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_ Abstract - .

A study of'tne geometry of the”steady;states of
reactlon networks was undertaken (i) to derive conditions on
the parameters that lead. .to the exxstence unigueness or
mult1p1161ty of steady states,'(lx) ‘to ‘determine tne
patterns of steady state" concentratxons as functlons of a
ngen parameter (blfurcatlon dlagramsﬁ and (111);to apply
the re5u1ts to a complex mechanlsm namely, that of the,

peroxxdase ox1daSe (PO) ‘reaction.

Two steady state parametrlzatlons were con51dered each

‘4 »
~

: cﬁiracter1zed by»agdlfferent geometry. Using rate constants

" and conse vationchnstraints as parameters, the surface of

.\

,e

nected manxfold M p0551b1y w1th sﬁngu~

ely determlne the - number of steady

readtion veloc1ty space, all steady state veloc:t;es are
s e
found 1d a convex cone. Every steady state of the network 1s’

a 11near“§apeggos1t1on of elementary steady state pathways o

AT A

called extreme currents and 1t is showﬂ that the struc* _
ture of tﬁls cone helps 1dent1fy whxch patHwaJE are d0m1nant

under certa1n condatxons. Based on thls convex geometry,,a;

systematlc approach towards the modellng of b1stab111ty 1n.f

> 0

" chem1ca1 react;on systems 1s found It is then appl:ed g %'

successfully to the PO reactton Thzs ed‘yme react1on, w1tﬁ




‘state problems..The system of steady state equations . can
: .. : .

system.
e

In Chapter 111, an .algebro-geometric analysis on the

steady state manifold M is carried out for reduced steady

usually be reduced to a one-dimensional problem when there .
are only a few extreme currefits. After reduction, M is
interpreted as a. catastrophe’manifold Elucidation of its
s1ngular1ty structure followed by projection, onté]the para-
meter space prov1des an exact descrxpt1on of the regions
(called state sets') in parameter space where there are 0,

1, 2, 3,..\ steady states. The fold cusp and swallowtail

' 4

'catastrophes are analyzed and convenient formulas derived

for the various state sets and bifurcation” sets. An applica-
tion to the analysisuof‘the-characteristic polynomial in
linear stabilitylanalySis; includino.Hopf“bifurcation Sets;
is.also illustrated. ' |

| ¢hapterflv deals with the problem of enumerating all

possible kinds of bifurcation'diagrams for.a given network.

"Imperfect B1furcatlon Theory'-developed by Golubitsky and -

co-workkrs is the mathematlcal method to use. The

. ;;-,

'calculat1ons of b1furcat1on var1et1es are 111ustrated ‘and

applzed to some react1on networks. Formulas for the

: blfurcatlon'var1et1es of reduced steady state problems are

ton

_deered

&

In the 1ast chapter, a model for the blstabilzty in the»d'

?,,po reactron is extracted from a list of possible elementary

f,processes, known or postulated 1n the mechan1sm. F;rst,}

N ST o . (R AL I L . LT AP P S
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simple reversible szstra%e-inhibition enzyme mechanism 1is
énaIyzed.énd éhe essential extreme currents responéible for
the bistability are identified. Similar extreme éurreﬁ;s are
foéﬁd in th; PO reaction and are shown to be sufficient in”
pr?ducing bis;ability. Using all the 11 steady state para&e- | '
ters 9f»this‘mogél, a complete determination of the

é;nd;pions on the parametefﬁlto give 3, 2, 1 or O sieady

states is accomplished, owing to the ‘results of the érevious
chapters. The model reproduces many of the qualitativ;
features of the kinetics observed experimentally like
bistability and damped oscillations in an‘open system.

Computer,simulations of open'and closed systems are

pr‘sented.

oA
a
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1. INTRODUCTION

A. Formulation of the Problem

This work is concerned with the steedy states of
chemical reaction eystems. A chemical species is ae steady
state if its concentration is constant in time, and we say
that a reactiep system 1s at steady state if all the
' perﬁinent species involved are et steady state-
simultaneously. For example, chemical eguilibrium i; the
only steady state for a system that is not interacting y@th
'ite,environment; this sysfem eventue}ly evelves towards this
equilibrium point no matter whet the initial conditions are.
Non-equilibrium steady states may‘also'occur in systems that
are open to mass or energy flux and may result to far more.
interesting behayior.‘For example; when the right set of
reactions occur in'a'conpinuous flow stirred tank feactorh
(CSTR), éne‘may be able to'pbserve exotic-@ynamicel feeeures

-

like sustained oscillations"z’; the exlstence of more than

z,sa')

one stable steady state (mult15tab111ty)"z and

-even chaotxc osciIlat1ons"“’- SELEN These

"far from—equ111br1um phenomena are usually caused by
certain features 1n the coupled react1ows, an example of
vwhlch is the presence of appropr1ate n0n11near feedback in

"the mechanism, ¢ *

A ~ . ) . . ' . ‘ .‘ ; ‘(..‘

se



The problems that are considered in this work can
guickly be understood using an-example of a rea}i%tic

mechanlsm We therefore look at the following- mechanlsm of

i

.47) reaction which wvll be ..

~ the perox1dase oxidase'

o '

analyzed in detail in Chapter V:

R, Per’>" + H,0, L Cb{f_‘,
R, ‘ Col + NADH - Coli\? NAD -
R, ! ‘ Coll + NADH - Per’" + NAD:
i R " Colll + NAD: - Col + NAB* -
R  pér®c + Q¢ -~ ' Colll
R o NAD - . 0, -  NAD'"+ O;° o
R, H° + O,° + NADH -~ ' H;0, + NAD: .
. Re - 2NAD- + H° - 1NADHT+‘NAD'-
Rg,Rio pd (O
D
where Per’"| = ferripéggnidaee, Col = compound i;'coll =4-_'

A

compound 17, Colll = compound II1I, NADH = nicotinamide
'aden1ne dl ucleotide and 0.7 = superox1ae anlon rad1ca1 The
reactxons will be referred to usxng thexr labels given on

~

" the left ost column. The pseudo reactxons R. and Rio

represent a cont1nuous supply of oxygen from the env1ron-

"dyna 1ca1 spe¢1es . This decision depends much on the
'rele'ant exper1menta1 condltlons. In the present case,:thej

-

concentrat1on of NADH 1s usually taken 1n excess. 1n related

FAERa 4



LR,

< e
experiments‘*?’ and can thereforé be assumed constant. The
product NAD" is terminal and does not-participate'furthér in
the feedback loops\gresent in the ﬁecpanism; therefore, 1t

will hot be nec€ssary to include it in ‘the equations
describing the évolutibn of the system. Finally, the system.
~is buffered at a fixed pH so that the concentration of(ﬁz is
con;tant Assuming a mass-actiom ra:é expre551on for each
reaction, the kinetic equatlons under 1soghermal and

homogeneous gonditioﬁs‘are written as follows (the symbol
. Y :

[ ] means ‘'coricentration of'):

—

3

k,[©,°1 - k,[H,0,][Per>-]

. d[H’QO;]/dt =
\\\d[NAD~]/6t = -kg[O]J[NAD ] + k;[0©,°] + k.[coll .
'\\\ | o ‘+k;£CoIIj - k.[NAD-i?CéII;] - 2kyfNAD }*

d10,:14dt = ke[0;1[NRD"] - k;[0,°) - ks[Per>=](0;"1
d{0;1/dt .= kes - kiol02] - - ke[0;1[NAD ] o (1o

d[Per"]/at - —x [H,0, lper-1 + &, [c°11] k‘[Per”][Oz’]

dkCoI]/dt &\ TH, o Jpers- -k [Col] + ka[NAD JlCo111]

-

d[CoIHl/gt,= k2[CoI] -k [CoII] -
| “3lcol11)/dt = kylPer’*1[0,7) - k +[NAD- 3[c°111] . o

1.0 ' ,'»_'

Note that the constant concentratlons of the non- dynamlcal

_f*' species are 1ncorporated 1n the rate constants of the

) correspond1ng~react10ns where they are found as reactants.-

To. solve the set of equatxons (1 ), the values of the

12!3 o

10 rate constants as well as the in1t1al concenx:at1ons for
the 8 spec1es must be spec1f1ed The behav1or of the

) Ry
P A

.
©

o

’\o‘
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3 . . L.
solutions (that ;s, the changes in the individual species
ey
concentrations as- functions of time) may vary wlldly

b ) dependlng ofl the walueg of the parameters (rate constants
. - o . . T %

; 7 .and initial conditions) used. Are there sets of.parametérs

. .that .will lead to sustained or damped oscillations? Of
. .g'-- ""‘;

prjmary interest in the present work are: the following

questions:‘ls there always‘a'steaﬂy state‘ and if there is,
. is 1t akways un1que7 What are the condltxons on the rate
$

constants that wlll to ‘multiple st&ady sthes? The

o,

results ‘that wrll be show in Chapter V claim that fGr tﬁ/

mechanlsm gzveq above there are rate constants that w111
€

< -

: glve three steady states - two of these are stable and each

Hey ’ '

can be reached with the right set of initial conditions.

&

L d

g s
x

Other sets of rate constants may g1ve 2, 1 or O'steady
e states." ' : - B N
/’ N . h K

The number and values of the steady states of a

“jﬂyf : chemical‘reaction system are determined'by the‘rate _ R

;cqnstants and an add1t1onal set of parameters called

&

'‘conservation constraints' ; Observe in {1. 1) that the sum

(alPer:-1/dt + dlcoll/at + d[CoII]/dt + d[CoIII]/dt)

L v vaﬁlshes 1dent1c511y implying: that the total concentratlon

.of the enzymlc spec1es Per" .CoI, Coll and CoIII is always'

I

ﬁconserved Thus, for system (1 7, a total of 11 steady

. J

6 . state parameters are needed to determzne the number and
4 .

‘eiV.'-‘ values of the steady states. (We reserve the symbol p for

‘f}i% ‘5' the vector of steady state parameters throughdut thzs work)

It is a totally dxfferent questlon to ask wh1ch steady state
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will be reached (assuming no os¢illations) when there are

- L N

~——

more than -one steady state. In this case, s\\cifying the

‘rate constants and initial conditions are sufficient to
anSwe;}the question. i ‘ S : \\>>

Let us now formulate the problem precisely. For cém—
pactness of notation,'we define the 'species concentration
vecfbr’ X Qho§evcomponents are the concentrations of the.n
individual dynamical species, and the 'rate constant vecto}i
k whose combonents are the r rate constants.;Tﬁe expreéskdﬁsv
on the right sides of the '=''signs above are functi6ﬁ$ of
(X,k) and are symbolized as f,(X,k), f,(X,k), ..., f.(X,k),
!respectively. Next, we gather these functions to form the\
components of the vector F, that is, F(X,k}) = (f,, f., ...,

)

f.). Thus, the set of differential eguations given above can

\,

dx/dt-= F(X,k) . ~ : ' - S (1.2)

be written succinctly as

%

Unless cersain phyéical bounds aré‘specified, it will be
‘cohvenient;jzm\ake the domain of X as tﬁﬁ whole positive.
orthaht Qf n—dimgnsional'Euclidean spacé, R?, and the domaih
of k to bé R:. - B o
in generglf chemical reaction-sxsﬁems'give'rise-to a
special class bflnonlinéar~o£déhgfy diffétential}équation§l
an'a ;eSpit of 'Sfdichiqmet}YE,,that fs, the pfoperty of . 
each chemical‘reacfibﬁ indicatin§ a dgfiniﬁejpropértioﬁ"



between the reactants and products. For this reason, we

shall also refer to these systems as stoichiometric

dynamical systems. In the remainder of this introductory
chapter, we will show that the vector function F can be
expressed as a product of two factors, one assoqiated with
stoichiometry while the other contdins the rare expressions
for each individual reaction. This serves as a motivation
for the discussion presented in Chapter Il where the s%%ge
is set by analyzing geometrically the full system of ot
nonlinear dynamical eguations bringing out cIear{y the
influence of stoichiometry on the structure of the space

’

where all the solutien's of the differential equations

reside, The analysis of the‘geomei 'y

in this chapter by discussing Clarke's‘®’ result that the

of steady states starts

set of steady state velocities (which he called 'currents')

are all found in a ccnvéx cone called the ‘current cone',

;—sectlon ofMC called the current polytope' n

v

has a sﬁyucture that prov1des a systemat1c way of sorting

[y

any complicated mechaniSm. A consequence of this is a

' modellng approach to b15tab111ty (or, in general, - }

\

mult1stab111ty) in reaction’ systems. This is the subject of

Chapter v where ve also show that the mechan1sm just given

above: (wh1ch was extracted from a more comprehen51ve list)

v

-~ - can model the experxmentally -observed blstabxlzty in the

’

peroxadase-ox1dase reaction system.‘?" ') The' results of

Chapters I11 and IV were necessary for ‘a detailed analysis

~ of this model.



de

' the n-d conservation constraints). dim M is usually an

The set of all steady states in the positive orthant .

R7TxR" is reﬁresented by the steady state manifold M defined

.

by the set
M ={ (X°,k) ¢ R'xR® | dx/dt = F(X°,k) = 0 } . (1.3)

M can be imagined as a ‘hypersurface’ of positive steady
states embedded in {n+r)-dimensional space.'(In general, the
complete set of steédy states include 'boundary steady
states' which are discussed in the later part of Chapter
I11). Identifyinééa point on M reguires a minimum number of
parameters. This number is called geometrically as the
dimension of M, or dim M. It'incluaes the r rate consténts
and the (n-d) conservation constraints (d is the number 6f
independent species; we will also reserve the symhol C for
the 'conservation constraint' vector whose components are
inconveniently large number for realistic netwofks. However,
we shall find that the steady state concentrations of thg
species are usually related to each other. In Chapfer 111,

we will see that the problem of solving the steady states in

‘terms of the steady state parameters p = (C,k) can sometimes

be transformed into a tractable 1-dimensional problem. When

this ¢an be done, a drastic reduction on the essential

_parameters arises. Only a few lumped parameters are_theh

‘required in determining the essential geometry of M, in

pafticulaisthe‘features that determine the number of steady

e



states. For example, the bistable model for the peroxi-
dase-oxidase reaction given above has an 11-dimensional M.
It turns out that the values of only 2 lumped parameters are
actually sufficient to determine i1ts essential geometry!
What we mean by the essential géometry of M in the context.
of the present problem will be %}sgussed next.

Certain global features of M are known. For exampie, M
cannot péssess disconnected piecés and is therefore
described as 'simply-connected'. A proof of ﬁhis'property
has been given by Clarke‘®’. It relies ‘on the fact hentioned
above that the steady state velocities are found in a cone .
Cv. Mainly because of this, the set of positive steady
states is shown to be diffeomorphic to a simply-connected
cone. Since a diffeomorphism d&es not change the topological
‘properties of a set, the conclusion that M is
simply-connected followg. However, disconnected pieces
appear when cross-sections of'M are taken (that is, certain
parameters fixed). A further cohseQuence of the diffe6— 
morphism between M and a cone is that M hust end .at the
boundary of the orthént RTxR’ and jhst cannot terminaté'or
" *hang' iﬁside;tﬁis orthant. |

| There are important local features'of'M_that affect its
,glzii}rappearance congiderably. When M f@bﬁs béék‘ihside the'
po ;tive.or;hant R7xR:, then there exists at least two = -

isolated p¢sﬁtive steady states for some ranges of parameter

- - o

" values. Figure 1.1 shows the famous cusp'catastrophe mani- -
fold. When the fold points are projected down to the _;"‘ af

{\ '



s
Xe}

paramete} space (the u-p - plane in this case), we find.a

curve By, 1n parametef'space sepgrating sets of paramege;s
that give one steady sta;e’(outside the cusp) from the set
of parameters giving three steady states (inside the cusp).
The parameters found on this curve form what is called the

steady state bifurcation set. Thus, we say that the projec-

tion of the fold points of M onto parameter space are steady

state bifurcation points. As'we will see in Chapter III,

these are not the only steady state bifurcation points. In
general, we will call a parameter ‘value as a bifurcation
point if on either side of that value there corresponds a

different number of steady‘states. The fold points of M are

called singular points in mathematics and are characterized

.by the vanishing of the Jacobian associated.with the set of
independent kinetic eguations.

Furthermore, there are singuiar poinfé that are
degenerate, an example of which is the cusp point itself.
Figufe 1.1(b) is a cut through the cusé point on the

~manifold. Our interest on such points:lies in the fact that
. N 7 - . -

-cuts fh;ngh M on either side will give gualitatively

-

' differgnt diagrams as exemplified by diagrams 1.1(a) and -

1.1('c),

\ L]
e

flmégine the”wholewpf M to be projected onto parameter

space. Differentgregions of parameter space:will be
_'covered' a different number of times, i.e. some will be
singly—covered,doubly-covzied, triply-cbvered,;etc,‘The

taskybf'Chgpte}’iiI will be to enumerate and_identify
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x° |
l\_ (a) p~< p;
M

(b) p=

(C) P> pa

Figure 1.1

Some chemical reaction networks have steady state manifolds
whose cross-sections are of the type represented by the cusp
catastrophe manifold M shown above. X° is the steady state
concentration of species X and 4, p~ are steady state parame-
tersThe u-p~ parameter plane is either smglg covered or triply-
covered bg M. The projection of the points where the surface
folds (2°) onto the u-p~ plane correspond to bifurcetion points
where there is 8. trqnsltlon from 3 to 1 steady states (Bsz;). When
{ is taken as the bifurcation parameter, two kinds of bifurcation ,
dlagrams (a) and (c) are possible. The cut through the cusp point
(1) gives the diagram (b) wh1ch fs the transition between (a) and

_(c)

3]



actly &11 the regions I'n parameter space that have
fferent coverlngs These gions 1n parameter space which 3

i.

-

correspond to“dlfferent number of positive steady states are

called c%blectlvely as state seés The bogndary .between two

dxfferent,state sets are steady shate bifurcation sets.

_ We must not fose §1ght of the fact that phy51cal

Qeality actually correspgngs to-certa:n cross-sect1ons‘of M,

‘-because we are deal1ng with a partxcular reactlon system at,
‘a ‘time. For a, 91Ven exper1mental readtlén system there“are‘

’” usually_very few ‘parameters that can be externalky'

ccntrolled‘or parameters that can vary within a‘certalnf

. range.fMost of the rate constants{are intrinsic to the
system being considered {at a given temperature)u Parameters
like flow rates and concentrations of external species can
bégvarled and the system can be subjected i'fqgeady state

':.analy51s. Mathematlcally, this 1nvest1gat10nras equivalent

[§

to maklng a<cut through M along some d1rect1on spec1f1ed by

jo

a parameter whlch will be called the b1furcat1on parameter,

A cross- sectlon of M plotted agalnbt the blfurcatlon

parameter is called ‘a steady statgﬂblfurcatlon d1agram. For

a,g1ven blfurcat;on,parameter, one'maypbe,able to generate
yarious gualitatiVely'different bifurcation diagrams‘v

PO R

dependxng'on the values taken for the other parameters. This
1deatxs olearly 1llustrated agazn by f:gure 1, 1 where the |
b1§%rcat1on parameter is u. The value of the parameter p

tnat corresponds to the cusp po1n“f1s very 1mportant because

b

,$1t separates the values of p that w111 give a ‘stralght'"_-‘p
@ . “.:b’ . ‘ o o ‘ v‘..‘ R * . N ’ ., !
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~ (no folds)‘bifurcation diagram from the values of p- that

give Z-shaped bifurcation diaorams..ln general, let the

r';)a:'amieter vector be p=(u,p’) where u is distinguished as the

bifﬁtcation parameter. The sets of p- that delineate

qualitatively different bifurcation diagrams are called

bifurcation varieties.'’’ Chapter IV is devoted to finding

general expressions for these bifurcation varieties. The

determination of these varieties leadg the way to an
exhaustive enumeration of all possible bifurcation diagrams
that a reaction system can exhibit for a given.bifuroation
parameter.

The algebro-geometric approach I have empioyed in the

analysis of M in Chapter II1 involves the study of the

(19)

singularity structures of the cuspoid catastrophes In

‘Chapter 1V, the results in particular. of Golubitsky and

-«

Schaeffer‘'®’ on the application of singularity theory to
‘imperfect bifurcations w;re'atudied and applied. The wealth
of mathematlcal results already avallable must be adapted

_and applled to the solution of chem1ca1 problems. Work has

"to'be done in der1v1ng convenlent ‘formulas that chemlsts can
use. The appllcablllty of these mathemat1cal methods to
‘ chem1cal reactxon networks will be shown expllcztly by the

various examples prov1ded at each 1mportant stage of the = -
'/’ Readers fam111ar with the work of Golub1tsky and
Schaeffer"’ are forewarned that the name 'bifurcation .
variety' as used in this work is a collective name ‘that
“includes the Hystereszs variety, Double Limit variety and
the Isola Variety to be discussed in Chapter 1IV. ~This last

‘”Vjvarzety is called specifically’ the 'bifurcation variety' by

Golubitsky and Schaeffer, a practlce that we w111 not
‘follow. _ :
. . 2
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discussions. In Chapter V, a realistic mechanism of the per-
'oxidase—oxidage reaction with NADH (nicotinamide adenine
dinucleotide) és the hydrogen-donor was analyzed. A minimal
modél for the bistability observedAin an open system is
arrived at systematicallj using a proposed modeling approach
to complex systems with multiple steady states. The analysis
of the steady states of the model is exact and comprehensive

owing to the results of the p}eceding chapters.

B. Stoichiometric Network and its Kinetics
»

We now_define precisgly what we mean by a reaction
network. A’given.network is composed of reactions whose
individual rate expressions (the kinetics) can have several
| forms subject to certain conditions. A reaction system is a
network endowed with'a kinetics and the barameter values are

specified.

The Meaning of a Reaction Network

Let there be r one-way chemical féactions Ry, Rz, «o.,
R, involving n species Xi, Xz,..., Xa. We will consider a
reversible reaction to be composed of two one-way reactions.

‘The set of reactions can be written as

]

z j’?,x; Rad z -9?,3. j=1,...,f. o ] (1.4)

s =

. .R.. P R PO
where v.; and »,; are the molecularities or stoichiometric-
. . . . . ‘ “ - N . - . . . '

e
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coefficients of species X, on the reactant and product side,
respectively, of reaction R,.

The species considered are only those whose concen-
trations have significani variation in the time scale used
and are therefore dynamical species. These species will be
referred to as 'internal’ specieé as opposed to ﬁhe
'external' species whose concentrations may be assumed
constant throughout the reactiop. Because these external
species will not be written explicitly in the chemical
equations, we will be seeing some 'funny'*&@oking reactiébs

like ( ) » X, X.* ( ), or X » 2X. The first two are

pseudo-reactions which may represent diffusive exchange with

the surroundings. The third reaction which per se is
impossible because it does not conserve mass may actually
represeht a valid chemicallreaction like (A)+X - 2X+(P)
where (A) and.(P)_are external species whose 'constant'
'céncentrations are ihcorporated as constant$ in the reaction
}ate expressibﬁ. Thus, the formalism now being presented
subsumes open systems like'a continuous flow stirred-tank
rea¢tor (CSTR) .and heterogeneous systems where Some or all
species are diffusiﬁg.'Lhrfact, a- heterogeneous system‘can
be modeled by breaklng it up 1nto 1nterconnected cells (see

-for example veference 1) and spec1es are d1£fusxng in and

- out of the cells due to concentratxon grad1ents. In further

~discussions, unless Otherw1se noted, we will un@erstand the

‘set of species S to be the set of internal species:
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S={X,,X;,..., %, } . ' ' (1.5)

A precise language associa;ed with tﬁé description of
the set of reactionsIR is available'-?’. The entity on
either side of the reaction arrow‘is called a complex. For
example, in the reaction A+2B - 3C, the two complexes are
(A+2B) and (3C). Thus, we can say that R is a 'reacts to’
binary relation among thevcompleXes“’. To each complex,

there is an associated complex vector which has n

components. These components are the stoichiometric
cée{fi&ients of the n species (of the ;etwork) in the .
complex. For the 3 species reaction in the present example,
the complex (A+2B) corresponds to the complex'vector (1,2,0)

while (3C) corresponds to the complex vector (0,0,3). In

general,” let the set of complexes (assuming there are s

distinct complexes) corresponding to the set of reactions

(1.2) be
N : | | |

c=1{¢,,Cs,...,C, } . _ o (1.6)

" A reaction network can now be defined formally:

‘Definition 1.1. ' o

A reaction network is the set N={S,C, R}  (1.7n
Strictly speéking, the,above definition will considér two
networks;to be different if their set of chemical spécies .

NG ‘ ] » : _ o o,

7
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are not identical although the reaction set may be the same.
\\\Mathematically, however, the problems represented by these

o
.networks'will be identical.

Kinetics Assigned to a Reaction Network

Let v, be the rate of reaction R,. Due to this single
reaction, the rate in the change of the concentration of

species X, is

(ax,/at), = (5,08 )y,

and the total rate due to all reactions 1is .

r ,
ax,/at = ¢ (5= ))v, . ¢1.8)

This equation . can be written in a vectof notation which
permits a clear geometric interpretation of the:solutions,
later on, Let X ¢ R’ be a vector in the'non—negative orthanf
of h—dimensional Euclidean‘sbace.-mhis is called the
”(speqieé) cohcentrétion véctor whose components are the
‘concentfétiods'of all iﬁtérnal species'at gome time t.

Def1ne the reaction vechr vy assoc1ated w1th reactlon R, as

!

ghe dxfference between the product complex vectogband the

 reactant complex vector:

(Vp o P »)‘;(VR - R )t .. ’ (1.9)(

1jr--~.rynj _1]100-1"0]

=
n
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N .
Equation (1.8) now acguires the form

r
dk/dt = L v,v,; .
3=1
Alternatively, in the forfmal treatment of Gavalas‘’’ and

Clarke‘®’, for example, the r reaction vectors are treated

as the columns of the stoichiometric matrix v. It we now-

consider the rates v, as components of the velocity vector

in the non-negative orthant of r-dimensional Euclidean

space, Rf, the set 6f kinetic eQuations has the compact form
| ‘ - /

—
’

" aR/dt = wv(R,K) .\ ‘ . (1.10)

Notice that the velocity vector v is in general a
function of X and some rate parameters given by the vector

k. The form that v takes is casually referred to as the

-kinetics of the reaction network. A given network can be:

endowed vatious different kinetics.lealing to different
dynamical behaviors. Various authors®'-?-%.¢’ have discussed
the reqguirements on the aoceptpble forms og;v. The.most

essential of these requirements.is that if », ;<0 then as X,

: approaches zero, the veloc1ty v, must approach ‘zero and

- .

«dx /dtzo “This. ensures that all concentrat1ons are non- ne—

‘gative., We therefore adopt the follow1ng postulate stated by

other authors?: 5 prevzously.

P e d
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postulate I.

The velocity functions v,eR, (j = 1,...,r) are
defined and continuous in R?. For any X, = 0, we
must have v,,v, 2 0 , (3 = 1,...,1).

[y

When the kinetics 1s power law (in particular, mass
action), v has the form

~

v = (diag k)x* 4 o

where (diag k) is a rxr diagonal matrix whose diagonal is

| S
keR., & vector whose components are the rate constants of
the network reactions; X" is a r-component -vector whose j-th

component 1is given by
, = I X{K" . ’ (1.12)

Usually a small integer, x,; is the order of the reaction R,

with respect .to species X;. This defines the components_of

N ’

~the nxr kinetic matrix .

‘Exgmple I.1 |
Several of thé ﬁetworkS'that we will be considerihg
are 'mathematical models' whose‘componenf 'feac-
tions' do not actually cértespond'to‘the elementary
reaction Steps in the mechahism but are

representations offthe‘experimentally determined



rate laws of reaction processes, as this example
will illustrate. |

The following network is a 2-species mathemé-
tical model for the 1odate oxidation of arsenous

acid in a continuous flow stirred tank peactor. This

1
model gave a near Quantitative description of the

experimental reaction system (with arsenous acid in
stoichiometric excess), including the appearance of
hysteresis, mushroom and isola, as demonstrated by

the work of Ganapathisubramanian and Showalter'’’.

Network N,

R,,R., + X
R;,R., P
R, B + X » 2X
R, B + 2X - 3X

B COrrespoﬁds to 103 while X corresponds to I°. The
netﬁork as/giueh above wés assigned kinetics of the
mass ac;ibn form although obviously the reaction
stepé are not the glémentary stebs in the actual

mechanism which is, in fact, much more cpmplex.'Let)-
: N ) y

us now éee_how'thié mathematical‘mbdel was atrived
ét using some experimenfal iﬁformation. There are

twoAizown pggcesses ghat:domihate'the iodate-arse-
'nous.acidbreaction; namely, the Dushman reaction (A)

and the Roebuck reaction (B);

19
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103 + SI° + 6H" = 31, + 3H,0 - (A)

Ia + H;ASO; + Hzo ind 21’ + HJASO. + 2H' ' (B)
When arsenous acid 1s 1n stoichiometric excess, the

net reaction is given by (A) + 3(B) = (N):
105 + 3H;AsO, - I- + 3H,AsO, . . (N)

The kinetics of process A has been determined’ o

)

experimentally‘® as having the form

Tu. = (ks k'[1-1)[1-101031[H" 1}

where k and k' are some rate constants. It is élso
knowh that process A is rate dete;mining fog'the
overall reaction. From the s;oichiometrip‘rela£ion
between ij and ij in the net réacfﬁbﬁ (N);.the |
dynamical equations of the systém in fhé ;dhtinuopsl
flov reactor are T '”"_'f' : : 

' R
da{1-1/dt = v, + k,'{1°- 1o - k_,f[l’]l‘ﬁ-ﬂ .
dal1031/8t = -v, + k' [105)e - k.3"[105]

i
'

where k', k.,', k,' and k.,' are flow rate . ..
constants not necessarily equal. With pH ¢ons;ant; “f4

these dynamical equations are fully modeled byg,jgf-ff

°



network N, given above.

21



11. GEOMETRIC ASPECTS OF STOICHIOMETRIC DYNAMICAL SYgTEMS

»

‘3}"‘«.’ -
A. Inffoduction BN

In this chapter we look at the whole dynamical setting
of reaction kinetics of which the steady States are jqét a
part, but a part that exerts a significant influénce on th;\
overall portrait of the kinetics. Under.homogenéous'and
isothermal conditions, the instantaneous étate of a given
réaction system is specified by the set of concentrations of
the chemical species present. All the possible chemical
interactions among fhesé species that modify the cémposition

of the system form a network of reactions which-.the chemical
* P

. .. . . N -5
kineticist would like to elucidate as completely as ™~

possible. With some observed or postulated kinetics éssigned,
. to each of these reactions the kineticist comes up with a
system of autonomous ordinary differential equations that
hopefully simulates the state evolution of the éystem. A
criterion for a rigorous déscription_of fhisvevolu;ion,or
jdynamics of the system will now be described.

I1f we establish a Euclidean coordinate system whérein a
point in the non-negative orthant corresponds to the
instantaneous concéntratkdns of.thé system, theA the
evolution of'ihe state of_thevsystém will correspond to tbe
motion (or trajectorx)_of this point as time gbes on. We

will sometimes refer to this space as as 'concentration

22
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space', 'state space' or in a more restricted sense, 'phase.
space'. The initial pbint of this Erajeqtory (i.e. indtial
concentrations of the reacting species) as well as the

equatioﬁs of motioh (our kinetic equatigns) will completely

.§pecify the course of evolution of any given experiment
{assumption: the deterministic eguations of m?tion are
followed by the system). [f we imagine thét all initial con-
ditions are tried, then iA state §§ace one gets an infinite
number of trajectories whose pogtfait is a conseqguence of
the form of the equatiéns of motion. The forms of these
eguations of course ié_a property of the system. Hence, a
complete description of the system requirés a picture of the
set of all possible trajectories in n-dimensional state
space, yhere nis the_numbér of species. Such a system, i.e.
a set of trajectories each specif}edvby an initial condition
and equations of motion, will he referred.to as a dynamical
system. I believe fhat the most comprehensive way of study-
ing.the kinetic equations of chemistry requires treating
them as dynamicalfsystemé, The cﬁaracterization of the
trajectories in the difﬁereht regions\of state.spéce and the
study of_the changes of the phase portraits under different
experimental conditions should be fhe'basis for the
description of any physical syétem in general. In this
.chapter, I present the kinetic equatioﬁs as much as possible
"in theAlanguage'of dynamical systems. We have in h§nd\a

‘speéial class of ordinary differential equations whose phase

spaces are strongly influenced by stoichiometry.
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The studies being presented 1in this chapter-can be
grouped into three parts : (1) sections B-E present the
nonlinea; and lilnearized dynamical eguations in forms that
give the ~"factorization’ in terms of stoichiometry and
kinetics, and then these eqguations are used to bring out the
influence of‘stoichiometry on the geometry of the phase
space where all the possible trajectories could lie; {(ii)
sections F-H then focus on tgé set of steady states and
-discuss the convex geometry of the set of steady state

(&)

C}locities, an important feature in Clarke's formalism

called stoichiometric network analysis; (iii) finally,

sections I-K will illustrate the fact that the complete set
of steady states may include not only the steady state
manifold M (surface of positive gteady states analyzed in

©
chapters 111 and 1V) but also, in certain cases, boundary
steady states having some épecies extinct; furthermore, .
relatéd cases where there are stoichiometric explosions or \\\'
extinction, and the~emergence of a continuum of steady .
states are discussed.

B. The Nonlinear Dynamical Equations,
Y ‘

Because of the strong influence of stoichiometry on the
solutions, we shall refer to the follpwing set of autoﬁomoﬁs

ordinary differehtiai eqﬁations‘induced by a given reaction

network as a stoichiometric dynamical problem :



dx/dt = wv(X,k) , X(t=0) = X(0) . ' S (2.2),
where i e R? ahq v : RVxRY - Rf. For a given form of v, when
the rate parameter vectdr‘k ¢ R' is specified (along with
the initial condition X(0)), then we have what is called a
stoichiometric dynamical system. In addition, Postulate I
?\g1ven in the first chapter is assumed for any such s}stem
‘ﬂﬁhat is studied in the present work. To solve (2.1), there
Yy

are (n+r) parameters$ that must be specified - n inifial

"conditions X(0), andir'rate parameters like rate constants

{

.,k.

to scaled dynamzcal varlables as was done by Clarke’ ’. This
form assumes that the steady state X° is strictly positive,
i.e. X .>O for all 1 = 1,..,n . Def1ne the scaled cépcéggra-

tion x, as’ S -

ﬂ'ﬁ . C»
xi = X, /%% . ; i=1,...,n
or g@ matrix form .
x = (afag /X)X - T . .- (2.2)

»

v

'-/where [dlag I/X ) is a dzagonal matrzx w1th I/X° = (1/X

Stha
e

a"reSpect to t1me and subst1tut1ng (2 1) results to

P
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dx/dt = (diag 1/X°)w»v(X, k) . ’ (2.3)

¢
- . . - . O
When the kinetics 1s power law (in particular, mass action),

v can be expressed explicitly in terms of x as follows

= (k, m(x,°) ) mx, "
] 1 v
= ° ﬁ IK'I
v‘ i 1x \

or in matrix form ‘ ‘ ,
v = (diag v°)x" o - (2.4)

where the j-th component of the vector " is (xK)‘ =

K+J and v° 1s the steady state veloc1ty vector

correspohding to the steady ‘state X°.
thus, for power law kinetics (in particular, mass
ac%gon kinetics), the stoichiometric dynamicai equafions

have the form A" : . e
dx/dt = (diag 1/x°)v(diagv)x* . | (2.5)

Note that the factor (1/%,°) (1-1,...,n) g1ves each equatlonv

a characterlstlc tlme scale for the motlon
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C. Constraints on Phase Space due to Stoichiometry

The stoichiometry in a chemical reaction network is
coded 1n the stoichiometric matrix v. From the egquation of
motion (equation 2.1 or 2.5), one expects that » must.play a
major role in the ge&metry of the phase space of the
dynamicad system. By 'phase space' we mean the space where

all solutions (trajectories) XK(t;X{(0)) of the dynamical

problem are found.

Due to the conservations of atoms and net charge in
each reaction, and sometimes of certain species or other
subunits in the course of all the reactions, some combina-
tions of speéies concentrations are maintained. These
conservation constraints cSﬁ’be considered as a congequence
of stoichiometry as will now be shown. Let there be d (sn)
independent species so tha; there are (n-d) conservation
conditions:

n

z YMixl = Cm m = 1;1;:aoarn-d‘

R

“or in matrix fform

YE = C T (2.6)

wvhere y is an (n-d)xn conservation matrix and C ¢ R?"* is a

- vector of conservation constraints. Note that C is specified

implicitly by- the initial,cohditions{X(O); To prer tha;’yv
: b / ' - L . P ! . . .



is a consequence of » and is independent of the kinetics,
differentiate (2.6) with respect to time and substitute

(2.1) to get yvv=0 for any v. Thus,
yv = 0 . ’ C(2.7)

This equation means that y can be deriQed from u.’The rows
of y are vectors in the left null space of ».

Another way (but completely equivalent) of showing the
effect of stoichiometry on the phase space 1is to use the
reaction vectors, v, (j=1,...,r), defined in (1.9). We haQe

seen that equétipn (2.1) can be written as

dx/gt

£

n
n~Mn
<
©

(2.8)

1 .

3
. \ ’ . L

whﬂgg v, is the j-th column of » (or the j-th reaction
vé/éor) and v, 1s the correponding cqmponent of the velocity
vector v. Equatlon (2.8) says that the species formatlon
vector (dx/dt) 1s a&ways a non-negati've linear comb1nat10n

\
of the‘reactlon vect?rs,v, (j = 1ﬂ>y(,t). In other words,

2

(dx/dt) is found in aksubspace (ofo") sp7nned by the
the

columns of ». Th1s su space is called“'

vﬁst01ch10metr1c subspac\,'Sb. The dime n'of‘Sp ié equal_to

‘the number of-independé t columns of /v (= rank W) which is

.aisb equal to the numbér of indepe deht species, d.

The initial condition X(0), and S, (or indirectly, »)

are.sufficient to determin?_completeiy the space where all

o
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solutions X(t;X(0)) of (2.1) lie (the phase space). Integ-

rating (2.8) after an arbitrary time t,

X(t)-x(0) =

M

{Jo v,dt}v, = g d,r, (d,20)
implying that‘

X(t)-X(0) ¢ Si | )
or

X(t) e {X(0)+S }

where

{X(0)+Sp} = { X | X=X(0)+¢ , EeSV b . (2.9)

This last set is called‘':-2? the-stoichiometric

compatibility class represented by X(0). X(t,) and X(t;) are

sa1d to be stoxchlometrlcally compatlble if and only if both
'vare members of {x(0)+S } for some x(O) ‘Since sz, we are
'only xnterested in the intersection of {X(0)+S } and RY.
Th:s 1ntersect1on is a. polyhedron and is 1dent1cal to

L)

Clarke' s‘f? concentratxon'polyhed:on ﬂg(C)’Wthh is defined

}

by

M.(C)'= { ReR} | yB=C , CeR2°* } . . (2,10) -

-
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The equivalence between I1,(C) and {X(O)+Sv] is easily
understood in the following way: The initial condition X(0)
determines the conservation constraint vector C. The defi-
nition of Sv involves using the sfoichiometric matrix »
hich we have shown to determine the conservation ﬁatrix Y.
We e assured that solutions of the stoichiometric
dynamical problem starting inside [I,(C) will at any time

remain inside it. This is a conseguence of Postulate I.
D. Dynamics and Steady States of a CSTR

Let us now illustrate the ideas discussed in the
precegjing sectién by considéring a constant-volume, isoﬁher—
mal continuous flow stirred tank reactor (CSTR).‘The.CSTR.is
a bopular open system among expegimentalists who invéstigate
- exotic chemical kinetics like sustained oscillations,

multiplicity of steady states and chaos. Below is a list of

the quantities to be used in the analysis.

'R : vector (e R") of concentrations éfuéil molecular
o;'ionic species that are present at sdme-time
in the reactor A
T : vector (e RT) of concentratiohs of the (m-1)
* atoms and net charge (the&mﬁth cdmﬁonent)'
prgsgnt’at some time in_thé feaétpf;

y® ¢ (mxn) atom/charge conservation matrix
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v : vector (e RY) of 'true' chemical reactions, .i.e.
excluding the pseudo-reactions corresponding to
the flux of species through the reactor

ke : flow rate constant

The net charge in the reactor is assumed to be zero. The
m-th row of y% contains the ionic charges (including
algebraic signs) of the io?@c/molecular species. At any time

t ’
A(t) = y°X(t) ' (2.11)

with the m-th equation corresponding to the zero net charge:

E vyo. X, = 0 .
e .
This equation determines a hyperplane.paséing {hrough the
orlgzn and entering the positive orthant of R".

Assume a constant species concentration xf in the feed
stream. Due to the chemical’:eactions occurring inside the
reactor and the flux through it, the rate of spééies

1

formation is.
_ &

GR/dt = vv + ko(E -E) . T g2a2)

leferentzatlng equat1on (2. 11) w1th respect to time and

subst1tut1ng (2 12) gzves “the rate of change 1n the
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atom/charge concentration vector:
dAa/dt = y°vv + k07°(Xf-X) 3 (2.13)
But chemical reactions do not create nor produce atoms so

y°v = 0 . ) (2.14)
This equation is always followed by the set of r true
chemical reactions both for closed and open systems. Using

equation (2.11) into (2.13), we get
dA/dt = ko(A ~A(t)) (2.15~

which integrates to

Kot

a(t) = [A(O)—Af]e‘ + A - (2.16)

f

where A(0) is the atom concentration inside the reacton at

t=0 while A, is the constant feed stream concentration

f
corresponding to Xf, What eguation (2.16) says is that the
effect of the initial condition A(0) quickly disappears and
the state of the system is eventually determined by the

influx A .. In other words, the state trajectories rapidly

£
approach the man1fold def1ned by dA/dt =0 or A(t)sA , or jh |

terms of the molecular/1on1c spec1es concentrat1ons,
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v°(%X-K;) = 0 . (2.17)

It is now important to realize that although dA/dt = 0,

dx/dt may not vanish. We will define as the steady state of

the CSTR the set of X° satisfying dx/dt = dA/dt = 0

corresponding to the following system of eguations:

)
o

7°(Xf*X°)
.18)

I
o
N

uv(X°,k)*ko(Xf-X°)

Exampie 11.1

The following seven-step (reversible) mechanism fér
the autocgzalyﬁic reaction between ferrous ion and
nitric acid was used by Orban and Epstein‘'?’ to
simulate the:observed bistability in a CSTR.

~

Fe?"-HNO, System

Ry, -+ Fe'" + NO; + 2H" ‘7 Fe> + NO; + H;0
’,Rz:-, o Fe'* + NO, + H* ¢ Fe’" + HNO, |
Rs.ls Fe?® + HNO, '+ H* E,‘:Fé" + NO + H,0

é.,-. - . Fe** +.NO ﬁ'*;anq=; ~

Rs.»sl ‘, ZNQ;Af H;O :“ ﬁﬁbizf NO; +'a‘

Re,-s B 2HNO, © 2 Néf+'no,.¥ H,0'

Ry, NO + Nb;v+iaj  2. 'N02 4 Hﬁég
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There are 9 species and 14 reactions. Let X =
([Fe**}, (Fe>-1, [FeNO*"], [H"], [H,0}, [NO;],

[NO.], [HNO,}, [NOJ])*'. In the stoichiometric matrix
v given below, we give onfy the first seven columns
corresponding to the forward reactions numbered as
listed in the above table. The columns corresponding
to the reverse reactions are just the negative of

the columns of corresponding forward reactions.

o |
-1 -1 -1 -1 0 0 0
1 1 1 0 0" 0 0
0O 0 O v O O O
-2 -1 -1 0 10 -1
v = 1 0 1 0 -1 1 0
-1 0 0 0 1 0 -1
1 -1 0 0 -2 1 1
0 1 -1 0 1 -2 1
0 0] 1 -1 0 1 -1
- y

Let the atom/chérge concentration vector be A =
([Fe], [N}, [0Q], [H], [charge])'. The atom/charge

conservation matrix y° is

1 1 t 0 0 0 0 o0 0
0O 0 v 0 0 1 i 1 1
yo= o 0 1 0 1. 3 2 2 1
L oo0 0 172 0 0 1 0
+2 +3 +2 +}Y 0 -1 0 0 O

»

p—g

yv=0. . - " (2.19)

34

L oF
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The rank. of » is 4 and thereforél;hé‘rank of y° must be
5 which, in fact, is the case. This justifies the inclu-
sion of the row of y° cofrq;pondihg to the conservation
" of the'nét chagde ;n the reactof;'fhus,;phere'are only 4
independent speciés bgt of the 9 spe%%es. For example, .
we cén choosé Fe?", FerJ‘, H- and Naéas the independent
ones. The concentrations of the dependent species 'in

terms of the dﬁdependent'ones-are given by eguation

(2.17).,m

v ’ ‘ N
! (2
."‘

] é%fthe Dynamical Equations

E. Lihearizé?i'

It 1s réfely possiblé to obtéin closedfform solutions
for nonlinear differential equations. In contrast, the
theory of linear differe;tipl equations is well established,
and_the Qualitative pictﬁre of the trajectories around the
steady states can be determined using:certain tests. %n this
.ségtion, we present the fofms taken by the linearized
eqﬁations of motion for reaction networks.

Observe from the nonlinear equations (2.5) ‘that x° = e,

A{1,1,...,1)" i5 a particular steady state solution

-corresgqnding_tqAX:ﬂgsee equation 2.2). Let us express the
righg hand sidé of the dynamical equations (equatién‘2.5) in
térms_pf factors of (x-e,). For example, |

o };L.‘.- ﬂ.' . :\>>  ‘ - -
ax./dt = I, miy(x,=1) % Ep o g (agm 1) (xam1) 4 el (2.20)

1
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Let us assume that each reaction in the network has mass
action kinetics which 1s utmost bimolecular. Then eguation

(2.20) has the following matrix-vector form ({=x-e,)
dg/dt = Mg + (1/2)8'DS . (2.21)

Notice that (2.21) is actually the Taylor expansion of the
dynamical equations around the steady state e, up to
guadratic terms. |

We find that the Jacobian matrix, 3{(d§{/dt)/o§ (=M) has

the following expression:
M = (diag 1/X°)v(diag v°)« (2.22)
and the guadratic terms are given by

$'Ds = (diag 1/X°)v(diag v°){(diag «'§)k"'-«k'(diag 5)}§
(2.23)

-

The details in the derivation of (2.23) ére given in
appendix A. The ekplicit expres;ions for the compénents of D
are also given in that appendix.

Since, in generél ‘there are conservation constraints,
not all the equations ab;;e are 1ndependent. Below, we shall
derive exp11c1tly the set of 1ndependent equatxons. Let us

arrange our objects in the following way.
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The above notation mean, for example, that the first d
components of X correspond to the Indeperdent species, and
the rest of the components to the Dependent species. One can

solve the dependent species from the independent ones as

follows:
.\ .}\
gD = -(diag 1/x5)yb'71(diag 1/%;)"51
agD/agl = -(diag 1/x5)yb‘yl(diag\1/x;)“ . 12.24)

¢ o

The set of independent dynamical‘equatfgns 1s ﬁhen given by
\\ .
'Y
d§,/dt = (diag 1/x;)v1(diag v°){x‘—(1/2)x‘{§iagx5)4
(1/2)(diag x*§)k'}3 . o (2.25)

The linearized equations of motion in terms of the

independent species are

L

-agl/dt; Mo§ i "‘\(2.26)
| ) | | .
where - “ )
7 ' =
M, = (diag 1/K2)v, (diag ey (2:27)
kg = K+ RB(O5/081) L | (2.28)

~
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We shall refer to Kg as the generalized kinetic matrix.
In linear stability analysis, one solves for the

eigenvalues whicﬁ a;e the roots of the characteristic

polynomial a;sociated with thé matrix M

1 :

a, A . . (2.29)

J

The reader is referred to the book of Hirsch and Smale

P(N) = det(kl—MI) =

s Ma

O

'

[ -}

for a good infroduction to elementary stability analysis of
dynamical systems, a basic knowledge of which is assuméd in
this work. Clarke'®’ also gives a stability classification
of reaction networks.

-

F. Convex Geometry of the Steady State Velocities

In the nonlinear equatiQns of motion using the scaled
concentrations as dynamical variables (equation 2.5), the
"steady state velocity v*® appears as a pa%émeter; However,
dué'ﬁ stoichiometric conStféints,’v° cannoF.be ah arbitréry'
bara e };_There are some_relétionships among the components
of v° js given by the steédy state egquation |

\

v’ = 0 . T (2.30)7

The geometric interpretation of this equation is the

f
v

essential step in Clarke's discovery ofiextreme'curréntsl'Hé

N

AY

{.. - V\I
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found that any steady state velocity v° (which can also be
called a 'current' 1in analogy to electritél negworks) can be
expressed as a lxnear combination of these extreme Currents.
‘Equation‘(2.30) means that any solution v° must be
oréhogonal to all of ‘the rows of v (the rows of » afe

.vectors in Rr)y Let there be d linearly independent row

Vo

veétors of v./Then v°® must lie in a (r-d)-dimensional sub-

space S whi¢h is e&%ﬁbqonal to the d- d1mens1onal subspace
\ spanned by.-fthe row vectors of v. Since all the components of
¥ x
v°® are non- 6egat1ve5‘v must lie in the intersection of S

/and_RF‘bThi intersection is a convex polyhedral cone which

Clarke‘®’ callled the current cone, C,-

e

. .Example 11.2

¢ .
3

T

he

LY

In react1on veloc1ty space,.thF set of steady state

- veloc1t1es is given by the 1ntfrsect10n of the plane
def1ned by v,=vz+v, and the noh-negatlve orthant RI
N. ‘as 111ustrated 1n £1gure 2 1 *ote *hat the 1nter—;

sectzon 15 a cone WIth 2 edge vectors E' -and E’ ‘,'-
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Figure 2.1

The plene defined bg;;y, =V +V3g in velocity space. The

intersection of this plene and the non-negative orthent |

(R3) is the-current cone, Cy. Note thet there sre two
extreme edges of Cy, namely, E'and E2 All vectors in

Cy are expressible as non-negative linear combination

of these extreme edge vectors.

. .



G

: 41
N

| - \

Let there be f edge vectors {E',E’,i..,Ef} constituting

the frame of the cone C,. Then every v'e C can be expressed

—_——

. AN
as a non-negative linear combination of thége edge vectors:
\
\

or in matrix form,
v® = Ej . (2.31)

The rxf-matrix E is called the current matrix‘*’ and j e Rg

is the current parameter. The explicit definitipon of the,
current cone can'now be given
£

Cv = { v°eRS | v°=Ej , JjeR;

(2.32).

. - ) \ '
In the formalism of stoi ichiometric network analysis due to

Clarke'®’, j is one of the steady state parameter vectors;
the other parameter has'components whlch are the rec1procals

of the steady state concentrations:
ho= 1/8° = (1/%,°,1/%s°, .50, 1/%,°) . = (2.33)

'_Thus,'the’full domain for, the sfeady~state parameters'(h j)
(also ‘referred to as convex parameters) for the general
stOxchzometr1c dynamxcal problem (2 1) ig g1ven by the

‘convex set
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C, = Rl xC ’ ' (2.34)
whose dimension is n+r-d. /
The current matrix E is determined by stoichiometry (») -

as indicated by the relationship

vE

n
o

(2.35)
This equation is a direct consequence of eguations (2.30)
and (2.31). an APL algorithm called’ CURRENTS, already
published‘®’, will determine E for a given ». As example
I;.2 illustrated, the columns of‘E correspond to the extreme
currents comprising the‘network at steady state. In general,
every positive steady state of a network is a non-negative
linear superposition of its extreme_chrrents.'To a given

" .extreme current corresponds an extreme subnetwork whose

component reactions are indicated by the non-zero elements
_‘in the corresponding column of E. The following example -

hopes to illustrate the interpretation oflE more clearly.

Example I11.3 The Edelstein Network

-Edeletein"°’ firet ptoposEd‘the following‘simple
\ b10chem1cal model that generates b1stab111ty (that | a
. is, 3 steady states - 2 stable 1 unstable) The |

‘substrate_s catalyzes 1ts own produthon (autocatare‘

elysis) andAthen‘getsfdegraded'by the eﬁzyhe E.
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Network N,
!

“R,.R_, A+ S 7 2s
R.,R.; S + E ¢ ES \
R;,R.4 ES 2 E + B

ES is an enzyme—substrate complex. The overall reac-
tion is A ¢ B. Thérspecies A and B will be consi-
dered as external species in the analysis below. Let
X = (S,E,ES)' and k = (k,A, k., ka, k.2, ki,
k.,B)'. The stoichiometric matrix v and the current
matr*x E generatéd from v are given below.
) .
1 -1 -1 1 0 O

v =10 0-1 1 1-1
0 0 1-1-1 11,

f N
1 0 1 0 O
1t 0 0 0 1
E = o 1t 1 0 O
0 1 0 0 1
o 0.1 1 0

0 0 0 1 1)
. - .

The total enzyme concentration is conserved as

representéd by the 1x3 conservation matrix

,

y=1 . | o |
The extreme subnetworks corresponding to the columns
 of E are sh@ﬁn in‘figute 2.2.‘Ahy.éteady state |

O

(2
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velocity v° of the network can be expressed as a
non-negative linear combination of the velocities of
the above extreme currents as given explicitly by

equation (2.31). = )

G. The Current Polytope and a Topology on the Network Steady

States

Consider a change in the (h,j) parameters where h is ,

fixed and .j is multiplied by A>0. (This corresponds to a
motion aléng a ray j in Cv)‘ The corresponding change in the
rate constants 1s Ak, that is, all the rate constants are
multiplied by the same amount. This‘operation does not
affect the value of the steady state X° (= 1/h). This means
that h and j can be assigned values independently. It 1is

also clear that any cross-section of C, contajns all ‘the
: =

psa—

information available fromvthisocone. This (r-d-1)-dimen-

sional cross-section of.tv is called the current polytope,.

N, defined as follows

m- = {fv}-| v°=Ej , e'v®=1 }'.. . - ' . ‘(2'36)

\

The vertices of n, correspond to the extreme currents. The
structure of Hv, that'is[ the adjacency iélatidn_among the

_ ver;ices; the“edges, 2-faces up to'(r-d-z)fches can be
: determinéd’usingralready existing APL prbgrams.aue;to v6§v

5 : g"'f;f;iﬁ

 Hohenbalken!''’, . -



Figure 2.2 |
gure .

The S extreme subnetworks corresponding to the 5 columns -

of the current metrix E (given in the text) for the Edelstein

network.

45
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Example I1.4 Hv of the Edelstein Network

After normaliiing the columns of E ( .E Eim = 1 for
all m ) for the Edelstein net;ork in é;; preceding
example, we come up with the structure of the
current polytope, nv, as shown in figure 2.3. ﬂv 1s
3-dimensional and is not a simplex. Any point inside

the polytope can be expressed as a linear combina-

tion of any 4 vertices. =

In sorting cbmplex mechanisms, the structure of nv 1s
useful in the following way. When one reaction listed in the
reaction mechanism is known experimentally to be very slow,
‘then the extreme currents involving this reaction must have
a small contribution to the steady state. The point inside
nv corresponding to the steady state parameter j must be far
from the vertices cérresponding to those extreme currents.
The dominant extreme currents are those represented by the
remaining vertices. These extreme curfents»coﬁsist entirely
of reactions. that are relativély‘f:st at steédx\stéte. Two
distant e;tfeme currents or vertices of I, cannot be both
important under the same conditions.vThﬁs, nv.conbains
topological information that forces us tO'méke'either-or
'decision about thevimportance of 5ubset5‘qf the reactiéhs in
‘the ne;work.« | |

Stoichiometric relationships among major reactants and
N T . o : . L ' ' I o I\
products are often known experimentally.- Sometimes several B

9
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¥

Figure 2.3

The current polytope Tl,, of the Edelstein fhetwork is a
bipyramid as shown above. The vertices correspond to -
the extreme currents and the shaded triangle represents
all detailed-balanced steady states (j;=Js).

47
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different poaeible stoichiometries for the overall reaction
are\ccnsistentﬁwith the mechanism. These stoichicmetries are
associated directly with different parts of ﬂv. Thcs, expe-
rimental information about the overall stoichiometry can
also help ldcate.the dominant extreme currents, or equiva-
vrlently, the dominant vertices of Il . These 1deas will be
.applied in Chapter“V where the dominant extreme currents in
the peroxidase—oxidase reaction mechanism are determined
;upder bjstable‘conditions. |
. e
AN

H. Some Classitication of Steady States and Corresponding

Regions in'ﬂv

S
LT v.

A complete‘steady state'analysis of a given reaction
network would entail a desctigtioﬁ pof all regions 1n the
steady state cone C defined by (2 34). The current polytape
ﬂv serves as a ba51s for the analysxs. When there are no
‘conservation constratnts,_equatlons (2.5) and (2.31) say
that the steady<étates“caaete‘Tglly\desctibed by the current
parameters. 3 When some conset&ation‘cenditfons exist, then
the values of h matter as shown by the dependence of the
Jacoblan.matr1x M, on both’h and ' j (see equation 2.27),
this‘case,_regions of nv.eﬁeuld;be analyzed'fqr eéch fixed
- value of h, In'this‘section, we give t£e~ﬁegioas in~ﬂ
occupled by certain. steady states called detaxled balanced -
-

'Steady states ‘and complex balanced steady states Y and

then outllne an-approach for further characterxz1ng other
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regions in ﬂv.

Detailed Balanced é;gady Statés

Isolated reaction systems always.evolvé towards a
unigue steady state called the 'éhemical equilibrilim’ state
thch is already well'cha?acterized by classical thermo-
dynamics. For examﬁie, one could define Vq:jOUS‘pOteétialS
(e.qg. chemical potential, u), or’ state functions, each
having a unigue extremum cérresponding~to the equilibrium

/

point. The approach to this equilibrium péfpt fs usually
monotonic but can aiéo be a damped pécillator§ one in some
cases. The globalrstébiljty of-tﬁis unigue equilibfium point
for isolated mass action systems has .also béen proven
analytically. Shear“", for example, showed that for
1solated systems goverﬁed by mass-action réte laws of
arbitrary order, the equilibrium pd&nt is unigue and

asymptotically stable. This conclusion follows from the

existence of a Lyapunov function defined globally in phase

~space and having a unique extremum at the equilibrium point.

_ Another important characteristic of thermodynamic chemical

equilibrium is the detailed-balancing (DB) of every elemen-
tary reaction..This means that for every‘reaction (which, in
general, is reversible), the rate of the forward reaction is

.

equal to the rate of the reverse feaction.

Definition 2.1 . wd

Thehsteady state X° is a DB¥steady state if every-

e L



50

reaction R, has a reverse R, (j#zk)/and v,° = v, °.

For a reversible network with a totgl of r reactions
(reverse reactions included), the set of detailed balanced
currents is a subcone CE of'dimension r/2. The corr€sponding
polytope Mg is a ((r/2)-71)-dimensional simplex because the
vertices (or the corresponding columns of é) are 1indepen-

dent .
Example I1.5
Consider the following reversible triangular

network: 5

Network N,

R,,R_, A2 B \
\

R;,R.; B J2C

R,,R., C?A

The extreme currents are shown in figure 2.4 beside

the corresponding vertices of nv. The subcone of DB

. ™ steady states, Il
& A

. E’
J oS ‘ :
;o the shaded triangle. In terms of the rate constants,

is 2-dimensjonal as indicated by

“detailed balancing requirés that kikzky=k_ (1 k.2k_5.,

Note that any set &f k e R® will give a unique

\

positive steady state for the network most of which

" -is non-detailed balanced. For example, the network

o



Figure 2.4

The current polytope (TT,,) of network N, is a bipyramid. The
shaded triangle represents the detailed-balanced (DB) steady
states (vertices E2 E3end E*). The corresponding extreme .

subnetworks are shown at each vertex.

&

-

-
1~
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1s at a non-equilibrium steady state when
Vi=V=V,#V.,=v ,=v_, correponding to the following

constraints on the raté constants: k,k , = k,k , and

Complex-Balanced Steady States

Model networ%s, or networks that are valid approxi-
mations to complex mechanisms under certain specified
conditions, are often irreversible. These erworks have no
DB-steady states. However, we can extend the meaning of

‘'reversibadity

and thereby characterize some steady states
/ ;

that have praperties similar to the DB-steady states of
reversible networks. Observe that each revéfsjbie reaction
is a 2-complex cycle, that is, a closed patg'g£ feaction
arrows (of the same direction) that originaté; fpém a
complex and terminates at that same complex. fn\séﬁe irre-
versible networks, n-complex cycles (n22) can bé;fqgnd. A
_spécial class of networks (which is a general{zafiéﬁ Bf, and

including, reversible network®) have been investigated by

Feinberg, Horn and Jackson'' ?:'2-29-2%) yho described them

as weakly réversible.for having the propefty that each*ahd
- N -

every complex belongs to at least one n-complex cycle (n22).

One can view any given reaction network as a o

J

'unimolecular' network with’the*complexes Ciyeeo,C,
considered as 'species'. To do this, it.is necessary to

associate a 'concentration' for every complex C, which we

—

can define as

. .
5 -
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vexample (Example I11. 5) the~steady states def1ned by v

~_t10nsh1p 1s ngen .by

53.

[c,)= ‘I"l1 (x2)%)
. [
when the j-th reactiéhfinvolving C, as the reactant complex
has.mass-attion kinetics. In the equation above, X{ is the
steady state concentration of species X,. To this 'unimole-
cular’' network is associated a stoichiometric matrix W

having only 0,1 and -1 lements. When the network is

complex—balanced, the’ complexes have steady state ‘'concen-

trations'. This occurs when" the steady ssates X° are

complex-balanced (CB) steady states.

¥ Definition 2.2

ER

°X°"1e a CB- steady state when

wv(x* k) =0 . . | . (2.37)

-,
4‘ . . . . —‘ ) . ) , t'-
.For reversible networks, DB-steady states are also

.

CB—steady states but not vice~vefsa. In the preceding

]
< .
[

£V, # v_1 = v_z‘='v ». are CB- steady states but dre not DB,

‘All the steady states of thlS netwbrk are CB. In fact all

steady states of un{molecular networks are CB because v‘E~g;

The sto1ch1ometr1c matrlx v 1s of course d1rect1y

-‘related to the cOmplex sto1ch1ometr1c matrlx W The rela—

Ceeme, L e e
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The nxs matrix Y is called the complex matrix whose columns
®

are the s complex vectors (or the stoichiometric coeffi-

!

cients of the species in the complexes)

The factorxzat1on of v (which comes about as a result
of the introduction of the concept of a ' complex') also

allows us a way of subdividing the current cone C_. CB -
>
steady states, if they exist, are found in a sub-cone of Cv

-4

defined by'the set
‘ i
C = { v® | Wv° =0 } . : "(2.39)

Clarke (ref. 4, p.78) has shown that the difference

between the dimensions of‘Cvmand"ch is actually the number
. ; ’\
called the deficiency (8) of a network which was introduced

L3

by Feinberg, Horn and Jackson"'?""2°‘zf’ and was used to
.put networks into broadvclasses believed‘to have common
.dynamlcal or static features. If. the rank of W is (s-l) then
. the dlmen51on of C is equal to r- (s~1) where s is the

number of complexes and £ is the number of '11nkage classes

.or d1sconnected p1eces in a react1on d1agram where each

J7‘ comp1ex appears no more than once. (The followzng example

'wxll ;llustrate thls). Thus,«the deficiency of a network 15]‘

3 dimFCV-dim Cep Ny L
s-4-d . . o (2.60)

o
]

5
n
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where d is the number of independent species (= rank v).

Example 11.6

A standard reaction diagram‘'?’ for the Edelstein

network introduced in‘example 11.3 is given below.
A+ S 7 2S

S+EZESZEG+B

-~

-

There are two disconnected pieces and therefofe £=2.
Note that the reactions on the first line involve
the complexes (A+S) and (2S), while the reaction on
the second line involved the complexes (S+E), (ES)
and (E+B). The network is disconnected because no‘
complex 1is common to fhe two sets of coﬁ;iexes. The
dimension of C, is 4 and that of C.p is 3 giving a
deficien;y of 6;1. From equation (2.37), when j,; =
js, the steady states are CB. In the’current

polytope shown in figure 2.3, the CB steady states‘

are located on the median plane of the bipyramid. =

3

/ Deficiency zero networks are therefore networks whose.

| ' ' : : ; |
. steady states are all CB. Horn, Jackson and Feinberg®’’

Eprovea'a theorem describing this kind of netw64ks; A
i

|statement of this theorem is incldded here because of its

importance.  * -

- - — - — o ——— = -t

"”’"Reference'} gives é-pfoo{ of the zero deficiency

theorem.
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The Zero Deficiency Theorem.,‘'' ?’

Let N be a reaction network with 6 = 0.
a) If N is not weakly reversible then, for

arbitrary form of the kinetics, no positive steady
f ; n+r-d
state exists for the network for any (C,k) e R.

and no cyclic trajectory in concentration space is
possible.

(b) If N is weakly reversible and the kinetics 1s

mass action, then there always exists a unigue

[

positive steady state for -any (C,k) e R?+r-d

which
is alsovasymptofically stable ; furthermore, no

nontrivial 'cyclic trajectory in concentration space

is possible.

In general, CB steady states are a}ways globally asympto—
tically stable and are the only steady state pOSSibie for
the given set of parameters (see Theorem 6A of reference J
13). For other parameter Qalues, the same network might have
'_non—Cé steady states. These‘steady‘states-are4points of'Cv
that are not in ch:_‘ |

" For networks’with'several‘linkage_classes (£>1) but
<each'iinkage class ﬁaving a deficiency hot excéeding T,

'Feinbe:g €1) has offered the following theorem:

‘ The.Deficiency One Thedrem. (Feinberg''’)

Let N be a'teaction-network‘kith a deficiency § And

- £ linkage clasées. Lgfﬁé;'dénoteithe-defiCiencyvof
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the i-th linkage class; and suppose that both the

following conditions are satisfied :

IA
—_
-
]
—

(1) &,

(i11) 6

»

L]
™

I1f N is weakly reversible and the kinetics 1s mass
action, then a unigue positive steady state exists

for every (C,k) e R?+r~d.

Example I;Té

The following example was provided by Feinberg“'’.
Assume that the kinetics is mass action for the

.‘ggllowing reversible network:
b A

The defiéiency ) oflthé network is 1. The three
‘1inkégé,élasses showﬁ aboyé have_défiéiencies 1,-0
énd_O; résbeé@évely (from top'to bottom).'Thus, the
reéui:emgnts‘of theknﬁficigggy“One'Theqrem are
 satisfied and we conclude that there exists
ptecisbiy.one‘positivglstégdy state_for;qveﬁy set of

.,‘ . . o o,
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parameters (C,k). =

Stable and Unstable Regions 1in ﬂv

Stable and unstable steady states, in principle, can be
determined using expressions involving the coefficients
a,(h,3) (i=1,...,d) of the characteristic polynomial P(}A) as

in the Routh-Hurwitz''®’

criteria for the number of eigen-
values with positive real parts. For example, a necesgary
and sufficient congition for linear asymptotic stability of
a steady state is that all the Hurwitz,determinaﬂ%s must be
positive. The last three sections of this chapter will
invest{gate the role of the d-th coefficient of P(X) in the
existence,'uniqﬁeness or multiplicity of steady states
ingluding the condition for the presence of a contiﬁuum of
steady states. For example, it can be seen right away tﬁat
if at the steady state (h,j)} we have a,(h,j)?O, then there
must be at least one positive real eigenvalue therefore
making this steady state exponentially astable. It»wili‘
also be seen that a, . 1is relevant to the singularities of the.
steady state man1fold The hypersurface defined by a,(h,)) =
-0 kan be plotted 1ns1de n for a given‘h and thus enabling
us to see the reg1ons where a¢>0 and a,<0 Chapter vV will
g1ve an example of such a calculatlon u51ng a realistic

complex ne;work.
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1. Boundary Steady States, Stoichiometric Explosions and

Extinction

We say that a chemical species X, explodes if its
concentration increases without Jdimit as time goes to
infinity. It becomes extinct if the limit of the
concentration is zero. The occurrence of boundary steady
states 1s closely associated with explosion-extinction
dynamics. In concentration space, a steady state‘X° 1s in
the boundary if at least one of its components, say X¢ is
zero. This vanishing of X! must not be solée€ly a conseguence
of the vanishing of some rate constants. (Recall that we
have required all the rate constants to be'positive). TS
understand the several possibilities that may lead to
explosion or extinction, we study some simple examples
below. Networks N; and Ny exemplify networks that can only
have positive steady states if a strict relationship among
the rate constants is satisfied, otherwise explosion or
extinction occnr. These networks'possess an infinite nnmber
(a contlnuum) of pos1t1ve steady states for a spec1f1ed set »
of rate constants following the requ1red relat1onsh1p

~ Network Ng exh1b1ts boundary steady states. Exp1051on or
vext1nct1on of certain spec1es in a network may also depend .
on the initial condit1ons as network N,‘w111 demonstrate. \

F1nally,'network N. is one 51mple network that embodles

almost a11 of the’ above features under d1fferent cond1txons b

on the parameters. '?
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Netwbrk N,

R, X + Y ~»

Rz - X

R, - Y

dX/dt = kz—k|xY

dY/dt = k,-k,XY ’

This network has positive steady states only 1f k,=k,. When
3 .
this is satisfied, dX/dt = dY/dt and X(t) = Y(t) + constant.

Notice that although rank v = d = 2, thetﬁrajectories on the

X-Y plane are restricted to lie on a straight line (see
figure 2. 5(€)) On the phase plane, there is a continuum of

steady staY%s lying on the hyperbola defined by

o

X° = ki/k,¥0. (
whenlk3=k3, the eigenvalues associated with the linearized -
dynam1cs are 2,=0 and X.=- (x°+¥°)<o Hence, the steady
‘states are marginally stpble. When k,#k,; 50‘$teady statg fs,
possible and explosion and -extinction occuré as shown in
fiqpre é;S(b);(t);'Note that «,=0 for the poéitive steady
states. If we" plot the steady states of any one %pec1es
agaznst k. ahd k, (ky does not affect the qualxtatxveb‘.

_pxcture),.weﬂget_the-p1cture shown. in flgure g,S(d). On one



X (1)
1
(a) K;,= Kz
| X=Y=0
0 Ty (1)
X(

(b) Ky> Kg

0
X (t
4.( ) (C) ‘ch K.; —
S Lo — v ()
Figure 2.5

(8): For Network Ng, 8 continuum of steadg states occurs oQ

the.phase plane when ko= k3. For a given initial condl-

tion, the trajectory is a straight line.
(b)-(c) : When k, = k3, explosion and extinction occurs and

"no posmve steady state 1s possmle

61



Figure 2.5 (d)

The steady state manifold M,of network Ns is orthogonal
to the k,- k3 parameter plane. A continuum of positive
‘steady-states exists when k, = ks , otherwise one of the
species becomes extinct whilete other explodes. .

o 3

#

62
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side of M, there is explosion while on the other side

extinction occurs.

Network Ng

R, X » 2X

dX/dt = (k]‘kz)x ' ,

This network has an infinite number of posifive steady
states X°>0 when k,=kzl If k,#k,, thgre is only oneApossible
steady state, i.e. X°=0 wh;ch is a bounaary steady state. If
k,>k,, explosion occurs for any positive perturbation of )
this boundary steady State. If k,<k:, the boundary steaay
state is stable, 6r in other wordg, extinction occurs. We
reproduce tﬁe figure‘given by Clarke‘®’ in £figure 2.6.

Again, note that a,=0-(d=1) and A,=0 for the'marginally

stable positive steady states.

' ’ . o

Network Ny
R, X + Y -9 /
R, = X + 2%

"R, " -OYI
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XO
RN
D
0r7A77 K
A 2
) v '
k] k]~=k2

Figure 2.6

A conmum of steady states exists whenk;= k, fo
network Ng.'As for network Ng in figure 2.5, M is
orthogonal to the parameter plane. On one side of M
explosion occurs while on the other side extinction is
the case. Mathematically, boundary steady states exist
whenk =k, ‘ ' .

4




dx/dt = k,X-k,XY
dY/dt = 3‘k,XY
/”\\\
There is a unigque positive steady state (X°,¥Y°) = (k;/k.,

k,/k,). The Jacobian matrix associated with the linearized

dynamics 1is
]

M =‘ 0 _k1k3/kz
' -~k “kiky/k;

and the elgenvalues are
At = (-k,kyt[k,*k;*+4k,kyk,*]"'" ?)/2k,

which are both real but of opposite signs. The steady state
is thus a saddle point. The phase portrait looks like figure
2.7(a). Figure 2.7(b) gives a.plot of the:steady state Y°
against k, and k,. . |

For any given values of k, and kz, there 1s a unique
Y°>0. Note that the surface of steady states totally
prOJects onto the k,-k; parameter plane and ‘does not divide

the plane into- regxons where explosion and extinction occur‘

for network'

N,, for any (k,,k;,ks), it' is the injtial condition

(X(0),7(0)) that will determine whether or not explosion or

extinction occurs. There is an invafidnt curve vy, (figure
2.7(a)), called the 'stable manifold', that separates the
initial cond1t1ons lead1ng to explosion from those that lead

y

to ext1nct10n. In this case, ay4=a:<0.



Y (V)

(a)

(b)

Flgure 2. 7

a

‘(a). A representatlve phase portrait of network N7 near the

~ steady state which is a saddie-point.
(b). A cross-section of the steady state manifold showing

the steady state Y° against k, and k., . R

1
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The next networ& 1s one of the extreme currents of th%f

P B
e Oregonator"’ which is a model for the oscillations obsér&e@/}(
; in the Belousov Zhabot insky reactxon"s’. //,
o "L . . oL . N (‘
* " Network Ny . . .
. + . . ] N ey
e : .
R, | . .X - 2K+ 21z T
Rz';/’f 224 Y S R
» R3-~ o x + Y - A ) ! ~. - A, .
‘ A . N IR .
o : L : ..
i ' . The trajectories 1n concentrataon space are restricted T
" to lie on the plane defined: by i‘”_,". et T
‘ “ : A . e ‘ L R S .
. R S Al B s :
L f-2 2 1Mx,¥,2) = G, comstanti T s ;
’ - ' = '-. .: ‘ . .‘ o o - :,‘:’, U o . . R o \ , ' ;'-f’;
o~ ‘_'. ' v ."7 N (’ l}_o.“_u G ) e . . - :‘vv '.‘_l .-
'ﬂLet v1=k X, vz-k z and v,hkng ”nme that reactxon R; is : .
4; Lot o w, ) .;

;%ssumed fxrst o?der w1th respecb %6 z. Chdos1ng X and Y as

.'-‘H"vv- - .B‘ e a i O

'sthe 1ndependent spec1es,,the 1Hdepquent klnetlc equatlons
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Sz = (.xZo,'Yzo,Zzo) = (k2(2k1'k3C)/k3(2kz_k|), k1/k3'

k'1(2k|—k3C|)/k3(2kz"k1) ).

It is required that 2k.#k, otherwise X,° and Z.° blow up.
&
Note that S, and,S. become identical when k, = k;C/2 or when
2

¢
the iniF{al co ntrations of the species are such that C =
2#,/53. Since_the steady state concentratiornrs are always
nonlnegatiYe, there are three caseg to consider: (paraheter
sets outSide‘theSe.caees will correspond to the case where
‘ non—neéative steady seates are absent) ‘

(i), 2k ,>k,C and 2kz>k,_

(iif.  2k,<k,C and 2K ;<k |
Y (11 2k, =k,C (2katks) o ‘*

- %4

QU

\"_L1near stab1l1ty analys1s about S, and Sz g1ves the phase .

S
s

portralts shown 1n f1gure 2 8 Observe that golng from case

(iiia) to case (1), s k, 1ncreases beyond k C/2 (ma1nta1n-' 

..

'1ng k <2kz), -a stable node b1furcates from ghe boundary

.
i

jsteady "state wh1ch now has become an unsfable saddle poznt f{

s

1Whem %k /decﬂbases‘below k C/z (ma1nta1n1ng k >2k ) as ’j};M X

‘-[Frepresented by the process case (111b) - case (11),-the e

: _ e
- boundary¢steady state becomes a stable node, and an unstable5&,

¥fﬁsteady state bxfurcatxon exh1b1ted by network N. asm
. NS
'saddle node b1furtat1on. 51nce we' are presqntly 1nteresqed
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X ' X (1)

[N

TG 2kp> ky> kgCl2 (ii) 2kp< k1< kgC/2

Y () . - Y ()

‘C/l2

o X (1) X ()

(i 2 k= gorz. L O By kg

FlgUf&ZB - Lo

: ;Phase portrmts of network Ne for the different cpses as .l
- _:;,_..5'.fi-lndlcaied Two steady states Sy and Sz exist for cases (i) -
o and (i1); ortrg 8 boundarg steadg state exlsts for cases (ma);j
..and (mb) IR NIRRT S - .

.
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‘steadg states approaches a veftxcal p051t1on thh respect to'

70

the ones to look at. For the intermediate case, case (iiia

and iiib), we have a, = 0. In case (1i), for a given injtial

~condition X(0), when the initial Y(0) is below the invariant

stable manifold y, (shown in figure 2.8), species“fdggcomes
) N
extinct; explosion occurs otherwise. The signs of a, for
, : ’ <
steady states S, and S, for the 3 cases are summarized in

.

the table below.

sign of a,

case (i) (ii) (111)
S, (-) (+) 0

Sz (+) (_) (51552)
It is interesting to look at the graph of X° as k, varies. *
This is done in figure 2.9. When 2k2 = k3C/2,.the boundary‘
steady state S4 changes stab111ty at ky, = 2k, = k,C/2 where

there also exlsts a contlnuum of p051t1ve*¥teady states ;

(orthogonal to parameter space (flgure 2. 9(b)) In f1gures_

\

2. 9(a) and (c) as kw approaches 2k2, the branch of p051t1ve; -

;he k, axis, and ad prroaches 0. At k,=k C/2 thls same -

’branch is perpendlcular to the k, axis and a,'1s 1dent1cally?:if'

zero. - o ‘:7‘ . f' o _’4;51; N

o . K . e

o . . ] s . } Yol —_—

N . : N N o s . °

» L . . B - . t,\‘t . .
IS

Let us now 3ummafgze the features of the above networkS'
-,:that are respon51b1e for thg1r explosxon or: ext1nctxon

_dynamxcs When a,EO as 1n networks N; and N., thexsteady

W K Tes e S « A . : ’

-




L indlcated

(8) 2k 2> K C/2 , (b) 2k =kC/2 and (c) ?.k <k C/2 for’

71

XO
T stable | (a)
- S uns?able |
‘ |
l‘ } 4
|
[
I
i
l -
: y
Ju— - K
0 k 1
XO
~(b)
] ‘
~
" |
s K X ‘
kzC/2 =2k," ) ﬁ‘{
.3 T2, o
X © o ‘
-~ . ’l .
IR} ® .
_ , I\
B .2\ . :
. ‘}/\ ) : B \‘u
o “ ~_ .} /
. | .\;\\ |
: N 5. J_ oy ; ’A k ' !
L0 kg T k3C/2. Ky
B -Flgure 2.9 _ ‘ | _
‘Graph of the steadg state X° as 8 function of kyfor t‘ng cases *

network Na Stable and unstable branches of steadg states are g

-
I
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~—
'

state manifold M in the positive orthant is orthogonal to

the parameter space. In these networks, a relationship among

the parameters (k,C) muet'be satisfied fqr positive steady

states to exist; there is then a continuum of steady states.

Furthermore, the relationship among the parameters divides

parameter space into two reglons one corresponding to

exp1051on dynamlcs and the .other .to extlnctzon dynamlcs.“ . /
As demonstratea by networks N, and N,, the vemiSHing

(identically) of &, is mot a necessary requirement for

explosion or extlnctlon dynam1cs. When the p051t1ve steady : “ :

e
N e

state is unigue but is an unstable saddle point, there is
exploszon or extlnctlon of some species: dependlng on the
initial conditions. Note that depending‘onuthe orientatron
of the stable manifold y, (see figures 2.7 and 2.8), all

species may explode, or all.may go to extinction, or some
. B . ..‘Q_‘ +
may explode while others become extinct.,

J. Sufficient'C9nditiens for .a,=0" -

-

L

‘In general,:if a,-vanishes at the parameter p, the’

tangent plane on Mfat5the point (X°;p) 1s orthogonal to the

vtparameter space.;In part1cu1ar,_1f a, vanzshes 1denticaxly,4
"then the whole of Mlls~a hyperplane that 1s perpendiéular to o i
u?ethe parameter space and therefore p051t1ve steady states

‘ ’ex1st only when a relatzonshxp among the parameters 1s  Hf“f"?:5’~

B O I
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) 7 3
-4
The d-th coefficient of the charaeteristic‘equation

(2.29), a4, i¢ related directly to the determinant of MI
whose explicit expression is given in equation (2.27). We
have : "

ey = (-1)%det(M)) . o €2.41)
Thes, using equation (%.21),

a,=0 i* and only if

det[vI(diag vﬂ)xé] = 0 o T - - (2.42)

where v, are the d 1ndependent rows of v and g is the
generalxzed klnetlc matrix deflned by equat1on (2. 28)

Equatlon (2. 42) means that there should be a ‘non-zero vector

»quf such- that | ‘ } ‘ - \‘
Y o T f -
- vpldiag vPikgg = 0 . Tt e, (2.43)

s

. ' ;
- Lo X . . 2 . ! :
e, R . . . B . P ¢ .
. . . .
. . .. .- . . ve ‘
B : E . s

=

~ impediately we seel that a,=0 If h b
._'.Aos.;-':;n», o . . ,u: ‘ R . : u,“ .~ i} "“- - . A | ‘ . . .' \V"“ ‘ . afv;':;“v:
(1) gqf 0 tor i Lt e k2.ea)

v" S

whete erv1s a %ector wbose r components are(all to F

Condltzons {1) and (11) are suffxczent coﬁd;tIOns for the

van1sh1ng of ay’ 1denb1caiiy cOnd1t1on (11) was obtalned

':‘gﬁ:;-ﬁrrag, T ::‘” ',*f,‘vv.:;
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from » v°® = 0 which is always satisfied for a steddy state

ceondition. Also, note that (diag v°)xéq=0 implies conditien

Sy
s . o 4 . N .
(i) when #&° has strictly positive components.
Network Ng considered above falls under condition (i)
with g=(1,-1)'. Network. Ng satisfies condition (ii) with
-~
g=1. If there are no conservation constraints, then
conditicdn (ii) is satisfied when all the reactions in a
~nhetwork have the same order, 021 . Having the same order
' with no consetvation conditions means’ )
9
. . _ . ,
S k'e = oe_ . .
7 @?—
. . ¢
Take q = (1/o)e'n and get
) - | -
kg = e. . | | ©(2.46)
C1f there are some conServatlon constralnts even in,an'
r .

150forder network there does not necessar1ly exxst a

vector.q such that (2 45) is sat1sf1ed

T . 4 | ‘ ) .
S ”.cons1der network ﬁ} below.; L
3 Network Ng , IR

4 :-“_ Ry . R=Y

Rz"«‘?'?:".‘ .

,‘ . ) o . [ - i . . o i ) .
R,‘ z-»x I TN .
R IR T *
. . . - ‘..:'v A
L oy Y T ~ :
@ . R L - B "'A.
R : ¢ 0
{ e .
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There is one conservation constraint:

& “~ ;

;
<

75

3

y(X,Y,2)"' = C , constant
with y, = (1 1)
and the kinetic matrix 1is

1 ' '

1 0 O * ~n%
k =10 10

0 0 1 7

W-ax
. ) L ]
Choose X and Y as the independent species. Then N
- = ]
Ty (1 13, Yp f]) )
x. = [100] ., ko= (00 1)
I [o 1 o] D
A .
and
1 0 S ~ ~
0 1 . . o “‘ )
. _xo/zo _Yo/zo s NE

No q exzsts such that xgq = e,. "In fact, az¢0 and there 1s

always a unique steady state for any g1ven set of p051t1ve‘

. v/,;érameters, -

K. Networks 'vll_i',tho—utﬁ,‘E’FPlOsi‘on or Efzti’h‘c-tion' D‘;*aniiés-ﬁ :

Denote by N

&

~ . . " . '

the‘set .of netwggrks havmg no spec1es

that explodes or 'bnecomés extx,nct 1n a sense str1ctly defmed

‘ .

7‘!

‘as follows. Letlx. (“1- ,..,n) be the concentrat:on at any

: N L ) .
. .. . & 1
I*‘i‘ - - SR L



‘Theorem

dxmens1on. Append1x B g1ves some details on the derxvatxon

' of thlS equatzon. An 1mportant consequence of (2 47) 15 the

,‘:’ . B '\ } - S N . “. ‘ ..‘ . “"‘_ :- ’. \ . o “ ‘ -,

time of species i belonging to the network Nanee. Then
(1). there exists a finite number ¢,>0 such that
1f X,>¢, for any i, then dxn/df<0) and
(i1). there exists a number e,, 0<e,<e,, so 'that
whenever X,<e, "for any i, then dx,/dt>0.

L 4

A tdpological'theorem éalledjthe Poincare*Hggj-Index
"7”’states some nesfﬁietions,onﬁthe'numben and‘types
of posi;ive‘steady states for any NeNﬁee' Tnis theorem is
concerned di;ectly with hyperbolic i}eady states. A steady
state is deScrdbed‘as hyperboiic‘if all of its aéedciated,
exgenvalues have non- zero real parts. A consequence of the

Poincare- Hopf Theorém descrxblng the: steady states bf N e |

Nnee.ls the follew:ng :‘vn
. p | ﬂ ) - . v' ‘ F. . ‘ . " - .. ' ‘ ‘, ‘ . )
(-7 =1 .. PR (2.47) v ¢
é:] . ‘ ) . . ] s [
where p 15 the tetal number of 1solated steady states and n ;f ‘j

1s the number bf e1genvalues w1th posxtxve real parts for

| the j-th steady state. Equatzon (2 47), applxes to any ” .

C ks
fptad,

-

follow1ng R .',*_",w;,: ‘_e o ‘d; ; L

e

For N‘e N and hav1ng only hypetbol‘k" '




L]
The simple prodf for this statement is as follows'. Let there
- - . . o

> PR /

be s stable steady etates among the p steady states.

EQuatfon'(2.47) implies

s+ 0. . (=) =T (2.48)
e «. . _‘
» : ‘ L
where the first term on the left- hand side comes from the s

A

steady- states with n,=0 (i=1,..,s) P the summat1oﬂ is over

"all the unstable/ones Among the (p- s) unstable steady

)
states, let 7, be odd for j ='§+1,...,6,and,even for.q =
. / Vo * .

9*1.-:\p9- Equaﬁion (2.48) nowigives |
s + {(6-5)(Z17+(p-6)(1)} = 1% :

Sop= 1 4+ 2(6-5)

-

of steady states with odd =,. An"increase i mber of g .

an odd number of p051t1ve real e1genva1ues. Bgca jse a
complex con)ugate pair of ezgenvalues can only ada 2 to the‘

number of posxt;ve real parts thexr emergence a{e 1rrele-

e

..

vant to the existence of multlple steady states. vf’
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where A2 is the negative of the i-th eigenvalue. In this

. .
form, we have

and a,>0 if and only if there is/an even number (including.
' 0) of'ﬁegative A, el eVen'positive eigenvalueé. In this

Lo

\case {6-s5) = Q and'p'=‘{. Thus,'
,_‘ .
. " ’_'
A network N e Nnee'has a unigue steady state fon

each p=(G,k) if a,(p)>0 fq% all peR?+r_d.

¢ ?

On the other hand, «.<0 1f and only if there is an oq4d
number of positive real eigenvaluﬁs or (6-s)21. Thus,

v “
V-

> " Anetwork Ne N,  has at least. 3 steady.states for

some k ifs/there is found a steady state X° such that
' s ST .- ’ v . - .

.~ ) N ‘ ‘
e . N

-,. . c. "/v ] N . - ._‘. -
“Note that the assumption that-the steady g&ftes arg,ali

i N . "“"‘. o " . . -~
B hypeﬁ%o{ic‘ya§ made in the above statements.

’

~

)



Example I11.8

Consider the following network involving inhibition
J

of the enzyme E by the substrate S. The species ES

and SES are enzyme-substrate complexes.

Network N,o

.R,,R; < S
R, S + E » ES X
R, ~ ES - E ’
S
RS'RG S + ES : SES

¢

Let us illustrate the preceding discussion using
this network and the following values*of the rate
constants: k; = 12, k, = 1 (i=2,...,6). fhe total
enzyme 1is copserved, that -is, E, = E + ES:+ SES. ’
When the independent species are taken to be S, ES

and SES, the expréséion for a4 is_

LR

[5°]=+[5f]+E.2;—([S°j[35°]ftzs°1¢TSES°])'.

. R
a
il

.
.
Lo

‘'Figure 2.10 shows a graph of théﬁsteady state'[S°T " .
M | : . - - . ‘l |
+ versus the parameter E, -and the corregponding -
...variation of a,. ®

~
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F.igure 210

Steady-state S° as 8 functlon of the total ennge concentra-
tion (£4) and the correSpondlng variation of oq (d = 3) for
Network N10 w1th ky 1,7 12 end k, ="t for-i=23,..6.




~e I111. STATE SETS AND BIFURCATION)SETS

A. Reduction of the Steady State Problem . ;
B _

Thi§4chapter provides some solution to the problem of
ex: stence, unxqueness or multiplicity of steady states for a
given set of steady state parameters p=(C,k). In partlcular
the solution is exact and complete for some cases where the
Systeonf steady state equations.’can be reduaed to a problem
ifn one dimension. When a network has bnly'one‘extreme
‘current, thetin§ividual reaction velncities are locked into
- fixed ratios at steadx state, €.9. Vm = Im;V, (rm, is a
rational bositive numbét) {or any two reactions Rn and R,.
Such expressions among the velocities also give the
relationship among the concentrations of the species at
- steady state (unless, in the case of power law kinetics,

n
n x.*==« nm x,, so that k,=k, is required for the

ie 1 i s

existence of positive steady states as exemplified by |,
network Ny in Chapter 1I). This leads us to suspect that
when there are only a few extrehe-cu;rents comprising the
steadthtaté, it must/be possiblerto expfess thé steady
states of (n-1) of the n. spec1es in terms of the resRining
one. Hence, knowing the steady state concentration of this
single species is equzvalent to solving the netwvork steady
state vhich,'mathemdticaliy, is a system of nonlinear

algebraic equations. Again, we realize that determining the

- 81
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component extreme currents of a network is -essential to the

solution of the steady state problem. o /

The form of the reduced steady state;pgéblem can be

represented in general by the following m-th order
~

polynomial and a Zet of functions g, (X):

\ fml(X,B) = K™+8m (K™ '+... %80 = 0 (3.1)
1Y

X.=g. (X) , X,_* X i=1,..,(n-1)

where X ¢ R. and B8 = (Bm-1,Bm-2,.+:B0). The set-ofvfuncéions‘
g, (X) is a direct consequence of the current structure and
can be determined from_gquation'(2.31). Without loss of
generality, X in equat&on (3.1) corresponds to the n-th ,
species X, of the network. In Eertain cases that ;e will
encounter, not all positive roots of (3.1) will qualify as
physically feasible steady st;tes because it may happeé that
a function g; gi@es a negative value to the steady state ]
concentration of the i-th species. This case will be fully

4

considered in the method of analysis presented in this
chapter. : ¥

The prescnt'method interprets £,(X,8)=0 as a
catastrophe manifold in RxRF. Noté that by some nonlinear:
transformation, eQuAtion (3.1) can -be revwritten in the form

)

f.(!f,p) = (X')m*bmlg(X')n-’+Pm-)(X')mEl+...fp0 =0 /*'(3°2)

. ] f '
which reduces the number 95’23 ameters by one,i.e, p =

~ \
R g
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I
X i
(Pm-2, Pm-3++2+,P0) € R™ ', Equation (3.2) now defines the

catastrophe manifold in RxR™ ', The number (m-1) islcalled
the dimension of p-parameter space. The dimension éf the
steady staﬁe manifold M is usually much larger than (m-1),
hence the advantage o{ the reduction. g

Since X is one-dimensional, the only sing#%g?itiés of
the catastrophe manifold that can occur are the cuspoiﬁs.

Woodcock and Poston‘'®’ provide very illustrative computer

graphics of these cuspoids up to'm 7'. The common names of

these cuspoids are . as follows

m Name of catastrophe
. 2 : — fold’ ’

3 cusp

4 swallowtail

5 butteffly

6 "fwigwam

7 star .

]

It can be checked (reference .19, p.9) that each higher
order catastrophe, when plottq§ on the appropriate plang,
.generates the lower ordér ones.

F.The‘éssentialvproblem here is to find the portions of
the particular catastrophe manifold thatCLorreSpodd to the
non-negative roots of (3.1) and from their projections onto
'éhe parameter space, one can éonveniently derive the exact

§;expressions (in terms of the parameters) that deter@ine the

1
|
I . ¢
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number of steady states. The algebro-geometric analysis is
best illustrated by showing in detail the analysis on thé'
cusp m;nifold. The results on thg fold and the swallowtail
will then be summarized. when‘ng, the exact expressions are
éuite cumberéome to find and it is suggested that one -
resorts to numerical procedures in finding the roots of the
polymomial f.(X,8). This is still a much simpler problem
comséred to that of finding the simultaneous roots of a
system of nonlinear equations.

e

B. An Algebro-Geometric Ahalysis on M : The Cusp Catastrophe

The algebro-geometric analysis on the steady state

manifold M is demonstrated in detail pn this section using

the cusp catastrophe manifold. Consider the cubic polynomial

£,(X,B) = X'+, X?+8,X+Bo = 0 . (3.3)
This can be reduced in the form
| s
E(X',pV € (X')® + p &' + po = 0 (3.4)

- -
.o ot
L

using the following transformation:
. . “

X = X+ (8/3)
"oy = By * 3(Ba/3)° | | (3.5)
Po = Bo = Bi1(Bs/3) + 2(B:/3)* . |

.v"". :

/

«
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b

Equation (3.4) defines the cusp catastrophe manifold in
X'-p,~'po spafe (figure 3.1). The fold points (or singdlar
points) of manifold determined by f,(X')=3f,(X')/3X'=0
‘ Y

v
project onto the p,-p, plane as the cusp catastrophe set L°:

s 3

Z° = {(po,p;)eR* | 4p,* + 27po* = 0 } . {3.6)

1

< '

Observe that L* is empty for all p,>0. The cusp pofnt, I,
coincides with the origin. ‘

The problem is to determine the regioné on the p,-so
plane where there are 3,2,1 or 0 positive real roots of the

original polynomial (3.3). From (3.5), X>0 if and onlj if
: i

X' > {B./3) .- v (3.7)

e

This ns that the part of the surface f,(X')=0 that is

ve the plane P = { (X',bo,p)eR’ | X' = B,/3 } represents
11 the positive ;oots of f,(X,B) as illustrated ib figu;é
3.1 The intersection of P and the cusp manifold is always a
straight liﬁ? L and corresponds to Bo=0. Figure 3.2
describes all the possxble regions on the p,-po parameter »
plane vhere thqre are 3,2,10or O positxv; roots X. Note that
Lp', the projectlon of L onto the p,-po plane, is alvays
tangent to L*.on one side. The coordinates of the points

3

labeled in fzgure 3. 2 are: ‘

2

~/
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‘ *?igure 3.1

The cusp catestrophe manifold reprdSenting the roots of \
the cubio polynomial f3(X)=0, equation 3.4. The portion

of the‘?nanifold above the Rlene P corresponds to the

positive roots of the polgnomhl f,(x) o, equation 3. 3



-

(po',p+*) = [2(B2/3)* ,-3(B:/3)* )
(bo*vpy*) = [ =(1/8)(B:/3)7 ~(3/8)(B:/3)" )
-
Figure 3.2 is all that is needed to solve the present

problem. Define 2 groups of sets, namely, the 'state sets’

and 'bifurcation sets'. A state set of order g is an open
region in parameter spale each point of which induces q°
distinct‘pqéitive steadyrstates of a reaction network, Call
the state sets of orders 3,2,1,0 as Tristate (T), Bistate
(D), Unistate (U) and Nilstate (N) sets, respectively.

Let the pq-bifurcation‘set, B be the set of

7 par#meters tbat séquatc the statepgets of orders p and g
(p#q). In the present case, these are B,o, Bzs, B:,, By,
By, apd B;o. Note that B, = (Po'.P:'). wﬁen B:20, T = By, =
By; = Byo = 0. o

The pg- bifurcatibn sets are curves (1- -dimensional) on
the p,- Po Plane. Bifurcation sets with lover dimernsions cap’
also occur. Qn the p1-Po plane, they w:ll correspond to
points where at - least 3 state sets of different orders meet.
‘Let O .: symboizze the gg;,.-bzfutcation set where state

pqr
sets of orders p,q,r,.. meet.»For‘the'cubic, these are

Oiz0 = {(éo':Pi') with 3350}

0123 = {(po',p:') with BifO}

O»zzo"E(Po';pg') vith B;\f} .
R

Notq that Bgo = o,;.o;'T%é state sets and bifu cation sets
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L
P P

(o) ﬂz > O

' g ®fz= 9
o — Po

)

v
~—

P1

ﬁz(O

Figure 3.2 ] _ : .
Projection of the portion of the cusp catastrophe menifold
otbve the plane X'=$2/3 onto the py-p, - plene for different
signs of p,. The number of positive roots of the cubic poly -

nomiel f3(X,8)=0 correspond to the regions shaded as follows:

Clo. 2 1.E32 end W3- 4



TABLE II1.1

STATE SETS OF

State Set

T

D,

“‘..\

CUBIC STEADY STATE EQUATIONS

Defining Conditions
B:<0, B,>0, Bo<0, K,<0
_ .
B.:s0, Bo>0, K, <O
B;>0, B.<0, Bo>0, K,<0

B:20, Bo<0
B:<0, Bo<0, K,;>0
B:<0, Bo<D, $,<0, K,y<0

BO>OI K3>0
ﬂo>0: 62>01 B'>or Klso

89

.
7

—



.TABLE 111.2

\
f.//i?IFURCATION SETS OF CUBIC STEADY STATE EQUATIONS

Bio Bo=0 8220, B,>0

"Blo - Bo=0  Bi<0, Bi>By7/4
Bio = K,=0 - B:20, B,<0

Bio K"O}ﬁ B2<0, Bo>0

B;, Bo=0 B.<0 -
B)1 K)"Q, ﬁ2<0' B°<Ol ﬁ|>0
B, Bo=0 B1<0, 0<B,<B,*/4
Bio Bo=0,B8,=8:2/4 B2<0

Oizo Bi=fo=0 ' B220

o PP Bi=Bo=0 ﬂz<0

(O{szq Bo=0,B8:28:/4 B:<0 -
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for the cubic are summarized in Tables I1I1],% and I11.2. The
L '

definitions of these sets are expressed i1n terms of the

B-coefficients of the original gubic polynomial, equation

(3.3). The symbol K, stands for the expression

Ky, = 2780 + 4BoB2° - 18B0B.B: - BBy + 4B, . (3.8)

K, = 0 corresponds to the equation defining IZ' (see equation
(3.6)). Figure 3.3 gives a flow diagram for a convenient
determination of the state set or bifurcation set corres-
ponding to a given set of parameter values.

The following example illustrates how those defining
conditions given in Tables II1I.1 and 111.2 were arrived at
starting from f{gure 3.2.

Example III1.1.

The 3 uhistate sets are derived as follows. For

B;20, the unistate set corresponds to the left

portiéh of the line Lp vhich has the equation B,=0.

This gives U, immediately. For the case B,<0, it is

necessary to subdivide the unistate region into two,

say for (i) K,>0 and (ii) K,s0. Region((i)‘is.
defined by U,. Region (ii) further requires that.
pi<p,'. This gives the éefini:ion of U,. Note thpt a
different way of paititioning the unistate setl;éads
to different expressions but would cover exgétly the

gsame state set.
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The expression for B,, is seen readily from
figure 3.2(c). This bifurcation set has the equation
, [
Ky=0 with the following iméaktant conditions: B8%<0,

Bo<0 ‘and p,>p,'. The last condition is equivalent to

B.>0. =

It is known, in fact, that the roots of the cubic polynomial
of the form (3.4) with p,po#0 can always be solved eleicét-
ly‘in terms of the coefficients‘?”’. This is done by some
trigonometric transformation (sée éppendix C for deiails).'

The 3 roots of the original cubic polynomial (3.3) are :

’

X' "=2(-p,/3) " 2cos6-(B:/3)
X2'=2(-p,/3) " *cos(6+27/3)-(B,/3)
X3 =2(-p,/3)"'" " %cos(6+4n/3)-(B:/3)

L

where 8 is determined from
cos(36)=3po/[2p,(=p,/3)."/2) .

What has been }c;omplished up to this point deserves'
some emphasis. Wh;n the system of steady state eqdatiqns is
‘re§ucibleQQO a cubic polynomial f,(X), one can actually
. express exp;icitly the steady states of the network in terms
of the kinetic parameters (C,k). Regardless of the dimension
of M, one can write exactly the condifions on the parameters

satisfying the state sets and bifurcation sets that could
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possibly exist for a given network.

From figure 3.2, it is clear that the mathematical
condition af,(x')/ax;y= 0 (or K;=0) is neither a sufficient
nor a necessary criterion for khe bifurcation of steady
states. The reason for this is the constraint X,>0 for all
i. As the above analysis showed, there are other various
bifurcation sets namely B,,, B,, and B,, that do not include
K,=0 as a condition. |

The next section demonstrates how the results so far

can be applied to a chemical reaction network.
C. Steady States of the Bdelstein Network

The Edelstein‘'®’ network was'introguced in example
11.3. It is a reversible enzyme network where a
Michaelis-Menten rgactionjscheme is couﬁléd with aﬁ
autocatplytic reaction of the substrate. For homogeneous and
isothermal conditions, with mass action kinetics, the steady
states of the network are given by

f,(s) = 5’*ﬁzsf*ﬂas*po =0 ‘

-

where

By = (K.3B+k.3+ky) /K = K,A/K. 4
By = K3Eo/k.y = K\A(K.3B+K_3+Kk;) /K. 1k;
Bo = 'k-:k4:§30/k-|£z
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E = (k.2+k3)Eo/(k._3B+k._2+k,+X%S)

ES = EO-E

Eq is the total enzyme concentrétion which is conserveq.
Notice that for every positive root of the cubic, there
always correspond some positive steady state concentra ions
of the species E and ES. The expressions given in,Tab(z
111.1 thus apply without any further constraints. /’

Since Bo<0, we sée from figure 3.3 that there }s always
an odd number of steady states for every set of pos{tive
parameters. As a conseguence of this, all the bifurcation

sets are empty except B,;. Observe that T=Q when B,20. Thus,

it is impossible for the network to exhibit multiple steady

‘siates if

B ’k|A/k-| < (k-z*‘k-)B"'k))/kz .

\~

. e

Such a set of parameters corresponds to some (Bo,B8:,B:) ¢
L When £here are three.sfeady staées ‘or a'given set’gf
parameters, it can be shown by standard linear stability

analysis that the intermediate ‘steady state is unstable and

-
kY

" the other two are asymptotically stable. Thus, depending on
the initial conditions, the system can be in either of the
two stable steady states. This property is called

bistability. The Edelstein network-showé‘biStability vhen

R
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(C,k) ¢ T. Later, it will be proven that this network cannot
exhibit sustained oscillations no matter what the values of‘
the parameters take.

Bistability occurs only under non-equilibrium condi-
tions. It is in%eresting to see how far away from chemicél
equilibrium, and which direction, a reaction system should
be 'pumped' to initiate bistability. This can be shown for
the present netwo:k. Edelstein''®’ presented computer
calculations for the case k, = k., = k; = k.3 = ky = k., = 1
and thérefore considered only the 3 parameters A, B and Eo.
The expression for B,, from Table 111.2 gives a volume which
looks lfkg a wedge in thq;A-B—Eo paraméter space (see Eigure

3.4). Each interior point of this wedge induces 3 posijtiv

-

steady states. The rest of the positive orthant corresponds
to parametersigivéng un%ga: steady states. All the
detailed-baiéﬁcéﬁqsteady states are given by the plane
defined by A = B. The distance between the surface of the
vedge and this plane gives an explicit measure of how far
one has.to pump the system away from equi;ibriﬁm to be able

to obtain multiplicity of steady’states.

D; Boundpd Steady States

In the Edelstein network, we saw that any positive root

- of the cubic determines a steady state of the network

because there alvays correspond some positive steady state

values of the other species. But this is not true in

*



Figure 3.4

State sets for the Edelstein network for the case ,
kK=K 4= ky=k_ 5= kg= k_3= 1. T refers to the tristate set

which is wedge-like volume shown.

The rest of the positive orthant is the unistate set U. '

The plane defined by A=B*represents the detai'l?’d-balanced

steady stetes.
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general. The expressions for the steady states of the other

species.may lead to further restrictions on the feasible

-

positive roots of the reduced steady state equation. Let us

N
consider restrict{ﬁhs of the form

XL s X s XH

wvhere X is either 0 or a finite value and X, may be += or a

finite value greater than X, . The case where X = 0 and X,

L&

=+> was already.analyzed in detail for the cubic and the
results given'in figure 3.2. The cas: 0<xL<x<xH =+» has

diaérams like figure 3.2 except that the line Lp will be
rotated in the counterclockwise direction at some finite
angle. Figure 3.5 gives the diagrams for the éase

0=X <X<X <+e., The case 0<X

L H L
similar to figure 3.5.

<K<K <t will have diagrams

The state sets for the case depicted in figure 3.5 can
likewise be defined‘explicitly in terms of the parameters.
For example, the tfistate set T requires two other
constrainté in addition to those given in Table III.1.
'first, lookingfi; figure 3.5, the tristate region lies to
the right of tﬁg }ine‘Lh, i.e. p°>poh. Secondly, the slope

' of L, has to be negative. Thebequation of L, is

&

Lyt v = po/IN(8:/3)) < [Kye(B/D] | (3.9)

)

Thus, the two further.conditions for T are: . -



Possible state sets when 0= x < X ¢ Xy¢ +o0o . The line Ln

(b)
(a) pi
N
(c) (d)
=7 =ty
=44 =
~ 4 4 =\
Lh
I/'
T#Lh . - ,/
) - = : - hi - -
Q_.
Figure 3.5

corresponds to X = X,, and thelmeL to X = 0. Ceses (a)-(c)
occur only if B2 <0, ond case (d) for B2 O

101
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f,(XH) > 0 and 3XH +B, > 0 . ) (3.10)

/

Next, we analyze the steady states of a network that

exemplifies the diagrams in figure 3.5. (

E. Steady States of an Oscillatory Model for the

Peroxidase-Oxidase Reqption

Degn, Olsen and Perram'?’’ came up with the following
model that successfully simulates the qualitative form of
the sustained oscillations observed in the

peroxidase-oxidase reaction:

Network N,,

R, A+B+X =+ 2%
R, . 2z %4 2y J o
R, A+B+Y - 2%
R. ) S
R, Y -
Re - X

Ry,R. 2 A

R ' - B .

A}

SN
. ‘ '
The reaction velocities are-assumed to be of the following

form: ' N
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v, = k,ABX

v, = kX'

vy = k,ABY

Ve = kX

Ve = kgY .

Ve = kg

vy = Kk,

V.3= k.sA \
Ve = kg

At steady state, the.following rela;ionships among the
reaction rates hold: ?

0 = vi-vi-vy
v e
0 = v§-vi-v*,

« :
<

0 = Z§g3vi+v:-2v;—vf
0 =p+vi-vi-vi

from which the following expressions for the steady states

are found:

A’ = (k1"k.)/k-1
Y* = (k.*-k;'kQX)/kl
B* = k./[A(kgx*k,Y)]

¢

vhere X is solved from the cubic
\
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f,(X,B) = X°+8,X*+8 X+, = 0

with
B: = (ke/2k;) + ky(kg+kg)/ (ki kg-kyka) «
Br = kyka(ke+2ky)/[2kz(k ks-kyka)] = (ke+kqe)/2Kk;

Bo = -k y(kg?+3keke+2kg?)/2k,(kikg-kska)

From the expressions above, we can establish a priori from
the rate constants the following bounds of the steady

states:

0 < A® = (ky-kg)/k_,

0 < By < B* < +o

0 < X* < (keg+tkyl)/ky
D < ¥Y°* < (ke+tkg)/kg
vhere

B: = k_ keb8/[(ky-kg)(kg+ky) ] '

5§ = (ko/k,) or (kg/ky) whichever is smaller. .
Note that, above all, it is ﬁecessary thét H7>k. for the
steady state of A to be positive. This condition will be
assumed in the phrase "for every k" used below. The
following conclusions can be seen to follow immediately from
figure 3.5:

’ )

(i), A positive steady state within the a priori

bounds given above is unique whenever



(kg /Ky) > (Koy/K,y).
This cond:ition implies B,>0 and B8,<C and the
statement readily follows from figqure 3.5(a).
(11). Let (kg/ky)<(ky/k,). This condition 1implies
Bo>0 and B,<0 for every k. If K,>0 then no positive
steady state for the network exists., This conclusion
agrees with the definition of the nilstate set N,
givén in Table III.1. However, 1f K,<0 then there
can be 0,1 or 2 positive steady states as shown by

figure 3.5(c).

K;=0 is the equation for the 2,0-bifurcation set. The
necessary conditions that the corresponding steady states
are always positive can also be written down immediately by

referring to figure 3.5,
F. The Fold Catastrophe

For completeness, this section summarizes the results
of the analysis on the fold catastrophe manifold defined by

the quadratic polynomial
2(X,B) = X*+8,X+8, = 0 . (3.11)

Following the steps used in the analysis of the cusp

-

catastrophe manifold, we find that the transformation

L 4



X' = X + (B‘/’Z)

Po = Bo - (B./2)°

5
%
gives
fz(x.,po) = (X')? *DQ‘O
The regions on the pc-line where there are 2, ' or ©

positive real roots of f,(X,B) are shown in figure 3.6. The

singular points of the manifold are given by the eguation
Ki = Bo-(B,/2)* = 0 . (3.12)

The state sets and bifurcation sets for the quadratic are

summarized in Tables I111.3 and 111.4.

Example 11,2
The following network gives a quadratic reduced
steady state egquation and can have 0,1 or 2 positive

steady states,

Network N, .,

R, - X
R:,R, X2y
Ra X Y+ X
R, 2Y + X :



x

12(X')-O
g‘ ) O - PPN ,._.: .. 81/2
. ' : . ,
m vre
» Po
2
Po = “(B1/2)
g, = 0
_—m’-l-—lﬁ .
Po T
X'
f (X)=0
B < O
—* fo
A}

Figure 3.6

The positive roots of the quedratic polynomial f5 (X,8)
correspond to the partion of the menifold f,(X’) =0 above
the line X'= g, /2. The stetegsets are : g c=—=0, y oD

4

end punmmmy I

o K2



STAT? SETS OF QUADRATIC STEADY STATE EQUATIONS

TABLE I1F.3
’,

State Set

D

U

N,

N,

TABLE 111.4

i
)

\ v

B.1<0,, Qo’él K;<0

Bo<0

K2>0

B‘>op. ﬂo>o, K2<0

L]

"Defining Conditions

108

BIFURCATION SETS OF QUADRATIC STEADY STATE EQUATIONS.

Bio

Bo=0 v . 8120
Bi=0 :’ ﬂ\<0‘
- K;=0 ’ b'<0
A
 Bo=B1=0



It can easily be shown, using the definition of the
. bistate set D in Table 111.3, that the following
relationship among the rate constants is necessary

for the existence of 2 positive steady states

ks/ke < ka/ky < 1
»

The existence and uniqueness of the steady state is
ensured whenever k;/k. > 1 regardless of the values
of the other rate constangs. This simple céndition
is necessary and sufficient. The rest of the ;tate
and bifurcation sets can likewise be written down
easily once the B's are found.

The following network, on the other hand, can
only have either 0 or 2 positive steady states for
all parameter values.

L

Network N, ,
]

R, - X
R:,R, X2 2y -
R. Y » X
: Ry X+ 2X
R Y -

Bo>0 for all pesitive parameters and therefore only‘

Al
b
a9

109
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the state sets D or N can be non-empty. Note that it
1s sufficient that kg2k, or k.,2ke to satisfy N,,

1.e. the absence of positive steady states. ®

4

G. Complete Linear Stability Regions and Hopf Bifurcation

Sets of Dynamical Systems with d<3

An 1mmediate application of the algebro-geometric
analysis on the cuspoid catastrophe manifold; 1s on linear
stability analysis leading to a complete analysis of the
characteristic polynomial. Also, it turns out that the Hopf
bifurcation sets can be defined explicitly for dynamical
systems yith up to 3 independent stat; variables. A Hopf
bifurcation set contains the parameters that qFlineate
parameters leading to oscillations from those that do not.

For d=3, let the characteristic polynomial be given by
"Py(N) = Nl+a,A+ayh+a, = 0.
This can be trahéformedvto
Py(A') = A" 34p, A" +p, = 0
using the following equations:

A' = A+ (¢|/3)

Py = a; - 3(a,/3)°
R ‘ ¢



Po = a; - azla,/3) + 2(a,/3)?

Figure 3.7 gives all the regions on the p,-p, plane
where the eigenvalues, including complex ones, have positive
or negative real parts. The eqguation for the line LC ls
given below. The details of the derivation of this eguation
are given in appendix D.

e

L M py = po/[2(ﬂ1/3)] - 4(0)/3)2 (3.13)

'
x

Part of this line gives the parameter points where the real
parts of a pair of complex conjugate eigenvalues change

sign. Recall that ‘the equation for Lp is

L pr = =po/(ay/3) - (a,/3) . (3.14)

6bserve from £igufe 3.7 that if a,$0, then at ;east one
}eigenvalue has a positive real part (either real or a
complex pair) except along thevlines Lp and LC where some
eigenvalues h?Ge zero real parts. Recall that alopg Lp, ay
vanishesiieaéing to a zero eigenvalue. For a,=0, the eigen-
values along Lp with p:>0 are zero and a pair of pure
imaginary numbers. '

The above picture should agree with the well-estab-
lished Routh-Hurwitz Theorem‘'®’, This theorem States that

the number of eigenvalues with positive real parts is equel

to the number of sign changes in the two seque;Fes of

s
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i

T

Y rrr. 1
= !
4 |
LA P17
P
% eciuitiig
COORDINATES AT o 3
P1: p.--(<|/3)3, py=0 ‘
P2 : p,=2(€, /5, p, =-3(<, /)% Py
PZ\: p,-O(“B)s, p=0 (c) «, ¢ 0

Figure 3.7

Regions on the p,-p, Plene where different roots (eigenvalues)

of the characteristic polynomiel Py()\) lle. [ 1s the complex
plene, and for exeample : E 2 negetive real and 1 positive real

eigenvalues ; % 1 posttive real and a pair of complex conju -
gete eigenvalues with positive reel parts. The helf-ray 2

emanating from P2 for &> 0 is the Hopf B!furcat' set.
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Hurwitz determinants, {1,4,,4,,...} and {1,4,,4.,...}. The

first three Hurwitz determinants are

A, = a,
Az = ayaz;"ay A
A3 = agAz

A linearly stable region exists only if a,>0. This is the
region to the right of Lp and to the left of L. shown in
figure 3.7, «,>0. In this region, all the real parts of the
eigenvalues are negative. Let us now compare the defining
conditions for this stable region with the prediction of the
Routh-Hurwitz Theorem. This region according to the theorem

1s identified by
A1>01A2>01A3>0.

A litt{? algebra shows that the equation for Lc corresponds
exactly to 4;=0, and the lgft.side of this line to A;>0. The
line Lp.corresponds to a,=0, and the right side of it to

. ay>0. Hence, the same result arises. But there is an
important advantage of being able to visualize th% regions
in parameter space where complex and real eigenvgiuesvate.
We kriow that when a real eigenvalue changes sign, M folds
back and there is a change in the number of positive steady
states. Furthermqre; we could expect that the point P2 where

the lines Lp and LC intersect is interesting because it is



wvhere the different parameter regions corresponding to
diEYcrent eigenvalue signs meet. (From the coordinates given
in figure 3.7, it follows that P2 corresponds to a; = a; =
0.)

Figure 3.7 also shows the points where some eigenvalues
become pure imaginary and the rest have strictly negatiQe
real parts. This points can be Hopf bifurcation points where
periodic solutions for the dynamical eguations start to
emerge. In appendix E, one finds a full statement of the
Hopf Bifurcation Theorem. Here, it is only necessary to
mention in addition to those requirements just stated above
that the steady state must be isolated. Therefore, cases
where a, 'vanishes identically implying a continuum Pf steady
states are excluded. The directfon of the bifurcation of the
periodic solutions will not be considered in the present
discussion,

Referring to figure 3.7(a), thg requirements of the
Hopf bifurcation theorem are satisfied by the line Lc 14,=0)

with the following restrictions:
i

ol

ﬂ|>0, a,>Oanddé/duQO
’ rd

vhere u is the bifurcation parameéer and a2 is the real part
of the complex gigenvalue. Since A,-O,.the above restkic-
’tions also imply a«;>0. The requirement thatld;/duio is
called the transversality conditionz"’ This condition

3// A degenerate Hopf bifurcation may occur when this
condition is not satisfied. Reference 28 gives an example of
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merely states how the bifurcation set is crossed using a
barticular bifurcation parameter u, and does not affect the
fact that the bifurcation set demarcates stability regions.
Hence, we drop this condition in the following definition of

the Hopf bifurcation set Z° for d=3:
2> = { p | A;=0 and «,>0 (1=1,2,3) } . (3.15)

From the above definition of Z’, a convenient negative

test for Hopf Bifurcation can be stated : 1if for a given set

of parameters satisfying A,=0 leads to a non-positive
coefficient a, (i=1,2,3), then no Hopf bifurcation occurs.

The characteristic polynomial for d=2 is
pz(k) = )x'*a,)\"‘az = (

Figure 3.8 shows the regions on the a,-a, plane correspon-
ding to different real or compiex roots. The positive
a;-axis represents the Hopf bifurcation set in this case.
Thus, the Hopf bifurcation set 2' is defined as

9

2 = { p | 8,20 and a;>0 } . (3.16)

Again, in all calculations, one must check that for the
parameters satisfying Z‘, the corresponding steady state

valies are positive. The use of these results will now be
3(cont'd) this case using a model of glycolytic
oscillations,



£ &y e (/212

Figure 3.8

Roots of the quedratic characteristic polynomial (eigenvalues)
on the «-a¢, plene. FF] is the complex plene and, for exem-
ple, E means complex pair'of eigenvalues with positive
real parts and E means 1 positive real and | negative real.
The helf-rey 22 emenating from the origin is the Hopf bifurca-
tion set. |

s



l1ilustrated by a few examples.

Example 1I1.3 Proof that the Edelstein Network

can not have a Hopf Bifurcation

The reactions of the Edelstein network are given 1in
example 11.3. For this network, the coefficients of

the characteristic eguation are

=]
"

K;E + (ky;+2k.)S + k. +k 3B+k, - k,A
a; = (k.z*k.;B‘k;)(sz*zk.|S‘k\A) - kzk.;E "2kzk,.S’

~ kzk,AS

After substituting the value of k, resulting from

the condition a,=0, one gets

a; = -k;E(K.;+k;S)-(k,;S+k.,+k.3B+k,)? < 0.

Thus, the definition of 2* will never be satisfied
for any set of positive parameters. In fact, the
network has not been shown to exhibit sustained

oscillations.s

Example 111.4 2® for the Brusselator

The following network called the Brussela-
tor ‘?*’ posgesses a stable limit cycle for some

appropriate valueg of the rate constants.

Y7



Network N,

R.,.R, R {
R; 2X + Y - 3X
R, X - Y

The kinetic eguations are

dX/dt = k,-kX+k,X'Y-k,X

dy/dt = -k, X'Y+k,;X ,

possessing a unigue steady state given by

X' = k\/k. ’ Y. = k)k./k1k2

The Hopf bifurcation set is given by the equation

7' Kike? = ko + k,'k;

Figu 3.9 shows the dynamics on both sides of the

Hopf bifurcation set. In these plots,*’’ the rate

ts used are k,=k,=k,=1 and the bifurcation
¢fieter is k,. The Hopf bifurcation value is k, =
2. At this value, da,/du < 0 and the stable limit
cycle qééurs when k, > k, .o

- . - - - - -

*/ /" Phroughout this work, integration of systems of first
order ordinary differential equations is carried out using
the IMSL Routine DGEAR which is based on Gear's stiff

nc}hods.
| . | ¢ - \



Example 111.5 2’ for the Oreqgonator

3¢

The Oregocnator was proposed as a model tc

simulate the sustained oscillations observed in the

Belousov-Zhabotinsky reaction **

. Network N, i
\

R Yy - X

R, X+ Y -

R, X » 2X + 22

R. : 2% -~

R 22 - Y 4’/

The kinetic eguations are

dX/dtﬁ‘ k,Y—k;XY*k,X’Zk.X’
dY/dt = k;Z"k,Y-k;XY

dZ/dt = 2k ,X-Zk;Z

A

~

Note that R; is first order-with respect to Z. The
reader can easily check that the network'has?a
ﬁnique steady state for any given set of positive
parameters. This steady‘state can be expressed
explicitly in terms of these parameters and so are
the coefficients of the characteristic polynomial.

For the sake of illustration, let the bifurcation

The reactions are



Figure 3.9

A and B shov the approach to the limit cycle that is
exhibited by the Brusselator ( Network N,,) when k, = k, =

ke = 1 and k, = 3, This limit cycle collapses into a stable
focus (C) wvhen k, = 1,

v



0
paramecer u = K, ard (et Kk, = K; = K, = Ky = ', Tner
the coeffi.c.ernts ¢cf the character.:st.c pciynomia.
are
a; = 2[4(X° 2 +4X°~Y*-.]
a; = 4(X° i +{14-u)X*+3Y°" 3u-+C
a. = SX°+Y°®-u+3
a. =
-
The Hopf bifurcation set 2’ 1s defined by
B, = 2(3u+Y°)-(5X®+Y° -u+3)[(10-u)X +3Y°+u+2] = ©
along with the condition that a,>0, 1=1,2,3. When
A,<0, a stable limit cycle exists as figure 3.10
demonstrates.®
H. The Swallowtail Cat;Ltrophe )
The quartic polynomial 1\ -
Ik \
£4(X,B) = R*+B,X*+8,X 48, X8, = 0 (3.17)

can be transformed into a 3-parameter quartic by translating

X to X', that is

L]
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Y(t)

85.22
A ’
4
v
B [ ] P — X (1)
’ 72.oo ’ . 1505
Y(t)
56.13
)-'
% S.70L
1‘ ..
Figure 3.10 , w

A -The stable limit cycle shown by the Oregonator (Network
N.s) #hen k, = k; = ky = kg = 1 and k; = 5, .
B ~The¢ limit cycle disappears and the trajectories approach
the jtable steady state vhen k, is changed to 1‘0.

. <
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X' = X+(B3/4)
pa = 52_6(53/4)2 “(3.18)
- o
pr = B1-2B2(B,/4)+B(B,/4)"
Po = Bo=B1(B3/4)+B,(B3/4)7-3(B,/4)"
giving’
fo(X',p) = (X')*+p0,(X")?p,X"+po = 0
The swallowtail catastrophe set is defined by
I o= (p2,p1,P0) € R> | Ky = 0 } . : ©(3.19)

where

K- = 27P|"144bop|}92*4prsz”256903*128901P2”‘69092‘

(3.20)

L* gives the set of (pz,p:,p0) satisfying f.(X') = 3f./3X' =
0. It is a connected surface in P2-P1-Po Space and is shown
in figure 3.11. The followiné sets corresponding to .
degenerate singular points of f,(X',p,,p,,p0)= 0 are also

shown in fig. 3.11;:

-

' = {(ﬂzoptlpo)I.fc(x')'afo/ax"a'fn/ax"'o }
I* = {(p2,P1,P0)| £4(X")=df,/3X =37f,/3X *=d’£,/3X" *=0 } .
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Figure 3.11

The swallowtail cataestrophe set ( 3°). X' is a curve of
cusp points with two branches meeting at the swallowtail
point, 32. Note that 32c 3'c I°. DL is @ curve corres-
ponding to the double 1imit point veriety (see chapter IV).
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Note that L® is a subset of L' which in turn is a subset of

Z°. In terms of the p parameters, L' and L’ are detined

below:

Z'={(lepnpo)‘P1=1(2/9)Pz('602)“/z, po=-p2*/12, p250}
(3.21)

£* = {(py,p1.P0)=(0,0,0)} . (3.22)

Figure 3.11 suggests separating two cases, p220 and p,<0, to

give two qualitatively different bifurcation sets on the

py-po plane as shown in figure 3.12(a) and (b). ’
The manifold f.(X',p;,p.,p°)=0 for each of these

bifurcation sets are also shown in figure 3.12.

Now thof the singularity structure of f.(X',p2,p4,P0)=0
is known/(g7§;tail, the regions in p;-pwpo Space where
there ;ie 4,3,2,1 or 0 distinct real and positive roots of
f.(X, By, Bz, Bi, Bo) = 0 can be identified exactly. The

region with 4 distinct real positive roots will be called

the Quadristate set, Q. ’

From equation (3.18), X > 0 if};pd only if X' > B,y/4.

The intersection of the plane

P(pl;ﬁ)) = { (x'rP_nPo)<| x. = p)./4 }

for fixed p,, is always a straight line/whose e@pation is

L(pa,Bs) ; po = =(By/8)p -[p2*+(B:/8)2)(B,/4)? _(3°23)



(2)

—_ -
¢ - o > p‘
____________________ .(3) “-\
\
(a) P, 2 0

(s)

N

€))

>
. H
—

=

(9)

— / ~ .-".i
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Figure 3.12

Two types of bifurcation sets (8) and (b) depending on the
sign of p, for the‘quartic polynomial. The graphs of the

- real roots X' 8s:functions of p, ere shown for 10 different

fixed values of p, .
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In fact, the envelope of these lines for various B8, values
is one of the bifurcation sets shown in figure 3.12 depen-
ding on the sign og.oz. With this picture in hand and the
dMagrams given in figure 3,12, the state sets Q, T, D, U and
N arw determined. All the possibilities are exhausted in
figure 3.13.

In order to identify the state and bifurcation sets,
the coordinates of the points labeled as (P ,00"),
(py',p0') and (py' ' ,po'") must be determined. Unlike the
cusp, there are no explicit exprgssions for the coordinates
of these points. The explicit definitions for the various
state sets can be made but their application is quite
cumbé?some. Instead, we list doyn some general tests that
are sufficient to prove the absence of some state sets.

First, note that the kind\of bifurcation set on the
p1-po plane, i.e. either (a) or (b) in figure 3.12, and the
slope of L(p;,B,) are immediately determined by B, and B..

Figure 3.13 will be of help in understanding the following

tests. Below, P is the constrained parameter space where the

constraints are specified in each test.

B

Test 1. No more than 2 Steady States

' \ 7
1f 88,-38,'20, then Q=T=@ and P = { NUU U D }.

1 : ] ’
(U means ‘union') —

*—



P20, 8520

P

220,ﬁ3‘0

?220,$3<0

Figure 3. 13

State sets for the quartic pofgnomial‘ u(x,ﬁ) = 0 according
to the signs of p;end B3: N[ v, o], v, o
' i ] 1 2 3 4

1268



(d) [p, < O and By > O

Figure 3.13 ( continued)

STATE SETS
n[Jo
TRZZL
o []2
T3
o4

LS
129



(1) [p2 < © end By < O

A L.-G:,,p "
07
(1)
P ’4.

' (r3)

o Figure 3.13 (cont’d) sTaTE sevs: w[].v2, o[, "Il . o8
o 2 3 o



Test 2. Sufficient Conditicn for Unigueness

1f 88,-38,%20 and B.<{, ther Q=T=D=N=] and P = {U;.

Tests 1 and 2 correspond to cases (a), (b) and (c/ 1n
figure 3.13. The cond:ition Bf,-38,°20 1s equivalent tc p,20.
The condition B.<C 1s eQuivalent to po<poL where pCL 1S
given by equation (3.23).

In cases (a)-(c) of figure 3.13, there are no positive
real roots when K <0. Likewise, in all of cases (d)-(f) as

long as Ky < 0 and po>p,'/4, there are no positive real

roots. These are the contents of tests 3 and 4.

Test 3. Absence of Steady States

1f 88:-3B5220 and K.<0, then Q=T=D=U=@ and P = {N}.

Test 4. Absence of Steady States

If all of the following conditions are satisfied,
then Q=T=D=U=Q® and P ={N}. .

(;) 8B8:-3B,'<0

(ii) Kq<0 *

(111) 4po-p32>0

Regardless of B, and B,, the region"below' the line

L(ps,By), that is pofpoL; has always an odd number of steady
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states. This :s stated 1n test 5, Test € gives the

comp.ementary case.

Test 5. 0dd number of Steady States

If Bo<C then Q=D=N=Q and P = { T'J U .

Test 6. Even Number of Steady States

1f B,>0 then TsU=sQ and P = { QU D U N }.

' !!“‘;\_
,,”*_ ;?".- .
Test 7 extends the claim of Test 5. It is to be understood

that Test 7 is not a necessary condition for the unigueness

of a positive real root.

Test 7. Unigueness of Steady States

1f Bo<0 and K,.>0, then Q=T=D=N=Q and P={U}.

The following test concerns itself with the necessary

conditions fér Q to be non-empty. .

[

Test 8. Necessary condition tor the existence of Q .

. -~ ’
a

1t any of the following conditions is not satisfied/

L.
3

then Q = 0.

(i) 8B3-38,°<0



-
L)
a?

By :s given implic:tly (as a function of B;) 1ir appendix F,
equation (F.'),

Lastly, we want t< include the fcllowing wel. knowr
algebra:c rule for counting positive roots of pciynomials:

Test 9. Descartes' Ru.e of Signs *°¢

Consider the polynomial f,.(X) = X"+f8,. ,X" "+...+B8¢.
Let N be the number of sign changes in the sequence
{1, Bn:,, Bn.2, ..., Bo} ignoring any zeroes. Then
there are at most N real positive roots of f,(X).
Furthermore, there are exactly either N, or (N-2),

or (N-4),... real positive roots.

The above tests can also be applied to the analysis of
the characteristic polynomial for dynamical systems with
four indepéndent variables, as was done in the previous

1 ) -

section. .

This concludes the ani}ysis on the fold, cusp and
swallowtail catastrophes. The higher order catastrophes can,
in principle, be analyzed in a similar vay.

One_t}néé in the chemical engineering literature

several examples of simple networks occurring in a
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o
ror-isothermal continuously stirred tark reactcr (CSTR) that
exhibit higher order catastrophes. Some examples are given
by Balakotaiah and Lu§s ’? . The emergence of these h.ghiy
degenerate singularities 1s mainiy due tc the highly non-
lxnea; dependence of the rate constants to the temperature
te.g. the Arrhenius exponential dependence). Near these
singularities, the steady state equations can be shown tc bpe

egquivalent to some high ordered polynomials. This point will

be further discussed i1n the next chapter.
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1V. BIFURCATION VARIETIES ARD DXAG?.HS

A. Cross-sections of M

in chapter 111, we studied tre prcjection ¢f the steady
state man:fc.d M cntc tne C,k' paramezer space because we
were 1nterested :n the number of steady states for a given
set cof paramerers. In this chapter, we shall look at
cross-sections of M along some path i1ndicated by a bifurca-

tion parameter, w. This parameter 1S usually an externally

controclled experimental conditiorn like the flow rate used 1n
a CSTR, total enzyme concentrat:ion 1n biochemical networks,
or the concentrations of certain external spegies. Some of
the current parameters j, used in Clarke's (h,j)-paramet-
rization of M may also be used as-u when the experimentalist
can manipulate in some way the velocities of corresponding
reactions. Taking cross-sections of M is a convenient way of
visualizing this manifold which is usually of high
dimension{ It must also be emphasized that a steady state
study undeér 6ne'varying parameter of an experiment;l
reaction spstem correspoqu to a cross-section of the M of
the _ general petwork that eﬁtbmpésses the particulaf system.

The graph of the steadykltat! concentrations of the

~

species X! (i=1,..,n) versus u is called a bifurcation

diagram. It is very important to remember that the qualita-’

tive features of a bifurcation diagram for a certain u is’

135 ' .
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affected by the values of the other parameters. In concrete
». terms, let the steady state parameter be represented as
. p=(u;p"). When p; # pi, it may happen that the bifurcation

—

diagrams for the species X, in each case are 'inequivalent'
For example, one may have folds while the other may be
straight. The next section will 1ntroduce a precise

definition of equivalence between two diagrams. Closely

associated with the €oficept of equivalence is the stability
of a diagram. We will soon realize that a connected region
in p -space induces a set of equivalent diagrams. Sets of

inequivalent diagrams are separated in p -space by what we

will call the bifurcation varieties. The problem of
classifying';nd énumerating all possible bifurcation
dzagrams (for a given u) can now be understood as the
problem of determining these b1furcat10n varieties.

'. The above ideas repreSent an intultive overview of
recent mathematical results on ’Imperfe;tﬁBifurcatiod
Theory' mhinLyaini“{Bébblubitsky and co-work;rs“". Their
work has,‘{;eady found 1mportant applications in chemxcal

S o

’/ ‘engineering as’ evxdenced by a series of articles publxshed
.by Balakota1ah and Luss"’ 382 wheregchey have analyzed: very‘
‘sample reactzons (but under non- 1sotherma1 cond1t1ons)

occurring in a CSTR. In th1s chapter,'we'consxaor the

| applicatibns to realistically comblex'reaction networks.

>
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B. Equivalence and Stability of Bifurcation Diagrams

Let there be a total of m parameters in a system of d

independent steady state eguations representeqd by the vector

equation

F(X,p) = 0 (4.1)
with X ¢ B and p ¢ R™. It is emphasized that X here is
considered to be a vector of independent state variables
unless otherwise mentioned. One of the parameters will be
distingukshed as the bifurca%idn parameter, denoted as u,
and write p=(u,p’) ¢ RxR™"'. The remaining parameters p  are

referred to as 'perturbation parameters'‘''’. A steady state

bifurcation problem is defined for every fixed p~:

y‘

F(X,u;p) = Fp<(x,u) =0 . (4.2)

Thus, there is a €amily of steady state bifurcation prob= |

lems, one member for each p-. The bifurcation diagram
% [ .

asso;iated with (4.2) cansbe defined as the set

, <
C) . (X, u) = : o (4.3),
D(rp ) | { (x,u) LS (x g‘) 0} , . (4.3)
e Two bifurcation diagrams ﬁ(ga) and D(lb) are said to be

equivalent if the mappings r., and F, ére.contaqb equiva-

lent'*’. Contact equivalence is a lgcal notion and will now

.. . [ -] > -
.
- . .
. -
r.
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be introduced briefly. P

e
\ AN

Let F(0,0) = 0 and G(0,0) = 0. The two mappings F,G
(R*xR,0) = (R*,0) * ' are said to be contact equivalent if -
there exists a smoothly parameterized family of invertible

matrices LL R* and a diffeomorphism on R*xR of the form

(X,u) - (Y(X,u),A(u)) (4.4)
such that
F(X,u) = 7_ G(Y(X,u), A(u)) . (4.5)
Xu

It is required that Y( ,u) and A(-) are orientation
preserving ,'i.e. det[d,.Y) > 0 and dA/du > 0. Furthermore,
(v(0,0),A(0)) = (0,0) which means that (X,u) and (Y,A) are
'in contact' at the origin. It is also noteworthy that in
the diffeomo}phism, A is only a function of u. The physical
reason for this is the view that u is an external parameter
andvtherefore not affected by the state of the system .
represented by X. »

The next aim is to partition the set of perturbation

‘parameters p- into open sets {A,} such that F ;- and sz-

P
are contact equivalent if and only if p; ¢ A, and p; ¢ A,.

Denote the set of bifurcation diagrams induced by A, as

$// Thig notation is used to indicate that these functions
need be defined only for (X,u) in some small neighborhood of
 the origin (reference 18). '
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D(F{A }) = { D(Fp_) | p~ e A, )} . (4.6)

v
Each D(Fp.) e D(F{A,}) is a stable bifurcation diagram in
the sense that a sufficiently small perturbation on Fp.
(e.g. perturbing p- to p '=p +e, ¢ small) will give rise to
a contact eguivalent bifd?aation probleﬁ Fp-, containing all
the qualitative features of the bifurcation diagram D(Fp_).
It has been shown that all diagrams associated with a gﬂven
A, are equivalent (Corollary 2.16, ph37 of reference 18).
Needless to say, the hypersurfaces separating different A, 's
correspond to unstable bifur;ation diagrams. Next, it will

be shown how to find these hypersurfaces which are called by

the collective name bifurcation varieties.

C. Calculating Bifurcation Varieties

1f a bifurcation diagram D(Fp-) is uhstable, then p-
must lie on at least one of 3 algebraic surfaces in R™ ',
(Stewart ‘?*’ has referred t6 these surfaces as 'ac;idents').
These surfaces divide p -space into several regions,, and any
two bifurcation problems associated with different values of
p"lying in the same region are equivalent“‘?. These

surfaces are called P

{

-

- e - - -

.¢// Golubitsky and Schaeffer''?’ gave the term 'Bifurcation
Variety' which ve refrain from using because of the general
sense that we take for the. word 'bifurcation'. Balakotaiah
and Luss‘®?’ have used instead the term 'Isola’ which ve



140

(1). Isola variety* , Iu

f

(2). Hysteresis variety, Hu

(3). Double Limit variety, UL“

They correspond to the three basic way§>by which a diagram

can fail to be stable as shown in figure 4.1.

IsoIaEVaPiety,Iu

Slight deviation from the value of p- corresponding to
the diagram shown in fig.4.1(a) will 1in general cause a
splitting of the diagram into two smooth isolated pieces.

Since the zero set of F is not a manifold, we must have
rank d_ F < d < ‘
Xu

where dqu is the differential of F with respect to X and u
but not p-. Thus a diagram with an isola point (X,u;p" ) can

occur only if p- belongs to the set called the Isola

Variety:

I“ = {p | 3 (X,u) with F(X,u;p")=0 and rank dxur <d}.

;o o (4.7)
The set .above is the minimal definition of the Isola ’
variety; later (section G), using further conditions on the
"segond deriyétives of I, we shall be able to point ouf the
different types of isola points.

E X R R R R Ry R

 s(cont'd) also adopt here.
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(a) i .. ;.
o DS
| —

(b) E | -S—

(c) !

! e
> 7
T ;
S Dl
| '
yFigure4.l

Three ways by which a diagrem can fail to be steble : (a) isole
point, (b) hysteresis point, and {c) double limit point. Their
perturbstions to inequivalent diagrams are shown on the right.

)



Example 1V.1
For d=1, dqu = [3F/3X ,3F/3u) and the rank

condition implies 3F/3X = 38F/0u = 0. When d=2,

BF,/aX, aF|/aXz aF|/3u

Xu 3F ,/3X, dF, /39X, dF,/du

and rank dqu = 1 < d means only one of the columns

of this matrix is independent and

d9F ,/3X, 3F,/3X,
det = Q-
3F,/3X, 3F,/03X, !

aF|/aX| aF./Bu
det . = 0
3F1/3K1 an/a“

PF./BX; oF , /du

det -
an/b\xz aF,/au

»

-

Only 2 of the above equations are independent. ®

The rank condition on a dx(d+1) matrix is equivalent to two
scalar equations. Thus the defining equations in (4.7) is a
system of (d+2) equations in (d+m) variables (X,p). On

elimination of X and u, a single equation p eR™ ' is

4



obtained.

Example IV.2

Let F(X,u;p ) = 0 represent the full set of steady
state equations for a chemical reaction network,
including the dependent equations 1f there are
conservation constraints. Let d be the rank of v.

We have-dqu = [H,F“]. Observe that each column
of M is always equal to a non-negative linear combi-
nation of the columns of the matrix [v(diag v*)] =
v'. Since1each component of v* is strictly positiye,
rank v = rank »' = d. Now, let v be of the form v =
(diag k)u(x;p) and let the bifurcation parameter u
be equal to the rate (or pseudo-rate) constant of
the m-th reaction, k.. Then F, = (1/km)v' . where v',

is the m-th column of »'., ®

‘ﬁysterééis variety, H

solution X for each u,

u N\

In figure 4.1(b), although there is precisely one

143

an arbitrarily small perturbation of.

the right sign will produce an S-shaped bifurcation diagram

for which there are three solutions for each u close to the

origin.

pifurcation-diagram is thus a smooth curve ¢ @

N

When no isola point is present, rank d‘“r'; d. The

-
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c(r) = { (X(r),ulr}) | 7 € R

At the origin,

P—_

du(0)/dr = d*ul0)/dr? = 0 (4.8)

and we reguire that

dX(0)/dr = q # 0

On differentiating the relation F(X(7),u(r);p ) = 0, we

obtain ) - y .
[3.Flq = O : . (4.9)
d:F(q,q) ¢ range [d.F] (4.10)

where d.F and d:F refer, respectively,'to the first and
¥ :
second differentials of F with respect to X. The hysteresis

variety for a given u is defined by the set

H“ = {p | 3 (X,u) with F = det[d.F]) = 0, and
diF(q,q) ¢ range [d,F] ; Orgeker[d.F] }

(4.11)

vhere 'ker' means kernel.



Example 1V.3

For clarity, this examplie demonstrates explicitly

how the range condition (4.10) arises. Let

[ 4

£, (X(r),Y(r),ulr)) c
F = = ,
£(X(1),Y(r), ul(r)) ¢
and
2f,/3X 9of,/0Y
[a.F] = ,
af,/0X odf,/2Y
ax/dr
dy/d4r
af Jou |
F =
H 3f,/du
]
aft/af
FT =
afz/af
‘. } ad

The first total derivative of F with respect

[a,F]q + F (du/dr) + F =0 .

to 7 4s

(4.12)



e

which therefcre leads +tc (4.9) wher (4,8} 1s used,

Now, lert

F.. = (076, 8X" , 3¢, 3x+)"
F,, = (0°f,/3K3Y , 8°f,/0X3Y)"

(e*f,/2y* , o0%'f,/ /0¥ )"

L)
"

and
q' = (d*Xx/dr* , 4'y/dr*)"

Getting the derivative of (4.12) further, and using

(4.8) again, results to
q'[d:iF]qg + [d.Flq' = 0.

where

Thus, the range condition is now explicitly
dir(q,q) = [d.F)(-q') e range [d,F] . ® (4.13)
The range condition corresponds”to one equation if the

dimension of ker(d.F] is 1. Thus the defining equation$ in

(42.11) is a system of (d+2) eduations in (d+m) upknowns:



E..m:nating X and u« .eaves a sing.e eguation .:n p eR”T

Fzr converience .n furthe

"

app:.cat.ons, the eguat.cr

e
LT

(8}
(&)

ngd.

-~
-

ccrrespending tc the range on wil. now be determined

ex;;xé::ly. Le: z pe 1r the left nul. space of [(d,.F], that
z[3,F) = 0 . (4.4
The rarge cf [d.F] 1s giver by the set
W =1 w e R° | (d,Fla = w for some a ¢ R |

Using (4.14), w e W 1f and only 1f

z w=20. ‘ (4.15)
Hence,
2 diF(q.q) = 0 (4.16)

where q and z are vectors in the right and null spaces of

_y[9.F], respectively.:

Example IV.4¢
The independent steady state equations for chemical
reaction networks is found from eguation (2.25) to

be



>
[§ &

2i(diag «"¢Iix"]

[N
x
Q
.-
o

ul
wr

F = +,(diag v i[x'-:"

= 0 (4.7

where §{ = }SI‘, SD‘»' x-e,.. Egquation (4.7
assumes that a.l reacti1ons in the network are Utmcs:t
bimclecu.ar. The expression for gD in terms cf 5: i s
given by egquation (2.24). Note that the or:girn §=0
15 a particular steady state sclution of (4.17). The

Jacobian matri1x associated with F 1s
(d.F] = v (d1ag v')xg‘ (4.18)

where ng' 1s defined in eguation (2.28). Finally,

the second differential has the expression

diF(5,8) = »,(diag v*)[(diag «'¢{)x'-«x'(diag §)]%.
s (4.19)

4

Double Limit Variety, DLu

1f, as in figure 4.1(c), two (or more) fold points

occur on the same plane (u = constant), an unstable diagram
exists. It is clear that there can be two fold points on the

same'u-slice only if p- belongs to the set

A

T
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DL a . p 3 53,»' and (Y'“" XCY, with

"y
>
IS
0
"
o
"
-
<
x
©
o]
3
@]
-
5

Tr.is .s the Docoubie Lim.® Variety. There sre—td+2+ eguat.o s

.ro{d+m) unknowns givin

N9
Q

S.nG.e eguation in p eR7
Example IV.5

For one-variable steady state eguations, Dly starts
to occur 1n a guartic polynomial. In figyre 3,171,
the swallowtail catastrophe set is shown and DiLu 15

-

defined by a parabclic curve as givenh below:

-

DLu = {(po,bv,P2)| Po=p2*/4 , Py=Q , p,S0}. ® (¢.21)

D. A Hysteresis Variety of the Edelstein Network

We now see hoy the general methods in the calculation
of the bifurcation varieties discussed above can be‘aﬁbliei
to a chemical reaction network. In particular, we calculate
a hyéteresis variety of the £€delstein network (goe Example
11.3). Let th; parameters for this.hetvork be - °

(kl'lkzvk-l'k~liE-l"klrE-l)t) € Rz 'here

k‘. - kgA
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E.2. = k. E,. ¢
k, = k-)'*k.;*kg (ki.)"k-;B)
) | E-zlt = (k-z+k3)Ev .
¢ 'Wﬂ - 17 - ) r\v/\_ 7 7 .
Distinguishing_ k,' as the bifurcation parameter, we write
the ind'ependent steady state equations as follows
F(xI,u;pf)’= ( f.(xl"), f,(xl,u;p') )t = 0
wvhere" - - Y
¢ 2
i f\(xI‘,“;p-) = (U-sz)s - k-zE - k_,;8%*"+ E.., (4.22)
Y f2(R uip) = -(kiS*k,JE ¥ E.as, . T (4.23)
* & = b
X (S,E) | 6
P' = (kllk:ZIk-1IE-2|'kllE-z3!) V‘ R§~-
i o :
The Jacobian matrix M, is
’ ) ﬂ"sz‘QZk-|s “sz‘-k-z‘ . ’ ‘
o=l | ‘ o
. °k3E 'kfs-k.” f ’ - »
aand det(M;) = 0 gives * ‘ .
f“ . . K ' ’ ' : o

t,('xr,}gf) o 2kD,K3S*+(2k_ Kk, -k u)S+(kyk,~ksK 2 )B-k,u = 0.
. ) -« * - " . . .

, S S . (4.24)

[} o
v

. R -

* s . . & . ' ¢ . : \

~
IS
-



We now find q ¢ ker M, , q= (g..4;)'#0, i.e.

®

’ 2
MIq =0
. P
This gives : .
Q| = -(kzs’k.)Q2/(’k2E) . -
6
and we let - ‘ - .
o )
g = ( EzS*k,, -k:E )' # 0
. ) ‘ ‘ “ :‘
. ‘ ; o
To find the single equation corresponding to the
condition (4.10), let I
‘3 Q
.
[ . - ¢
. «. = diF(q,q) .. :
x; g{ 0‘
that iS, ] -
b ‘ ¢
i Y
- .
— N
o T *we=bgy Qi) [ Fgg Fgp |9
F F
. . Fse , "ee | 92
X : > k2
where v ;
Fss = ( -2k.,, o)
PSE = -kj% 'kg )‘
= t L3
- - Fep ( 0, 0)

range
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giving

w = -20, | k.1g:%k:Q;

k:Q:2

It is now necessary to find z such that z-w = 0 holds

-
<

(equation 4.15). Let z = (z,,2;)".

zHI =0 gives

2, = ‘(kzs*k.)'Zz/(kzs"'k_z)

and wve let

> .
zZ = ( k,S*’k., ’kzs_k.z )

Finally, the range condition (4,10) is equivalent to the

following equation :

f.‘xl,u;p-) = k.1k1’5’*2k-,k;k,s-kz'(k.'!’.-g)g"’k-,k.’ = 0 .

(4.25)

| Eliminating u, E and S from f.;f,-f,-f.-o given by
equations (4.22)-(4.25) will now p;ovide the eguation for H“
in the parameters p-. The result is giyen in Table 1V.1. The .
tedious algebra was performed using a pr;gram called |

sREDUCE2 (reference 36). The sum of the 53 terms equals Q
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TABLE IV.1
Hysteresis Variety of the Edelstein Network with k,'

as the Bifurcation Parameter

u -
-Gk-|,k3k-3"
-6k-1’k_zk.)‘.
+3k_'kz’k3k. 3" ‘Ep
"15k-1’k31k-,"‘
=30k ., k.zkyk. "¢
"15k-|’k-zzk_3"
+12 k_y2ka?ky?Kk. 4
+12 k_1:kz’k_zkgk_,3"Eo
-20k_’ky’k_,'?
-60k.?k_z2ky* k.,
—60k_1,k_2k;zk-3'1
_20k.|)k_z:'k.3'J
~3k_ kz*ky?k_y'*Ep?
'27k-|kz‘k-2k)k-)'lsol
-27k_  kz*k.32k_ 3" 2Ep?
+18k.?k;*ky’k. ' *Ep
+36k. ?k2*k.k3?k_3'2Ep
+1Bk_ 2k ?k.,%k3k_3'2Ep
-15k_,’ky*k_,"'?
-60k_|’k-zk3’k_3'z
_90k_':k_zzk’xk-’vz
'60k-|"k-z3k3k-"’
‘15k-1’k-z.k_;"
-6k-,kz‘k,’k-,'Eo’ ‘
"33k-|k'z‘k-zk33k-3'go’ \
-27k_ka*k._3*kyk_3'Ep? ’
+12k.2kz2*ky k.3 'Ep
+36k. *k2*k_3k;3’k.3'Ep
+36k._1*k3?k.3’k3’k.3'Ep
+12k.,*k3*k.3°Kkyk_ 5 'Eo
"6k-1’k;.k-)' - 30k-|’k-3k;.k-;'
-60k. 2Kk_22ky’k_," - 60k_ ’k_3%k;*k._,’
'30k-|’k-3‘k3\k-3' - 6k-|’k-3.k-,'
+ kz.k”Eo’ - 3k-1k3.k”Eo’
'6k-|k;‘k-1k3’sq' - 3k-‘k3.k-z'k"80'
*3k-1'k3’k3'zo,* 12k-,‘k,'k-,k,‘£° .
+18k.,2Kk32k. 32k ?Eo + 12k_,*k3’k. 3’k 'Ep
*3k-1’k3’k-3‘kgzo - k-|’k3'
-6k-"k-3k3' - 15k."k-3’k;. -
'20k-1'k-1’k;‘ - 15k-1’k-3‘k3'
-6k_'k.3%k; - k. ’k.;* R

O

= 0.
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and defines H“ for u=k,A. Note that the parameters are the

Original ones: (k-\, kg, k.z, k), k.g', E').

4
/

E. Enumeration of Bifuﬁéation Dfagrams
-

Observe that the definitions of the bifurcation
varieties are based on the local degenerate singularities of
M. It is possible that there exist singularities more
degenerate than grose used in defining the 3 bifurcation
varieties above; héwever, we know that the former are
subsets of the latter. It 1s also quite possible that these
bifurcation varieties can intersect each other. What this
leidgfto is the éreation of more connected regions in
p -space, regions that correspond to inequivalgnt bifurca-
tion diagrams. Points of intersection among (or possibly,
self-intersections of) the bifurcation varieties induce
unstable diagrams that edhibit multilocal singularities and
perturbations on the p-'s lead to several inequivalent
stable diagrams. Some bifurcation problems”’may in fact
possess an intersection point Among the bifurcation
varieties wherein all the gonnected regions in p--space
meet. Thus, perturbing this highly singular bifurcation

problem in all directions should generate all the

bifurcation diagrams possible. Golubitsky et al.‘?7-2¢%) call

this singularity an organizing center.
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Example IV.6
The hysteresis and isola varieties intersect at a
point po when there exist (X,,u,) and (X,,u,) such
that

F(X,,u,;pPo) = OF(X, ,u,;ps)/0X = 0 1=1,2
and )

B’F(X.,ng:pb)/aX’ = 0 R

OF (X, ,uz;po)/8u = 0.

If u,#u,, then the singularity .is described as
'multilocal'. The following example illustrates the

case where X, = X, ang‘u, = u,. This example also

illustrates an 'organizing center'
Consider the following one-dimensional steady

state bifurcation problem:’’

F(X,u;p-) = (1/3)uX> = (1/2)p,X* + (1-2u)%

+ (p2-py)
= 0

vhere p- = (p,,p2) ¢ R* and (X,u) ¢ R?. The

hysteresis variety is given by

H H Py = ﬁz(‘ + p;f/Z‘u’)'
‘-4/(3[2]"’),< pr < (/(3[2]"’)
’(2'”')/2 < p; < (2''3)/2

™/ This equation actually arises out of the fin1te element
analogue of the Euler beam problem.""
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u = (1£[1-2p,*])" *)/4 , 0 < w < 1/2

X = pz/zy ' ~—®m<X<+>

The above limits on p, and p, are required because

the corresponding values of *u and X must be real.
The isola variety is
I : Pt = P2

and the corresponding values‘for u and X are 1/2 and
0, respectively. (There is actually another bqsnch
of the isola variety defined by p, = -2p,+(6)"'’?
whiéh is not considered here because it does not
intersect Hu within its allowed range given above).
bThe two varieties intersect at the origin (p,,p:) =
(0,0) where the corresponding values of X and u are
0 and l{?, respectively. Figureé 4.2 illustrates the
origin as ap organizing center where ¢ regioné on
the p;-p: plane meet, each region cdrrespondin§ to a

~

‘different bifurcation diagram. =
The problem of enumerating all possible bifurcation
diagrams for a given bifurcation parameter is seen to
involve a local problem and a global one. The local problem
is to determine the singularities of the s;ead} state

nnnitgld;ﬂf’ln effect, this vill giQe'the equations for the



2N

b — e —————— ———

———e = - |3 ©

———— — —— e ot

Figure 4.2

Bifurcetion varieties for the finite element anslogue of the

Euler beam problem (see example [V.6). The hysteresis varie-

ty (H,) andthe isola veriety (I,) ‘intersect ot the origin

and divide the plane into 4 regions thet induce 4 inequivelent -
-.bifurcation diagrams as shown. Also shown are the unstable

diagrams corresponding to the varieties.

157
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bifurcation varieties. The global problem is to finé‘all the
connected regions in p -space and figuring ocut the globa.
shape of the diagram associated with each connected region.
The succeeding discussion is restricted to the case
where the state variable is one-dimensional. The ideas are
based maimly on a recent wor; of éolubitsky and
Schaéffer“'f. To understand their results, a few
méthematical concepts will now be introduced very briefly.

‘The reader is encou}aged to consult reference 18 for more

details. : | ' .

"F(X,u;ET, aeR', is a t-parameter unfolding of G(X,u) if

F(X,u;0) = G(X,u) for all (X,u).” Think of F as a perturba-
tion of the problem G. It is desirable to have an unfolding
F cbntaining the minimum number'BT\pﬁrturbation parameters

(sometxmés*cail;d the 'unfolding' parameters) which

"generqxgs a11 pqssxble 1nequ1valent bifurcation diagrams

when G-is perturbed in all directions, Such an F is called a

,univer§a1 unfolding. For one-dimensional problems, .

procedures £or finding unzversal unfoldings are avaxlable
 (for example, see references 18 and 40). The minimum number
of unfolding,parameterd.necessary for a universal unfolding -

is callea'th; codimension of a bifurcation problem. For G

defined, nepr (0 0), we let rank G = n if the Taylor

expansion of G(X,0) at X=0 starts w1th terms of degree n.

-
* -
1Y . »



Example 1V. 7
Consider a one-dimensional bifurcation problem F.
Let (Xo,u0;pPo) be a degenerate singular pcint

satisfying the following conditions:

F(XQ,Uo:pé) = 0
3'F(Xo,uo;pPo)/3X' = C , o= .1, ...k

8 B 3" "F(Xo, uoipo) /X" OF(Xo,moiPc)/3u # 0 .

Then.in the neighborhood of pg, F(X,u) is contact

equivalent to

G(X,u) = X* ! (+ if A>0, - if A<0)

1+
v

’ : \

whose universal unfolding is | -
G(x,“".) = )_(h1‘6.;\,!("“'a.-z‘...'aq}(Iu .

This result is a special case of prééhefﬁi‘thedrem
proved by Golubitsky aﬁd Schaeffer''*’. It has been
extensive}y applied by Balgkotaiah and qus"” in. -
their stg/ady’ stage analysig of simpie but exot;hérmi-c

reactions in a CSTR. If a singular point s as

(Xo,HMo0;pPs) exists, then the maximum numper of steady

state solutions next to the singular ‘point is (k+1)
and the universal unfolding diables one to find all

the possibie logal’ bxtn.atan dxagrams. .



F. A Flowchart for Determining Bifurcation Diagrams

7  has given a

Golubitsky, Keyfitz and Schaetfer
theorem that lists a complete classification of local
bifurcation problems of codimension < 4 and rank s 3. The:r
results are incorporated in the flowchart diagram (Figure
4.3) along with other results already contained 1n the
diagram given by Stewart (reference 35, p.279). In the
notation of the singularities in figure 4.3, SrC refers to a
singularity of codimension c and rank r. Note that the rank
of G obviously restricts the existence of some of the
bifurcation varieties as summarized in Table IV.2. The
detailed definitions of the singularities given in the
fi&uchart should also be regarded as refinements on the
definitions of the bifurcation varieties in one dimension.
The defining conditions of the singularities give algebraic
equations in terms of the unfolding parameters-after'
eliminatioe of’x and u. Table IV.3 lists the singularities
against their respectlve bifurcation varieties. rNo;e that S}
and S} are intersection points of the Isola and ﬂxxteresxs
Varieties for rank 3 bifurcation problems. Since S} is a
non-degenerate singularity, it does not belong to any
bifurcation variety. ’

1t has already been mentioned that in some bifurcation

problems, there may existﬁhighly degenerate singular points
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Figure 43

A flowchert for determining singularity types of @
bifurcation problem G'x u) =0 (35'37)52 refers to
8 singulerity with codimension c end rank r

NORMAL SINGU-
TESTS FORM LARITY NAME
6G:=0
1 ho
G.,=07 * X - reguler
Loes ,, -
Gux= 0?7 —% G, =072 —= x%e y S5 fold
oo
det[d2G(v,v)]l = 0 7 —"——| xZ2 2 sz | 1sole
e
yes no 2 3 2
d36(vyvy =072 — [ X *¥ » | cusp
(with 42 G(v,v)= 0 )
[ yes ng u‘ S§ —
{ : iy :
G,=07 Byt 07 — | X3y S haiteresm
f,.;
o ., -4 | quertic
G xxx = o7 ——| X ju‘; 82 fold
yes : / - -~
yes 1 Xst{: Ss quintic .
] o007 22— 3 | hysteresis
vee L[ 2 leodim 4] —
Gy ™ 0?7 — Gz 0 2 —— | x32 ux s3 | pitenfork
l‘m inged
no 3 2 3 win
- Guu=Q 7 ——| x %4 S3 cusp
yos. | _—
(/ > ',\ codim lq p—
1/ 7 codim 3 -_

»
a3
»



TABLE 1V.2

Bifurcat:on Var:eties that may ex:ist for a givern

Rank of G

: Rank G Variety

2 I

oy

3 I , H

M u
4 I ., H, DL

u u

TABLE 1v.3

Some Types of Singularity for the !sola and
Hysteresis Varieties (SCr is a singularity with

codimension ¢ and rank r)

st si, s}, s3, si

X

st, Si, s}, s4, S}

&
Pl
-
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La)

X.,u./ whcse pert.rbat.crs w..l give rise tZ all or most of

+he t.furcaticr diagrams pcssiz.ie. Geliubitsky and

reyfitz ** found ar crganizing center for the steady state

bifurcation prcr.em associated with a single, first-order
exothermic reaction in a CSTR. They have ca..ed this the
"w.rged cusp’ (S} in the flowchart, figure 4.3). Balakctaiah
and Luss'®? then veri1fied the wcrk of Golub: gky and

s

Keyf.tz' using physical parameters and were able tc

elucidate more details on the multipllcit?‘batterns; A

beautiful example cf multilocal singularit 1es as well as
AN / ’
another organ:izing center is alsc 91Ven by GoluU1'sky,

Keyfitz and Schaeffer >’ in their analysxs‘%p the

&
thermal-chatnbranching model for the reaction between H, and.

Oz. : ;1

-

+

' G. Bifurcation Varieties of Reduced St‘hd; State Problems

In this sf%éion, we again exploit the possiHiIity,of
régyzﬁﬂg the system of steady state equations inta one
dimensioniand the cohsequent abilPty to exactly express tHe
state sets (inclpding the fouer or upper bounds of‘thc
steady states if theg ex}st). Thg_primary aim bere is to
gome up':ith ;eady fotmulas that.are convenient for

-
practicél/ppplicgtions.

~ “' >
\ .
, .

/ \

&
i
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Isolas T o .

1t has already been mentioned that the steady state

]

manifold M is a simply connected hypersurface. Isolas can /j(
‘ W

occur*only as crossections of M. Physical reality usually

cérreéponds to a cross-section of M. For'apis reason, a

deta1led treatment on isolas giving the different types and

their de};nlng condxtlons is given below.

Let the steady state bifurcation problem in one

d1meﬂszoh be ’ : ’
. . . ! ) ~ ,
F(X,u;p’) =0, (X,u;p )eR, xR . xR7T"' !
. . v
The isola variety is defined as -~ . .. ° «

.
3 - . . v
v . e * . .

I; -‘{pfeRT"ig(X,u) sﬁch‘thagff-ﬁ?[ax-aF/au=0} . . (4.26)
N | | . Pl | ‘rl/\ . | ' - \

) ‘ -, ) - E i va . ) . ’ . .

We will See that due'to the vénishiq§ of ‘the first deriva-

tidbs of P, thete are in genﬁral fovt dxffement types of

-

0
~'zsolas. The follow1ng dxscuss)bn'is not restricted to the*

- rank of F.. A further tefe‘enc& ;s G Pooss and D. Joseph s

_-baok (reterehce 41) . ;"o j-o% K DU \ .
Let (l‘hﬁoi be an 13010 gﬁjg; The‘cu:ves passzng #

. h;auqh (x';uo) satxsfy the ;ollowzng equat:on near that

»
P T

z ,;‘x».u)--' r, (sx)‘*zr axwr (m' + orqaxmsal) ] =0
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where
olz") means lim{o[z")/z"}=0 as z-0

and

Su = p-uo

“ As (X,u) approaches (X°,u,), the equation for the curves

AN .
F(X’,u)=0 reduces to the characteristic gquadratic:

Fxx(dx)’+2Fiudxdu+Fuu(du)’ = 0 . : | (4.27)
Thus,
" - V {/z‘ '
du/dx § (qu/Fuu) + (H /F““) (4.28)
where H = F 2-F__F

Xi XX up °

Equatxon (4. 28) give the slopes of the tangents to the

‘curve(s) at the xsola point (x’,uo). Note that H is the

negatxve of the determinant of the Hess1an matrix of F. .

" When not all of the 9econd der1vat1ves ot F vanish

sxmultaneously, then the 1sola pomt 13 reterred to as g‘

“double poxnt' because only two curves ppssecszng aistinct

tangem:s may pass through the pomt. xf the. tangents are not

- defined, that. ig vhen H<0, then the point is callné;l- |

-con;ugate gmt‘.’ ‘In ordet for more than tho dutt‘nct

£

? -qgwt{g; to xaa hrougg the 'lsola point it is necuury mt

A}

\
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at least all of the second derivatives of G vanish
simultaneously.

The classification now to be given assumes that the
isola points are either double or conjugate points. The
classification is mainly based on the sign ok H. The four

types of isolas are shown in figure 4.4.

A S

Quadratic Steady State Equations

Lt

FZ(‘xiu.rpn’_) ‘= X'*ﬁ\(“rP')x*Bo(uv,P_) = 0 . e

-

‘Since rank = 2, only an isola variety is possible. In the
dlscuss1on that follows, we will refer to the isola variety
of a b;ﬁurcatxon problem of rank ¢ as rIu. The Isola variety
°’for r=2 is ‘written dowq immed@afely aég
2. ’{'p' |> ﬂo-z('p./z“)' aﬁo/au-(p,/z)aﬂ /ou, B so } .

' (4 28)

e .
. -

The condigion Bogtﬁ,/Z)’ comes from eIiminating X from F =
ar/;xf-~o‘\\pe second condxt1on arxses out of the elxmxna-“-

T — . ~ 7/

tion of X trom AP/3X = 3F/0u = 0. The last condition p.so
ensures that X and I are non-negat:ve tbrfthe corresponding
p- of thc isola variety. To dctcrnine ug;éﬁ tjpe of isols,

-,ono thcn app&ics the conditions defined in the precedxng
’ 1ér e ) T#> _ .

“". R ) . -

“ - - .. Lo N - -
4 . + ~ -
. : ‘.01 .

'.\i"_'
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‘m‘) FtFx'F}{"O (b) F'F')(' F}l.o
H<O and Fy Fyy> 0 H>0, F o F,u=0

XX, X

X X

e
-

><

\‘/‘ .
— ) " - — N
(c) F = Fyx=Fy=o ; . T,. (d) F «Fys= Fp},ifo'
\i/H-aO "_Fxx"‘o , ka'o — Heo
s’ , “
Figure 44 N

"Four types of Isola points besed on the. seéom partial
derivetives. H=Ff;- FuxFag - - -

) .

TN
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section.

Cubic Steady State Equations

~ Let
Fo(X,u,p) = X2+ (u,p )X +B, (u,p )X+Bo(u,p) = Q.

The Hysteresis variety for a given u, rH“, is defined for

rank r=3 as
-
R 3

-

Hy = {p | pr(u,p )=polu,p)=0, Balu,p )<0 } . (4.29)

] - &

where p, and p, are defined below (equation 3.5):in terms of

B2,B, and Bo. : T
, . o
o = By - 3(B;/3)° ' . (3.5)
° '_3oi‘ B:(B2/3) + 2(B2/3)° . | \(

Eliminating u trom p,-po-o gives the. defxnxng equation

“ for thc algebra:c varzety in p- -space. The add1t1ona1

?. condxtxon B1<0 ensures that for the partacular (u,p ) where ’

: 5§-p.-po-0, the orretpondznglstate variable X 1s positxveéj
This condition is a necessary test for the cxistence of the

Hystcrcsit Variety for the cubic. | - .. - -

b

- Nete that it is not right to say that H, is the cusp
: nt (tho origin) itself Ihl& is. bocausc 'y and po are -

L. Lo X R
R = . . 0‘ e .a
- L N il ~
. et . i - e
« » K ¢ Coty ' i .
' o s . X Tl
s . .
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also functions of u and"H“ is defié?d by p- only. For
p‘e’Hu, a curve 7{(u) 1s traced on the p,-p, plane as the
bifurcation parameter u is varied. All curves r(u) on this
plane passing.through the origin have a set of perturbation
parameters p: that pelongs to ’H“.~In figure 4.5, p7 and p;
do not belong to ’H“ while p;e*H“. The“corrgsponding

bifurcation diagrams are alse shown in figure 4.5.

The isola variety for the cubic can occur in»spxgral. 3

-~/

ways as shown in figuge 4.6. Note that the curves I', have |
p'e’I“ only if they are tangent to the cusp curve to tHe "

right of the tangency point between the line Lp and the cusp

-

curve. This tangency point between Lp and theﬁcusp‘curve
occur at po=2(B,/3)>. Thus, it is clear that’ there exists an

isola point bnly if SR .

Po > 2(#;/3):|

or equivalently (using. the é;tinitiqn of po above), ”

»n

- . '

380-B818; > 0 . . , - ) ‘ (4.30) ;‘

- . -
-

Cond1t10n (4.30) is a necessary test for ‘the existence of an

isola point fpr the cub1c. -

AY

The 1ggla variety"I has the following explicit

.

definition: -o-‘ .

v

By .
= .

« . .

I,=tp l"".“‘"’""?(""9’"Ofuoep.beo Y :m

\]’



= »;

(a) /

(b) /

= p3

P 7
. T, (K, p;)
-‘--__4/ ]
Po
T3y, p3)
X
(c)
Y
-~ Figure 45

Curves t, ()P} treced oﬁ the py - p, plane QQ M varies

. -put®p; fixed. Since t (j.l,Pz) passes through the cusp
.- point (the origtn), r3 belongs to the Hysteresis variety E
end.induces an unstable diagram shown {n (b). Perturbations g

“of ﬁz give rise to either steble dtagram (8) oric).

” v .
. N _

' 170
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22(82/3)3 7
///’// 7

7.-%

-

=¥
—

Figure 4.6

“Far-pre I, , possiblecurves T, (u,p) traced ontfe

" py-p, plene 8s yveries. It is‘assumed that the line

L’ ‘18 fixed os )| changes.

»



where K, 1s giyen by

K. (u,p ) = 0,83p,/8u)?+3(3po/3u)? , (4.32)
and K, is1given by equ;tion (3.8). Recall that K; =9
corresponds to the condition aﬁ/ax = 0 while K, = 0 is for
the condjtion 3F/du = 0. Figure 4.7 gives the corréspondind
bifurcation diagrams fbr the curves shdwn in figure 4.6:'

’H“ and ’Iu are tge only'possible bifurcation varieties
for a cubic steady state equation. We emphasize that these
varietieﬁ are exclusivé to the chosgn bifuréation parameter
u. Assigning another parageter as u will change the defini-
tion of tﬁg p;rturbation parameters p- and therefore of ’Hu
and ’Iu .

Figure 4.8 shows how multilpcal singularities can

N

occur. Their perturbations are also~shown.
”* . ~

» Q
Quartic St‘ady State Equations . . . S
In the following tieatment of‘thc4quartic, the ’:
‘constraint X>0 is dropped for simpPicity. The hysteresxs

“variety is ngen by L' shown in figure 3.11. ‘.hce.

H, « { p- | Po==p2*/12, P:'t(;/g)q:(‘gﬂz)'/’;‘93‘0‘};
- BN BE : ‘ o
h I I ‘ (4.33)
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N
Figure 4.7

Bifurcation diagrams
corresponding tq the
curves T} shown in
figure 4.6.
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P»:Hu ' | @

Ry U2
P X

perturdb p~

Po

\
oS
2
. A
P eHy | | N

Figure 4.8
Exemples of how multiloce! stngularitlos ariso in bif rcotion
diegrems. In A, »~ belongs to both the Hysteresis end Isols
varisties. in B, p~ 1s 8 member qf the Hysteresis variety. In both
ceses, the singwarities octur at 4wo different velues pf jt, ' _

Hy= U, . Shown also ere the curves t snd the corrnpondtng

diagrams when p” is nrtumd

=3 \2\

) . . a
A ! ’ -
\ o ! . o

. .
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%
where po(u,p ), ¢-lu,p ) and o, (u,p ) are given 1n equation
(3.18) repeated below: -~ i

¥

"

T oo, B:-6(B,/4)"

5v—2ﬁz(ﬂg/4)"8(ﬂ),’/4)) . (3.18)

.

Bo-B.(By/4)+B2(B5/4)°-3(B,/4)°

.

'

The double limit variety exists in- the guartic. It 1is
shown as the curvg labeled DL in figure 3.11 and has a

simple set of describing ‘equations:

.
¢ ©

A .
‘DL, = { P~ | £1=0, po=ps’/4, £2s0 | . (4.34)
Referring to fiqures 3.1 and 3.13 , it is seen that two of’
the necessary conditions for the existence of ‘DLu when the
constraint X>0 is included are B,<0 and p,<0 (see figure

.13(£4)).

Regarding the isola variety, no simple explicit

2

defining conditions were found except for K.-O (ngen in

equation 3.20) which. results from the elimination of X' from

the equations f.,(X')=3f,/0X"'=0.

<. - “ . -

Eximple IV.8 . ~

The iodate-arsenous acid reaction in a CSTR was .

¥

" introduced previously in Example I.1 including a i

2-variable model (Network N,) analyzed by Ganspathi-

subramanian and Showalter‘’’. Por the convcniohcg.ot



the reader, the network 1s repeatec below:

Network N,

R,,R., X

RZIR 2 : B
R, B + X -~ 2X
e
R. B + 2X -+ 3X L

"The reduced stéady state equation 1s a cub¥c poly-

nomial and therefore the results of‘this section can

be applied directly after finding, the B coefficients

of the cubic. In reference 7, the bifurcation
parameter is u = ko+ko' where ko = k,'= k,;'. In our
notation, s = k_,' = k_.,'. Using exSEtly the4same
parametir values used in Table I of the feference,
the bifurcetion diagrams were generated as well as’
the corresponding 'paths through the cgsp"“‘ as u
is increased. The results are given in figure 4.9.
The hysteresis (H“) and isola (I“) varieties are
also shown along ko':ighe perameters po and p+ are

defined in equation (3.5) in terms of the B

_coefficients of the cubic steady state equation. .

”

g
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BIFURCATION DIAGRANMS PATH-THROUGH-THE-CUSP
P

& -

Figure 4.9 : : ‘ i

Sequence of bifurcetfon diogram; (le(l column) es tho perturbe-
tion parameter k,’ is increased from 0. The right column shows

~ the corresponding path through the cusp as u is increased. The

The network 1s N, which {s 8 model used for the 103- H3As03

.system by Ganepathisubremanien end Shoyvalter (ref. 7).

o o o .\
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tion of a 'topology' for the set'of extreme

- can say ultlmately,'the set of react1ons; Two

S 3 : . :
V. SYSTEMATIC MODELING OF BISTABILITY IN CHEMICAL REACTION

SYSTEMS )

A. Introduction - . ‘ .

-

"There is an .added bonus in knowlng the geometry of .the
set of steady states of a network. Through the structure of
the current polytope H the mechanism oflany complex
network can be sorted out- systematlcally

—;n Chapter 11, we have® Qgen that the generalvsteady
state of a chemical reaction network is a superp051t10n of
its extreme currents ano all steady states are found in the
current cone C,- It wis also discussed that a crOSstection
of.Cv, the current polytope’nv, is suffic}ent to reoresent.

all the informatiop contained-in C,- A very impottant result

o o . - , L :
of our ability to find the structure of "v s the construc-

5,

\

urrents, or gne
urrents are

“'far away from each othe:_ if they belong to dlstant

vertlces in ﬂ

'

’
\

‘ One must bear in mind that the whole of C represents \

‘ all the poss1ble steady states of an ensemble (of 1nf1n1te'

count) of Teact1on systems whose network structure (or

~

sto1chlometry) are the same. A partxcular reactzon system :

has flxed parameters',and more often than not, the rate

"

'“constants have w1dely ranglng magn1tudes. As a consequence,"

«

178
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v

. come about is the identification of the 'elementary

~ B | S o179

the steady state of the system will often.be found nJEr a
low-dimensional face of ﬂ . This ufuld mean further that at

steady state there are only few eylreme currents that are

sxgn1f1cant The 1dent1f1catzon of these dominant extreme

currents are aided by experlmental 1nformat1on. Using the
topology offered byvtﬁe M, of the network, certain reactions
will be found to be inessential for the study of certain

-features of the chemical system. With this view of.vain

.mind, it is realized that we should be able to use it as a

modellng tool for complex react1op systems._leen the

‘mechan1sm,of a reaction system, no matter how complex swhich

is known to exhibit different dynamical or static features.

A‘prerequiSite to the understanding of how these features

Y
3

L

processes or reaction 'pathways'. These words,'so'often

used in textbooks and journal articles; now have thelr

©

concrete‘definition in terms of.extreme currents. The
struct'ure‘of'nv Yor the netwark offers us e.SYstematiQ,
apprOach in deciding which pathweyslare most importadt and
wh1ch ones can be def1n1te1y 1gnored Thebe ideas w1ll be
pursued 1n th1s chapter. _‘ /' B

F', ‘We shall cons1der the problem of 1dent1fy1ng the
-dom1nant extreme currents?when ‘a reaotxon network 1s capable
of exh1b1t1ng blstabzllty._For a g1ven network,, e'wzll.see
that we ere able to 1dentify a m1n1ma1 subset of reactions
that 1s necessary for the emergence of blstab1l1ty The next

sectlon is devoted to the development of the c¢riteria that

~

a" Ny



'bistability.
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determines ‘whether or not a given network-has potential to

have multiple steady states at all, and whether or /ot a

given extreme current is dominant when the cond1t1$ns favor

\
- ~

e
The conclusion of this work is the identification of

~ the. extreme currents responsible for the bxstab1l1ty

observed experimentally in the peroxldaSe -oxidase (PO)

redctionf®2 .81}

in an open system. In order to understand
the' complex mechanism of this system, a much simpler
‘prototype' network is fully énalyzednwith the hope. that we

will be able to discover some basic ina?bdisats that would

1ead to bistability. This simple model is the classical

substrate-inhibition enzyme mechanism which is fully

analyzed in section 'C. Sectlon D 1ntroduces the reader to
the mechan&sm of the perox1dase oxidase reaction. Fxnally,
sectlon E presents a bistable model of this react1on ‘with
its full analy31s and correlation w1th exper1mentally
observed features.

o
?.\A MSdeiing Approach to Bistebility\

s

<:. leferent dynam;cal or statlc behaviors usually occur

under d1fferent sets of condxtlons. The modeling can

_'therefore be 51mp11£1ed by con51der1ng eé&h dynamlc behav1or

separately. In. th1s chapter we focus on blstabllzty The'

 purpose is to propose a systematxc approach to modellng 3

b15tabr11ty‘not’on1ya%n the PO reacflon‘but,;n general to -
A c e . L :

. -
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all complex reaction networks that are capable of hav1ng

e

multiple steady states. As in the PO reaction, the list of
elementary steps in the mechanism is often a long one and'

one wants to determine a minimal reaction subSet, a 'model’,

that is sufficient to generate b1stab111ty. \
l\

Below, we enumerate the proposed steps in the procedure

for.thracting a minimal model for the"bisf%bility in a .

< .
network :

(i). Thé first important step is to determine the
extreme currents composing the steady state of the

network, that is, find the current.matrcix E.

. (ii). The second step requires a chsideratton.of
.thel'topology' ofvthe network, that isy howsone;
extreme current is‘éoupled to-another and what
reecgions_are involved.vThis is aceomplished by
determ1n1ng the structure of the current polytope,,'

nv, whose vertxces represent the extreme currents.

’

A4Ti). The third step invoIQesielucidation'ofvthe

\\ inner structure of M . The detalls of this test w111 o
\
be dlscussed in thlS sectxon.

‘..
x

- . B L

o

;_;The react1ons compos1ng the domxnant extreme currents are
'taken as the m1n1mal model React1ons that belong exclu51ve--'

.ly to the 1ns1gn1f1cant extreme currents are thrown awvay and
- o R S



~

3 considered#hs inessential.
In Chapter 11, we saw that a necessary condition for
the ‘existence of multiple steady states is the vanishing of

/
. / - -

the Jacobian of the set of independent kinetic equations, By
- . -~ e
multiple steady states here we mean at. least 2 isolated
' steady states. The Jacobian vanishes for some (h,j);if and%

Only if-

ag(h,j) = 0
4

L (5.1)

which'reSUlts to one vanishing eigenvalue. The'test is fot
suff1c1ent because the 51ngu1ar po;nts of M may happen to be
degenerate. ThlS usually does not happen and we do not need

to worry about it here. We have seen 1n Chapter IIt Eect1on

K that if a, is always p051t1Ve for all sets of steady state
H ¢ : .
parameters then no mult1p11c1ty of’ steady,states 1s"

possible

Example V.1

The follow1ng enzyme network wlth product 1nh1b1txon
e P
- was’ clalmed by Aarons and Gray"°’ to be capable of .

'hav1ng 3 steady states. U51ng the fay,=0}- test g1ven"‘

above, that cla1m is easzly proven to be false.

N .
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exper1menta1 system w1th blstab111ty lxes on a

¢ §F
_"R|,R71 ( ) : S L ) ._ /
R, - E + S » ES
. N . - < \
R, - ES =cE + P Q& - - ’ '
. 550 .
Re,Rya . 2P + E I PEP .
”vt_ . : — . s
Rg ' p~t) L e

2 . . ) N K *

- ";\"

v : TN . .
There are only 4 independent d&namical species due
to the conservation conatraint.[E]ffES]+[PEPJ%E{,

constant. One finds that

a, = k_wksks(kzE+k_,) > 0 e
\ ,

and therefofe multiplicity of steady states is
&
1mp0551ble.!lt can be’ shown that 1t is necessary

-

that reactlons R, and R, should be reversible for ay

Y 9.

to be*able to change sign for some fea51b1e

‘parameters. One can also checfrthat the sto1ch1o-

+ -

'metryc coeff1c1ent of the spec1es P 1n react1on Re

muat‘rndeed be.at;least vaorvmultlple steady statest

S

to be;possible._l

Le

2

Q‘, J

We now develop an add1t1ona1 cr1ter1on wh1ch turns out

|
to be very helpful in the PO model Our cr1ter1on is that an

2
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s exper1menta1 behav1or. The reason1ng behlnd th;s statement f gt

"fﬁat all

1nvolves the fact that cheg1cal reaetxon rates vary_over;g,
many orders’ of miigxtude. usmally the rates 6f the less -

]»'1mpor€ﬁnt reactxo

184

two—dimensional face of ﬂ and that this face will eontain
[4

part of the. surﬁace deflned by a,=® The reasons for thlS

‘w111 be developed in the d1$cu5$1on whlch follows

. The cendatzon a, 0 is an equatxon of a hypersurface Z“

oA

wh1ch can: be drawn Lns16e H for a ngen-h- If there ‘is no

conservat1on constraxnt then Z‘ has a fixed pos:txon in ﬂ

regardless of the value of the parameter h An example of

4 5-.

;thas has already been g1ven by Clarke (reference 4 ‘P 38) fqg

the 1 d1men51onal SchLogl model However, ‘1 f there are
tonServatlon conditlons, then the pos1tlon of Z“ w111 depend
PN

‘-on theléalue of h “In elther case, thzs hypersurface must

ex15t¢1f there is the p0551b111ty of multlple steady states

8 . . \
'g_ The SIQD of ay is relaved to stabilify. In a bistable

-w

system, ﬁhere 1§\a mlddle unstable steady state that B

1

>

N

A

corresponds ‘to the regxon in n where a4 is negatxve and two -

‘stable steady states that correspond’ to'nearby .regipns where

a4 is-pdsitive. Thus, the parameters of-an experimental

b1stab1e system must place ‘the syﬁtem in the v1c1n1ty of the:y,

r.hypersurface re. ‘
Another xmportant 1ngred1ent is the proposxt1on that an.

;experlmental system w111 probably correspond to the lowest

,d1men51onal face of n that 1s con51stent w1th the observed

. in & chem1ca1 sys em at steady state are«_
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many orders of magnitude smaller than the rates of the
dominant reactions. It would*be improbable for a large
number of independent currents to be equal at steady state.

Thus the center of n is the least probable location to

f1ﬁd an exper1menta1 system because in this reg1on ‘all

currents are equal. n has faces that are of one lower v
dimension than the polytope itself. The centers of these
faces are also i?probable because all but one current in a
set of independent currents must be equal. mhglmost probable
locations'for finding an experimental system are near the
lowestvdimenaional faces, with rertices having the highest
probability of all, |

We now consider the lowest dimensional face of Il that

-~

is consistent with bistability. A vertex is unacceptable. It

represents an extreme current where the reaction rates are .-

locked into fixed ratios. To have several steady states at a
vertex, the only thing that can vary is the flow in this
s1ngle current. Mathemat1ca11y this is p0551ble if the
react1on k1net1cs is of high order but it seems unlikely

that any rea}1st1c chem1cal network would meet the requ1red

{
7.

»mathemat1cal cond1t1ons. Our view of blstablllty is that the

v

three steadyzstatesv(Z-stab;e, 1 unstable) differ 1n,that

each state has a different combination of important

raacthns. THuS‘there should be'three independent cOmbi-
! N
natxons of react1ons 1nvolved “Three 1ndependent currents

e
span a three dxmen51onal cone, whr/y’corresponds to a_ two
\ e

dlmen51onal face of n In order to have b15tab111ty on thzs’
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face, the curve {a,=0} must also pass through the interior

of the face.

\

C. Elements in the Substrate-Inhibition Mechanism Essential

; -

for Bistability

It is belleved by Degn et al.‘*2-%'’ that the majof

cause of the experimentally observed bistability in the
peroxidase-oxidase reaction is the inhibition of the enzyme
at hign oxygen concéntrations.‘A subset of the reactions of
the network now to be ana;yaed hasractualiy been suggested
by Degn‘®'’ as a crude model for this bistability."For this
reason, we present a full steady state analy51s of the'
rever51ble substrate inhibition enzyme mechanlsm “and show

how to extract the important reactions for the occurrence of -

~

blstablllty. We find that we are able to list down the .
_essential extreme currents and take this list as our. guide ‘ ;l
in tbefanai}sié of the PO reaction mechanism. %

vThe reactions are given below. Reactions 1 ang 2

i .

K

represent the reversible flux of the eubstrate's from a

coqgkant reservoif denoted by (A). E represents the free
L

enzyme, ESland ‘SES are enzyme substrate complexes.~The -

symﬂbl (P) also means a constant product reserv01r.'fj«_'

/ .
el .
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Network N,

Ry s (A 2 s
LA RaEy St E T ES
A Ra, Ry . Es & E + (P)
Rs.R; S + ES 2 SES

The current _matrix E is

A

r b 3
1 1.0 0 0 .0
1 6 0 0 0 1
o 1 0 1 0 O
E'= ;.1 0 0 1 O
o 0.1 0 0 O .
0o 0 1 0 O O :
6 0 0 1 0 1. - .
0 0 0 0 1 11) ° ¢

.

and the 6 extreme current diagrams are shown in figure 5.1.

nv is 4 dimensional and thegénare 14\edges, 15 two-faces aﬁd

< -

7 three-faces as given in detail below. (The APL programé
published by von Hohenbalkent''’ were used). The numbers °

identifying each face cptréSpdpa to those of the extreme
turrents.given in figtre 5.1 (or column numbersgof E).

IS ~

“y

1-FACES : 14

s

A
ew;

WWWRNNN = = oo
DU G Wo U WA
[4
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U
o o

2-FACES : 15

s

DN E PR WWOOPWWWNNN
O N NPT E O W

S WWWRNNN = o e oo

w
|
)
>
0
M
[%2]
~J

,
U1 10 o W W*
OO NN
’)
-

"wN_l—l._l-_l—A
A D WWWNNN

? .
.Table-Vrf lists all the two-faces in terms of'the component
. extreme currents. The signs of a4 for each face are also
g1ven ('+' means it is always pos1t1ve and cannot change
sign, while '+-' means it can change s1gn) There are only

threeep0551ble 2- faces that can have thelr ag's van1sh for

=

 some. parameters (h j). It can be ea511y checked that the

2-faces (2 3 4) and (2 3:5) can have e1ther 2 or O steady

. states for all parameters (M in these cases has a-
& .

'non degenerate fold s gularlty)a Only the face- (1.2 3) can

generate 3 steady states. Thus, we can take reactions R,-Ry



Figure 5;1v

The six extreme sﬁ%ﬁ&tworks‘correspohdin
X1E for the reversible classical -

the current matri

Sy~-E
ES
ES
. ES
6
E ,‘__‘S

o s -
. (S
§ ,

Substrate-inhibition enzyme mechanism.

Ay
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g“to“théfcoluﬁns of
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TABLE V. 1
Two-dimensional Faces of the Current Polytope Hv of Network
N,,; (substrate-inhibition mechanism)
(Numbers in the 1st column give the column numbers of .the

-

current matrix E; n is the number of species in each 2-face,

-

and 4 is the number-of independent species)

Two-face n a \ _ ag
123 4 3 -
12 4 3 2 + '
P 125 '3 2 +
134 4 3 + )
135 T 3 + |
136 4 3 e +
14:6 3 2 +
156 - L3 2 +
234 9 4 3 _ o+
235 . 4 3 L
© 245 3 PR +
3 4% 4 3 +
3 46 4 3 +
356 - g 3 +
456 3 2 +
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as the minimal reaction set for a bistable model. Reactions

.R, and R, are 1nessent1al
The current polytope for the model is given in figure
5.2. The {a4= =07 -curve 15 also given for a fixed h = (1/E°,

1/$°, 1/ES°, 1/SES® )‘. The coeff1c1ent a, (4=3). for the

model is

IS ¢

aa(h,3) = j23ahz-[3,(hyhs+h ha+hsha)+32h;(he=h,)]
. [ ""' Ul.

@ ’

which vanjishes when

jf(h1h3+h|hq+h3hg) +.j2h3(hq_h1) = 0

for'j.jsh.#0. Using the conservation condition for the.total

enzyme concentratior E,, the above equation implies

b

N

231/3s = (hitohit) /e,

¢

Cu,

_ from whlch we conclude thattmult1p11c1ty of steady states
occurs when [SES]° >. IEJ'y (In example 11.8, the var1at10n

of - [S]° and u, as a functlon oﬁ E. was g1veﬁ for some fixed

Y

values of the rate constadES) f R D N

E The %teady state man%ﬁold &pr th1s m1n1mal model | \

‘possesses afdegenerate s1ngular1ty wh1qh is the cusp From

.
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FiQure 5.2 - 3 . N F IR

The cirrent polytope. Hv of the reduced substrate 1nh1bxtxon
mechan1sm‘1nvolvzng currents E', E*, E’ given in figure'5.
For a fixed parameter h, . ag=0 1s a stra1ght line as shown.



Aééf*ﬁ\

. ‘ ‘ 193

{ (B2,B:,B0) | B2<0,B,>C,B0<0 and K;<0 }

’

-3
"

where

Ky = 27Bo* + 4BoB2> ~ 18BoB.B2 = B17B27 + 48’
Bo = ’kkaks/kzkaks
B =‘(knks/k;ks)y* (kakeE./kzks) - (k1k&/szs)

N

B, = (ke/ks) - (k'-“/kz).
Thus,

T = {(k,E, )V | kzk5<k.kg, ku(k2+k;E.)>k,k3, K3<0},'

,‘ v 0 | .
yThe analysis above tells ue7tﬁa£ E*, the pathway corree- ‘
pond1ng to the catalyt;c cycle, and E°® which is the enzyme
1nh1b1tron pathway, ‘are suf?§c1ent to- generate a fold on M.

pFor’ bistability or 3 eteady states, M must fqld twlceband

bﬂéf, the reversible flux ofpsusefrate,ﬁis a.neceesary
additioa, The three elemepts E?,!E’ aﬁd’gﬁ in fhis minimal
model'wili haye their counterpaftsjin the bistable model for

'the PO reactibn.

Ekample V;i \7
1

Bfiefly, ve demonStrate‘thefeXietence of the 3
Steady”sfates:in the-modei'for a Specified‘set of , '2)
‘ parahefefs:and @ive'a simple way pﬁ'exﬁlaining why

(4]
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-

the highest and lpwest steady state values are
‘stable and the middle one unstable. Focus the
attention on substrate S. The rate of 'production’

¢

of S due to the exchange with the reservoir 1is

v.a{S) = k,-k,S; the rate of.'consumption' of S due
‘ O .
to the enzymatic reactions is given by vouf(S) =

~k,k.ksE,S/(k.k5+k3k;S+K3kSS’) (assuming ﬁhat the
‘enzymic species E, ES and SES are at stgedy sta£e).
Figure 5.3 gives a network diagraﬁ‘pf the model
'and a plot of v,,(S) and vout(S)' These’two
functions intersect at three points cOrfesponding to
the 3 steady state values of S iabeled'gs SS(1),
SS(II) and SS(IIT) in.the figure. The stabilify of
',8S(1),and SS(I1I1) could be understood easily as‘
_ follows. If S is increased beyond SS(1) (but less
A‘than ss(11)), Vout. predominates, thatvi's, S is
~ consumed, bringing the system bacf,tb SS(I). On the
" .other hand, if S is decreased below SS(I), then v,,
Apredéminates, i.e. more. S flows'in‘énd the system
+ ' goes back to SS(1). The same argument céq be |
followed.to‘show the local siability‘of SS(I11). ((}'
- Now, cohsidérASS(II)Lij S, is increased above ‘; |
SS(I11), via predomipatéS'anq S is increased further.
Similarly, if S is decreased below ss(11), v°ut'
predbminétes aﬁd S is decreased further. Small
cbpertt.u'bations on SS(I11) are magnifiea thus making it

~unstable. ®
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D. Mechanism and Models of the Peroxidase-Oxidase Reaction
& "The aerobic oxidation of NADH (nicotinamide adenine |
dinucleotide) catalyzed by the enzyme horseradish peroxi-
dase, referred to in this work as the peroxidase-oxidase
(PO) reacgion,‘has the following overall reactionyy,
°  2NADH + 2H" + O, = 2NAD" + 2H,0 . - (5.2)

” Only some pertinent features of the PO mechanism will

.

. be pointed out here. For more details, the reader is
referred to the series of papers written by Yamazaki and

k4

co-workers (e.g. gference 43) and by Degn and ‘Olsen (e. g.

-

reference q7). Table V.2 gives a listing of the 1nd1v1dua1

react1on steps that have been studied orﬁpostulated
prev1ously for the PO reactlon. In pacegcular most of the
reactions are taken from the table glven by Olsen and
§5V:<; Degn‘*”’ ‘and some are from Yokota and Yamazak1"”
th;gf 1' It is now wxdely agreed that the PO reactlon is a free :
radzcal branched cha1n react1on. At ac1d1c pH (e.g. < 6), |
superoxzde (0,7) is belleved to be mainly involved in th?,
branchlng through reactlons R,z and R, "". For'example,f
the branch 1n1t1ated by R,z produces 3NAD- radlcals through

Yeactlons R,25 Ry, R, and R; while the branch 1n1t1ated by

reaction Ry, has a ga1n of only one NAD- radzcal if we

hd

&
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~ of bistability.

state, the rate of production, v, (= k-

v are plotted S is at steady state w

out’

ka) The fhinimal subset of reactions (model) for the:
‘ enzyme substrate- mhlbmon mechamsm capable

" (b) Wlth the enzymic species E, ES and SES at steadg
, k,S), and
lthe rate of consumption-due to the ezgmatic reactions,

Vin and

\

-~

 Vout intersect, in the above case at 3 pomts SS(II) is

(mstable whlle SS(I) and SS(IH) are stable

;e
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“(not first) ordér kinetically.

. PO reaction. Olsenyand Degn®*2.47) concocted a 4-species

o
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consider the reaction sequence Rio., Ra, R; and R;. We note
here that reaction Rg has not been conflrmed experxmentally

but Yokota and Yamazaki‘*?’ h;g_postulated its occurrence.

.The reactioﬂKEEEween NADH and Compound III (R;) has actually

been observed and is found to be slow‘®’’). In contrast to

some models proposed by other authors (e.g. reference 44),

~

" .
-the termination reaction R,, will be considered as second

7/

The reaction system“we‘are interested in is an open
system where oxygen is dxffu51ng fromlthe gas phase into a
well-st;rred_solut1on. The rate of 0xygen transport into the
liquid is represented by the pseudo-react1ons Rig and R,
given in Table V.2. Reference 42 gives a diagram of a
cotresponding experimental system. This PO reaction system

is known to exhibit damped andwsustained oscillations,

bistability and even chaos ‘*?’, Simple models to account

- for these observed behaviors havé been proposed Observing

that some autocatalytlc reactions are occurrlng, Degn and

.Mayer"s"lnvest1gated 2- spec1es models. derlved from the old

\

Lotka modelf"’,to-s1mulate the damped osc111at1ons in the
model based on the main features of the compiex mechanism
(e g.- branch1ng of the chaxn reactlon) and successfully

réproduced the qualltat1ve forms of the susta1ned

—--»--- —— o - - - -

. %'/ Another poss1ble second order termznat1on react1on a51de

from the dzsproport1onatxon reaction R, is the dimerization i -
reaction!®®) 2NAD- + NAD-NAD . In our further analysis of
the mechan1sm, the case where NADH will be in stoichiometric
excess is assumed and the choice of which. term1nat10n
reactlon to consxder does not matter. : . :

9
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TABLE V.2 Elementary Processes in the Peroxidase-Oxidase

Reaction Mechanism(®3?.*%7)

. ) ..
R, | Per?® + H,;O0. -+ Col
R : Col + NADH - Coll + NAD-
R, , ' CoIl + NADH - Per’" + NAD-
Re igﬁ . Coll + H,0, +  Colll
Rs e "' ' Per’* + NAD- -+ }er*‘+,gAD'
R, Per?-+ O, ) %OIII ﬂ &f .o

o o

R, CoJI1 + NADH - © Col + NAD- + H* - * -
Re : CdIII + NAD- . QoI.+ NAD: ;o
R, © Col + 0," R Coll + 0,
Rio ' Per®* + 0p° =~ = Colll
R,, NAD- + O, = NAD® + O,°
R, H* + 0;° + NADH - H,0, + NAD-
R, 2NAD- + H° -+ NADH + NAD"’
R4 : ) 20,7 + 2H° . =+ Hy0, + o, ‘
R, , Per"'+.CoIII‘ -+ Per’* + Col. .
R,g - ' | . , - 0, %, =
R1§ . » ’ | ‘ 0, + swﬂ . .
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oscillations. Recently, Olsen‘®® *®’ has developegd a

4-species model that shows chaos for some enzyme concen-

trations. Né model has yet been developed for the bistable
. /
behavior, although it has been suggested that bistability is

probably caused by the inhibition of the enzyme due to high

] . -

oxygen"Eoncentrations as supported experimentally by Degn,

Olsen and Perram‘*?’,

‘sufficient information is now known about the
mechanistic details of the PO reaction that computer

simulations of closed systems have been claimed 'to agree

~with experimental data almost qQuantitatively‘®? ®¢’,

Recently, computer s1mulat10ns done by Fed'kina et al//**

u51ng a detailed mechan1sm has produced sustalned oscilla-

t;ons which can be taken to have the same gualitative form |

~as the slow oscillations they have observed.previously‘®°’,

The mechanism they used, however, cannot model the J
bistability that is easily’observed in the system.

o

E. A Bistable Model for the PO Reaction

ﬁg\bgP51der the case where NADH is in- excess and assume

a.constant acidic pH. Hence, the concentratlons of NADH,

L

NAD*, H‘ ame not dynam1cal variables. For’ conven1ence, the

followlng symbols for the dynam1ca1 spec1es are used:
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Figure 5.4 .shows the extreme currents, represented by
~columns 3, g? S and 14 of E which we will see %ater to be
importént. |
The dimens}on of HQ'is 8 and there are 90 edges,‘233
‘two—faces, 346 three-faces, 315 four-faces, 179 five=faces,
62 six-faces and 12 seven-facés. For possible future studies
on this system, the details of these faces can be found in
abpendix'G. It 1s not wise to investigate 1nd1v1dually the
large number of 2- faces..Instead we try to identify all the
possible extreme cu:rents.thaf’fall under each of the 3
elements- respon51b1e for the bistability in the example
analyzed/Yn sect1on C. Current E’ represents the reversible
flux of the inhibiting substrate, O,. The class1cal
perox1dase catalyt1c cycle is ngen by only one extreme
current namely, E’. | o
- There are several choices for the inhibition pathway
which should involve the fprﬁation and decay of the.inadtive

e

‘®nzyme intermediate compound III (2Z). According to Yamazaki
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Figure 5.4

Four important extreme currents found in the
peroxidase-oxidase mechanism given in Table V.2. E’
corresponds to the reversible flux of the substrate O, (F),
E’ is the classical peroxidase catalytic cycle, and the two
extreme currents E* and E'* are possible enzyme .-inhibition
paghway%.inVOIVing the inagtive intermediate Compound 111
(z). : : :

/ : A _ _
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and Piette'®?’, the reaction between the superoxide anion
radical 0, (C) and ferriperoxidaE; (W), reaction R,o,
appears to be the most likely path of compound III
formation. This information leads us to take the currents
appearing in the 10th row o{ E. Thus, we consider E*, E°*,
E'’ and E'*. Among these, theﬂmost likely choice 1s E* for
the following reasons: reacti?n R, 1s known to be very
slow.'%%" %7’ This eliminates E'® and E'* from consideration.
It is suggested by Yokota and Yamazaki'®*?’ and othefsf““’
that reaction Rs explains the characteristic compound 111
decay. This favors E; over E*.

When we look at the faces of Il , we discover that (3 5
9), (3 9 14) and (3 B 9) are 2-faces (see appendix G). It
can be shown that neither (3 9 14) nor (3 8 9) can give rise
to a bistable model. A model based on (3 9 14) will always
have a unigue steady state for every set of parameters while
(3 8 9) can only have at most 2 steady sta;es‘fé} any set of
'pafameters. Indeed, a model based on (3 5 9) can exhibit
bistability for some parameter values. This is our proposed
model. and we give thé network diagram in figure 5.5. We
notice that this model (that we arrived at systematically)
.closely resembles the model proposed by Fed'kina et al.‘**’
for the sustained o§ci11ationsf‘Theit model lacks R, and |
assumes a lineag_términation reaction, R;,; Because their
ho@el has only two extreme currents, bistaﬁility cannot

occur. - .
_ ) A
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Figure 5.5

Network diagram of the bistable model for the

perox1dase oxidase reaction. Reaction numbers refer to those

dgiven in Table V.2. Every steady state of this model is a
linear combination of tie extreme currents E3, E5 and E9

'shown in figure 5.4. ¢

4]
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: tahility and Damped Oscillations

-

:x The furl expresslon for as(h,3) (d=7) for the model is:

d#n b
) ) \

Pl .
giv@éfﬂn Table V.3. One can show that a, = 0 1f and only 1if

.38

[3339((35*239)(35+39)] + hS'(33*235*2%9)(Js*]s)
« = (hg'+h7 )3s3s

(note ¢ h™' = (»A“,_vB ,C°,F° ,W°,X°,¥Y°,2°)" )
-4 -~ ’ * . .
; .
.

. .o . Iy i -t o “7.‘
from which we find the following exact c:iterxén‘for the

existence of an {a,=0}-curve in the intefior qf’ﬂv:

v,

© . :
Y o
f . o

Jg/]s < (hs"”h-“‘ ;')/(hg""ha‘ ) - °

which in turn\requires that

he' < it o/ne 7
Ih.othe: wotdsn no bistability can occur if the steady state
ceneentration of fetriperokidase is'g}eater than the sum of
the steady state concentrat1ons of‘sompounds I and II. Hv
for the model is glveﬂ in flgure S‘F with the {ays=0}- curve
for a fxxed h. ‘; . } ' '( . '

The work of solv1ng the steady states for the model can

beiaccompllshed exactly and completely u51ng the results of

h Chapter JII 'The equat1on v°=E j (where E' is the correspon—-

B d1ng curreht matrlx for the model) glves the followlng

5;1a$10nsh1p among the steady state veloc1t1es~

Ty
=¥

9
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TAéL$ §.3 as(h,j) for the PO Bistable Model (d=7)
ag(h,3) =t 2h;h;hshehshehrjags®ie? .
£4F . hyhshihshehyJais® s ,
- © +2hyhzhshehshehsjadsge’
+2h,hzh,h hsheh;js®je?
. +10h,h,h;h hshghyjs gy ?
N L a +18h,h;hyhohshghsjs?je
| +18h,h;hshahshehy 35 s
+4h,hzhyhahshehsjsis
~2h,h h,h hshehgjajs*je?
' —4h,hzhshehshehejsds s’
“2h,hzhshehshehedsjs®ge
~2h,h;hyhahshyhgiags*jse?
-4h,h,hshshshyhgisgs’je?
~2h,hzhshahshshggajs®de*
+2h,h,h,h.h,h,h.j,jg'j,j
+eh,h2h,h;h.h7h.jajs’j.’
¢6h1hzh3hqhsh7h;jsjs'j9..
.‘*2h1hz'h3:h.hsh7hl'j3ijs'j9?’
+4h hzhihahghshads®ie? |
»‘"161’111121’)31'1v.bs}hhnjs‘j,q-J ' |
,'+24h|hzh3h.ﬁ;57hajs?jo' : . \\ )
,*16h1hzh3h§hsh1hljsijl'4 °

+4h,h',h,h‘.h.h_1-ht"n Isde

\
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.Figure 5.6

" The current polytope II_ and a curveva,=0'(for a fixed
parameter h) of the bi¥table model .network given in figure
5.5- g : '
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vl =vl, =vi,
v = v§ = v§,
Vg = Vo

_ Vie = Vi, * Vig
v, = vl + vi,

/
where the reaction velocities are )
7
Vie = Ky ‘
v,; = k,,F x
vy, =k,,FB .
Viz = k,2C
v, = k;Aw
v, = kX
vy = kiY B
Vio = k,oCW ﬁ | »
veg = kgBZ

¥13 = ki3B? .

X

There is one c¢onservation condition corresponding to that of

— .

. I ad .
the total enzyme concentration,

E, =W+ X+Y+2Z.,

e o3

One can then express the steady states ot 7 of the 8 speciegﬁ

in terms of the remaining one. This last species is taken to
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be species B (NAD-) for convenience. Unless otherwise
stated, the species symbols will also be taken as their
steady state concentrations below. To detefﬁine the steady
states, one first solves a cubic polynomial for the steady
state value B: —

-

f,(B) = B’+8,B*+B,B+8, = O RN l (5.3)

where
CBo = ~Kekiskiz/kisTkio
By o= (B Kia/kio) (Kekya/kaskys) - (kie/kis) .
By = (E, + kya/kio) (ka/kes) + (Kis/kyy)

- (1/ky; + 1/kz)(kygkg/kya) .

-
'3

" Not all positive real roots of (5.3) are allowed as steady
state value for B. In order that all other species will have
positive steady states, B must be less than a certain upper

\ bound Bp: _ ‘ ‘
B < Bn = [(ky7/2ky4)? + (k,;/k,;_)]'/z = (ky72/2kqy) . '.(5-4)

This_condiﬁion comes from the constraint that all other
species must have non-negative concentrations (specifically

. W>0, see equations below). The steady states of all ‘other

T
v

species in terms- of B are given by the follqwing equatiqné

N CnReBtR o e
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F = kis/(ky74k,B)

X = k,,BF/k,

Y = k., BF/k,

W = (ky1BF/ki10C) - (ky2/Kio)
A = k,3B*/k,W

Z = kiyok,3BW/kgk,;

Our previous results on the analysis of the cusp catastrophe
manifold (Chapter III) enable us to define exactly the set
of parameters that will give three positive'steady states
for the model. The tristate set T 1s given in Table III.1
with the B coefficients given in-(5.3). Some conclusions can
now be‘made on the necessary conditioﬁs oﬁ the parameters
for 3 steady states to exist - for example, B,>OAimplies

E, > (kieky1/kskys)=(ki2/kio) ‘ s
and B.<0 im;iies

E, < (kys/ka)*+(kye/kz)=(Ky2/kyo)-(kysky3/kyyks).
Thus, the total enzyme concentration is restricted tovlie
within ﬁertain limits imposed by'thé values of the rate
cOnstantsE'Since E, is positive ana the above limits have to
be non-neéative, further constraihts on the rate:constant§
can be seen 1mmed1ately ‘Furthermore, due to condition

(5.4), there are other constraints on the parametéz}

belonging to T, namely

{ 3B,+B; > 0.and f,(B,) > 0 }

-/



as was shown in Chapter I1I1I (B, is given in equation 5.4).
«For the sake of demonstration, we provide the following.

>

parameter values that give 3 steady states:

k,, = 1x10* M 's""

k, = 1x10" M 's"" . o
kio = 1x10° M 's™ ' |

ke = 6x10” M 's"'

k,, = 1x10" M- 's-° '\

ki; = ky2 = kg = 1.0 s

k2’ = 1.1626 s°°

kig¢ = 1x10°* M s~ ' . ¢

"EYy = 18.499 uM

. Table V.4 gives the computed steady states for alllspecies.

With the initial conditions given in figure 5.7, we discover
that there is‘s damped oscillatory approach to the steady \
state ﬁesignated as'SS(;II) in Table V.4. This agrees with
the presence of twolgsirs.of complex coquga&é eigenvalues
for the Jacobian matrik associated with the kineticf

)

eQuations. The calculated eigenvalues of this matrix
(evaluated at the steady state Sé(IIIL%are given in Table
V.5, In this fable, the vanishing first eigenvalue-
corresponds to the enzyme conservatlon constraxnt All the

. relevant e1genvalues for the steady states ss(1) and SS(III)

) have negat1ve real parts which confzrm their local.

asymptotlc stabxlzty. There 1s.on1y_onev9051t1ve exgenvalue
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Computed Steady State Concentrations of all Spécies in the

Bistable Model for the Peroxidase-Oxidase Reaction

(Parameter Values : k,, = 1x10* M 's~ ', k,
Kyo = M 's ', ke = 6x107 M 's- ', Ky,
ks 1.0 s°', k, 1.1626 s ',
s 18.499 uM )

Species

(A)
(B)
(c)
(F)
(W)
(X)
(Y)
(z)

Concentrations (10"

SS(I)

83.20001511
2.92627347

8.56307643

3.30439403

0.10292157

83.17186132
96.69560597
5.01961114

S§sS(I1)

19.98949609

2.06584677
4.26772286
4.61713181
0.21349827

| 82.04272165
95.38286819

7.35091189

nt

= 1x10" M- 's ',

1x10” M~ 's~ ',

1x10-* M

SS(111)

1.07988654
0.99251764
0.98509127
9.15317026
0.91221738

78.14108871

90.84682974

15.089864 16
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Fxgure 5.7

- Damped oscillatory approach to the steady state designated
K\ as . SS(I11) in Table V.4. The damped oscillations in compound
II11 and oxxgén are synchronous as shown by the straight ‘
trajectory on the phase plot in (b). The parameter values
~used are given in-g¢he text. Initial conditions : A(0) = 8.5,
B(0) = 1,5, €(0) = 2.0, F(0) = 5.0, W(0) = 0.49, X(0) =
80.8, Y(0) =-95.0, 2(0) =.8.7 (units of 10-"M) .



TABLE V.S

a :
Computed Eigenvalues of the Jacobian Matrix associated with

.

the Linearized Dynamics of -the PO Bistable Model

(parameter values are given in the text). (%)

A1) COA(11) A(ITI)
1 0.0 » 0.0 0.0
2 ~1.3247E-04 +4.2429E-04 £ -0.00287+0.055i
3 -1.8642 ' ~1.4218 -0.00287-0.055i
4 ~2.433+0.752i -1.8641+40.3391  -1.9177+0.465i
5 -2.433-0.752i -1.8641-0.339i -1.9177-0.465i
6 23.1492 -16.8478 -10.0217
7 -96.950 -114.754 -174.064
8 - -948.923 -467.330 | -209.880

The function EIGENV was used in the computation. See :
Library 45, APL Functions for Numerical Analysis, APL
Program Library Project, Computing Services, University of
~Alberta (C. Leibovitz, eq.),1980. ‘
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associated with the middle steady state, SS(II), which 1s
‘sufficient to make the steady state unstable.

Experimentally, Yamazaki et al.'®?’ first observed

damped oscillations 20 years ago 1n a system with continuous

supply of oxygen. It was also observed‘®? ®*’ that the

N

oscillations in oxygen and compound IIl1 are synchronized.

©

The present model very well reproduces this synchronized
oscillations as shown in fiéure 5.7. This moéel also shows
the possibility that bistability and damped oscillati;ﬁs can
occur simultaneously. Whether or not this is possible 1in the
real system is not yet known. -

Dominant Extreme Currents in the 3 Steady States

Figure 5.8 shows a steady state bifurcation diagram of
species B (NAD-) with the tptal enzyme concentration as the
bifurca;ion parameter. With the %ef of parameters given in
this figure} we see that the extent of bistability 1is very
narrow. An interestiny observation is the possibility of
hhving 2 positive steady states. Note that- as E, increases,

the number of positive steady states changes in the sequence,

/

06,2,3,1.
3

Let E,=47.33uM in figure 5.8. The computed steady
o ' ’

states for this set of parameters are given in Table V.6. To

find the dominant current(s) for each steady state, we use

the map
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Figure 5.8 ’

Steady state bifurcation diagram for NAD- with the total
_ eﬁzyme concentration E  as Fhe bifurcétion parameter. The
network involved is.the bistable model for the peroxidase-
oxidase reaction shown in figure 5.5. The steady states of
all-thé other species involved are expressible in terms of
[NAD-]SS (see text). The steady state curve terminates at
-a point corféspondiné to the vanishing of the enzyme spe-
cies W7§f?'§i The Pargmfiefi usea arf3z_§l7=l.05f1:lkl=
k10=10 M f r Koo=10"M f ' k12=10 s 7, ki=0.6s '-5
k3=0.3257§ ,,k8=;.4x10 M s ’ kl?=10 M s 7, k16=10 Ms

T 11 7.-1 -1 5 ~1 -

/
/
yd ¢

-1



TABLE V.6

Computed Steady State Concentrations for all Species in the

PO Bistable Model when the parameters are those used in

.Figure 5.8 and E,=47.33uM.

Species
(A) H;0,
(B) NAD-
(C) 0;°
(F) O
(W) Per?-
(X) Col
(Y) Coll

(Z) Colll

SS(1)
95616.40499
78.09017177

60980.74927

0.127893311.

0.000637764

166.4535111.

306.638338
0.207513082

Concentrations (10°- M)

SS(I1)
51.54972993
14.9575287

2237.276648
0.66411960
0.043400356

165.5598007

304.991957°

2.704841981

T
-

SS(I111)
0.018700382
2.054731216
42.2192037
4.640950076
2.257665289
158.9317499
292.7818542

19.3287306
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Q : (h,j) » (E..k)

which, for the model, 1s explicitly given by the following

set of expressions:

m
]
-

w
+
=g

*»
+
jog
N
3
r
-4
J

kiy = (js+3s)h.hy

Kys = jshs <;'
ki = Jshihs

ky = (3s+3s)he
ky = (js*+jedh,
k1o = jshshs

Ke = jshzhg

k,; = jshzz -‘

From the given values of (E,,k) and the computed values of h
given in Table V.6, one finds the following percentages for
the extreme currents :
SSI. SSIT SSIII
Js | 0.1278933 0.66‘41196 4.6409501
js 38.8913574 97.0986037  95.3168307

s

jo  60.9807493  2.2372767 0.0422192 ~

v

Thus, at the steady state SS(I) (high [NAb-J, low [0;] and

’
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ilow [Per’“]) the current corresponding to the catalytic
g peroxidase cycle (E’) is dominant while at the steady state
SS(111) (low [NAD-], high [0,] and high [Per>-]), the
current corresponding to the inhibition pathway (E?*)

predominates. The inhibition pathway (E®) atﬁgﬁns a maximum

current at the middle unstable steady state SS(II).

Simulation of Closed System Kinetics

., Attempts to fit some models. to experimental data in a

closed system have been performed by Yokota and Yamazaki‘*?’

~ » . “ .
and Fed'kina et\al.‘“"‘Let us_ now show that our model is

also capable of accounting for several_of the observed

b o
cnaracteristic features of the closed system kinetics’
particulérly that of - compound IiI._

To simulate a closed system, we let Ky,¢ = k,; = ?ﬁ te
that besides the nonzero initial concentrations of opren &
Nend enzyme ferriperoxidese (W), either 0,° or H,0, must \\
initially beepresent. Hydrogeq~peroxide is known to be .
produced by the auto-oxidation of NADH as represented by the
followlng reactlon"”' |

NADH + O, + H® = NAD" + H,0, . L (Rye)
° v. . . s - v‘ ‘. . . ' . "‘
Rye is slowiand cén be ignored after-the reaction systeﬁ has

started?‘lt 1s ment1oned here to )u5t1fy the nonzero

concengﬁat1on of H 02 1n1t1a11y F1gure 5 9 shows some

concentratlon time plots of oxygen and compound III The

/-
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Fiéure 5.9 |

A closed system is simulated by letting kl6=kl7=0 with

the following initial species concentrations (M)

[o,14= [1,05%,= {(nvap-] 0=“[05 ]0=10'8 , [naDH] 0=1o'3 ,

[Per3+J_0=6.75x1‘0-.-6,.[=CoII]0=3x10—8 and '[eol] 0;’[Co111]o—

10f8. (a)-Time course of oxygen concentration showing an

induction perlod and a steady rate (v )‘of oxygen"consump~
-tlon (b)-Klnetlcs of compound III show1ng a rapid 1ncrease
in its concentration durlng the oxygen induction period, p

near steady state phase, and a rapid termination p se. The

parameters used are : kll—Z 109M lshl; kl '=5, 9x10 .
k,=1.8x10 M 15‘1,'-k2v=5.4x103, k,'=sx102M 1s7l, k=1 9x106,
-1 -1 L 8y-1 -1 . .. 4.-1 -1 p _
.M s T, k8-1.3x10 M s 7, k13 10°M ~s” ~. Reactlons RlZ' Rz\
and‘Rs_ X

involve NADH as a reactant and the corresponding
rate constants given above/are'second_order rate eonstants;
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parameter values (given in ﬁhe figure)'are exactly those
used by Yokota and Yamazaki‘*?’’ in their simulation except
for the termination reaction R,;, missing in their model,
whose rate constant was assigﬁed the vaiue of 10* M~ 's"~ ',
Compound 111 kinetics involves the following phases likewise
observed in experiments ‘*?-°°’: rapid increase, near
'steady-state’' and fast termination. There is no pronounced
initial burst because of the low initial concentration of
H,0,, a feature that is consistent with experiment‘®%’. We
also observed that the duration of the induction time (see
oxygen- concentratlon vs. time plot) is independent of the
initial oxygen chcentration. During the 'steady-state’
phase of compound 111 kinetics, a steady rate of oxygen

consumption occurs. .
To' show explicitly that there is an inhibition of the
catalyzed reaction by oxygen, we detérmine from the oxygen

concentration-vs-time plots the steady rates, v,,, of oxygen

“consumption for various initial oxygen concentrations (see

figure 5.9a). The result is given in figure 5.10, curve a.
There is one maxim'v in the curve’ which is one characteris-
tic of substrate 1nﬂ\b1t1on o£ an enzyme reaction. However,
as was also observeégSiP rlmentally by Degn, Olsen and
Perram‘*?’, the rate does not fall off to zero at 1ncrea51ng
oxygen concentratlons as does the rate in the class1ca1
substrate 1nh1b1t10n model (see fzgure 5.3).

The exper1menta1 results"” showed that the peak of

the ‘curve is relatively,higher than that'shown“by.our‘model

,

P
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Figure 5.10 K
. : \

Steady rate of oxygen consumpt1on V,. , @as a functlon of
initial oxygen concentration . for the peroxidase-oxidase
reaction in a closed systém.

Curve a : Simulated exper1ments exemplified by fig.5. 9(a)

- were repeated for various initial oxygen concentrations and
the corresponding v,, measured The bistable model given in
fig. 5.5 was used w1th kis = kyy = 0 and the same parameters
used in fig. 5.9. \

Curve (b) : Reaction R, (k, = 10’ ") is 1nc1uded in the
'model and 51m1lar s1mulated experlments were done.
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“in fig. 5.770, curve a. This is probably due to the deletion
of other reactions which have a gquantitative effect on the
simulations. For instance, when we add the slow react@on R,
to our model we find a higher peak in the curve (see cufve
b). (The rate constant qsed for this reaction was 100 M 's
as given in reference 57). This result can be explained by
the higher degree of autocalysis with respect to the NAD-

}radical introduced by the extreme current E'* which will

directly increase the rate of oxygen consumption via R,,.

Network Steady States vs. Experimental Bistability
Using curve a in figure 5.10, we can draw a line
corresponding to the transpo}t of oxygen, i.e. &,, =
k,s-kq.2[{0;], that will intersect this curve at 3 points and
therefore get 3 steady states for OXyéen (see fig. 5.3). For
example, a line characterized by the slope (=-k,;) of
-8x10-* and intercept (=k,¢) of 7.25x10°° will dékghia.
Using these values, as well as those already used in figure
5.10; ﬁo multiplicity of steady states for the network was
found. Recall thatjwe have defined a netwqu steady stage to
be therstataAwhere all internal apecies are at‘steaay state.
It is‘vefy possiblé that thére are stateS-where naf all bua

some of the s%fc1es are at steady state. In fact, depend1ng

on thg parameters whlch 1nclude the 1n1t1a1 cond1t1ons, when

'v'a particular steady state has eigenvalues with very low

magnitudes, that steady state (if stable)‘isfapproached very

- slowly. Laboratory observation time may not be sufficient
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Fond
for the system to reach the actual network steady state. The
bistability demonstrated by the PO model and the bistability
observed in the experiments will have to be further

investigated to determine thelr correspondence.
F. Conclusions

A systematilc way of determining the dominant steady
state reaction @athways or extreme currents under bistable %
coﬁait;ons had been presented.- and applied towardsvthe :
modeling of the bistability observed in the peroxidase-oxi-
dasé reaction. The two essential ingredients in our approach
are: (a) the structure of the current polytope N showing
how thibextreme currents are coupleé_to each other, and (b)
the necessary test given by the vanishing of a.(h,j) for the
existence of multiple steady states. Our modeling approach
-also, in effect, gave a convenient method for testing
whether or not a given complex mechanism is capable of
bistability or multiple steady states in generai by looking
at the 2-dimensional faces of ﬂv: |

1t was proposed that fdr bistability or 3 . steady
states, there must be at leasﬁ’3 eitreme currents comprising
a model network. Our model contains the ;inihum number of
extreme currents found from.a long list of elementary steps
possibly involved in the PO reaction. The'énalysis“of this

mbdel'given'ih_section E showed that it‘was able to repro-

duce several experimentélly observed features like damped‘
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oscillations which occurred simultaneously.w}th bistability,
synchronous oscillation between oxygen and compound 111, the
characteristic phases of the kinetics in a closed system,
and explicitly demonstrated the substrate-inhibition
mechanism causing the bistability.

We also saw that three basic elements found both in the
classical substrate-inhibition mechanism and in our‘mode{
are sufficient to caus?;bistability, namely, (1) reversible\
" flux of the inhibiting substrate, (ii) a catalytic cycle,
and (iii) amfubstrate-inhibition pathway coupled to the

cat@lytic cycle. The virtue of analyzing simpler model

‘mechanisms was also shown.

The results presented here on the peroxidase-oxidase
reaction are just a beginning, but a very'encouraging.one. A
powerful technique in gnalyzing realistic-complex merworks
that can identify the dominant pathways . under mulristable
conditions is at hand. We can now confidently conclude that
among the elementary processes that are kmown or postu}ated
to be involved in the complex~mechanism‘ef\the PO system,
}the necessary reaction pathways are indeedvavailable to
vexpla1n the b15tab111ty observed in the open system. It was
not the purpose of thﬁs ufrk to come up with some guanti-
tative agreement with exper1ment - this goal is considered
premature for the moment because of the lack of precise

experimental data on the 1nd1v1dual rate constants. Only a

Joxnt effort between the ;heoret1c1anjand the
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APPENDIX A

Details in /the Derivation of Equation (2.23)

Each component of the nxn matrix D in equation (2.21)

is a vector in R". The 1-th row of D can be expressed as
D, = (diag 1/X°)v(diag v°){(diag «x!)k'-x'R[1]}

where x' is the i-th row of x and the matrix R[i] is a nxn

matrix defined as -

3

R[i] = JR,., = 1 .

Rom = 0 , n#1 or m#1
We then find that

Z §,D, = (diag 1/X°)wv(diag v°){ Z §(diag «})«"
- «'L §,R[i]}
= (diag 1/X°)v(diag v°){(diag «x'§)k'-«"(diag §)}

B

N

and since
§'Ds = (Z §,D,)¢

we finally have

G

{ = (diag I/X'\)v(d’iag v* ) {x'-(1/2)k" (diag §)
\\ .

b BN

© 231
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r‘J:h‘
[N,
*“15{&

+(1/2)(diag «'§)x"*} . (2.23)



APPENDIX B

On the Poincare-Hopf Theorem

The index 1 of a hyperbolic steady state is define&rg;
' i

’

a8

1= (-1)°
o
where o is the number oiuei;analues with negative real
parts. The Poincare-ﬂopf Theorem states that

-
“

ZII'= x(M) o (B.1)

where the summation 1s over all the steady states of a
dynamical‘system defined on a manifold M, and x(M) is the
.Euler;EOincare”;haractefistic of M. For example, an n-sphere

defiﬁed.by Z X,* = constant (summation from i = 1 to n+1),

4

ha s ' ' ’ . o .,:n,

-4>'t"(:Mf) R L ' - . (B.2)

:wGlass“7’ argues that the dynamlcal system corresponding t0°
a’ network NeN can be mapped onto n- spheres by first
assoc1at1ng the boundary of concentratlon space with a
51ngle unstable' sodrce (steady state) at the south pole.

eEquatlons (B.1). and (B 2) then blvev

233
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T (=109 = 17+ (-1)" . |  (B.3)
)=

- 4

For the j-th steady state, there are n eigenvalues, that is

where 7, 1s the number of eigenvalues with positive real

parts. Thus,

(—1)"/j = (-1)"(-1)"s

and letting the m-th steady state as the unstable south pole

(i.e. 0,=0), equation (B.3) becomes

(-1 = 1,

™Mo
F

‘(2.474/

, R b
We have let p be the total number of steady states. Note

that the 'artificial' unstable south pole is not included in

p-
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APPENDIX c\\’

L3

Roots of a Cubic Polynomial

The following information is provided by reference ™ 27.

An explicit expression for the three roots of the cubic

f,(X') = (X')?+p,X"4p, = O (C.1)
in terms of the parameters p, and p, can be found using the
b} .

following trigonometric identity:

4cos’6 - 3cos6 - cos(368) = 0. (C.2)
Lettipng X' = m;oé@; (C.1) becomes
£,(X') = m*cos?f+p,mcosb+po = 0 . o (C.3)

Comparing this, term by term, with (C.2),

. 4/(m*) = -3/{p,m) = ~cos(36)/po

from which it .follows that

~
m = 2(-p,/3)'/? and cos(38) = 3po/(p/m) . (C.4)

n’Anybsolht1on 8, which satisfies (C.4) will also have

:golutions (6, + (21/3)] and [6, + (4n/3)]. Thus the three

235
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roots of (C.1) are

X' = 2(-p,/3) " %*cos(6)
X''2) = 2(-p,/3) " %2cos[6+(2n/3)] (C.5)
X'"'3) = 2(-p,/3) " *cos[6+(4n/3)] ‘

-

where 6 is given implicitly as a function of po and p, by

(C.4).



APPENDIX D

Equation of the lin% L (egq.3.13)

L]

The characteristic polynomial for d=3 is

p(k) = x)*a,x2+azx+a3 = 0 . ) QD.])
3
Using the transformation given by eg.(3.5), this polynomial

becomes
P(A') = (A")2+p,x"+py, = 0. (D.2)

A , .
Complex cdnjugate roots of (D.1) occur only outside -the cusp
curve Z° (i.e. Ky = 4p,2+27po? > 0). Denote this region A.
For p=(po,Pa) € A, let the real root be A,, and the complek

pair be A;,Nz* where A; = a+bi, b>0. Then

P(A) (X_X1)(Ajk2)(X‘Xz*)

-

R’-(2a+k,)k’+(a’+b’+2ak,)X:4a’+b’)k (D.3)

= 0.

‘Comparing (D.1) and (D.3), Qe have
b N ) .
'ﬂj ; -(2a+k4) - ) ' >
a; =-at+bi+2an, - S (D.4)

‘ﬁa = "(8’+ba)‘)\.| .

/\/ 237 el AR
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Eliminating A, and b from (D.4), the implicit expression for

238

a in terms of a = (a,, a;, a;) € R> 1s
t .
f(a,a) = a)+a|az+(1/4Uﬂ1j*az)a+('1/8)(0102-03) = 0 (D.S)

with p(a) € A, and the desired root a is real.

Now, find the regions 1n a-space where g>0. Letting

a' = a+(a,/3)
5, = p./4 (D.6)"
60 = ~po/8 "
we get
f(a') = (a')?+6,a"+6, = 0 . (D.7)

/

Because &, and &% ére linearly related to p, andypo,
respectively, the regions‘where f(a) has 3,2,1 or 0 real and
pdsitive roots are easily plotéed on the p,-pg plaﬂe. the
.that the cusp curQé,asSociafed with f(a')=0 (f.e; K,6 =
48,2+278,2 = 0) 1is mapped onto the cusp curve aséociated
with P(A')=0 (i.e. K,p;='4p,’¥27p¢’ = 0); in fatt, wéshéve

[

" The line“that.correspondsAtp 50=0 on th¢ 6,-8¢ plane has the

equation
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6, = _(3/(!1)60 - (01/3)2 (D.8)
and using (D.6), we finally get

L : pr = (3/2a,)po - 4(a,/3) - (D.9)

I



APPENDIX E

The Hopf Bifurcation Theorem

According to the Hopf Bifurcation Theorem‘2®’ there

’

are 4 requirements for a given vector field dx/dt

1

F(X,u)

to possess Hopf bifurcation points. Let (X,u)=(0,0) ¢ R°xR
be a steady state. These requirements are:

!

[N
(a) F(O,u)=0 for u in an open interval com‘aining 0, and

0eR? 1s an 1solated steady state of F ,

(b) F is analytic in X and u« in a néighborhood of (0,0) in
R2xR , ' ’ Vs
(c) M(u)édxF(0,0) has a pair of complex conjugate
eigenvalues A and A% such that
AMu) = a(u)+ib(u)
where

b(0)>0 , a(0)=0 and da/du(0) # 0.

[

(d) The remaining (n-2) eigenvalues of M(0) have strictly

-~

negative real parts.
v

F4

.

240 o



)

APPENDIX F

Calculation of B;C
) -

-

The slope of the line L[(p;,B;) at the cusp points
(:p,c,poc) 1s equal to (—B3c/4) as given by egquation (3.23)
/.

(see figure 3.13f§. The 1line L(pz,BJC) satisfies
po = —p (B3 /8)-p2 (B, /8) - (B, /8)"

From (3.21), for p,s<0,

j " L)
po = ~(p2)?*/12 and 2p,° = 3(2/9)p,[-6p,]1" 2.

L.

Hence,

(B2C/8) *+p2(B:5/8)13(2/9)p,[-6p2172(B,5/8)-(p2) /12 = 0.
o
¥ (F.1)

where the (-) sign is used if B;°>0 and the (+) sign if

ﬂ3c<0-

241



Faces of the Current Polytope Ty

for the Peroxidase-Oxidase Mechanism given 1in Table V.2
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