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Abstract

The analysis of wide-angle cellular light scattering patterns is a challenging problem. Small

changes to the organization, orientation, shape, and optical properties of scatterers and scat-

tering populations can significantly alter their complex two-dimensional scattering signa-

tures. Because of this, it is difficult to find methods that can identify medically relevant

cellular properties while remaining robust to experimental noise and sample-to-sample dif-

ferences. It is an important problem. Recent work has shown that changes to the internal

structure of cells—specifically, the distribution and aggregation of organelles—can indicate

the progression of a number of common disorders, ranging from cancer to neurodegener-

ative disease, and can also predict a patient’s response to treatments like chemotherapy.

However, there is no direct analytical solution to the inverse wide-angle cellular light scat-

tering problem, and available simulation and interpretation methods either rely on restrictive

cell models, or are too computationally demanding for routine use.

This dissertation addresses these challenges from a computational vantage point. First, it

explores the theoretical limits and optical basis for wide-angle scattering pattern analysis.

The result is a rapid new simulation method to generate realistic organelle scattering pat-

terns without the need for computationally challenging or restrictive routines. Pattern anal-

ysis, image segmentation, machine learning, and iterative pattern classification methods are

then used to identify novel relationships between wide-angle scattering patterns and the

distribution of organelles (in this case mitochondria) within a cell. Importantly, this work

shows that by parameterizing a scattering image it is possible to extract vital information

about cell structure while remaining robust to changes in organelle concentration, effective

size, and random placement. The result is a powerful collection of methods to simulate

and interpret experimental light scattering signatures. This gives new insight into the the-

oretical basis for wide-angle cellular light scattering, and facilitates advances in real-time

patient care, cell structure prediction, and cell morphology research.
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rn Scattering point source ‘n’

S Vector to a point in reciprocal (Fourier) domain

s Vector to a point on the receptive field

s′ Vector to a point on the receptive field

s0 Direction of incident light (unit vector)

S(P) True scattering function

S′(P) Approximate/inferred scattering function

S−1(IM) Inverse scattering function using image IM

SSE Sum squared error

SM Static mutation rate in cRMC

SJ Static replacement (jump) rate in cRMC

sr Steradian



TBRMC Texture-based Reverse Monte Carlo fitness comparison

WM Waldenström’s macroglobulinemia

XRD X-ray diffraction

β Noise removal threshold for the Cythe algorithm

χ2 Statistical comparison metric

δ Region joining threshold for the Cythe algorithm

λ Wavelength of light

φ Angle of observation perpendicular to the axis of incident light

ρ(r) Distribution of scattering points

τ(r) Phase shift distribution for scattering points

θ Angle of observation along axis of incident light



Chapter 1

Introduction

Recent studies have demonstrated robust methods to record the light scattering signatures

of small cell-like particles and their component macromolecules1–6, bacteria7, and whole

human cells or populations of cells2,4,8–16. These light scattering patterns are rich with in-

formation about a cell’s internal structure8–12,15,17–22. However, the link between scattering

intensity and cell structure is still only defined for limited number of situations, and is the

subject of continuing international research.

The issue is an important one. When coupled with a knowledge of disease-related changes

to cellular morphology, light scattering information can be used to detect the presence,

absence, or progression of a number of treatable and/or mitigable human diseases11,23. By

knowing how to properly assess light scattering patterns, it is possible to infer important

information about human illnesses.

This dissertation explores the link between scattering patterns and cellular structure. To do

so, it presents a set of theoretical relationships, algorithmic tools and methods to simulate,

interpret, and categorize information contained in complex biomedical signatures, such as

those generated by laser light scattering through human cells.

1.1 Social Impact and Medical Relevance

Medical technology is on the cusp of a miniaturization revolution24. Emerging lab-on-a-

chip (LOC) devices allow complex medical tests and genetic assays to be performed for a

fraction of the cost of traditional methods, and in a fraction of the time24. This presents the

potential for high-throughput patient screening, with reduced clinic wait times and greater

accessibility to novel testing methods2,11,19,24.

One of the most promising LOC candidates for inexpensive and noninvasive diagnostics is

the miniaturized wide-angle cytometer2. Wide-angle cytometers allow the rapid acquisition
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of detailed two-dimensional light scattering patterns from whole cells, building on current

limited-angle clinical cytometery techniques to further investigate the light-scattering prop-

erties of cells. This increase in available scattering information leads to an increase in

diagnostic potential—wide-angle LOC light scattering has been shown to contain detailed

information about a biological cell’s internal micro– and nano–structures1,2,19.

Once known, cell structure can be directly related to disease. Changes to intracellular

makeup—for instance, the number of metabolically related organelles (mitochondria) in

a cell, along with their size, function, and distribution, have been shown to indicate the pro-

gression of a number of ailments, including cancer and neurodegenerative disease11,25–28.

In addition, it has been shown that the arrangement of mitochondria within a cell can indi-

cate a patient’s response to treatments such as chemotherapy, and help evaluate the severity

of their disease29,30.

With the proliferation of inexpensive imaging technology and more robust microfluidic

platforms, portable wide-angle cytometery has become a very real clinical option2,11,19.

This could bring complicated and expensive medical tests to users that would otherwise

not have access to the necessary facilities—e.g. cancer screening in remote rural health-

care centers, disease testing for workers in isolated environments (such as the international

space-station or deep-sea research platforms), or on-the-spot neurodegenerative testing in

assisted living environments.

The impact of accessible wide-angle cytometery systems extends outside the clinic. Once

it can be interpreted, the information contained in two-dimensional scattering signatures

provides a powerful tool to explore the micro- and nano-structural components of living

cells, without the need for costly (and in many cases diffraction-limited) imaging systems.

This opens the door for detailed exploratory research into human metabolic mechanisms,

cell function and behaviour in the presence of diseases and/or drugs, automated pathogen

screening, and customized pharmaceutical design.

However, there is still an analytical bottleneck—there are few systems to automatically in-

terpret massive quantities of biomedical imaging data31, and none applicable for use with

a wide-angle cytometery system. With an increase in the complexity and information den-

sity of biomedical signatures, it is becoming increasingly intractable for human experts to

manage the diagnostic task without computational assistance31. This is especially true for

visually complex two-dimensional scattering signatures of wide-angle cytometers; despite a

number of recent advances, the problem of relating scattering patterns to medically relevant

cellular structure is still open and largely unsolved.
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1.2 Project Description and Scope

This dissertation describes a new set of theoretical relationships, methods, and tools for

interpreting the medically relevant aspects of wide-angle scattering patterns, such as those

captured by a wide-angle cytometer. To do so, it encompasses new research in light scat-

tering simulation, biomedical pattern analysis and image processing, and iterative methods

for cell-structure determination. In short, it presents a novel framework for associating

wide-angle scattering patterns with aspects of biological cell structure—specifically, the ar-

rangement, concentration, and morphology of mitochondria, organelles known to have a

direct relationship to a number of human illnesses25.

There are no direct numerical methods capable of relating a scattering signature to a full

geometric representation of cellular structure18,32. Thus, to identify relationships between

wide-angle scattering patterns and cellular structure, it is essential to develop techniques

and tools able to extract meaningful associations from available empirical evidence.

The state-of-the-art in cellular scattering pattern analysis is limited to light scattering infor-

mation collected at a set of fixed angles, or a one-dimensional angular slice18. As such,

there are few available tools to begin tackling the problem of wide-angle scattering pattern

analysis. To date, experimental wide-angle scattering data is scarce—there are a limited

number of devices currently under development world-wide, including our device at the

University of Alberta2, and large clinical datasets (on the order of thousands of scattering

images) have not yet been created.

The difficulty is two-fold. An understanding of wide-angle patterns and the data contained

within them is critical for steering the development of the emerging optical devices. How-

ever, without already having access to fully developed cytometry devices, it is challenging

to get to the heart of the relationship between a two-dimensional scattering pattern and cel-

lular structure. To further complicate the problem, it is also challenging to obtain a large

database of simulated patterns. Numerical simulation methods are currently limited by ei-

ther restrictive geometries, or prohibitive computational cost19.

Previous work in cellular scattering analysis has mainly focused on the interpretation of

one-dimensional scattering data, which does not address the image processing and pattern

analysis aspects of the two-dimensional form of the problem. Two-dimensional patterns

are extremely complex in terms of their visual composition, and also in the way this com-

position relates to a scatterer’s structure. While this complexity leads to a corresponding

wealth of available predictive data, it requires special new tools to extract relevant concepts

in the presence of distracting noise, non-unique scattering profiles, and redundant informa-
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tion. While powerful, analysis methods from other fields—e.g. X-ray diffraction theory,

machine learning algorithms, adaptive classifiers, and computer vision technology—have

not yet been adapted for use in the domain of two-dimensional cellular scattering.

As such, this dissertation presents new simulation tools, biomedical image analysis meth-

ods, and pattern interpretation methods for use in understanding wide-angle cellular light

scattering data. It also explores the fundamental predictive limitations of wide-angle cy-

tometry, and describes a number of clinically relevant relationships between light scattering

and cell structure. Taken as a whole, this opens up two-dimensional scattering signatures

as a valuable resource for clinical and academic cellular investigation, and paves the way

for similar research in related domains where complex multi-dimensional biomedical data

must be related to relevant physical phenomena.

1.2.1 Publication and Presentation of Results

Core work from this project resulted in a number of first-author papers in leading biomedi-

cal optics journals and conferences, detailing new ways to interpret, analyze, and simulate

the light scattering signatures of human cells33–37. These papers form a basis for the fol-

lowing chapters. This work and the related experiments also lead to a patent pending on

new methods to interpret wide-angle cytomery data for medical use.

The methods and tools developed as part of this dissertation project were also found to

be highly transferrable to other biomedical image analysis problems. Most notably, new

scattering image segmentation methods were extended and successfully applied to the au-

tomated interpretation of chromosomal probe images for multiple myeloma (MM) cancer

testing—i.e. a fully automated LOC implementation for fluorescent in situ hybridization

(FISH)38–41. This new FISH method and the related image analysis software is protected

under a patent pending.

During the course of this project, additional collaborative work was performed using the

developed tools to assist in image-based data processing for microfluidic FISH implemen-

tations38, and in temperature control validation for LOC genetic analysis systems. Collab-

orative work was also done on a novel swarm-based image segmentation system42, and on

data analysis and modeling for patient-related MM and Waldenström’s Macroglobulinemia

(WM) studies43–45. Work performed during the course of this project also resulted in a first-

author publication on adaptable microvalving control and automation for LOC devices46.
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1.3 Overview of the Remaining Chapters

Chapter 2 presents background material on fields relating to this dissertation, and also sum-

marizes key aspects of previous work. This is followed by a breakdown of the core problem

into its component parts. Chs. 3 and 4 describe a rapid method to simulate light scattering

from human cells. This is tied to a discussion about the fundamental limits and constraints

of a wide-angle scattering pattern analysis—i.e. what kinds of structural information can

and cannot be observed using current imaging methods.

Using this simulation method as a base, Ch. 5 presents a novel parametric approach for

interpreting scattering patterns; this is done through a large-scale simulation study, paired

with methods for biomedical image analysis, attribute selection, and pattern classification.

Ch. 6 follows with an alternate parameterization scheme and image segmentation method

that extends the amount of information available for extraction using wide-angle light scat-

tering signatures.

Linking the new simulation method of Chs. 3 and 4 with the parameterization approach of

Chs. 5 and 6, Ch. 7 explores an iterative method able to specifically examine the internal

structure of a cellular scattering distribution. Ch. 8 closes this dissertation with a set of

concluding remarks, a look at future directions, and a summary of social and academic

contributions made by this work.

In summary, this dissertation presents a new simulation method and validates it against ex-

perimental and theoretical results. This simulation method and the corresponding validation

approaches are then put to use in an image analysis context, leading to a set of new pattern

interpretation techniques for use in rapid light-scattering-based medical diagnostics.
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Chapter 2

Background

Work on the interpretation of light scattering patterns falls at the boundary between a num-

ber of related but theoretically diverse disciplines. The problem includes aspects of classical

optics, physical optical devices, numerical simulation methods, biomedical pattern analy-

sis and image processing, machine learning, and data mining. While wide-angle pattern

interpretation is a relatively new sub-problem, the case of scattering pattern analysis itself

is widely explored and is the subject of ongoing research. This is hardly surprising—the

problem is multi-facteted and in many cases application specific, and each aspect comes

with its own set of challenges and areas for further study. As such, this chapter presents

a concise background discussion that describes the current state of the art as it relates to

this project, and lists a set of key references for further reading. It then examines the actual

problem of inverse scattering pattern analysis, describes current and past work, and isolates

the core components of the scattering problem.

2.1 Background on Related Areas of Study

This section is a short synopsis of the fields relating to this dissertation. Where possible,

reference has been made to comprehensive survey papers instead of re-examining individual

sources. Where necessary, the introduction to each of the following chapters will thoroughly

examine the background literature pertaining to its contents.

2.1.1 Cellular Light Scattering Theory

Cells are optically complex entities, containing a heterogenous mixture of scattering objects

ranging in size from a few nanometers to many microns1–3. As would be expected, this

optical variability leads to equally complex scattering behaviour1—e.g. for incident laser

light, particles such as proteins and very small mitochondria will uniformly scatter light,
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while large structures such as the cell nucleus will transmit light in a geometric fashion2.

For visible light, large structures, such as the nucleus and cell wall, are primarily responsible

for intensity observed in the front and back scatter regions (i.e. in the direction of incident

light)1,2,4–9. The scattering intensity contributions of these structures may appear as large

intensity bands in a 2D scattering signature10, or as regularly spaced peaks in 1D scattering

samples4,11. Because of this relationship, the spacing of peaks and bands in scattering

patterns has been used by a number of groups to predict cellular and nuclear size4,11.

It has also been shown that changes to the arrangement of intracellular organelles, such as

the mitochondria, can dramatically affect portions of recorded scattering signatures1,3,4,10–15,

specifically the light scattered at large angles (i.e. the side scatter region, normal to the di-

rection of incident light)1,2,12,16. Mitochondria have in fact been shown to be the dominant

source of light scattering in this region, contributing up to 70–90% of recorded side-scatter

intensity2. Interesting new results also indicate that mitochondria-sized scatterers may also

have a significant effect on light scattering in the 5–90o range17. Melanin is also thought

to be a major source of large-angle light scattering1. The main result of this is that the

presence of organelles causes noticeable changes to scattering patterns beyond the effect of

a simple change in the cell’s effective index of refraction.

For greater detail, Gourely et al.2,18 and Dunn1 present excellent overviews of cellular

optics and the optical characteristics of intracellular components. Hecht19, Bohren and

Huffman20, van de Hulst21, and Gaskill22 all provide comprehensive detail on optical prop-

agation and diffraction theory, light scattering from small particles, and Fourier optics.

2.1.2 Fixed-Angle and Wide-Angle Cytometry

The analysis of cellular light scattering signatures is a crucial part of many modern medi-

cal diagnostic methods4,7,13. These include label-free methods that capture scattered light

at one or more angles4,7,10,11,23, and are closely related to techniques that analyze the las-

ing power and optical properties of cellular bodies5,18 or the spectral components of re-

flected/refracted light4. For this work, the focus will be placed on label-free cytometers, as

opposed to those that use chemical agents to generate excitation at fixed frequencies.

One of the most common label-free cytometry methods for patient cell analysis is the stan-

dard one-dimensional or fixed-angle flow cytometer4,11. These systems enjoy widespread

use in medical institutions, but operate only on a small fraction of a full wide-angle scat-

tering pattern4. In most cases, light is propagated through a cell or population of cells in

sequence, and the scattered intensity is captured at two angles: perpendicular to the direc-
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Figure 2.1: Schematic diagram of a wide-angle cytometer. It includes a fluidic channel, a laser
source, and a two-dimensional charge-coupled device (CCD).

tion of incident light (side scatter) and parallel to the direction of incident light (forward

scatter)4. This is used to generate representative scatter plots, where the position of points

can be used to infer the number of organelles in a cell (position along the side scatter axis)

and the size of the cell (position along the forward scatter axis)4. Taken as a whole, this

data can then be used to determine cell health, for instance the progression of disease in

MM and WM patients24.

In more detailed systems, an entire angular intensity slice (called an “indicatrix”) is cap-

tured, often using a moving detector4. The intensity features in this profile—e.g. the spacing

and pitch of intensity peaks—can then be related to cellular properties, such as size, con-

tent, or optical density4. While some systems operate on single cells, many capture only

light refracted through whole populations of cells4,11,23,25,26.

Recently, researchers have extended traditional cytometry methods to capture a wide-angle

two-dimensional scattering pattern from a single living cell10,13,15,27. Through the inte-

gration of LOC technology and streamlined image-capture devices, wide-angle cytometry

systems are able to measure intensity over a large scattering region, theoretically approach-

ing a full hemisphere around the sample cell13. A graphic depiction of this system is shown

in Fig. 2.1. This provides pattern recognition systems with a rich set of conceptually valu-

able input information, generating a corresponding increase in available diagnostic infor-

mation10,13,28; wide-angle scattering patterns take the form of two-dimensional grey-scale

images, and thus lend themselves to analysis with classical image processing and pattern

recognition methods28.

2.1.3 Optical Simulation Methods

Of the wide range of optical simulation methods, the methods that directly impact this work

include those based on Mie theory, the Rayleigh-Gans approximation (R-G), and Finite

Difference Time Domain (FDTD) calculations3,6,13–15.
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Mie scattering calculates the result of a planar incident wave that is scattered by a homo-

geneous sphere3,20,21. Using spherical Bessel functions, Mie theory combines incident and

scattered waves to achieve a final solution describing the resulting energy patterns. It can

also be extended to determine the scattering intensity for a population of spheres of vary-

ing radius. Books by van de Hulst21 and Bohren and Huffman20 provide mathematical

derivations for a number of different Mie scattering scenarios. However, while Mie solu-

tions give accurate (and relatively rapid) assessments of light propagation both inside and

outside a scattering particle, they are inherently limited by constraints in terms of geometry

and optical complexity13,26.

As such, R-G formulations have been proposed to tackle the problem of arbitrary shapes in

cells. The R-G approximation assumes isotropic Rayleigh scattering by all of a scatterer’s

volume elements, with no interaction effects or multi-scattering by neighbouring elements.

By summing the complex amplitude components from each volume element, it is possible

to efficiently calculate the scattering from inhomogeneous, arbitrarily shaped particles21.

As described by van de Hulst, the solution can be further simplified for specific geometric

objects and distributions21. In practical use, R-G simulation approaches have been shown to

accurately approximate experimental scattering from non-spherical biological objects (e.g.

bacteria29). However, the R-G approximation is still limited to particles with refractive

indices close to that of the surrounding medium, and small phase-shift values throughout

the particle21. These constraints are needed for the model’s assumptions to remain valid—

i.e. they ensure that each volume element in the actual particle receives and transmits light

in a way that is largely independent of all other elements.

Many aspects of cellular structure are not spherical or within narrow optical ranges, leading

to limitations in the viability of Mie or R-G simulation for cellular scattering pattern anal-

ysis3,13,15. FDTD simulations provide a way to simulate optically complex structures com-

prised of any number of inhomogeneous, arbitrarily shaped scattering objects1,3,6,13–15. Us-

ing a discretized version of Maxwell’s equations (Yee’s algorithm1) and appropriate bound-

ary constraints/transformations, FDTD methods give an extremely accurate representation

of light scattering through complex media1,3. In addition, and unlike R-G, they also take

into account interactions between particles and multi-scattering effects1,3. Recently, FDTD

methods have been extended to 3D scattering objects, providing a new way to examine

scattering from complex cells3,13. However, all FDTD methods come with a large com-

putational cost—depending on the desired resolution and discretization level, simulations

require massive amounts of memory, and could take days or weeks to run on large compu-

tational clusters (i.e. multi-processor supercomputers)13,15. This limits their effectiveness

for large-scale data generation and real-time comparison.
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2.1.4 Biomedical Image Analysis

The interpretation of wide-angle cellular light scattering patterns can also be viewed in

terms of a biomedical imaging problem. Biomedical image analysis encompasses a wide

range of image processing and pattern analysis techniques used for interpreting and classify-

ing medically related image data30,31. Examples include the determination of tumor bound-

aries from Magnetic Resonance Imaging (MRI) or mammography data, skeletal analysis

using X-ray images, and ultrasound imaging of soft tissue30. Imaging methods also include

thermal analysis, light microscopy, electron microscopy, spectrography, and tomography30.

This is a challenging problem domain. Not only do the biological objects under observa-

tion have a high degree of variability, even within similar classes of sample, but observa-

tions are subject to many different forms of noise, occlusion, and data corruption due to

the constraints of working with patients and the limitations of imaging hardware30. Data

formats can range from optical images or 3D models that are interpretable by a human

expert to complex multi-dimensional arrays that require a large degree of computational

processing30.

Primary problems addressed by the field include: the preprocessing and optimization of

image data; the extraction of regions of interest; the characterization of data using shape,

texture, and orientation metrics; statistical image categorization; classification of samples;

and the reconstruction of volumetric models from sequential data30. As such, biomedical

image analysis encompasses work from computer vision, pattern analysis, and machine

learning literature. It also overlaps a great deal with data mining and content-based image

retrieval problems, where large bodies of data must be efficiently stored, searched, and

classified31; this is described in a review by Sinha et al.31. As wide-angle light scattering

analysis involves the collection and interpretation of vast amounts of complex image data,

it is evident that techniques from other biomedical image analysis problems may transfer

well to the current problem domain.

Rangayyan’s book provides a detailed introduction to biomedical image analysis, and de-

scribes a number of image analysis algorithms that are potentially applicable to wide-angle

light scattering30. Specific techniques and algorithms related to this dissertation are dis-

cussed at length in the following chapters. More specific information on computer vision

and general scene interpretation is presented by Shapiro and Stockman32, while fundamen-

tal methods for data mining, patterns analysis, and applied machine learning can be found

in the work of Duda et al.33, Witten and Frank34, Alpaydin35, and Engelbrecht36.
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Figure 2.2: A graphic representation of the cellular inverse scattering problem: “given a recorded
two-dimensional laser light scattering pattern (IMt), generated from the unknown structure Pt via
some scattering process S(Pt), what is the unknown cell structure responsible for the pattern (i.e.
what is Pt)?”

2.2 Previous Work in Cellular Scattering Pattern Analysis

This section gives a description of the central problem in cellular light scattering: the inverse

scattering problem for light through a biological cell. It presents an overview of the problem

itself, followed by a discussion of prior art. Previous approaches are grouped into three

categories, and each is explored in depth.

2.2.1 The Inverse Scattering Problem

The inverse scattering problem is the task of relating a scattering intensity signature to the

complex 3D structure of the scattering object20. For the problem of light through a bi-

ological cell, there is no direct analytical solution3,4,25,37,38. It is not possible to simply

apply a formula to an intensity pattern and receive the complete 3D geometry and/or den-

sity distribution of the scatterer37. The problem is also plagued by non-uniqneness—it is

theoretically possible for more than one distribution to yield extremely similar, or in some

cases identical, scattering patterns20,37. Conversely, it is possible for rotated copies of the

same distribution to produce dramatically different scattering patterns3.

In its simplest form, the wide-angle cellular inverse scattering problem may be framed as

follows: given a recorded two-dimensional laser light scattering pattern (IMt), generated

from the unknown structure Pt via some scattering process S(Pt), what is the unknown cell

structure responsible for the pattern (i.e. what is Pt)? A graphical representation of this

problem structure is shown in Fig. 2.2.

A solution to this kind problem can take two forms: general or specific (hard20). The weaker

of these two cases, the general case, only requires that the solution be able to produce

general information relating to the scatterer’s structure (such as cell size, shape, or number
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Figure 2.3: The direct solution: invert the light-scattering mechanism to recreate the detailed 3D
structure of the scatterer Pt. This requires that IMt contain enough information to perform a realistic
inverse S−1(IMt); in experimental optics situations this is rarely the case20.

of organelles; the “parameters” of Pt). It may neglect exact relationships between cellular

components. The stronger specific case requires the solution to produce an accurate three-

dimensional model, density distribution, or approximate geometry of the scattering body,

inclusive of the relationships between scatterer components (i.e. fully reconstruct Pt)20.

The required strength of a solution depends heavily on the application; for medical patient

sample classification, a general solution may be enough to determine the difference between

healthy and sick patients, while for exploratory research it may be necessary to know the

exact intracellular geometry of a sample. As such, a number of different approaches have

emerged in the literature, directed toward finding general or specific solutions to the cellular

inverse problem. For the purpose of this dissertation, this prior art has been divided into

three major categories. Each category will be examined below with regard to advantages,

disadvantages, scope, and recent progress.

2.2.2 Direct Approaches

Specific Solution. Many groups have pursed the direct inversion approach: taking an inten-

sity image or set of scattering intensity points and, using a numerical process, attempting

to derive a 2D or 3D representation of the interrogated cell’s structure4,37. This is equiv-

alent to determining the target distribution as follows: Pt = S−1(IMt), where S−1(IMt) is

the mathematical inverse of the scattering process S(IMt). A graphical representation of

the direct approach is shown in Fig. 2.3. While elegant and potentially powerful, a cellular

scattering inversion of this kind has currently not been solved in a closed analytical form4.

One major difficulty in experimental situations is the loss of amplitude and phase infor-

mation that occurs when scattered light is captured by a detection apparatus (e.g. a CCD

camera)20. To fully reconstruct a scattering distribution from its detected energy field, it

is necessary to know the phase and amplitude of all incoming waves, along with the field
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inside all scattering particles20; this level of recording is rarely, if ever, achievable in prac-

tice20. In experimental (especially cytometry) situations, only intensity values are recorded.

While X-ray diffraction and optical literature has shown that a direct inversion is theoreti-

cally possible by performing an Fourier transform on the scattering signature39,40, this still

relies on knowing the full set of wave components at every point on the scattering field—

things that are extremely challenging or impossible to obtain in practice.

Despite the challenges, Thibault et al. show the use of a difference map algorithm to it-

eratively estimate phase parameters in a related problem domain—the extraction of repro-

ducible 2D yeast cell images from their X-ray diffraction patterns40. However, as noted by

Thibault et al., there are still a host of issues preventing the use of this technique to infer the

full 3D makeup of a cell40. Shapiro et al. also managed to perform 3D imaging of a whole

cell, at resolution values approaching 10nm, using an iterative phasing algorithm; however,

their optical setup also relies on X-ray diffraction microscopy as opposed to visible light41.

Most phase reconstruction algorithms in the literature focus on crystal or macromolecule

reconstruction, as opposed to biological cell imaging (e.g. the imaging of carbon nan-

otubes42). They typically use iterative local search and maximum entropy methods in both

structure and scattering space, and are limited to a select set of scattering models42,43. Some

of the most successful phase reconstruction tactics rely on recursive comparisons to the tar-

get scattering signature, and thus fall more appropriately under the category of iterative

“generate-and-test” solutions, described below43.

Pros: The primary advantage of the direct approach is that it theoretically results in a full

3D representation of the scatterer. This is the best case scenario. It is also potentially quite

rapid, as only a single model Pt need be considered and mathematically refined.

Cons: The direct method has been shown to be intractable for case of experimental light

scattering through cells4,20; this is due to the nature of recording devices20,43 / the lack

of phase information4,20,40,43, the complex structure and optical properties of cells and or-

ganelles2,4,5,18,20,21,37, and the non-uniqueness of recorded patterns, due in part to rotation,

translation, and scaling3,12,25. In practice, IMt does not contain enough information to effect

Pt = S−1(IMt).

State of the art: There are currently no fully realized direct or numerical solutions to the

inverse scattering problem of wide-angle laser light scattering from biological cells4.
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Figure 2.4: The parametric solution: employ some function or series of functions F(IMt) to extract
a vector of key feature values from a scattering signature IMt and relate these features to physical
properties of the scatterer (e.g. cell/nucleus size, number of organelles).

2.2.3 Parametric Methods

General Solution. Possibly the most widely explored and successful approach to date,

parametric inversion is a branch of methods that infer a set of particle or cell characteristics

from selected indicatrices or scattering image features4. Instead of attempting to derive a

full 3D model of the scatterer, patterns are instead related to a subset of cellular parameters.

This is shown in Fig. 2.4, where parameters are derived from a target image using some

function or set of procedures F(IMt). Scattering pattern features are chosen so as to be sen-

sitive to specific aspects of scatterer structure4, and are mapped—via rulesets, mathematics,

or machine learning4,11,25—to a parameter vector that describes key aspects of the scatterer

(e.g. cell size, nuclear size, cell shape, number of component organelles, concentration, or

optical properties such as effective index of refraction).

Typically, large bodies of simulated data (or in some cases carefully labeled experimental

data) are used to develop a set of inference equations or “rules of thumb” that are then

applied to new experimental data4,11,16,23,26. These inference equations usually extract fea-

tures from scattering intensity samples taken at discrete intervals over a fixed 1D angular

range—i.e. from an indicatrix4,11.

The parametric approach has been successfully demonstrated by a number of groups for

the case of scattering indicatrices from cells4,11,16,25,26,44. For example, Maltsev has shown

how a flying light scattering indicatrix (FLSI) parametric solution can determine the size

and refractive index of a spherically modeled scatterer from scanning flow cytometry data,

for particles ranging in diameter from 0.9–15µm with refractive index values between 1.37–

1.604.

Sem’yanov et al. have demonstrated a similar method to infer particle volume and hemo-

globin concentration in red blood cells (RBC) via a 1D scattering indicatrix over a 15–55o

range11,44. They use the location and magnitude of scattering intensity maxima and minima
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to infer particle characteristics. Ghosh et al. also show a method to determine the size and

hemoglobin content of RBC for scanning flow cytometry data, though they instead use

features from the scattering signature’s fast Fourier transform (FFT) to determine particle

characteristics23.

Wilson and Foster further show how, using a light scattering sample, size distribution and

scattering cross section, a Mie-theory-based particle sizing routine can extract information

regarding the size of dominant scattering objects—in this case intracellular organelles—

in a heterogeneous scatterer16. Fang et al. demonstrate an alternate Mie/Rayleigh-Gans

approach that is able to determine the size distribution of organelles in a bulk solution well

below the diffraciton limit (< 130nm) from light scattering spectroscopy data26.

Machine learning solutions have also been applied to effect parametric inverse solutions,

with great success. Ulanowski et al. have developed a radial basis function neural network

capable of determining size and index of refraction values for distributions of small spher-

ical scatterers25. Their approach is theoretically expandable to any number of scattering

reference points, and any number of particle characteristics, and was robust to missing or

corrupted scattering intensity data25. With the generalization power and noise rejection

properties of modern machine learning methods33, this approach could hold great promise.

As evident from the above examples, recent attempts to parametrically analyze the infor-

mation contained in scattering patterns have focused on extracting parameters and mathe-

matical relations from scattering intensity samples recorded at a set of fixed angles or over a

1D angular slice. In addition, it is important to note that many current methods4,11,23,25 rely

on scattering from a bulk population (e.g. a solution of mitochondria), as opposed to being

able to ascertain the structure of an individual cell. While powerful, the derived relations

only take into account a fraction of the available scattering information, and are therefore

limited in their detection ability. With the advent of new 2D Finite Difference Time Domain

(FDTD) simulation methods3,13 and wide-angle cytometry schemes10,13, we now have the

potential to extend previous parametric solutions to information-rich two-dimensional scat-

tering signatures.

Pros: In the absence of a tractable direct inverse, the parametric approach still allows the

inference of particle characteristics from scattered light. Most examples are very rapid,

and have the added advantage of generalization: only certain relevant cellular features are

extracted, as opposed to a full knowledge of the unique scatterer structure. This is advanta-

geous in clinical situations—3D structure is not always needed for diagnosis, and most tests

are performed on large cell populations. Once created, inference “rules of thumb” could be

easily ported to LOC medical device firmware. Parameters may also be invariant to cell

rotation and translation, which could alleviate some of the difficulties found in other 3D

structure prediction schemes3.
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Cons: One major disadvantage of the parametric approach is also its advantage—generality.

It does not present insights into the exact structure of the scatterer, and is thus less useful

for exploratory research. A large amount of labeled training data (usually simulated) is

also needed before it is possible to form inference rules or linking equations, and training

data must be carefully chosen so as not to bias the solution33. Lastly, depending on the

inference method, the rules connecting indicatrix values and cell parameters might not be

observable—e.g. the case of an ANN25—limiting the exploratory potential of the technique.

State of the art: Numerous groups have demonstrated successful parametric solutions,

resulting in the characterization of one of more scatterer properties. However, there have

been no examples in the literature of a parametric solution that takes into account a full 2D

scattering signature (noting that Ulanowski et al.’s approach could be expanded to 2D).

2.2.4 Iterative Methods

Specific Solution. As a successful alternative to direct or parametric inversion, several

groups have shown the use of iterative “generate-and-test” methods to infer 3D structures

from scattering measurements4,37,38,45. These methods hinge on the creation of candidate

scattering profiles (e.g. via Mie/Rayleigh-Gans16,20,21,26 or FDTD methods3,6,9,13,46) and

iteratively comparing them to an experimental target scattering signature; the difference

between target and candidate patterns is used to alter the test model until a match is made.

Fig. 2.5 outlines this method. A number of candidate signatures IMcn are generated from a

population of scattering distributions Pcn, via some simulation process S′(Pcn). These new

signatures are compared to the target scattering pattern IMt using some function C(IMt, IMcn);
a close match between signatures (either in terms of direct pixel comparison or low error

between image parameters) indicates that Pcn may be a viable approximation of Pt, and the

models are refined and re-compared until one or more are within some success threshold.

For the one-dimensional case, Maltsev describes how Mie theory scattering simulations

have been used to generate potential angular scattering slices (indicatrices)4. These indi-

catrices are compared to the indicatrix of an experimental sample, and the test model is

altered until a match is found4. The final model is used as an indication of the unknown

experimental sample.

Javidi et al. show an image-based approach, where pattern matching is applied to microbial

morphology45. In their system, holography images from a target sample with unknown

structure are divided into a set of image features via a segmentation algorithm. By compar-

ing the feature vector to a reference database via a Rigid Graph Matching (RGM) algorithm,

they predict the structure of the unknown sample45.
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Figure 2.5: The generate-and-test (iterative) solution: create a series of candidate cell models
Pcn,n ∈ N and simulate their scattering signatures IMcn via a function S′(Pcn) that approximates
the true scattering process S(Pt); compare each candidate pattern to the experimental target signa-
ture via a comparison metric C(IMt, IMcn). Once C(IMt, IMcn) is below a given threshold, accept
Pcn as one possible model for the target Pt.

While there are few examples of generate-and-test solutions for the case of cellular light

scattering, X-ray diffraction literature regularly makes use of similar iterative methods. No-

tably, Chacon et al. demonstrate an elegant evolutionary computing approach to derive 3D

protein structures from 2D X-ray scattering data. They use a genetic algorithm to model

a scattering structure as a set of spheres, where the difference between the protein’s actual

scattering signature and Debye scattering simulations for each evolved model forms the

comparison metric37,38. Their work demonstrated the accurate prediction of protein geom-

etry, but incurred great computational cost. This appears to be the case for most generate-

and-test approaches, precluding their use for real-time analysis, but this may change with

future optimizations and advances in parallel computing.

Other examples of generate-and-test solutions include the use of evolutionary algorithms for

crystal structure prediction43,47 and Reverse Monte Carlo (RMC) algorithms to determine

the structure of crystals, liquids, polymers, and other particle systems48–50. It is evident

that iterative model refinement, coupled with rapid simulation and pattern matching, can

produce excellent (though not always optimal49) solutions to inverse scattering problems

approaching the complexity of those found in biological cells.

The examples above outline a key divide in iterative methods: online systems where can-

didate images are generated at runtime, with the candidate model being perturbed online

(e.g. Chacon et al.37), and offline systems where candidate images and structures are gen-

erated prior to a run and stored for later reference (e.g. Javidi et al.45). The first instance,
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online, requires a very rapid simulation method to generate images from candidate struc-

tures, but has minimal search, retrieval, and storage requirements. The second instance,

database lookup/matching, may make use of highly accurate but computationally laborious

simulation routines offline (e.g. FDTD3), but requires a large amount of storage and inten-

sive database infrastructure, such as a content-based image retrieval (CBIR) system51. The

offline case also has the limitation that new examples cannot be computed during a run—it

cannot refine existing models.

In practice, these two approaches could be combined in a method similar to Schaeffer’s

recent solution to the game of checkers—a large database of pre-computed endgames is

coupled with an online search heuristic to rapidly solve a sequence of optimal moves for

feasible starting positions52. In a similar fashion, it may be possible to seed a generate-

and-test inverse method with a sampling from a database of known candidate solutions;

however, this has not yet been demonstrated in the scattering literature and is a viable topic

for further exploration.

Pros: The key advantage of a generate-and-test solution is its ability to produce a specific

3D scatterer structure. The method is very flexible, simple to apply, and can be extended

to include all relevant structural features. New example data and specification changes do

not require the regeneration of processing rules or retraining of the system. It is also in-

terpretable and verifiable: unlike some parametric approaches (e.g. the neural network of

Ulanowski et al.25), it is possible to see visually and numerically how target and candidate

images compare, and how this relates to structure. Image filters could also be easily ap-

plied to candidate data during comparison to help match different experimental setups (e.g.

simulate experimental noise or integration effects).

Cons: One major disadvantage of iterative solutions is that they are potentially much slower

and more computationally demanding than a parametric system. Unless implemented on

massively parallel firmware, this could preclude their use in mainstream medical firmware

or routine clinical diagnostics (though they would still be applicable in exploratory clinical

research). The flexibility of the solution forces a tradeoff with its versatility of implementa-

tion. Output data, being a complex 3D structure, is also much harder to interpret for quick

medical classifications. Additionally, there is no implicit guarantee that the generated solu-

tion will be an optimal representation of the target structure49. Another disadvantage is the

reliance on accurate simulation methods, which must be repetitively applied and for cellular

scattering problems could incur significant computational costs13.

State of the art: A generate-and-test inverse solution has not be successfully shown for

wide-angle cellular scattering signatures, but has had great success on similar problems in

X-ray diffraction crystallography and fault detection.
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2.3 Key Components of the Problem

As presented in Ch. 1, if we hope to identify relationships between wide-angle scatter-

ing patterns and cellular structure, it is essential to develop methods that are able to extract

meaningful associations from empirical evidence. Armed with the knowledge that direct in-

version methods are for the most part intractable for the cellular light scattering problem4,20,

it is valuable to explore the core components (and challenges) shared by both parametric

and iterative solutions. As evidenced by the previous approaches described in the literature,

both parametric and iterative methods do in fact share a number of key features. In the most

general sense, they both require:

• Access to a large repository of labeled scattering signatures and/or a method to obtain

new scattering patterns—this includes experimental data and simulated data.

• A way to characterize the complex intensity patterns contained in each signature.

• A way to accurately relate these patterns back to cellular structure.

These three requirements are explored in the following sub-sections, as they relate to the

case of wide-angle cellular light scattering. While the focus is placed on 2D scattering

images, the described requirements also impact—and stem from—indicatrix-based (1D) or

fixed-angle scattering problems.

2.3.1 Experimental and Simulated Data

The accuracy of any solution to the cellular inverse scattering problem depends on how well

it represents and coveys knowledge of the ground truth—the actual relationship between a

scattering pattern and the scattering distribution. For a direct solution, this ground truth is

built directly into the scattering equation and its inverse. However, for other solutions (i.e.

parametric & generate-and-test), the ground truth needs to be somehow reconstructed from

available empirical evidence. For a light scattering problem with no direct inverse, this em-

pirical evidence can only be extracted from a large quantity of scattering examples (e.g. IMc)

labeled with one or more quantitative properties—or some qualitative approximation—of

their generating structure (e.g. Pc).

As in data mining problems33,34, labeled image data can be gathered either through simula-

tion techniques or experimental collection. The actual labeling of images can be done in a

number of ways—e.g. by a human expert, automatically from the parameters of a simulator,

from domain knowledge, or through some combination of these methods31,33,51.
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Experimental cytometry images (e.g. from a LOC wide-angle cytometer10,13,27 or fixed-

angle / scanning flow cytometer4,11) can capture the light scattered by intact cells. However,

due to the complex inner structure of cellular samples, its is often difficult, expensive, or

in some cases impossible to obtain a sample’s true internal structure (e.g. Pt). At best,

an image can be labeled with general information about cell type, approximate organelle

content and distribution, and aspects of a cell’s shape and behaviour. This is usually done

by a human expert—a time consuming process. For medical classification, this could be

sufficient, but it does little to aid in producing a specific solution.

While simulated images contain far less structural information than their experimental

counterparts, they have the advantage that all images come with a comprehensive set of

structural labels—the cell model and scattering system parameters used in image creation.

As described above, this ability to generate labeled data has been a key component of many

previous scattering analysis methods. General scattering models, such as Mie scattering or

Rayleigh-Gans, have proved effective at rapidly generating approximate scattering signa-

tures for cell-like structures, and come with a set of more general feature labels such as the

number, spacing, and radius of scatters.3,4,20,21,26. However, their detail is limited by struc-

tural approximations needed to make computation tractable (e.g. spherical scatter structure

minimal phase shift3,20,21). Alternatively, FDTD simulations have been shown to produce

very accurate scattering patterns for complex 2D and 3D cellular models1,3,3,6,13,14,46. They

can be labeled with any number of parameters extracted from the internal optical structure

of the scatterer, or even the full 3D scattering distribution. However, for any level of rel-

evant cell complexity these methods are very slow, taking days even on multi-processor

high-performance computing networks13. A detailed assessment of the simulation and data

generation problem is presented in the introduction to Ch. 3, and new methods for acquiring

labeled images are explored in Chs. 3 and 4.

State of the art: While essential to an inverse solution, prior to this work there was no ef-

fective way to both rapidly and accurately generate a large labeled dataset of 2D wide-angle

scattering signatures that still transmit key medically relevant aspects of cellular structure.

2.3.2 Feature Extraction

Feature extraction is a critical aspect of both iterative and parametric solutions to the wide-

angle inverse scattering problem—to be useful, the complex image topography of a scatter-

ing signature must formatted in a understandable (and/or processable) fashion.

As discussed above, the goal of feature extraction in biomedical image processing is to take

image data and extract from it a set of parameters that indicate the nature of the sample30,32.
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The parameters to be extracted by this processing are dependent on the nature of the source

image and on their intended use—parameters can include, but are not limited to, the location

of edges or region boundaries (both in color or texture), the shape and size of regions in a

scene, the histogram breakdown of image intensity and color, image frequency information,

image regularity, and image texture data30,32,53.

The central problem in wide-angle scattering image analysis is extracting a set of image

features that summarize the information-rich aspects of a scattering pattern. As indicated

by previous parametric solutions, some image features contain more predictive value than

others4,11. For instance, it has been demonstrated that things like the spacing and location

of intensity bands in an image relate to the size of the cell and its nucleus4,11,23. Conversely,

the number, size, and shape of intensity regions in the side-scatter region may correspond

to the number and distribution of small organelles like the mitochondria13,54. Extracting

numerical or semantic representations of these features from a scattering image is a chal-

lenging task, as noise and overlapping intensity data can obfuscate important patterns.

Feature extraction is also important for any form of image comparison, such as the similarity

metrics used in generate-and-test solutions. When comparing images for similarity, a vector

of image features can be used to judge the absolute difference between between a target and

candidate image (for instance, their city-block or Euclidean distance)32,51. This can in

some cases be more effective than raw pixel-by-pixel comparison (e.g. the χ2 similarity

metric used in Reverse Monte Carlo methods49), as a well-selected feature representation

can be resilient to noise and redundancy in the analyzed data, while actively selecting for

characteristics important to the application domain4,30,34.

The use of feature extraction in biomedical imaging applications has been shown for a

number of different situations30–32,55–58. However, the task of applying feature extraction

to wide-angle scattering images comes with its own set of unique objectives and challenges.

Once information-rich features have been identified, they must be extracted under condi-

tions where different image intensity regions blend together almost seamlessly, vary widely

in intensity over their span, and deviate dramatically for different cellular distributions and

arrangements3. These challenges and their image-processing background are described in

greater detail in the introduction to Ch. 6; the process of feature extraction itself is addressed

in detail in Chs. 4, 5, and 6.

State of the art: While there are methods to extract relevant information from 1D scatter-

ing indicatrices, prior to the present work there were no image processing and/or feature

extraction methods tailored for use on the 2D scattering problem.
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2.3.3 Linking Methods

Numerical relations, pattern analysis systems, classifiers, and rule generators are perhaps

the most important component of any potential solution to the inverse problem. In most

cases, these “linking methods” are heralded as the final methodological approach to solving

an inverse problem, despite their strong dependence on both feature extraction and accu-

rately labeled sample data. This emphasis is reasonable—the goal of a linking method is

to take an image or its feature-based representation and correlate it with key aspects of a

scatterer’s structure. Put differently, linking methods encapsulate or reference knowledge

extracted from a database of labeled scattering data, giving them predictive power.

In most biomedical implementations, linking methods take as their input a vector of image

features extracted from the target experimental image (IMt)30. Their output is a general

or specific breakdown of the target’s structure—an approximation of Pt. In its simplest

form—i.e. the direct solution—a linking method could be regarded as the inverse scattering

equation S−1(IMt). An example of a this kind of mathematical linking method is the in-

verse Fourier transform, which links scattering amplitude and phase values to the shape and

density of a scatterer22,39. However, as described earlier, a direct mathematical inverse is

not tractable for the case of cellular light scattering. This puts the focus on linking methods

that complement parametric or iterative approaches.

For parametric approaches, linking methods are typically based on rules or empirically

generated inference equations (e.g. cell size determination via the location and pitch of

intensity maxima4,11). However, the most successful approaches use machine learning al-

gorithms25—a database of extracted parameters is used to train (or automatically generate)

a classifier with predictive power. There are currently a number of machine learning tech-

niques that could be used in a parametric setting to relate scattering features with structural

parameters; these include artificial neural networks, support vector machines, bayesian net-

works, and tree classifiers33–36. Methods may also use a collection of algorithms designed

to complement (or in some cases compete33,59) with each other to improve their predictive

ability. Most notably in previous work, Ulanowski et al. demonstrated an artificial neural

network that was able to distinguish scattering profiles using one-dimensional scattering

samples (indicatrix values)25; their system proved effective for identifying the size and

index-of-refraction for homogeneous spherical particles.

Generate-and-test solutions implement a different kind of linking method, where a system

of image comparisons and/or database lookups (for instance evolutionary algorithms or

content based image retrieval37,38,51) connects the target image to its structure via a set of

candidate images and structures31,37,38,51. Each linking method has its own advantages and
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disadvantages, and there is no universally regarded “best approach” that can be applied to

all problems33,59. A comprehensive demonstration of linking methods as applied to the

wide-angle scattering problem is presented in Chs. 5 and 7.

State of the art: As with feature extraction, while there have been demonstrations of link-

ing methods for use with 1D scattering samples, prior to this work there were no successful

applications of linking methods to the 2D scattering image case.

2.4 Summary

As described in this chapter, work on the wide-angle cellular inverse scattering problem

draws on (and impacts) a number of other fields, from biomedical image analysis to crys-

tallography and optical device design. Each of these fields comes with its own background

knowledge and associated challenges. Taken as a whole, they give a solid basis for work

presented in the following chapters, and serve as a resource of excellent tools to explore the

challenging new domain of 2D scattering signatures. In a similar fashion, the interdisci-

plinary methods and techniques presented in this dissertation are expected to transfer new

insights back to these fields, and give a starting point to engage other complex problems.

This dissertation builds on research done by the international light-scattering community.

Previous approaches to the cellular inverse scattering problem can be broadly categorized

into direct, parametric, and iterative methods, and can predict general or highly specific

information about a scatterer. While direct mathematical inverse solutions are for the most

part infeasible due to the constraints imposed by optical detection methods, work on para-

metric and iterative methods has been highly successful for indicatrix-based cellular scatter-

ing analysis and X-ray diffraction crystallography. Prior to this work, however, no similar

approaches have been sucessfully developed for the case of wide-angle cellular scattering.

Previous approaches are tied together by a common set of requirements—the need for a

source of labeled data, feature extraction routines, and powerful relationship-based “linking

methods”. Each of these building blocks will be addressed in the following chapters, and

connected to form several viable approaches to the interpretation of wide-angle scattering

patterns. Chs. 3 and 4 address the problem of labeled scattering data by presenting a new

simulation method. This method is then used as the source of labeled sample data for

the remainder of the dissertation. Chs. 4, 5, and 6 show several approaches for feature

extraction and the intelligent parameterization of scattering images. Lastly, Chs. 5 and 7 tie

these developments together into a set of general and specific linking methods capable of

identifying medically relevant aspects of wide-angle cellular signatures.
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Chapter 3

Rapid Simulation of Wide-Angle
Scattering from Mitochondria in
Single Cells

3.1 Introduction

This chapter shows that it is possible to produce a good approximation to the scattering

pattern of small, isotropically scattering mitochondria by adapting classical X-ray diffrac-

tion theory (XRD). We also show how this theory may be extended to deal with the scatter

patterns arising from collections of mitochondria whose individual scatter patterns are no

longer isotropic, and a more general case: heterogeneous combinations of cellular micro–

and nano-structures. The XRD framework provides a wealth of tools that could be ap-

plied to this problem. Although XRD is commonly thought of in conjunction with large

(‘infinite’) crystalline structures, it is also applicable in cases of finite and non-crystalline

structures—much like the situation of scattering from a single cell.

Our approach allows for the rapid simulation of mitochondrial scattering patterns, enabling

a number of powerful linking methods. By quickly simulating large libraries of images that

approximate the results of mitochondrial scattering, parametric computer methods could be

used to identify key correlations between scattering patterns and scatterer structure. These

correlations may be used in an experimental situation to rapidly (e.g. real-time) predict

the nano-structural makeup of a single cell from scattering patterns captured by a wide-

angle cytometer (e.g. the work of Singh et al.1,2). Access to a rapid simulation routine

also facilitates iterative reverse methods; approaches such as Reverse Monte Carlo (RMC)

analysis3 can use simulation results to iteratively adapt a scattering model and to fit the

profile of an experimentally observed scatterer. Both parametric and iterative approaches

A version of this chapter has been published. Pilarski et al. 2008. Optics Express. 16(17): 12819–12834.

33



depend on the availability of an effective and rapid method of calculating a realistic scatter

pattern. The present work gives a theoretical basis for a new simulation routine that fits

these requirements, and demonstrates its effectiveness in simulating organelle-related light

scattering.

3.2 Background

Previous work has shown that the light scattered by biological cells can be used to infer

some aspects of internal cellular structure4–8. This is pertinent to emerging wide-angle cy-

tometry systems currently under development, e.g. Singh et al.2, where the rich structure of

two-dimensional scattering signatures from single cells may be used to explore the micro-

and nano-structural makeup of the scattering source2,8. Structural information on the in-

tracellular components (such as the organization and number of mitochondria) has great

clinical relevance, as it may be used to detect and characterize certain diseases, such as can-

cer9–12 and cardiomyopathy10. There is a great need for analysis and simulation methods

to describe the relationship between experimental scattering patterns and cell structure.

A number of groups have recently worked on the assessment of scatter structure from light

intensity measurements or predictions, and these approaches may be categorized into for-

ward methods and reverse methods depending on how they relate to the simulation process.

Forward methods rely on the prediction of many feasible scattering patterns based on a

knowledge of the scattering structure and a model of light propagation (e.g. Finite Differ-

ence Time Domain (FDTD) simulations13–15), while reverse methods attempt to deduce

some aspect of scatterer geometry from a pattern of scattered light (again using a model

or algorithm to relate pattern to structure). In practice, many iterative and parametric ap-

proaches are a hybrid of forward and reverse methods.

A true reverse method (i.e. a direct solution to the inverse scattering problem) would give

the exact and detailed geometric structure of a cellular scatterer from a pattern of scattered

light. Such a direct reverse solution has been shown to be computationally intractable for the

problem of biological cells5. However, some advances in the reverse domain have been able

to extract one or two physical aspects of the scatterer. Of note, an ‘indicatrix’ has been used

on one-dimensional scattering slices and collections of angular slices to determine cell size

and hemoglobin content5–7. Scattering has also been used to determine red blood cell size

and refractive index via a Fourier transform16. Other groups have worked on predicting the

properties of bulk solutions of multiple scattering bodies using Mie or Rayleigh-Gans (R-

G) theory fitting and Light Scattering Spectroscopy (LSS)17,18 or elastic/angularly resolved

light scattering19–21.
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Due to the complexity of the forward scattering problem, scattering from individual or-

ganelles such as mitochondria is usually described in the literature by Mie and R-G the-

ory19,20,22. While mitochondria have been described (and treated) as ellipsoids or spheroids,

with diameters in the 400–800nm range and lengths in the 800–3000nm range23–25, there

is in fact a startlingly wide variety of shapes and sizes documented for these organelles26.

Nevertheless, it has been demonstrated that mitochondria are the primary large-angle scat-

terers in eukaryotic cells27.

Simulation methods such as those based on the Mie and R-G theories give some analytical

basis for the intensity patterns observed from cytometry experiments (e.g. intensity band-

ing2,28), but have significant restrictions in their use (e.g. for Mie theory, treating scattering

bodies as spheroids). More recently, FDTD code—a discretized solution to Maxwell’s

equation—has been used to predict scattering from cells15. While extremely detailed and

true to experimental wide-angle cytometry results8, FDTD is computationally intensive for

any wide-angle 2D cell simulation with realistic parameters8; such simulations must be run

on large super-computer arrays and may take hours or days to generate a simulated pattern8.

Though there are many feasible simulation methods, as described above, to date the FDTD

method appears to be one of the most effective methods capable of generating realistic

wide-angle scattering patterns from a three-dimensional cell model8,15. However, this leads

to a computational bottleneck when generating large numbers of simulations, and does

not provide a computationally tractable complement to the reverse problem of determining

scatterer geometry from an experimental scattering pattern. If we hope to characterize

and rapidly classify the effect of nano-structural cell components on scattering, another

simulation method must be developed.

3.3 Methods

3.3.1 A Theoretical Approach

As described above, the analysis of nanostructural contributions to scattering in complete

cells has so far proved quite difficult. However, it is known that organelles in general,

and mitochondria in particular, are the dominant cause of large-angle scattering (i.e. light

scattered perpendicular to the path of the incident light, commonly called side-scatter or

large-angle scattering). As we demonstrate in this work, it is therefore possible to rapidly

simulate and analyze the important aspects of large-angle cellular scattering by examining

the scattering behaviour of mitochondria.
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It has been shown that approximately 90% of side-scattered visible light from human cells is

due to the presence of mitochondria9,23. Small structures, such as the mitochondria, readily

scatter at large angles and are in fact the dominant cause of intensity artifacts in this angular

region9,23,29. This is due in part to the complex internal structure of mitochondria and their

numerous index-of-refraction changes4,9. As seen from recent experimental and simulation

work8, side-scattered light from the mitochondria in human cells (e.g. immune system cells

such as the Raji cell-line8) typically takes the form of small asymmetrical ‘blobs’ in a two-

dimensional scattering pattern, where blob size and spacing is related to the distribution of

small scattering bodies within the cell8,30. Conversely, larger cell structures—such as the

nucleus and the cell wall—lead to high intensities of forward and back scatter (i.e. angles

approaching the path of the incident light)9,18,23,29 and broad intensity banding in scattering

images8.

This is easily understood by examining the scattering regimes present: cellular compo-

nents much smaller than the incident wavelength will scatter uniformly in all directions (i.e.

isotropically) or near-isotropically via the Rayleigh (size� λ ) and Mie regimes (size≤ λ ),

while larger bodies will scatter along the light path according to geometric transmission

(size� λ )31. For more information, a detailed description of light scattering by human

cells is presented by Gourley et al.9.

Given the dominance of mitochondrial scattering in the large-angle domain, as verified by

the recent experiments of Su et al.8, we show that it is possible to model isotropic and

anisotropic scattering of mitochondria by adapting classical XRD theory. Although this

theory can be extended to larger (anisotropic scattering) mitochondria, in the limit of small

mitochondria we find that they can be treated in the same way as isotropically radiating

electrons in standard XRD. This greatly reduces the computational burden and provides a

means of partially solving the inverse problem.

Another way to view this problem is using R-G theory—the assumed independence and

isotropic radiation of all scattering volume elements in a particle or scatterer. Many vol-

ume elements would be effectively “empty”, and could be passed over to speed compu-

tation. There are a number of similarities between such a modified R-G formulation and

our approach described below. However, as XRD theory has a number of other important

theoretical advantages—for instance, a mathematical (Fourier) framework to interpret the

interaction of different scattering shapes and structures32—we approach the problem from

this vantage point.

To simplify the discussion, from this point on we will use and refer to the standard XRD ter-

minology and notation presented by Kasai and Kakudo32; relevant terms will be redefined

as needed to ensure clarity for the reader.
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3.3.2 A Basis in X-ray Diffraction Theory

It can be shown that large-angle cellular light scattering from small mitochondria fulfills the

fundamental constraints and assumptions for XRD-like analysis32—specifically: Thomp-

son scattering—the incident and scattered wavelengths are the same; Scatterers radiate

isotropically; the Fraunhofer approximation—energy arrives as a plane wave at the recep-

tive field (i.e. the detection plane, likely a charge-coupled device (CCD)); and the kinemat-

ical theory of diffraction—secondary and tertiary scattering interactions (i.e. multi-scatter)

should be negligible compared to primary scattering and wave interference32. First, like

XRD, the incident and scattered wavelengths are the same (i.e. elastic scattering). Sec-

ondly, in the limit of very small mitochondria (e.g. sub-wavelength nanostructures, i.e. on

the order of a 100nm in size), side-scatter will be very close to isotropic, especially when

observed via a small solid angle in the side-scatter region9. Thirdly, for the geometric ar-

rangement of a wide-angle cytometer2,8 the distance to the receptive plane (millimetres) is

much greater than the distance between scatterers (micron scale), thus fulfilling the Fraun-

hofer approximation. Finally, for a standard cytometry system, the impact of multi-scatter,

especially for a single-cell situation, is expected to be minimal—first order scattering is

barely detectable; second order effects will not be detectable.

Given this, we can begin to examine the mitochondrial scattering problem from an XRD

perspective. Neglecting a common prefactor, the amplitude measured at a point s′ (on a

detecting plane or receptive field, e.g. a CCD) of the collective scattering of a set of isotropic

scatterers at locations rn is given by the ‘explicit’ formulation:

A(s′) =
N

∑
n=1
{cos[2π · (|s′− rn|+do

n)]− isin[2π · (|s′− rn|+do
n)]} (3.1)

Where path length do
n indicates the distance from a scattering point rn to the light source

or incident reference plane, and all distances are measured in units of the wavelength, λ .

The intensity on the detecting plane can then be described by the magnitude of the recorded

amplitude values (i.e. the multiplication of complex conjugates32: I(s′) = |A(s′)|2). As de-

tailed by Kasai and Kakudo,32, the intensities, I(s′) calculated using Eq. (3.1) are equivalent

to those from another ‘explicit’ calculation of A(S):

A(S) =
N

∑
n=1

exp{−2πi(S · rn)} (3.2)
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Where S = s− s0, and s0 is a unit vector that represents the direction of the illuminating

beam, s is a unit vector that represents the scatter direction of interest and the product S · rn

represents the phase shift (or “path difference”32) of the detected light along the observation

angle32. The path difference in the distance term |s′− rn|+ do
n is the real-space equivalent

of Kasai and Kakudo’s reciprocal path difference S · rn
32; both formulations can be shown

to have the same amplitude behaviour at any point in the far field.

With ρ(r) = ∑
N
n=1 δ (r− rn), Kasai and Kakudo showed that this can also be written as a

volume integral, over vr (their Eq. (2.13)32):

A(S) =
∫

∞

0
ρ(r)exp{−2πi(S · r)}dvr (3.3)

We see that, in Eq. (3.3), A(S) is the ‘forward’ Fourier transform of the scattering distri-

bution ρ(r), and relates directly to the amplitudes A(S) on the receptive field. If we knew

A(S), we could take an inverse Fourier transform (in the reciprocal space) to determine the

exact position of the scatterers, i.e. (Kasai and Kakudo’s Eq. (2.14)32):

ρ(r) =
∫

∞

0
A(S)exp{2πi(S · r)}dvs (3.4)

The central challenge of XRD methods is that we cannot record A(S), but only I(S). As

such, we lose all phase information and the inverse transform cannot be made readily. Nev-

ertheless, the forward transform is useful to allow patterns to be compared and potential

structures investigated3, the discovery of the helical structure of DNA being a famous ex-

ample. In addition, although this is not our focus here, XRD methods exist to use I(S) to

infer ρ(r). This is commonly used to predict macro-molecule and protein structure from

scattering and diffraction patterns with the help of phase reconstruction algorithms33–35 or

methods such as the Reverse Monte Carlo analysis3. With such a wealth of tools, it is clear

that an XRD-like approach to cytometry would have significant benefits.

As pointed out by Proffen and Neder3, there is often a significant advantage to using one

of the above ‘explicit’ formulations rather than relying on other methods of performing

Fourier transforms—in many circumstances these explicit methods are very much less com-

putationally challenging. This is especially the case when dealing with small numbers of

scatterers—a situation that readily arises with microfluidics or “lab on a chip” (LOC) ap-

proaches that allow the manipulation and interrogation of a single cell. In a single cell,

we deal with hundreds (or fewer) scattering centres (i.e. mitochondria) and the explicit

methods can be readily performed on any type of calculation device (rather than needing a

super-computer as for FDTD methods).
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Example of how changes to the spatial distribution, ρ(r), (d) through (f), impact the
spacing of features within two-dimensional scattering patterns, I(S), (a) through (c), in X-ray scat-
tering. As the y-axis spacing between atoms decreases by a factor of two and three in panels (e)
and (f), y-axis spacing in the reciprocal plot increases by a factor of two and three in panels (b) and
(c). Physical and Fourier dimensions are listed in Å and Å−1 on the plots above. Data was generated
using DISCUS, the Fourier-transform based scattering simulator of Proffen and Neder3,36,37.

3.3.3 Scattering Examples

As a simple visual example of the relationship between scattering intensities (e.g. from Eq.

(3.3)) and the distribution of scatterers, Fig. 3.1 shows how changes to spatial distribution

(ρ(r); Fig. 3.1, bottom row) affect the spacing of features in a two-dimensional X-ray

scattering pattern (I(S); Fig. 3.1, top row) of a small 2× 2 grid of atoms (i.e. 4 atoms in

total) with horizontal spacings of 1Å and vertical spacings of 1Å (a), 0.5Å (b), and 0.33Å

(c). This figure was generated using DISCUS, the widely used X-ray scattering simulator

of Proffen and Neder3,36,37. DISCUS is a XRD teaching and simulation tool that applies

explicit (discrete) Fourier transforms to simulate the scattering from complex bounded (i.e.

non-infinite and constrained) crystals and collections of atoms3,36,37. In this example (Fig.

3.1), as the y-axis spacing between atoms decreases by a factor of two and three, from 1Å

to 0.33Å, panels d) through f), vertical spacing between features in the reciprocal plot (e.g.

the scattering or Fourier domain) increases by a factor of two and three, from 1Å−1 to 3Å−1,

panels a) through c). This calculation is equivalent to that of Eq. (3.3).
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Table 3.1: The mtPatterns algorithm
1 Create an array ρ(r) of 0 < n≤ #mt scattering points in R3 space within [Ri,Ro]
2 Create a receptive field I as an array of size U×V , normal to the z-axis
3 Position receptive field I distance d above population center ro along z-axis
4 FOR all s′ ∈ I:
5 FOR n = [1,#mt] :
6 CALCULATE: Ae(s′,rn),Am(s′,rn)
7 IF non-uniform scattering: A(s′,rn) = A(s′,rn) ·M(θ ,φ ,θo,φo)
8 UPDATE: Ae(s′)+ = Ae(s′,rn); Am(s′)+ = Am(s′,rn)
9 I(s′) = Ae(s′)2 +Am(s′)2

10 Return: I
Takes: {#mt,Ri,Ro,U,V,d,do,M}, Returns: {I}

3.3.4 The mtPatterns Algorithm

With this theoretical background in mind, we now present a novel method to quickly and

inexpensively simulate the large-angle scattering from a series of mitochondria-like scat-

terers. As discussed above, a LOC approach allows us to measure the scatter pattern of

the hundreds of mitochondria from a single immobilized cell. Given the finite number

of scatterers, it is most appropriate to use an explicit formulation to calculate the scatter,

specifically Eq. (3.1)—i.e. we simply sum the radiation from each source within an arbi-

trary distribution. In essence, it is advantageous to treat the cell as being a disordered crystal

comprised of mitochondria. As indicated in the previous section, the basic form of this al-

gorithm assumes that point sources radiate isotropically, that incident and radiated light is

of the same frequency, that the interaction between scatterers (multi-scatter) is negligible,

and that the spacing between scatterers is much smaller than the distance to the receptive

field (i.e. the Fraunhofer approximation).

Overview. The mtPatterns algorithm (Tab. 3.1) is a procedural implementation of Eq.

(3.1), presented and derived in Sec. 3.3.2. It takes a user-specified distribution of scatterers

and generates a two-dimensional scattering plot as its output. Scattering calculation is done

by independently summing the isotropic scattering contributions of each scatterer for every

point on the receptive field. For the case of anisotropic scattering, a point-spread function

may be applied to extend the algorithm to the case of larger spherical or variably shaped

mitochondria.

Algorithm Flow. To begin, the algorithm uses user input to create the scatter distribution

and receptive field (steps 1–3). For each point on the receptive field, the algorithm next

collects and sums the individual real and imaginary amplitude contributions described in

Eq. (3.1) (steps 4–8). At this point, the amplitude of each scatterer may also be scaled by a
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Figure 3.2: Diagram of the scattering simulation process. The ray so indicates the direction of
incident light, while the segment (s′− rn) describes the vector between scatterer rn and point s′ on
the receptive field. Ro and Ri indicate the inner and outer radius of the scattering distribution ρ(r).

known point-spread function to compensate for anisotropic scattering (step 7). Finally, the

algorithm computes the total intensity value at each pixel, and returns the collected intensity

values to the user in image and array format (steps 9–10).

Definitions. The following definitions are used in Tab. 3.1 and the remainder of this doc-

ument. ρ(r) is a three-dimensional array of isotropic scatterers (mt), created from a user-

specified spatial distribution of scattering points rn, n ∈ [1,#mt]. (n.b. ‘mt’ is shorthand

for ‘mitochondria’.) For this work we assume that the bounds of this distribution are a

spherical shell of inside radius Ri and outside radius Ro (i.e. the mitochondria are located

outside the nucleus of the cell). However, any arbitrary volume may be specified. I(u,v)
is a two-dimensional receptive field created with size U ×V and at a specified distance d

along the z-axis away from the scattering population’s centroid ro. A schematic diagram

of this setup is shown in Fig. 3.2. From this point on, we use the vector s′ to represent a

point on the receptive field with coordinates (u,v,d) from the origin. For scattering com-

putation, Ae and Am are the real and imaginary amplitude contributions described in Eq.

(3.1), and M(θ ,φ ,θo,φo) is a point-spread function which may be used to scale amplitudes

by a known angular distribution. As noted in Sec. 3.3.2, amplitude calculation is based on

|s′− rn|+ do
n , the path difference between the observing point s′ and the scattering point

rn. Light source distance do
n for each scatterer is calculated based on a light source origin

located a fixed distance from ro along the x-axis. I(s′) = |A(s′)|2 = Ae(s′)2 + Am(s′)2 is

the summation of real and imaginary amplitude components for each pixel, which form

the output intensity profile of the scattering image. To compress the dynamic range of the

observed images, we plot the square root of I(s′).
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From this point on we use spherical coordinates to specify location and spacing in the

scattering image and related point-spread functions. This allows us to describe patterns

in terms of the angle between the path of the incident light and the ray connecting the

scattering object to a point on the receptive plane. We define θ as the angle between the

scattered light wave vector (s′− rn) and the incident light wave vector s′o (Fig. 3.2), and φ

is the angle between the projection of the scattered light wave vector in xy-plane and the

x-axis. For reference, θ = 0o is pure forward scattering, θ = 180o is pure back scattering.

Similarly, φ = 0o is scattering towards the centre of the receptive field. In the case of

spherical scatterers there is no breaking of the symmetry of the system and so there is no φ

dependence.

For isotropic scatter the above algorithm suffices to calculate I(s′). However, as will be

discussed below, a number of circumstances can give rise to anisotropic scatter. To al-

low the calculation of anisotropic scatter we include, as an option, a point-spread function

M(θ ,φ ,θo,φo) to allow for scatter in the direction specified by θ and φ from a scatterer

aligned in a direction specified by θo and φo. The function, M(θ ,φ ,θo,φo), may be applied

to scale the isotropic radiation of each scatterer by a known set of angular intensity val-

ues (which may be generated numerically8,15 or empirically). As will be described below,

we have not yet found the need to extend this analysis beyond its application to spherical

mitochondria (whether scattering isotropically or anisotropically). As such, we need only

consider M(θ), to allow the simulation of anisotropic scatter from larger, spherical mito-

chondria. In this work, M(θ) was a look-up table of real values from 0.0 to 1.0, indexed by

the angle θ . Continuous point-spread functions may also be used. Polarisation effects could

also serve to break the symmetry to the extent of requiring a M(θ ,φ) for the simulation of

scatter from spherical mitochondria. However, since the present work bases its analysis

upon the point-spread functions provided by Gourley et al. and these do not contain a φ -

dependence, we do not consider such effects here, although the algorithm could easily do

so if the more detailed point-spread functions were available (and needed).

3.3.5 Isotropic Scattering from Mitochondria in the Mie Regime

As discussed by Gourley et al.23, many mammalian mitochondria have diameters in the

range of 400–800nm. To fall within the realm of true Rayleigh scattering, a structure must

be significantly smaller than λ (in this case less than 100nm). Thus, we expect the majority

of human mitochondria to scatter in the Mie regime (i.e. anisotropically). However, re-

cent work by Gourley et al. has shown that mitochondria-like biospheres do in fact exhibit

isotropic behaviour up to approximately 500nm in diameter23.
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In their Fig. 1, Gourley et al.23 present their results using FDTD code to assess the degree

of anisotropy that will be produced by spherical mitochondria 100nm, 500nm and 1000nm

in diameter. Although we extract quantitative data from their graphs, the uncertainties in

doing so are large enough that the results should be interpreted qualitatively. From Gourley

et al.’s graphs, we see no discernible anisotropy for the 100nm diameter scatterers. For

a 500nm mitochondrion, we estimate from that graph that the anisotropic variation seen

across a 30-degree-wide cone will be approximately 30%, whereas for the 1000nm diameter

mitochondria we estimate a 300% variation over the same range. This small variation for

500nm mitochondria indicates that the scattering behaviour of the mitochondria in human

cells is likely to be well modeled by a simulation based on isotropic scatter.

3.3.6 Test Images

Using mtPatterns, we created an extensive set of test images and compared them (via

qualitative observations and quantitative methods such as comparing characteristic blob

spacing) to experimental images generated by a miniaturized cytometry device. These re-

sults and comparisons are presented in Sec. 3.4. In addition to a bank of test images with

cell size and nuclear size values Ro = 0.1µm–20.0µm and Ri = 0.1µm–20.0µm (with the

number of simulated mitochondrial scatters, #mt, varying from 5–1000), additional tests

were performed with the specific cell parameters for the Raji human cell line given by Su et

al. (Ro ≈ 8.0µm, Ri ≈ 4.0µm, #mt ≈ 83–6778). This allowed us to explore the behaviour

of our algorithm over a wide range of parameters, and also compare simulations to actual

experimental cytometry results for Raji cells. Each test was performed at least three times

with different random mitochondrial placements (with similar results obtained for each).

The following parameters were used in all mtPatterns simulations: an incident light wave-

length of λ = 632nm, a CCD receptive field area of U ×V = 3mm×3mm, with the scatter

centroid centered d = 5mm below the CCD plane. These dimensions are much as for the

experimental apparatus used by Su et al.8, and can be seen to fulfill the XRD constraints

presented in the previous section. Shown in Fig. 3.2, this setup gives a viewable side-scatter

region between 77.3o and 106.7o in both the θ and φ axes (a solid angle corresponding to

a cone of ' 30o).

Two point-spread functions M(θ) were used: pure isotropic radiation (characteristic of

mitochondria and other biospheres smaller than λ 23) and a theoretical anisotropic point-

spread function for a single spherical scatterer (characteristic of larger mitochondria in the

Mie scattering regime, as described by the inset of Fig. 1 from Gourley et al.23, or from the

polar plots of Fig. 2 of Gourley et al.9). Although the latter were easier to interpret, these
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Figure 3.3: Two angular point-spread functions M(θ) for individual scatterers: pure isotropic radi-
ation (left, characteristic of 100nm diameter mitochondria (much smaller than λ )), and anisotropic
scatter (right, characteristic of 500–1000nm diameter mitochondria)

are difficult to extract data from and the behaviours should be taken as qualitatively correct

rather than exact. The anisotropic case is from scattering for spherical scatterers in the Mie

regime (size≥ λ , or∼500–1000nm in diameter), while the isotropic case is for scatterers in

the Rayleigh or near-Rayleigh regime (size < λ , and up to ∼500nm23). For the anisotropic

cases, M(θ) was used. These point-spread functions are shown in Fig. 3.3.

3.4 Results and Discussion

The following sections present both a qualitative and a quantitative analysis of the results

of applying the mtPatterns algorithm, and show that a scattering simulation based only

on the distribution of small mitochondria can effectively simulate wide-angle experimental

images (recalling that mitochondria are the dominant sources of wide-angle scattering23).

In XRD, analysis is often done by calculating the Fourier transform of potential crystal

structures and comparing them to experimental scattering patterns. We show that a similar

process is possible for scattering from mitochondria in a single cell; the following results

show the possibility for predictive assessment of cell structure, in this case mitochondrial

number and distribution, based on comparison with experimental scatter patterns.

3.4.1 Comparison of mtPatterns and Experimental Cytometry Images

To evaluate the mtPatterns algorithm, mtPatterns results were compared to experi-

mental wide-angle cytometry patterns captured using the method described by Su et al.8

from the laser scattering of human Raji cells. Experimental Raji data was generated by

one of the first published demonstrations of a microchip-based wide-angle cytometer8. All

experimental data was scaled and cropped to the same side-scatter angular range as the
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Raji Cell 1 (A) Raji Cell 2 (B) mtPatterns (C) FDTD8 (D)

Figure 3.4: A comparison of feature spacing between the experimental cytometry data for two Raji
cells (A and B, Ro=̃8.0µm, Ri=̃4.0µm, each with an estimated hundreds of mt), the mtPatterns
algorithm (C, Ro = 8.0µm, Ri = 4.0µm, #mt = 300), and a re-processed version of the FDTD results
of Su et al.’s Fig. 5(d)8 (D, Ro = 8.0µm, Ri = 4.0µm, #mt = 300) over a 30o range in φ and θ ,
located in the side-scatter region. The point / line overlays in the bottom row indicate blob center
points / spacing gaps used in blob spacing calculations. The horizontal axis corresponds to changes
in θ , vertical to changes in φ .

mtPatterns data (from 77.3o to 106.7o in θ and φ , Sec. 3.3.6, selected to best show the

side-scatter effects of the scatter distribution) and normalized to the same intensity and

contrast levels. We also performed comparisons with a reprocessed version of the FDTD

data published by Su et al., describing a 2mm by 2mm CCD region with an angular range

between∼ 60o to 90o in θ and∼ 77o to 107o in φ (their Fig. 5(d),8, generated from a mito-

chondrial distribution with many of the same parameters as the mtPatterns test, but with

a different random seed for organelle placement). FDTD data was cropped and normalized

as described above. Estimated cell parameters from the experimental and FDTD data (as

per Su et al.8) were used as input to mtPatterns to generate the simulations. This process

allowed for direct visual and numerical comparison.

As we did not have access to the exact random placement of organelles used in these FDTD

simulation studies, and precise organelle placement data cannot be obtained for experimen-

tal samples, a pixel-by-pixel comparison of scattering images was not feasible. Instead, the

similarity between images may be visually judged by examining the shape and image struc-

ture of scattering images obtained from mtPatterns and from real experimental cytome-

ters. Fig. 3.4, top, shows the experimental scattering signatures for two human Raji cells,

taken using a miniaturized cytometer, with estimated cellular parameters of Ro ≈ 8.0µm,
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Ri ≈ 4.0µm, and about 100 to 700 mt, as per the experiments of Su et al.8. Qualitatively,

these patterns are structurally similar—in terms of blob spacing and size (angular size, Fig.

3.4, top)—to the pattern generated by mtPatterns when initialized with the average pa-

rameters of a Raji cell estimated by Su et al. (Fig. 3.4(c), top; Ro = 8.0µm, Ri = 4.0µm,

#mt = 300). The mtPatterns blob size and spacing also agreed with the re-processed

version of Su et al.’s8 FDTD pattern for a random distribution of 300mt (Ro = 8.0µm,

Ri = 4.0µm, no nuclear or cellular scattering, Fig. 3.4(d), top), though FDTD showed on

average a slightly lower characteristic spacing and blob size than both experimental samples

and mtPatterns.

Given the lack of organelle placement data for experimental samples, and the inherent com-

plexity of wide-angle patterns, it is difficult to objectively compare scattering images in

quantitative terms30. However, since the spacing of the scattering distribution relates to

scattering pattern blob spacing (Eqs. (3.2), (3.3)), one effective way to numerically com-

pare scattering images is to evaluate their characteristic angular spacing, defined as the av-

erage angular distance (in degrees) between neighboring scattering intensity maxima. This

metric also can help guide the process of inferring experimental scattering structure from

simulated images.

For the numerical comparisons presented here, angular spacing (in image space) between

neighbouring maximum intensity regions (i.e. blob peaks) was measured as shown by the

mesh in Fig. 3.4 and normalized to the angular range of each image to give a set of angular

blob spacing values for each image. These spacing values were then averaged to compute

each image’s characteristic spacing value and its variability.

Using this metric, we compared the experimental images of Fig. 3.4 to the mtPatterns

simulation generated using the corresponding parameters. This comparison can be seen

qualitatively in the bottom panels of Fig. 3.4, and quantitatively as follows. As described

above, mtPatterns was initialized with the estimated parameters of a Raji cell (Ro =
8.0µm, Ri = 4.0µm, #mt = 300, as given by Su et al.8). With these parameters, we ob-

served an average angular spacing (and standard deviation) between the maxima of intensity

regions (i.e. blob centers) of 5.51±1.51o (73 samples; Fig. 3.4(c)). This compared well to

the spacing values from the experimental cytometry images: 5.12±1.47o (85 samples; Raji

Cell 1—Fig. 3.4(a)) and 6.04± 1.46o (62 samples; Raji Cell 2—Fig. 3.4(b)). It also was

in agreement with the re-processed FDTD results of Su et al.: 4.98± 1.63o (139 samples;

Fig. 3.4(d)).

As such, the mtPatterns characteristic spacing value was observed to be within the range

of values from the two experimental cells and the FDTD simulation: spacing FDTD < Raji

Cell 1 < mtPatterns < Raji Cell 2. The slight variations in average characteristic spacing
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between the two experimental samples are likely due to changes in internal cell structure

(such as mitochondrial number and placement) and are well within one standard deviation.

The smaller spacing in FDTD may also be due to modeling differences and the θ − 17o

shift in the observed angular range8.

Lastly, we found that the experimental results (Fig. 3.4(a,b)) appeared to have more in-

tensity toward the centre of the image. This background intensity could indicate the con-

tributions of larger cell components and microstructures (e.g. the nucleus), light from the

experimental setup, and/or the washed-out superposition of any non-uniform mitochondrial

scattering (discussed below). As this background consists primarily of broad low-frequency

features, it could potentially be separated from, and analysed separately from, the blob-like

features. Feature extraction methods (e.g. the Cythe algorithm30, presented in Ch. 6) may

be used to facilitate this.

The combination of the ability to calculate blob spacing and the ability to rapidly generate

realistic simulated scattering plots with the mtPatterns algorithm facilitates the prediction

of mitochondrial spacing directly from an observed scattering image. Once it is possible

to quickly simulate realistic mitochondrial scattering patterns, simple visual and numerical

comparisons could be used to perform real-time classification of cytometrically interrogated

cells. As shown by XRD, great leaps in structural assessment can be made by comparing

experimental and simulated scattering patterns.

3.4.2 Extension to Scattering from Larger Spherical Mitochondria

As discussed and shown above, at least for smaller mitochondria it appears that the scatter

can be well-approximated by a model of isotropic scatter. However, the degree of scatter

anisotropy becomes far more pronounced for larger mitochondria. We will now show a

theoretical basis for extending our simulation approach to deal with arbitrarily large de-

grees of anisotropy from spherical mitochondria (i.e. much larger than 500nm, when their

dimensions exceed the wavelength of the incident light).

Up to now we have dealt with patterns with scaling M(θ ) due to φ -invariant scatter from

spherical mitochondria. More generally, the scatter of a mitochondrion specified by the

vector S in the reciprocal domain can be written as M(S). Such a scattering pattern from an

isolated (larger) mitochondrion, M(S), may be calculated using numerical methods such as

FDTD (as done by23), R-G, or captured in an experimental situation. This pattern could be

the result of energy scattering from a complex sub-structure in the spatial domain, which

we will denote m(r).

47
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A

B
Ro = 2µm
Ri = 1µm
#mt = 1

Ro = 2µm
Ri = 1µm
#mt = 10

Ro = 8µm
Ri = 1µm
#mt = 10

Ro = 8µm
Ri = 1µm
#mt = 100

Ro = 20µm
Ri = 5µm
#mt = 50

Figure 3.5: A series of sample images generated using the mtPatterns algorithm. Images are
shown for both uniform scattering (row A) and scattering using a complex point-spread function
(row B, as per Fig. 3.3, right). Increased scatterer spacing can be seen to lead to a decrease in
scattering pattern blob spacing (e.g. 2A, 3A). In terms of scattering blob placement and spacing,
there is little difference between uniform (A) and non-uniform (B) mitochondrial scattering. To
allow visual comparison, all images have been normalized with respect to the same minimum and
maximum intensity values (i.e. 0–255), and cover the same solid angle (77.3o–106.7o in θ and φ ).
Forward scatter is toward the right.

From XRD, we know that the scattering pattern of an array of an identical and aligned sub-

structures can be related to the scatter pattern of the sub-structure alone, m(r), and that of

the array alone, ρ(r), through the convolution theorem. In the present case m(r) is the sub-

structure within a single mitochondrion, while in XRD it is the arrangement of electrons in a

single scattering body. This convolution takes the form: ρ(r)∗m(r). The scattering pattern

Atrue(S) of the distribution of mitochondria with complex sub-structure will therefore be

the Fourier transform of this convolution, Eq. (3.5), or, equivalently, the product of the

Fourier transform of the array multiplied by the Fourier transform of the sub-structure, Eq.

(3.6). (Although there are methods in XRD analysis for application to disordered crystals

with misaligned substructures32, the XRD theory presented in this section is not able to

account for misalignments (i.e. φo and θo) in the sub-structure—this type of analysis will

be discussed below.)

Atrue(S) = F{ρ(r)∗m(r)} (3.5)
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Thus, if A(S) is the transform of the distribution of mitochondria, ρ(r) (assumed to be

isotropic scatterers), and M(S) is the transform of isotropic-scattering sub-structure, m(r),
within the mitochondria that gives rise to the observed anisotropic behaviour, then the true

scatter pattern, Atrue(S) is:

Atrue(S) = A(S)M(S) (3.6)

In the context of XRD, this is discussed in more detail in standard references (such as32,37).

This approach may be applied to mitochondrial light scattering by noting that an array of

mitochondrial positions ρ(r) may therefore be convolved with some internal sub-structure

m(r) to account for the anisotropic scatter from the internal sub-structure. However, it is

not important to know or guess at m(r); we need only obtain M(S)—the scatter pattern of

the individual mitochondrion—from FDTD, R-G, or experiments. Since we know the final

scattering pattern will be the multiplication of two Fourier transforms, Eq. (3.6), we can

simply use Eq. (3.2) or (3.3) to compute the scattering pattern A(S) for a given distribution

of isotropically scattering mitochondria ρ(r) and multiply the result by M(S), to obtain the

real mitochondrial scattering pattern, Atrue(S). This shows that the analysis of anisotropic

scatter from larger spherical mitochondria can be done in a way that remains consistent with

XRD theory (and hence toolsets).

As shown in Fig. 3.5, there was little difference between mtPatterns scattering images

created using isotropic scatterers (Fig. 3.5(a)) and scatterers with the more complex point-

spread functions characteristic of larger mitochondria (Fig. 3.5(b)). Our experiments showed

little structural variation (in terms of scattering blob size, spacing, and intensity) between

large-angle scattering patterns generated using a uniform point-spread function (Fig. 3.3,

left) and those generated by radiators using the point-spread function described by Gour-

ley et al. (Fig. 3.3, right). This was expected, as the theoretical point-spread function of a

non-isotropic mitochondrion is almost identical to an isotropic point-spread function when

observed over a solid angle equivalent to a cone approximately 30o across, centered on the

side-scatter region. As such, the use of isotropic scattering points to simulate mitochondria

proved experimentally to be a valid first-order approximation in the large-angle scattering

domain. In other words, it appears that small variations in scattering intensity with angle

do not affect the overall pattern—they are readily ‘washed out’. However, if the degree of

anisotropy from a spherical scatterer were large enough that we needed to account for it,

the above approach would suffice (through the use of our algorithm or by means of other

XRD-like methods).
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3.4.3 Extension to Scattering from Non-Spherical Mitochondria

In the above, anisotropic scatter was considered to originate from larger spherical mitochon-

dria. Another source of anisotropy is from non-spherical mitochondria. Although much of

the work in the literature has considered the mitochondrion to be an ellipsoid or a sphere, the

structure of the mitochondrion is not yet firmly established. Assuming that the mitochon-

dria are not physically correlated in part of a larger structure, we would expect orientations

that are random. As such, we would expect less of an overall effect than seen in the case of

the larger spherical mitochondria where the anisotropy was a function of θ (and hence cor-

related). Gourley et al.23 have made a similar suggestion. On the other hand, recent reports

suggest that the mitochondria do form an interconnected network, depending on the needs,

type and state of the cell38,39. A further exploration of this is underway, and will require

extensive simulation and an examination of real cells in a variety of states. Much as above,

if the degree of anisotropy from a non-spherical scatterer were large enough (or correlated

enough) that we needed to account for it, our algorithm would be able to do so. Since doing

so would introduce a large number of new variables (φo and θo for each mitochondrion), it

would seem unwise to attempt to do this until the need has clearly been demonstrated.

3.4.4 Observations on the Effect of Scatter Distribution and Interaction

Fig. 3.5 also shows that an increase in the number of scatterers lead to increased image

complexity (i.e. smaller blobs and smaller characteristic spacing). In addition, an increased

scatterer distribution radius Ro also led to increased image complexity. A tightly arranged

mitochondrial distribution (e.g. smaller mitochondrial volume, such as Fig. 3.5(a2)) resulted

in larger homogeneous intensity regions with greater characteristic spacing, while wider

distributions (such as Fig. 3.5(a5)) generated a number of small, tightly spaced intensity

regions.

This behaviour is expected from Fourier theory and X-ray diffraction literature, as described

above. As in Fourier theory, the spacing between, and size of, intensity regions on the simu-

lated CCD region were inversely proportional to the spacing of the original organelle distri-

bution. The more dense the scattering distribution, the more distance between blobs in the

scattering plot (Fig. 3.5). These trends will be useful in future feature-based classification

systems, as image feature complexity can help deduce initial cell structure30, whether by

direct comparison of features or phase reconstruction techniques.

Lastly, when the distribution of scattering points was tightly packed within a volume much

smaller than λ , we found that the resulting scattering pattern closely matched that of a
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single scatterer. Under these conditions, scattering contributions from individual scatterers

washed out to form a single bright intensity region. We found this to be true for any number

of scatterers. However, the un-normalized intensity of the region increased in proportion

to the number of scatters (#mt). This result is expected from scattering theory, and has

been experimentally corroborated by Gourley et al.23; as Ro � λ , scattered phases will

align and all scattering contributions will be uniformly constructive regardless of scatterer

number. This is also analogous to the scattering for a random array of apertures, shown in

Fig. 10.33 of Hecht31. As such, the un-normalized average intensity of a signature might

prove to be a useful predictor of the raw number of mitochondria within a experimental

sample; this would allow the classification of both the mitochondrial spacing (through blob

spacing, described above) and number (through un-normalized blob intensity) of scattering

mitochondria, all from a single scattering plot.

3.5 Conclusions

In the limit of small mitochondria, we show that large-angle light scattering of mitochon-

dria may be treated using an adaptation of classical X-ray diffraction theory, giving rise to

a computationally efficient solution to the scattering simulation problem. In addition, we

show that this approach may be expanded to the general case of larger mitochondria which

may or may not scatter in an isotropic fashion. This result facilitates the rapid simulation of

realistic mitochondrial scattering patterns—without the need for computationally challeng-

ing or restrictive routines—and allows the determination of some aspects of cell structure

directly from experimental scattering patterns. Large-angle mitochondrial scattering sig-

natures can be calculated in seconds, allowing the rapid creation of large predictive image

databases and facilitating great advances in real-time patient care, cell structure prediction,

and cell morphology research. In the present work, the computation time of the average

mtPatterns simulation was between a fraction of a second and a minute on a standard

personal laptop computer running the Python interpreter.

Through rapid simulation, the mtPatterns algorithm allows the prediction mitochondrial

spacing (via scattering pattern blob spacing) and number (via scattering pattern intensity),

directly from an observed scattering image. In addition, given the dramatically different

scattering contributions of cellular micro– and nano-structures, we show that it is possible to

isolate (using, for example, feature extraction methods30) just the high-frequency scattering

contributions of nanostructures by removing—or separately analyzing for useful diagnostic

information—the broad band-like scattering of larger microstructures.
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This analogy to XRD and ability to inexpensively generate plots that contain the key struc-

turally relevant features of real scattering signatures has not previously been demonstrated

in the literature, and makes mtPatterns an effective tool for future cytometry research.

Given that defects associated with mitochondria are implicated not only in carcinogenesis,

but also with a number of neurodegenerative disorders38, the use of this cytometric tool has

the potential to improve our understanding and detection of these diseases.

The mtPatterns simulation algorithm has been validated against experimental data and

Fourier theory. Given its similarity to experimental patterns, and its ability to rapidly gen-

erate scattering signatures, we will use it as the primary source of data for the remainder of

this dissertation—it is applied to generate the image data used in the following chapters.
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Chapter 4

Theoretical Foundations for Robust
Wide-Angle Scattering Pattern
Analysis

4.1 Introduction

Studies have shown that important structural information is contained within measurements

of angular light scattering intensity from a single cell. This information includes the size,

shape, and distribution of cellular micro- and nano-structures1–4. Optical simulation is

an important tool for understanding these scattering relationships, and several technqiues

are available to simulate the scattering of light through single cells—e.g. Mie theory1,5,

Finite Difference Time Domain (FDTD) simulation1,3,6, and Rayleigh-Gans theory5. Each

method is governed by different computational and physical constraints3.

In the previous chapter, we presented a computationally inexpensive new simulation method,

the mtPatterns algorithm7, to generate realistic two-dimensional (2D) scattering signa-

tures for organelle populations within a single cell. We found that the patterns generated

by this method were in agreement with published experimental and simulated (FDTD) re-

sults. Validations were performed using standard image comparison metrics—numerical

measures for the size, spacing, and shape of intensity regions within images4,7.

We now use this simulation method to examine the effect of phase shifts and optical changes

on the scattering patterns of organelle populations. In particular, we compare two instances

of the mtPatterns algorithm: one with the correct representation of the distance do
n from

a scatterer to the light source (“corrected”, Eq. 4.1), and one where all organelles start with

exactly the same phase value (“uncorrected”, Eq. 4.2).

1A version of this chapter has been submitted for publication. Pilarski and Backhouse. 2009. Optics Express.
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A(s′) =
N

∑
n=1
{cos[2π · (|s′− rn|+do

n)]− isin[2π · (|s′− rn|+do
n)]} (4.1)

A(s′) =
N

∑
n=1
{cos[2π · (|s′− rn|+0)]− isin[2π · (|s′− rn|+0)]} (4.2)

Comparison of the uncorrected and corrected forms of the mtPatterns algorithm presented

an interesting result: while a direct pixel-by-pixel comparison of images showed differences

between corrected and uncorrected patterns, the effect of the non-uniform phase shift was

largely invisible to our visual validation methods, and also to a number of standard image

processing metrics used for biomedical data analysis and comparison4,8. Texture-based

validation and processing methods—e.g. methods that characterize intensity region size,

spacing, orientation, and shape—were sensitive to medically relevant changes in intracellu-

lar structure, but robust to random organelle shifts and noise (such as the uncorrected phase

term).

In this chapter, we present a discussion of the underlying optical constraints that govern the

robust interpretation of 2D cellular scattering patterns, and examine how these constraints

affect the diagnostic potential of wide-angle cytometry systems. The result is an important

observation about the effects of organelle distribution shape and size on key properties of

cellular scattering patterns.

4.2 Background

Robust scattering image characterization has important ramifications for the fields of wide-

angle scattering pattern analysis and cytometry, and has clinical relevance4. For example,

methods to consistently identify the distribution of mitochondria (metabolically related or-

ganelles) within a cell could help predict a number of disorders, including tumor develop-

ment and the chemotherapy response of breast and lung cancer patients9–11.

Unfortunately, diagnostic methods that base their predictions on angular light-scattering

data are susceptible to small variations in cellular geometry. Similar scattering bodies may

generate different scattering signatures due to slight rotations, shifts in their optical prop-

erties, and/or changes to the exact placement of their internal components5,6. The exact

intensity at any given point in two scattering signatures (from nearly identical scatterers)

can be significantly different. As such, many diagnostic methods that examine direct com-

parisons between images are not robust to normal levels of experimental variation, and
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finding suitable analysis techniques with both predictive power and suitable invariance is a

challenging problem6.

This image comparison problem is not unique to light scattering—chronic variability be-

tween two instances of the same, or a similar, biological model (e.g. two mammograms

captured at different times or angles) is one of the reasons shape and texture based image

analysis metrics are employed in many biomedical analysis systems, as opposed to direct

pixel-by-pixel image comparison8. While direct image comparisons are often a poor ba-

sis for meaningful predictions and classifications, other image metrics have been used to

successfully relate and compare samples even in the presence of experimental noise and/or

using data from different patients8. This fact is especially significant for 2D scattering pat-

tern analysis, as cellular geometry, and thus scattering, is unlikely to be constant between

different cells. The interpretation and comparison of scattering patterns is primarily a ques-

tion of image analysis and pattern recognition, and therefore hinges on standard tools and

metrics developed in these fields.

4.3 Comparison of Corrected and Uncorrected Patterns

To characterize the difference between corrected and uncorrected simulation results, we

note that the modified path difference in the uncorrected formulation is equivalent to in-

troducing an additional phase shift τ(rn) that is dependent on the exact position of each

scatterer. In terms of the Fourier transform, scattering can be represented as:

F(S) = F{ρ(rn)exp[2πiS · τ(rn)]} (4.3)

where ρ(rn) defines the scatterer placement and τ(rn) is a phase shift from (−π,π] that is

a function of the distance between a scattering point rn and the light source or reference

plane. For all but the simplest cases, it is extremely difficult (or impossible) to find an an-

alytical solution to the Fourier transform of non-uniform phase shifts12. However, more

general relationships have been identified. As shown by McClain and Gregory, a phase-

only shift to points in the scatterer distribution relates to a corresponding positional shift to

intensity peaks in the Fourier (scattering) plane12. An example of this can be seen exper-

imentally in Fig. 4.1. While the location of intensity peaks in the image changes between

the phase-shifted and non-phase-shifted populations, peak breadth and spacing appear to

remain relatively static.

With this information as a background, we performed a detailed comparison of scattering

images generated using both the corrected and uncorrected forms of the mtPatterns algo-
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A B C D

UNCORRECTED CORRECTED UNCORRECTED CORRECTED

Figure 4.1: LEFT: The effect of a phase perturbation on a population’s scattering pattern, using
a very wide distribution aperture (minimal shape effects): scattering using uncorrected phase val-
ues (A), and scattering using corrected phase values (B) for 1000 scatterers, placed randomly in a
1500µm radius sphere, using the simulation conditions described in Pilarski et al.4. Peak breadth
can be seen to remain small, and does not change noticeably due to phase perturbation. RIGHT:
Comparison of the wide-angle scattering patterns for a mitochondrial distribution simulated by the
mtPatterns algorithm, using the uncorrected equation (C) and corrected equation (D) for 300 scat-
terers, placed randomly in a diffuse cellular distribution as described by Pilarski et al.4.

rithm. As noted in Sec. 4.2, the comparison of scattering images is primarily a pattern anal-

ysis problem, best treated with standard tools for differentiating and classifying biomedical

images. As such, we compared corrected and uncorrected mtPatterns scattering images in

terms of twenty-one representative image descriptors—statistical metrics, Haralick texture

measures, and Law texture energy metrics4,8. As described by Rangayyan, these descrip-

tors quantify a wide range of statistical, local, and regional image characteristics8. Together

they provide a unique “fingerprint” for each image, characterizing intensity peak breadth,

shape, arrangement, and size, as well as general properties like image contrast, entropy, and

homogeneity.

Comparing the corrected and uncorrected mtPatterns images in Fig. 4.1 (C and D), we

found seventeen of the twenty-one image descriptor values were less than one standard de-

viation apart (i.e. no statistical difference between images). Experiments were then done on

groups of fifteen scattering images from three different organelle distributions (perinuclear,

diffuse, and peripheral, as in Pilarski et al.4), using both Eqs. 4.1 and 4.2. No statistical

difference was found between corrected and uncorrected image groups for the majority of

the twenty-one image metrics. An example of this is shown in Fig. 4.2 for two of the image

metrics used in this study; these particular features represent the levels of edge and spot

texture in an image. In summary, we found that the exact position of intensity peaks within

a scattering pattern changed as a result of an arbitrary phase shift or organelle population

perturbation—e.g. the random repositioning of organelles or use of the uncorrected Eq.

4.2—but the average breadth, spacing, and shape of intensity peaks did not. This is shown

in qualitatively in Fig. 4.1, and numerically in Fig. 4.2.
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A B

Figure 4.2: Comparison of scattering pattern databases in terms of standard image descriptors rep-
resenting the edge (A) and spot (B) content in scattering images. Tests were performed for three
different distribution types, with fifteen samples per distribution, per trial.

4.4 Discussion of Robust Behaviour

While surprising, the results in Fig. 4.1 and Fig. 4.2 agree with expectations from X-ray

diffraction theory and Fourier optics. As described by Kasai and Kakudo, when the size of

a scattering distribution is relatively small with respect to the spacing between scatterers,

the breadth and shape of intensity peaks in the scattering plane is dominated by the size

and shape of the distribution (its shape factor)13. Should the spacing between scatterers

be much smaller than the size of the distribution (for instance, the case of a very large

or infinitely wide crystal), peak breadth is instead determined by the relationship between

scatterers13. This fact is used in crystallography to help determine the size and shape of

crystals, paracrystals, and amorphous scattering bodies13. A detailed treatment is provided

in Kasai and Kakudo, Ch. 1313.

For the case of scattering from organelle populations similar to the mitochondria in a human

cell, we have the former case: the spacing between organelles is only one to two orders of

magnitude less than the width of the cell itself. As such, we expect the breadth and shape

of intensity peaks in the scattering pattern to be determined by the size of the distribution,

as opposed to the spacing and arrangement of scatterers (i.e. be “diffraction limited” by

the shape and size of the aperture function or shape factor). As phase perturbations in

the scatterer domain lead to positional shifts in the Fourier domain (as per McClain and

Gregory12), we expect their impact on peak size and shape to be negligible compared to

the broadening effect of the shape factor. Not surprisingly then, image analysis techniques

based on texture will be largely unaffected by these changes.
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These observations, paired with the results presented in Sec. 4.3 (in particular Fig. 4.2), also

suggest that changes to the number/concentration of scatterers will have minimal impact on

peak breadth and shape. The shift in scatterer spacing due to realistic concentration changes

should not be large enough to overcome the broadening due to distribution shape. This is

consistent with recently published experimental results, where organelle concentration was

found to be poorly correlated to scattering peak size and shape4. It also explains why the

non-uniform phase shift in the uncorrected Eq. 4.2 does not have a noticeable impact on

validation metrics or texture-based processing routines. These measures are based on the

size and spacing of intensity regions—things that, for realistically constrained examples of

the cellular scattering case, appear to be determined by the size and shape of the scattering

distribution and not the exact placement or optical alignment of scatterers.

4.5 Conclusions

As demonstrated in this chapter, the breadth and shape of intensity peaks in wide-angle

scattering patterns is dominated by a scattering distribution’s shape factor (i.e. 3D distri-

bution shape and size), as opposed to any broadening due to phase variation or scatterer

placement.

These observations are important for cellular scattering pattern analysis. It appears that—

at least in terms of scattering peak geometry—the shape factor of a scattering distribution

will overwhelm changes due to organelle placement and concentration. As such, metrics

based on image texture, specifically the shape and size of intensity peaks, seem resilient

to randomness and variability that challenged previous methods. At the same time, they

remain sensitive to physical changes of medical interest—e.g. the distribution of organelles

like the mitochondria.

This points to a robust set of tools for analyzing and characterizing organelle distributions

based on wide-angle cellular scattering patterns. However, it also indicates that it may be

difficult or impossible to determine exact scatterer position and concentration from a wide-

angle scattering signature using only the shape, size, and spacing of intensity peaks. Future

work will describe methods to determine both distribution shape and scatterer concentration

from a single scattering image.
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Chapter 5

Pattern Analysis Techniques for
Wide-Angle Light Scattering Images

5.1 Introduction

Image analysis and pattern recognition are key elements of biomedical analysis schemes1.

In a number of cases, the decomposition of an experimental image into a set of represen-

tative features and attributes allows biomedical data to be quickly analyzed, classified, and

used to supplement clinical diagnostic practices1,2. One relevant new domain for this kind

of analysis is the prediction of organelle arrangement within a cell from a sample of its

wide-angle light scattering pattern—a clinically important problem3,4. The development of

robust techniques to identify the shape and size of organelle distributions from light scat-

tering measurements would facilitate the rapid identification and treatment of diseases such

as cancer and neurodegenerative disorders.

A number of groups have demonstrated that pattern analysis methods can be used to identify

relationships between light scattering patterns and aspects of cellular structure. However,

the exact relationship between wide-angle patterns and cellular organelle distributions has

yet to be explored in detail, and prior to this work there were no techniques to consistently

relate 2D light scattering to organelle arrangement within a cell.

In this chapter, we demonstrate clear correlations between the arrangement (distribution) of

organelles within a cell and the composition of wide-angle scattering patterns, identifying

scattering trends that are independent of cellular rotation, organelle concentration, and the

inherent randomness of organelle position within a cell. In addition, we show qualitative

and quantitative descriptions of the identified scattering trends, and present an example of

their potential for use in automated cell classification.

1A version of this chapter has been submitted for publication. Pilarski et al. 2009. Journal of Biomedical
Optics. A version of this chapter has been published. Pilarski et al. 2009. Proc. of SPIE. 7187: 71870J–12.
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5.2 Background

Analysis of 2D wide-angle scattering patterns is a challenging problem. Patterns take the

form of complex intensity plots, and small changes to the organization, orientation, shape,

and optical properties of scatterers and scattering populations can significantly alter their

resulting patterns5,6. It is therefore difficult to find methods that can identify the scattering

contributions of medically relevant cellular properties (e.g. organelle distribution) while

remaining robust to experimental noise and sample to sample differences.

This is a common problem in many biomedical analysis problems, where images from

different samples—or even two images taken from the same sample population—can be

very different in terms of image composition, even after image alignment (i.e. registration)1.

Pixel-by-pixel comparison of images often fails to give an effective metric of the similarity

or difference between samples1. Given this, it is important to find features or attributes of an

image that are common to all examples of a class while staying robust to normal variations

between samples.

Like other biomedical problems, the solution lies in more advanced image analysis and pat-

tern recognition methods. In domains where direct image comparison often leads to poor

predictions and classifications, image attributes have been identified and successfully used

to provide a more robust numerical representation of image content1,7. Routines have been

developed to extract shape, texture, and statistics-based attributes from experimental im-

ages. Taken as a group, these attributes provide a unique signature or “fingerprint” for each

image1,7. Attributes and groups of attributes are then evaluated for medical significance,

usually through the use of additional attribute selection and classification routines1.

Within the set of possible image attributes, texture attributes have the advantage that they

are largely objective with respect to the determination of region boundaries and ground

truth values1; as such, they provide a viable platform for examining the composition of

complex light scattering images. Some examples of widely used texture metrics include

Law texture energy, Haralick texture measures, and statistical texture measures1,7. These

metrics provide a compact and unbiased representation of both global and local intensity

features in a sample image.

Each texture metric uses a different method to interpret image data. Statistical texture mea-

sures evaluate the distribution of an image’s intensity histogram in terms of standard statis-

tical features: variance, skewness, and kurtosis; they do not take into account any spatial

information1. By contrast, Haralick texture metrics (e.g. H1–H11) are based on local image

relationships stored in a relational table known as a grey-level correlation matrix (GLCM)1.
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This matrix is a measure of how likely a pixel of a given intensity level will be next to—at

a given distance and angle—a pixel of another intensity level (computed for all different

intensity levels). After forming a GLCM for each image, a number of Haralick measures

are computed to describe the level of homogeneity, correlation, variance, consistency, in-

formation content, and entropy in a scattering image.

Law texture measures give a more qualitative view of image texture. They are based on the

convolution of a filter kernel (usually 5×5) with the target image, and are computationally

less demanding than Haralick metrics. The summation of intensity (energy) in the filtered

image can be used to evaluate the relative strength of different feature types within an

image—i.e. a texture’s edge content (E5), spot content (S5), wave content (W5), and ripple

content (R5). A more detailed discussion of statistical, Haralick, and Law texture measures

and their meaning can be found in Rangayyan 20041.

Data processing of this type is usually followed by attribute selection2. Attribute selection

is the process of determining which of a number of attributes (in this case texture measures)

contain the most information about the class or label of a data point. There are a number of

different attribute selection techniques, each with their own areas of specialty and modes of

operation8. As such, it is common to use a suite of different attribute selection techniques

to allow for better identification of relevant features—attributes indicated by the majority

of selection techniques are likely to hold predictive information about the class of a sample.

Machine learning and classification methods can then be used on a subset of these selected

attributes to rapidly and accurately classify new experimental data1.

Like most problems where the link between classification label and data is not analytically

defined, this approach relies on a comprehensive database of labeled images from which

correlations and relationships can be identified1,2. Without a large repository of sample

data, attribute selection and classification may not accurately reflect relationships present

in experimental samples2. Unfortunately, a database of labeled scattering patterns was pre-

viously very difficult or impossible to acquire for the case of cellular light scattering, due

to the large computational cost of simulation (e.g. using Finite Difference Time Domain

methods5,9 (FDTD)), the lack of well-labeled experimental testing data, and restrictive sim-

ulation models9,10.

To alleviate this issue, we recently demonstrated a computationally inexpensive simula-

tion method—the mtPatterns algorithm—that is capable of rapidly simulating wide-angle

light scattering from organelles in a single cell10,11. This method builds on Fourier theory

and Rayleigh-Gans theory to approximate the scattering contributions from different 3D

organelle distributions. The mtPatterns scattering simulations have been shown to agree

well with both experimental scattering patterns and FDTD simulations10, providing labeled
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scattering data without the high computational cost of FDTD—each pattern can be gener-

ated in seconds to minutes on a desktop computer10. This makes it possible to create a large

and varied database of labeled wide-angle scattering images.

5.2.1 Clinical Relevance and Cell Morphology

Recent work has shown that the distribution and aggregation of organelles within a cell

can have great predictive value12,13. For this work we focus on one specific intracellu-

lar organelle: the mitochondrion. Not only are mitochondria responsible for the majority

of wide-angle light scattering14, making them a primary determinant of scattering pattern

composition10, but their form and function have been found to relate to the progression of

a number of ailments12–18. Specifically, mitochondria are critical to cellular energy pro-

duction. Mutations that affect mitochondria and related proteins have been identified in

disorders such as cancer14,15,17, cardiomyopathy17, diabetes15, common neurodegenera-

tive disorders like Parkinson and Alzheimer Diseases9,15, and can also affect a patient’s

response to treatments such as chemotherapy12,13.

Despite a debate surrounding the exact shape, size, and distribution of mitochondria within

human (and other mammalian) cells, it appears their morphology is highly cell-dependent14,19,

and they are commonly held to be able to alter their shape, size, aggregation, and location

within a cell based on external stimulus12,13,18–21. As an example, Robin and Wong have

calculated that the number of mitochondria in different mammalian cells can vary from

approximately 83–677 organelles, with human lung fibroblasts averaging 308±47 mito-

chondria22. Frey et al. and Modica-Napolitano et al. illustrate that mitochondrial length

along an axis commonly ranges from 0.1–2.0µm18,21, while mitochondrial size values for

different diseased cells (deficiencies in cytochrome oxidase) have been estimated at 0.75–

0.83µm (14,23, and even as high as 1.5–2.7µm for some breast cancer (MCF7) and cervical

carcinoma (Siha) cells24. The cellular area (i.e. cytoplasm) available for use by mitochon-

drial distributions also varies with cell type. In carcinomas of interest, average cell size

is approximately 15–16µm in diameter, with a nuclear diameter of 7.5–9.5µm24,25. For

example, Siha cells have an outer diameter of 15.5± 2.4µm and a nuclear diameter of

8.9± 1.5µm, while MCF7 cells have an outer diameter of 15.0± 2.1µm and a nuclear di-

ameter of 9.2± 1.3µm24. In previous simulation work, Su et al. used an outer diameter

of 16.0µm and a nuclear diameter of 8.0µm for Raji (Burkitt’s lymphoma) cells9, and this

holds with a study by Chignola et al.25.

Mitochondrial clustering within the cytoplasm can take many forms, including perinu-

clear (distributed around the nucleus), peripheral (distributed around the outside of the

cell), diffuse (evenly distributed within a cell), and aggregate (in tight clumps within a
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Figure 5.1: Schematic of four different organelle distributions: (A) a perinuclear distribution12,
where organelles are distributed close to the nuclear wall (ri = rnucleus) but still inside an outer
sphere of radius ro; (B) a diffuse distribution12 where organelles are randomly placed throughout
the entire volume between the cell wall and the nuclear wall; (C) a peripheral distribution12, where
organelles are placed in a spherical shell of inside radius ri and outer radius ro = rcellwall ; and (D) an
aggregate distribution12,14, where organelles are distributed in one or more tightly packed spherical
regions of radius rd (e.g. a highly organized collection of mitochondria14).

cell)12–14,19,26. A schematic representation of these distributions is shown in Fig. 5.1 (not to

scale). The exact geometry values for each distribution class varies with medical condition

and cell type, and are generally defined by human experts on a case by case basis. For this

study, distribution dimensions are based on a sampling of MitoTracker cell stains, organelle

distribution histograms, and cell imaging results published by Stojkovic et al.27, Sikder et

al.12, and Hallmann et al.26

For many disorders, there is a noticeable genetic or structural difference between the mito-

chondrial populations of healthy and damaged cells9,12,14,26. In particular, the distribution

and aggregation of mitochondria within a cell has been shown to relate to different disease-

related metabolic states, and can help predict a damaged cell’s response to treatment12. The

presence of perinuclear mitochondrial clustering in cultured cancer cells has been shown to

indicate a sensitivity to chemotherapy, while a peripheral distribution in the same culture

indicates potential chemotherapy resistance12,13. In a similar fashion, a differentiation be-

tween diffuse and perinuclear clusters can help distinguish between normal and transformed

cells12, and the detection of aggregates can help in cell classification12,14.

If it were possible to rapidly assess mitochondrial distribution, it could be used as a powerful

indicator of cellular heath. Unfortunately, there are few—if any—current techniques that

can non-invasively identify mitochondrial clustering trends in mixed cell populations12.

However, as shown in this work, wide-angle light scattering analysis could provide one

method to perform non-invasive, label-free distribution analysis when supplemented with

image analysis and pattern recognition tools.
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5.3 Methods

To evaluate the correlation between mitochondrial placement and scattering pattern com-

position, we utilized a rapid light-scattering simulation method—the mtPatterns algo-

rithm10—to generate wide-angle scattering patterns for the different diseases-related mito-

chondrial distributions described in the previous section. The resulting database of scat-

tering images was evaluated using a set of standard biomedical image analysis routines1,7.

From this evaluation, image characteristics with the greatest predictive value were identi-

fied using a bank of attribute selection methods2. The selected attributes were then ana-

lyzed for their relationship to organelle distribution, and used in six different classifiers to

demonstrate their predictive ability. Image generation and simulation setup, image analy-

sis methods, and attribute selection methods are described in detail below. Results and a

discussion of the data will be presented in the following section.

5.3.1 Simulation Setup

For the tests described in this study, we based simulation model parameters on known dis-

eased and healthy cell morphologies. As per the cellular size values in described in Sec.

5.2.1, all simulations used an average outer cell radius of 8µm, a nuclear radius of 4µm; mi-

tochondria were then distributed within the available cytoplasm (i.e. between the outer wall

and the nucleus, a volume of approximately 151µm3.) Using these parameters as a base, we

implemented the four mitochondrial distributions shown in Fig. 5.1—perinuclear, diffuse,

peripheral, and aggregate clustering. As noted above, distribution dimensions were based

on an analysis of published MitoTracker cell stains, organelle distribution histograms, and

cell imaging results.

To cover the wide range of examples presented in the biomedical literature12–14,26,27, each

test included two different perinuclear distributions (r = 4.0–4.8µm and r = 4.0–5.6µm),

two peripheral distributions (r = 6.4–8.0µm and r = 7.8–8.0µm), two diffuse distribu-

tions (r = 4.0–8.0µm and r = 5.0–7.0µm), and three aggregate distributions (rd = {1.0,

1.5,2.0}µm). While these tests encompass the range of radial distributions found in the

literature, future implementations could be easily adapted and refined to accommodate a

specific distribution range, non-radial model, or medical threshold.

We created examples of each distribution type at six concentration levels: when they con-

tained 83, 125, 250, 375, 500, and 677 mitochondria—the range expected for mammalian

cells22. The effective size of mitochondria—in terms of their achievable spacing within a

cell—was also varied for each test model, and results are presented for spherical organelles
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placed using effective diameters of dmt = 0.25µm, dmt = 0.75µm, and dmt = 1.0µm (as per

Sec. 5.2.1). For each combination of distribution type, effective organelle size, and concen-

tration level, we performed fifteen simulations, each with a different randomly generated

organelle arrangement within the specified distribution (i.e. fifteen different random seeds)

to simulate cell rotation and other variability inherent in real experimental systems. This

resulted in a total of 1455 different valid cell models for simulation and analysis (models

where all organelles could not be placed within a containing volume were not included).

Using these cell models as input, we applied the mtPatterns scattering simulation al-

gorithm10,11 to generate the final database of 1455 scattering images. The mtPatterns

algorithm is described in Pilarski et al.10,11, and initialized with an incident light wave-

length of λ = 632nm, a receptive field area of 3mm×3mm, and with the center of the cell

model placed d = 5mm below the center of the receptive plane. As indicated by Pilarski et

al., this setup gives a viewable side-scatter region between 77.3o and 106.7o in both the θ

and φ axes (e.g. a cone of ' 30o)10.

5.3.2 Image Analysis

For this work, we utilized three common approaches to image texture analysis, as described

by Rangayyan: statistical texture measures, Haralick texture measures, and Law texture

energy1. A full list of the resulting texture attributes is shown in Tab. 5.1. As described

above, these measures each focus on different aspects of an image’s composition in terms

of grey-level intensity, and together form a compact but descriptive image signature. Source

images were 100×100 pixels (px) in size. For GLCM computation, images were reduced

in size to 50×50px, with 64 luminosity levels. As per Rangayyan, we used a pixel distance

of one, and averaged over relationships at 0o,45o,90o, and 135o 1. For this work we also

implemented two additional Law measures, S5x2 and S5x4, that measured spot content at

two and four times the scale of the standard S5 filter. This was done by reducing the size

of the filter’s input image by a factor of two and four, respectively. All texture analysis

algorithms were implemented as described by Rangayyan1. After analysis, each vector of

features (statistical, Haralick, and Law—twenty-one attributes in total) was labeled with

the super-class of the organelle distribution used to generate the image—aggregate, perinu-

clear, diffuse, or peripheral. Once labeled in this way, data points could be used for attribute

selection and classification.

69



Table 5.1: List of texture analysis attributes generated during image processing; terms defined as in
Rangayyan1

Attribute
H1 homogeneity
H2 contrast
H3 correlation
H4 sum of squares
H5 local homogeneity
H6 sum avg.
H7 sum var.
H8 sum entropy
H9 entropy
H10 diff. var.
H11 diff. entropy

(a) Haralick Attributes

Attribute
VAR variance
SKEW skewness
KURT kurtosis
L5 luminosity
E5 edge content
S5 spot content
S5x2 spot content
S5x4 spot content
R5 ripple content
W5 wave content

(b) Statistical and Law Attributes

5.3.3 Attribute Selection

For the task of identifying texture attributes that relate to organelle distribution, we ap-

plied five of the attribute selection mechanisms implemented by Hall et al. in their 2003

benchmarking study8. This includes three subset identification methods—CFS Subset

Evaluation, Consistency, Wrapper Bayes Network—and two ranking methods—

ReliefF and Information Gain8. Following suggestions by Witten and Frank, we also

used the Chi-Squared and OneR rank-based selection routines as a comparisons2. As done

by Hall et al., all selection tasks were performed using the Weka environment (v3.6.0), a

widely used Java-based data mining toolkit2. All twenty-one texture attributes (described

in Tab. 5.1) were presented to each attribute selection routine using 10-fold cross-validation

(cv10)—the data was divided into ten folds, trained on nine of the folds and then tested

on the remaining, previously unseen, fold2,28. Attributes were then sorted by the number

of times they were selected in the top five or top three by selection routines (or, for subset

methods, included in > 50% or 100% of the validation folds, respectively).

5.3.4 Classification

To study the use of scattering image texture in the classification and prediction of organelle

distributions within single cells, combinations of the twenty-one texture attributes were

given as input to six different machine learning systems: a Random Decision Tree, a Support
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Vector Machine, a Multilayer Perceptron, a Bayes Network, a OneR rule system, and a Naive

Bayes learner. This was done to cover a wide range of algorithmic assumptions and methods

of handling the data. As in attribute selection, tests were performed using 10-fold cross-

validation (i.e. systems were tested for classification accuracy only on data they had never

seen in training). For these tests, we used the standard Weka2 implementations of each

classifier: trees.RandomTree, functions.SMO, functions.MultilayerPerceptron,

bayes.BayesNet, rules.OneR, and bayes.NaiveBayes. Classifiers were provided with

the entire set of 1455 valid data points; the class of each point was determined by its super-

class label: aggregate, perinuclear, diffuse, or peripheral.

5.3.5 Extensions to the mtPatterns Algorithm

For use in this work, the mtPatterns algorithm of Pilarski et al. was extended by adding a

collision checking routine to ensure the realistic placement of each scattering point given a

set of physical constraints—when placing organelles within the available distribution vol-

ume, a spherical boundary was used to check for collisions with the cell wall, nucleus,

and other organelles. In this way, the scattering points placed by the mtPatterns algo-

rithm could maintain realistic spatial relationships, and avoid positions that would be not

physically achievable for organelles with volumes similar to those listed in Sec. 5.2.1. All

simulations in this study used the updated form of the mtPatterns algorithm11.

5.4 Results and Discussion

The result of the attribute selection process is shown in Tab. 5.2. The first three columns

(subset methods) list the number of times out of ten each attribute was selected for a subset

by each method, while the final columns (ranking methods) indicate an attribute’s relative

rank as decided by each method.

As determined by rank ordering the results of the attribute selection tests—shown in Tab.

5.3—the five most predictive attributes were found to be Law features measuring the spot

content of the images at two different scales, S5 and S5x2, the image’s wave content W5,

edge content E5, and ripple content R5. These attributes were consistently selected and

positively ranked by almost all of the attribute selection routines. Given that wide-angle mi-

tochondrial scattering images are semi-ordered or disordered arrangements of bright spots,

known to vary in size and spacing with the distribution and number of organelles10,29, it

follows that the selected Law measures would contain predictive information about distri-

bution class.
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Table 5.2: Attribute selection results using 10-fold cross-validation; terms as defined in Sec. 5.3.3

Attribute CFS Consistency WBN ReliefF OneR ChiSquared InfoGain
Variance – 2 1 19 20 20 20

Skewness – 2 – 20 14 18 17
Kurtosis – 1 1 21 18 19 19

H1 9 – 2 13 12 12 13
H2 3 7 – 8 7 8 8
H3 – 5 – 16 15 15 16
H4 – 10 – 18 19 17 18
H5 – 3 1 15 13 11 12
H6 – – 1 17 17 16 15
H7 10 – – 11 6 10 9
H8 – 2 – 12 11 14 11
H9 – 9 – 10 16 13 14

H10 1 – 1 7 10 9 10
H11 6 – – 9 8 7 7

L5 1 – 7 14 21 21 21
E5 – 5 – 2 5 5 5
S5 10 10 10 3 1 1 1

S5x2 10 3 4 1 2 2 2
S5x4 10 9 1 4 9 6 6

W5 4 3 1 6 3 3 3
R5 9 1 1 5 4 4 4

CFS, Consistency, WBN (Wrapper BayesNet): number of tests in which an attribute was selected.
ReliefF, InfoGain, ChiSquared, OneR: rank order of attributes (1=best)
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Table 5.3: Attribute ranking results; terms as defined in Sec. 5.3.3

Attribute Votes (Top 5*) Votes (Top 3**) Rank
S5 7 7 1

S5x2 5 5 2
W5 3 3 3
E5 5 1 4
R5 5 0 5

S5x4 3 1 6
H4 1 1 7
H7 1 1 7
H1 1 0 8
H2 1 0 8
H3 1 0 8
H9 1 0 8

H11 1 0 8
L5 1 0 8

∗ ranked in the top five, or was selected in 50% or more of the tests (i.e. > 4)
∗∗ ranked in the top three, or was selected in 100% of the tests (i.e. 10)

In terms of the images themselves, we observed distinct qualitative and quantitative differ-

ences between the scattering patterns of each distribution type. In the aggregate case, the

scattering pattern consisted of a small number of broad and smoothly changing bright in-

tensity patches (Fig. 5.2, A). For the peripheral distribution, the number of intensity regions

was much larger, while the size of each region was only a fraction of the image’s width (Fig.

5.2, D). The other distributions were found to fall between these two extremes, in relation

to distribution size and type (Fig. 5.2, B,C).

Figure 5.3 clearly demonstrates this correlation between image complexity and distribution

size—as the outer radius of the distribution increased, there was a corresponding increase

in the complexity of the image. This increase was much more pronounced as the average

radius of the distribution increased—i.e. an increase in both the inner and outer radius values

(Fig. 5.3B), as opposed to just an increase in outer radius (Fig. 5.3A).

The increase in image complexity can be numerically quantified in terms of image texture

attributes. Figure 5.4 shows a plot of Law texture energy for distributions with increasing

outer radius, and outer/inner radius. Each data point represents the average of fifteen dif-

ferent samples. There is a clear upward progression of texture values to match the visual

increase in image complexity observed in Fig. 5.3. This suggests that the methods described

in this work can be applied even in application domains without fixed distribution types, and
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A B C D

Figure 5.2: Qualitative comparison of scattering patterns from the four different mitochondrial
distributions: (A) an aggregate distribution clustered within a 2µm-radius spherical region next
to the nucleus; (B) a perinuclear distribution arranged within 0.8µm of the nucleus; (C) a diffuse
distribution; and (D) a peripheral distribution arranged within 0.8µm of the outer cell wall. All four
examples used cell models with 250 organelles each of effective size dmt = 0.25µm; the distribution
boundary is the only variable altered between images.

are applicable to environments where organelle distribution may instead be defined by one

or more continuous variables.

As would be expected from Figs. 5.2 and 5.3, differences between organelle distributions—

aggregate, perinuclear, diffuse, and peripheral—can be quantified using scattering image

attributes. Fig. 5.5 shows histograms of Law E5, W5, S5, and S5x2 texture energy measures

for the 1455 sample images. As noted above, these Law measures represent an image’s

edge content (E5), wave content (W5), and spot content at two different scale sizes (S5

and S5x2). The purity—minimal class overlap—and coverage of each distribution’s curve

along the texture axis shows that these Law features were able to effectively separate the

different distribution types. Visual analysis verified that each attribute’s predictive ability—

as prescribed by the attribute selection routines, Tab. 5.3—matched with the degree of class

separation and coverage found in its histogram plot (e.g. compare the histograms shown in

Figs. 5.5A, 5.5D, and 5.6B with the attribute ranking in Tabs. 5.2 and 5.3).

This quantitative assessment holds with qualitative observations. The smooth and infre-

quent intensity peaks of an aggregate distribution’s scattering pattern (Fig. 5.2, A) are re-

flected in its low E5, S5, S5x2, and W5 Law texture energy. Conversely, the complex pattern

of a peripheral distribution (Fig. 5.2, D) was found to have much higher edge, wave, and

spot texture energy. Haralick attributes also indicated a greater level of local homogeneity

(H5) and lower contrast value (H2, Fig. 5.6) in aggregate samples, when compared to the

other distributions, which is consistent with a visual analysis of image complexity.

In terms of attribute selection, we observed an interesting difference between the selection

choices of the subset methods and the ranking methods—some attributes consistently cho-

sen for inclusion in predictive subsets were ranked poorly as individual predictors (e.g. H2
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A
ri = 4.0µm ri = 4.0µm ri = 4.0µm ri = 4.0µm ri = 4.0µm
ro = 4.8µm ro = 5.6µm ro = 6.4µm ro = 7.2µm ro = 8.0µm

B
ri = 4.0µm ri = 4.8µm ri = 5.6µm ri = 6.4µm ri = 7.2µm
ro = 4.8µm ro = 5.6µm ro = 6.4µm ro = 7.2µm ro = 8.0µm

Figure 5.3: The relationship between the radius of an organelle distribution and the complexity of
the resulting scatter pattern, for a fixed number of scatterers and two different distribution types: (A)
a distribution with increasing outer radius and (B) a distribution of increasing outer and inner radius.
Distributions contained 250 spherical organelles, each with an effective diameter of 0.25µm.

and S5x4). As shown in Fig. 5.7, analysis of the respective histograms showed these partic-

ular attributes to be excellent candidates to separate aggregate distributions, and to a lesser

degree perinuclear distributions, from all other distributions, but poor choices for finding

differences between the diffuse and peripheral distributions. It seems likely that subset se-

lections routines included them in subsets as complimentary features able to quickly detect

aggregate distributions.

Using the same methods and dataset, it was also possible to identify the different size sub-

classes for each distribution type. As shown through the arrangement of sub-class center

points in Fig. 5.7, there was a noticeable stratification within Law texture energy plots,

with each major distribution super-class being divided up incrementally into overlapping

sub-classes of increasing average radius (e.g. the average radius value for perinuclear sub-

class n56, ro = 5.6µm, is greater than that for n48, ro = 4.8µm). This is consistent with

observations on the relationship between average radius and image complexity (Fig. 5.3),

and gives further insight into the discrimination power of the different texture attributes.

A comparison of sub-class histograms with the ranking values in Tabs. 5.2 and 5.3 shows

that top-ranked (predictive) attributes appear to be able to not only separate the four major

class distributions, but also accurately stratify sub-classes with regard to their radius. Due

to the overlap between similar sub-classes (i.e. those with the same super-class, as shown
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Figure 5.4: Relationship between distribution radius and texture energy for models with (A) an
increasing outer radius and increasing inner radius ri = ro− 0.8µm, and (B) an increasing outer
radius and a static inner radius ri = 4.0µm. Shown for E5 (blue squares), S5 (green circles), and
S5x2 (red diamonds) texture metrics. Each point is the average of fifteen different samples; error
bars indicate standard deviation.

by related colours in Fig. 5.7), it follows that sub-class will be much more difficult to dis-

tinguish directly from a scattering plot. As described below, this is in fact the case. It is

important to note, however, that even in sub-class histograms there is a clear delineation

between different distribution super-classes.

Preliminary results indicate that the separation of sub-classes is more pronounced in sam-

ples with a greater number of organelles (i.e. sub-class overlap is inversely related to or-

ganelle concentration). Histograms from a data set with a concentration of 500 organelles

per cell showed greater separation between sub-class means and less variance than the cor-

responding data set with a concentration of only 83 organelles per cell. This is likely due to

the fact that random placement effects have a less pronounced impact on distribution shape

when the number of organelles increases—organelles more consistently fill the available

volume, reducing shape variability between random instances of each sub-class model.

In general, however, observed trends were largely invariant to organelle concentration and

effective mitochondrial radius. It appears that fluctuations in distribution shape and size

are the dominant causes of changes to scattering image composition; this is in agreement

with previous work10,11. Changes to the size and arrangement of a distribution were closely

linked to consistent image attribute variation, while changes to the mitochondria concentra-

tion and effective organelle size did not lead to a significant shift in image attributes.

As scattering intensity can be shown to increase with the addition of organelles10, it is

expected that the Law L5 (luminosity) texture measure would be a good indicator of con-
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Figure 5.5: Histograms showing (A) S5, (B) S5x2, (C) W5, and (D) E5 Law texture energy for
all 1455 sample images. Distribution class is indicated by colour—purple for aggregate, blue for
perinuclear, green for diffuse, and red for peripheral. A labeled vertical line indicates mean value of
each class. As shown by the purity of each class along the axis, these Law texture energy metrics are
able to separate the four major distribution types with very little class overlap, making them good
discriminators for mitochondrial arrangement.

centration when presented with un-normalized scattering data (only normalized image plots

were available for use in the current study). Correlations between un-normalized image in-

tensity and mitochondria concentration will be explored at length in future work.

5.4.1 Classification of Distributions

Results from the classification tests are shown in Tab. 5.4. All classifiers showed a con-

sistently high classification accuracy, and could reliably identify all four distribution types.

Misclassification errors were almost exclusively due to discrimination errors between the

diffuse class and the neighbouring regions of the perinuclear and peripheral classes. This

can be seem in quantitative terms by examining the confusion matrix for each algorithm.

As shown in Tab. 5.5, for learners using E5, S5, S5x2, and W5 as input, 13/15 of all mis-
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Figure 5.6: Histograms showing (A) Law S5x4 and (B) Haralick H2 values for all 1455 sample
images. Distribution class is indicated by colour—purple for aggregate, blue for perinuclear, green
for diffuse, and red for peripheral. A labeled vertical line indicates mean value of each class. Both
these attributes were able to clearly discriminate between aggregates and all other classes, but were
not effective separators for the other three distribution types.

classifications (for a multilayer perceptron, Tab. 5.5a) and 21/22 of all misclassifications

(for Naive Bayes, Tab. 5.5b ) were between the diffuse and perinuclear classes.

This holds with our histogram analysis of all twenty-one texture attributes—none of the

image attributes uniquely separated all four classes. As shown in Figs. 5.5 to 5.7, all at-

tributes showed some class overlap between the diffuse distribution and the more central

peripheral distribution (sub-class p64: ri = 6.4µm). For many attributes there was also an

overlap between larger perinuclear distribution (sub-class n56: ro = 5.6µm) and the diffuse

distribution. However, some attributes completely or almost completely separate the perin-

uclear and diffuse classes (e.g. S5 and S5x2); this accounts for the lower misclassification

rate between these distributions in Tab. 5.5. Excluding these predictive attributes lead to

a significant drop in classification accuracy, and a corresponding increase in confusion be-

tween the perinuclear and diffuse classes. This further confirms the predictive ability of the

S5 and S5x2 attributes indicated in Tabs. 5.2 and 5.3.

As expected, each classifier’s performance changed depending on the number and type

of attributes presented as an input set. Classification performance for six different input

subsets is shown in Tab. 5.4—two small subsets containing the best parameters identified in

Tab. 5.3, the subset identified by the CFS selection routine (H1, H7, H11, S5, S5x2, S5x4,

R5), the subset identified by the Consistency selection routine (H2, H3, H4, H9, E5, S5,

S5x4), the single best attribute, and a set containing all twenty-one texture parameters.

For all subsets, the OneR classifier chose to base its descisions on the S5 parameter, giving

a classification accuracy of 98.7%. The performance of the two Bayesian classifiers and
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Figure 5.7: Histograms showing (A) E5 and (B) S5 Law values for all 1455 sample images. Dis-
tribution sub-class is indicated by colour and a label indicating the distribution’s mean—purple for
aggregate (a10,a15,a20), blue for perinuclear (n48,n56), green for diffuse (d4t8,d5t7), and red for
peripheral (p64,p72). For both E5 and S5, the mean values for each sub-class are stratified with
respect to radius (in ascending order) within their super-class.

the decision tree was found to improve as the number of parameters was reduced to only a

small selection of predictive attributes (e.g. to S5,S5x2,E5, or simply S5). Bayesian algo-

rithms and decision trees are adversely affected by redundant or noisy parameters2, which

accounts for this preference toward a small, information-rich subset. Conversely, for the

Multilayer Perceptron and Support Vector Machine, classification accuracy was found to

increase with the number of predictive input parameters; these algorithms are known to ef-

fectively mitigate the effect of noisy parameters (e.g. L5) and redundant data2. However,

their best performance was still obtained using the attribute subset identified by the Con-

sistency algorithm, as opposed to the full set of twenty-one parameters. The best overall

performance was 99.7%, given by the multilayer perceptron using the Consistency algo-

rithm’s attribute subset—H2, H3, H4, H9, E5, S5, S5x4. This was followed by the Support

Vector Machine at 99.5% using the same subset. The standard deviation for values in Tab.

5.4 was between approximately 0.6% and 0.8% (i.e. ±0.8–1.2 classified instances). This

indicates that there is a statistically significant difference in the performance between clas-

sifiers for a given input set, and—to a lesser degree—performance between different input

sets for each individual classifier (i.e. between best and worst cases for each classifier).

Classifiers tested on data points using sub-class labels showed a dramatically decreased

classification accuracy. Despite good discrimination between sub-classes from different

super-class distributions (e.g. between n56 and d4t8 or d5t7 and p64), a high misclassifi-

cation rate between closely related sub-classes (e.g. between n48 and n56 or p64 and p72)

lead to poor overall classifier performance for sub-class problems. As discussed above, and

shown in Fig. 5.7, the large overlap between similar sub-classes makes consistent sub-class

79



Table 5.4: Classification accuracy using 10-fold cross-validation

Attributes MLP BayesNet NaiveBayes RandTree SVM
All 21 Parameters 99.4 97.4 96.5 93.3 99.3
Consist. Parameters† 99.7* 96.7 96.3 95.3 99.5*
CFS Parameters†† 99.3 98.4 98.2 98.1 99.0
4 Best: E5,S5,S5x2,W5 99.0 98.6 98.5 98.2 98.6
3 Best: W5,S5,S5x2 98.8 98.8* 98.8* 97.9 98.6
1 Best: S5 98.6 98.8* 98.8* 98.3* 98.4

* best classification rate
† H2, H3, H4, H9, E5, S5, S5x4

†† H1, H7, H11, S5, S5x2, S5x4, R5
OneR accuracy was 98.7% for all subsets

Table 5.5: Example confusion matrices for two classifiers (best four attributes); row and column
designations: (A)ggregate, peri(N)uclear, (D)iffuse, (P)eripheral. Numbers indicate how many times
each true label (row header) was assigned to each classification category (column header)

A N D P "
180 0 0 0 A
0 329 1 0 N
0 1 519 5 D
0 0 8 412 P

(a) Multilayer Perceptron

A N D P "
180 0 0 0 A
0 330 0 0 N
0 1 513 11 D
0 0 10 410 P

(b) Naive Bayes

separation difficult. While accurate differentiation between super-class labels is sufficient

for medical applications, the texture-based separation of closely related sub-distribtions is

a challenging problem that remains open for study.

5.5 Conclusions

In this chapter we showed how image analysis and pattern recognition methods can be used

to identify relationships between wide-angle scattering pattern composition and the distri-

bution of organelles (in this case mitochondria) within a cell. This was achieved using a

library of scattering patterns generated by the mtPatterns algorithm and a series of stan-

dard image analysis, attribute selection, and machine learning tools. Results indicated that

several components of scattering image texture are directly related to the arrangement of

organelles within a cell. In particular, we observed that texture attributes could be used to
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distinguish between medically important distribution types. Importantly, we also found that

the predictive value of texture attributes is robust to changes in organelle concentration, ef-

fective size, and random placement. This provides a powerful set of techniques to interpret

cellular light scattering signatures.

Scattering pattern composition—in terms of twenty-one image texture measures—was found

to vary in a predictable and consistent way between different organelle distributions and

aggregations. Notably, the complexity of scattering images is inversely proportional to the

radius of the scattering distribution, where the complexity was reflected in the amount of

edge, wave, and spot content detected in the images using Law texture measures. Very little

overlap between classes was observed in Law texture energy histograms, and it was also

possible to distinguish (to a first-order approximation) the average radius of a distribution

from the data in these plots. Due to their ability to effectively separate scattering distribu-

tions, and their rapid processing time, Law features were found to be well suited for the

analysis of mitochondrial scattering images.

Using these identified trends, it was possible to accurately classify different mitochondrial

distributions directly from their wide-angle scattering patterns using Law and Haralick tex-

ture measures and standard machine learning techniques. In particular, Multilayer Percep-

trons and Support Vector Machines were found to effectively distinguish each distribution

type, especially when presented with texture attributes selected by the Consistency attribute

selection algorithm. The classification of finely stratified sub-distributions with large inter-

class overlap remains a challenging problem for future research.

We show that texture attributes provide an effective, robust method to analyze mitochondrial

light scattering images, and that attribute selection can be used to improve classifier perfor-

mance in this domain. This is important, as mitochondrial distribution has been shown to

directly relate to cellular health and susceptibility to treatment12,13. Based on the agree-

ment between mtPatterns simulations and published FDTD and experimental cytometry

results9,10, these predictive trends are expected to extend well to scattering patterns from

actual patient samples.
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Chapter 6

A Method for Cytometric Image
Parameterization

6.1 Introduction

In this chapter we demonstrate a multi-agent computational pipeline that is able to extract

features from a two-dimensional laser scattering image, cluster these features into spatially

distinct regions—or bands—and extract a set of parameters relating to the structure and vari-

ability of intensity regions within the image. This parameterization can then be used to infer

medically relevant properties of the scattering object. It also facilitates the decomposition

of a complex scattering pattern into contributions from different cellular components, mak-

ing it possible to prepare experimental images for the organelle-related wide-angle analysis

presented in the previous chapter.

As described in earlier chapters, there is a great need for methods to extract and recognize

patterns in cellular scattering images1–5. Scattering patterns contain vital information about

the scattering source, and their interpretation facilitates diagnostic techniques ranging from

the analysis of protein and DNA structure from X-ray diffraction6–8, to the assessment of

cell health based on patterns of laser light scattered by cellular components1–3,5. In perhaps

the best known example, Watson and Crick used information from patterns seen in two-

dimensional X-ray scatter plots to infer the double-helix nature of DNA8. In assessing

cellular structure, Sem’yanov et al. and Ghosh et al. recognized regular patterns in one-

dimensional cell scattering plots, and were able to use a parameterization of these patterns

to extract microstructural cell information9–11.

Scattering pattern analysis techniques are especially crucial in light of new medically rel-

evant optical analysis methods—specifically the development of the wide-angle cytome-

1A version of this chapter has been published. Pilarski and Backhouse. 2006. Optics Express. 14(26):
12720–12743.
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Figure 6.1: Schematic diagram of a wide-angle cytometer. It includes a fluidic channel, a laser
source, and a two-dimensional charge-coupled device (CCD).

ter. Wide-angle cytometry devices are rapid, cost effective systems able to capture two-

dimensional scattering patterns from a single cell or particle suspended within a fluidic

channel. In these devices, laser light is propagated through a cellular body, where it scatters

and is collected by a digital imaging device (as described by Singh et al.1,2). A schematic

diagram of a wide-angle cytometer is shown in Fig. 6.1.

Building on traditional cytometry schemes—which typically only capture scattered light

at a few fixed angles or an angular slice—these label-free (i.e. non-fluorescent) detection

devices provide extensive information about the internal structure of cells and are highly

relevant to medical diagnostic practices1,2. It is important to be able to rapidly ascertain

small deviations in cell structure, as the structure of a cell can be an indicator for the pro-

gression of diseases (such as cancer) in patients4,5. However, to infer cell structure from

two-dimensional scattering plots, feature extraction methods must be developed to extract

and parameterize intensity patterns in cytometric scattering images. In this chapter we

present a parameterization approach based on local shape features in scattering images.

This method is used to extract both a geometric idea of image structure and also a set of

numerical features that complement known texture parameters to more fully interpret a

wide-angle pattern.

6.2 Light Scattering Through Complex Cellular Bodies

Previous work has shown that when light scatters through the cellular body it generates a

complex and information-rich pattern of overlapping intensity regions. These regions are

created by interfering waves propagating through a variety of cellular structures with dif-

fering size and optical properties4. Based on our current understanding of the scattering

mechanisms present in biological cells (as indicated experimentally1,2,4,9 and through nu-

merical simulation12–15), these two-dimensional scattering images are typically comprised
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Figure 6.2: Simplified example images containing features known to be present in experimental
and numerically simulated scattering patterns: a series of vertical intensity bands, like those found in
micro-structural scattering (left), and a number of randomly placed high-frequency intensity regions,
characteristic of nano-structural Rayleigh scattering (middle). Varying levels of high– and low–
frequency intensity variation may be present in a single image, leading to complex, information-rich
image structures (right). These simulated images were generated by the methods explained in the
Sec. 6.5

of a set of scattering bands of varying intensity and width, with a number of additional

high-frequency intensity regions (e.g. resembling those in Fig. 6.2). For examples of exper-

imentally acquired scattering signatures, please see the recent work of Singh et al.1,2.

Scattering intensity contributions in cells typically come from three sources: large cell

structures with diameter d greater than the incident wavelength λ (geometric scattering,

d > λ , on the order of micrometers), cell structures slightly less than the wavelength of in-

cident light (Mie scattering, λ/15 < d < λ ), and very small organelles (Rayleigh scattering,

sizes on the order of nanometers, d < λ/15)4. These lead to three general image cases.

In the first case (geometric scattering, and Mie scattering as d approaches λ ), the scat-

tered light will form large regular intensity bands, which—in the case of our wide-angle

cytometers—appear as vertical stripes in captured wide-angle scattering images2. While

bands may arc at low scattering angles (as shown by the images of Singh et al.2), they

appear approximately linear over smaller solid angles—particularly in the side-scattering

region (e.g. Fig. 6.2, left). These larger intensity bands are most prominent (e.g. highest

intensity) in the forward and back scatter regions of a 180× 180 degree scattering image,

and are primarily due to the geometry of the cell wall and the larger organelles within the

cell2–4,12.

In the second case, combining the influence of both large and medium-sized microstructural

elements (e.g. both geometric scatterers and larger Mie scatters), a scattering image may

contain bands that vary greatly in intensity along their length. Interference can lead to

lighter or darker regions positioned within the intensity band structure.
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For cellular scattering, the presence of smaller micro– and nano-scale cellular structures

(like the mitochondria, which are primarily responsible for scattering at large angles5) will

lead to a set of small randomly distributed intensity regions. The number, frequency, and

size of the regions relates to the internal complexity of the cell. This is a result of the

third case: Rayleigh scattering (and also Mie scattering where d approaches λ/15). Inten-

sity contributions from spatially distributed organelles will constructively and destructively

interfere to create a number of high-frequency intensity regions (e.g. Fig. 6.2, middle).

The end result is a complex scattering pattern that is comprised of interfering contributions

from high-frequency intensity components and a series of vertical intensity bands (such

as in Fig. 6.2, right), and which indicates the detailed internal morphology of the cellular

body. The combination of image cases one+two, one+three, or one+two+three will all lead

to images similar to the one presented in Fig. 6.2, right. We have observed this complex

structure in wide-angle cytometry images2 and numerical Finite Difference Time Domain

(FDTD) simulations15.

6.3 Computational Approaches to the Inverse Problem

Computational methods have done little to take advantage of this rich image structure. One

of the major factors inhibiting the development of wide-angle diagnostic devices is the

computational effort needed to analyze the scattered light signatures. To deduce cellular in-

formation from scattered laser light we must somehow solve the inverse scattering problem

for light through biological cells. This inverse scattering problem involves recreating the

geometric parameters of a cell based on the observed path of light propagating through its

cytoplasm. This is a largely unsolved problem, and any direct mathematical methods are

either computationally intractable and/or lead to non-unique solutions3. While numerous

attempts have been made to simulate the effects of scattering in cellular bodies, a method

for quickly inferring the geometric structure of a cell based solely on its light scattering data

still eludes researchers3.

Given the challenge of solving the inverse problem for scattering from a living cell, the

literature to date has focused on the empirical classification of cells based on their scatter

at a few specific angles or an angular slice through the center of the full two-dimensional

scattering pattern (commonly called the “indicatrix”). It is evident from the rich structure of

the scatter patterns (along both the φ and θ axis) that there is far more information present

than is contained in simple angular slices.
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Techniques have been developed to address this problem by mathematically calculating the

potential scattering patterns of cells12–14. In these ‘forward’ iterative methods, hypothet-

ical cell geometries are used to generate simulated scattering signatures, which are then

compared to experimental results. Further work has been done to use these calculated scat-

tering patterns with evolving computer programs (such as genetic algorithms and neural

networks) to interpret scattering data from crystals, proteins6,7, and single cells11. These

methods largely involve the creation and verification of multiple potential structures (e.g.

“generate and test” through repeated FDTD simulations12). These scattering simulations

may take days to complete, and require the use of large parallel-processing computer arrays.

As shown by the work of Sem’yanov et al., Ghosh et al., and Ulanowski et al., a more com-

putationally tractable method is to effect a ‘parametric solution’ to the inverse scattering

problem3,9–11,16. In this two-step method (feature extraction and pattern recognition), they

parameterize some aspect of a scattering pattern and use a set of mathematical relations3,9,

fast Fourier transforms10, or standard data mining techniques11 to relate the extracted pa-

rameters to the initial structure of the scattering source. This process is rapid by comparison

to iterative methods, and may allow a degree of structural generalization that alleviates some

of the problems caused by non-unique forward solutions.

However, extracting viable parametric information from information-rich wide-angle scat-

tering signatures presents a number of computational challenges. Because of complex cellu-

lar geometries, intensity bands may partially overlap in some places, the maximum intensity

of each band may differ greatly from that of its neighbours, and the ambient background

intensity is not consistent over the entire image. In addition, band boundaries are smooth

gradients, not sharp intensity level transitions. These characteristics make it quite difficult

to extract relevant features from an image and group them into meaningful regions.

While researchers have addressed the individual components that make up this high-level

segmentation problem (e.g. feature detection/extraction, connected components labeling,

noise rejection, region clustering), to the best of our knowledge no groups have developed

a way to extract and analyze the full range of information present in two-dimensional cy-

tometric scattering images. This problem involves partitioning two-dimensional scattering

images into spatially distinct regions and extracting high-level semantic information (i.e.

image parameters) from the detected regions. In this work we integrate and extend upon

several tested image segmentation and computer vision techniques to enhance the diagnos-

tic capacity of wide-angle cytometry systems through the automated shape-based parame-

terization of scattering plots.
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6.3.1 Recent Segmentation Work

Computer vision and image segmentation lie at the heart of most medical image analysis

schemes17–23. These are widely studied areas of research that are covered extensively in the

literature. For the interested reader, Shapiro and Stockman (computer vision), Rangayyan

(biomedical image analysis), and Pal and Pal (image segmentation) provide excellent re-

views of the relevant background literature and techniques24–26.

While there are many possible methods to segment wide-angle scattering images, after sur-

veying the body of current segmentation literature we chose to design our system within the

framework of a shape-based multi-agent image processing environment (described below)

due to its demonstrated power, flexibility, and novelty. Multi-agent segmentation systems

(such as that of Liu et al.18,27,28) have been thoroughly tested in a number of image pro-

cessing situations, and demonstrate comparable or superior performance when compared to

traditional methods. In addition, the distributed nature of multi-agent systems is a benefit

for future hardware implementation. As such, they provide a solid basis for the development

of a cytometric image processing pipeline.

Cytometric image parameterization is primarily a high-level segmentation problem. A num-

ber of effective algorithms developed to subdivide an image into its component parts, using

everything from texture information20,24,26,29–31 and Markov Random Fields32 (shown to

be computationally demanding25,32), to standard image processing techniques24–26, models

based on the human visual processing system33–36, and complex image processing net-

works17,21,22,37.

In addition, a large body of recent image segmentation work relies on the use of multi-agent

swarms, including particle swarm optimizations23,38, evolutionary autonomous computa-

tional agents18,27,28,39–41, and ant-colony optimizations42. These multi-agent (‘swarm’)

systems are composed of a population of autonomous or semi-autonomous ‘agents’ that

collaborate (directly, indirectly, and/or competitively) to achieve a common goal. In this

context, an agent is defined as a independent computational unit with a set of internal states

and action rules; an agent’s future behaviour depends on its current condition, programmed

rules, and the state of its environment43. (Multi-agent systems are finding widespread use

in engineering and computer science applications, ranging from process optimization to

computer vision, population modeling to industrial control; Engelbrecht provides a good

introduction to this topic43.)

All of these segmentation algorithms have one thing in common: they attempt to break

a complex image into a set of smaller regions, where each region is homogeneous with

respect to one or more parameters (e.g. contrast, intensity, texture)25. The effectiveness
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of each method varies depending on the size, texture, orientation, and shape of features

contained in an image; no single approach will work well for every image25. In most cases,

image sub-division is a two stage process—an image is segmented into smaller sections

which are then clustered into groups based on some similarity metric29,32 (i.e. the split-and-

merge or region-growing approach, recently used for tracking cells in diagnostic images44).

Liu et al. have recently proposed several interesting agent-based approaches to region detec-

tion and segmentation. They demonstrate a segmentation system capable of rapidly labeling

homogeneous tissue regions in detailed brain scan images27, and present several methods

to quickly detect edges and track shape information via a swarm of evolving computational

instances (agents)18,28. In their swarm intelligence approach to image segmentation, the

behavior of an agent is influenced by the agent’s relation to other agents and local texture

information (contrast threshold, regional pixel intensity deviation, and mean pixel value)

contained in the analyzed image18,27,28. Their methods typically outperform traditional im-

age processing techniques, and are successful over a diverse range of input data. Liu et al.’s

method has distinct advantages in that it is highly parallel (a benefit for future hardware

implementations), has proved successful in complex medical imaging environments, and

facilitates a distributed feature clustering procedure.

Localized action and communication are the key components of most agent-based systems.

Bourjot and colleagues have recently shown that a multi-agent system, based on the web-

spinning behavior of social spiders, can effectively classify regions of homogeneous color

in photographic images39, and ant colony optimizations have been used in autonomous

vehicle navigation to detect roadways in low-contrast environments42. The work of Ghrist

and Lipsky with self-assembling tile structures demonstrates an effective method for high-

level organization with no centralized control45, and Omran et al. further show how particle

swarm optimizations can dynamically cluster information during image segmentation38.

The distributed shape classification of Mirzayans et al.41, and Wang and Yuan’s agent-

based face identification40 also use local neighbourhoods to detect prominent features.

We use components of these successful swarm / image processing techniques (25,30,40,41,44)

to complement the approach of Liu et al. and refine our system for use in a scattering

analysis situation. We have also developed a set of unique algorithms to fully parameterize

the detected image features in a way amenable to detailed scattering analysis.

Unlike most previous swarm segmentation work, our system does not involve agent repro-

duction or movement; the added complexity of agent dynamics, agent evolution, and agent

fitness evaluation (with the additional possibility of incomplete feature detection) offsets

any noticeable improvement for our particular application.
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6.3.2 Computational Challenges

To parameterize scattering images we need to be able to detect continuous intensity regions

and characterize them with respect to their spatial orientation within the image, their inten-

sity profile, and their relationship to other parts of the image. This allows us to numerically

represent the shape, size, and placement of low and high frequency intensity structures

present in scattering images (as described above).

The complex image texture in cytometric scattering images makes simple feature detection

problematic29. It is not possible to simply extract contiguous regions—corresponding to

intensity bands—based solely on the raw intensity of the pixels (e.g. basic threshold-based

region/edge detection25); the high intensity point of one band may be equal in value to the

background intensity at another point in the image. Feature detection methods based on

local information have proved useful in solving this problem25: compensation techniques

such as adaptive thresholding24,25, and the contrast-based thresholding in Liu et al.’s “Lo-

cal Stimulus”18 have been effective at reducing the effect of differing background levels.

In these systems an image is divided up into sections and the detection threshold is set in-

dependently for each region. Due to the success of this approach (as described in recent

work18,24,25,27), our feature detection method uses adaptive thresholding (within the frame-

work of Liu et al.’s “Local Stimulus”18) to compensate for varying background intensity.

Another challenge is “region bridging”, defined as the partial overlap of two intensity re-

gions along a small portion of their boundary. In some circumstances (e.g. low-resolution

input data and/or input images that contain greatly varying band width due to complex scat-

tering source structure) small groups of high intensity pixels will form in regions of overlap

between two distinct regions. This can cause two separate intensity bands to be classified

as one continuous region, greatly (and erroneously) altering the final parameter extraction.

Wang and Yuan demonstrate an effective method for separating partially blended (i.e. weakly

connected) regions based on the number of shared boundary pixels40; only if the number

of pixels linking two regions is greater than a set threshold will two regions be merged into

a single region. Wang and Yuan’s technique effects a specialized form of the “erosion” and

“opening” operators, commonly used to separate weakly connected image regions in binary

morphology problems24. We use a similar bridge-eroding method in the feature detection

and clustering stages of our pipeline to mitigate the effect of region bridging.

In addition to the problems of feature detection and clustering, there is the additional chal-

lenge of extracting a relevant numerical parameter set from the segmented images (i.e.

extracting “region properties”24). Contiguous and homogeneous regions must be extracted

as numerical entities for later parametric analysis. We use a form of localized communica-
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tion (based on the widely used classical connected component labeling24) to organize the

detected image features into a set of regions. These regions are parsed to extract a set of

useful image parameters. As shown by the work of Sem’yanov et al., Ulanowski et al.,

and Maltsev, once an input image has been reduced to parametric form it is possible to

infer some information regarding the internal structure of the scattering source from the ex-

tracted parameter values; mathematical relations and supervised learning algorithms were

previously used to determine cell size and hemoglobin concentration from the parametric

profile of scattering intensity slices3,9,11.

In this chapter we present a computational intelligence parameterization method as the first

step in a parametric solution to the inverse scattering problem for laser light through a bi-

ological cell. Our method combines and builds upon a series of successful image process-

ing methods (image segmentation25,30,44, multi-agent systems18,27,40,41,45, and computer

vision24) to identify and group samples of local texture information into high-level patterns

(e.g. semantic information such as intensity band location and structure). While our sys-

tem is designed for cytometry problems involving vertical intensity bands with randomly

distributed high-frequency components, its modular analysis pipeline, numerical represen-

tation of regions, and independent parameterization routine (all described in the following

sections) give it the flexibility to be easily adapted for a variety of other cytometric image

analysis situations (e.g. those with different band structures/orientations and/or arbitrarily

shaped intensity regions).

To the best of our knowledge, our technique is the first computational system designed

to comprehensively parameterize full wide-angle scattering signatures. We show that our

system is able to identify the overall structure and relationships present in a scattering im-

age. The resulting parameterization scheme, built from the numerical characterization of

intensity bands and independent intensity blobs, can be used in the identification of cellular

morphology. The end goal of this work is to facilitate the rapid division of experimental

samples into healthy and diseased categories for expedient medical diagnosis. A pattern

recognition system to infer detailed cellular structure from image parameterization values

will be presented in future work (in preparation).

6.4 The Computational Pipeline

We present a computational intelligence pipeline (called Cythe) to effectively segment,

cluster, and parameterize cytometric scattering images. The problem can be described as

follows:
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1. Given an input scattering image I of size u× v, where each of the u · v pixels repre-

sents an 8-bit grey-scale intensity value, how can we effectively segment the image

into its component intensity bands and sub-band regions?

2. Furthermore, once the salient features of the image have been identified, how can we

extract relevant parametric information from these features and use this information

to categorize the initial input image I?

Previous work has shown viable two-stage image segmentation systems: in stage one all

salient pixels are labeled with one or more identifiers; in stage two all labeled pixels are

clustered and grouped according to some similarity or congruency metric24,25,29,31,32. In

this work we use an additional stage to organize the clustered regions and extract a set of

relevant parameters.

After performing an initial user-specified image size reduction, the first stage of our pipeline

(feature detection) is responsible for creating and fixing a population of computational

agents (A) to the salient features of the target image (as in the approach of Liu et al.18,27).

This stage effectively labels all the pixels corresponding to relevant intensity regions; an

explanation of saliency determination will be presented in the following sub-section. Stage

two (feature clustering) is responsible for clustering the fixed agent population (A) into a list

of spatially distinct regional groups (G). The final stage of the pipeline (post-processing)

removes large-scale image noise, creates a band-like grouping structure from identified re-

gions, and extracts a parametric representation (P) of the input data.

Detailed explanations of each stage are presented in the following subsections, which also

describe the parameterization equations and the four major algorithms used to implement

the individual stages of the pipeline. These are: the agent fixation() routine, which is re-

sponsible for fixing the agent population to the salient image features; the propagate id()
routine, responsible for clustering agents into connected groups; the scrub() routine, which

removes image noise and erroneous groupings; and the join() routine, which joins groups

into a band-like structure of super-groups. A frame from an animated example of the com-

plete pipeline is presented in Fig. 6.3.

6.4.1 Feature Detection

The first stage of the Cythe parameterization pipeline takes the input image I, scales it to

user specified dimensions u×v, renders the image as a two-dimensional array37, and creates

an agent population A equal in size to the number of pixels in the image grid. A single

93



Figure 6.3: Frame from an animated movie of the complete Cythe pipeline processing an example
10 pixel by 10 pixel image. Agents are represented by colored hemispheres—green indicates ’fixed’
agents, while red indicates ’unfixed’ (dead) agents.

agent is assigned to every pixel in the image grid. These agents then use the information

available in their local neighbourhood to detect features and sort themselves into regions;

this is the standard approach used in most agent-based image processing systems18,27,30,41.

To proceed we must elaborate on several definitions:

Definition (Agent): An agent is a single computational unit that is assigned to a pixel or

region of the image grid I. Each agent has a number of internal states and potential actions,

and can alter these internal states and/or perform actions based on the information present

in a localized area of the image grid I.

Definition (Agent Neighborhood): The agent neighborhood N is a n×n region of the image

grid I centered on the agent location xa,ya. This region determines where an agent will

look for and communicate with other agents (as in Liu et al.’s “Neighbouring Region of an

Agent”18).

Definition (Agent View Radius): The agent view radius R is a (2r + 1)× (2r + 1) region

of the image grid I centered on the agent location xa,ya (Fig. 6.4, left). This area helps

determine agent feature detection preferences, and the pixels within this area are used in

the calculation of Average Pixel Intensity µa. This is akin to the image region used in the

“local binary pattern and contrast measure” of Ojala and Pietikainen30 and the area used to

acquire local stimulus by Liu et al.18,27 and Mirzayans et al.41.

Definition (Average Pixel Intensity): This value, denoted µa, is the average pixel intensity

value that agent a observes within its view radius R. Average Pixel Intensity is equivalent

to the “mean pixel value” component of Liu et al.’s texture definition, as used in their multi-

agent feature detection routine18.

During the feature detection stage of the pipeline, each agent calls on a fixation routine—

agent fixation()—to determine its immediate behavior18,41. When the fixation routine is

called, the agent will perform one of two actions: an agent will affix to (and therefore iden-

tify as a salient region) a pixel at image grid location I(xa,ya) if the pixel has an intensity
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Figure 6.4: Agent fixation is determined by comparing the image intensity at an agent’s position to
the average intensity (µa) within its view radius (left). After the agent fixation() routine, members
of the agent population will be fixed on areas of high intensity relative to the local image texture
(right - shown here for an agent view radius of r = 1). This adaptive process detects edges inde-
pendent of differing background levels. Pixel color indicates 8-bit intensity, from 0 (black) to 255
(white).

value greater than the agent-computed average pixel intensity µa, or, if this condition is not

satisfied, the agent a will be removed from the agent population A. In this way, agents are

able to detect salient intensity edges in the image I independent of differing background

intensity values (i.e. a fixation routine based on an agent’s relation to its “average pixel

intensity” is an adaptive thresholding function, as described by Pal and Pal25).

After the entire agent population has been polled for fixation, only agents that reside on

salient pixels will remain in the population41 (Fig. 6.4, right). To aid in effective region

segmentation, we then scan the entire fixed agent population and remove all agents with

more horizontal neighbours than vertical neighbours. Recalling the vertical nature of the

intensity bands present in our scattering images (as discussed in the introductory section),

we see that this helps eliminate any horizontal intensity ‘bridges’; much like a horizontally

selective version of the “opening” operator used in binary image analysis24, the removal of

these weakly connected ‘bridges’ facilitates region discrimination (as shown by Wang and

Yuan40). An example of the removal process is shown in Fig. 6.5.

6.4.2 Feature Clustering

Once the agent population has completely labeled all relevant pixels in the image grid,

a clustering process—propagate id()—takes over to form the population A into a set of

spatially distinct regions G (i.e. it links all adjacent agents to create spatially connected

sub-regions). propagate id() is a form of the classical connected components labeling al-

gorithm24, traditionally used to identify spatially connected image features. Each time the

propagate id() routine is called, a sweep is done over the entire agent population; each

agent in the population polls all other agents in its local neighbourhood (N) for their cur-
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Figure 6.5: An example of horizontal bridge removal (before and after removal, left and right
respectively), following the agent fixation shown in Fig. 6.4. Green circles indicate fixed agents. Red
circles represent agents that will be removed, severing the connection between the two minimally
connected bands. Numbers inside the pixels represent the ratio of horizontal to vertical neighbours
within the 4-neighbourhood of a given agent (H:V).

Figure 6.6: Two parts of a single propagate id() cycle for an active agent (center pixel). Initially,
the agent surveys its local neighbourhood and records the ID values of its neighbours (left). Seeing
there is a higher ID in the area (shown in red), it takes on this ID value and re-broadcasts the new ID
to its neighbourhood (right). This leads to an agent neighborhood that is homogeneous with respect
to the highest ID value.

rent ID value. Based on its initial scan, an agent records the highest ID value, idmax, in its

local neighborhood. The agent then re-propagates the value idmax to all neighbors with ID

values less than idmax, and the receiving agents take on the new maximum ID value. The

entire agent population is iterated through until no further ID changes are observed30. At

this point all agents in a separate physical region will share a unique ID number. A single

iteration of the propagation process is shown graphically in Fig. 6.6.

It is important to note that ID propagation occurs in an agent’s 4-neighbourhood (i.e. to

agents left, right, above, and below the agent, but not on diagonal corners24). This aids

in band discrimination and removes additional band bridges. Due to the close horizon-

tal proximity of bands in the scaled image I, it was found that communication within an

agent’s full 8-neighbourhood could lead to a number of intensity regions being erroneously

grouped into a single region. Allowing diagonal communication between agents did not fa-

cilitate any useful connections beyond those gained through purely horizontal and vertical

transmission.
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Since every agent starts with a unique ID value, the clustering process guarantees that every

connected image region will have a common unique identifier24; we can now form a set of

agent groups (G), where each group (G) contains a list of spatially connected agents (Ag)

that share a common ID value (Ag is a non-overlapping subset of the initial population A).

6.4.3 Post-Processing

As in previous work, a feature detection stage followed by a clustering stage is able to

effect image segmentation. However, to utilize (and parameterize) the detected regions in

the context of scattering image analysis, we require a third stage to organize and parse the

segmentation results.

After the creation of homogeneous ID regions, several post-processing routines take over

to remove high-level noise, join vertically correlated regions into a band hierarchy (i.e.

create super-groups out of related regions), and extract the final parametric representation

of the input file. The first process—scrub()—searches through the list of agent groups G
and removes all groups (and their member agents) smaller than a given percentage of the

image size from A and G respectively; the removal size threshold β can be empirically

set by human users to match the input image conditions. This method of removing small

connected objects was used by Prasad et al. to eliminate background noise in their cellular

tracking system44.

Each group that survives the scrub() routine is then analyzed for its dimensions and center

point (gx,gy). This effects a simple geometric characterization of all surviving groups in G.

Next, horizontally related regions are connected into band-like structures using the join()
routine, a simplified variant of the standard one-dimensional k-means clustering algorithm46.

As in the k-means algorithm, join() creates list of super-groups and assigns one or more im-

age regions g to each super-group g′ based on the horizontal distance d = |xg′−xg| between

the group center and the super-group center. Assignment occurs if d is less than a user

defined threshold δ (specified as a percentage of the image size), and each group may be

assigned to only one super-group. A super-group’s center is iteratively re-calculated based

on the location of its member sub-groups. The join() process continues until every group

has been assigned, clustering image regions with respect to their horizontal proximity. This

allows the recognition of vertical bands in a scattering image while still retaining the de-

tailed statistics of each individual sub-group. As such, join() creates a region hierarchy out

of the agent population which can be stored at minimal cost for later retrieval and parameter

estimation.
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Table 6.1: The set of useful image parameters (P)
# Parameter Description
1 B The number of bands in the image
2 BSmin The minimum band spacing
3 BSmax The maximum band spacing
4 BSavg The average band spacing
5 aBWmin The average over all bands of minimum band width
6 aBWmax The average over all bands of maximum band width
7 aBWavg The average over all bands of average band width
8 aBWdev The average over all bands of band width deviation
9 aBImin The average over all bands of minimum band intensity
10 aBImax The average over all bands of maximum band intensity
11 aBIavg The average over all bands of average band intensity
12 aBIdev The average over all bands of band intensity deviation
13 aBInn The avg. over all bands of nearest-neighbour band intensity dev.

6.4.4 Parameterization

In the last step of the Cythe pipeline, the super-group hierarchy is traversed and cross-

referenced with the initial image I to extract a number of useful global parameters P (shown

in Tab. 6.1). These parameters describe the overall structure and inherent complexity (in

terms of spatial frequency components) of the image I, and are used to numerically rep-

resent the image features generated by light scattering through a biological cell (i.e. the

number of regions, their size/shape, their relation to each other, and the variance of region

width and intensity).

While finding a direct correlation between scattering signatures and the initial model pa-

rameters of a FDTD simulation or the structure of a cell has been shown to be an unsolved

problem3, the parameters in P allow us to infer structural information from the presence

of intensity regions with varying spatial frequency. The knowledge that certain cellular

structures will generate intensity regions of a given spatial frequency allows relationships

to be made between the extracted image parameters P and the initial layout of the scattering

source. From our initial experiments, it is expected that there will be direct correlations

between these parameters and the underlying cell model parameters; we have found that

this is true for relations between small organelle content and several aBI / aBW parameters

(work in preparation).

In this case, each super-group g′ extracted by the Cythe pipeline corresponds to a detected

intensity band ‘b’ in the scattering image. Based on previous cytometry work and FDTD

simulation experiments1,2,15 (which demonstrate the presence of vertical intensity bands

in our scattering images) we found it most effective to use a band-based parameterization
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scheme. In this approach, the small high-frequency intensity areas resulting from smaller

scattering centers are effectively described by variations to the width and intensity of exist-

ing intensity bands (i.e. the presence and magnitude of high-frequency intensity fluctuation

is indicated by changes to parameters 5–13, Tab. 6.1). A similar parameter set could be

created for images without an observable band-like structure.

These parameters are extracted from the final super-group hierarchy through a series of

mathematical operations, shown in Eqs. (6.1) and (6.2) below. Every detected super-group

is analyzed with Eqs. (6.1) and (6.2), and the resulting values are combined into the set of

parameters P. Width statistics are derived by iterating through the agent population, inten-

sity statistics are derived by taking a single-pixel wide intensity sample down the vertical

center line of each super-group, and band spacing statistics are generated by comparing the

horizontal centers of all super-groups.

minb
x(y) and maxb

x(y) are defined as the minimum and maximum angular values that still

contain pixels belonging to band b at the vertical image position y. The function intensity(xb,y)
is the 8-bit intensity value at the horizontal center point x of band b, at the vertical position

y. Set Yb is the set of vertical values for band b. The functions min(), max(), and avg() are

the standard minimum, maximum, and average operations performed on the list of values

for a band. Band spacing (BS) is defined as the distance between the horizontal centers

of two neighbouring bands: |xb− xb+1|. Values for the maximum, minimum, and average

band spacing are calculated using the standard operations.

BW b(y) = maxb
x(y)−minb

x(y) (6.1a)

BW b
min = min(BW b(y), y ∈ Yb) (6.1b)

BW b
max = max(BW b(y), y ∈ Yb) (6.1c)

BW b
avg = avg(BW b(y), y ∈ Yb) (6.1d)

BW b
dev =

1
|Yb| ∑

y∈Yb

|BW b(y)−BW b
avg| (6.1e)
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BIb(y) = intensity(xb,y) (6.2a)

BIb
min = min(BIb(y), y ∈ Yb) (6.2b)

BIb
max = max(BIb(y), y ∈ Yb) (6.2c)

BIb
avg = avg(BIb(y), y ∈ Yb) (6.2d)

BIb
dev =

1
|Yb| ∑

y∈Yb

|BIb(y)−BIb
avg| (6.2e)

BIb
nn =

1
|Yb| ∑

y∈Yb

|BIb(y)−BIb(y−1)| (6.2f)

There is a dramatic increase in the amount of information available when we compare the

number of values in this extended parameter set to the number of indicatrix parameters

derived from one-dimensional scattering intensity slices. We expect this increase in para-

metric image information will lead to a corresponding increase in the predictive power of

future classification systems. Intensity band relationships (such as band spacing BS, Tab.

6.1) can be used to predict the nature of larger cell structures9, while variations in region

width and region intensity due to high-frequency image components (Params. 5–13, Tab.

6.1) may be used to detect the presence and number of micro- and nano- scale cellular

organelles (work in preparation).

The final step in any automated diagnostic system is a method to deduce cellular struc-

ture from the extracted scattering pattern parameters P. As described in earlier chapters,

there are a number of potential machine learning approaches that can be used to associate

extracted parameters with a labeled dataset to create a classifier with predictive power46,47.

6.5 Analysis Methods

We employed two testing methods to verify the validity of the Cythe system: qualitative

image analysis, and a quantitative statistical breakdown. For our qualitative analysis we pre-

sented the system with images representative of all three cellular scattering cases described

in Sec. 6.1 (e.g. intensity bands with a number of randomly placed intensity regions, as in

Fig. 6.2, right). Due to the difficulty surrounding quantitative segmentation analysis, our

statistical breakdown was performed on images containing the first two scattering cases (in-

tensity bands and bands with interference). This is explained below. In both cases our test

images closely matched experimental scattering patterns1,2 and numerical FDTD simula-

tions12, both visually and in the magnitude of the output parameters.
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In an ideal testing environment we would be able to use FDTD simulations and experimen-

tal data to verify the success of our segmentation system. However, to numerically analyze

system accuracy it is necessary to identify the ‘true’ segmentation and parameterization of

experimental data. As ‘true’ image boundaries are subjective in all but the simplest seg-

mentation problems, most segmentation evaluation methods rely on qualitative boundary

assessments for comparison values48; the few attempts at true quantitative evaluation typ-

ically rely on correlation data, and still involve comparisons with a manual (i.e. human)

segmentation25,32,48.

Thus, to quantitatively verify the validity of the Cythe extraction pipeline we used a mathe-

matical model to create a set of viable test images. These images contained a fixed number

of vertical intensity bands of varying intensity and width, irregularly placed high-frequency

intensity components, intensity band overlap, differing background levels, blurring, and

poorly defined band boundaries (i.e. qualities we observed in experimental scattering im-

ages). Unlike manually measured experimental scattering patterns, these model images

were numerous and provided a well defined set of ‘true’ parameter values (derived directly

from our mathematical image model) with which to statistically validate Cythe’s parameter

extraction.

Despite this, it was still difficult to objectively define the ‘true’ band width values. As bands

are represented in our test images by smooth intensity gradients with no discrete edges, the

‘true’ band width parameter (BW b(y)real) was measured as the horizontal distance between

band points where the pixel intensity was 80% of the band’s maximum intensity, relative to

a black background. This width most accurately reflected observations about real scattering

band width. Because of this approximate edge value definition, the validation data for band

width parameters is slightly less precise than for other parameters, as seen in the following

section.

These quantitative test images contained a more regular distribution of high-frequency in-

tensity components than was found in experimental images or our qualitative analysis im-

ages; high-frequency intensity regions were randomly placed only on intensity bands, as in

image cases one and two, Sec. 6.1. This additional regularity was needed generate reliable

true values for band parameterization—images containing a completely random distribution

of high-frequency regions (as expected from Rayleigh scattering, image case three) would

suffer from the same subjective evaluation problems as real experimental data.

Thus, each quantitative test image consisted of a varying number of Gaussian intensity re-

gions superimposed on a series of vertical intensity bands. Like real scattering patterns,

our test images contained bands of varying width and maximum intensity that were placed

at intervals across a black background. The intensity profile of individual bands, the size

101



and orientation of Gaussian intensity regions, and the variation of maximum band intensity

across the image were picked to match the intensity profiles expected in actual scattering

images. Finally, a 5× 5 Gaussian blur was applied to the images to smooth out any unreal-

istic intensity transitions.

These test images were then presented to the Cythe system for analysis. Each test image

was processed by the full computational pipeline (i.e. feature extraction, feature clustering,

and post-processing) to produce a set of output parameters (Pcythe). Another set of param-

eters were derived directly from the mathematical model used to generate the test images;

these parameters (Preal) represented the ‘true parameter values’ used in the creation of the

test images. We then inspected how well the true parameters Preal matched the parameter

values extracted by our pipeline Pcythe (i.e. how well they demonstrated a correlated linear

relationship that allowed accurate prediction of the true parameter values). Both the true pa-

rameter set Preal and Cythe parameter set Pcythe included all thirteen parameters outlined in

Section 6.4. As explained in the previous section, this band-based parameterization scheme

(calculated with Eqs. (6.1) and (6.2)) can be used to represent the influence of both large

scattering structures and nanostructure-derived high-frequency intensity variation.

To assess the pipeline’s ability to detect changes in band width and band intensity, these

tests were performed on 162 sample images. Two different test sets were generated. The

first set (T1: 143 images) was used to determine the system’s ability to detect variation in

band width and band intensity—parameters primarily influenced by the presence of smaller

scattering sources. In this set the number of intensity bands was held constant while the

number of Gaussian intensity regions present in the image was varied between zero and

fifty. The second set (T2: 19 images) was used to test the system’s ability to detect changes

in band structure and spacing, which relate to scattering from larger microstructural cellular

objects. In test T2, the number of intensity bands was varied between two and twenty, while

the number of Gaussian regions inserted into the image was held constant.

After each test set the Cythe parameter extractions were compared to the true parameters.

System success was determined by measuring how closely the Cythe parameters matched

the true parameters, as evaluated with a range of statistical tests for correlation and similar-

ity (described in the following section).

This procedure is similar to the comparison metric of Bovenkamp et al., where the plot of

human v.s. machine solutions was compared to a unity slope to determine accuracy21. In the

absence of any methods to objectively compare and evaluate segmentation schemes25,32,48,49,

this approach allowed a quantitative characterization of system success.
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In addition to these quantitative test images, we performed a series of qualitative tests on

a range images of containing features from all three scattering image cases presented in

Sec. 6.1 (e.g. Fig. 6.2, right). This was done to determine the system’s ability to remove

region bridges, detect regions in noisy images, and join detected regions into a structural

hierarchy. For these tests, we generated a test series consisting of images with vertical in-

tensity bands, randomly distributed high-frequency intensity regions, and vertical intensity

bands overlayed with a pattern of randomly distributed high-frequency regions of irregular

shape and size. Sample images and the corresponding results are presented in the following

section.

For these tests the scrub() and join() thresholds (β ,δ ) were set to 0.0018% and 0.028%

respectively. The agent view radius was R = 5× 5, and the agent neighbourhood was

N = 3×3. Images were reduced to I = 125×125. These values were empirically derived

on a small subset of the images, and subsequently used on the full set of test images without

modification; one parameter setting performed well for an entire family of images.

6.6 Results

As a summary of the following performance assessment: the Cythe pipeline was able to

detect relevant image features (e.g. intensity band pixels) in test images, remove horizontal

region bridges, and cluster the detected features into a set of spatially distinct regions (G).

These regions were then used to harvest a parametric representation (Pcythe) of the initial

image that directly matched the known parameters of the input image (Preal). As described

earlier, the parameter set P serves to numerically capture the structure of both the large

bands and small high-frequency intensity regions present in scattering images. This section

will begin with qualitative verification results, and conclude with a quantitative numerical

assessment of Cythe.

6.6.1 Qualitative Assessment

As shown in Fig. 6.7, the Cythe pipeline was able to affix the agent population (A) to the

vertical intensity bands in the test image. A visual comparison of the Cythe labeling (Fig.

6.7, right) with the initial image (Fig. 6.7, left) showed that the Cythe extraction matched

quite closely with our expectations from test image. We also observed that the system was

able to detect the presence and magnitude of width variations in the band structure (Fig.

6.7, bottom row).
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A

B

Figure 6.7: A visual comparison of Cythe region detection (row B) with the initial test image (row
A) for images with vertical intensity bands (left), high-frequency intensity regions (middle), and
high-frequency regions overlayed onto a band structure (right, similar to those observed in FDTD
simulations). Region color was assigned based on each group’s unique ID value; all regions were
verified to contain distinct ID values.

In addition to being able to detect linear bands, Cythe was able to detect small, arbitrar-

ily shaped intensity regions of varying brightness (Fig. 6.7, middle). As shown by the

difference between Fig. 6.7 left and right, Cythe was also able to detect the level of high-

frequency variation present in images containing high-frequency components that overlap

a pattern of vertical intensity bands. This observation further supports the efficacy of the

band-based parameterization scheme P. Random intensity regions (like those expected

from Rayleigh scattering) were indicated by width and intensity deviations within the de-

tected band structure—their intensity contributed to, and noticeably altered, the shape of

existing bands.

We found that Cythe was able to remove parameter-degrading horizontal intensity bridges

and use the clustering stage to group the agent population (A) into a set of distinct regions

(G). The removal of horizontal bridging can be seen in Fig. 6.8, and the ability to form a

population into spatially connected regions can be seen by the homogeneous region colors

in Figs. 6.7 and 6.8. As shown in the difference between the two agent populations in Fig.

6.8 (middle and right), we found that horizontal bridges less than three pixels in width were

removed during the feature detection stage . In addition, the use of a 4-neighbourhood for

communication in the feature clustering stage prevented distinct bands from being classified

as a single region due to any remaining weak connections (Figs. 6.7 and 6.8, right).
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Figure 6.8: A visual example of horizontal bridge removal. LEFT: the initial test image. MID-
DLE: the agent population directly after the agent fixation() routine; there are three bridges at this
point. RIGHT: final region identification after post-processing; weak connections between bands did
not adversely affect region identification—the two horizontal bridges were removed in the feature
detection stage, and the diagonal propagation restriction prevented ID leaking over the remaining
bridge (which was subsequently removed by the scrub() routine). Green dots represent fixed agents
(middle), and different colors in the clustering image indicate spatially distinct regions (right).

The join() routine constructs a set of vertical bands g′ out of the detected image regions G.

For noisy images this process would not be possible without prior use of the scrub() routine

to filter out small unconnected intensity regions. Figure 6.9 illustrates the use of the join()
and scrub() routines in the creation of a vertical band structure for simple images with

and without 10% of the images pixels assigned a random 8-bit intensity noise value (i.e.

random or independent noise, as expected from dust on a lense or bad CCD pixels). While

portions of the agent population affixed to noise-related pixel clusters (6.9, bottom middle),

the scrub() routine removed these small groups and the pipeline identified the same regions

found in the noise-free image (6.9, right). In addition, the detected regions were joined into

the same band structure for both the noisy and noise-free image (as shown by the number

and horizontal position of the yellow vertical lines, Fig. 6.9, right). This lead to the same

parameters being extracted for both the noisy and noise-free images. Similar performance

was observed for Poisson/counting noise, though high levels of Gaussian noise required the

use of a larger scrub threshold due to larger detected noise regions. A join threshold of

δ = 0.08 was used for the tests in Fig. 6.9.

In addition to accurately parameterizing our model test images, Cythe was able to extract

realistic parameters for a large set of FDTD scattering simulation images containing many

arbitrarily shaped randomly distributed high-frequency intensity regions, as derived from

complex cell structures with varying physical characteristics and organelle distributions

(work in preparation).
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Figure 6.9: Extraction of a band hierarchy for a simple noise-free image (top row) and for the
same image with 10% of the images pixels assigned a random 8-bit intensity value (i.e. random
noise; bottom row): the initial image (left), the agent population after the agent fixation() routine
(middle), and the final regions after post-processing (right). Yellow lines indicate band position
(xg′ ), and coloured regions in the post-processing image indicate spatially distinct regions g.

6.6.2 Quantitative Assessment

We found that the parameters extracted by Cythe from the test images (Pcythe) allowed us

to accurately predict the true parameters Preal extracted from the initial test images. This

was statistically determined by calculating the correlation coefficient (r – the amount of

covariance in the two populations, a good indicator of segmentation accuracy25), the sta-

tistical significance of the correlation (P(r) – the probability that correlation value r could

have arisen by pure chance for a given sample size), the chi-squared significance (P(χ2) –

the probability of both input and output variables coming from the same distribution), and

the standard error (SE) for each population of input/output variables (all calculated as per

Taylor50, using Eq. 12.11 and Sec. 12.4 on Pgs. 268, 271–275 for P(χ2), Eq. 9.15 and Sec.

9.4 on Pgs. 217–220 for r / P(r), and Eq. 4.14 on Pg. 102 for SE).

This comparison is shown in tabular form for tests T1 (band intensity parameters, Tab. 6.2,

and band width parameters, Tab. 6.3) and T2 (band number/spacing parameters; Tab. 6.4).

These tables present the statistics for an image reduction size of I = 125×125. From sta-

tistical theory50, r values greater than 0.216 (test T1, 143 samples) and 0.561 (test T2, 20
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Table 6.2: Statistical analysis for band intensity parameters
Parameter Description r P(r) P(χ2)
aBIavg Avg. Band Intensity Average 0.992 <0.0001 1.000
aBImin Avg. Band Intensity Minimum 1.000 <0.0001 1.000
aBImax Avg. Band Intensity Maximum 0.998 <0.0001 1.000
aBIdev Avg. Band Intensity Deviation 1.000 <0.0001 1.000
aBInn Avg. Band Intensity Deviation

(NN1)
1.000 <0.0001 1.000

1 nearest neighbour.

Table 6.3: Statistical analysis for band width parameters
Parameter Description r P(r) P(χ2)
aBWavg Avg. Band Width Average 0.386 <0.0001 1.000
aBWmin Avg. Band Width Minimum 0.872 <0.0001 0.528
aBWmax Avg. Band Width Maximum 0.724 <0.0001 1.000
aBWdev Avg. Band Width Deviation 0.907 <0.0001 0.286

samples) indicate a statistical correlation (i.e. a probability P(r) < 0.01 that the correla-

tion score could have originated by pure chance). These threshold r values are based on

the sample sizes used in our experiments. As shown in Tabs. 6.2–6.4, our derived values

are consistently greater than these minimum values for statistical correlation. Similarly,

chi-squared significance values approaching P(χ2) = 1.00 indicate no difference in the dis-

tribution of input and output values.

The uncertainty in each parameter was estimated by adding Poisson/counting noise (i.e.

each pixel was varied according to a normal distribution equal to the square root of the pixel

value) and processing the resulting image by the same method as the test data sets. This

was done for 56 images, allowing the extraction of a standard deviation that then allowed

the calculation of chi-squared significance values.

As described in Sec. 6.4, the parameters shown in Tabs. 6.2 and 6.3 are used to characterize

the intensity contributions from smaller Mie and Rayleigh scattering sources, while the pa-

rameters in Tab. 6.4 characterize the intensity contributions from larger Mie and geometric

scattering objects.

With regard to the system’s ability to correctly identify deviations in band intensity (test

T1), we found that Cythe was able to identify the magnitude and variance of intensity to a

high degree of certainty. At an image size of I = 125× 125 Cythe was able to correctly

identify the number of bands in every test image. The input and output intensity parameters

(aBImin/max/avg/dev/nn) showed strong correlation, as indicated by the r, P(r), and P(χ2) val-
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Table 6.4: Statistical analysis for band number/spacing parameters
Parameter Description r P(r) P(χ2)
B Number of bands 1.000 <0.0001 1.000
BSmin Minimum band spacing 0.995 <0.0001 1.000
BSmax Maximum band spacing 0.993 <0.0001 1.000
BSavg Average band spacing 1.000 <0.0001 1.000

ues (Tab. 6.2). Standard error for these intensity parameters was less than half an intensity

step on a 8-bit intensity scale.

The close relationship between input and output parameters was also evident for band

width and band width deviation parameters (aBWmin/max/avg/dev), as shown by the values

in Tab. 6.3. As explained in the previous section, difficulty defining the ‘true’ width values

in the test images lead to greater variability in the evaluation statistics r and χ2. While

width statistics (Tab. 6.3) did show lower correlation between input and output values

than the other parameters (Tab. 6.2, Tab. 6.4), all other values represented an excellent

fit. Width values were still well above the thresholds for chance correlation, as indicated

by r > 0.261, P(r)� 0.01. Despite having a high degree of correlation, the parameters

aBWdev and aBWmin exhibited a low P(χ2), and further investigation showed that this devia-

tion in input/output distribution similarity was due to a shallow (i.e. < 0.5) regression slope

between the input and output parameter sets. Considering the lack of ‘true-value’ precision

when quantitatively analyzing spatial parameters in this situation, the set of width statistics

in Tab. 6.3 sufficiently demonstrated a distinct relation between the actual layout of the test

images and the Cythe parameter extraction.

In addition to band width and intensity parameters, we observed that the system was able

to accurately determine the number and spacing of bands (test T2). As shown in Tab. 6.4,

the correlation coefficient (r) for each band-structure parameter approached 1.0 (i.e. per-

fect correlation). This indicates a one-to-one correspondence between the input parameters

Preal and the output parameters Pcythe. For the parameters BSmin,BSmax,BSavg there was a

standard error of less than 1.1% of the image width for both reduction levels. There were

no band number (B) identification errors in test T2, and the chi-squared significance test for

all parameters in Tab. 6.4 indicated no statistical difference between the input and output

parameters.

With respect to the magnitude of observed values from Eq. 6.1, we found a typical range

of 0.72–9.6 pixels for aBWmin/max/avg, and 0.0–0.99 pixels for aBWdev. For Eq. 6.2, in-

tensity parameter values were typically between 127.2–157.2 for aBImin/max/avg, 0.59–4.29

for aBInn, and 0.26–72.7 for aBIdev. Band spacing parameters varied greatly depending on

the number of detected intensity bands in a sample image; for our tests we found spacing
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parameters between 6.46–14.8 (Test T1) and 6.48–72.2 pixels (Test T2). The standard devi-

ation of parameter values observed under conditions with counting noise and random noise

was much less than the total parameter range observed during these tests.

As the size of images presented to the system increased (with the Agent View Radius being

held constant), we found that Cythe began to identify small erroneous bands within the

larger regions of the image. At an image size of I = 150× 150 the pipeline incorrectly

identified one extra band in 67 of the 143 T1 tests images. This lead to a noticeable decline

in correlation values, and incurred a corresponding increase in standard error. It is apparent

that the relationship between image size and Agent View Radius plays a role in feature

detection; this will be discussed in the following section.

6.7 Discussion

6.7.1 Remarks on Feature Detection

The success of the Cythe feature detection system is in a large part due to the use of regional

texture information to affect agent fixation. We chose to use an adaptive local threshold-

ing method based to its success within other texture-based segmentation problems and its

compatibility with agent-based image processing (as shown by a large body of previous

work18,20,27,30,41).

Edge detection is by its very nature a local undertaking25 and thus lends itself well to an

agent-based framework. By determining fixation based on an adaptive local threshold (µa,

the average intensity value within an agent’s view radius R), Cythe was able to effectively

label all edges irrespective of the differing background intensity levels found in scatter-

ing images. By setting the adaptive threshold level greater than the local average (as in

the agent fixation() routine), the system consistently labeled the high-intensity side of all

edges, isolating the band regions from the lower-intensity background.

Using an Agent View Radius of R = 5× 5, we found I = 125× 125 to be the most ap-

propriate size for image reduction. At this image size and view radius, the fixation routine

was able to accurately divide the image into spatially distinct regions regardless of differ-

ing background levels and gradient slopes. The distance between identified band edges was

small enough that the two edge-labeling agent populations for a given band connected along

the center of their band. This allowed bands to be detected as continuous units in both our

model test images and complex FDTD scattering simulations.
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We found that it was important to select a view radius close to the size of target image

features in the reduced image I. The two edge regions of a single band may not connect if

the Agent View Radius is significantly smaller than the band size. This lead to the identi-

fication of extra bands by the clustering stage. By varying the size of the view radius (i.e.

the adaptive thresholding region25) to match the image reduction level, feature extraction

remains accurate at any image size (though increased image size comes with an increased

computational cost, as described below). This follows from recent work in image saliency

detection and model matching33,51.

6.7.2 Remarks on Clustering

The propagate id() routine was a reliable and effective way to cluster the labeled pixels into

contiguous regions. This routine, which was based on the connected components labeling

algorithm commonly used in region identification problems24, provided a simple way to

identify groups of connected agents. Much like the self-organizing tile behavior shown by

Ghrist and Lipsky45, our system was able to effectively perform long-range organization

through simple local interactions. In addition, the distributed approach lends itself well to

parallelization—one of the major advantages of multi-agent systems43.

The removal of band bridging (as described in Section 6.4) was essential in the accurate

clustering of spatially distinct regions. The agent fixation stage eliminated direct horizontal

communication over bridges by eroding bridging agents (shown above in Fig. 6.8), while

the use of an agents 4-neighbourhood for communication prevented ID propagation over

any remaining (weak) junctions between band protrusions. Without the removal of band

bridging it was impossible to successfully parameterize complex images. A similar restric-

tion on the union of weakly connected regions has proved effective in other segmentation

and image identification situations24,40. The assumption that there will be no strong hor-

izontal links between bands follows from the structure of experimental scattering images

and our understanding of cellular scattering mechanisms.

Using an agent neighbourhood of size N = 3×3 further prevented erroneous ID propagation

between distinct bands. By only allowing communication between adjacent agents, ID

information was not able to travel over gaps between neighbouring intensity bands.

Due to the nature of the local interactions and the multiple sweeps through the agent popu-

lation, the ID propagation routine was found to be the largest computational component of

the parameterization pipeline. As the proper choice of agent view radius and image reduc-

tion size decreased the final size of experimental images to approximately I = 125× 125,

scalability was not an issue for our application. In the case of larger images, the use of a
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union-find structure (described in24) in the connected components algorithm would greatly

reduce the number of iterations through the agent population (though it would require a

higher level of centralized control).

6.7.3 Remarks on Post-Processing and Parameterization

The join() routine was found to be an effective way to model the structure inherent in

scattering images. It has been shown that changes in the relationships between full bands

are indicative of large changes in cellular structure9. By linking several vertically aligned

regions to a single band structure, we were able to analyze the relationship between whole

band units while still retaining specific information regarding the variation present in each

band and its associated sub-regions.

As shown in the results section, the join() routine managed to consistently group smaller

regions into cohesive bands, even in the presence of noise. Noisy images were divided

into the same number of bands (i.e. super-groups) as noise-free images (Fig. 6.9). This is

important for the parameterization stage of the pipeline; band discrimination plays a large

part in the calculation of band-based statistics, which in turn contain vital information about

the nature of the scattering source.

The scrub() routine helped the parameter extraction process by removing any large noise

regions that remained after the initial image reduction. By keeping the scrub threshold low,

large features were still preserved (e.g. Fig. 6.9) while small agent clusters were rejected as

noise; this parameter can be tuned to the specific nature (ambient noise and feature size) of

the images under analysis. However, it should be noted that setting the scrub level too low

can cause erroneous band identification, whereby bands of small pixel mass may appear

near the edges of each real band. Extra bands will distort the extracted parameter space and

should be avoided.

With regard to the selection of the variables for join() and scrub() (i.e. β and δ ): these

values are derived empirically based on observations regarding the size of noise artifacts

inherent in a scattering image and the approximate size and frequency of bands in the image.

Once selected, the parameters performed effectively on the entire test set. If significant

changes are made to the ambient background noise or the angular range of a scattering

image, the system threshold levels may need to be re-calculated.

While there are a number of other potential frequency analysis methods (such as Fast

Fourier Transforms) which could be used to ascertain spatial frequency information from

a scattering image, the Cythe parameterization routine allowed the extraction of a related
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structure of image regions within the context of a scattering situation (effectively embed-

ding frequency information within an interpretable band-like structure). This relationship

information is of use to human observers, both for validating the extracted parameter data

and for comparing results with those previously published in the cell scattering literature

(which generally reference the number and size of bands, or the angular location and span

of intensity band maxima).

6.7.4 Remarks on Image Size Reduction

Image size reduction was found to play an important role in both the generalization of region

boundaries and the rejection of low-level noise, as it influences the degree of abstraction ap-

plied to the input image33,34. A similar reduction approach is used in saliency-based vision

systems to detect high-level features in natural scenes, where detail (and the associated

noise) is sacrificed to rapidly form an accurate structural impression of the image33,34.

Appropriate choice of image reduction size depends on the size of the Agent View Radius,

and the number, spacing, and width of intensity bands within an image. A large reduction to

an image with very narrow bands or important high-resolution features could merge inde-

pendent intensity regions, or render some relevant features undetectable. Failing to reduce

an image with wide bands could lead to erroneous band detection or extra computational

cost / increased run times. We found that disparity between image reduction size and Agent

View Radius either lead to the identification of too many small intensity regions (e.g. when

the true aBWavg� R) or the grouping of many distinct initial regions into a small number

of larger features (e.g. when the true aBWavg� R).

Image reduction was also essential for manageable run times, as un-reduced experimental

cytometer images are typically greater than 700 pixels on a side. At an image reduction

size of I = 100x100, an entire pipeline run took approximately six seconds. At a reduction

size of I = 300x300 or larger, runs lasted two minutes or more. All performance tests were

conducted on a Pentium IV desktop computer. The entire Cythe pipeline and all related

routines were implemented in the Python programming language.

6.7.5 Remarks on Versatility

Cythe is expandable and may be readily adapted to new scattering situations; once inten-

sity regions are segmented and numerically represented (as in the group list G) it is possible

to test for any number of spatial relationships. In addition, the pipeline should be robust

to variations in expected image structure. By adjusting the post-processing settings, agent
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view radius, and image reduction size, Cythe can be made to detect intensity regions with

greatly varying geometric properties. Furthermore, due to the local nature of the parameter

calculation equations, slight band curvatures should not adversely affect parameter extrac-

tion.

In the event that images with different (e.g. non-vertical) spatial relationships need to be

analyzed, the join() routine may be modified or replaced to create a different region hier-

archy, and orientation-related changes may be made to the band bridge removal process.

This would also allow identification of randomly placed intensity regions, such as would be

generated by a field of Rayleigh scatters, without imposing a band structure on the intensity

data. The additional analysis of intensity region perimeter and area would allow further

distinctions to be made between differing region types (e.g. independent regions and full

bands). This would facilitate the parameterization of heterogeneous images consisting of

horizontal bands, tightly grouped region clusters, blobs arranged without a band structure,

or any other arbitrary cluster shape.

To this end, we have used Cythe within other applications, including the identification of

geometric objects in natural scenes, and the detection of bright fluorescent regions during

the genetic analysis of cell populations52.

The final goal of the Cythe system is the classification of biological samples based on light

scattering. Our preliminary results have shown that cell classes (e.g. those with features

indicating cell health or malignancy) typically reside at the extremes of the possible param-

eter space (work in preparation). The difference between cell classes appears to be much

greater than the variation due to noise, such as from imperfections in a fluid wave-guide or

CCD. Thus, based on the parameter deviation indicated from random and counting noise

(as discussed above), measurement noise should only moderately detract from Cythes clas-

sification ability and the correlations we observed between input and output parameters.

6.8 Conclusions

In this work we present a multi-agent system (Cythe) to parameterize laser scattering im-

ages of the kind produced by a wide-angle 2D cytometer. Extending upon a solid base of

tested image processing methods, Cythe uses a three-stage pipeline of feature detection,

feature clustering, and post-processing to create a parametric representation of an input

scattering image. The resulting parameter set numerically represents the complex image

features created by light scattering through a cellular body. This facilitates a parametric

solution to the inverse scattering problem of laser light through a single biological cell.
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Comparison of the Cythe-extracted parameter sets with those derived from a mathemati-

cal image model show that our pipeline is able to accurately extract information about the

structure and variation present in an image. In addition to our model test images, Cythe

is able to parameterize complex FDTD scattering images containing a number of randomly

distributed high-frequency intensity regions. Cythe was also able to effectively extract in-

formation from images without a noticeable band structure, and has been successfully mod-

ified to help detect and parameterize fluorescent genetic material in populations of stained

cells52.

This is possible through the combination of an adaptive feature detection system, an agent-

based clustering scheme, and a set of post-processing routines that reject noise and extract

high-level information about the relationships between image features. Once a parameter

set has been extracted from a scattering signature, it is possible to infer cellular structure

from regularities in the extracted parameters1,9–11. For example, we have observed corre-

lations between organelle content in simulated cells and several of the intensity and width

parameters present in Eqs. 6.1 and 6.2 (work in preparation). To date, no other group has

developed an computational system to extract detailed parametric information from wide-

angle cytometric scattering signatures.

A rapid method to infer cell characteristics from the information contained in 2D light

scattering plots is essential to the further development of wide-angle cytometry systems. We

have developed a method of predicting micro- and nano-structural cellular information from

the parameters generated by Cythe. A system integrating Cythe with a machine learning

classifier to characterize cellular organelle content will be presented in future work.
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Chapter 7

Reverse Monte Carlo Analysis for
Wide-Angle Cellular Scattering

7.1 Introduction

Despite the potential for very rapid medical diagnostics based on the scattering of cellular

organelles such as the mitochondria, current analysis methods are still unable to predict

complex 3D cell structures directly from a wide-angle scattering image. This chapter de-

scribes a preliminary study in combining the mtPatterns algorithm with Reverse Monte

Carlo methods—iterative algorithms that have been used to reconstruct 3D structure from

a number of different data types, including X-ray diffraction patterns and nuclear magnetic

resonance plots.

Here we apply RMC to the problem of identifying specific organelle distributions and place-

ments from wide-angle cellular scattering patterns. However, RMC is deliberately a very

general method7. This facilitates its first-order application to a number of very different

problem domains, but means that each domain requires its own set of tailored search pa-

rameters for more effective, optimized search7. As the search domain in the cellular ver-

sion of RMC (here abbreviated as cRMC) has key differences from that of traditional RMC

problems—e.g. cellular geometry and the spacing/size/arrangement of scatterers in the scat-

tering model—it is unclear what combination of search parameters and enhancements will

allow the successful reconstruction of cellular scatterer structure.

As such, this chapter surveys a range of possible parameters and optimizations. Parameters

sweeps are based on traditional RMC methods and known strategies for successful itera-

tive search and local optima avoidance. The resulting comparison presents a first look at

cRMC performance trends and highlights areas that merit further exploration. These initial

results show that cRMC may have the potential to reproduce approximate 3D distributions

of mitochondria through iterative image comparison and model refinement.
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7.2 Background

In previous work, we showed several approaches for the parametric interpretation of wide-

angle scattering signatures1–4. This provides a useful set of tools to look into the general

structure of a cell. However, there are cases when it is important to know specific details

about the internal placement of organelles—e.g. for exploratory medicine. In such cases,

wide-angle cytometry holds the potential to examine structures equal to, or smaller than,

the wave-length of light, without the need for expensive optical hardware5. Unfortunately,

extracting exact geometric information from these 2D patterns is still an unsolved problem.

While a specific solution to the cellular inverse scattering problem remains elusive6, other

disciplines have shown it is possible to infer 3D crystal structure directly from a two-

dimensional scattering pattern. Of note, Reverse Monte Carlo methods have found wide

use in predicting the structural arrangement of crystal, liquid, glass, polymer, and even mag-

netic particle systems7,8. These search methods function by creating a candidate model Pc

of a scattering structure or particle system and iteratively comparing its simulated scattering

pattern IMc (or a resulting parameterization) with the experimental scattering signature IMt

from an unknown target structure Pt; the goal is to infer the geometry of this target (i.e. Pt).

In most cases the difference between scattering images is calculated based on a χ2 metric,

where σ(x,y) is a measure of experimental error7 (n.b. where unknown, this may be the

magnitude at a point in the target image9). This “fitness function” is shown in Eq. 7.1.

χ
2
n = ∑

x,y

[IMc(x,y)− IMt(x,y)]2

σ(x,y)
(7.1)

Structure prediction is done via an iterative process; at every time step, the candidate model

Pc is perturbed in some way (usually through the position shift of one of more atoms7),

and its new simulated scattering signature is compared to the target signature. As per Eq.

7.2, if this results in a decrease in the χ2 image difference, the new candidate distribution

P′c replaces Pc. Otherwise, the population remains constant. With a small χ2-dependent

probability, poor distributions replace a more successful previous population—as in evolu-

tionary computing (EC) and simulated annealing, this helps the algorithm avoid premature

convergence to local optima7. During iteration, structural constraints are also imposed on

the candidate model to steer the evolution of a solution and ensure a physically relevant

candidate solutions.
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Pc =


Pc, if χ2

n < χ2
n−1

P′c, if p < exp(−(χ2
n −χ2

n−1)/2);

Pc, otherwise

(7.2)

After a set number of iterations, or the onset of a termination condition (such as a low

rate of change10), the candidate population Pc is returned as a possible solution to the true

target structure Pt. This method has proved highly successful for fault detection, structural

exploration, and crystal identification7. A description of the traditional RMC process can

be found in McGreevy’s comprehensive review article on the subject7.

It is extremely important that sub-optimal solutions are at times accepted by the search

process to avoid premature convergence, especially as solutions stabilize on known good

candidates7,10 (e.g. using Eq. 7.2). In traditional RMC, the probability of accepting a sub-

optimal solution is tied to the value of a fitness-dependent exponential function7. McGreevy

shows that this is an effective analog to the energetics-based Metropolis criterion used in

Metropolis Monte Carlo (MMC)—another common, but less general, method for iterative

structure prediction7. As in simulated annealing and some evolutionary algorithms, MMC

uses a Boltzmann distribution to determine the “selective pressure” or generosity of the

acceptance routine7,10. The MMC acceptance probability is therefore similar to Eq. 7.2, but

contains a denominator term that changes during iteration: p < exp(−(χ2
n −χ2

n−1)/(KbT )),
where Kb is the Boltzmann constant and the cooling schedule T is a measure of system

energy/order7,10. This gives the acceptance algorithm feedback as to the actual (or operator-

defined) state of the search process7,10.

By contrast, RMC aims only to produce a viable model that is consistent within its own con-

straints and error definitions, and is not necessarily governed by defined energetics7—the

rate of acceptance of sub-optimal solutions is therefore determined by a dynamic feedback

signal that depends on the observed state of the search process (e.g. χ2
n −χ2

n−1)7. This gives

it the flexibility to deal with novel data types and avoid some of the over-fitting of errors ex-

perienced using MMC7. It also removes the need to determine an arbitrary cooling schedule

for a domain with no thermal energetics, a lengthy task that if done improperly can severely

compromise the quality and validity of results7. Despite these issues, the Metropolis cri-

terion is a powerful approach that can—with a valid cooling schedule—effectively avoid

premature convergence. This has been shown in evolutionary computing (memetics) tasks,

where the cooling schedule—and thus selective pressure—was tied to the diversity of in-

dividuals in a candidate population10. Due to the wide range of possibilities, however, the

evaluation of such cooling schemes is beyond the scope of the current study.
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Table 7.1: The RMC algorithm for scattering prediction

0: set target image IMt

1: initialize candidate population Pc

2: for n ∈ N || termination:
3: P′c = Pc

4: if Pjump: randomly replace element in P′c
5: else: move random element in P′c by δ

6: IMc = mtPatterns(P′c)
7: evaluate χ2

n difference between IMc and IMt

8: update Pc based on χ2
n and χ2

n−1
9: return Pc

7.3 RMC for Cellular Light Scattering

Recently, we demonstrated a rapid simulation method that was capable of producing realis-

tic wide-angle scattering signatures from a distribution of mitochondrial scatterers1,3. This

method—the mtPatterns algorithm—allows quick image generation and comparisons not

previously possible. As such, it facilitates the use of RMC methods for the cellular scatter-

ing problem. By treating a mitochondrial scattering distribution rn as the RMC candidate

distribution Pc, given a known scattering geometry—i.e. the location of scatters with re-

spect to incident light and a receptive field—we can iteratively generate a set of candidate

scattering signatures using the procedure described in Tab. 7.1.

As with transferring any method to a new domain, the number of possible parameter com-

binations is vast. Similarly, some procedures and parameters used in the traditional domain

may fail in the new domain, requiring alternate approaches. With this in mind, we use the

following work to explore the transferability of RMC to the cellular domain. The results

present a first-order sweep through the possible parameter space to identify areas for fu-

ture improvement. Simplicity of solutions is emphasized, and where possible we draw on

standard methods from both RMC and EC. This study is not meant to describe a finished

or fully optimized method; rather, it presents a constructive starting point for future cRMC

implementations.

7.3.1 Mutation Methods

Variation or modification of the sample distribution (“mutation”) is the fundamental pro-

cedure for improving a candidate solution in RMC and many EC implementations10. The
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magnitude of the mutation, and the type needed, is highly application specific; many very

successful mutation schemes have been described in the literature, but none are effective

in every situation10. In this work we use the standard variation procedure from RMC, but

supplement it with deterministic (dynamic) parameter control methods as outlined in Eiben

and Smith10.

As done in traditional RMC7, at each iteration one scatterer (organelle) is randomly selected

and moved via a Gaussian distribution triple Gθ ,φ ,r(0,δ ). This move is centered on the

organelle’s location with a step size (δ ) given in microns. Maximum movement ranges and

boundary checking (e.g. for collisions between organelles) are used to prevent the violation

of physical constraints7. This is the cRMC analog to hard shell potential constraints7. Eiben

and Smith describe how adaptive parameters can facilitate the early acquisition of good

solutions in a rugged search space without deterring the exploitation of identified optima

later in the search process10. However, depending on the nature of the search domain, it

can be advantageous to focus on certain types of exploration mechanisms, both dynamic

and static. As such, tests were performed with the mutation step size δ being held static

(SM), varied linearly during the run (DM), and set to zero (deactivated).

Computational intelligence studies have shown that in some cases random shifts to other

portions of the search space can help iterative search climb out of local minima10,11. To ex-

amine this possibility for cRMC, we implemented a routine that can, in lieu of the standard

Gaussian movement, randomly relocate one member of the population with a probability

Pjump. If p < Pjump, one scatterer in P′c is replaced with a new randomly located organelle

whose coordinates are picked from a uniform distribution U([rm,rM];θ ;φ) (where ri and ro

are the minimum and maximum radii of a cellular distribution volume, and θ ,φ are angular

coordinates; Eq. 7.3). As shown by a number of groups, “hyper-mutating” a population

beyond the bounds of normal movement can possibly access a more viable region of the

search landscape10–12 (e.g. relocating an organelle to the far side of the nucleus). This is

comparable to classical RMC schemes where atoms are added, modified, or deleted during

the course of a run7. Thus, for each mutation type, we also tested the effect of keeping

the jump probability Pjump static (SJ), varying it linearly over the course of a run (DJ), and

setting it to zero (deactivated). This allows classical RMC (no Pjump, static mutation) to be

compared to more adaptive methods to determine the best combination for cRMC.

P′c[i] =

U([rm,rM];θ ;φ), if p < Pjump

P′c[i]+Gθ ,φ ,r(0,δ ), otherwise
(7.3)
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7.3.2 Acceptance of Solutions

Accepting sub-optimal solutions is critical to avoiding local optima and finding narrow fit-

ness basins in a rugged search landscape10. To help identify the best method for accepting

sub-optimal solutions, we used both Eq. 7.2 from traditional RMC and a deterministic pa-

rameter control scheme that that varies the likelihood of accepting sub-optimal solutions

over the course of the run in response to a pre-defined schedule or system feedback. In

this case, we experimented with a basic linear schedule. This allowed, with small proba-

bility, the system some free movement (FM) without penalty, encouraging the exploration

of unseen sections of the search landscape. This was coupled with the option for a “flash-

back” (FB) probability, whereby the population could return to a previously known best

(or other solution point) if it did not improve after a set number of generations (i.e. a form

of “elitism”, as described by Eiben and Smith10). Test were performed for all possible

combinations of these options, and compared to the acceptance criteria of classical RMC.

7.3.3 Fitness Metrics

Fitness metrics, or ways of measuring the success of a solution, drive the iterative search

process. As such, identifying the best fitness representation for a given search problem is

critical to the success of the method10. For the cRMC fitness metric, we explored the use

of direct χ2 pixel-based comparison (PBRMC) as in traditional RMC, and also a fitness

metric based on texture attributes (texture-based comparison; TBRMC). As described by

McGreevy, it is often advantageous to base fitness on a parameterization or feature-based

representation of the experimental sample, instead of the sample itself7. For the TBRMC

texture metric, the sum-squared-error (SSE15) between the target and candidate was com-

puted for a vector of five Law texture parameters known to be sensitive to distribution

shape—i.e. S5, S5x2, W5, R5, and E52. As demonstrated in previous work, using tex-

ture information will decrease sensitivity to exact organelle position, but should increase

robustness to population rotation and translation2,3.

The best option is likely a combination of the two approaches, as this could maintain a

degree of specificity while steering the search process toward viable geometries through

distribution-sensitive texture parameters. As such, tests could be performed using a fit-

ness metric that is the normalized and balanced combination of both texture and direct-

comparison χ2 values. Texture and direct comparison functions provide preliminary re-

sults. Future work will present a more detailed discussion of a hybrid fitness function, and

a complete analytical and comparative study is currently underway.
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7.3.4 Test Cases

The TBRMC and PBRMC approaches were applied to two different target models: a pe-

ripheral distribution (organelles located within 0.8µm of the cell wall) and a perinuclear

distribution (organelles located within 0.8µm of the nucleus); distribution geometry and

simulation parameters were set according to Pilarski et al.2. As discussed previously, these

distributions can be used as indicators for a cancer patient’s susceptibility to treatment, and

can be used to detect the progression of disease2,13.

Each model contained 100mt. For the target population Pt, organelles were randomly

placed inside the distribution boundaries. For the starting candidate population Pc, or-

ganelles were randomly placed within the entire available volume (e.g. a diffuse distribu-

tion, as per Pilarski et al.2). As per our previous work2, the simulated cell parameters were

based on a known cancerous cell type (Raji), typically found with a nuclear radius of 4um

and a cell radius of 8um14. For this preliminary study, each RMC run lasted 1000 itera-

tions, and was done for a number of different starting candidate populations for each target

distribution.

7.4 Results

A quantitative comparison of the success of different mutation, acceptance, and flashback

parameters is shown in Figs. 7.1 (TBRMC) and 7.2 (PBRMC). Traces in these plots indicate

the average distribution radius of the best candidate solution; this is one measure of how

close a candidate distribution is to the target distribution. For the tests shown in Figs. 7.1

and 7.2, a peripheral target distribution was used, as per the description in Pilarski et al.2.

The average radius of this peripheral target distribution was 7.6µm. The average starting

radius for each candidate distribution was approximately 6.05–6.15µm, and organelles were

initially spread at random throughout the entire cytoplasm (i.e. a diffuse distribution2). Each

trace indicates the average of five tests, each initialized with different random seeds for both

the target and candidate distribution (n.b. the same starting and target models were used

for both TBRMC and PBRMC to allow valid comparison between methods). Maximum

variance for any given trace was approximately ±0.05µm, often less.

Traces are labeled with the combinations of dynamic and static movement and jump prob-

abilities (DM-DJ / SM-SJ), free movement (FM), and flashback rate (FB) used in each

set of tests. Dynamic mutation size (DM) was linearly varied from δ = 4.0µm (start) to

δ = 0.25µm (end), dynamic jump probability (DJ) was linearly varied between Pjump = 0.1

(start) and Pjump = 0.0 (end). Static mutation size (SM) was set at δ = 2.0µm, while static
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Figure 7.1: Comparison of mutation, acceptance, and flashback parameters for TBRMC using
100mt and a peripheral target distribution. Traces indicate the average distribution radius of the
best candidate solution using combinations of dynamic and static movement and jump probabilities
(DM-DJ / SM-SJ), dynamic free movement (FM), and flashback (FB). The higher the trace, the
closer the system is to the avg. radius of the target distribution (in this case 7.6µm). Maximum
variance for any given trace was approximately ±0.05µm, often less.

jump probability (SJ) was set at Pjump = 0.1. Where used, the dynamic free movement

probability (FM) was linearly varied between 0.1 (start) and 0.0 (end), and flashback test-

ing (FB) occurred every 100 generations. Comparison image size was 25×25px.

There are several important observations to take away from Figs. 7.1 and 7.2. For TBRMC,

dynamic mutation schemes outperformed static schemes. In addition, dynamic schemes us-

ing the linear free movement probability showed the greatest potential for refining candidate

solutions, as measured by their high final radius values for Pc. In particular, a small amount

of blind exploration of sub-optimal solutions seems to allow the algorithms to more fully

examine the search landscape and find better candidate models; this holds with expectations

for both RMC and EC literature7,10.

Comparing TBRMC to PBRMC, it was found that—unlike TBRMC—an increase in the

fitness of the best candidate solution frequently did not correlate with a successful move

toward the target distribution. This can be seen via the oscillations in Fig. 7.2. However, as

with TBRMC, DM-DJ-FM produced the best final result after 1000 iterations. The differ-

ence between static and dynamic methods was less pronounced for PBRMC, and in some

cases negligible. Static methods equaled or exceeded dynamic methods early in the itera-

tion, but dynamic methods showed a steady increase to eventually match or exceed them.
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Figure 7.2: Comparison of mutation, acceptance, and flashback parameters for PBRMC using
100mt and a peripheral target distribution. Traces indicate the average distribution radius of the
best candidate solution using combinations of dynamic and static movement and jump probabilities
(DM-DJ / SM-SJ), dynamic free movement (FM), and flashback (FB). The higher the trace, the
closer the system is to the avg. radius of the target distribution (in this case 7.6µm). Maximum
variance for any given trace was approximately ±0.05µm, often less.

It is important to note that methods using the traditional RMC acceptance criteria shown

in Eq. 7.2 performed exactly the same as standard DM-DJ and SM-SJ—they were less

successful than a simple linear probability for sub-optimal acceptance. Experiments with

an increasing free movement probability that varied from 0.0 (start) to 0.1 (end) showed

inferior performance to the decreasing free movement probability traces shown in Figs. 7.1

and 7.2—for both TBRMC and PBRMC, final performance for decreasing FM was better

than DM-DJ, but significantly less than DM-DJ-FM. This indicates that for cRMC it may be

advantageous to randomly explore the search space in the earlier stages of RMC iteration.

However, too much random exploration appears to be detrimental. For the DM-DJ case, a

FM rate of 0.25 (start) was found to perform worse than a FM rate of 0.1 (start), as did a

static FM rate that was held at 0.1 for the entire iteration. This indicates that while too much

unconstrained movement will lead to high initial gains, in the middle and end of the search

process it may negatively impact candidate solutions. Additional comparisons indicate that

DM-DJ-FM dramatically outperforms tests with just a high static mutation or jump rate,

and also tests where either the DM or DJ rate was increased as the iteration progressed (i.e.

upwards linear change). These observations suggests that the performance of the DM-DJ-

FM scheme is not just a factor of high initial mutation parameters—later refinement is in

fact useful. This was the case for both peripheral and perinuclear target distributions.
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Figure 7.3: Comparison of scattering images from a peripheral target population IMt containing
100 organelles with a DM-DJ-FM candidate population IMc after 0 (start) and 1000 (end) iterations
using (A) TBRMC and (B) PBRMC.

Fig. 7.3 shows a comparison of IMt with the candidate scattering images captured at the

beginning and end of DM-DJ-FM iteration—i.e. at 0 and 1000 iterations of the TBRMC

and PBRMC tests shown in Figs. 7.1 and 7.2. While the actual composition of IMend
c is

different from the target image IMt (as shown by the brightness in the difference images

|IMend
c − IMt|), it shares a number of visual similarities in terms of the shape and size of its

component intensity regions. Candidate image texture characteristics such as peak shape

and size begin to approach those of the target image toward the end of the TBRMC test.

This increase in texture similarity was quantitatively observed as a significant decrease in

the recorded SSE values over the course of TBRMC iteration. As would be expected, the

increase in texture similarity between IMc and IMt was not as pronounced for candidate

images generated using PBRMC (shown in Fig. 7.3, B); the χ2 metric leads the algorithm

to match the exact intensity profile, as opposed to texture quality. This increase in exact

image similarity can be seen in the decreased intensity of |IMend
c − IMt| in Fig. 7.3, B.

As a graphical example of population improvement over the course of RMC, Figs. 7.4 and

7.5 show a comparison of a peripheral target population Pt containing ten organelles (A)

with the candidate population Pc after (B) 0 and (C) 1000 RMC iterations (using TBRMC,

Fig. 7.4, and the PBRMC χ2 metric, Fig. 7.5). These tests both used a dynamic mutation

size that shifted from δ = 4.0µm (start) to δ = 0.25µm (end), a dynamic jump probabil-

ity between Pjump = 0.1 (start) and Pjump = 0.0 (end), a dynamic (linear) free movement

probability between 0.1 (start) and 0.0 (end), and flashback testing every 50 generations;

comparison image size was 25×25px.
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A

B

C

Figure 7.4: Comparison of a peripheral target population Pt containing ten organelles (A) with the
candidate population Pc after (B) 0 and (C) 1000 iterations using TBRMC. The cell distribution’s
Y/Z projection is shown on the left, with the shaded region indicating the region taken up by or-
ganelles, while a histogram showing the radius of component organelles is to the right (blue dotted
line indicates the avg. radius of the distribution). After 1000 iterations, there is a noticeable shift in
the candidate distribution, toward the periphery of the cell.
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A

B

C

Figure 7.5: Comparison of a peripheral target population Pt containing ten organelles (A) with the
candidate population Pc after (B) 0 and (C) 1000 iterations using PBRMC. The cell distribution’s
Y/Z projection is shown on the left, with the shaded region indicating the region taken up by or-
ganelles, while a histogram showing the radius of component organelles is to the right (blue dotted
line indicates the avg. radius of the distribution). After 1000 iterations, there is only a slight shift in
the candidate distribution, toward the periphery of the cell.
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The cell distribution’s Y/Z projection is shown on the left, with the shaded region indicating

the radial region taken up by organelles, while a histogram showing the radius of component

organelles is to the right (blue dotted line indicates the avg. radius of the distribution). After

1000 iterations using TBRMC, there is a noticeable shift in the candidate distribution toward

the periphery of the cell. However, after 1000 iterations of PBRMC there is only a slight

shift in the average radius of Pc toward the periphery of the cell.

Qualitative results for this ten organelle study held with those of the 100 organelle study

shown in Figs. 7.3. Though TBRMC showed larger differences between IMend
c and IMt

than PBRMC, reflected in the difference image |IMend
c − IMt|, image texture in IMstart

c was

visually closer to that of the target image; e.g. as would be expected for a shift toward a

peripheral distribution2, intensity regions are on average smaller than in IMstart
c .

Both qualitative and quantitative observations using both peripheral and perinuclear dis-

tributions indicate that TBRMC has the potential to identify cellular geometry, at least in

general terms, from a wide-angle scattering signature. As expected, while a texture-based

fitness metric was found to be less sensitive to the exact position of organelles, TBRMC

was much more successful in determining the overall shape of a population than PBRMC.

It is likely that by developing a hybrid of these two fitness metrics it would be possible to

quickly approach the distribution type (using TBRMC) then focus in on the exact place-

ment of organelles (using PBRMC). Work with expanded direct image comparison metrics,

hybrid metrics, and additional parameter values is currently underway.

7.5 Conclusions

In this chapter, we demonstrated an extension of RMC analysis techniques to the wide-angle

scattering domain, and showed how it may be used to help predict 3D organelle distribu-

tions for medically relevant cell types from wide-angle light scattering patterns. This is

relevant to predictive systems, as the ability to recoverer a 3D distribution of organelles

could help identify and characterize the progression of disease13,16 and help predict a pa-

tient’s response to therapy13,17. While these results are preliminary, and there is a range of

parameter values and search methods left to explore, this work provides good a foundation

for later studies.

From the current survey of the available parameter space, it was found that TBRMC meth-

ods using free movement generated the best final result, and improve quite rapidly at the

beginning of the RMC iteration. However, they seem to plateau early in the iteration pro-

cess (Fig. 7.1). This could be the result of premature convergence, and indicates the need
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for tests to determine if a different (e.g. non-linear) criteria for accepting sub-optimal so-

lutions, or a more complex method for varying mutation, would facilitate continued (and

more rapid) improvement. PBRMC showed slightly worse performance when compared to

TBRMC, but was more successful at actually matching the exact intensity pattern of the

target scattering image (though not the target image texture).

While the initial acceptance of sub-optimal solutions (FM) may be one key to finding good

candidate populations in cRMC, the exact free movement probability to use and the rate

at which to vary its value during iteration remain open topics for study. The success of

tests using free movement indicate the potential for more complex adaptive acceptance and

mutation methods—e.g. gradient-based methods as used in evolutionary strategies, empir-

ical potential structure refinement, or a true Metropolis criterion and associated cooling

schedule based on fitness change or solution diversity7,10. Additional studies are needed to

determine if flashback (elitism) does in fact help find good solutions, or if it actually hinders

the identification of novel solutions (as seems to be indicated by Fig. 7.1).

To our knowledge, this preliminary work is the first exploration of RMC methods to infer

specific aspects of 3D cellular geometry directly from its wide-angle scattering signature.

This holds great potential for both patient diagnostics and exploratory research. Future work

will expand these initial results, using comprehensive multi-objective fitness functions and

more advanced mutation and free movement schemes to avoid the premature convergence

of solutions.
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Chapter 8

Conclusions

The work presented in this dissertation describes a new way of understanding the link

between wide-angle scattering patterns and cellular structure. This is a critical research

problem as light scattering patterns contain a wealth of medically relevant structural in-

formation1–5, such as cell-macrogeometry1, optical properties2,5, and the distribution of

mitochondria within a cell6.

It also impacts new advances in device design and devleopment. Emerging LOC devices

are poised to make an important contribution to clinical practice and exploratory medicine7.

This is especially true for the wide-angle cytometer—through miniaturization and optimiza-

tion, these diagnostic platforms hold the potential to dramatically reduce testing costs while

increasing the speed, accessibility, and accuracy of tests4,8–10. Using the systems and meth-

ods developed in the previous chapters, researchers now have the ability to fully engineer

and utilize these powerful optical tools.

As described in Ch. 2, previous attempts to solve the cellular inverse scattering problem fall

into the context of direct, parametric, and iterative methods. These approaches can produce

a range of information about a scattering body or distribution. Despite the lack of a direct

mathematical inverse solution2, parametric and iterative methods have been highly success-

ful for limited angles, 1D scattering scenarios, and related problem domains1–5,11. Prior to

the work described in this dissertation, no comparable approaches had been demonstrated

for the case of wide-angle cellular scattering.

This work approached the scattering problem from three angles—simulation and optical

theory, image analysis, and biomedical pattern classification—addressing each of the major

open problems identified from previous studies (presented in Ch. 2). Chs. 3 and 4 tackled

the problem of scarce labeled data—experimental wide-angle scattering datasets are lim-

ited in their availability, and previous simulation methods were either too restrictive in their

geometry or subject to large computational constraints4. The new simulation methods pre-

sented herein provide both a rapid method to generate massive quantities of accurate labeled
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scattering data, and a new theoretical Fourier-diffraction approach to the interpretation of

wide-angle signatures. As such, the patterns generated by this method were used as the

primary data source throughout the remainder of the dissertation.

Following this, Ch. 5 demonstrated the use of pattern analysis, attribute selection, and ma-

chine learning classification to categorize large sets of scattering data. This showed that

texture metrics are a viable and accurate way to analyze mitochondrial scattering informa-

tion. Ch. 6 presented an extension to image processing and parametric feature extraction,

providing a viable method to interpret shape information in 2D scattering signatures, such

as the intensity artifacts created by scattering from combinations of cellular micro– and

macrostructures. Finally, Ch. 7 shows how both simulation and feature extraction may be

combined to determine 3D geometric information from a scattering signature through the

use of iterative search methods.

Taken as a whole, this presents a new theoretical and methodological context to approach

wide-angle scattering, with tools and techniques that should transfer well to other complex

pattern analysis domains. The systems and methods described in the previous chapters have

been presented at conferences, published in journals, and protected under patents pending.

As such, they will provide a solid basis for others to continue exploring the simulation,

interpretation, and classification of wide-angle cellular scattering patterns.

8.1 Impact and Contributions

Cellular light scattering is a rapidly expanding field with links to a number of other dis-

ciplines, including but not limited to nanobiotechnology, cellular scattering theory, optical

simulation, optical device design, computer vision, and machine learning. As such, this

work embodies a diverse interdisciplinary contribution—a new cellular light scattering sim-

ulation method was presented, validated, and used to develop image processing techniques

that enable rapid pattern-based medical analysis.

One major advance is the ability to perform rapid medically related classifications directly

from wide-angle scattering signatures19,20. This processing power and theoretical back-

ground will prove invaluable in the development of next-generation LOC devices. Work on

both general and specific solutions to the inverse scattering problem has provided the aca-

demic community with a rapid new way to simulate cellular light scattering21, the ability

to effectively categorize scattering images based on highly predictive texture metrics19,20,

a powerful segmentation system to extract shape-based features from wide-angle scattering

images22, and a first approach to iterative 3D structural reconstruction. It has also demon-
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strated a number of previously unknown correlations between scattering pattern behaviour

and scatterer structure19,20, and sets firm limits on what can and cannot be observed using

information from wide-angle scattering signatures23. This will have a significant impact on

exploratory medicine and research into the origins of disease.

This dissertation presents new examples of both parametric (general) and iterative (specific)

approaches to the inverse structure prediction problem. In the process, it demonstrates how

detailed changes to a cell’s internal structure contribute to its wide-angle scattering pattern.

By making visible the qualitative and quantitative relationships between scattering patterns

and scatterer structure, it is possible to identify key features of two-dimensional scattering

images and relate them back to changes in cellular structure. This confirms trends presented

in previous studies on limited angular slices, provides a platform to validate new simulation

methods (e.g.4,12), and develops new relational rules and simulation methods which may be

used in experimental sample classification and disease research. To date, the literature has

only explored this style of analysis for one dimensional patterns from commonly available

fixed-angle cytometry devices, neglecting the rich information content of newly accessible

two-dimensional scattering patterns from wide-angle cytometers4.

Wide-angle cytometry is an emerging field, with only a select number of devices in op-

eration on the global stage. Prior to this work, there were no feature analysis or image

processing solutions specifically designed for use on a wide-angle scattering signature22.

This work presents the first example of a computational framework to begin to analyze

and identify relevant patterns in complex 2D cellular light scattering patterns. As evi-

dent from the sampling in previous chapters, cellular light scattering patterns are extremely

complex and varied, and come with a unique set of image processing and pattern analysis

challenges19,20,22. The methods developed over the course of this project are immediately

transferable to other difficult image-based problem domains, and will expand both the pat-

tern recognition community’s knowledge of possible application domains and its available

algorithmic toolset.

8.2 Future Directions

The work presented in this dissertation opens the door for additional research into the para-

metric analysis of scattering structures and their 3D reconstruction from patterns of scat-

tered laser light. In particular, two new studies could apply and extend the work presented

in the previous chapters. As preliminary work has been done on each, they are presented

here as an example of future directions that use and build on the tools and theoretical basis

developed herein.
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8.2.1 Applied Parameterization for Pattern Decomposition

As described in Chs. 3–5, the intensity contribution of small scatterers is centered primarily

on the side-scattering region, and takes the form of a number of small complex intensity

regions. Through the pattern analysis methods in Ch. 5, it is now feasible to infer the

arrangement of these organelle distributions directly from wide-angle scattering patterns.

While this is an effective way to process the side-scattering data, emerging cytometry de-

vices will soon have the capability to consistently image a full 180o hemisphere around

an experimental sample9,10. This presents the challenge of separating organelle-related in-

tensity information from the contributions of cellular macro-structures. Light scattered by

cellular components such as the nucleus and the cell wall is focused within the front and

back scatter region5,10, but also appears as intensity bands throughout the entire scattering

hemisphere9,12.

Using the shape-based image analysis methods described in Ch. 6, it is possible to detect

and isolate a band-based intensity pattern. The band geometry resulting from the Cythe

image segmentation process gives a compact description of contributions of larger macro-

structures. Once identified, these intensity contributions could be separated from those

of smaller organelles. Using the relationships between intensity maxima and particle size

presented by Maltsev2 and Sem’yanov et al.1, and the distribution analysis methods of Ch.

5, this would allow the parametric interpretation of both cellular micro- and macrostructures

from a single image. In a similar fashion, the Cythe algorithm could be used to identify

and subtract other kinds of characterized noise and device-related interference.

Preliminary results indicate that this approach warrants further investigation. We have ap-

plied the Cythe algorithm to an example dataset of hemispherical FDTD simulations from

models containing cellular macrostructures surrounded by small organelles and shown the

ability to extract a viable representation of the intensity band structure within the image.

This enabled us to determine the mitochondrial content of small cell models. Further work

using larger simulated datasets and experimental data could yield a powerful new method

for robust parametric analysis.

8.2.2 Advanced Iterative Structure Prediction

Initial work with RMC methods in Ch. 7 showed it was possible to iteratively derive a first

approximation of the 3D structure of a scatterer population. However, there are a number

of places where classical RMC may be modified to better perform for the specific case

of inverse light scattering from mitochondria. Some of these possible improvements are

suggested below, as avenues for further exploration.
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Cells with an unknown number of organelles

In experimental situations, the true number of organelles in the target cell is likely unknown.

It is important to be able to still derive candidate structures, even given this possibility.

There are two approaches of note13: i) try a number of different candidate distribution

sizes, run for a short time, and then perform intensive search on the best solution(s); this

is effective, but very time consuming13, and ii) implement methods to add and subtract

scatterers during the run; this means the system needs to be more accepting of sub-optimal

solutions, and may increase run time13. Both of these should be explored, with reference to

the current literature before proceeding—clustering systems commonly face this problem

when determining how many clustering groups to apply to a population; there is no easy

solution14.

Different fitness metrics, adaptive parameters, and acceptance of sub-optimal moves

Direct χ2 comparison or simple feature comparison may not be the best evaluation met-

rics for the cRMC, despite their use in traditional RMC methods. The fitness function is

the primary aspect of operator control in iterative systems13. A detailed survey should

be performed of other possible fitness assessment methods, including hybrid functions

that combine direct comparison with additional image parameters to fully exploit both the

comparison-based specificity and general identification capabilities of these metrics.

Another issue discussed in Ch. 7 is that the acceptance condition used in traditional RMC

may be too restrictive in a search space with different physical constraints and large muta-

tion parameters. Our experiments have shown that in most cases for cRMC, the traditional

acceptance condition rarely allows sub-optimal placement. Possible reasons for this may

be that the physical constraints of placing organelles within a cell take the candidate images

too far from the target to be considered for acceptance, even when the solution approaches

convergence. While more generous linear acceptance probabilities were explored in Ch.

7, it would be useful to examine other options for premature convergence avoidance, as

discussed by Eiben and Smith13.

Finally, it would be useful to compare a number of different parameter combinations to

find the subset most able to explore the topography of the scattering search domain. Adap-

tive methods like evolutionary strategies could be implemented as described by Eiben and

Smith13 to allow the RMC process to adjust its own parameters in response to fluctuations

in the search landscape.
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Advanced search methods

Ultimately, RMC has serious limitations with regard to its ability to explore a rugged cellu-

lar search space. One option to overcome the premature convergence problems of classical

RMC is the use of more advanced search methods drawn from the field of evolutionary

computing (EC)13.

Evolutionary computing methods are a more advanced form of generate-and-test search,

with a number of advantages over more primitive methods11,13,15–17. Over the past few

decades, EC has progressed from its theoretical roots to become a widely accepted prob-

lem solving tool; it has been shown to successfully match or outperform other methods

in some of the most challenging domains13,15,16. Despite its increasing use in everything

from structure design to autonomous vehicle navigation and artificial intelligence13,16, EC

is continually breaking new ground in specific and sometimes highly specialized problem

domains. Notably, EC has shown excellent performance in very rugged search landscapes,

the ability to avoid convergence to poor local optima, and an increased chance of finding

good optima with very small basins of attraction13,15,16.

While RMC search could be thought of as an EC method with a single population mem-

ber, there are a number of advantages to a true EC method. Through the use of diversity

preservation metrics (e.g. island models, deterministic crowding, fitness sharing, or speci-

ation13) the search population can more rapidly and evenly explore the search landscape,

increasing the chance of finding good optima with very small basins of attraction. In ad-

dition, recombination allows effective transmission of good structure examples, something

lost in a heuristic containing a single population member. As shown by a wealth of previous

work, there are many convincing reasons for choosing an EC method when approaching the

problem of generate-and-test inverse structure prediction11,18.

Several forms of EC could be implemented, and their performance compared to that of the

classical RMC method described in Ch. 7. It is expected that EC search methods that utilize

previously presented simulation and feature extraction techniques will lead to functional

and robust specific solutions to the structure prediction problem. This may be coupled with

content based image retrieval technology to expedite the search process.
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