behavior across

the fiber length.

The signal power in the time domain determines the nonlinearity power in

fiber optics. This fact can be derived by applying the first-order perturbation

technique on the NLSE, (3.1). To this end, let us consider the zero term

a(0)(t, L) as the solution to the dispersion operator as:

a(0)(t, L) = U(L)a(t, 0), (3.33)

where U(L) is the dispersion operator for a length of L. Then the first-order
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Figure 3.2: The temporal evolution of the optimal pulse intensity with β = 0.5
in a dispersive fiber channel. After a few spans, the temporal shape starts to
resemble the pulse spectrum.

term representing the nonlinearity can be expressed as:

a(1)(t, L) = jγ

∫︂ L

0

U(L− z)|a(0)(t, z)|2a(0)(t, z)dz. (3.34)

As seen, the nonlinearity term depends on the dispersed signal intensity,

|a(0)(t, z)|2. Therefore, a pulse with high power can evidently generate strong

NLIN. Based on the observation that the time-domain pulse in a dispersive

channel resembles the PSD, we argue that our designed pulse has a smaller

region with high power compared to the RC pulse. To illustrate this point,

Fig. 3.3 depicts the RC pulse PSD and the designed PSD for β = 0.5. As

shown, our pulse has a small portion with high power in the excess band-

width. Therefore, we anticipate a lower amount of nonlinearity excited by this

pulse compared to the RC pulse.

Finally, to justify the high-power edges of our pulses, we should note that

NLIN PSD in a WDM system with reasonable channel spacing has lower power

for the high frequencies. Therefore, by emphasizing these regions, our pulse

can increase the effective SNR.
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Figure 3.3: Comparison between RC and optimal pulse PSDs with β = 0.5.

In short, the nonlinear benefits of our pulse stem from the following:

• It reduces the pulse’s high-power regions by spreading the symbol energy

over time.

• It puts emphasis on the frequencies where NLIN has less effect.

In the end, it is worth mentioning that the sharp edges of the pulse are

intended to be loyal to the theoretical findings. In practice, these sharp edges

could increase the required filter size for pulse shape implementation. If this is

not possible or desirable in a specific design, one can remove the sharp edges

to achieve better frequency behavior and a shorter filter time response. Even

in this case, with the flat spectrum in the excess bandwidth, a reduction in

nonlinearity effects is expected based on our simulation results.

3.5 Simulations

3.5.1 Simulation Setup

We consider a transmitter that chooses a symbol from the 16-QAM constella-

tion and modulates it on a pulse shape with a baud rate of 200 Gbaud. Along

with our proposed pulse, we consider a few other pulses with the same band-

width, symbol rate and roll-off factor of β = 0.3, including root M-shape [104]
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and root polynomial [107] pulses. For the simulations, we consider 5 WDM

channels with a bandwidth of 260 GHz each and a 10 GHz channel spacing.

Our pulse is optimized for the decay control factor of λ = 2. The results are

reported for the central channel on x-polarization.

For this study, we consider a fiber system with a length of 3000 km.

The fiber type is SSMF, and its parameters are β2 = −20× 10−27 s2/m, γ =

0.013 (mW)−1, and α = 0.2 dB/km. The fiber is divided into 100 km spans

with an EDFA at the end of each span to compensate for the fiber attenua-

tion. The EDFAs noise figure is 5 dB. In order to find the fiber output, we

use SSFM with a step size of 50 m to solve NLSE, [26], accurately.

On the receiver side, we first extract the baseband version of the frequency

channels. Symbols are extracted by a filter matched to the transmitted pulse,

and then any rotation in the received constellation is calculated and canceled.

3.5.2 Simulation Results

Effective SNR

A pulse shape resulting in lower nonlinearity not only increases the maximum

achievable SNR but also shifts the optimal launched power to higher levels. To

investigate the optimal launched power of the pulse shapes and the maximum

achievable SNR, we launch different power levels into the system and calculate

the effective SNR. Fig. 3.4 demonstrates the results. As observed, all four

pulses exhibit the same performance in the linear region. This similarity can

be attributed to the classical pulse requirements, including band limitation and

zero-ISI criterion that our design is constrained to. However, as the channel

power increases, resulting in higher NLIN, the pulses demonstrate varying

performance.

As observed, our pulse increases the maximum achievable effective SNR

by 0.3 dB compared to the RC pulse. Additionally, compared to the M-shape

pulse, this increase is 0.2 dB.

On the other hand, our pulse shifts the optimal launch power to higher

levels by 0.5 dBm compared to the RC pulse. It is worth mentioning that the
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Figure 3.4: Effective SNR for different pulses with β = 0.3 versus the channel
power.

higher optimal launched power can also be interpreted as a longer span length

for the same minimum acceptable channel power before amplification, which

can reduce the number of required EDFAs and, consequently, the linear noise

as well.

In short, in this simulation, we observe that our proposed pulse can better

tolerate fiber nonlinearity in terms of maximum achievable SNR and optimal

launch power, while experiencing no loss in the linear region compared to

existing pulses.

System Reach

A better nonlinearity profile not only increases the effective SNR but can also

extend the system’s reach. In other words, we can achieve the same signal

quality at longer distances when using our proposed pulse. To demonstrate this

benefit, we calculate the effective SNR at different distances for the optimal

channel power at each distance. Fig. 3.5 shows the results. First, let us

consider the line L2, which indicates the system’s reach difference between

different pulses around 3000 km. As observed, at this reach, our pulse increases

the system’s reach by 190 km compared to the RC pulse and by 100 km
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Figure 3.5: Effective SNR for different pulses with β = 0.3 at different dis-
tances.

compared to the M-shape pulse.

On the other hand, a comparison between the lines L1 and L2 reveals that

for low system reach, the M-shape pulse tends to have performance closer to

our pulse compared to higher system reaches, where it approaches the RC

pulse. To explain this behavior, we should note that the M-shape pulse only

emphasizes low interaction with the NLIN PSD, which is more effective at low

system reaches. However, for high system reaches, low pulse power becomes

more important, causing it to comparatively lose its performance compared to

our pulse.

In summary, in this simulation, we observed a system reach increase of

6% compared to the RC pulse at 3000 km, which can be attributed to the

nonlinear benefits of our pulse.

Channel Baud Rate

Increasing the channel baud rate increases the dispersion and nonlinearity

effects, limiting the effective SNR. In this simulation, we determine the effective

SNR for different channel baud rates while keeping the channel spacing the

same at 10 GHz. Fig. 3.6 demonstrates the results.

As indicated by Line L1, through the use of our pulse, we can increase the
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Figure 3.6: Effective SNR for different pulses with β = 0.3 versus the channel
baud rate.

channel baud rate from 190 GBaud for the RC pulse to 240 GBaud for our

pulse.

Additionally, when comparing the effective SNR at 40 GBaud and 400

GBaud, we can infer that when the channel spacing is negligible compared to

the channel bandwidth, the M-shape pulse loses its performance gain. This is

expected because in highly packed WDM systems, the NLIN PSD approaches

a flat PSD, and thus emphasizing on the high frequency cannot increase system

performance. On the other hand, our pulse can increase the effective SNR even

for cases with negligible channel spacing since it reduces the pulse regions with

high powers.

In summary, this simulation showed that using our pulse, we can increase

the baud rate by 26%. Furthermore, our pulse is effective even for cases where

the channel spacing is negligible.

Eye Diagram

An eye diagram generally provides valuable information on ISI and immunity

against timing jitter. In this simulation, we plot the eye diagram for the RC

and the optimal pulse that we proposed in this work. This eye diagram is

extracted on the receiver side after the matched filter and rotation canceler.
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Figure 3.7: Effective SNR for RC Pulse with β = 0.3 versus the channel baud
rate.

The transmitter sends QPSK symbols on a 3000 km fiber with a channel power

of 2.5 dBm. Fig. 3.7 and Fig. 3.8 demonstrate the eye diagram for RC and

the optimal pulse, both with β = 0.3, respectively.

As seen, the eye width for the optimal pulse is 0.47, while the RC pulse has

an eye width of 0.42. This 12% increase in the eye width suggests better immu-

nity of the optimal pulse against timing jitter compared to RC. Furthermore,

the eye height for the optimal pulse and RC are 0.97 and 1.14, respectively.

The larger eye height guarantees the higher SNR our pulse shape can offer

compared to RC. The main reason for the larger eye height is the lower NLIN

in the fiber. As we can observe from the eye diagram, the peak-to-peak fluc-

tuations of RC is 3.9, while the optimal pulse shape has fluctuations of 3.67.

Therefore, our pulse shape results in a smaller nonlinearity and suggests a

better immunity against fiber nonlinearity and timing jitter.

3.6 Conclusion

Based on the Gaussian noise model, NLIN in optical fibers depends on the

pulse PSD. In this work, we focused on finding the optimal pulse PSD that
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Figure 3.8: Effective SNR for the optimal pulse with β = 0.3 versus the channel
baud rate.

results in the minimum NLIN. We analytically proved that the optimal band-

limited pulse with respect to nonlinearity has a flat PSD spanning the entire

available bandwidth. This pulse can meet conventional communication re-

quirements, including zero ISI, for very small and very large excess bandwidths.

For arbitrary excess bandwidth, we developed a pulse design framework that

minimizes NLIN and results in a band-limited zero-ISI pulse with a controlled

speed of decay. We also conducted a time-domain analysis to further elucidate

the nonlinearity gain achieved by our pulse. Specifically, the nonlinearity gain

stems from the following features of our designed pulse PSD. First, our pulse

emphasizes frequencies where NLIN has small components. Second, our pulse

spreads the symbol energy over time to reduce the portions of the signal with

high power. The resulting pulse shape improves various aspects of the system’s

performance. The simulation study confirmed that our proposed pulse shape

reduces NLIN and, in turn, leads to higher optimal launch power, achievable

SNR, and system reach compared to other candidate pulses.
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Chapter 4

Equalization Enhanced Phase
Noise Compensation in
Coherent Fiber Receivers

4.1 Introduction

EEPN emerges as a critical impairment, limiting fiber capacity in high baud

rate and long reach applications [117]. EEPN results from the interplay be-

tween laser phase noise and the dispersion compensator in a suboptimal re-

ceiver [7], [118]. In an ideal receiver, the compensation of receiver phase noise

should precede dispersion compensation. However, practically estimating the

phase noise is infeasible unless dispersion is compensated first [119]. In practi-

cal systems, as a result of compensating for the receiver phase noise after the

dispersion compensator, the phase noise power increases due to the dispersion

compensator.

Studies on EEPN date back to 2008, when dispersion-uncompensated links

were proven to be beneficial for fiber nonlinearity. One of the pioneering works

defining and studying EEPN [7] accurately predicted a stricter constraint on

laser linewidth for systems with high data rates compared to fiber systems with

low data rates. In [120], the authors suggest using a dedicated photodetector

for estimating the receiver laser phase noise before dispersion compensation

to avoid EEPN. However, high-accuracy compensation of the phase noise is

not achieved due to practical challenges in phase estimation. The statistical

properties of EEPN have been analytically derived in [8]. Additionally, the
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authors noted that the impact of laser phase noise on the transmitter side is

negligible, as it can be compensated by the carrier phase recovery block in the

correct order of compensation. Despite these works defining and predicting

EEPN properties, EEPN was not considered a serious impairment due to the

lower bandwidth of fiber systems in those days.

As the bandwidth of fiber channels has increased in recent years, subse-

quent works have increasingly focused on the impact of EEPN on systems with

high data rates. A comprehensive analysis of EEPN is provided in [9], where

the nature of EEPN and its impact on different constellations is studied. The

authors propose measures in the system design to limit EEPN, concluding that

it can significantly affect system performance, even for metro links utilizing

higher-order constellations.

Another recent study on EEPN [3] investigates the impact of EEPN on the

carrier phase recovery algorithm and derives characteristics of EEPN for mod-

ern receivers. The authors conclude that using a blind carrier phase recovery

algorithm can partially compensate for EEPN.

The considerable impact of EEPN on system performance, particularly in

long-haul systems, is explored in [121], where the nonlinear behavior of the

fiber is also considered. This work integrates the EEPN effect with the Kerr

nonlinearity effect based on the Gaussian noise model [71]. In [117], the re-

searchers investigate the impact of the constellation on EEPN impairments.

The authors demonstrate that EEPN impairments can be categorized into

phase and amplitude noise. Furthermore, they derive the probability density

function of these induced noises. In [122], a dual-reference phase estimator

is proposed, capable of estimating and compensating for the phase noise for

multicarrier systems, showing better tolerance against EEPN. Lastly, [123]

presents a comprehensive study on phase recovery algorithms, closely investi-

gating the effect of EEPN.

Traditionally, existing works have regarded EEPN as a random phenomenon,

aiming to extract its statistical properties or design the receiver to tolerate the

EEPN noise. Although these studies provide valuable insights, there exists a

gap in the design of EEPN compensators aimed at removing the EEPN effect.
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This work aims to address and fill this void.

In this chapter, we introduce a unique formulation of EEPN that allows

for compensation at the receiver’s output. To accomplish this, we initially de-

rive the expression of the output in an ideal receiver, where the compensation

for receiver phase noise precedes dispersion compensation. Subsequently, we

illustrate that this output can be represented in terms of the dispersion com-

pensator output within the existing suboptimal receivers, where phase noise

is compensated after dispersion. Consequently, this formulation serves as the

basis for our EEPN compensation.

With this novel formulation, we develop two distinct compensators pri-

marily contingent on the availability of the receiver laser phase noise. In

cases where receiver laser phase noise is estimated, we show that the EEPN

compensator can be implemented based on a basic time-variant finite impulse

response (FIR) filter. We refer to it as the phase-dependent compensator,

as it relies on the availability of the receiver phase noise. An example of a

carrier phase estimator capable of extracting the receiver phase noise can be

found in [122], where transmitter and receiver phase noise are separately ex-

tracted based on the walk-off between two frequency channels. Additionally,

the phase-dependent compensator can be used in scenarios where transmitter

phase noise is compensated on the transmitter side [124]. Despite the simplic-

ity of our phase-dependent compensator, extracting the receiver laser phase

noise might not be possible for all receiver structures. This is why we proceed

to discuss the second compensator.

The second compensator is designed for more practical scenarios in which

the receiver phase noise is not known. In this case, we demonstrate that

EEPN FIR coefficients can be estimated based on a pilot. For this pilot-based

compensator, a simple carrier phase recovery suffices as proposed by [68], [125],

[126].

For both compensators, we elaborate on the design parameters and their

suitable values for different fiber systems. Finally, we conduct a complexity

analysis, revealing that the complexity of the phase-dependent compensator is

linearly proportional to the fiber length and data rate, whereas for the pilot-
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based compensator, this complexity grows cubically with the fiber length and

quadratically with data rate.

To validate our theoretical findings, we conduct a simulation study using

a typical long-haul fiber system. Our simulations confirm the significant im-

pact of EEPN on high baud rate systems. We showcase the effectiveness of

our compensators in mitigating EEPN at the output of a suboptimal receiver,

outperforming the existing methods. This improvement in performance is evi-

dent across various metrics, including bit error rate (BER), system reach, and

effective SNR. Lastly, we illustrate that the runtime of our EEPN compen-

sator is comparable to existing carrier phase recovery methods, ensuring the

practical implementability of the design.

This chapter is organized as follows: Section 4.2 presents the system model.

In Section 4.3, we derive the compensator expression. Section 4.4 proposes two

compensation methods based on the availability of the phase noise, explains

the appropriate design parameters for different fiber systems, and conducts

a complexity analysis. Simulation results are discussed in Section 4.5, and

Section 4.6 concludes this work.

4.2 System Model

In this work, we consider a fiber optic system based on an SMSF. The prop-

agation of light in this channel is governed by NLSE, expressed in (1.16) [88].

In this work, we assume complete fiber dispersion compensation at the re-

ceiver. However, it is also possible to derive the compensator for cases where

dispersion compensation is divided between the transmitter and receiver.

For WDM systems, the signal needs to be up-converted and down-converted

using local lasers at the transmitter and receiver sides, respectively. These

lasers introduce phase noise to the signal. Figure 4.1 demonstrates a typi-

cal fiber system structure with respect to the transmitter and receiver phase

noises, ϕt and ϕr, respectively. The laser phase noise follows a Wiener process,

and consequently, the output of the laser exhibits a Lorentzian spectrum with

a linewidth commonly denoted as ∆ν [127], [128].
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Figure 4.1: A typical fiber system structure with respect to transmitter and
receiver laser phase noise.

In an optimal receiver, compensation for transmitter laser phase noise, fiber

dispersion, and receiver laser phase noise should occur in the opposite order

of their occurrence. Considering the practical challenges, the receiver phase

noise is compensated after dispersion compensation, giving rise to EEPN. In

[9], the noise caused by EEPN in such a suboptimal receiver is derived as:

σ2
EEPN =

π2β2L∆ν

T
, (4.1)

where T is the symbol period and L is the fiber length. Therefore, the influ-

ential factors on the EEPN are fiber dispersion parameter, fiber length, data

rate, and laser linewidth.

In this work, our goal is to design a compensator capable of removing

EEPN at the output of such a suboptimal receiver. This compensation relies

on either the estimated receiver phase noise or a known pilot. Throughout

our formulation, we assume ideal carrier phase recovery, which accurately ex-

tracts the laser phase noise, while employing realistic phase estimators in our

simulation study.

In the remainder of this chapter, time-domain signals are denoted with

regular lowercase letters, and their Fourier transforms are indicated by regular

uppercase letters. Matrices and vectors are represented by bold uppercase

and bold lowercase letters, respectively. Furthermore, we represent function-

function products and matrix products by the symbols · and ×, respectively.

Continuous signal convolution and discrete signal convolutions are represented

by ∗ and ⊗, respectively. In this chapter, when a function such as exp(·) or
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Figure 4.2: Optimal receiver structure, where the receiver’s phase noise is
compensated for before the dispersion compensator. Despite the simplicity of
this receiver, extracting the phase information before dispersion compensation
is not possible based on the existing techniques.

sinc(·) is applied to a vector or matrix, it acts on each element individually,

and the result is a vector or matrix with the same dimension as the input,

respectively. Finally, the superscript T applied to a matrix represents the

transpose operation, which involves reading the rows of the original matrix

and writing them as the columns of the resulting matrix.

4.3 EEPN Formulation

In this section, we build upon an optimal receiver structure to derive the

EEPN-free output expression. Next, we demonstrate that this expression can

be written based on the output of the suboptimal receiver, indicating that it

can serve as the EEPN compensator expression.

Figure 4.2 illustrates the optimal receiver structure. The input to the

receiver, c, is affected by the transmitter laser phase noise, dispersion, and

receiver laser phase noise, as shown in Figure 4.1. To obtain an EEPN-free

output in the optimal receiver, the laser phase noises and dispersion are com-

pensated in the reverse order of their occurrence. Despite having the simplest

structure and not causing EEPN, this receiver cannot be implemented with

existing techniques because pilot-based carrier phase estimators require dis-

persion to be compensated first. We analyze this structure solely to derive the

expression of the EEPN-free output, yopt.

In the optimal receiver, the input to the dispersion compensator, e(t),

is the receiver phase noise-compensated version of the received signal, c(t).
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Therefore, e(t) can be modeled as follows:

e(t) = c(t) · exp (−jϕr(t)). (4.2)

Due to the small linewidth of the laser1, we know that it can be considered as

a slowly varying signal compared to the received signal, c(t). In other words,

exp (−jϕ(t)) can be accurately approximated with few frequency components.

Therefore, within a time window of Tϕ, we can represent this term based on

its frequency components as:

exp (−jϕr(t)) =

N/2∑︂
i=−N/2

ζi exp

(︃
j2πit

Tϕ

)︃
, (4.3)

where N + 1 is the number of nonzero frequency elements, and ζi represents

the Fourier coefficients, defined as:

ζi =
1

Tϕ

∫︂ + 1
2Tϕ

− 1
2Tϕ

exp

(︃
−jϕr(t)−

j2πit

Tϕ

)︃
dt. (4.4)

While Fourier series are typically used to represent periodic signals, we are

considering only a single period corresponding to the observation window. In

the rest of this chapter, we refer to ζ as the phase parameter. Expressing the

receiver phase function based on its frequency components enables us to easily

track its impact on the dispersion compensator output. By substituting (4.3)

into (4.2), we can rewrite the input to the dispersion compensator, E(f), as:

(4.5)

E(f) = C(f) ∗
N/2∑︂

i=−N/2

ζiδ

(︃
f − i

Tϕ

)︃

=

N/2∑︂
i=−N/2

ζiC

(︃
f − i

Tϕ

)︃
,

where ∗ denotes the convolution operator. Based on (4.5), we can infer that, in

the presence of receiver phase noise, the input to the dispersion compensator is

a linear combination of frequency-shifted versions of the received signal C(f)

1Usually ∆ν, the bandwidth of exp (jϕ), is less than 1 MHz.
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Figure 4.3: Suboptimal receiver structure shown by the solid lines. Due to
practical considerations, transmitter and receiver phase noises are estimated
and compensated after the dispersion compensator, resulting in EEPN in out-
put y. Our objective is to design an EEPN compensator, depicted by the
dashed line, that generates the EEPN-free output yopt.

with a frequency shift of i/Tϕ. Applying the dispersion operator to E(f), we

can express the output of the dispersion compensator as:

(4.6)

H(f) = E(f) · exp (−j2π2β2Lf
2)

=

N/2∑︂
i=−N/2

ζiC

(︃
f − i

Tϕ

)︃
· exp

(︁
−2jπ2β2Lf

2
)︁
.

And finally, the optimal output, yopt(t), is:

(4.7)yopt(t) = h(t) · exp (−jϕt(t)).

In the next step, our objective is to rewrite the EEPN-free output expres-

sion, as given in (4.7), relying on the dispersion output within a suboptimal

receiver structure. The resulting expression can serve as the EEPN compen-

sator. The solid lines in Figure 4.3 demonstrate a suboptimal structure in

which the receiver phase noise is not compensated before the dispersion com-

pensator. This suboptimal structure results in the EEPN in the output y. Our

objective is to design the EEPN compensator, as shown by the dashed lines

in Figure 4.3, such that it generates the EEPN-free output yopt, as defined in

(4.7).
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As depicted in Figure 4.3, D(f) represents the output of the dispersion

compensator with the input C(f). Therefore, we can express D(f) as:

(4.8)D(f) = C(f) · exp
(︁
−j2π2β2Lf

2
)︁
.

In other to rewrite (4.7) based on D(f), we equate C(f) from (4.8) and sub-

stitute it into (4.6), to have:

(4.9)H(f) =

N/2∑︂
i=−N/2

ζiD(f − i

Tϕ

) · exp

(︄
−j4π2β2Lif

Tϕ

+
j2π2β2Li

2

T 2
ϕ

)︄
.

Also, in the time domain, we have:

(4.10)h(t) =

N/2∑︂
i=−N/2

ζid

(︃
t− 2πβ2Li

Tϕ

)︃
· exp

(︄
−j2π2β2Li

2

T 2
ϕ

)︄
· exp

(︃
j2πit

Tϕ

)︃
.

Finally, substituting h(t) into (4.7), we can find the EEPN-free output as:

(4.11)

yopt(t) = exp (−jϕt(t))

N/2∑︂
i=−N/2

ζid

(︃
t− 2πβ2Li

Tϕ

)︃

· exp

(︄
−j2π2β2Li

2

T 2
ϕ

)︄
· exp

(︃
j2πit

Tϕ

)︃
.

As seen, this expression is based on the dispersion compensator output in a

suboptimal receiver, d, and therefore, it can compensate for EEPN in this

receiver.

In summary, the expressions derived in (4.10) formulate the EEPN com-

pensator, removing the EEPN effects based on the dispersion output in a

suboptimal receiver. This formulation depends on ζ, which is a function of

the receiver phase noise. In practice, this phase noise may or may not be avail-

able. For example, using special carrier phase recovery techniques such as the

one proposed in [122], one can extract the receiver phase noise. Additionally,

compensating for the transmitter laser phase noise on the transmitter side

[124], [129], [130] enables a simple carrier phase recovery method to extract

the receiver phase noise. However, in other cases, the carrier phase recovery

extracts the sum of the transmitter and receiver phase noises, making the

distinct receiver phase noise unavailable. In the following sections, we design

suitable compensators for both scenarios.
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4.4 EEPN Compensator

In this section, building upon the proposed expression for EEPN compen-

sation, we introduce two implementations of the EEPN compensator with

varying levels of complexity, requirements, and accuracy. More specifically,

depending on the availability of the receiver laser phase information, ϕr, we

propose the following compensators:

• phase-dependent compensator when the receiver phase noise is available,

• pilot-based compensator when total phase noise, ϕtot = ϕt + ϕr, is com-

pensated, and a pilot sequence is available.

In the following subsections, we consider a DSP-based receiver in which the

carrier phase recovery and EEPN compensator are implemented in the time

domain. We assume that the EEPN compensator block has access to a block

of Md symbols with a symbol rate of 1/T . Therefore, d, ϕt, ϕr, h, and y are

all vectors of size Md.

4.4.1 Phase-dependent compensator for known ϕr

In this subsection, we assume that ϕr is known, and thus ζ can be found using

(4.4). Therefore, the phase carrier recovery block should either be capable of

separately estimating the transmitter and receiver laser phase noise [122] or

the transmitter phase should be compensated for at the transmitter [124],

[129], [130]. In the latter case, any carrier recovery method can estimate ϕr.

Given ϕr, to generate the EEPN-free output, y, it is sufficient to imple-

ment h according to discrete-time versions of (4.10) and (4.7). Later, we

demonstrate that this structure can be simplified to a basic time-variant FIR

filter.

Figure 4.4 illustrates the receiver structure suitable for this EEPN imple-

mentation. As seen, the carrier phase recovery block determines the receiver

phase noise, ϕr, and forwards it to the EEPN compensator. Additionally,

the dispersion-compensated signal is obtained from the output of the down-
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Figure 4.4: Receiver structure suitable for EEPN compensator implementation
when ϕr is known.

sampler block. The output of the EEPN compensator implements h, which is

transformed into the optimal output, y, by multiplying it with exp (−jϕt).

With the inputs in place, our focus shifts to the design of the EEPN com-

pensator. The initial step involves determining the phase parameter ζi as

defined in (4.4), based on the estimated phase noise, ϕr. We assume the phase

noise has N + 1 low-frequency components. Therefore, we first down-sample

the receiver phase vector ϕr such that N + 1 samples remain as:

(4.12)ϕred =

[︃
ϕr [kinit],ϕr

[︃
kinit +

Md

N + 1

]︃
, . . . ,ϕr

[︃
kinit +

NMd

N + 1

]︃]︃⊺
,

where kinit represents the index of the first picked sample and can be any value

less than Md/(N + 1). Next, we utilize the discrete Fourier transform to find

ζ = [ζ−N/2, ζ1−N/2, · · · , ζN/2]
⊺, as:

(4.13)ζ = W × exp (−jϕred),

where W(N+1)×(N+1) entries are defined as:

(4.14)W [i, k] =
1

N + 1
exp

(︃
−j2π

(i−N/2− 1)(k − 1)

N + 1

)︃
.

84



As mentioned, ζi is the Fourier transform coefficient of the function exp (−jϕr(t))

over a time window of Tϕ = MdT . It is important to note that (4.13) is the dis-

crete equivalent of (4.4), which can be used to determine the phase parameter

ζ when phase noise ϕr is known.

In the next step, we implement the discrete version of (4.10) as:

(4.15)h =

N/2∑︂
i=−N/2

ζi(d⊗ s(i)) · exp
(︃
−j2π2β2Li

2

M2
dT

2
1+

j2πi

MdT
t

)︃
,

where

t = [0, 1, . . . ,Md − 1]T, (4.16)

and “⊗” denotes the discrete convolution operator with the output length the

same as the length of the first input. In this expression, 1 is a vector with a

size similar to t with all elements equal to 1. The function exp(·) acts on the

input vector elements. In (4.15), the time shift of 2πβ2iL/Tϕ is implemented

using the interpolation filter with the following taps:

(4.17)s(i) = sinc

(︃
τ

T
− 2πβ2Li

MdT 2

)︃
,

where τ = [−Ms/2, 1 − Ms/2, . . . ,Ms/2]T and Ms + 1 is the number of the

taps for the interpolation filter.

Assuming a block of data is available with size Md, (4.15) is suitable for

EEPN compensator implementation. However, in the following, we demon-

strate that (4.15) can also be implemented using a simple time-variant FIR

filter. Finally, we derive the update rule for the FIR coefficients based on ϕr.

The design principle is to determine the output solely for the symbol at

the center of the block, h. We demonstrate that this central symbol can be

compensated using an FIR filter. Evidently, by shifting the block, we can

compensate for all the received symbols. To derive the FIR filter, we need to

express (4.15) for the center symbol, h[Md/2], as:

h

[︃
Md

2

]︃
=

⎛⎝d⊗
N/2∑︂

i=−N/2

ζis
(i) · exp

(︃
−j2π2β2i

2L

M2
dT

2
+ jπi− j2πi

Md

)︃⎞⎠[︃Md

2

]︃
.

(4.18)
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In the derivation of (4.18), the distributive property of the convolution oper-

ator was also utilized. We can express (4.18) in matrix format as:

(4.19)
h

[︃
Md

2

]︃
= (d⊗ η)

[︃
Md

2

]︃
= d

[︃
Md +Ms

2
, . . . ,

Md −Ms

2

]︃
× η,

where η(Ms+1)×1 can be expressed as:

(4.20)η = ∆× ζ
= ∆×W × exp (−jϕred).

Also, ζ is defined in (4.13) and the entries of ∆(Ms+1)×(N+1) are defined as:

∆(Ms+1)×(N+1)[k, i]

= sinc

(︃
1− k +Ms/2−

2πβ2L(i−N/2− 1)

MdT 2

)︃
· exp

(︃
−j2π2β2L(i−N/2− 1)2

M2
dT

2
+ jπ(i−N/2− 1)− j2π(i−N/2− 1)

Md

)︃
.

(4.21)

It is important to note that (4.19) defines a time-variant FIR filter with co-

efficients η capable of compensating for EEPN, and the update rule for this

EEPN FIR filter is defined in (4.20). Additionally, we should note that ∆×W

represents a fixed matrix, requiring calculation and storage only once.

Figure 4.5 illustrates the block diagram depicting the FIR implementation

of the EEPN compensator. The delay units synchronize the update rule with

respect to the EEPN FIR filter. According to (4.12), the down-sampler sam-

ples the receiver laser phase noise every Md/(N + 1) symbols. Consequently,

the EEPN FIR filter should be updated every Md/(N + 1) symbols because,

during this period, the phase parameter ζ remains constant. Overall, this

implementation introduces a symbol delay of Md/2 symbols in its output.

It is worth noting that there is no need for receiver phase noise cancellation

after the EEPN compensator because the output of the EEPN compensator is

equivalent to the optimal receiver, where the receiver phase noise is compen-

sated before the dispersion compensator.
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Figure 4.5: Phase-dependent EEPN compensator implementation based on
the time-variant FIR defined in (4.20).

In short, in this subsection, assuming ϕr is known, we derive a simple

time-varying FIR filter to compensate for EEPN. The biggest advantage of

this implementation is its simplicity and accuracy, as our simulation results

reveal in Section 4.5.

In some systems, although distinguishing the phase noises ϕt and ϕr might

be challenging. Thus, in the following, we propose another compensator re-

laxing the need for receiver laser phase noise, ϕr.

4.4.2 Pilot-based compensator

In this subsection, we consider a more practical scenario in which we determine

the EEPN FIR filter coefficients based on a pilot signal and the sum of the

receiver and transmitter laser phase noises, ϕtot = ϕt + ϕr. This approach

alleviates the need to know the explicit receiver laser phase noise, ϕr.

To determine the EEPN FIR coefficients independently of the receiver

phase noise, we initially establish a system of equations to find the phase

parameter ζ based on the pilot. Subsequently, we employ the extracted ζ to

find the FIR coefficients and compensate for EEPN.

In Figure 4.6, the structure of a symbol block, including the pilot sequence
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𝑠1 𝑟𝑀𝑟 𝑠𝑀𝑑−1
𝑠𝑀𝑑

… 𝑟2 … …𝑠𝑀𝑑−𝑀𝑟
2 = 𝑠𝑃2

𝑟1
= 𝑠𝑃1 = 𝑠𝑃𝑀𝑟

Block of 𝑀𝑑 symbols

𝑀𝑟 pilots

Figure 4.6: A sequence of Mr symbols is considered as the pilot in a block
of Md symbols. These symbols are denoted by ri = sPi

, where Pi is the pilot
symbol index and defined as Pi = i + (Md −Mr)/2. In our design, pilots are
assumed to be a random but known sequence of symbols drawn from the same
constellation as the data.

r, is illustrated. Within a block of Md symbols, there are Mr pilot symbols.

The decision to use a centralized pilot section is to allow us to assume constant

phase noises for all the pilots. As seen, we denote the i-th pilot index as

Pi = i+(Md−Mr)/2 for i = 1, 2, . . . ,Mr. It is essential to note that while we

consider the pilots to be known, in practice, they can be the detected received

symbols.

Furthermore, in Figure 4.7, the suitable receiver structure for the pilot-

based compensator is depicted. As observed, for this compensator, we relo-

cate the phase noise compensator before the EEPN FIR filter resulting in the

total phase noises, ϕtot = ϕt + ϕr, to be compensated before the EEPN com-

pensator. This adjustment is possible because the phase noises within each

EEPN FIR update can be treated as constant. Consequently, the input of the

EEPN FIR filter is the output of the suboptimal receiver, y.

In order to find ζ based on the pilot sequence r, we begin by deriving the

pilot expression based on the unknown ζ. Assuming Ms + 1 FIR taps as η,

we write the FIR output for pilot r[i] based on (4.19) as:

(4.22)r[i] = ui × η,

where, ui = y[Pi+Ms/2, Pi+Ms/2−1, . . . , Pi−Ms/2]. Substituting the filter

coefficients based on (4.20), we have:

(4.23)r[i] = ui ×∆× ζ.
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Figure 4.7: Receiver structure for pilot-based EEPN compensator.

This expression establishes one equation based on the known pilot r[i] and

the unknown phase parameter ζ. Considering Mr pilots, we can formulate the

following system of equations:

(4.24)r = U ×∆× ζ,

where UMr×(Ms+1) is a matrix with the i-th row as ui. We can find the solution

of (4.24) for phase parameter, ζ, as:

(4.25)ζ = ((U ×∆)T ×U ×∆)−1 × (U ×∆)T × r.

Then, we determine the EEPN FIR coefficients to compensate for EEPN by

substituting (4.25) into (4.20) to obtain:

(4.26)η = ∆× ((U ×∆)T ×U ×∆)−1 × (U ×∆)T × r.

It is worth mentioning that in calculating ζ, we use a pseudo-inverse to solve

the overdetermined system of equations in (4.24). This approach is optimal

when assuming Gaussian noise impacts the received pilots.

As seen, (4.26) defines the coefficients of the EEPN FIR filters that can

be adaptively updated based on the known pilot r and the received symbols

matrix U . It is crucial to note that the matrices ∆ and U are not square, and

therefore, the equation in (4.25) cannot be simplified for the general case.

Based on our formulation in (4.26), we propose the block diagram presented

in Figure 4.8 for the implementation of the pilot-based EEPN compensator.
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Figure 4.8: Pilot-based EEPN compensator implementation based on the pilot-
driven phase parameter defined in (4.25).

In this diagram, we leverage a symbol detector to generate the pilot sequence,

eliminating the need for transmitting preset symbols. As mentioned in the

previous subsection, the EEPN FIR coefficients need to be updated for every

Md/(N + 1) symbols.

While EEPN FIR coefficients can be directly determined based on the

phase parameter ζ as derived in (4.26), it is worth mentioning that one can

use (4.25) to separately estimate the receiver laser phase noise in a suboptimal

receiver. Based on (4.3), ζ represents the Fourier transform coefficients of

exp (−jϕr), allowing one to extract ϕr using:

ϕr(t) = j ln

⎛⎝ N/2∑︂
i=−N/2

ζi exp

(︃
j2πit

MdT

)︃⎞⎠ , (4.27)

where ln(·) denotes the natural logarithm.

4.4.3 Discussions on the Design Parameters

The compensators designed in Subsections 4.4.1 and 4.4.2 include design pa-

rameters such as block size Md, phase parameter number N , the number of

pilots Mr, and FIR length Ms. In this subsection, we will elaborate on each

parameter, its meaning, and the appropriate value based on the system prop-
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erties. In the end, we present the numerical values of the parameters for

commonly used systems.

Block length, Md

This parameter is defined as the symbol interval during which the compensator

observes the laser phase noise to compensate for EEPN.

Let us assume our aim is to compensate for the symbol at time t0. Clearly,

the minimum interval required to observe the phase noise is the interval during

which the receiver laser phase noise affects the symbol at time t0. To determine

this minimum required interval, we derive the impulse response of the receiver

laser phase noise. To this end, in Figure 4.1, we assume that the output of the

laser is an impulse, δ(t), resulting in c = b(0)δ(t). Based on (4.8), the output

of the dispersion compensator is given by:

d(t) = b(0)iFT
{︁
exp

(︁
−j2π2β2Lf

2
)︁}︁

, (4.28)

where iFT is the inverse Fourier transform. Hence, the suboptimal receiver

broadens the impact of the phase noise by the length of the dispersion impulse

response. We can infer that the symbol at time t0 is affected by the receiver

laser phase noise in the interval [t0 − td/2, t0 + td/2], where td represents the

impulse response length for the dispersion operator. Therefore, for EEPN

compensation, it is sufficient to consider Md = td/T . In [131], the dispersion

impulse response length, td, is derived. Utilizing their findings, we set the

EEPN block size to match the dispersion impulse length as:

Md =
2π|β2|L

T 2
+ 1. (4.29)

With this equation, we anticipate the block size to increase at a rate propor-

tional to the square of the baud rate and linearly with respect to the fiber

length.

Phase Parameters Number, N

As indicated in (4.4), N + 1 is the number of nonzero Fourier coefficients of

the laser phase noise function, exp (−jϕr(t)). This parameter also determines

the EEPN FIR update rate given by Md/(N + 1) symbols.
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To determine N , we recognize that the frequency resolution of the discrete

Fourier transform in (4.13) is 1/(MdT ). Therefore, with a bandwidth of ω for

exp (−jϕr(t)), we deduce that the number of nonzero ζis is:

N = MdTω. (4.30)

Here, we should mention that ω is different from the laser linewidth in this

manner: ω observes the nonzero frequency components of the laser phase

noise, while the laser linewidth represents the 3-dB bandwidth. Although

the laser linewidth has a Lorentzian spectrum with tails stretching to infinity,

an approximate absolute bandwidth can be used. In our study, based on

numerical trials, we found that ω = 1000∆ν is sufficient.

FIR length, Ms

FIR filters in (4.15) are used to implement the maximum delay of±πβ2NL/MdT .

The EEPN FIR filter in (4.18) is also a sum of these FIR filters. Therefore,

the EEPN FIR filter also has the same number of taps.

As seen in (4.17), the coefficients of s(i) are a sinc function. Based on our

extensive simulations, for good accuracy, it is enough to keep five cycles of the

sinc function as the FIR taps. Keeping this number of cycles maintains 98%

of the ideal filter energy while facilitating a low-complexity implementation.

Therefore, to implement the maximum delay of ±πβ2NL/MdT , we need:

Ms = 10 +
2πβ2LN

MdT 2
(4.31)

taps for the FIR filters.

Number of Pilots, Mr

Pilots are employed in (4.25) to determine the phase parameter, ζ. Since we

have N+1 nonzero ζ, we require at least N+1 pilots (Mr > N). Based on the

numerical values presented in Table 4.1 for different fiber systems, the pilot

overhead is less than 1.3%. However, increasing the number of pilots in noisy

scenarios can be advantageous.
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The derived expressions in (4.29), (4.30), and (4.31) can be utilized to de-

termine the optimal design parameters for EEPN compensators. Table 4.1 also

presents these parameters for various channel bandwidths and laser linewidths.

In this table, we assume the fiber length is L = 1000 km. However, consider-

ing the linear relation impact of the fiber length on Md and N , we can find

suitable parameters for any fiber length with the proper scaling.

Linewidth = 50 kHz Linewidth = 100 kHz
BW GHz Md N Ms Md N Ms

50 315.2 0.3 10.3 315.2 0.6 10.6
100 1257.6 0.6 10.6 1257.6 1.3 11.3
150 2828.4 0.9 10.9 2828.4 1.9 11.9
200 5027.5 1.3 11.3 5027.5 2.5 12.5
250 7855.0 1.6 11.6 7855.0 3.1 13.1
300 11310.7 1.9 11.9 11310.7 3.8 13.8
350 15394.8 2.2 12.2 15394.8 4.4 14.4
400 20107.2 2.5 12.5 20107.2 5.0 15.0
450 25447.9 2.8 12.8 25447.9 5.7 15.7
500 31416.9 3.1 13.1 31416.9 6.3 16.3

Linewidth = 200 kHz Linewidth = 500 kHz
BW GHz Md N Ms Md N Ms

50 315.2 1.3 11.3 315.2 3.2 13.1
100 1257.6 2.5 12.5 1257.6 6.3 16.3
150 2828.4 3.8 13.8 2828.4 9.4 19.4
200 5027.5 5.0 15.0 5027.5 12.6 22.6
250 7855.0 6.3 16.3 7855.0 15.7 25.7
300 11310.7 7.5 17.5 11310.7 18.9 28.8
350 15394.8 8.8 18.8 15394.8 22.0 32.0
400 20107.2 10.1 20.1 20107.2 25.1 35.1
450 25447.9 11.3 21.3 25447.9 28.3 38.3
500 31416.9 12.6 22.6 31416.9 31.4 41.4

Table 4.1: Compensator parameters for different fiber systems. In preparing
this table, we adhered to the exact numbers provided by (4.29) to (4.30). In
practice, however, the ceiling of these numbers should be used to determine
the integer values for the filter taps or pilot numbers.
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4.4.4 Complexity Analysis

In this subsection, we analyze the complexity of the proposed compensators.

Specifically, we derive the number of complex multiplications and summations

required per one symbol. We assume the compensators have the parameters

Md as the block size, N as the number of phase parameters, Ms as the filter

length, and Mr as the pilot count.

We begin by counting the number of operations required for the phase-

dependent compensator proposed in Subsection 4.4.1. For every output sym-

bol, the EEPN FIR filter should be computed, which results in Ms+1 complex

products and Ms complex sums. Furthermore, the update rule necessitates a

matrix-vector multiplication where the matrix is of size (Ms + 1) by (N + 1).

Therefore, the number of complex products is (Ms + 1) × (N + 1), and the

number of complex sums is (Ms + 1)×N . Because updating the EEPN FIR

filter is required every Md/(N + 1) symbols, the overall number of complex

products and sums normalized for one symbol for this compensator is:

Np1 =
(N + 1)2(Ms + 1)

Md

+Ms + 1, (4.32)

and

Ns1 =
N(N + 1)(Ms + 1)

Md

+Ms, (4.33)

respectively. According to the numerical values presented in Table 4.1 for

different fiber systems, we realize that the complexity of the update procedure

is negligible compared to the EEPN FIR filter. By substituting (4.29), (4.30),

and (4.31), this complexity is of order O(Lω/T ).

For the pilot-based compensator, similar to the first compensator, we re-

quire Ms +1 complex products and Ms complex sums for the implementation

of the EEPN FIR filter. On the other hand, for updating the filter coefficients

based on (4.25), we first compute UMr×(Ms+1)×∆(Ms+1)×(N+1), which requires

Mr(Ms + 1)(N + 1) complex products and MrMs(N + 1) complex sums. We

then calculate the term (U×∆)T ×U×∆ with (N+1)2Mr complex products

and (N + 1)2(Mr − 1) complex sums. Next, we determine the inverse of the

result with a maximum of (N + 1)3/3 complex products and (N + 1)3/3 com-
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plex sums based on the Gaussian elimination method. Calculating the rest of

the expression results in:

(Ms + 1)
(︁
(N + 1)2 + (N + 1)Mr +Mr

)︁
(4.34)

complex products and

(Ms + 1) (N(N + 1) +NMr +Mr − 1) (4.35)

complex sums. Considering the update rule for Md/(N + 1) symbols, the

normalized complex products and sums for the pilot-based EEPN compensator

are:

(4.36)
Np2 ≈ Ns2

≈ MrN(N2 + 2MrN +Mr) + (N + 1)4/3

Md

+Ms.

Thus, substituting (4.29), (4.30), and (4.31), we determine that the complex-

ity of the pilot-based compensator is governed by the FIR coefficient update

procedure, and it is of the order O(L3ω4/T 2).

Based on this analysis, we observe that the complexity of the phase-

dependent compensator is mainly determined by the EEPN FIR filter, which

is linearly proportional to the fiber length and data rate, while the complex-

ity of the pilot-based compensator is determined by the update rule and is

proportional to the cube of the fiber length and the square of the data rate.

4.5 Results and Discussions

In this section, we first present our simulation setup, followed by the results on

the performance of the proposed compensators. As a benchmark, we compare

our compensators with the blind phase search (BPS) method [132]. BPS has

been shown to tolerate EEPN in various works, including [3], [117], [133],

[134]. In addition, we compare our compensator’s performance to the recently

proposed dual reference subcarrier (DRS) approach [122]. As the optimal

phase compensator in the absence of dispersion, we present the results of zero-

forcing phase estimator (ZFP) recovery with ideal knowledge of phase noises.
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We refer to our compensator in Subsection 4.4.1 and Subsection 4.4.2 as Phase-

Dependent Comp and Pilot-Based Comp, respectively. In light of (4.1), we

have opted to investigate the performance of our compensator concerning the

impact of data rate, laser linewidth, and fiber length.

4.5.1 Simulation Setup

We consider our simulation setup to be aligned with recent advancements in

carrier phase recovery and the EEPN challenge, as demonstrated in works

such as [121]–[123]. Accordingly, we model a 2000 km fiber link with 5 WDM

dual polarization channels and a combined laser linewidth of 400 kHz, evenly

distributed between the transmitter and receiver. In the following, we describe

our setup in more detail.

On the transmitter side, we generate a stream of 223 random bits and,

using gray labeling, map them to 16-QAM symbols. These symbols are then

modulated to a root-raised cosine pulse with a roll-off factor of 10%. We

consider a channel bandwidth of 200 GHz with a channel power of 2 dBm

unless otherwise specified. The resulting signal is multiplied by the laser phase

noise and then launched into the fiber.

We consider a typical fiber with the following parameters: β2 = −20 ×

10−27 s2/m, γ = 0.013 (mW)−1, and α = 0.2 dB/km. This fiber is simulated

based on NLSE and is implemented using the SSFM [29]. The step size we

consider for this method is 50 m to ensure high accuracy. To compensate

for fiber attenuation, we employ EDFA every 100 km. The EDFA noise fig-

ure is 5 dB. No inline dispersion compensation is implemented, necessitating

complete dispersion compensation on the receiver side.

On the receiver side, we first apply receiver laser phase noise, and then

compensate for dispersion and apply the matched filter. For laser phase noise

estimation, we assume a pilot sequence is transmitted every 40 symbols, caus-

ing an overhead of 2.5%. Finally, the EEPN compensator is implemented.

Considering the mentioned system properties and the discussions in Subsection

4.4.3, we select a suitable set of compensator parameters for each simulation.

For the phase-dependent compensator, we assume effective laser linewidth on
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Figure 4.9: BER performance of the compensators for different channel baud
rates.

the transmitter side is reduced by 90% using the feedback compensation tech-

nique. This value is chosen based on the results reported in [124], Figure 4 for

our system frequency range. To ensure a fair comparison, the remaining por-

tion of the combined laser linewidth is implemented on the receiver side. This

approach allows a straightforward pilot-based phase noise estimator to extract

the necessary receiver laser phase noise for the phase-dependent compensator.

Following [121], we consider a practical raw forward error correction (FEC)

BER as an indication of the system performance threshold. In our simulations,

we consider a raw BER of 0.007. As shown in [135], a FEC with 9% overhead

can effectively work with this raw BER. The following results are based on the

central channel on the x-polarization.

4.5.2 Simulation Results

Impact of Channel Baud Rate

Based on (4.1), EEPN noise power is proportional to the baud rate, 1/T .

Therefore, EEPN is a primary factor limiting the baud rate in fiber systems.

In this simulation, we evaluate the performance of the fiber system under

various channel baud rates, both with and without the EEPN compensator.

The simulation results are illustrated in Figure 4.9. The impact of EEPN with
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respect to the channel baud rate should be studied in three regions: low baud

rates where EEPN is negligible, intermediate baud rates where EEPN is one

of the main system limiting factors, and higher baud rates where nonlinearity

dominates.

For low baud rates (less than 200 GBaud), all methods, including uncom-

pensated ideal ZFP, can provide acceptable BER performance. This is because

at low channel baud rates, nonlinearity and EEPN are negligible.

At practical baud rates (in this setup, 200 GBaud to 400 GBaud), EEPN

is one of the main system limiting factors. Therefore, EEPN uncompensated

methods or partially compensated methods like BPS lose their performance.

As observed, our proposed methods can significantly increase system perfor-

mance in this region. Furthermore, based on this simulation, we observe

slightly lower BER performance of the pilot-based EEPN compensator com-

pared to the phase-based compensator. This can be explained by the fact that

estimating the EEPN FIR filter coefficients in a noisy situation is also a source

of error.

For high baud rates (400 GBaud and beyond), nonlinearity dominates.

This is because higher channel bandwidth necessitates launching higher power,

which in turn increases the nonlinearity effects. Even though our method still

outperforms existing methods, the considered raw BER is not satisfied in this

region.

The dashed line demonstrates the considered raw BER threshold. As ob-

served, BPS can work with the data rate up to 270 GBaud, while our com-

pensators can operate up to 400 GBaud. In other words, using our proposed

compensators, one can increase the system baud rate by 48% for this setup.

In short, this simulation confirms that using the proposed EEPN compen-

sators, the fiber system can support higher data rates compared to EEPN

uncompensated receivers.

Impact of Laser Linewidth

Laser phase noise not only causes EEPN in a suboptimal receiver but also can

severely impact the phase estimation performance. In this simulation, we in-
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Figure 4.10: BER performance of the compensators for different combined
laser linewidths.

vestigate the performance of different methods under various laser linewidths.

Figure 4.10 demonstrates the results. In this figure, the BER performance

of the fiber system for different laser linewidths is presented. As observed,

the uncompensated systems, including ideal ZFP and BPS, lose their BER

performance immediately with increasing laser linewidth. This is because,

based on (4.1), the EEPN power is proportional to the laser linewidth, and

hence increasing the laser linewidth causes the EEPN to degrade the system

performance.

On the other hand, EEPN compensators can tolerate significantly higher

laser linewidths by canceling the EEPN effects. However, considering the low

performance of the carrier phase estimation for high laser linewidths, eventu-

ally, our compensators surpass the raw BER requirement that we considered.

This is evident at a laser linewidth of ∆ν = 750 kHz.

In short, using our compensators, we can tolerate a much higher laser

linewidth compared to the EEPN uncompensated systems. In this simulation,

we observe a 85% increase in acceptable laser linewidth.
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Figure 4.11: BER performance for different system reaches

System Reach

As predicted by (4.1), increasing the fiber length increases the EEPN noise

power. Therefore, the minimum achievable BER increases for long fibers com-

pared to short fibers. In this simulation, we investigate the impact of fiber

length on the fiber system. Figure 4.11 depicts the results. As observed, all

studied methods provide acceptable BER performance for fiber lengths up to

2000 km. We can conclude that for these lengths and the considered baud

rate of 200 GBaud, the EEPN effect is not significant. However, for system

reaches higher than 2000 km, EEPN limits the minimum achievable BER.

The partially EEPN compensated method, BPS, increases the system reach

to 2300 km, while our compensator can tolerate a system reach of 2900 km.

In other words, in this system setup, using our compensators, one can increase

the system reach by 26%.

It is important to note that the effects of nonlinearity also grow with in-

creasing system reach. As observed, for high system reach, the performance

gain achieved by our EEPN compensators decreases because fiber nonlinearity

dominates at these reaches.
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Figure 4.12: Effective SNR for different launch power.

Launch Power

Channel power is the primary factor in exciting fiber nonlinearity. While

channel power does not directly affect dispersion and EEPN, compensating

for EEPN can decrease the optimal launch power, enabling us to reduce non-

linearity. This is supported by [71], which indicates that the optimal launch

power occurs at:

Popt =
3

√︄
Plin

2η
, (4.37)

where η is a constant independent of power, and Plin is the power of the

linear noises (power-independent). Therefore, by reducing the EEPN noise

power, one of the sources of power-independent noise, we can lower the optimal

launch power and increase the effective SNR. To assess the impact of EEPN

compensation on the optimal launch power, we conduct this simulation in

which the effective SNR is determined for different launch powers. Figure 4.12

presents the results. We explain this simulation result with respect to the

maximum achievable effective SNR and the optimal channel power.

As observed, using our compensators, we can achieve a maximum SNR of

16.5 dB. This is while using the BPS and Ideal ZFP methods, the maximum

achievable SNRs are 16.5 dB and 15.4 dB, respectively. The 0.4 dB gain in

effective SNR comparing our compensators and BPS method can be attributed
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to the higher ability of our method to compensate for EEPN. Comparing the

results of ideal ZFP and our methods, we can conclude that EEPN causes a

1.1 dB reduction in maximum effective SNR in this system setup.

On the other hand, observing the optimal launch power, we realize that

by compensating for the EEPN, our method achieves the maximum SNR at

a channel power of 2 dBm, while the ideal ZFP has an optimal launch power

of 2.5 dBm. This means compensating for EEPN causes the optimal launch

power to occur at lower channel powers compared to uncompensated systems.

It is also worth mentioning that the limited effective SNR reported in this

simulation is due to the presence of nonlinearity. In an ideal case where fiber

nonlinearity is compensated for and perfect knowledge of the laser phase noises

is available, we expect the effective SNR to grow linearly with the channel

power when our proposed compensator is used. This is in contrast to other

existing methods, which provide a limited SNR due to the EEPN effect.

In short, we can conclude that using EEPN compensators not only increases

the maximum achievable SNR but also enables us to achieve this SNR at lower

launch powers compared to uncompensated receivers. This, in turn, allows us

to work with lower nonlinearity in the system.

Comparison to DRS

One of the recent CPE techniques proposed for subcarrier systems is DRS

[122]. DRS is designed to improve compensation for receiver phase noise

through the use of the walk-off phenomenon among different frequency sub-

channels. Specifically, DRS receives pilots at two distinct frequency channels

that experience a time delay due to the walk-off effect. This time delay causes

the pilots to be mixed with receiver phase noise at different time instances. By

comparing these pilots, DRS can extract the receiver phase noise. Although

DRS can only extract the receiver phase noise after dispersion compensation,

it has been shown to better tolerate EEPN.

The main objective of this simulation is to compare our method with the

DRS method in handling EEPN. As noted by the authors, the DRS method ne-

cessitates a minimum SNR of 18 dB for a subcarrier system with 8 subchannels
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Figure 4.13: BER performance of the system with 500 km system reach for
different baud rates.

[122]. However, as depicted in Figure 4.12, the considered long-haul system

fails to meet the minimum effective SNR across a broad range. To tackle this

issue, we reduce the system reach to 500 km and employ a 64-QAM constella-

tion. The remaining system properties remain consistent with those discussed

in Subsection 4.5.1. The DRS method is implemented for a subcarrier system

with 8 subchannels. In this simulation, we examine the BER performance for

different baud rates, as illustrated in Figure 4.13. As observed, for data rates

lower than 300 GBaud, ZFP and BPS fail to achieve the assumed raw BER.

On the other hand, DRS increases the baud rate with acceptable BER to 350

GBaud. This is while our compensators satisfy the raw BER criteria up to

420 GBaud. Although increasing the number of subchannels can enhance DRS

accuracy, it results in a higher computational burden. In summary, DRS and

our compensators can reduce the EEPN effect, while our method can work for

a wide range of SNRs and provide lower BER. As illustrated by the dashed line

in Figure 4.13, our compensators can enhance the data rate for the considered

raw BER by 20%.
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Runtime

Due to the very high data rates in fiber systems, the complexity of DSP meth-

ods is to be considered. In this simulation, we compare the complexity of

different compensators. For maximum fairness in our comparison, the com-

plexity of the prerequisite DSP blocks for each technique is also considered.

In particular, the complexity of the carrier phase recovery algorithm needed

along with each compensator is also taken into account. Table 4.2 provides the

results. These results demonstrate that our EEPN compensators offer com-

Method Md N Mr Time (ns)
ZFP - - - 36
BPS - - - 337
DRS - - - 433

Phase-Dependent Comp
5000 10 - 520
10000 14 - 528
15000 18 - 534

Pilot-Based Comp
5000 10 125 588
10000 14 250 626
15000 18 375 682

Table 4.2: The time complexity of various methods on a Core i7 CPU operating
at 2.26 GHz.

plexity comparable to existing methods, ensuring the practical implementabil-

ity of these compensators. Additionally, based on this simulation, we observe

that the phase-based compensator has lower time complexity compared to the

pilot-based EEPN compensator. This was expected based on our analysis

in Subsection 4.4.4, where we concluded that the pilot-based complexity is

determined by the update rule with more complexity required.

4.6 Conclusion

In this chapter, we first derived the output expression of an optimal EEPN-free

receiver. Subsequently, we demonstrated that this EEPN-free output could

be expressed based on the dispersion-compensated signal in a suboptimal re-

ceiver, serving as a basis for EEPN compensation. Building upon this new
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formulation, we proposed an EEPN compensator under the assumption of the

availability of the receiver phase noise. We illustrated that this compensator

can be effectively implemented using a time-varying FIR filter. Following

this, we introduced a more practical compensator that determines the FIR

filter coefficients based on a pre-known pilot, thus relaxing the requirement

for the receiver phase noise. We emphasized the practical aspects of the pro-

posed compensators by explaining the suitable design parameters for different

fiber systems and conducting a complexity analysis. Our simulations corrobo-

rated the superior performance of our compensator compared to other existing

EEPN-tolerant approaches. Notably, our compensators exhibited the ability

to enhance system reach, maximum achievable SNR, and system data rate in

comparison with existing methods for addressing EEPN.
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Chapter 5

Receiver Laser Phase Noise
Estimation with Application to
EEPN Control

5.1 Introduction

As discussed in the previous chapter, compensating for receiver laser phase

noise after dispersion compensation gives rise to EEPN, which limits system

performance [118]. Although compensation for laser phase noise and dispersion

ideally should occur in the reverse order of their occurrence [7], dispersion is

compensated for first due to practical challenges facing CPE. Practical CPEs

utilize a sequence of known symbols, referred to as pilots, to estimate and

mitigate the phase noise in the received symbol sequence. Extracting the pilots

requires compensating for dispersion first, leading to a suboptimal sequence of

compensations and the occurrence of EEPN [8]. Depending on the bandwidth

and system reach of the fiber, EEPN can severely affect system performance

[9].

CPE, as the main bottleneck causing EEPN, can be designed to control

the EEPN effects and hence enhance the system capacity. In the following, we

have a closer look into the existing CPE techniques developed for fiber optic

systems.

The fundamentals of pilot-based carrier phase estimation have been ex-

plored in various studies [68], [126], [136]. These methodologies, commonly

referred to as ZFP, aim to identify the phase mismatch between the transmit-
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ted pilot and the corresponding received symbol. Despite its straightforward

implementation, the susceptibility to noise and the limited accuracy of this

approach restrict its applications.

Incorporating a BPS after the ZFP has been shown to enhance phase es-

timation accuracy and performance [137]. BPS assumes the presence of a

slowly-varying phase noise in the received symbols; thus, it employs a symbol

detector to estimate the transmitted symbols and extracts the phase noise by

finding the phase mismatch. In a recent study [117], the authors illustrate

that using BPS can partially mitigate EEPN. Although this approach does

not require a known pilot, it necessitates the symbols to be estimated by the

receiver before the CPE. Symbol estimation, in turn, requires compensation

for dispersion beforehand leading to EEPN.

As fiber technologies evolve, CPE needs to evolve as well. Digital sub-

carrier fiber systems are among the recent developments in fiber technology,

hence CPE for digital subcarrier is needed [138], [139]. Several studies have

delved into the problem of carrier phase recovery in digital subcarrier sys-

tems [140]–[142]. However, the walk-off phenomenon among the subchannels

poses a challenge for pilot-based estimation of phase noise. In [123], it has

been demonstrated that the pilot position in the subchannels can significantly

affect CPE performance. The authors propose a pilot structure and a spe-

cialized CPE tailored to the unique properties of digital subchannel systems.

Additionally, in [122], a specific CPE for digital subcarrier systems is proposed

by considering the time delay between the two subchannels. This approach

referred to as DRS, is shown to have EEPN control capabilities. However, to

fully leverage this method, a large number of subchannels are required, which

can substantially increase the complexity of both the receiver and transmitter.

Despite advancements in CPE technology, current techniques still suffer

from the following shortcomings, which prevent the optimal sequence of com-

pensators. Existing CPEs:

I. are implemented after the dispersion compensator as they need the ex-

tracted symbols;
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II. estimate the sum of the lasers’ phase noise, making separate compen-

sation of receiver and transmitter phase noise —needed for an optimal

receiver— impossible.

In this work, we propose a new CPE technique to overcome these challenges,

allowing the implementation of a receiver with the optimal order of compen-

sating blocks and, therefore, preventing the generation of EEPN.

We design our CPE to operate with the dispersed signal without the need

for dispersion compensation. Dispersion has two important impacts on the

signal: group velocity and GVD. Group velocity causes signals with different

carrier frequencies to experience different delays, while GVD broadens the

pulse, preventing symbol extraction. In our design, we exploit the fact that

the impact of GVD on both negative and positive excess bandwidths1 is the

same. Therefore, in a differential manner, we can use these excess bandwidths

to remove the GVD impact and extract the receiver phase noise without the

need for first performing dispersion compensation.

To extract the receiver phase noise differentially, the frequency components

of the data-modulated signal at negative and positive frequencies should be the

same. While this may not hold true for all signal frequency components, we

demonstrate that the excess bandwidths at negative and positive frequencies

satisfy this condition. Furthermore, leveraging the group velocity property,

these bandwidths experience different but known delays. Consequently, after

appropriate time adjustment and filtering, the excess bandwidths at negative

and positive frequencies contain synchronized data and the same transmitter

phase noise, while the receiver laser phase noise affecting them originates from

two distinct time slots. Therefore, by extracting the phase difference between

these two signal portions, we can discern variations in receiver laser phase noise

over time. Finally, we extract the receiver laser phase noise through the cu-

mulative sum of the extracted time variations, separately from the transmitter

1By excess bandwidth, we mean the additional bandwidth beyond the symbol rate that
is allocated to a pulse shape to aid in its implementation. This excess bandwidth is governed
by a parameter known as the roll-off factor, denoted by β. For a symbol period of T , the
negative and positive excess bandwidths for a pulse are expressed as [− 1+β

2T ,− 1−β
2T ] and

[ 1−β
2T , 1+β

2T ], respectively.
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Figure 5.1: A typical fiber system structure with respect to transmitter and
receiver laser phase noise. This structure is suboptimal regarding the order of
receiver and dispersion compensation causing EEPN.

phase noise.

Expanding on this concept, we present a DSP- ready implementation of our

CPE technique. Furthermore, we illustrate the configuration of our proposed

receiver with the optimal order of compensation blocks, hence eliminating

EEPN.

Using a simulation study, we investigate the performance of our CPE under

different scenarios. Our main objectives in the simulation study are twofold:

firstly, to examine the factors influencing our CPE’s performance, including

channel bandwidth and channel quality; and secondly, to evaluate the perfor-

mance gains that our proposed receiver can offer due to the absence of EEPN.

Our results confirm performance improvements compared to existing methods

in various aspects, including system reach, effective SNR, and BER. We further

demonstrate that our CPE can accurately estimate phase even within a much

wider SNR range compared to existing methods, thus enabling its application

in a broader range of scenarios.

This chapter is structured as follows: In Section 5.2, we elucidate the

system model. Section 5.3 introduces the main idea underlying our proposed

CPE, followed by the presentation of a practical implementation. Simulation

outcomes are detailed in Section 5.4, and lastly, Section 5.5 offers concluding

remarks for this study.

5.2 System Model

In this chapter, for the ease of notation and discussions, we consider the min-

imal system required for estimating receiver laser phase noise based on the
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pulse excess bandwidth as demonstrated by Figure 5.1. However, extending

the same idea to more advanced systems is straightforward.

On the transmitter side, the data sequence is modulated with a bandlim-

ited and zero-phase pulse shape, g(t). This pulse shape satisfies the Nyquist

criterion to avoid introducing ISI [17]. For simplicity, we consider the pulse

shape filter to be implemented entirely on the transmitter side only in our for-

mulation. However, splitting the pulse shape between the transmitter and a

matched-filter receiver, as we did in the implementation and simulation, does

not interfere with our results.

The resulting baseband signal is frequency up-converted using the trans-

mitter laser. The lasers introduce phase noise to the system. We refer to the

transmitter and receiver phase noises as ϕt(t) and ϕr(t), respectively. The laser

phase noises, ϕt(t) and ϕr(t), can be modeled by a Wiener process as [143]:

ϕ(t) =

∫︂ t

−∞
n(ν)dν, (5.1)

where n is a Gaussian random process with zero mean and a variance of ∆ν/2π,

and ∆ν is the laser linewidth.

In the next step, the signal is launched into the fiber. We consider a

SSMF in which the signal propagation is governed by the nonlinear Schrödinger

equation described in (1.16) and repeated here as [88]:

δa

δz
+ j

β2

2

δ2a

δt2
+

α

2
a = jγ|a|2a. (5.2)

In this equation, a symbolizes the signal envelope traveling in the z direc-

tion. Additionally, β2, α, and γ represent GVD, attenuation, and nonlinearity

parameters, respectively.

At the receiver, the receiver laser down-converts the signal, imposing the

receiver laser phase noise, ϕr(t). It is important to note that phase noise and

fiber dispersion do not have a commutative property; hence, they should be

compensated for in the opposite order of their occurrence. However, pilot-

based CPEs require the dispersion compensator to be applied first, causing

EEPN. In [7], it is demonstrated that the power of EEPN noise can be ex-
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pressed as:

σ2
EEPN =

π2β2L∆ν

T
, (5.3)

where T denotes the symbol period and L represents the fiber length. Based

on (5.3), we can deduce that for high data rates and long system reaches,

EEPN grows significantly, thereby degrading system performance.

In this chapter, our goal is to propose a novel pilot-independent CPE ca-

pable of extracting receiver phase noise before dispersion compensation. This

CPE enables us to compensate for phase noises and dispersion in the optimal

order, avoiding EEPN.

In the subsequent sections, lowercase letters are employed to denote time-

domain signals, and their corresponding Fourier transforms are specified using

uppercase letters. Bold lowercase letters are utilized for vectors, while bold

uppercase letters indicate matrices.

5.3 Carrier Phase Recovery

In this section, we first present the main idea behind our CPE. Subsequently,

we utilize the derived expression for phase estimation to propose a DSP-ready

implementation of our CPE. Finally, we present the optimal structure based

on our CPE that should be used instead of the one depicted in Figure 5.1 to

avoid EEPN.

5.3.1 Design Principle

In this subsection, our main objective is to extract the temporal variation of

receiver laser phase noise using the pulse excess bandwidths in negative and

positive frequencies. The cumulative sum of this temporal variation will then

estimate the receiver phase noise.

As a starting step, we derive the expression of the modulated signal at the

transmitter, emphasizing the redundancy in the excess bandwidth in negative

and positive frequencies. Let us consider the discrete-time symbol sequence q

over complex numbers to be transmitted at a rate of 1/T . We can represent this

symbol sequence in a continuous time domain using the Dirac delta function
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as:

d(t) =
+∞∑︂

n=−∞

qnδ(t− nT ). (5.4)

Using the Fourier transform, the continuous frequency representation of d(t)

can be expressed as follows [144]:

(5.5)D(f) =
+∞∑︂

n=−∞

qn exp (−j2πfnT ).

It is crucial to note that D(f) is a periodic function with a period of fr = 1/T .

An example of the frequency representation of the data sequence is depicted

in Figure 5.2a. As observed, due to periodicity, the data contains the same

information over the pulse’s excess bandwidth on both negative and positive

frequencies.

To transform the data sequence into a continuous bandlimited signal, we

utilize a pulse shape represented byG(f). To meet practical considerations and

prevent introducing ISI, the pulse shape must adhere to the Nyquist criterion

[17]. Therefore, it should conform to the following model:

G(f) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, |f |< 1−β

2T

1−X
(︁

1
2T

− f
)︁
, 1−β

2T
≤ |f |< 1

2T

X
(︁
f − 1

2T

)︁
, 1

2T
≤ |f |< 1+β

2T

0, otherwise,

(5.6)

where β is the roll-off factor representing the portion of the bandwidth ded-

icated to the pulse edge, and 0 ≤ X(f) ≤ 1 is a real-valued arbitrary func-

tion. For example, in the case of the well-known raised cosine pulse, X(f) =

1
2
cos
(︂

πfT
β

)︂
. Figure 5.2b represents a raised cosine pulse with β = 0.4.

Having the data and pulse shape, the modulated signal on the transmitter

side can be obtained as:

A(f) = G(f) ·D(f), (5.7)

as depicted in Figure 5.2c for our example. As seen in this figure, we define

the following two signals representing the portions of the modulated signal in

the negative and positive excess bandwidths as:

B−(f) =

{︄
G
(︁
f − 1

2T

)︁
·D
(︁
f − 1

2T

)︁
, |f |< β

2T

0, else,
(5.8)
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Figure 5.2: Frequency representation of (a) the data sequence, (b) the pulse
shape, and (c) the modulated signal on the pulse shape. In Subfigure (a), cir-
cles A and B represent the data spectrum sections with the same information.
These sections are then multiplied by their corresponding pulse shape sections
in Subfigure (b).
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and,

B+(f) =

{︄
G
(︁
f + 1

2T

)︁
·D
(︁
f + 1

2T

)︁
, |f |< β

2T

0, else,
(5.9)

respectively. It is important to note that B− and B+ have identical phase

information. This is because, based on their definitions, B− and B+ result

from the zero-phase filter G(f) acting on the same dataD(f− 1
2T
) = D(f+ 1

2T
).

The equality stems from the periodicity of the data in the frequency domain

with a period of 1
T
, as expressed in (5.5).

Furthermore, based on B+(f) and B−(f), we can rewrite the modulated

signal, expressed in (5.7), as:

(5.10)A(f) = B−

(︃
f +

1

2T

)︃
+D(f) · rect

(︃
fT

1− β

)︃
+B+

(︃
f − 1

2T

)︃
,

where rect(f) is the rectangular function defined as:

rect(f) =

⎧⎪⎨⎪⎩
1, |f |< 0.5

0.5, |f |= 0.5

0, else.

(5.11)

Writing (5.10) in the time domain, we get:

(5.12)a(t) = b−(t) ·exp
(︃
−jπt

T

)︃
+d(t) ∗ sinc

(︃
t(1− β)

T

)︃
+b+(t) ·exp

(︃
jπt

T

)︃
.

To this point, we represented the modulated signal based on the baseband

versions of the excess bandwidth and redundancy in the transmitted signal,

as expressed by (5.12). In the next step, our goal is to investigate the effects

of the laser phase noise and dispersive fiber channel on the transmitted sig-

nal. We then derive the expression of the received signal before dispersion

compensation.

Based on Figure 5.1, the modulated signal experiences the transmitter laser

phase noise before launching into the fiber. Considering this phase noise, we

can write the transmitted signal as:

(5.13)c(t) = a(t) · exp (jϕt(t)).

Afterward, c(t) is launched into the fiber, experiencing fiber dispersion. There-

fore, the received signal can be expressed as:

(5.14)r(t) = c(t) ∗ u(t),
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where u(t) is the time impulse response of the dispersion, defined as:

(5.15)u(t) =

∫︂ 1+β
2T

− 1+β
2T

exp(2jπ2β2f
2L+ 2jπft)df.

As depicted in Figure 5.1, at the receiver, the received signal encounters the

receiver laser phase noise. Therefore, we can represent the signal before dis-

persion compensation as:

(5.16)s(t) = r(t) · exp (jϕr(t)).

To incorporate the data redundancy and account for the time delay due to

dispersion, we substitute (5.12), (5.13), and (5.14) into (5.16), resulting in:

(5.17)s(t) = s−(t) + s0(t) + s+(t),

where

(5.18)s−(t) =

(︃(︃
b−(t) · exp(jϕt(t)) · exp

(︃
−jπt

T

)︃)︃
∗ u(t)

)︃
· exp(jϕr(t)),

and,

(5.19)s0(t) =

(︃(︃(︃
d(t) ∗ sinc

(︃
t(1− β)

T

)︃)︃
· exp (jϕt(t))

)︃
∗ u(t)

)︃
· exp (jϕr(t)),

and,

(5.20)s+(t) =

(︃(︃
b+(t) · exp(jϕt(t)) · exp

(︃
jπt

T

)︃)︃
∗ u(t)

)︃
· exp(jϕr(t)).

Here, we claim that by using proper bandpass filtering, we can extract

s−(t) and s+(t). This is because the terms exp (jϕt(t)) and exp (jϕr(t)) have

negligible bandwidth compared to that of the channel. Consequently, s−(t),

s0(t), and s+(t) do not overlap in the frequency domain, thus allowing for their

separation.

The signal in the excess bandwidth, s−(t) and s+(t), can be considered as

two narrow-band signals. To show the impact of the dispersion operator on a

narrow-band signal, we introduce the following lemma:
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Lemma 1. Consider the input of the dispersion operator with the impulse

response u(t) as x(t) · exp (j2πf0t). The output y(t) can be expressed as:

(5.21 )y(t) = (x(t) ∗ u(t) ∗ δ(t− 2πβ2f0L)) · exp (j2πf0(t− πβ2f0L)).

Proof. The output of the dispersion operator is (x(t) ·exp (j2πf0t))∗u(t). It is

easy to show that the Fourier transform of (5.21) and the dispersion operator

output are the same.

Based on this lemma, we can infer that the narrow-band signals in the

excess bandwidths experience a time delay corresponding to their central fre-

quency. This can be considered as a special case of the well-known walk-off

phenomenon.

To formulate the impact of the dispersive fiber on the narrow-band signals

in the excess bandwidth, we apply Lemma 1 to (5.18) and (5.20), to obtain:

(5.22)
s−(t) =

(︃(︂
b−(t) · exp(jϕt(t))

)︂
∗ u(t) ∗ δ

(︃
t− πβ2L

T

)︃)︃
· exp(jϕr(t)) · exp

(︃
−j

π

T

(︃
t+

πβ2L

2T

)︃)︃
,

and

(5.23)
s+(t) =

(︃(︂
b+(t) · exp(jϕt(t))

)︂
∗ u(t) ∗ δ

(︃
t+

πβ2L

T

)︃)︃
· exp(jϕr(t)) · exp

(︃
j
π

T

(︃
t− πβ2L

2T

)︃)︃
.

As seen, there is a time delay and phase mismatch between (5.22) and

(5.23). In order to align the data embedded in the negative and positive

excess bandwidth, we compensate for this time and phase difference on (5.22)

and (5.23), using the following filters:

(5.24)U i
−(f) =

{︄
exp

(︂
2jπ2β2L

T
f − jπ2β2L

2T 2

)︂
, 1−β

2T
< f < 1+β

2T

0, else

and

(5.25)U i
+(f) =

{︄
exp

(︂
−2jπ2β2L

T
f + jπ2β2L

2T 2

)︂
, −1+β

2T
< f < −1−β

2T

0, else,
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respectively. Applying these filters and down-converting the results to the

baseband, s−(t) and s+(t) become:

(5.26)v−(t) =
[︂(︂

b−(t) · exp(jϕt(t))
)︂
∗ u(t)

]︂
· exp

(︃
jϕr

(︃
t+

πβ2L

T

)︃)︃
,

and

(5.27)v+(t) =
[︂(︂

b+(t) · exp(jϕt(t))
)︂
∗ u(t)

]︂
· exp

(︃
jϕr

(︃
t− πβ2L

T

)︃)︃
,

respectively.

In the final step, we demonstrate that based on the phase difference be-

tween (5.26) and (5.27), we can extract the receiver phase noise. To this

end, we utilize the fact that b−(t) and b+(t) have the same phase information.

Additionally, noting that the identical dispersion operator is acting on both

b−(t) · exp(jϕt(t)) and b+(t) · exp(jϕt(t)), we can conclude that the expressions

in brackets in (5.26) and (5.27) share the same phase. Therefore, the phase

difference between v−(t) and v+(t) is:

(5.28)

̸ v+(t)− ̸ v−(t) = ̸ v+(t) · v∗−(t)

= ϕr

(︃
t+

πβ2L

T

)︃
− ϕr

(︃
t− πβ2L

T

)︃
As seen on the right-hand side of (5.28), this expression represents the variation

of the receiver phase noise over the time interval:

Td =
2πβ2L

T
. (5.29)

It is important to note that (5.29) defines the time resolution over which the

receiver phase noise should be extracted. According to this equation, the time

resolution of the estimated receiver laser phase noise decreases for high data

rates.

To enhance the estimation robustness against system noise, we can exploit

the characteristic of laser phase noise, which behaves as a low-pass signal with

a bandwidth proportional to the laser linewidth, ∆ν. Therefore, to estimate

the temporal variation of the receiver phase noise, ∆ϕ′
r, from (5.28), we can

employ a low-pass filter as follows:

∆ϕ′
r[i] = arctan

(︂
LPF{v+[i] · v∗−[i]}

)︂
, (5.30)
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where v[i] = v (iTd), LPF represents a low-pass filter with a bandwidth equal

to or greater than the receiver laser phase noise. The arctan(·) function is

used to extract the angle of the term v+[i] · v∗−[i]. Finally, by employing the

following cumulative sum, we can extract the receiver phase noise:

(5.31)ϕ′
r[i] = ϕ′

r[i− 1] + ∆ϕ′
r[i].

For the initial receiver phase noise, we can consider any value for ϕ′
r[0] since it

only causes a constant rotation in the received symbol. This phase offset does

not cause EEPN and can be easily compensated for.

In summary, this subsection demonstrates that the excess bandwidths in

the negative and positive frequencies can be treated as two narrowband sig-

nals, each modulated with the same data as expressed in (5.18) and (5.20).

Due to their frequency difference, they undergo different time delays because

of the dispersion as shown by (5.22) and (5.23). Compensating for this time

difference results in two identical and synchronized copies of the transmitted

data corrupted with receiver phase noise at two different time slots as de-

scribed in (5.26) and (5.27). By extracting the phase difference between these

synchronized signals and utilizing a cumulative sum, expressed in (5.31), we

can extract the receiver laser phase noise, albeit subject to an ambiguity in

the initial value of the phase noise.

5.3.2 Implementation of Carrier Phase Recovery

In this subsection, building upon our derivations in the previous subsection, we

present a practical implementation of CPE applicable to DSP-based receivers.

To begin with, we explain the steps needed for receiver phase noise ex-

traction based on the signal’s excess bandwidth, as presented in Algorithm 1.

The primary input to this algorithm is the received signal before dispersion

compensation, represented as s in Figure 5.1. Subsequently, the excess band-

width on both negative and positive frequencies is extracted through bandpass

filtering, as outlined in steps 1 and 2. Following this, the dispersion-induced

time delay is compensated using filters ui
− and ui

+, with the results downcon-
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Algorithm 1 Receiver Laser Phase Noise Estimator

Input: signal s, Dispersion coefficient β2, Fiber length L, Symbol period T .
Output: Receiver Phase ϕr.
1: extract s−(t) by bandpass filter of s.
2: extract s+(t) by bandpass filter of s.
3: find v− by (s− ∗ ui

−) · exp(+jπt/T ).
4: find v+ by (s+ ∗ ui

+) · exp(−jπt/T ).
5: find ∆ϕ′

r[i] based on (5.30).
6: find ϕr[i] = ϕ′

r[i− 1] + ∆ϕ′
r[i] as expressed in (5.31).

7: return ϕr.

FIR, ℎ−

FIR, ℎ+

exp
𝑗𝜋𝑡

𝑇

conj

conj

Buffer 𝑁𝑖 ∑
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Figure 5.3: FIR-based implementation of the proposed CPE.

verted to the baseband to generate signals v− and v+. This synchronization

process occurs in steps 3 and 4. Then, the temporal receiver phase noise vari-

ation is extracted based on (5.30) in step 5. Finally, the receiver phase noise

can be extracted through a cumulative sum, as executed in step 6.

Algorithm 1 can be implemented using DSP techniques as demonstrated

by Figure 5.3. In this block diagram, FIR filters are responsible for extracting

s−(t) and s+(t). These filters are bandpass with the pass bands of [−1+β
2T

,−1−β
2T

]

and [1−β
2T

, 1+β
2T

], respectively. To avoid any phase distortion affecting the esti-

mated ϕr, we propose using FIR filters with linear phase response [145]. The

tap coefficients for these FIR implementations can be:

h−[k] =
βTs

T
sinc

(︃
βkTs

T

)︃
· exp

(︃
j2πkTs

T

)︃
, (5.32)

and

h+[k] =
βTs

T
sinc

(︃
βkTs

T

)︃
· exp

(︃
−j2πkTs

T

)︃
, (5.33)
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respectively. Here, k = −Ms/2, 1−Ms/2, . . . ,Ms/2 and Ms+1 is the number

of the filter tabs.While we use ideal filtering with sinc(·), any low-pass filtering

that is more practical for implementation can be used instead.

After down-converting the FIR filter outputs to generate v− and v+, the

time delay of Td is applied. To preserve causality within the system, the entire

delay is allocated to the v− path. This adjustment of time delay also results

in a Td/2 delay in the estimated phase.

The FIR implementation of Td can require a large FIR size depending on

the accumulated dispersion value. To reduce complexity, we suggest dividing

the required delay, Td, into an integer multiple of the sampling period, Ts, and

a residual non-integer delay. Consequently, we obtain:

Td = NiTs +NrTs, (5.34)

where Ni = ⌊Td

Ts
⌋ represents the integer part and Nr =

Td

Ts
−Ni represents

the fractional part of the delay. The time delay equivalent to NiTs can be

efficiently implemented using a straightforward buffer of size Ni. Conversely,

the fractional delay of NrTs can be implemented using an interpolation filter,

with the coefficients being:

hd =
βTs

T
sinc

(︃
βkTs

T
− βNrTs

T

)︃
. (5.35)

After the time delay block, the data and the phase noise transmitted

through the negative and positive excess bandwidths are synchronized. Sub-

sequently, we apply a conjugation operator and find the product of the two

paths. By low pass filtering of the result and using the arctan function, we

can extract the temporal variation of the receiver phase noise expressed in

(5.30). Finally, a cumulative sum is implemented in accordance with (5.31).

It is important to note that the downsampler by a factor of Td/Ts is employed

to implement (5.30) with a time resolution of Td. Subsequently, we upsample

the result of the cumulative sum to match the sampling rate of the estimated

receiver phase noise with the signal sampling rate.
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Figure 5.4: Receiver structure proposed based on the receiver laser phase noise
estimation avoiding EEPN.

5.3.3 Optimal Receiver Structure

Our proposed CPE enables the implementation of the optimal receiver struc-

ture, as illustrated in Figure 5.4. The optimal arrangement of receiver laser

phase noise, dispersion, and transmitter laser phase noise in this structure ef-

fectively prevents the generation of EEPN. Our CPE is implemented after the

time recovery block and before the dispersion compensator. Compensating

for timing errors before our proposed CPE is essential since they can cause a

drift in the cumulative sum result. A suitable timing recovery block for this

implementation could be the Gardner [60] or Godard [59] techniques. It is

important to note that these techniques are also pilot-independent, making

them readily implementable before dispersion compensation.

Before entering the dispersion compensator, receiver phase noise is esti-

mated and compensated by our proposed CPE. As seen in Figure 5.4, a delay

of Td/2 is required to adjust the signal with the estimated receiver laser phase

noise.

As mentioned earlier, our CPE can estimate the receiver phase noise up to

a constant phase offset, which is due to the initial value for the cumulative sum.

A constant receiver phase offset cannot cause EEPN since it has a commutative

property with the dispersion convolution operator. In other words, this offset
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can be compensated jointly with the transmitter phase noise after dispersion

compensation.

After the dispersion compensator, a pilot-based CPE is employed to mit-

igate transmitter phase noise and the offset of the receiver phase noise. Fur-

thermore, this pilot CPE can correct any unwanted drift or error in receiver

phase noise estimation.

5.4 Results and Discussion

To assess the performance of our proposed CPE, we conduct an extensive sim-

ulation study. For comparison, we included well-known CPE techniques such

as ZFP [68], [126], [136] compensator, BPS [117], [137], and DRS[122], [123]

phase estimator. While ZFP is optimal for phase recovery in nondispersive

channels when perfect knowledge of laser phases is available, it causes EEPN

in dispersive channels. Conversely, BPS and DRS are tailored to handle dis-

persive channels and mitigate the EEPN effect. Although DRS outperforms

BPS, it requires higher signal quality for convergence.

In the subsequent simulation results, we denote our CPE technique as

RCPE, short for receiver carrier phase estimator. Our simulation focuses on

two primary objectives: determining the minimum requirements for accept-

able accuracy of our CPE and evaluating the performance gain resulting from

avoiding EEPN generation based on our CPE.

5.4.1 Simulation Setup

As our primary configuration, we consider a dual polarization fiber system of

length 2000 km and with 5 WDM channels. This specific setup has been used

in numerous recent studies to investigate the effects of EEPN on fiber systems

[121]–[123].

On the transmitter side, a random bit sequence of size 224 is generated and

mapped to the 16-QAM constellation using Gray labeling. These symbols are

then modulated onto a root-raised cosine pulse shape with a roll-off factor of

β = 0.1 and a symbol duration of T = 5 × 10−12 seconds, unless otherwise
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specified. Therefore, the system baud rate is set to 200 GBaud. We consider

a channel spacing of 5 GHz between adjacent channels. Subsequently, the

different WDM channels are upconverted to their respective frequency slots

and launched into the fiber by a laser with a linewidth of ∆ν = 200 kHz, which

can be modeled as a Wiener process expressed in (5.1). For all simulations,

the channel power is set to maximize the effective SNR.

In this study, we consider a typical single mode fiber with the following

parameters: β2 = −20× 10−27 s2/m, γ = 0.013 (mW)−1, and α = 0.2 dB/km,

operating at a wavelength of 1550 nm. The fiber length is divided into 100 km

spans, each equipped with an EDFA with a noise figure of 5 dB to compensate

for the fiber loss. To simulate this fiber, we employ the SSFM to solve NLSE

expressed in (5.2). The step size for SSFM is set to 50 m to ensure accurate

results.

On the receiver side, we begin by downconverting the received light pulses

using the receiver laser, which introduces receiver laser phase noise mirroring

that of the transmitter side. For ZFP, BPS, and DRS, our process involves

initial dispersion compensation, symbol extraction through matched filtering,

and subsequent estimation and mitigation of combined phase noises. This

receiver structure is depicted in Figure 5.1. In contrast, our proposed CPE

initiates by estimating and compensating for receiver phase noise, followed by

dispersion compensation. Eventually, the transmitter phase noise is addressed

through pilot-based ZFP. All the reported results pertain to the central channel

on the x-polarization.

While the aforementioned long-haul fiber system is suitable for EEPN stud-

ies, it fails to meet the minimum required SNR for the DRS technique. As

outlined in [122], an SNR of at least 18 dB is necessary for DRS to yield ac-

curate estimations. Therefore, we introduce a second short-reach system with

high bandwidth to surpass this threshold. In this system, we maintain the

same parameters as those mentioned for the long-haul system, except for the

fiber length, reduced to 500 km, and the channel bandwidth increased to 400

GBaud. Additionally, we employ 64-QAM to elevate the system data rate for

this channel.
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5.4.2 Simulation Results

In this subsection, we begin by examining the minimum signal requirements

necessary for an accurate receiver phase noise estimation using our CPE tech-

nique. We then proceed to study the performance improvement achieved by

mitigating EEPN. Our investigation focuses on evaluating the system perfor-

mance concerning key factors influencing EEPN, including baud rate, system

reach, and laser linewidth, as suggested by (5.3). To establish a baseline for

BER comparison, we assume that a raw BER of 0.007 is necessary for the

forward error correction code. A practical implementation of such a code is

outlined in [135] based on staircase coding with 9% overhead.

Minimum SNR for Accurate Estimation

Similar to other phase estimation techniques, our CPE also requires a mini-

mum SNR to ensure acceptable phase estimation results. We utilize the mean

squared error (MSE) between the estimated receiver phase, ϕ′
r, and the actual

phase, ϕr, as a metric for assessing the accuracy of phase estimation. The

MSE is defined as follows:

MSE =
1

N

N∑︂
i=1

(︂
ϕ′
r[i]− ϕr[i]

)︂2
, (5.36)

where N is the number of the estimated phase noise samples. Based on our

observations, we have chosen an MSE of 0.1 rad2 as the minimum accuracy

required for receiver phase noise estimation to control EEPN.

In this simulation, we determine the minimum SNR required for our pro-

posed CPE to achieve phase estimation with MSE = 0.1 rad2 across differ-

ent pulse excess bandwidths. Table 5.1 presents the results. This simulation

demonstrates that our CPE can achieve the specified minimum MSE with very

β 0.05 0.1 0.15 0.2 0.25 0.3
Minimum SNR (dB) 0.5 −0.5 −1 −1.5 −2.5 −4

Table 5.1: Minimum SNR required for our CPE to result in a phase estimation
with MSE = 0.1 rad2.
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Figure 5.5: MSE performance of the phase noise estimation based on our
proposed CPE versus laser linewidth.

low SNR values. Additionally, our CPE can estimate receiver phase noise even

for cases with very small roll-off factors, such as β = 0.05. However, increasing

the roll-off factor can decrease the minimum required SNR. This is because,

as the excess bandwidth increases, more information becomes available to our

CPE, resulting in expected performance improvements.

Impact of Laser Linewidth on Estimation Accuracy

Large laser linewidth causes rapid variations in phase noise in the time domain,

making estimation challenging. The time resolution of our CPE is determined

by the channel baud rate, as indicated in (5.29). Therefore, for high laser

linewidths, we anticipate a reduction in phase estimation accuracy due to the

maximum achievable time resolution. In this simulation, we examine the MSE

of the estimated phase noise for different laser linewidths. Figure 5.5 illustrates

the results. As observed, our CPE suffers from a higher MSE for larger laser

linewidths. Furthermore, the MSE for channels with higher baud rates is larger

than for channels with smaller baud rates, as expected. Therefore, in cases

with high laser linewidths, it is desirable to use a smaller channel baud rate

to provide more time resolution for phase estimation using our CPE.

In summary, in this simulation, we found that MSE increases with laser
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Figure 5.6: BER performance of the receivers based on different CPEs versus
the channel baud rates.

linewidth due to the limited time resolution of the proposed CPE. Reducing

the channel baud rate can enhance CPE estimation accuracy by increasing the

time resolution for higher laser linewidths.

Impact of Channel Baud Rate

According to (5.3), EEPN noise power increases proportional to the baud rate,

making EEPN one of the main limiting factors for increasing the system baud

rate. Additionally, as per (5.29), the high baud rate reduces the time resolution

of our proposed CPE. To assess the impact of the channel baud rate on system

performance and our CPE’s ability to mitigate EEPN generation, we calculate

the BER performance for different baud rates, as shown in Figure 5.6. As

observed, for small baud rates where EEPN is not a limiting factor, very low

BER can be achieved. However, increasing the channel baud rate increases

the BER not only due to EEPN but also because of nonlinear interference

noise. In this simulation, ideal ZFP and BPS can achieve the target BER

criteria up to 200 GBaud and 275 GBaud, respectively, while our proposed

CPE extends the acceptable baud rate to 375 GBaud. Furthermore, we confirm

that throughout the bandwidth range studied in this simulation, our CPE

meets the MSE requirements, even for 600 GBaud, indicating that the time
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Figure 5.7: BER performance of the receivers based on different CPEs versus
the combined laser linewidths.

resolution is sufficient.

Impact of Laser Linewidth

According to (5.3), EEPN noise power scales linearly with laser linewidth.

Therefore, systems with higher laser linewidths experience more performance

degradation due to EEPN. Here, we investigate the impact of laser linewidth

on the BER performance of systems employing different CPEs. Figure 5.7

illustrates the results. As seen, the ideal ZFP is the most sensitive technique

to laser linewidth, yet it can withstand combined laser linewidths of up to 450

kHz. In contrast, BPS method extends the acceptable laser linewidth to 600

kHz by partially mitigating the effects of EEPN. Notably, our proposed CPE

significantly enhances system tolerance against laser linewidth, allowing for

operation with combined linewidths of up to 780 kHz while meeting the target

BER. It’s crucial to acknowledge that laser phase noise acts as a detrimental

source of noise within the system, and even with correct compensation, it can

degrade system performance.

In summary, our CPE enables an increase in the acceptable combined laser

linewidth by 30% compared to other proposed methods for EEPN control.
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Figure 5.8: BER performance for different system reaches

System Reach

According to (5.3), EEPN power increases linearly with the system reach.

Therefore, as we extend the system reach, we anticipate degradation in system

performance due to EEPN. In this simulation, we examine the performance

improvements achieved by employing our CPE to mitigate EEPN across vari-

ous system reaches. Figure 5.8 illustrates the corresponding BER performance

for different system reaches. Observations indicate that the ideal ZFP method

can maintain the assumed raw BER up to 1900 km, while the BPS technique

extends the system reach to 2250 km by partially mitigating the effects of

EEPN. Conversely, our CPE technique enhances the system reach to 2750 km

by avoiding EEPN generation.

In summary, utilizing our CPE technique, we can increase the system reach

by 22% in this system setup while guaranteeing the target BER.

Impact of Launch Power

The launch power into the fiber directly determines the operating region of

the fiber. In this simulation, we calculate the effective SNR of the fiber system

for various launch powers to investigate the effect of EEPN on different op-

erating regions. Figure 5.9 illustrates the results. Observations indicate that
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Figure 5.9: Effective SNR for different launch power.

for the considered system setup, the maximum achievable SNR is lower than

the minimum threshold for DRS, which is 18 dB. Our proposed CPE method

enhances the effective SNR in both linear and optimal regions by avoiding

EEPN generation.

The performance gain is particularly pronounced in the optimal region.

Compared to the ideal ZFP method, our CPE technique can enhance the

maximum effective SNR by 1.1 dB. Furthermore, we observe that the optimal

launch power is shifted to a lower value for our CPE compared to other meth-

ods by 0.5 dB. This effect can be explained based on the derived expression

for the optimal launch power in [71] as:

Popt =
3

√︄
Plin

2η
, (5.37)

where Plin represents the linear noise power, ASE noise and EEPN, and η is a

constant. Consequently, decreasing the linear noise power will shift the optimal

launch power towards lower values. This adjustment effectively diminishes

nonlinearity within the system.
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Figure 5.10: BER performance of the receivers based on different CPEs versus
the channel baud rates in a short-reach system.

Comparison to DRS on Short-Reach Systems

As discussed in Simulation 5.4.2, the long-haul system considered does not

meet the minimum required SNR for the DRS technique. DRS shows promise

for phase estimation in digital subcarrier systems, leveraging two known pilot

sequences in different subchannels. This technique extracts receiver phase

noise based on the time difference between the arrival of pilots on different

subchannels. However, since DRS requires symbols to be extracted, receiver

phase noise is not available before the dispersion compensator, making optimal

compensation order impossible.

Nevertheless, DRS can enhance phase estimation in digital subcarrier sys-

tems. In [123], it is shown that DRS offers benefits in terms of EEPN when

subchannel bandwidth is small. In this simulation, we investigate the perfor-

mance of different CPEs in a short-reach system where the minimum SNR of

18 dB is met. For DRS, we implement 8 subchannels with pilots transmitted

on the side subchannels. Figure 5.10 illustrates the results. Observations show

that while DRS effectively mitigates the EEPN effect for low baud rates, its

performance diminishes with an increase in channel baud rate. Conversely,

our CPE technique outperforms existing methods across both low and high
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baud rates. It is worth noting that increasing the number of subchannels in

DRS can enhance EEPN mitigation for high baud rate channels; however, this

also increases complexity, which may not be feasible in all applications.

In summary, compared to DRS, our CPE requires significantly lower SNRs

for accurate receiver phase estimation. Furthermore, unlike DRS, our CPE

can extract receiver phase noise before dispersion compensation, allowing for

the optimal compensation order. As observed in this simulation, our CPE can

increase the system baud rate by 15% compared to DRS for the same raw

BER in a short-reach system.

5.5 Conclusion

In a fiber system, compensation for receiver laser phase noise, dispersion, and

transmitter laser phase noise should ideally occur in the inverse order of their

occurrence. However, practical limitations in phase estimation have forced

existing receivers to estimate and mitigate receiver phase noise combined with

transmitter phase after dispersion compensation. This suboptimal order in-

troduces EEPN, degrading system performance, especially for high baud rates

over long reaches. In this chapter, we addressed the problem of receiver phase

noise estimation before dispersion compensation, allowing for the optimal or-

der of compensators. Leveraging the fact that the signal excess bandwidth

is modulated with the same data but experiences different time delays due to

the dispersive fiber channel, we extracted receiver phase noise variation in time

after proper signal processing. Based on this approach, we proposed a DSP-

ready implementation applicable to modern fiber receivers. We then conducted

a simulation study to validate our designed CPE. The results demonstrated

that our CPE requires very low SNR for accurate estimation of receiver phase

noise compared to existing methods. Furthermore, our CPE enhanced system

performance in various aspects, such as system reach, optimal channel power,

and baud rate, by avoiding the generation of EEPN.
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Chapter 6

Summary and Future Work

6.1 Summary

The growing popularity of data-hungry applications, such as video streaming,

virtual reality, and generative artificial intelligence, raises concerns about the

future capacity of communication infrastructure [146]. Therefore, fiber optics,

as the backbone of high-capacity communication systems, is subjected to ex-

tensive research investigation to meet future data demands [2], [147]. This

research is mainly directed towards designing sophisticated signal processing

algorithms that enhance receiver/transmitter compatibility with fiber channel

impairments.

Fiber channel capacity is mainly limited due to Kerr nonlinearity effects

[23], [25]. As reviewed in Chapter 1, Kerr nonlinearity occurs because of the

power dependency of the silica refractive index. This phenomenon results in a

series of impairments, including SPM, XPM, and FWM. Although the mech-

anisms of these impairments are known, their interaction with fiber dispersion

causes unknown effects. Therefore, reducing NLIN – as a result of Kerr non-

linearity – is of great importance.

In Chapter 2, we showed that NLIN power is a function of power variations.

Therefore, one could minimize the NLIN power by reducing power fluctuations.

We then developed a framework that pairs the constellations transmitted in

different subchannels of a digital subcarrier system to reduce the nonlinearity

impact. We showed an example of this framework based on the 16-QAM

constellation. Although pairing the constellations reduces the entropy, we
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analytically showed that by increasing the number of paired constellations, one

can easily approach the unpaired system while gaining nonlinearity benefits.

In Chapter 3, we focused on the pulse PSD as another factor impacting

NLIN. Based on the GN model, the PSD of the pulse launched into the system

determines the NLIN power. Therefore, pulse PSD can be designed to mini-

mize system nonlinearity. To this end, we formulated the NLIN as a function

of a general pulse model subject to classical communication requirements such

as zero-ISI and band limitation. We then established an optimization problem

to find the optimal pulse shape. The resulting pulse improved different aspects

of system performance, including system reach and maximum achievable SNR.

Another degradation in fiber systems is due to the suboptimality of trans-

mitters and receivers imposed by practical considerations. One of the main

challenges in existing receivers is EEPN. EEPN is caused by the suboptimal

order of the receiver phase noise compensator and dispersion compensator.

While in an ideal receiver, the dispersion compensator should be implemented

after receiver laser phase noise compensation, phase noise estimation is only

possible after dispersion compensation due to the required pilots. EEPN power

grows with data rate and system reach, making it hard to achieve high data

rates over long distances.

To overcome the challenge of EEPN, in Chapter 4, we proposed a new

formulation of EEPN that enabled us to compensate for it in the output of

a suboptimal receiver. This compensator requires the receiver laser phase

noise to be distinguished from the transmitter laser phase noise. Based on the

availability of the receiver laser phase noise, we proposed two DSP-ready im-

plementations of our compensator. We showed that this compensator can be

implemented based on a simple time-variant FIR filter. We performed a com-

plexity analysis and showed that our compensator’s complexity is comparable

to that of the existing CPEs.

As another solution to EEPN, in Chapter 5, we designed a new CPE ca-

pable of (I) extracting the receiver laser phase noise before dispersion and (II)

distinguishing it from the transmitter laser phase noise. These two properties

allowed the optimal sequence of compensators to avoid EEPN. Our proposed
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CPE was based on the fact that pulse excess bandwidth on the positive and

negative frequencies is modulated with the same information while undergo-

ing different delays because of fiber dispersion. Therefore, after proper signal

processing, we could extract the impacting receiver laser phase noise tem-

poral variations by observing the positive and negative excess bandwidths.

Based on this idea, we developed a DSP-ready implementation of our CPE.

Our CPE exhibits very robust performance compared to existing methods for

phase estimation. Our techniques for EEPN control enhance the overall system

performance, including system reach and baud rate.

6.2 Future Work

6.2.1 Operator-based Parallel Digital Backpropagation
in Fiber Optics

In the first part of this thesis, we focused on controlling the fiber nonlinearity.

As discussed, reducing fiber nonlinearity can effectively increase fiber capacity.

Whenever the neighboring channels in a WDM system are available, one of the

most effective methods to compensate for fiber nonlinearity is the wide-band

digital backpropagation (DBP). Unfortunately, the computational complexity

of DBP makes its practical application challenging [92]. Therefore, reducing

the complexity of DBP can be considered another practical solution to mitigate

fiber nonlinearity.

In DBP, received signals propagate in an imaginary fiber with parameters

of opposite sign to reverse the fiber effects on the propagated pulses [92]. An

optical fiber with a negative nonlinear parameter is not physically realizable.

Therefore, DBP simulates such an optical fiber by considering the NLSE [26].

There are two main types of NLSE known as the regular NLSE and the cou-

pled NLSE [89]. The regular NLSE can deal with all intra and inter-channel

impairments if all the WDM channels are available as an ultra-wideband sig-

nal. Unfortunately, working with such a wideband signal in real-time exceeds

today’s processing capabilities. On the other hand, the coupled NLSE works

on the baseband channels separately but only compensates for XPM [90]. De-
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spite its lower accuracy compared to the regular NLSE, the coupled NLSE

allows us to distribute the complexity of the compensation method among

parallel processors. Although parallelization of DBP is a practical solution to

its complexity challenges, existing parallel DBP implementations are based on

the coupled NLSE, which cannot consider FWM.

As a future work regarding fiber nonlinearity, we propose a new parallel

DBP scheme based on the regular NLSE, capable of compensating for any

fiber impairments, including FWM. In this approach, one can still use the

regular NLSE and focus on parallelizing the NLSE solver instead of using the

coupled NLSE. It can be shown that the linear operator is equivalent to an

ordinary differential equation in which we can easily treat the WDM channels

separately. However, in the nonlinear operator, a WDM channel can affect

its neighbor channels. Performing this operator in parallel requires computing

many new terms, which may question the idea of reducing DBP complexity.

Therefore, deriving these terms mathematically and effectively handling them

is of great importance.

6.2.2 Constellation Design to Combat Equalization En-
hanced Phase Noise

Constellation shaping is a promising approach in fiber optics to enhance system

performance. For instance, in [148], authors develop a constellation to enhance

fiber nonlinear behavior based on the EGN model. Additionally, kurtosis-

limited constellations [84], constant composition distribution matching [149],

and constant power constellation grouping [100] methods are proposed to miti-

gate nonlinearity in the system. While the existing focus of constellation design

has primarily been on mitigating nonlinearity, EEPN control has received less

attention.

As a future work regarding EEPN, we propose designing constellations

that mitigate the impact of EEPN on the system. Existing models reveal

the non-circular symmetry of EEPN-induced noise, with the phase component

dominant for high-power symbols [117]. One can build upon existing models

for EEPN-induced noise to develop a metric for constellation symbol error rate.
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By utilizing the proposed metric, we can design EEPN-aware constellations

tailored for fiber systems. Essentially, these constellations should offer an

extended phase direction distance for points with higher energy compared to

lower energy symbols to reduce the symbol error rate.
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Appendix A

Constant Power Constellation
Grouping

A.1 Mean of Accumulated Power

Accepting the accumulated power model in (2.7), we can find the mean of the

accumulated power as:

µ = E{P (t0)}

=
N∑︂
i=1

Emi,τi{|Ai(t0 − τi)|2}

=
N∑︂
i=1

(︃ q∑︂
k=−q

Emi,τi

{︂
|mik|2g2(t− τi − kT

}︂
+ 2

q∑︂
k0=−q

q∑︂
k1=k0+1

Emi,τi

{︂
Re{mik0m

∗
ik1
} × g(t− τi − k0T )g(t− τi − k1T )

}︂)︃

= N

(︄
q∑︂

k=−q

Eτ

{︂
g2(t− τ − kT )

}︂)︄
,

(A.1)

where τ and τi are uniform random variables in the interval of [0, T ), rep-

resenting the initial launched time delay. Furthermore, we assume the pulse

shape, g(t), is non-zero in [−qT, qT ]. Therefore:

µ = N

(︄
q∑︂

k=−q

∫︂ T

0

1

T
g2(t− kT )dt

)︄
. (A.2)
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In the derivation of the mean, we assume the symbols, mik, are symmetrically

distributed and have the following properties:

E{|mik|2} = 1,

E{mik} = 0. (A.3)

A.2 Variance of Accumulated Power

Based on the signal model in (2.6), variance of the power in channel i can be

found as:

V ar{Pi(t0)}

= E{Pi(t0)
2} −

(︃
E{Pi(t0)}

)︃2

= E

{︃(︂ q∑︂
k=−q

|mik|2g2(t− τi − kT )

+ 2

q∑︂
k0=−q

q∑︂
k1=k0+1

Re{mik0m
∗
ik1
} × g(t− τi − k0T )g(t− τi − k1T )

)︂2}︃
− µ2

i

= ζi

q∑︂
k=−q

E{g4(t−τi−kT )}+2

q∑︂
k0=−q

q∑︂
k1=k0+1

E{g2(t−τi−k0T )g
2(t−τi−k1T )}

+4

q∑︂
k0=−q

q∑︂
k1=k0+1

E{Re2{mik0m
∗
ik1
}×g2(t− τi−k0T )g

2(t− τi−k1T )}−µ2
i ,

(A.4)

where ζi = E{|mi|4} and µi = E{Pi(t0)} and the pulse shape, g(t), is non-zero

in [−qT, qT ]. Given the fact that used, designed constellations are symmetric

with power 1, we can show that:

(A.5)Re2{mik0m
∗
ik1
} =

1

2
.

Therefore, accumulated power variance, σ2, for N channels can be expressed

as:

(A.6)

σ2 = ζN

q∑︂
k=−q

∫︂ T

0

1

T
g4(t− kT )dt

+ 4N

q∑︂
k0=−q

q∑︂
k1=k0+1

∫︂ T

0

1

T
g2(t− k0T )g

2(t− k1T )dt−
µ2

N
,
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where ζ = E{ 1
N

∑︁N
i=1|mi|4} and µ is the accumulated power mean defined in

(A.2).

A.3 Auto-correlation of Accumulated Power

Assuming accumulated power satisfies wide-sense stationary (WSS) condition,

we can find the auto-correlation as:

(A.7)

R(l) =
N∑︂
i=1

(︃
E

{︃(︂
Pi(t− τi)− µi

)︂(︂
Pi(t− τi − l)− µi

)︂∗}︃)︃
= ζN

q∑︂
k=−q

Eτi

{︂
g2(t− τ − kT )g2(t− τ − l − kT )

}︂
+

q∑︂
k0=−q

q∑︂
k1=k0+1

Eτ

{︃(︂
g(t− τ − k0T )g(t− τ − l − k1T )

+ g(t− τ − k1T )g(t− τ − l − k0T )
)︂2}︃

− µ2

N
.

Since τ and τi are uniform random variables in the interval of [0, T ) modeling

channels’ initial launched time, we can simplify (A.7) as:

(A.8)

R(l) = ζN

q∑︂
k=−q

∫︂ T

0

1

T
g2(t− kT )g2(t− l − kT )dt

+

q∑︂
k0=−q

q∑︂
k1=k0+1

∫︂ T

0

1

T

(︂
g(t− k0T )g(t− l − k1T )

+ g(t− k1T )g(t− l − k0T )
)︂2
dt− µ2

N
,

where µ is the accumulated power mean (A.1) and the pulse shape, g(t), is

non-zero in [−qT, qT ].

A.4 Entropy for a Different Power Level

Let us say we are going to generate the power level of N−M+
∑︁M

i=1|xi|2 using

N paired constellations, where
∑︁M

i=1|xi|2 is a realizable power level using M

constellations. We further assume the entropy of generating the power level of∑︁M
i=1|xi|2 using M constellations is h. Then, for generating the desired power
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level it is enough to generate the power level of
∑︁M

i=1|xi|2 using the first M

constellations and generate N − M power level using the N − M remained

constellations. In this case for total entropy, we have:

(A.9)

H(X1, X2, · · · , XN

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2 = N −M +
M∑︂
i=1

|xi|2) =

H(X1, X2, · · · , XM

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2 =
M∑︂
i=1

|xi|2) +

H(XM+1, XM+2, · · · , XN

⃓⃓⃓⃓ N∑︂
i=1

|Xi|2 = N −M) =

h+ (N −M)η,

where we use (2.29) to find the entropy of the constellations with the second

power level. Calculating the entropy per channel,(2.25), yields the following

for this system:

Hp(N) =
h+ (N −M)η

N
. (A.10)

For large N , we have limN→∞HP = η. Therefore, creating any realizable

power level using countable constellations results in entropy of Nη.
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Appendix B

Optimal Power Spectral Density

B.1 Band-limited Optimal Pulse

In this appendix, we demonstrate that (3.18) minimizes (3.11) subject to

(3.12). To start, substituding (3.15) into (3.11), we have:

(B.1)

PNLIN =
16

27
γ2L2

effP
3
g

N/2∑︂
i1=−N/2

N/2∑︂
i2=−N/2

N/2∑︂
i3=−N/2

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞(︃
U2(f1 − i1f0) +

T

1 + β
− T

1 + β

∫︂ +∞

−∞
U2(f3)df3

)︃
(︃
U2(f2 − i2f0) +

T

1 + β
− T

1 + β

∫︂ +∞

−∞
U2(f4)df4

)︃
(︃
U2(f1 + f2 − f − i3f0) +

T

1 + β
− T

1 + β

∫︂ +∞

−∞
U2(f5)df5

)︃
(︃
U2(f) +

T

1 + β
− T

1 + β

∫︂ +∞

−∞
U2(f6)df6

)︃
ρ(f1, f2, f)χ(f1, f2, f)df1df2df.
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Upon substituting (3.16) into (B.1) and applying the criterion described in

(3.17), we can write:

δ

δϵ
PNLIN

⃓⃓⃓
ϵ =0

=

16

27
γ2L2

effP
3
g

N/2∑︂
i1=−N/2

N/2∑︂
i2=−N/2

N/2∑︂
i3=−N/2

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞(︄
Uopt(f1 − i1f0)η(f1 − i1f0)− T

1+β

∫︁ +∞
−∞ Uopt(f3)η(f3)df3

Uopt(f1 − i1f0) +
T

1+β
− T

1+β

∫︁ +∞
−∞ Uopt(f3)df3

+

Uopt(f2 − i2f0)η(f2 − i2f0)− T
1+β

∫︁ +∞
−∞ Uopt(f4)η(f4)df4

Uopt(f2 − i2f0) +
T

1+β
− T

1+β

∫︁ +∞
−∞ Uopt(f4)df4

+

Uopt(f
′)η(f ′)− T

1+β

∫︁ +∞
−∞ Uopt(f5)η(f5)df5

Uopt(f ′) + T
1+β

− T
1+β

∫︁ +∞
−∞ Uopt(f5)df5

+

Uopt(f)η(f)− T
1+β

∫︁ +∞
−∞ Uoptη(f6)df6

(Uopt(f) +
T

1+β
− T

1+β
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−∞ Uopt(f6)df6
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(︃
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T

1 + β
− T

1 + β

∫︂ +∞

−∞
Uopt(f3)df3

)︃
(︃
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1 + β
− T

1 + β
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1 + β
− T
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Uopt(f5)df5

)︃
(︃
Uopt(f) +
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1 + β
− T
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Uopt(f6)df6

)︃
ρ(f1, f2, f)χ(f1, f2, f)df1df2df,

(B.2)

where f ′ = f1 + f2 − f − i3f0 is defined to save room. Clearly to make (B.2)

equal to 0 for any η(f), it is enough to have:

Uopt(f) = 0. (B.3)

Please note that we utilize the fact that due to the dense WDM assumption,

f0 = (1 + β)/T , shifted versions of Uopt(f) by integer multiples of f0 span the

entire interval over which the integral is defined. By substituting Uopt(f) into

(3.15), we have:

Gopt(f) =
T

1 + β
for |f |< 1 + β

2T
, (B.4)

and thus (3.18) is the functional that minimizes (3.11).
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B.2 Band-limited Zero-ISI Pulse with Fast De-

cay Model

In this appendix, we show that to avoid unbounded ISI error the condition in

(3.22) is enough. To guarantee a bounded ISI error in case of timing jitter, we

should have:

|g(t)| ≤ λT

πt
. (B.5)

Applying this condition on (3.20) we have:⃓⃓⃓⃓
⃓sin

(︃
πt

T

)︃
.

∫︂ β
2T

0

X(f)cos(2πft)df

⃓⃓⃓⃓
⃓ ≤ λ. (B.6)

Starting from the left side of (B.6), we have:

(B.7)

⃓⃓⃓⃓
⃓sin

(︃
πt

T

)︃
.

∫︂ β
2T

0

X(f)cos(2πft)df

⃓⃓⃓⃓
⃓

≤

⃓⃓⃓⃓
⃓
∫︂ β

2T

0

X(f)cos(2πft)df

⃓⃓⃓⃓
⃓

≤
∫︂ β

2T

0

|X(f)cos(2πft)| df

≤
∫︂ β

2T

0

|X(f)| df

≤ λ,

where the last inequality holds true because of the condition (3.22). Therefore,

condition (3.22) is enough to guarantee the bounded ISI error in case of timing

jitter.

B.3 Numerical Values for the Optimal Pulse

Shape

To produce the optimal pulse shape, one can solve the optimization problem

expressed in (3.27). Table B.1 and Table B.2 provide the results for Xopt(f) for

some values of β considering a typical 3000 km fiber with parameters expressed

in Subsection 3.5.1. In all cases λ = 2. By inserting these values in (3.20), we

can calculate Gopt(f).
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j β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5
1 −13.916 −1.754 −1.201 −5.436 −0.043
2 −4.878 −2.771 −1.687 −6.820 −0.114
3 −9.890 −2.322 −0.956 −2.437 −0.235
4 −6.455 −0.386 −1.886 1.189 −0.092
5 −10.746 −2.458 −1.209 3.288 −0.090
6 −9.623 −3.235 −1.605 1.952 −0.231
7 −9.699 −1.244 −1.647 0.510 −0.221
8 −19.952 −1.593 −0.984 −0.680 −0.174
9 −16.603 −2.903 −1.971 −1.516 −0.401
10 −24.246 −3.075 −1.508 −1.765 −0.467
11 −22.904 −4.143 −4.014 −1.648 −0.663
12 −27.822 −10.427 −4.843 −1.358 −0.697
13 −30.003 −11.456 −7.426 −2.676 −0.823
14 −29.000 −21.877 −10.945 −5.249 −1.411
15 −19.674 −40.433 −19.315 −7.842 −2.108
16 −9.040 −43.607 −55.380 −12.459 −7.082
17 3.304 −46.047 −16.757 −40.406 −7.926
18 36.981 −0.270 −0.000 −16.648 −42.026
19 182.313 −0.000 −0.000 −0.000 −15.196
20 441.852 400.000 266.667 200.000 160.000

Table B.1: Numerical values for the optima Xj(f) and β = 0.1 to 0.5
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j β = 0.6 β = 0.7 β = 0.8 β = 0.9 β = 1
1 2.032 −1.052 0.525 −0.516 −0.000
2 3.034 −0.000 0.000 −0.000 −0.001
3 1.157 −0.000 0.000 0.621 0.001
4 0.000 −0.000 0.000 0.473 −0.001
5 0.000 0.000 −0.000 −0.001 −0.000
6 0.000 0.000 −1.381 −0.706 0.002
7 0.000 2.333 −1.094 −0.798 −0.004
8 0.000 1.328 −0.000 0.000 0.002
9 0.000 0.000 2.704 1.905 0.001
10 −0.000 0.000 0.000 0.183 −0.001
11 −0.000 0.000 0.000 −0.607 −0.002
12 −0.000 0.000 0.790 −1.180 0.003
13 −3.530 −0.000 0.000 −2.686 −0.000
14 −7.059 −0.000 0.000 3.211 0.001
15 −6.077 −0.000 −0.000 4.461 −0.011
16 −5.261 −5.788 −0.000 −2.759 0.036
17 −19.584 −6.065 −4.321 −1.974 −0.156
18 −8.488 −22.203 −9.172 −3.426 0.776
19 −0.000 −7.748 −21.532 −18.679 −4.276
20 110.444 96.338 83.479 66.920 43.629

Table B.2: Numerical values for the optima Xj(f) and β = 0.6 to 1
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