
MINT Capstone Project
Final Report

Email-to-REST System(E2R)
User-Request Translation System

Instructor-​PROF. PAUL LU ​
Student- ​ NAVDEEP KAUR
 Date​: March 13, 2018

Acknowledgement

I would like to express my special thanks to Prof. Paul Lu for providing me his
supervision for the Capstone Project. This project is based on the E2R System
which is focused mainly on the Main Question and Answer (Q and A) System
component of the E2R System.

Introduction

The Email-to-Rest System (referred to as E2R system) is based on developing an
automatic user-request translation system. In the E2R system, when a new
well-formed email request is received by an email receiver, it results in an
invocation to a server using REST (Representational State Transfer). The response
of server is also in the form of a well-formed email. The capstone project is based
on developing an E2R system (Figure 1) in which the client takes the email
requests from the customer to places the order , read and parses the contents of
email, and uses the REST invocation to the Main Server to enter the order into a
computer system by automatic process, without the need of human intervention,
that helps to save time for manual check, read and write information and this
results in a gain of productivity.

 ​Figure 1​ Basic diagram of the E2R System

The E2R User-Request Translation System is inspired from the popular
e-Commerce site Shopify, mailing lists like Google News Alerts, and email based
virtual assistants Juliedesk and x.ai which takes the emails, parses emails and takes
an appropriate action (e.g., parses the useful information from email and fix
meetings for x.ai or juliedesk.com) automatically on server.

 Overview and Implementation of the E2R System

The basic idea to design the E2R components (Figure 2) such as Mail Watchdog,
Mail Parser, Mail Question and Answer (Q and A) System and the REST invoker
is to automate the process by taking an email, parsing it, and use REST calls
automatically. But, if the Mail Parser parses contents that has not complete relative
information or has some missing arguments in email, then the Mail Q and A
system [(C) in Figure 2] responds through an email to customer from the client
with the proposed REST invocation, ask questions to customer for clarification of
any incomplete information, before finalizing the REST invocation to the Main
Warehouse Server.

The MINT Capstone Project is focused on implementation of the Mail Question
and Answer (Q and A) component (Figure 2) of the E2R System. It improves the
quality and optimization of online shop, as it allows ​to ask questions by sending an
email from administrator of online shop to the customer about the ordered item.

It helps the client (Jaya’s online shop) to get clarification about details of order
from the customer if any information is incomplete before finalization of REST
Invocation to the Main Warehouse REST Server and placement of order. As
Question and Answer system is a State-Server between the Main Warehouse
Server and the client, therefore, it makes a REST call automatically to the client for
clarified details when incomplete information is passed through it and responds
only to the Main Server when complete information is given by the client.

Therefore, the simple implementation of the E2R passes through four different
stages to develop a client-server architecture that incorporates Mail Watchdog (A),
Mail Parser (B), Mail Q and A System (C) and final Main REST Invocation Server
(D) as shown in Figure 2.

 ​Figure 2 ​Order placement process of the E2R system at online shop

The functioning of this system is demonstrated by assuming a customer named
Aman, who wants to purchase an item Sweater from Jaya’s online shop (client)
that is an online garment shop using the E2R ​User-Request Translation ​system
(Figure 2). ​When customer Aman having email address, for example,
amankrmint1@gmail.com (1 in Figure 2) makes a request for an order of item i.e.,
Sweater, email to ​online shop (Jaya’s shop) i.e., jayamintk@gmail.com which has
information of item requested by Aman in natural language (Figure 2.1).

Consider a case that customer [(1) in Figure 2] provides all information in email,
required to place the order at online shop in email as shown in Figure 2.1. In this
example of well-formed email, customer provides all details to online shop for an

order of item, such as color, design number, quantity and category of item and her
shipping address.

Figure 2.1​ Well-formed email from customer to online shop (Jaya’s Shop)

Figure 2.1 is well-formed email from customer to online shop for placing an order
of it Sweater, same like the template of ‘New order’ placed by customer of
shopify.com (Figure 2.2) used to send new order notification to online shop when a
customer places an order but in text form.

Figure 2.2​ ‘New order’ notification template of shopify.com when customer
places an order

The Mail Watchdog [(A1) in Figure 2] of the client monitors the email inbox in a
regular interval of time automatically, watches new emails ‘UNSEEN’ as shown in
line 54 of code in client.py file in Figure 2.3.

 ​ Figure 2.3​ Code to check unseen emails in inbox of the client in client.py file

The Mail Watchdog responds periodically, when a new email is received and gets
notification of new email (new order) as shown in Figure 2.4 that shows the main
function (defined in line 265) in Figure 2.4, regularly checks unseen emails after
60 seconds as program suspend execution of main function for 60 seconds
demonstrated in line 277 of main function of the client.py script file (Figure 2.4).

 Figure 2.4​ Code to check unseen emails in inbox periodically in client.py file

The Mail Watchdog of the client (Jaya’s online shop) reads the contents of email
that contain order information in plain text sent by customer (Figure 2.1) that is in
natural human language from unseen emails in inbox.

 Figure 2.5 ​Email read function code at the client from customer in client.py file

The function defined ​at line 108 of code in client.py file of the client read the all
contents of email (plain text) from customer as in Figure 2.5 and pass to the Mail
Parser to extract useful information

The useful information of email is parsed by the Mail Parser of the client [(B) in
Figure 2] and converted into JSON (JavaScript Object Notation) representation
using regex expression method of parsing information. For example, in Figure 2.6,
line 99 and 100 of code in client.py file of the client, parsing email using regex,
looking for design number of Sweater, for example, Design Number is A123d of
Sweater is found by searching of specific pattern (alphabetic, numeric, numeric,
and numeric and alphabetic) in plain text of email received from customer.
Similarly, client’s Mail Parser looks for all other arguments (such as color, quantity
and category) of item Sweater (ordered item) and parses them for placing an order.

Figure 2.6​ Code of parsing of design number of ordered item Sweater using regex expression​ ​in

client.py file

This parsed information [(2a) in Figure 2] from the client (online shop) is passed
through the Mail Q and A System State-Server [(C) in Figure 2] which is a REST
endpoint server using web framework Flask.

If parsed information has any incomplete information of order, the ​Mail Q and A
system ask questions by making REST calls automatically to the client for
clarification of missing arguments of order requested before finalizing the REST
invocation to the Main Warehouse Server.

In this case, the Mail Q and A State-Server (Figure 3) stores the incomplete
information of order and make the REST calls to the client [(5) in Figure 2] which
will send email to customer [(A2) in Figure 2] as complete information is not taken
from customer for a placed order. When customer responds with clarified
information by email (6b in Figure 2) by answering the missing arguments of
already placed order, contents of email are again read and parsed
[(6b)​→(A)→(B)→​(2b) in Figure 2), and then passed through the Mail Q and A
System (State-Server). At the same time, complete information is given by the
customer through email, the Mail Q and A System make the REST call to the
Main Warehouse Server working on the web framework Flask [(3) in Figure 2] to
place the order which is actually responding to customer’s request [(1) in Figure 2],
places the order by responding to REST call with REST endpoint function defined
at line 26 of Figure 2.7 of script of server.py file.

Figure 2.7 ​ Code of REST function at the Main Warehouse Server respond to request for
placing an order in sever.py file

After that, Customer is notified by sending confirmation back to the customer by
the client [(6b) in Figure 2] using same ‘Order confirmation’ template of
e-commerce company shopify.com (Figure 2.8) but in text form.

Figure 2.8​ ‘Order Confirmation’ notification to customer template of shopify.com

The client (Jaya’s online shop) send confirmation email in natural language as
demonstrated in function ‘order_confirmation_email’ in line 160 of code in
client.py file of the client as shown in Figure 2.9. This function sends order
notification to only customer [(6a) in Figure 2], when the Main Warehouse Server
responds with successful placement of order containing order confirmation
notification with order details to customer as in ‘message =’ of line 161,162 to 169
of code in client.py file in text form.

Figure 2.9 ​Order Confirmation email to customer code in client.py file

The E2R system sends confirmation email back to customer of placed order via
email in natural language (text form) from the client (Jaya’s online shop) as shown
in Figure 2.10 containing order number, notification of confirmed order with
details of ordered item Sweater, order status and shipping address to customer
(Aman).

Figure 2.10 ​ ‘Confirmation of Order Email’ notification to Customer Aman from the client
(Jaya’s online shop)

Example of Mail Q and A System

Considering the same example of customer Aman, who wants to order an item
Sweater, from Jaya’s online shop. In the general proper scenario (Figure 3),
customer [(A) in Figure 1] gives all information for item, i.e., all arguments
required for placing an order of item. In this scenario, when customer makes a
request by sending an email to Jaya’s online shop, email read by the Mail
Watchdog and contents of email are parsed by the Mail Parser and request passed
to the Mail Q and A State-Server which checks that all information is complete
and passes the request to the Main Warehouse REST Server for placing an order
requested from customer by using REST Invocation.The Main REST Server places
the order [follows path (A)→(1)→(B1)→(C)→(D)→(E) in Figure 3] and send
confirmation email notification back to customer [(iii) in Figure 3] for placed order
at the same email address of customer used for placing the order.

Figure 3 ​ Flow chart of order placement process for the Mail Q and A system

In other scenario, when customer makes a request for an item, while placing the
order, gives incomplete information of order i.e., some arguments of item are
missed, for example, in Figure 3.1, quantity and color of item Sweater was not
provided (incomplete information) by customer while placing the order and email
was sent to the online shop.

Figure 3.1​ Incomplete order information email from customer to client (Jaya’s online Shop)

In this case, when customer’s email contents parsed by the client (Jaya’s online
shop), makes a REST call to the Mail Q and A System which is State-Server before
placing the order. The Mail Q and A System responds back to the client for
missing arguments that are checked at the Mail Q and A System [(D) in Figure 3]
by invoking ‘get_missing()’ REST endpoint function defined at line 30 of code in
qna.py file shown in Figure 3.2 which returns missing arguments of current order.

 ​ ​ Figure 3.2 ​ REST endpoint function to check all arguments are in parsed information in the
Mail Q and A system(State-Server) in qna.py script file

An email (Question) to customer (Aman) for clarification of missing arguments is
sent by the client (Jaya’s online shop) as shown in Figure 3.3, in response of False
condition of the Mail Q and A System [(D)→(i)→(B2)→(ii)→(A) in Figure 3],
i.e., when complete order details are not found.

Figure 3.3​ Email sent by the client to customer to inquire missing information of placed order

When customer answer the incomplete information of placed order [(2) in Figure
3]. A request from the client to the State-Server is made for missing arguments
case following the same process of read the email and parse the arguments, and the
client gives the missing arguments from customer to State-Server [follows path
(A)→(2)→(B1)→(C)→(D) in Figure 3] which append these missing arguments in
existing incomplete order as shown in Figure 3.4 in script of qna.py file where a
REST function ‘append_to_order’ is defined at line 44 of qna.py file, appending
the information given by the client into current incomplete order.

 ​Figure 3.4​ Code of Mail Q and A System (State- Server) to respond the request from the
client to State-Server for appending missing information in qna.py script file

Now further two cases are possible:

1. Customer responds with answer of all incomplete information [(A)→(2) in
Figure 3], i.e., all missing arguments, quantity of items and color of item which is
inquired by the Mail Q and A System. In this case, when the Mail Q and A System
(State-Server) will get the response(Answer) back from the customer, through the
parsed arguments passed by the client to State-Server, combines the information
saved in it already for order and missing information given by the client now and
will make a REST call to Warehouse REST Server [follows path
(A)→(2)→(B1)→(C)→(D)→(E) in Figure 3]. In the meantime, order will be
placed at Warehouse REST Server and a confirmation email with ordered
information will be sent back on the email address of customer in natural language
which is in user readable format[(iii) in Figure 3].

2. Customer responds with incomplete information [(A)→(2) in Figure 3], i.e.,
some missing arguments, only quantity of item, but did not provides information of
color of item which was also inquired by the Mail Q and System. For this scenario,
the Mail Q and A System saves information of existing order and information
answered by customer (Figure 3.4) and makes a REST call again to the client to
send an email to customer for incomplete information (color of item) follows again
the same loop as discussed above [again (D)→False→(i)→(B2)→(ii))→(A) in
Figure 3]. As soon as customer replies with all left information required to
complete the process of order placing to the client, order is placed at Warehouse
Server and confirmation email with ordered information will be sent back on the
email address of customer as discussed in Case 1[(A)→(2)→(B1)→(C)→(D)→(E)
in Figure 3]; otherwise, the Mail Q and A System again requests to the client for
missing information and the client again sends email (Question) to customer for
incomplete information and waits for reply from customer to complete the order
information and place the order.

How is Capstone Project different from Wenting Zhang?

My working component of the E2R System is completely different from Wenting
Zhang’s, and also I haven't seen her code during the project completion. Hence​,
my code is completely separate from her code.

The E2R system architecture is main idea of this MINT Capstone Project on which
multiple students are working on different or combination of components of
overall framework. My project is focused only on the Mail Question and Answer
(Q and A) System component based on particular example that works to clarify
any incomplete information from customer by the client for placing an order. My
classmate Wenting Zhang worked on the Mail Watchdog component which
responds to new incoming emails and the Mail Parser component extract the Email
and translate human language to useful data (text to JSON), that is a totally
different component from my chosen Mail Question and Answer System
component which is the State-Server of the E2R System.

Conclusion

This project uses the E2R system which is based on ​Representational State
Transfer (​REST) architecture. In this system, a Mail Watchdog monitors mailbox
to check and respond new mails, based on the email contents, it calls the Mail
Parser which translate human language to useful data (i.e., plain text to JSON)
parse the contents of email to JSON file. If the Mail Parser contents does not
contain all information or has questions about the specific REST invocation, the
Mail Q and A system (State-Server) make a REST call to the client for
incomplete information of order which inquire missing information from customer
through email. This request and response session is in JSON file format between
the client and endpoint servers. After processing of request, Main Server of the
E2R System responds in computer language. The E2R system sends confirmation
back to customer via email in natural language.

References

[1] https://en.wikipedia.org/wiki/Shopify

[2] https://www.juliedesk.com

[3]http://www.drdobbs.com/web-development/restful-web-services-a-
tutorial /240169069

[4] http://www.restapitutorial.com/media/RESTful_Best_Practices-v1_1.pdf

[5] https://mailparser.io/

[6] http://docs.python-requests.org/en/master/user/quickstart/

[7] https://apps.shopify.com/simp-questions-and-answers

[8] https://jayamintk.myshopify.com/admin/settings/notifications

[9] ​Flask: Building Python Web Services By: Gareth Dwyer; Shalabh Aggarwal;
Jack Stouffer Publisher: Packt Publishing

[10] https://stackoverflow.com

[11] http://www.restapitutorial.com/lessons/whatisrest.html

[12] https://www.tutorialspoint.com/flask/flask_file_uploading.htm

[13] http://flask.pocoo.org/

