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ABSTRACT

The purpose of this study is to address some problems of
resource allocation which are exemplified by the class-teacher
timetable problem. A fundamental model within class=-teacher
timetable problems is the coloration of graphs. A general
method is developed for the determination of the existence of
an n-coloration of a graph, A condition is identified that
is sufficient fpr the order of computation required to be
bounded by a polynomial. The condition is generalized to
include cases when the order of computation. is moderately
exponential. The method is applied to some related graph
theoretic problems in order to show the significance of the

sufficiency condition.

Two original theorems are proved which pertain to graphs
with vertex constraints. Specifically, these constraints are the
vertices which are preassigned to specific colors, and vertices
which are not to be assigned to given colors. The results
§how that graphs with these extraneous constraints reduce to
graphs without sucﬁ constraints. Hence, the existence of an
n-coloration of a graph with these constraints may be established

by using known strategies. The first of the two theorems has



two further implications. First, it provides the basis for a general
and flexible method for determination of an n-coloration. Hence,

it provides the basis for a method for determination of a solution
to class-teacher timetable problems. Second, it provides a
previously unknown necessary and sufficient condition for the
existence of a solution to a particular class-teacher timetable

problem, which has been reported in the literature.
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CHAPTER 1

INTRODUCT 10N

This thesis is concerned with a resource allocation problem
that many learning institutions have considered since the advent
of the computer: The class-teacher timetable problem is defined

to contain,

a set of teachers T = {ti} i=1,00.,0}

a set of classes C = {cj} j=1,...,B; and

a set of hours H= {hk} k=1,.00,Y
The elements of sets T, C, and H are to be matched so as to meet
specified requirements (constraints). Such a matching, if it exists,

will be called a solution. The class-teacher timetable problem

will be referred to as the CTT problem.

Underlying all Fhe apparent complexities of CTT probfems
are some well defined fundamental problems which for the most
part are unsolved and which are considered to be difficult by many
proficient researchers. The purpose of this study is to address

some of these problems.

In Chapter 2, which provides the background to the present
research, it is shown that the coloration of a graph is equivalent to
a fundamental problem within CTT problems. Within this equivalience,

classes correspond to vertices, and hours correspond to colors. A



graph model can rep?esent all constraints which prevent or require
the assignment of specified classes to the same hour. This includes
those constraints that prevent a teacher from having to meet more
than one class in any given hour. Considerable attention has been
given to the minimum coloration of a graph. However, since this
problem has not yet been solved generally, there are cases when the

very existerce of a coloration remains in question.

In Chapter 3, a method for the determination of the existence
of an n-coloration of a graph is given. A condition that is
sufficient for the computation required to be bounded by a polynomial
is identified and generalized to include cases when the order of
computation is moderately exponential. A comparison of the results
to previously known methods is made. To enhance the significance

of the sufficiency condition, it is applied to graph theory.

When other constraints occuring in CTT problems are imposed
upon the graph model, the question of the existence of a coloration
(solution) has remained unanswered. In Chapter b, two types of
constraints occuring in practical CTT problems are considered:
Those where a certain class must meet on a given hour, and those
where a certain class cannot meet on given hours. Theorems are
proven which reduce graphs to a form that contains no such 'exgraneous'

constraints. The immediate significance of the theorems is given.



Several methods have been developed for the determination of the
minimal coloration of a graph; or equivalently, for the determina-
tion of the existence of a coloration with a given number of
colors. Most of these methods give a solution to the corresponding
CTT problem. In practice, however, these provide a rather
inflexible means of meeting other desirable requirements of the
problem. In Chapter 4, it is shown how the results of an original
theorem proved in this research may be applied so as to provide

more flexible methods for obtaining a solution.

Chapter 5 illustrates the results of the earlier chapters, with
an example of a CTT problem. The conclusions are stated regarding
CTT problems for which previously known methods were unable to
determine the existence of a solution. The conclusions pertain
to both constraints for which previous work did apply and constraints
which until now had remained unanswered. A general method for
determining absolution is given. It is shown that a necessary
and sufficient condition for the existence of a solution to CTT
problems, considered by Gotlieb, is immediate from the results
contained within this report. Lastly, the results are stated

which reiate to graph theory.



CHAPTER 2

EXAMINATION OF APPLICABLE APPROACHES

2.1 Background

The approaches that have been applied, or might be considered
applicable, to the CTT problem are summarized in the following
subsections, Pertinent citations are presented as well as a
criticism of each technique. Conclusions derived from an
investigation of the various approaches are presented in Section 2.2.
Finally, four main objectives of this research are formulated and

are related to the class-teacher timetable problem.

2.1.1 Heuristic Approaches

Let the CTT problem be posed as a B-stage decision problem
where at each stage j, a decision pertaining to the assignment of
class Cj to some hour hk must be made. The decision at stage j
must not violate any of the constraints in the problem formulation
pertaining only to class cj, as well as those relating cj to
classes c],...,cj_]. The latter of the above constraints would
include those that prevent any teacher from having to meet more
than one of his classes in any given hour. Also the decision must,
if possible, be made so that it is possible to make a decisjon at
each of stages j+1,...,B. At any stage, no decision is attainable

if every possible assignment violates some constraint(s).



Heuristic approaches [2,3,6,10,12,17,23,28,31,39,41, 4k ,47] have
given rise to criteria such as the following, which are used as

strategies for finding a solution.

. 1. The order in which the classes are assigned to specific
hours are arranged, so as to increase the odds of being able to
make a decision at each of the B stages. For example, classes
considered more difficult to schedule are assigned to specific

hours first [41,47].

2. |f there is any choice at each stage j, class ?j is
assigned to an hour so as to increase the chances of being able to
make a decision at each of the remaining stages. To illustrate,

a class may be assigned to the hour already having the most classes
assigned to it [28]; thereby, the use of unassigned hours Is

minimized.

None of these are deterministic in that an impossible

decision at some future stage is always prevented.

If at some stage j no decision is possible, the alternatives
used are:
1. Some (all) previous decision{s) r, r<j, are altered

in an attempt to make a decision at stage j possible.



2, The classes are reordered and the entire process is

repeated, beginning at stage 1 (see [39]).

3. The class is assigned, so as to minimally violate the
constraints relating class cj to classes c],.....,cj_]. This is
equivalent to removing constraints so that a decision at stage j

is possible.

In practice, only restricted forms of alternative | can be
used since the order of computation required can approach that
equal to total enumeration of all feasible and nonfeasible -
solutions. An algorithm using alternative 2 does not necessarily

terminate. Alternative 3 would be acceptable provided it were

known that a solution to the original problem does not exist.

GASP[31], a system based on heuristic techniques, has been
developed to generate solutions for CTT problems. Many users have
found GASP to be unacceptable because it was unable to attain
solutions to real problems. More recently, IBM, who supported the
development of GASP, announced a new system called SOCRATES. It
uses the same concepts as the University of Waterloo system [45]
which generates reports, thus making the adjustment of an

existing timetable easier.



It is of interest to observe that the difficulties in heuristic
approaches are the same as those of branch and bound approaches

to the CTT problem,

2.1.2 Statistical Sampling Techniques

Sherman [43] (also see [42]) used statistical sampling to find
solutions to the combinatorial problems corresponding to CTT
problems. It seems likely that if the problem has many constraints,
then the probability of finding a solution by sampling becomes
relatively small. Similar observations on this approach are

reported in [22].
The method of Formby [20] is a variation of statistical
sampling to obtain a minimum coloration of a graph, a problem

that will be discussed below.

2.1.3 Combinatorial Approaches

Gotlieb [21] gives a condition for a feasible solution to exist

for the following CTT problem: The problem is defined by

a set of teachers T {ti} i=1,...,a,

a set of classes {cj} j=l,...,B,
a set of hours H = {hk} k=i,...,y,
and an initial requirements matrix R with elements rij' The rij are

non-negative integers representing the number of hours ti is to meet



cj’ in the interval for which the timetable is being constructed.
Each class cj refers to a group of students. The problem state-
ment corresponds to real problems that often occur in public
schools. Gotlieb points out that Hall's algorithm [25] provides
a method for finding a solution. Based on a necessary condition,
Csima and Gotlieb [13] describe a basic iteration for constructing
a schedule for the above problem with preassignments. Csima and
Gotlieb conclude with:
"None of the references mentioned consider problems

which can be interpreted as constructing a time-table

with preassignments, nor has it been possible to develop

a proof from these references that the basic iteration

described above will always provide a solution when

one exists. On the other hand, as discussed in the

previous section, every case tried so far has been

successful.'
Winters [48], Lions [32, 4, 6] and Dempster [15,16] have investigated

these various approaches to finding a solution. Lions [33] has

reported a counter-example to this hypothesis of Csima and Gotlieb.

Gotliebs's statement of the CTT problem assumes that all
constraints, except those expressed in the matrix R, can and must
be stated in the form of preassignments. This itself can be a
major task. As an illustration, suppose there are many constraints
preventing pairs of classes from being offered at the same time; that
is, students having to enroll in both so as to meet academic program

requirements.



Another combinatorial type approach for finding solutions to
'scheduling' problems was given by Turksen and Holzman [44]. Let
X = [xjk] be a B x y solution matrix where xjk

assigned to hour hk' Any solution, feasible or nonfeasible, of

=1 if class cj is

the CTT problem can be pepresented by the B.y boolean vector

X X in the ZBY-Space of boolean lattice

BY""'XBI""°
points. Corresponding to each such point is a unique positive
integer called a designation number. Also, corresponding to each
pair of clasges Cj and cj. that are not to be assigned to the same
hour there are Y logical constraints xJ.ka.,k =0, k=1,....,Y.
Turksen and Holzman determine the nonfeasible points corresponding
to a logical constraint in terms of the designation numbers, as
opposed to the method of truth tables as suggested by Akers and
Friedman [1]. The set of all nonfeasible points is realized by
set operations on the sets of designation numbers corresponding to
each of the logical constraints. However, their result does not
provide a feasible method for the determination of the existence
of a solution; since, the order of computation compares to that of

total enumeration. The order of computation refers to the number

of basic steps required to accomplish the desired result.

2.1.4 Graph Theoretic Approaches

A graph G consists of the finite nonempty set V of vertices with

lv| = m and a set E of edges. Each edge joins two distinct vertices.
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Two vertices joined by an edge are said to be adjacent and each is
incident with the edge. Welsh and Powell [46] point out the
connection between the following CTT problem and the problem of!
coloring the vertices of a graph: Given

a set of teachers T = {ti} i=1,...,0,

a set of classes C = {cj} j=1,. 04,8,

a set of hours H= {hk} k=1,...,Y,
and an incompatibility matrix M with elements mjj' =0or |
respectively, as classes cj and cjl can or cannot be assigned to
the same hour. This includes such constraints as a teacher having
to meet classes cj and cj,, in which case mjj' = 1. Each class
c. refers to a course or lecture. The problem statement corresponds

to real problems that often occur in universities.

In this association, classes correspond to vertices; hours
correspond to cclors; and, the condition that two classes which
cannot be assigned to the same hour is represented by an edge
joining the corresponding vertices in the graph. Before discussing

graph  colorations, the necessary terminology must be introduced.

Let G(V,E) denote a graph G that has vertex set V and edge set
E. The degree d(v) of a vertex v is the number of edges incident
with it. In a regular graph, all the vertices have the same degree.

A complete graph Km of order m has every pair of its vertices adjacent



H

and so is regular of degree m-1.

A walk in a graph is an alternating sequence of vertices and
edges in G, beginning and ending with a vertex. Each edge is
incident with the vertex preceding it and the vertex following it.
A walk is often written v]vz...vi; the edges being evident by
context. A path is a walk in which all vertices, and hence, edges
are distinct. A closed walk has the same first and last vertices.

A cycle is a closed walk V]VZ"'ViV]’ i>3, in which the i vertices

are distinct or a closed path.

In a connected graph, every pair of distinct vertices is
joined by a path. A subgraph of G consists of subsets, of V and E,

which themselves form a graph.

A graph is said to be n-colorable if each vertex can be
assigned one of n or less colors in such a way that no two adjacent
vertices have the same color. The chromatic number x (G) of a

graph G is n, if G is n-colorable but not (n=1)-colorable.

An m x m adjacency matrix A for a graph G(G,E) with |[V] = m
is defined as follows: The element in the (i,j) position of the

matrix is 1 or 0 according to vertices vi and vj being joined by an



edge or not. The adjacency matrix is symmetric. Sinee graphs
with loops are not being considered, the diagonal elements are all
equal to 0. |t will be assumed that distinct edges do not join
the same pair of vertices. Hence, a graph can be defined by a

set V of vertices and an adjacency matrix A.

The CTT problem defined is thus equivalent ta determining an
n-coloration of a graph G with a set of vertices V, |V| =m, and
adjacency matrix M = A where m= 8 and n = vy,

Assume all graphs are connected, since an arbitrary graph
can always be decomposed into its connected components. Mathematically,
this correspoﬁds to finding the appropriate permutation matrix P.
Matrix P has the property that P-]AP, where A is the adjacency
matrix, equals a matrix with block diagonal representation with

diagonal submatrices ‘containing all the nonzero elements of A.

The existence of an n-coloration of a graph G is related to
determining the chromatic number x(G) of the graph G. As stated
by Welsh and Powell, 'The problem of determining this chromatic
number of a graph G is a well known unsolved problem'. This does
require qualification since the case for n = 2 was settled in the
following theorem by Kgnig (27, pp. 8].

Theorem 2.1 A graph G is 2-colorable if and only if no cycle

in G has odd length.
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Several bounds have been found of x(G) for an arbitrary graph
G. Erdgs (27, pp. 31] points out that if K(G) denotes the number
of vertices of the largest complete subgraph contained in G, then
K(G) < x(B). If G is an arbitrary graph with vertex set V, and
D = maximal d(v), vcV, the maximal degree, then G is (D+I)-colora5]e.
This result was improved by Brooks [1]1] as given in the following
theorem:

Theorem 2.2 Let G be a connected graph, not a complete

graph, and D its maximal degree. Then G is

D-colorable.

Denote the degree of a vertex vi of the graph G by dj. Without
loss of generality, assume that

> > >
d] - dz - tee st er e = dmc

Welsh and Powell improved the upper bound of x(G) by showing
that G is a(G)-colorable for
a(G) > max, min(di+l,i).
They also give an algorithm for finding such a o{G)-coloration.
However, there are graphs for which a(G) - x(G) may be arbitrarily

large.

The previously discussed methods of Formby [20], Peck and
Williams [41], and Williams [47] all apply to finding upper bounds

of x{6).



L}

The above considerations pertain only to preventing vertices
from being assigned the same color. Welsh and Powell state that:
"It does not answer the much more difficult problem,
which occurs in practise, when in addition to an
incompatibility matrix we are given a pre assignment

matrix P = [p,.] which specifies that certain jobs must
be carried outon certain days ordained beforehand.'

It should be noted that a comparison of the CTT problem
considered by Gotlieb and the CTT of Welsh and Powell gives rise
to a hierarchy of CTT problems. Let the first of the problems
be referred to as CTT(A) and the latter as CTT(B). The following
shows that every CTT(A) problem can be formulated in terms of a

CTT(B) problem, but that the conwerse is not true.

The following Indicates how any CTT(A) problem may be written
in terms of a CTT(B) problem. Let each meeting of every class in a
CTT(A) problem correspond to a class in a CTT(B) problem. To
I1lustrate, suppose each class cj, j=l,..., B, in a CTT(A)
problem has y meetings. Let cj], ceny ij, be the corresponding
classes In the CTT(B) problem. From the definition of a CTT(A)
problem, no two of these y classes can meet at the same hour.
Consider the incompatibility matrix M of the CTT(B) problem. All
the elements of M that correspond to pairs of classes from the
above set of a classes must equal 1. Next, suppose that teacher

t, Is to meet classes cj and cj., in the CTT(A) problem, exactly

i



rij and rij' times respectively. Without loss of generality,

let cj],..., ¢, , and cj.],..., c,

be the corresponding
] H
Jrij J'r

ij!

classes, in the CTT(B) problem, which teacher ti must meet. No
two of these rij + rij' classes can meet at the same hour.
Otherwise, teacher ti must meet more than one class during some
hour. Thus, all the elements of M that correspond to pairs of
classes from this set of rij + rij' classes must equal 1. In
general, this applies to any teacher and any pair of classes,.

in the CTT{A) problem, which he must meet. Thus, every CTT(A)

problem may be written in terms of a CTT(B) problem.

The converse in not true: Examine a CTT(A) problem written
in terms of a CTT(B) problem. Consider a pair of classes in the
CTT(B) problem, that correspond to 'meetings' which belong to
different classes in the CTT(A) problem. Furthermore, suppose
that they are not met by the same teacher. Now set the requirement
that this pair of classes is not to be assigned to the same hour.

The problem cannot be stated in terms of CTT(A).

Thus, the CTT problems corresponding to CTT(B) problems are
more general than those corresponding to CTT(A) problems. This
previously unrecognized relationship between CTT(A) and CTT(B)

problems will be referred to later.
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2.1.5 Integer Programming Approaches

Hammer and Rudeanu [26], Harding (see [28]), and Zehnder [50]
have formulated CTT problems as integer programs. However, as
seen from the previous sections, the coloration of a graph is a
fundamental subset of CTT problems. Consider the solution of the
‘nteger linear programs corresponding to the graph coloration

problem.

Karp [30] showed that the general 0-1 integer programming
problem and the determination of the chromatic number of a graph
are equivalent, in the sense that either each of them possesses
a polynomial-bounded algerithm, or neither of them does. At
present no such algorithm is known. However, discussion will be
given of two different, yet ;elated, integer formulations. Graph

coloring problems may be posed in either of these formulations.

First consider the hierarchy of covering problems (sed [5]).
Hall and Forman [24] suggested the use of a covering problem to
find x(G). The vertex coloration of a graph G(V,E) can be posed
as a set covering problem. For:example, let S| be a subset of
vertices in G such that all the vertices in s; can be assigned
to the same color. That is, no pair of vertices in s; are Jjoined
by an edge. Such a subset s will be called a compatible subset.

Let S be the set of subsets s; in G, The problem is to find a
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minimum family of subsets in S such that every vertex of G is

contained in some subset of the family.

As an integer program, the problem is:

min Zf X.
j=1"J
subject to
J
2j=]ajxj =ty and
xj =0or 1, j=1,.00,d,

where % is a column of J 1's,

each a, = (a,.,...,8 .)T has a.. = 1 if s,eS and
J 1j mj i i

aij 0 otherwise,

j=1s|, and

vl

3
n

The matrix A = (a],...,aJ), with one column for each
subset sieS and one row for each vertex in V, is the (0,1)
incidence matrix of vertices versus subsets. As compared to the
simple covering problem where each aj has exactly two nonzero

entries (equal to 1), the o in the set covering problem contain

an arbitrary number of 1's.
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However, unlike the simple covering problem, the set covering
problem has defied consistently efficient treatments (see [5]).
No generalization of the ideas used In direct and efflclent‘
algorithms for the simple covering have proven themselves for the
set covering problems. Balinski [4] states that 'The discovery of
a computationally efficient algorithm for solving the gengral

covering problem would truly be a major contribution'.

There is another difficulty in posfng the graph coloring
problem as a set covering problem. Determining the set S of all
subsets s, is a major task. Approximations (see [24]) must very
quickly be introduced in practice, due to the vast number of

subsets S;

The second formulation of integer programs relates to the
hierarchy of problems associated with networks. The formulation
frequently stated in the literature [7,14,29] for the existence
of face 4-colorations of planar graphs is the same for any
coloration problem: Let each vertex v, of G(V,E) with V| = m
be represented by a variable Xy where X; can take on integer
values 0,1,...,n-1. For two adjacent vertices vy and Vj’

X; # xj. The constraint may be stated as X, = xj 2 1or xj X 2.
This pair of constraints do not have to be satisfied simultaneously.

Defining a function f(x) = f(x],...,xm) such that f(x) = 0 if x
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represents a n-coloration and f(x) > 0 otherwise, and rewriting
the above pair of constraints as suggested by Hu [29] so as to

obtain a convex solution space. Then the integer formulation is

min f(x)
subject to
"X, + xj - n&ij $-1 For all edges in G, each
X, - xj + néij Sn- coincident with a pair of
vertices v, and v, in G.
< i J
§,, 1
h
< -
Xp2n-d =1,
X; 20
For each edge incident with
>
6ij =0 vertices vi and vj in G.

If the minimal value of f(x) becomes zero, then an n-coloration of
G exists. |f the minimal value of f(x) is greater than zero,

then an n-colaration of G does not ex|st.

Consider the following definition.
Definition 2.1: A matrix A is said to be totally unimodular if,
and only if, every subdeterminant of A equals +1,

or 0.



The following theorem was proved by Hoffman and Kruskal
[29, pp. 125].

Theorem 2.3: A necessary and sufficlent condition for the
existence of an integer optimum solution of a
linear program with constraints of the form
Ax £ b and x 2 0 is that the constraint matrix

A is totally unimodular.

Corresponding to any edge in G and one of the vertices
incident to that edge, consider the following two rows of the
constraint matrix of the above formulation:

=X, +x, - n,, S~
i J )

<.
Xy s -1
These rows demonstrate a subdeterminant not equal to 0 or +1. Namely,

-1 -n

i
=]

Of course to avoid triviality, n > | is assumed. Hence, the above
integer linear program does not reduce to a linear programming

formulation that has an integer optimum solution,

It should be noted that there are network oriented integer

20
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programs whose constraint matrices are not totally unimodular, but
for which efficient algorithms exist. One example is the matching
problem where a maximum matching is to be found. A matching in a
graph is a subset of edges in G such that no two meet the same
vertex in G. The constraint matrices are totally unimodular only

if the graph G is bipartite; that is, the vertices of G can be
partitioned into two parts so that each edge of G meets exactly

one vertex in each part. Edmonds [18,19] and Witzhall and Zahn (49]
found combinatorial algorithms for matching problems corresponding

to non-bipartite graphs.

2.1.6 Dynamic Programming Approach

Again, as in the previous section, consider G(V,E) with [V = m.

Let
1. X, be the variable relating vertex v, of G to the color
to which v, is (to be) assigned, 1 =1, ...,m;

2. Xi be the definition set of each X defined to be the

integers 1,...,n;
3. X be the Cartesian product of all Xi;

4., E be a subset of the finite set X such that (xi,...,xm)

e E if, and only if, (x],...,xm) represents an n-coloration of G;



5, f(x],...,xm) be a real function of m variables X1 i=1,
o ,m, f(x],...,xm) = 0 where (xl,...,xm) represents an n-

coloration of G; and, f(x‘,...,xm) > 0 otherwise.
Consider the following definitions given by Bonzon [9].

Definition 2.2: A discrete optimization problem Is the
search for a sequence (x;,...,x;), called
the optimal solution, giving the function

f(x ,xm), called the objective function,

|
its global minimal value over the set of
sequences (x],...,xm) € E called feasible

solutions.
Definition 2.3: A graph of constraint is the subset E& X.

Definition 2.4: Sucessive projectives of the graph of
constraint E are the
sets Pi = {(x],...,xm): there exisfs
)

¥,i=ml,...,1, withP_ =E.
m

Xpep | Oy

e P
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Definition 2.5: Suecesive cuts of the graph of constraints
E by a given sequence (x],...,xi_]) -are the
sets Ci(x],...,xi_]) = X {(x],...,xi_l,xi)e Pi}’

P

i=m,...,2, wtth C] z

Definition 2.6: A chained graph is a graph of constraint in
which the successive cuts by a given sequence
(xl,..;,xi_])e P,.) do not depend effectively
on all components of the sequence, but only
on the last one, i.e., Ci(x],...,xt_]) =E(x_y),
for any (x;,. 00, e Pr )
The required result by Bonzon [9] can now be stated.
Theorem 2.4: A necessary condition for a discrete deterministic
optimization problem to be solved by dynamic
programming is that the graph of constraint be

a chained graph.

In determining an n-coloration (or the existence thereof)
of a graph G, generally there does not exist a sequence
(x],...,xi_])e P._y such that the corresponding graph of constraint
is a chained graph. That Is, the color to which any vertex can be
assigned cannot be assumed to depend on only one other vertex. For

example, consider the following graph, and let E be the set of



Figure 2.1 Graph G

all n-colorations of G, regardless of how the vertices of § are

labelled. Then:

P3 = {(x], Xy x3): there exists X, | X, # Xys Xy # X, X, # x };

3
Py = {{x;, x,): there exists x3.| X3 # X5 X3 # %))

P

| {(x]): there exists x, | Xy # %, 3;

Cy(xp0 %y, xg) = D (x), %y, Xpy X,)€ Py} = Ey(x)s %y, x3);
C3(x], xz) = {x3: (x], Xy x3)€ P3} = E3(x], xz)l

Colxy) = by ks xp)e Py) = Ey(x))5 and,

Clearly, the graph of constraint is not a chained graph.

Thus, neither the question of existence nor the determination
of an n-coloration of a graph can be answered in general by dynamic

programming.

2.2 Conclusions

As for the existence of a solution to the CTT problem, it has
been shown that a fundamental problem is the existence of an n-
coloration for an arbitrary graph G(V,E) with V| = m. If

nZmon2 B, where B, s an upper bound of (), or if G is

2k



known to be a complete graph, then the question of existence is
answered. Otherwise, the question of existence remains a

difficult problem. The only established upper bounds on the order

of computation are those corresponding to enumeration and the algorithm
of Turksen and Holzman. These bounds are in the order of ", if
preassignment constraints are imposed upon a coloration problem,

then the question of existence remains entirely unanswered.

In practice, heuristics are for the most part the only
alternative for finding a solution to CTT problems. However, any
deterministic tools which may be used with heuristics would be
beneficial to practitioners. Graph theory and combinatorial
analysis have provided the most powerful tools available. Of
course, the need for more deterministic methods depends upon the
problem. For example, it is intuitive that the closer n is to
x{6), the more difficult it is to find an n-coloration. The

question is trivial when n 2 m.

The work in the subsequent chapters has been reported in
terms of graphs. The main objectives of the research reported

can be stated as follows:

1. To improve on the number of cases when the determination of

the existence of an n-coloration of a graph can be realized.

25
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2. To make an extension to the question of the existence of
an n-coloration of a graph, so as to include graphs with pre-

assignment constraints.

3. To make an extension to the question of the existence of
an n-coloration of a graph, so as to include graphs with constraints
that prevent certain vertices from being assigned to certain colors.
Both the number of colors and the colors themselves, to which a
given vertex is not to be assigned, may vary among the vertices.
Again, these constraints correspond to requirements that occur in

practical CTT problems;

4. To provide the basis for a more flexible means of
determining an n-coloration of a graph, assuming that such a

coloration exists.
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CHAPTER 3

THE EXISTENCE OF COLORATIONS

In this chapter, the existence of an n-coloration of a graph
is discussed. An upper bound of x(G) is given in Section 3.1.
Also, the inherent weakness of any upper bound of x(G) is pointed
out. A necessary condition for x(G) to be greater than K(G) is
given in Section 3.2. Then in Section 3.3, a general method for
determination of the existence is given; this method is directed
at cases when BL Snt BU’ where BL and BU are lower and upper
bounds of x(G) respectively. These results are used to find
properties of the adjacency matrix of a graph. These properties
are sufficient for the number of steps required by the method
to be bounded by a polynomial, or almost so. These properties
are reported in Section 3.3. The most significant property
identified is called the triangle property. The triangle property
is related to the class of triangulated graphs in Section 3.4.

Some ideas related to the triangle property are used to prove a

result in graph theory. This result is given in Section 3.4.2.

3.1 Upper Bounds of x(G)

Upper bounds B of y(G) can be useful for determining the

existence of an n-coloration of a graph G. If n 2 B,, then an

U
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-coloration of G is known to exist. Known upper bounds for x(G),
such as those given by Brooks [11] and Welsh and Powell [46], are
not necessarily the best possible for all cases. To illustrate, a

procedure for finding another upper bound of x(6) is given below.

Consider the following: The partition number m = 7(G) Is
the minimum number of vertex disjoint complete subgraphs of G
that cover the vertices of G. The comp lement G of a graph G has
the same vertices as G. Two vertices are adjacent if, and only if,
they are not adjacent in G. Llet be the parition number of G.

Nordhaus [38] proved the following theorem.

Theorem 3.1 For any graph G, x(6) = 7 an& x(G) = 7.

Let S be the set of all complete subgraphs in 6. Let §]
be an element in $ such that the order of 51 is greater than or
equal to the order of any other element of s. Clearly, 5‘ is not
a null graph. Similarly, define §2 to be an element of S - {§]} -
{all the complete subgraphs in S which are not vertex disjoint with
§]}. Continuing in this manner, define a seqﬁence §‘ of vertex
disjoint complete subgraphs such that §i = G. Since G has a finite
vertex set, there exists a finite integer n' such that §i =@ for

i>n’and§i=0forifn'.

Then 7' is an upper bound of x{G). The method also provides an
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n-coloration of G for n 2 n'. There do exist graphs for which

#' is an improvement over the bounds of Brooks [11], and Welsh and
Powell [46]. A significant point is that no upper bound can be
considered to be consistently good. However to indicate an
example, the graph in Cole's [11] example is a case where 7' is

an improvement over previous upper bounds. Welsh and Powell [46]
show that their upper bound equals 14 for Cole's e*ample. Welsh
and Powell also show that Brook's upper bound equals 20. Applying
the above procedure to Cole's example, the upper bound m' was
found to equal 9. Thus, Cole's example may be documented as a
case where m' is an improvement over previous upper bounds.

If the number n of available ;olors is such that n < BU’ then

no conclusion from the upper bound BU as to the existence of an
n-coloration can be made. This is true, regardless of how good

any upper bound B of x(G) may be.

3.2 Lower Bounds of x(G)

As stated earlier, the best known lower bound of x(6) s K(G),
the order of the largest complete subgraph in G. Also, there
exists graphs for which the difference x(G) - K(G) is arbitrarily
large. A condition that must hold if x(G) is to be greater than

K(G) is illustrated below.



Before stating Theorem 3.2, the following lemma is proved.
Lemma 3.1: Given G(V,E) and G not a complete graph. If x(G) >
K(G) + k, k=10, 1, 2, ..., then there exists a

vertex v ¢ V such that degree d(v) = K(G) + k.

Proof: Suppose there does not exist v ¢ V such that
d{v) 2 K(G) + k for some k = 0,1, ... . Then for any v eV,
d(v) < K(G) + k. From Theorem 2.2, x(G) < K(G) + k. Thus, there is a

contradiction. Q.E.D.

Corresponding to any v, e V of a graph G(V,E), define v,
where
v, = {v]lv e V and v adjacent to vertex v;}.
Theorem 3.2: Given a graph G(V,E) which is not a complete graph.
Then there exists v, € V such that d(vi) > K(G).

Furthermore, there does not exlst V;q; Vi such

that there exists a complete subgraph G'(V;,E‘) with

lv;l = K(G).

Proof: FromLemma 3.1, there exists v, € V such that
dlv,) 2 K(6). Now suppose Vi €V, such that |V;|= K(G) and there
exists a complete subgraph G'(V%,E') in G. Since v, ¢ V,, then

Vi ¢ V}. Also, vi is adjacent to every vertex v € Vi; and hence,

30
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Ve V;. Then there exists a complete subgraph of order K(G) + 1

in G. However, this is a contradiction. Q.E.D.

The above condition is necessary for x(G) to be greater than
K(G). However, as no condition which is both necessary and
sufficient has as yet been established, the best known lower
bound of x(G) remains as K(G). That is, if n 2 K(G), then the

existence of an n-coloration is indeterminant from K(G).

3.3 Sufficiency Properties for Feasible Computation

Corresponding to CTT problems, one is typically given an
adjacency matrix A, and the problem is to determine the existence
of an n-coloration of the corresponding graph. Tools for'the
determination of the existence of an n-coloration are required in
cases of indeterminancy. Such cases, as discussed in the previous
two cases,arise when K(G) S n < Bu where Bu is the best known

upper bound of x(G).

A general method for establishing the existence of an n-
coloration of a graph is given in Sections 3.3.1 and 3.3.2. A
property of the adjacency matrix A, called the triangle property,
is identified in Section 3.3.3. This property is sufficient for
the number of steps required to be bounded by a polynomial.

Cases are discussed, in Section 3.3.4, when the order of computation
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required by the method presented is exponential. These cases

are exponential to a much smaller degree compared to the degree
for the most general case discussed in Section 3.3.2. An

example, in Section 3.3.5, demonstrates the use of the results

to determine the existence of an n-coloration. The order of
computation required to determine the existence of an n-coloration
using the results presented Is compared to that using a multi-

stage decision process.

3.3.1 Conditions Under Which An n-coloration Exists

Given a graph G(V,E) with |[V| = m. If there are n available
colors and If all the edges of G are neglected, then there are "
possible colorations of G. Each time a non-adjacent pair of vertices
in 6 Is adjoined by an edge, there is a possible reduction In the number
of n-colprations of G. In order to facilitate counting the total
number of n-colorations eliminated by the edges in E, the n-colorations
of G can be placed in one to one correspondence withza set of paths in

a tree. The following discussion formalizes such a correspondence.

Before proceeding, some terminology is required. A graph with
no cycles Is acyclic. A tree is a connected acyclic graph. A rooted
tree is a tree with one of its vertices distinguished from the others

by being called the root. Let R refer to the root vertex. A terminal
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vertex of a rooted tree is any vertex v such that the degree of v
equals 1. A complete path in a rooted tree T is a path:such that Its
first vertex coincides with the root vertex R. The number of edges in

a path is called its length.

Construct a rooted tree T whose vertices are labelled, though
not uniquely, in the following recursive manner. Let T have a root
vertex R. Let there be n vertices, labelled x]],...,x]n, adjacent to
vertex R. Then let there be n vertices, labelled xil""’xin’
adjacent to each of the vertices labelled X: i,...,xi_] " for
i=2,...,m Note that the vertices of T are not uniquely labelled.
Define P' as the set of all complete paths of length m in T. For
complete paths p and p' in T,~where p = (R’xlj]""’xmjm) and p' =
(R,x‘j.,...,xmj,), define p # p' if and only if there exists at

1 m
least one i, 1 1 5m, J, # ji' Note that |P'| = oy

Let G' be a graph with a set of vertices V, as in G, and a set
of edges E = §. Label the m vertices of G and G' as v],...,vm.
Denote an n-coloration of the vertices v],...,vm in G and G' as

(X,. yeess% . ) where x,. denotes vertex v, having been assigned to
]J] m o p i
color ¢, = cj , and where {ék}2=1 is the set of n colors available.
i
. - - .
Two colorations ¢ (xlj]" .,xmjm) and ¢ (x]ji"'.’xmjé) will be

considered equal if and only if ji = ji for i = 1,...,m



34

Let sets C and C' correspond to all the n-colorations of the
labelled graphs G and G', respectively. Then |¢'| = n" and

0 <|c|<a™ & is n-colorable if and only if |c|>0.

If ¢ = <x1j]""’xmjm) e C', a mapping p from C' to P' can be
defined such that p(c) = (R,x ), a complete path of length
min tree 7. Let p = (R,x]j],...,xmjm) Ee any element in P'.. Then
there exists a coloration ¢ € C' such that p(¢c) = p. Thus, p is an

lj]""’xjm

onto mapping. Let c and ¢! € C' such that ¢ # c¢'; then, p(c) # p(c').
Therefore, p is a one to one mapping. Hence, there is a one to one
correspondence between the n-colorations of G; and the complete

paths of length m in T.

Because any coloration of G is a coloration of G', then CSC'. Let
p(C) = P. Then PSP' and [C' - C| = |P' - P|. Thus, G is n-colorable

if and only if [C' - C| < n", or equivalently, If |P' = P| < n".

Thus, a correspondence between the n-colorations of G and a
subset of all complete paths of length m in a tree has been established.
As well, the condition under which an n-coloration of G exists has
been given in terms of a subset of all complete paths in the tree;

namely, |P' - P| < n".



3.3.2 Enumerative Properties of the Set P' - P

In Section 3.3.1, the existence of an n-coloration of G was
~stated in terms of the order of the subset P' - P. P' - P is a subset
of the set of complete paths of length m in a tree T with n terminal

nodes. The following discussion concerns the computation of |P' - P|.

Let A = [aij] be the m x m adjacency matrix of a graph G(V,E).
Let Cij = {c|c e C; and c such that vertices v, and J of G
are assigned identical colors},
and = {(i,j)| 1>]and a“.=1 in A},
Then, ] = |E|.
Cij is the set of colorations in C' that violate the condition

VA W A W e
and aij =1 will be referred to interchangeably in the above context.

" coreesponding to a; = | in matrix A, Let p(cij) =P,,. P,., C

Then ' - ¢ =|U(i;j)€l Cijl i |U(i;j)et Pijl'

To illustrate the above, let G = G(V,E) with V ={vy, vz, v3}
and n = 2. Then the partially labe]lgd tree T] in Figure 3.1 with
root node R and 23 = 8§ terminal nodes corresponds to the tree T.
The 8 complete paths of length 3 correspond to the 2-colorations of

the graph G'(V,E') with E' = #. Now, consider Cij with



Figure 3.1

Figure 3.2

Tree T]

Tree T2
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i=2and j=1. Then CZI is the set of 2-colorations of G' such that
vertices vi and v, are assigned identical colors. Figure 3.2 shows the

complete paths of length 3 that correspond to those complete paths in

the set p(CZI) = PZI'

" Thus if |U,, .., P.:| <n" then an n-coloration exists. Otherwise
(i,j)el 1]

IU(i el Pijl = n" and no n-coloration exists. Next recall the following
3

elementary set relations.

From set theoretic considerations, given sets S], 52’ and 53 such

that §, N S, = @, then |s]_u 52| =S, +85,. Define S +5,=5, vs,

]

and §, - S, = {s|s € 8), s ¢Sy} Then (5, = S0 N S; =85 08y~ (s, M 53).

Also if S, €S, then s, - S,| = Is,] - Is,!.
Denote the elements (i,j) € | as {(il,j]),...,(il|',j|||)}. Then

from set theoretic considerations,

Yufp,, - (P, . AP, .)}

Yonefis T Pig O, T P Mg,
.{pi3j3 - (Pi]'] n gi3j3) - ((P‘zjz nPi3j3) -
(Pi]j] 0 Pizjz N Pi3j3))}
{ ((Pi]j] f...AP | I) )}
Thus Vel {|Pi]j]|} * {‘Pizjz - IPi]jl n Pizjzl} +
{lPi3J.3| - | 1, n Pi3j3| - (||>i2j2 0 Pi3j3| -
]Pi]j] n Pizj2 n Pi3j3|)} .
1)...
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To evaluate the above expression, the determination of ln(i,j)el'Pijl’
where |' €1, requires consideration. Note that

PiJ.I with 1* = {(i),]),(i,,J)}

P, . AP, j | is written as ‘n(i,j)el'

"o 22
Prior to giving several results concerning the determination of
ln(. vor1 P..|, some preliminaries to facilitate proving those results
i,j)el* "ij
are discussed. A labelling L of the vertices of the graph 6 will refer
to a particular manner in which the vertices have been labelled. The sets

vertices V' €V and edges E' € E whereas the (i,j) correspond to a

el I'€ I, can be considered to correspond to specific sets of
H

particular labelling L of the vertices in V.

Let I, and I, correspond to labellings L] and L2 of V respectively.

] 2

let 1) €1 and I
L] =

and written ! ~ I
L] L2

between the edges corresponding to elements in Ii and those in li .
1 2

L L

¢l . 1! and I
L L=, L L,

if there exists a one to one correspondence

will be said to be isomorphic

If1' ~1' then
Lok

0, pen Pl =10 ey Pis L.
1 2

That is, the order of the intersection of the set of complete paths that
are of length m in T, that correspond to colorations, and that have been
eliminated by a given set of edges, is independent of how the vertices

have been labelled.

To illustrate, suppose n = 2 and consider a graph G with |V| = 4 with

two labellings L, and L,. Suppose I} = {(2,1), (3,2)} and || =
1 2 L] L2
{(3,2), (4,3)} correspond to the same two edges of G. The complete paths



of length k& that correspond to the intersection of the elements li and
]

IL are indicated by Tree T3 in Figure 3.3 and by Tree Th in Figure 3.4
2

respectively. Clearly

ey Pl = g ey Pul=®

Figure 3.3 Tree T3

Define the.cardinal set DI

exists (i,j) € IL such that d = i or d = j}. Next relabel V with a
]

labelling L, such that I/ ~ I/ and D, = {1,2,..,|D;s |}. Such a
2 L L | |
2 ] L2 |.I
relabelling is always possible: Arrange the |D|, | elements of D,,
h L
in ascending order, place them in one to one correspondence with the

integers l,...,lDl, |, and label the vertices accordingly.

Ly

Observe that IDI‘ | equals the number of distinct rows (columns) of
L

i
the adjacency matrix A such that each row (column) contains at least one

element aij =1,i>joric<], that corresponds to some element

(i,j) e 1%,
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A labelling L2 has been defined. The cardinal set for li has a
2

particular property. Due to the following lemma, a further relationship

between the two labellings Ll and L2 is shown to hold.

Lemma 3.2 Given labellings L, and L, of V such that I! ~ |' , and
1 2 L] L2

o, ={1,2,...,]p, [}

L

'l
L ]

Then for each d, 1 sd S |DIl ],
L
]

there exists (i,]) elt such that d = i,
2
Proof: Define a permutation operation as follows:

A permutation operation on the adjacency matrix A of a graph G from

position (p],pz), Py > Py, tO position (p3,pl’),p3 > Py in A consists of

1. interchanging rows and columns pz'and Py
2. interchanging rows and columns Py and P3» and
3. relabelling the vertices of G such that the subscripts
of the elements of A correspond to row (column) numbers
of A.
The effect of a permutation operation is a relabelling of the vertices of
G so that the element ap3le in A is 'moved' to the (p‘,pz) position.
Suppose now that labelling L2 of V is such that there exists
d, 1$d¢ |D|£ |, such that there does not exist (i,j) ¢ Iiz for which
d=1i. Beginni;g at row 2 of the adjacency matrix A, perform as
necessary a series of permutation operations on the first ]DI' | rows

4
(columns) of A so as to get an element corresponding to at least one
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(i,j) € 1] in each of the rows 2,...,|D|, |. If for some row d,
2 L
2

T there does not exist an element ap o, " 1, Py > Pys

L] 172

corresponding to some (i,j) € Ii and no such element can be moved there
2

by means of a permutation operation, then there does not exist an

1£d50D

(i,j) € N ‘such that d = i or d = j. But this is a
2

contradiction. Hence the assumption is valid. Q.E.D.

Having given some preliminaries, a series of results related to the

computation of In(i N Pijl are stated and proved.
H

el!
Lemma 3.3 |PU| =",

Proof: Without loss of generality, assume i =2 and j = 1.
This can always be obtained by a series of permutation operations on the

adjacency matrix A. By definition,

Pij = {p|p € P' and p passes through both vertices Xk

and X for some integer k, 1 < k < n}.

From the definitions of the tree T, there are nm-2 elements of Pij passing

. m=2
through vertices x,, and x, for k =1,...,n. Hence |Pijl = o=

A1 QLED.

Defining m, n, and labelling L,, L, with I' and |! as above, then
| L] L2 ’
Lemma 3.4 is a generalization of Lemma 3.3.

> ml=|p., |.
j)elil Pisl 2 'L,

Lemma 3.4 Given {P,.} then [0,
i (i,

el



LY)

: F ious di fon, [f¢; Pigl =
Proof: From previous discussion ln(l,J)€|i ,Jl

]
i <y < : m'|D||
ln(i,j)el P..|. Then given some k, 1 < k < n, there exists n IL

1)
v 0, | !

complete paths p in T that pass through vertices {xik}i‘1 L] inT.
P Since this holds for each k, 1 < k < n, then

,j)elil ij

Clearly p € ﬂ(i

o [0, | _ ml-[D, | E.D
ln(i’j)slil Pijl 2 nen IL] n ILI . Q.E.D.

In order to prove equality ih the statement of Lemma 3.4, the

following lemma is required.

Lemma 3.5 Given {Pij} (i and Pi ;

i 0-0
igorjg# D'i or both ip ig ¢ D'i . Then
] 1

’j)€|i » 19 2 jo , such that either

Mgery P10 il = ey P

Proof: Again from previous discussion, there exists a

labelling L2 of the vertices of the graph G such that li ~ Ii ,

2 ]

= {1,2,...,|o|£ |}, |£2 = {(15:Jg)} ~ liz = {(igjg)} and
2 ]

D\,

lL

ll = o [

io |D|i |+ 1. Then for each p € n(i,j)eli P there exists a set of
] 2

vertices Xq - {xdd } deDII in T such that p passes through each of
L
the vertices in Xq. Consider two sets Xq and Xql to be distinct if
q # q' and there exists at least one d ¢ Dll such that for the
L
2

corresponding subscripts dq and dq,, dq # dq.. Then there exists a

set X, with index set Q, of distinct elements X = {Xq} qeQ such that
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for any p € n(i,j) IL P.. , there exists Xq € X such that p passes

1]
2
through all of the vertices in Xq. Let Py be the elements in
q
n(i,j)eli Pij such that p € qu if and only if p passes through the
2

vertices in Xq € X. From the definitions of tree T and Xq,

= : = I
IPi'j' ne, | = (Ipy [)/n. But since P, AP, l g for q # q' and
00 q q q q
uquPx =ﬂ(i’j)€', Pij, then
q L,

- .. P.,.,| = P.,.
|(n(|,J)EI£2 PIJ) n |6J6| l(uquPXq) n 1616’

= I"qu(qu 0 Pi{,J’{,”

=1 [P, NP,
qeQ Xq iado

= quQ(lpqu)/n

= (IquQqurfln

= (In( Pijl)/n. Q.E.D.

i,jel!
L

With lemma 3.5, then the following desired results are proved.

. _ m-lp,, |.
Theorem 3.3 Given {Pij}(i,j)elil , then In(i,j)eli Pijl n IL] _
]
Proof: There exists a labelling L, such that 1! ~ I! and
2 L2 L]
b, = {1,2,...,|o|, [}. Unless I =g, then IDI, | 22, If |o|. | =2
L L ] L L

2 2 1 1



then D,, = {(1,2)} and from Lemma 3.3, |P2i| L nm+‘-!D|£ ’.
L

2 1

By induction on |Dl| l > 2 and repeated invocation of Lemma 3.5
L
the desired result is obtained, Q.E.D.

d P, . .
,i)e l' an iodo such that Io? Jg € Dli ’

Corbl]ary 3.1 Given {P }(

then

l(n . ' P.-)n P, -]=|n(,’-) I P..I.
! (I,J)€|L] 17 odg JS,_] i

. l' = I . 3 L3 - []
Proof: Let 'L‘ 'L] { (IO,JO) Since iy, JOeDli , then
]

IDI' | = IDI“ |. Hence the result follows from Theorem 3.3, Q.E,D,
L L
] |

Thus ln(i 0 | can be evaluated for any I' € | and hence
]

el'

using the expression of IU(| given early within this

iyilel ijl’
section, then IU(i j)elpijl can be evaluated in order to determine
’

the existence of an n-coloration.

Consider the order of computation required to evaluate

lU(',j)aIPij" The expression for IU (i )e IPijl contatns 21!l = lEl
terms of the form |n (i, ]el" IJ| I'C 1, |1'] is the order of
computation required to evaluate a term |n(ij)€|.Piji. Since |1'|<]E],

the order of computation to evaluate all the terms is [E|.» ZIEI; ZIE'.

The number of additions (subtractions) of terms In )el'Pijl

is in the order of 2| l. Hence, the total order of computation

required to evaluate IU | is €l

Detti
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Though the order of computation for determination of the existence
of an n-coloration using the above results is exponential, there exist
many graphs for which 2|EI << nm, particularly if the adjacency matrix

is sparse in non-zero elements and/or if n is large.

3.3.3 More Enumerative Properties of P' - P

So as to display cases when the order of computation of lU J)€| i
’
is algebraic, further consideration is given to enumerative
properties. of P' = P in this section,

Given | as previously defined, define Ii where

0

I, = {(i,))] some (i,j) e | with T =i,}.
0

Next suppose IU (i) | has been determined for |' € | and

el'
“U(i,j)el'Pij) U (u(i,j)eli Pij)| where lio €landiggD, is to be
determined. Denote the elements of |, as {(i ,ji)seeey(is] )},
i 0°71 0|1, |
0

Then from set theoretic considerations,

{(U( ’J)€|. )U (U(I Del Pij) =
0
{U(I,J)EI'P }U {P 0-] - (Pioj] ] (u(l J)E|'P ))}
{(PloJ] ﬂ . npioj“ Iﬂ(u(l,j)€|| ij)“-)}o



- hé

thes 10 erPig) v e, Pl =

W er Pl « Py 5 1 Iey

10y "V perPilt

0

lP‘oJ'I N...n P‘ojll. |n (u(i,j)el.PU)l...)}.
'
For any (ig.)el; > 10U e Pyy) 0 ;=
0, perfil + 1P 51 IPis MO el

Next the following theorem is proved.

Theorem 3.4 Given {Pij}(i I* €I, and P.

(i ’j ) e | and
ja 7 V070
0-0

yJjlelt ?

lu(i,j)EI'Pij, + (nm - |U(i,j)€|'Pijl)/n.

Proof: Let I'" = {(io,jo)}. From previous discussion regarding

the labelling of vertices, it can be assumed that DIl = {I,...,IDI,I}.
Also, it can be assumed Dy = Lk, ]DI,I + 1} for some k, 1 Sk ¢ q"l
and I0 = ql,l + 1.
-
For each p e P U(i,j)e['Pij , let

X, = x| x

; ss T for every s ¢ Dll and sp such that

P passes through x__ }

Furthermore, let X = {xr}reR be a set of distinct representatives for




k7

the elements of P' - U( P, ] with suitable index set R such that

S el

I. for rvery p e P! - there exists a X ;o TE R,y

(| J)El' ij
such that p passes through the vertices in Xr’ and
. | .
2. if r#£r', then there exists Xeo € Xr and xssrl £ ‘Xr,

such that 5. # St
Define P, ={plpeP' -U

X
r

(i,j)eI'Pij such that p passes through

the vertices in Xr}

for every r € R. From the definition of PX and the tree T,
r

= = ] 1
|er| |er.| and er n er. g forr, r' eR, r#r'. Also

= P! - i
UreRPXr P U(i,j)sI'Pij' For each er » F € R, define

er+x. = {plall peP

such that p passes through vertex X; k}
ik
0

Xr 0

= = } ]
for k = 1,...,n. Then PX Uk=lPXr+xi . For k,k', k # k

]
and 1 s k, k' s n, |PX o, = Py
r ik r

PX ., 0 Px x, | = @. There exists k, 1 < k < n,
r |0k r 'Ok

P, 0 P | = |p

| = [p, |/n.
r odo XeH%s X

0 r .
These equations are immediate from the definition of tree T, io =

ID,y| + 1, and D, = {1yeo0s D[} Thus

P, .

fodo P..)|

el ij

h(p - U('i,j) IP' -V [/n

(i,0el'™1;

(P] - |u (oi)el IJ|)/n.



m
Therefore I(U(i,j)el'Pij) U Pioj0| |U(i,j)eI'Pijl + (n

lu /n. QE.D.

(i,9)elFi

The following corollary is immediate from Theorem 3.h.

Corollary 3.2 Given {PU}(i , (io,Jo) € | and

el I g_lf and Pi

oo
io : DIl , then

|(U(i,j)el'Pij) NP |=qp - " -|U(i.j)e|.Pij])/n.

0do 'olo
: A I . . aa)| =
Proof |P|0J0| l ol "("(u,J)eu'P.J)l
Wi e PighV Pigel = W gyl

) /n.

, m
But from Theorem 3.4, this equals (n" - lu(i,j)el'PiJ

- - m-
Hence I(U(i’j)el,PiJ) n Pi0j0| = |Pi |- n lu(l,j)el'PijI)/"' Q.E.D.

0lo

Consider now a case when lli I>1.

H ]
Theorem 3.5 Given {Pij}(i,j)el" I"€ I, and {Pij}(i,j)sli | where
0
e, |1, | > 1, and ig €Dy Furthermore there exists
0 ‘0

(i',j") e 1" with i' = j] and j' = j, for some (io,jl) and

) e .

0

%5 e, il
'0

48
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Y 0
Then there exists (i',j') € I' with i' = jyand j' =j, for some (IO’jI)

and (iojz) el, . IfpeP., . NP, . then the path p passes through
i 1nJ 10J
0 0’1 0’2

vertices Xj oo xj]k“’ and szk" where k' = k' and k" = k™, Hence

k' = k™ and therefore pe P, , =P, since (i',j') e I'.

3y T i &Y, et

—

But ﬂ( ,J)el g Pioj] n Piojz. Therefore n(i’j)el Pij c o
0 0
Ot pyer, Pigd * Ui, pyenyy)- Hence
0 .
'I(n(I,J)Gl n (U(' J El' J) = ln(i’j)€|iop..|- Q-E.D.
0

Corollary 3.3 Given |X| = I(U(I,j)el'Pij) v (U(i,j)el"Pij)l

where 1', 1" € | such that

1. for any (i",j") € I" then {" = i,, and

0’
2, forany (i',j') € 1" and (i",j") € I'" then i' < i".

CThen [Xu P, | = |x] + /.
0l0

|U(l v el' ij

Proof: |X U Piojol |(U(! Denfi )U (U(l el |_|)|

* lPiojol - |Piojo D (UG yePis) |
" Py M UG ety
-'Ipiojo DG e P 0O efi
But from Theorem 3.5, IP‘oJ'o 0 UG yepPip) ] =
|P;0 n (i,)elFs ) f (U(l.J)el“Pij)l'

Th XUp, . |=[X]+|P., - |{P, . .
N R R SN I N XS]
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From Corollary 3.2, |X U P, ;

| = x| + (" - |U(
070

i’j)EI,PUD/n. Q.E.D.

Given an adjacency matrix A of a graph G. The matrix A will be said

to have the triangle property if for any elements a, , , = | where

a; .

"o h

i] > j] > j2, then aj i " 1. To illustrate what it means for a matrix to
1°2

have the triangle property, consider a symmetric boolean matrix A where

.

0.

a, .
4yda '

a. . - P
W hdy-

0
The triangle property implies that whenever two non-zero elements 3 ]
172

and a; j lie below the main diagonal of symmetric matrix A and in
1-1

the same row, then the element in the (jl’jz) position of A is non-zero.
From Theorems 3.4 and 3.5 and Corollary 3.3, the triangle property

is sufficient for the order of computation of |u(i,j)elpijllt° be bounded

by a polynomial. In fact, the order of computation is bounded by |E].

The number of steps that can be computed in a second with current

computers is in the order of 106. Then |E], the number of -

edges in a graph, is certainly a feasible humber of steps to compute,

even for very large graphs.

3.3.4 Almost Algebraic Cases

The method presented in 3.3.2 requires an order of computation that
is generally exponential. In the previous section properties of the

adjacency matrix which are sufficient for the order of computation to be



algebraic (bounded by a polynomial) were given. Cases for which the order
of computation is 'almost' algebraic or equivalently 'slightly' exponen-

tial will now be discussed.

" The first case occurs when the adjacency matrix A of a graph G(V,E)

o)

has the form

and the following properties:

1. Submatrix A] need not have the triangle property.

2, fForanya, ,,a ., €AandghA,a . =a, ., = 1,
iy Ty P T
and i > Jy > Jgi then aj]jz = 1.

Depending on the number of non-zero elements in Al’ the number of
steps required to compute IU(i j)eIPijl can be quite feasible even though
]

|v| and/or |E| is very large. More precisely, the order of computation

is exponential to a degree depending on the number of non-zero elements in

the submatrix A].

Suppose now that the adjacency matrix A of a graph G(V,E) with |V| = m

has the triangle property except that a.,., = 0 for some a,,., .
J2Jy o N

in A, ji > jé. Suppose during the determination of [U(i j)eIPijI that
’

=a,,., =1

Iu(i,j)el'Pijl has been evaluated for some I' € | (I is as defined earlier)

and that I(U( P..) U (P, . )| is to be determined. The results of

i)j)5|l ij OJO




the previous section apply except when (i],JZ) € 1 and (i O’JO) (ii,ji).

Define 1€ I' as

"= {(i,j) |(i,j) e 1" and i < iy}

and write the elements of I' ~ |" (# #) as (i],jl),...,(lK,jK). Then
I(U( ’J)e'l ) U (P -o I = |U(i,j)€|'Pijl + Piojol
) IPiojo L (U(I el IJ)I
-{lp, .np -
'odo "1

(U(i,j)slupij)l)..')}'

Theorem 3.5 applies to all the terms in the above expression except the

) r ding t P P.\. - P..)|. In order to
ne corresponding to | 143 0 13! n (U(I,J)El“ IJ)I n orde

evaluate such a term the following theorem is proved.

Theorem 3.6 Given I, and I, € | where for any (il’jl) and.(iz,jz) e,

then = I,. Also I, and I, are such that for any (ll’jl) el

h

and ( Z’Jz) Iz then i] S jz, Then
|1,
[, (06,71 0 0 e ]PUI (u; el Pyl 2l

52



Proof: Define the function f(i,j) = i and let max

{f(i,j)}( = i. Let x?j be a vertex in the tree T such that there

i,j)ell |
Pij passing through x€j, Ox- be the number of
i
Pij passing through x?j, and Q = fxfj}

i U
exists p € (i,j)ell

. . U
distinct elements p € (i,j)ell

be the set of all such vertices. Then

U, .., P..] =20 .
| (i,j)el, IJI Cxs;

Furthermore, X?j is the root of the subtree with L Ox_ terminal
ij
nodes in T. From Lemmas 3.3 and 3.5, ln(i,j)elzpijl = Ox?j/nllzl in
each subtree. Therefore | (N, . P.) p . -
(i,)el, i) A U(i’j)é,]Pij)l

L - |
ZQoxij/nI 2l = ]u(i’j)ellpijl/nl 2l. q.E.D.
From Theorem 3.6, not only is the evaluation of
P, . P, . U,. . P..
| )y L iy n (I,J)El] Ij)l

immediate but a generalization of the above holds when the adjacency

matrix A is such that A has the triangle property except if aj ! =0
k’k
for ailj] = ,, = ai]jk =1 in some row in A (Jk > Ikl for any k,

1 £k s K-1) for all k, k' in the interval [1,K].

The computation is exponential to a degree depending on the

number of non-zero elements aij’ i>]J, in rows jK + 1,000 ii.

Clearly the above applies to such conditions existing in more

than one row of the adjacency matrix A.

53



5h

3.3.5 An Example for Comparison to Previously Known Methods

A graph for which prefiously known methods for the determination
for the existence of an n-coloration are indeterminate is illustrated

below.

Consider a connected graph G with vertex set V, |V| =17, and

an adjacency matrix A where

[01110001000000000 v1
10101000000000000
11011011101000000
10100010000000000
01100100110010000
0000100000001 0000
00110000000000000

A= 10100000000000000
00101000011101101
00001000100100000
0010000010000 1000
0ocoo0000011o0fpoOOT1TO
00001100000fp00010
000000001 0110000 11
oocooc0000100f10000Q]0
0oo000O0COOQOOQOpTTIOQO
0000000010000100 0 Vi7

Suppose that the existence of a 3-coloration of G is to be determined.
The existence of a 3-coloration cannot be determined from the known
bounds of x(G). K(G), the order of the largest complete subgraph,

is the best known lower bound of X(G). Using an exhaustive search,

K(6) is found to equal 3. The degree of each vertex Vi in G equals

di = 2j=:7 aij' By comparison of the sums di’ the haxlmal degree D,

the upper bound of Brooks [11], is found to equal 8. In order to
evaluate ®(G), the upper bound of Welsh and Powell [46], reorder the sums

g, 17 a,., i=

j=1 7i]
sequence 8,8,6,4,4,4,4,3,3,3,3,3,2,2,2,2,2. To evaluate ®(G),

1,...,17 according to decreasing order and obtain the

find the minimum of the value,
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increased by 1, of the ith element in the above sequence and of i. Doing
this for each element i (i=1,...,17) gives rise to the sequence 1,2,3,4,
4,4,4,3,3,3,3,3,2,2,2,2,2. Then a(G), which equals the maximal element

in the sequence just obtained, equals 4.

To find the upper bound provided by the method of Peck and Williams
17

[41], evaluate the degree di = Ei ] 3ij for each vertex Vis i=l,..00,17

to obtain d]""’dl7 as 4,3,8,3,6,2,2,2,8,3,3,4,3,4,2,3,2. Now assign

as many vertices as possible, beginning with the vertex of maximal

degree and always choosing the vertex with as high degree possible first;
to the first color < Remove those vertices assigned to the first color
from the set of all vertices and then repeat the same procedure, assign-
ing vertices to the second color Cy Continue on this basis until all
vertices have been assigned then resulting coloration is as follows:
Vertices v3, Vigr Vi v]3, are assigned to color < vertices ﬁv9, Vis
Vigr Ve v7 are assigned to color Y vertices v5, Vi V10 Vg VIS’
v]7 are assigned to color c3, and vertices Vys Vpp are assigned to
color Cye Since 4 colors have been used, the upper bound provided

equals 4,

The method of Williams [47] is very similar to that of Peck and
Williams except that instead of using the sequence of degrees d],...,d]7

for determining the order in which to choose the vertices, use a

S
g

sequence d] .,d?7 where

o
wn
]
o™~
—_—
(O]
[~

s an integer in the order of é 17 (£ 3).
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The sequence d?,...,d?7 is easily shown to be 76,90,162,60,119,60,"5,49,
154,76,80,73,47,75,48,43,48. Then the resulting coloration is as follows:
Vertices V3s Vip0 Vig Vgr Vi are assigned to color cp» vertices Vgs Voo
Vi Vg Vyg, are assigned to color €y vertices Vor Vips Vs Vg v7, Vips
are assigned to color C3» and vertex 16 is assigned to color X Again,

since 4 colors have been used, the upper bound provided equais 4.

The method of Formby [20] arbitrarily assigns each vertex a
different color and then attempts to reduce the number of colors required.
Applying it to the above example, assign vertices v],...,v]7 to colors

c respectively. Then find the color with the lowest possible

RS}
subscript that can replace color ¢ Next find the color with the lowest

possible subscript that can replace color c,. Continue in this manner

2"
until all colors have been considered. Any colors that cannot be
replaced must be a necessary color. For the above example, this method

provides a coloration of G that requires 4 colors and hence provides an

upper bound equal to 4.

Thus the existence of a 3-coloration of G cannot be determined from
the bounds of X(6) as 3 is in the interval [BL,BU) where BL = 3 and the

best upper bound B, is equal to 4,

U

Now pose the determination of the existence of a 3-coloration for
the graph G as a multi-stage decision problem where at each stage i,
vertex vi must be assigned to one.of‘three colors such that vi is not
assigned to the same color as some Vj’ J <1, that is adjacent to Vi

Previous discussion showed that this approach is generally not feasible



in that the computation required often approaches that of total enumer-
ation of all possible 3-colorations. A further demonstration thereéf is

given by applying this approach to the example being considered.

The existence of a 3-coloration is established after a decision has
been completed at each stage. The non-existence of a 3-coloration is

established only after all possible decisions have been attempted.

Suppose the decisions at stages 1,...,15 have been completed and
let these decisions be as follows where (vi’cj) indicates vertex Vi is

assigned to color ¢ (v],c]), (vz,cz), (v3,c3), (vh,cz), (VS’CI)’
(VG’C3): (V7,C]), (VS’CZ)’ (V9;C2): (V]09c3)p (V]]’c])’ (VIZ’CI)’
(vl3,c2), (v]h,c3), and (v]5,c3). But now no decision is possible at

stage 16 as vertex Vig is adjacent to vertices Vigs v]3, and iy Hence
back-up, so as to alter previous decisions, is required to determine the
existence of a 3-coloration. Furthermore, the order of computation

required approaches total enumeration of all solutions unless of course

a 3-coloration is found prior to this exhaustive search.

To determine the existence of a 3-coloration of G using the results

.| must be computed

presented in the previous sections then |U(i Netfi
’

where, corresponding to the adjacency matrix A,

I = {(2’1)’(3»]):-0-:(’2,]0),(13,5),---.(15,12){(]5y13),---(|7,]¥}}-' .~,?- ‘

Let A' equal the submatrix that is indicated within the matrix A. Thus

A has the form corresponding to an almost algebraic case in Section 3.4.4.

That is matrix A has the triangle property, except for the submatrix A].
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Hence to determine |U(i j)eTPij| where 1= {(2,1),...,(15,12)} ¢ I,

the results of Sections 3.4.2 and 3.4.3 may be employed.

From Lemma 3.3, le‘l = 3]7-1. Let y, = 3'7-]. Then from Theorem 3.4,

[P,y U P3]| = [Py + 3'7 - P, )73
=y ¢ (317 - ¥,)/3
Let ¥y = [Py U P3ll'
Now let I' = {(2,1)} and 1" {(3,1)}. Then from Corollary 3.3,

[Py U Py 0 Pyl = (UG 5y P VLY yepuPyp) ¥ Pyl

=y, * (3]7 - yl)/3.

Let =y, + 67 -y

Y3

Continuing in this manner then

lu(i ,j)ETPij| = 33‘(3“}'2) .

Let Ve = Wi, peisl
Let = + (3'7 = ¥o)/3
Yo7 = Y26 Yop!/o:

To evaluate |(U(i,j)eTPij) U Pz VP ]3|, the results of

Section 3.3.4 must be employed.
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As in Section 3.3.4, define

M= {(2,1),...,(12,10)}, and
= {(2,1),...,(16,12)},

Then 't = {(i])j])""’(iK’jK)}
= {(]3’5)"";(]6’12)}-

Clearly lu(i,j)eI“Pijl = Y0

From the discussion in Section 3.3.4, then

| + {|p

|(U sJ)El' ) U Py 13| l (i J)el' 16 13| )

P16 13 VUG e Pip It

-Ip

- UP1g 13 NP3 5l = 1Pyg 3

0P 5 DG yerPi I
Let I(U (i,)el? IJ) U P 13|

Using Theorems 3.3 and 3.6,
Ypg = Yag + (08" = vyg)/3} = 1312 - yp/3%).

Thus lu(i i .| can be evaluated and found to be equal to 6
’

al ij

P..| =6< 3]7. Thus a 3-coloration of G

for graph G. But |U(i,j)e| g

does exist.

To realize the advantage of the given results compared to using the

multi-stage decision process, consider a general graph G' with |V| =

and adjacency matrix A' of the form where

59
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Al = Al

and where A' is defined so that the triangle property holds everywhere in

A' except possibly within the submatrix Ai. That is, for any a; ] =
171

l - 3 [ l - [] L] .
ai]jz =1, jl <y < and ai]jl ¢ A], then ajzjl 1 by definition.

Vertices v; and v; correspond to the first and last rows of the sub-
0 ]
matrix Ai respectively as well as rows io and iI of A',

Define NZ as the number of non-zero elements a;j in A" with i > j
and io <i¢g i]. Then the order of computation to determine the exist- .
ence of an n-coloration, using the given results, is bounded by |E| + ZNZ.

20 & 106, then the required computation is certainly

Considering that 2
feasible for very large values of |E|, and hence |V|, as well as more

modest values of NZ. Comparing this to nm, the bound for a multi-stage
decision process for determination of the existence of an n=coloration,

there are many cases for which a method based on the given results

compares very favourably as well as being feasible.

3.4 Some Relationships Between the Triangle Property and Graphs

The previous section related the importance of previously unidentified

properties of the adjacency matrix of a graph, as it pertained to the
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computation required for determination of the existence of an n-colora=
tion. This section first gives a relationship between the triangle
property and triangulated graphs. Secondly, the order of the largest
complete subgraph contained in the medial graph of any cubic graph is
shown to be 3 by means of being able to determine the 'extent' to which

the triangle property exists within a sequence of adjacency matrices.

The significance of this result is given.

3.4.1 The Relationship of the Triangle Property to Triangulated Graphs

Before relating the adjacency matrix of a graph having the triangle
property to known results in graph theory, a few definitions are
required. Namely, a chord is an edge joining two non-consecutive
vertices of a cycle in a graph. A graph is said to be triangulated if

every cycle of length greater than 3 possesses a chord.
Then the following theorem can be proved.

Theorem 3.7 |f a graph G has an adjacency matrix with the triangle

property then G is a triangulated graph.

Proof: The result is immediate for a graph G(V,E) with |V| < 3.
The proof follows from induction on m = |V|. Suppose it holds for graphs
with m vertices. Consider now a graph with m + 1 vertices whose adjacency
matrix A has the triangle property. Thé submatrix A' of A consisting of
the first m rows (columns) of A correséonds to a subgraph G' of G with m
vertices and an adjacency matrix A' that has the triangle property. Thus
G' is a triangulated subgraph. G' corresponds to a graph G with vertex
Virk] and edges incident to Vork] deleted. From the triangle property of A

m+
then for any pair of vertices adjacent to vertex Vil ? there exists an edge



joining that pair of vertices. Hence any cycle passing through v_ . has

mt1
a chord. Thus all cycles in G have a chord. Q.E.D.

In order to prove a converse to the statement in Theorem 3.8, the
!
following lemmas are required.
Lemma 3.6 Given a triangulated graph G(V,E). Let Vv € V and E; = {elecE
and e incident to V}. Then the subgraph G'(V - 9, E = ¥) of G

is triangulated.

Proof: Since any cycle in G not passing through v has a chord
that does not coincide to any edge in EV’ therefore G' is triangulated.

Q.E.D.

Lemma 3.7 If the graph G(V,E) has a cycle, then there exists a V ¢ V
such that either d(V) = 1 or such that there exists a cycle

in G passing through any pair of distinct edges incident to V.

Proof: Choose any v = V) € V. |f either of the required
properties hold for Vi then the proof is complete. Otherwise there
exists a vertex v = Vo adjacent to vi such that there does not exist a
cycle in G with edge (v],vz). If d(vz) = | then the proof is complete.
Otherwise d(vz) 22, If vy is adjacent to a vertex v = V3, V3 # vis
for which either of the properties hold, then the proof is complete.

If not, there exists a v = v, such that v, is adjacent to v, and for which

3 3 2
neither of the desired properties hold. Now Vg # vi for otherwise there
exists a cycle with edge (v],vz) in G. But this is a contradiction, the
implication being that there exists a vertex adjacent to vy such that it

has one of the desired properties. Furthermore, if there exists a
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cycle in G with edge (vz,v3) then choose a vertex v = vy such that there
does not exist a cycle with edge (v3,v4). Such a vertex exists by
definition of v,. Also vy # vz.' If vy = V) then there is a contradic-

3

tion since edge (VI’VZ) is in G.

Replace vi by V3 (by vy if there exists a cycle in G with edge
(v2,v3)), v, by v, (VS)’ vy by vy (v6), and v by Ves if necessary, in

the above. Then repeat the procedure.

Each iteration of the above procedure adds 2 (3) edges to a path in
G. After at most m/ 2 or (m+ 1) / 2 iterations, according as m+ 1 is
odd or even, a vertex with the desired characteristics will have been
determined. Otherwise a cycle containing an edge which presumably was
not in any cycle of G has been determined and there exists a contradic-

tion. Q.E.D.
The next theorem proves the converse to Theorem 3.7.

Theorem 3.8 For any triangulated graph G(V,E) there exists a labelling
of the vertices of G such that the adjacency matrix has the

triangle property.

Proof: The result holds for triangulated graphs with V[ =m

vertices. Assume it holds for all triangulated graphs with < m vertices.

Consider any triangulated graph G with m + | vertices. |f there
does not exist a cycle of length 2 3 in G then G is a tree and must have
a vertex V with degree 1. Let E; be as previously defined. Then from

Lemma 3.6 the subgraph G'(V - ¥, E - EV) of G is a triangulated subgraph.

s

3
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Hence G' has a labelling such that the corresponding adjacency matrix
has the triangle property. Label the vertices in V - vV of G as in G'

and V as v_.,. Then since d(V) = 1, the proof is complete.

m1

Now suppose there exists a cycle of length 2 3 in G. From Lemma
3.7, there exists a vertex V € V such that d(V) = 1 or such that there
exists a cycle passing through any pair of edges incident to V. If v
is such that d(V) = 1 then proceed similarly as in the case for G
having no cycle of length 2 3. If there exists a vertex Vv € V such
that there exists a cycle passing through any pair of edges incident to
v, let < be any cycle passing through v. Let < have length L].
Suppose Ll > 3, Since G is triangulated there exists a cycle < of

length L, < L and passing through v. Similarly if L2 > 3, there exists

]

<
3 of length L3 L2

fashion until a cycle ¢ of length Li = 3 and passing through v is

a cycle c and passing through v. Continue in this
obtained. This holds for any pair of distinct edges incident to V.

Hence any two vertices adjacent to V are themselves adjacent.

Again G'(V - v, E - EV) has a labelling such that the corresponding
adjacency matrix has the triangle property. Then label the vertices of

G inV - vas for G' and label v as v Then from the above arguments,

m+1°

there is an adjacency matrix of A with the triangle property. Q.E.D.

The relationship between the triangle property and triangulated
graphs provides an alternative method for identifying a graph G as
being triangulated: Rather than determine whether every cycle of length
greater than 3 possesses a chord, establish whether G has an adjacency

matrix with the triangle property.



3.4.2 Maximal Complete Subgraphs Within Certain Medial Graphs

Prior to stating the main theorem proved in this section, cubic and
medial graphs are defined. As well, some results that pertain to cubic

graphs are stated. They are required in the proof of the main theorem.

A cubic graph is a regular graph of degree 3. The medial graph G
of a given graph was defined by Ore [40] in the following manner. On
each edge e € E of G, a midpoint Vi is selected. When two edges e; and
ej in G are incident with the same vertex, join Vi and Vj by an edge
(vi,vj). This procedure yields a new graph G with vertices Gi e Vand

edges (Gi,ﬁj) ¢ . T is calied the medial graph of G.

There exist cubic graphs G(V,E) of even order V for V| = 4. Let
|V| = R. For R = b, there is only one such graph, namely the complete
graph Kh' For R = 6 there are two of them, the 6 vertex Kuratowski

graph (Figure 3.5) and the graph G in Figure 3.6.

Figure 3.5 Figure 3.6
Kuratowski Graph Graph G
Denote an edge e joining vertices v and v' by e = (v,v'). Let
e = (VZ’Vh) and e, = (v3,v5) be two edges in G where the vertices v,,
Vas Vi and vg are all distinct. The H-expansion (see [40]) of G with
respect to e, and e, is obtained by eliminating e and e, and adjoining

two vertices v, and Vi with edges

0
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(VO,V]) (VO’Vz) (vo’vs) (V] ,V3) (Vl ’Vl')
or also by
(vovy) (vgsvg) (vg,va) (vy,v,) (v, Ve)
There exists a successive construction of cubic graphs as a result

of the following theorem due to Johnson (see [40]).

Theorem 3.9 For R 2 6, every connected cubic graph on R + 2 vertices is

an H-expansion of a connected cubic graph on R vertices.

Hence any cubic graph of order R > 6 can be obtained from a cubic
graph of order 6 with a sequence of (R = 6)/2 H-expansions. Each

H-expansion introduces 2 new vertices and an additional 3 edges.

If the vertices of a graph are appropriately indexed and if 6
contains a complete subgraph Kk, then the adjacency matrix A correspond=-
ing to G contains a k x k submatrix whose non-diagonal elements are all
equal to one. The same effect is produced by an arbitrary indexing of
the vertices followed by rearranging rows and columns by a sequence of
operations, each interchanging a pair (i,j) of rows and a pair (i,j) of
columns. Conversely, if an adjacency matrix of a graph G contains k x k
submatrix whose properties are as above (or equivalently, if such a
submatrix can be obtained by rearrangement of rows and columns of A),

then G contains a complete subgraph Kk.

Theorem 3.10 The order of the largest complete subgraph contained in
the medial graph of any cubic graph is three.
Proof: For cubic graphs of order equal to 6 this is immediate

from Figures 3.5 and 3.6.
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A cubic graph G can be constructed in a series of H-expansions, at
each stage i of which there is a cubic graph Gi’ Corresponding to each
G, and G are medial graphs E} and G respectively. Let the initial cubic
graph of order 6 be Go. Suppose that the order of the largest complete

subgraph in 5} is 3. Then it is required to prove that the same holds

for Gi+1'

Suppose that Gi+l is a H-expansion of Gi with respect to edges

e = (v2,v4) and e, = (v3,v5) in G.. Denote the order of the medial

graph E} of G, by I. Index the | vertices of E} so that the vertices
5'_] and Vl correspond to edges e and e, of Ei respectively. Designate
the two vertices adjoined to Gi to obtain Gi+l as v, and vy and the edges

adjoined as (VO’VI)(VO’VZ)(VO’VS)(V]’V3)(V1’vh)‘ Let the vertices vl-l

and ¥, of E} correspond to edges (VO’VZ) and (VO’VS) inG,,,, as well

i+]

as to vertices U and v, in Gi+l respectively. Let vertices Vier

and V9ieg and v|+3 be the yertncgs ad;ouned to Gi to obtain Gi+l and
correspond to the adjoined edges (vo,v])(v],v3), and (v],vh) in 6.,
respectively. The relevant vertices of Gi and E} are indicated in

Figure 3.7. Similarly for 6, and E}+] in Figure 3.8.

vy Vg Voo Vg Y v, vg
o ©— © °
vl-l VI V|+]
s : —0 ©- .
Yy Y3 AT A Yier V3
Figure 3.7 Figure 3.8

Subgraph of Gi Subgraph of Gi+
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If K}+] is the adjacency matrix corresponding to G, |» then by

i+
construction (see Figure 4.4), the elements in positions (1+3,142),
(143,1+1), (1+2,1+1), (1+1,1), (1+1,1-1), and (1,1-1) are all equal

to 1. The vertices Vys V3s Vi, and Vg are all distinct. Thus the
elements of K}+] in positions (I+2,1-1) and (1+2,1) equal 0. The
elements in positions (I1+1,1),...,(1+],1~2) of K}+l are all zero. Then

0 'V]

i+]

o
O ——0
o —o

—_——

0 -
bolviy,
with the determinant elements as indicated. Since K}+' is symmetric,

only elements below the diagonal are given.

Hold the I+3rd and |+2nd rows (columns) of K}+ fixed. Then the

1
elements which equal 0 in the 1415% and I+2nd rows of K}+l make it

impossible to rearrange the first I+l rows and columns so as to obtain
ah x b submatrix corresponding to a complete subgraph Kh whose set of

rei i of ¥ v Viiae
vertices jncludes at least one of vl+], Visg? OF v'+3

Since §}+] is regular of degree 4, then any complete subgraph Kh'

containing v, must necessarily contain vertex v Hence it is

1+1°
impossible for vertex Vl to be a vertex in a complete subgraph K

l'.

The existence of complete subgraphs Kh in §}+] can now be restricted



to vertices V],...,V'_] for it has been shown that neither of veftices

9',...,Q|+3 can be a vertex on such a subgraph, Let K} be the

adjacency matrix of E}. Partition K}+l and K} as follows:

L] bl

0110
0010
11 0jv

1+3

K? differs from K} in that some non-zero elements of K? have been set
to zero in K? as a result of the H-expansion in going from Gi to

G.

RE Therefore no rearrangement of rows and columns in K? will result

inal x 4 submatrix whose non-diagonal elements are all non-zero.

This holds because E} contains no complete subgraph of order 2 4.

The same results hold when the edges adjoined to Gi by the

H-expansion to obtain €., are'(vo,v])(vo,vz)(vo,v3)(v],vh)(v',v5). Q.E.D.

Thus by demonstration of a particular property of an adjacency
matrix at each iteration in Johnson's method for construction of an
arbitrary cubic graph, it has been shown that the order of the largest
complete subgraph contained in the medial graph of any cubic graph is

three.

Before being able to state the significance of the above result,
colorations of a class of graphs called planar graphs and the medial
graph of any cubic graph must be related. However to do so, the

following definitions are necessary.
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A planar graph is a graph that can be represented in a plane such
that the edges do not intersect other than at their endpoints. A
graph is said to be edge n-colorable if each edge can be assigned one
of n (or less) colors in such a way that no two edges with the same
color are incident. For planar graphs, a graph is said to be face
n-colorable if each face can be assigned one of n (or less) colors in
such a way that adjoining faces always have different colors. The four
color problem is as follows: Are all planar graphs face U-colorable?
Note that adjoining faces of a planar graph G may be said to correspond
to adjacent vertices of a graph G'. Hence planar graphs may 'correspond’

to CTT problems and vice versa.

The following three known theorems relate the face coloration of a

planar graph to the edge coloration of a cubic graph.

Theorem 3.11 [40, Theorem 6.3.1, pp 79] A planar graph is face or
vertex n-colorable if and only if its connected components

have this property.

Theorem 3.12 [40, Theorem 9.1.1, pp 117] The face n-coloration of a

planar graph can be reduced to the case of cubic graphs.

Theorem 3.13 [40, Theorem 9.3.1, pp 121] A cubic graph is face

b-colorable if and only if it is edge 3-colorable.

But from the construction of the medial graph § of a graph G, G is
edge n-colorable if and only if G is n-colorable. Thus the four color
problem reduces to the existence of a 3-coloration of the medial graph

corresponding to an arbitrary cubic graph.




Myers and Liu [37] raise a question concerning the indeterminacy
of the relationship between X (G) and K(G) for face colorations of
planar graphs. The above shows that planar graphs reduce to a class of
graphs, namely the medial graph of any cubic graph, for which there is

no indeterminacy unless the four color conjecture is not true.
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CHAPTER &4

ADDITIONAL CONSTRAINTS TO CTT PROBLEMS

In the previous chapter, the existence of an n-coloration of a
graph was discussed. However, as seen In Chapter 2, the edges of a
graph represent only those constraints In CTT problems that prevent
assignment of pairs of classes to the same hour. In this chapter,
the existence of an n-coloration of graphs that have other constraints
imposed upbn them are considered. Section 4.1 considers those
mentioned by Welsh and Powell [46] and already discussed In' Chapter 2.
These constraints assign given vert]ces to particular colors. In
Section 4.2 discussion is given of those constraints In CTT problems
that are equivalent to the prevention of assignment of vertices to
certain colors. For both cases, theorems are proved that reduce the
existence of an n-coloration of graphs with these additional constraints
imposed upon them to the existence of an n-coloration of graphs without
these additional constraints. In Section 4.3, it is shown how the
results of the theorem proved in Section 4.1 may be applied as a basis

for more flexible methods of obtaining an n-coloration of a graph.

4.1 Preassignment Constraints

The constraints that have previously been considered pertain to the
prevention of pairs of vertices from being assigned to the same color.
Let these be called adjacency constraints. Constraints that preassign
vertices to specific colors will be called preassignment constraints.
This section describes how a graph with both adjacency and preassign-

ment constraints may be reduced to a graph with only adjacency constraints.
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Given G(V,E) with |V] = mand a set S of preassignment constraints.
Suppose there exist vertices Vi € V, i=1,...,n* (n' < m, that have
been preassigned to colors s i=1,...,n', but there do not exist
vertices v € V, i =1,...,n'+] (nt +1<m thaE have been preassigned
to colors i i=1,...,n+]. The set § of preassignments will be said

to require n' colors. An n-coloration of G does not exist if n' > n,

It will henceforth be assumed that n' < n.

Consider a graph G(V,E) with |V| = m and a set of preassignment
constraints and suppose the requirement is to establish the existence
of an n-coloration. Define am x n preassignment matrix Pmn where
pij =1 if vertex Vi € V has been preassigned to color cj and pij = 0 )

otherwise. For matrix P, Z?=] Pij = 1 if vertex v, eV has been pre-

assigned to a specified color and Z?=] pij = 0 otherwise. Denote a

u

graph G(V,E) with preassignment matrix P by G(V,A,Pmn). If P 0,

mn
write G(V,A,Pmn) as G(V,A,8).

Define the sets Vj where
Vj = {v, | all v, € V such that Pij = 1 where Pij € P}

for j =1,...,n. Clearly Vj N VJ.l =@ for j # j' and Vj =@ if there
does not exist Vi € V such that Vi is preassigned to color cj. The

following lemma is immediate.

Lemma 4.1 A necessary condition for the existence of an n-coloration

of G(V,E,Pmn) is that for any v,, v, € Vj’ a =a; = 0

in matrix A.



Define the graph G', corresponding to the graph G, with vertex set

V as in G and (symmetric) adjacency matrix A' with elements aij where

H = b=
1. if aij e A and aij 1, then aij 1,

2. ifv, e Vk and J s'Vk, for some k, k' where k # k'

and 1 $ k, k' $n, then a;j =1, and

3. if Vi, Vi € Vk for some k, 1 Sk $n, and there exists

= ! o=
vj eV, vj A Vk’ such that ailj 1, then aij 1.

Otherwise a;j = 0.

The following theorem proves the desired result.

Theorem 4.1 A graph G(V,A,Pmn) is n-colorable if and only if G'(V,A'!ﬁ)
is n-colorable.
. n
Proof: Suppose G(V,A,Pmn) is n-colorable. Let {Ck}k=l

be an n-coloration of G where Ck represents the vertices of G that have

been assigned to color €2 k=1,...,n. Clearly Ck N Ck, = ¢ for k = k'.

For each Vk' such that V,, # 0, k' = 1,...,n, there exists exactly one
k, 1<k <n, such that Vkl g,ck. This follows from the definition of
{Vk.}E,=] and {Ck}2=]. For any k, k', 1 $ k, k' € n, there does not

exist k', 1 < k" € n, such that Vk g_ck“ and Vkl Q_Ck".

To prove that‘{Ck}E=] is an n-coloration of G'(V,A',#) it is
required to show that for any Vi vj £ Ck’ i #j, then a;j =0,
Suppose there exists Vis vj € Ck’ i #j, for some k, 1 <k € n, such

that a;j =1, By definition of a;j then either

7h



s

2, Vi € Vkl and Vj € Vk“ for some k' and k", k' # k", and
1 <k', k" <n, or
3. either v, or Vi € Vo £C» say v,, and there exists

Vi€ Vi, Vg # Vis such that ai'j =1,

A1l however contradict that {Ck}:=] is an n-coloration of G(V,A,Pmn).

Thus {Ck}E=] is an n-coloration for G'(V,A',f) and hence is n=colorable.

Now let {Ck}z=] be an n-coloration of G'(V,A',f) where Ck are

n
k}k=]’

defined as above. By definition of matrix A' and the sets {V

then for any k, k', 1 <k, k' £ n, there does not exist k', 1 S k'* § n,
such that Vi 0 C # @ and Vi ) Cort = #. Suppose v, # 8. Choose k:,
1< k: < n, such that V] n C 1 # @. Then unless VI g_ckl, there

l : 1

<< k # k), such that (v = (v e )ncl#g
I 2

exists k2’ Skys

because V 4 uk= But

17k’
(0] ) (€1 V0 0 6D, (61 - (v 0603

is an n-coloration of G' for suppose there exists a Vi € Vl fi Ckl and
2

vii € C 1 such that a,., =1. Lletv,, eV, NC1#@. Then by
i kl ii i ] k]

definition of A', aju=1. But {Ck}2=] is an n-coloration of G',

Hence there is a contradition. Thus
{({Ck}k P k#k ] N, (€, : vV nc ), (- (v, n c1))}
2 2 2
is an n-coloration of G'. Continue in the above manner until an
n=coloration {CL}E=] of G' with VI g_c; for some k is obtained, Repeat
the procedure for each V

K k=2,...,n. The resulting n-coloration is

also an n-coloration of G. Q.E.D.



To illustrate the result in Theorem 4.1, consider a graph G(V,E)

with |V| = 8 and adjacency matrix where

0011001 0]
00100010
11011100
10100101
00100100
00111001
11000000
00010110l

Also suppose that vertices Vis Voo v3 are to be assigned to colors cpr

€y C3 respectively. Assume n 2 n' where n' = 3 in this case. Then

[1000f
0100

0010
Psn = F 0

Then from Theorem 4.1, G(V’A’PBn) is n-colorable if and only if

G'(V,A',8) is n-colorable where

0111001 0]
10100010
11011100
10100101
00100100
00111001
111000000
(00010110

AI
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77
according to the above definition of A', Since v, = {v]}, v, = {vz},
and V3 = {v3} then a,,, aiz, aél, ai3, and aéB must equal 1 in A',

The underscored positions in A' indicate the elements that equal 0 In

A and that have been reset to equal 1 in A'.

Thus the question of the existence of an n-coloration of a graph
G with some vertices preassigned to specific colors has been reduced
to the question of the existence of an n-coloration of a graph without

any preassignment constraints.

The signiffcance of Theorem 4.1 is that the existence of an
n-coloration of graphs with preassignment constraints can now be
determined using known methods that are feasible with respect to computa-
tion. That is, when n lies outside the interval [BL’ BU) where B, and
BU are as defined earlier or when the adjacency matrix of G' has the
triangle property, or almost so, then the question of existence Is

answerable,

To illustrate the significance of Theorem 4.1 for the above
example, suppose the question is to determine the existence of a
3-coloration of G(V,A,P83). But G(V,A,P83) is 3-colorable if and only
G'(V,A",0) is 3-célorab]e. From matrix A', B = K(G') = 3 and the
best upper bound BU obtained from previously known methods is BU = b,
Hence 3 is in the interval [BL’BU)' Using the results presented in
the previous chapter, it is easy to show that there does not exist a
3-coloration of G'(V,A',8). Hence there does not exist a 3-coloration

of G(V,A,P83).



4.2 Prevention of Assignment Constraints

Another type of requirement that often arises in practise is that

given vertices (classes) are not to be assigned to specified colors

(hours). Such a requirement will be called a prevention of assignment

constraint. The following shows how these constraints can be reduced

to adjacency constraints.

Given a graph G(V,E) with |V| = m and a set S' of prevention of

assignment constraints. The set of constraints S' can be expressed in

amx n prevention of assignment matrix Pén = [p;j] where p;j =1 if

vertex Vi € V is not to be assigned to color cj and p;j = 0 otherwise.

A graph G(V,E) with preassignment matrix P and prevention of

assignment matrix P&n will be denoted by G(V,A,Pmn,P' ). IfP .20,

mn mn ~
denote the corresponding graph by G(V,A;ﬁ,Pén)- Similarly for P_ .

nn’ mknn

Corresponding to G(V,A,¢,Pén), define the graph EY_}K;3;+ P

with

1. V=v U { },

17 Vnen

)

2, A= [aij] where 8= 1if 3 = ] and §ij = 0 otherwise, and’

3+ Prup p = [yl where B,y

otherwise.

=1 fori=1,...,n, and 5ij =0

Then the following lemma gives the first of three equivalence state-

ments.

Lemma 4,2 G(V,A,ﬁ,Pén) is n-colorable if and only if G(V,A, .

is n-colorable.

P

'
mn n

)
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Proof: The proof is immediate since the n additional vertices

VA ) 1 1
V12" 1V 10 the graph G(V,A Pm+n P n) are 'independent' of the

vertices in V. No vertex Vi ? i =1,...,n, is adjacent to any vertex

v. e V. .E.D,
f Q

Define the graph E“(V;K",¢,P' ) corresponding to G(V,A

m+n n’
= g - : .
P en n) with A [a ] where 3] l1if aiJ 1 and afJ 1 for i,
j=m+1,,..,m+n, i #j. Otherwise aij =0,
The next lemma relates the coloration of G(V,A,P A m+n n) and
(T 1
G (V,A ,¢,Pm+n n)'
—_— l - . .
Lemma 4.3 G(V,A,P m#n n*Fkn n) is n-colorable if an only if
TV’ 1 H -
G'(V,A ’G’Pm+n n) is n-colorable.
Proof:
[
A 0 A 0
R = and A' = where
0 A 0 1 A
! J | )

the n x n matrix A] =0 and the n x n matrix A2 has all nondiagonal

elements equal to 1 and diagonal elements equal to 0.

co b1 . . .
Matrix Pm+n n applies only to vertices ViseensV € V. Also matrices

$6+n n and A2 express the same constraints., Thus the required result is

proved. Q.E.D.



Finally, define the graph ' (V,A",d,8), corresponding to the graph

- — — N -—” = =1 . . =y = .
G'(V,A',(JJ,PI:H_n n)’ with A [aij] a symmetric matrix where & 1if

a;' = ] and for j =m+ k if p;k = ]’ i .= l,-uc,mo otherWise .a.lilj = O.

Lemma 4.4 G'(V,A" AP n) is n-colorable if and only if G'(V,A",d,0)

is n~colorable,

. T B ' te me : n
Proof: Suppose G'(V,A ’a’Pm+n n) is n-colorable. Let {Ck} -1
be an n-coloration of G' where for each k, k = 1,...,n, the set Ck
contains the vertices of G' that have been assigned to color €, By

e e 0 - 1 ! n .
definition, C A C.\ = § for k # k'. To show that {ck}k=l is an
n-coloration of G, it is required to show that for any Vis Vi1 € Ck,
i #1"and 1 €k <n, then é'i'j = 0, Suppose to the contrary that

é'i'j = 1, Then by the definition of E'i'j one of the following must hold.

. = 1. But this contradicts {Ck}L] being an
n-coloration of G'.

2. Without loss of genérality assume i > j. Then E'i‘j = |
implies that i = m + k and that pjk = ], But this contradicts {Ck}E=]
being an n-coloration of G' that satisfies the conditions in matrix Pr".

Thus {tk'}z=I must be an n-coloration of G'(V,A",#,d).

To show the converse, let {Ck}L] be an nfcoloration of &'(V,A",d,0)

where the Ck are defined as above.' None of the constraints of matrix A'

are violated in such a coloration, by definition of the matrix A', Both

for G' and G, each of the vertices v ..,

ent set ck,, k' =1,...,n. This follows from the definition of matrices

' and A'. Suppose vertex v, € C ., k= 1,...,n. If there exists

3

k=1,...,n, belong to a differ-
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v, € Ck for some k, k = 1,...,n, and i < m such that Pi = 1, then

- - i I no.
af mk 1. But this is a contradiction. Hence {Ck}k=l is an

n-coloration of G'. Q.E.D.
Lemmas 4.2, 4.3, and 4.4 provide the proof to the following theorem.

Theorem 4.2 The graph G(V,A,(J,Pr;‘+n n) is n-colorable if and only if the

graph G'(V,A",8,8) is n-colorable.

Proof: From Lemma 4.2, G(V,A,ﬂ,Pén) is n-colorable if and

[ -l - a ' . -
only if G(V,A,Pm+n o Pan n) is n-colorable. Next from Lemma 4.3,

G(V,AP ! is n- i ce TUT R '
G(V,A,Pm+n 0P ren n) is n-colorable if and only if G'(V,A B n)

is n-colorable. Finally, from Lemma h.h,'ﬁ'(vzﬂ“,ﬁ,P$+n n) is

n-colorable if and only if &'(V,A",8,8) is n-colorable. Q.E.D.

To illustrate the result of Theorem 4.2, consider a graph G(V,A)

with |V| = 6 and an adjacency matrix A where

00001 0]
00101
010110
001001
111001
010110

Furthermore, vertices Vis Vs and v3 are not to be assigned to colors

€35 Cys and < respectively. Hence



G(V,AF,

From Lemma 4.2, G(V,A,Q,Pén) is n-colorable if and only if

1
n n’P6+n n

) is n-colorable where

00 1
010
100
000
000
0 00l

T=vuy {v7, Vg V9""’v6+n}

=|

-P6+n n

o —~ O O O O

-~ 0O O O O O o
—_ 0 O O O O O o

o O
o

0010]
1011
0110
1001
1001
0110

0

-_ O O O O O O O o

, and
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00 1]
010
100
000
= 1000
000

T°;JJ.°H

]
P6+n n ’P6+n n

' —9
P6+n n

From Lemma 4.3, G(V,A, ) is n-colorable if and only if

G (V,K',ﬂ,Pé+n n) is n-colorable where

000010
001011
010110
001001
111001
010110f |
lor...1
ol 1

. .
0 : ]u

1...101
L J11 ... 10|

Finally from Lemma 4.4, ' (V,A® ,¢,Pé+n n) is n-colorable if an only if

G"'(V,A",,8) is n-colorable where

83
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000010001 |
0010117010
010110100
001001000
111001000
10110000 |
1ooofol . .11
10000101 . .1

o O O
o

100000/, 1 )

| 11..10]

Thus the question of the existence of an n-coloration of a graph

with vertices that are not to be assigned to specified colors has been

reduced to the quesfion of the existence of an n-coloration of a graph
without those constraints. Furthefmore, it is immediate that if Pén
is such that there are really only n', n' < n, colors to which
vertices are not to be assigned, then only n' 'additional' vertices

need to be introduced.

As for preassignment constraints, the significance of Theorem 4.2
is that the existence of an n-coloration with preassignment constraints

can ﬁow be determined if n is not in the interval [BL’BU) where B, and

L
B, are the best known bounds of X(G") where G' = G'(V,A",8,8) or when

the adjacency matrix A" has the triangle property, or almost so.

To illustrate the significance of Theorem 4.2 for the above

example, suppose the question is to determine the existence of a
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3-coloration of G(V,A,¢,Pé3). But G(V,A,ﬂ,Pé3) is 3-colorable if and

only if G'(V,A",0,8) is 3-colorable. For n = 3, then

(00001000 1]
001011010
010110100
001001000
‘= |111001000
010110000
001000011
010000101
100000110

=1
[

Using previously known methods for finding upper bounds B, of X(G"),

U

it is immediate that there is an upper bound BU =3, Thus a 3-colora-

tion of G''(V,A",@,0) exists and hence similarly for G(V,A,ﬁ,Pé3)-

The statement of Theorem 4.2 applies to graphs G(V’A’Pmn’Pén) with
Pmn # 0. The extension to graphs G(V’A’Pmn’Pén) with Pmn # 0 and

Pén £ 0 is immediate. This is illustrated by the following example.

Consider a graph G(V,A) with |V| = 6 and an adjacency matrix A
where

(0 00010]
001011
010110
001001
1171001
010110l
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Suppose vertices vi and v, are preassigned to color € and vertex v5

is not to be assigned to color c

3"

P63 and the prevention of assignment matrix Pén are

Following the result in Lemma 4.2, G(V,A,P6n,Pén) is n-colorable

]
and P6n

(0007

|00 0L

000
000
000
001

That is, the preassignment matrix

(assume n 2 3 as otherwise no n-coloration exists) if and only if

E('\T,T\',Fm,P%n) is n-colorable
V=vuy {v7},

10

— |

A= A |

!

0 --- 0

| i

P7n= P6n

0010---0|

where

(00001 00]

0010110
o1o01100
0010010
1110010
0101100

000000 0.

010---0

, and
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o

O
>

n
o
o
(=]

Next, following the result of Lemma 4.3, G(V,A,F. n’P;n) is n-colorable

if and only if G'(V,A" ,ﬂ,P}n) is n-colorable where

7000010 1]
0010111
0101100
0010010
1110010
0101100
(1100000

>}
]

Finally, following the result of Lemma 4.4, &' (VA ,(d,P}n) is

n-colorable if and only if G'(V,A',#,8) is n-colorable where

00001017
0010111
0101100
A= 10010010
1110011
0101100
(1100100,

SRR YN



Thus the above graph has been reduced to a graph without preassign-

ment and prevention of assignment constraints. Furthermore, this has

been achieved by introducing only one additional vertex.

4,3 Determination of an n-Coloration

Known upper bounds BU of X(G) usually provide a specific n-colora-
tion for all n 2 BU. The edges of a graph, including those which have
been included in the graph so as to represent preassignment and preven-
tion of assignment constraints, represent many of the requirements
within practical CTT problems. However, in cases when there are other
desirable requirements that any particular solution (coloration)
should meet, then more flexibie methods for obtaining a coloration are
required. Assuming an n-coloration exists, some implications of
Theorem 4.1 for a flexible method for determination of an n-coloration
are given. This will be done in context of the multi-stage decision
process. An important distinction should be noted. Previous discussion
concerning the multi-stage decision process was in context of determina=

tion of the existence of an n-coloration whereas here it is in terms of

finding an n-coloration which is assumed to exist.

Let G be graph with vertex set V, |v| = m, edge set E, and
adjacency matrix A. Consider the problem of finding an n-coloration
of G as a m-stage decision problem where at each stage i, 1 S i <m,

a decision pertaining to assigning Vi ¢ V to one of the n colors
{cj}?=] must be made as discussed in-Chapter 2. That is, vertex v,
must not be assigned to any color cj, 1<$j <n, such that there exists

v, € v, k < i, with edge (Vi’vj) e E and v, having been assigned to

88




89

color c¢.. Also it is desirable that the decision be made so that each
of the vertices Vi k > i, can be assigned to some color cj, J=1,0000,
without having to revise previous decisions to prevent assigning
adjacent vertices to the same color. '
Suppose stages 1,...,i = 1 have been completed and vertex vi must
be assigned to a color according to the above two specifications.

Methods to achieve the first are straightforward. Thus assume that

v; can be assigned to each of the colors cj, je Ji where

Ji = {k|1 € k € n and k such that there does not exist a
vertex Vgr @ < i, for which edge (Vi’vj) € E of G and Y having been

assigned to color ck}.

In general the problem is to determine a set J; where

J; = {k]k € Ji and if vertex v; is assigned to color €y

then vertices vq, q > i, can be assigned to one of the n colors

availablel}.

Suppose a decision at some stage k has been completed in that
vertex v, has been assigned to a specific color. This is equivalent to
the vertex having been assigned to the particular color. Thus while a
decision is being made at stage i, those made at stages 1,...,i - 1
are equivalent to vertices ViseeaViy having been preassigned to
specific colors. Furthermore, to determine J; E'Ji’ consider v;
temporarily assigned to some color cj, je Ji‘ Then considering

vertices VisesessV; @S having been preassigned to specific colors,



Theorem 4.1 may be used to determine if j € J;. Thus all known methods
related to establishing the existence of an n-coloration of a graph can

be used to determine J; for each i and hence a coloration of a graph.

To illustrate the effectiveness of the above considerations,
consider a graph G with vertices v],...,v7 and adjacency matrix A

where

01111 11]
1001101
1000110
1100001
1110011
1010101
(1101110

Determine a h-coloration of G by means of a 7-stage decision process.
Suppose stage 3 has been completed with vi having been assigned to
color o and vy and v3 having been assigned to color C, Using
Theorem 4.1, graph G with stages 1, 2, and 3 completed can be repre-
sented by a graph G' with vertices ViseensVy and adjacency matrix A’

where

01111117
1001111
1001111
1110001
1110011
1110101
L1 111110

AI
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But from A', then k(G') = 5. It is immediate that vertices vy and
Vg cannot be assigned to the same color. This avoids the problem
of continuing to stages 4, 5, etc., only to find that back-up to
stage 3 is required so as to reassign vertex v3.
The above should not imply the need for necessarily determining
J% or any subset thereof at each stage i in order to use the previous
results. For example, if n >> BU then it could be advantageous to
assign vi to color Sy for some k € Ji and continue to stage i + |
without determining J;. The need for determining k, k < i, such that

| ! = i = i
Jk # 0 and Jk+l § now arises only when Ji+| g. Ifn> BU this

could be expected to occur frequently.

B Y
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CHAPTER 5

RESULTS AND CONCLUS IONS

‘The following CTT problem illustrates the correspondence between
a CTT problem and the graph models discussed. The problem also
demonstrates the application of the results given in the previous

chapters,

Consider a CTT problem with 12 classes, each of which are to
meet for one hour, beginning on the hour, every morning between 8:00
A.M. and 12:00 noon. Suppose the classes have been denoted by VyseeesVype
The classes are to be assigned or scheduled to one of the four available

hours according to the following requirements:

1. Teachers t], tz, t3, th’ t5 and t6 are to meet classes
{Vz) V79 V8}’ {VIO’ Vlz} ’ {V3? V6} , {V9, V]]}, {V], VS}, and {Vh}

respectively.

2, The following pairs of classes correspond to courses
within academic programs, and hence must not conflict; that is, the

classes must not meet during the same hour: (v2, v]), (v3, vz),

(vys Vo)y (v, v3), (VS" v,), (VS’ v3), (v7, VS)’ (V7’V6)’ (v9, v3),

(V9, V6): (V|09 Vz)’ (Y]Os Vs)) (V]], V6) and (VIZ’ V6).
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3. The following pairs of classes are popular among
students in the sense that many enroll In both of them: (v3, v]),

(v8, VS)’ (v9, v8) and (VIZ? v2).

k., Teachers ty and tg are in charge of student counselling,

and one of them must be available at all times.

5. Teacher t3 must meet his class (v6) at 8:00 A.M.

6. Teacher th is not available for teaching at 9:00 A.M.

7. Class Vi Must meet in a particular classroom. This
classroom is not available to class Vio at 11:00 A.M.
8. Classes Vo) v3, Vis VS are senior classes and are not

to meet prior to 9:00 A.M.

9. Several of the students on Student Council, which meets

at 9:00 A.M. every day, have enrolled (plan to enroll) In class Vit

10. Some of the students who have enrolled (plan to enroll)

in Vi) are members of an athletic team that practises at 9:00 A.M.

Let the classes v, correspond to the vertices V = {Vi} of a

PR PR
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graph G with V = 12, Define the non-zero elements below the main

diagonal of an adjacency matrix A of G as follows:

1. Corresponding to the first of the above requirements,
consider classes Vor Vg and Vg which must be met by teacher ty
Teacher t is prevented from having to meet more than one class
during any given hour by setting a7y gy agy equal to 1; similarly,

for the other classes met by the same teacher.

2. Corresponding to the second requirement, set 31 a32,...,
a,6 equal to 1, so as to prevent conflicts from occurring within
y

any solution.

3. Corresponding to the third requirement, set a3], 385’
a,q and a equal to 1, so as to allow students to enroll in these
98 12,2

popular combinations.
L. Corresponding to the fourth requirement, set 394’ Ay
b
and 1 g equal to 1. This prevents both teachers t, and tg from

meeting their classes during the same hour.

Since A is symmetric, A is defined completely. Thus,



The fifth requirement corresponds to a preassignment constraint

where class Ve must meet at 8:00 A.M.. Thus the preassignment matrix

Plz,b is defined as

00

0 1

0000
1101
0010
0010
1100
1011
0101
1010
0100
1000

0001

95



0 0 0 0]
0000
0000
0000
0000
12,4
0000
0000
0000
0000

0000

(0 0 0 0J

Note that the 4 columns of Pia 4 correspond to the 4 available
hours and colors. Colors C1» S c3 and ¢y correspond to 8:00 A.M.,

9:00 A.M., 10:00 A.M. and 11:00 A.M. respectively.

Requirements .6 through 10 correspond to prevention of assignment
constraints. Note that requirement 10 is redundant following the
requirement 6. Thus the prevention of assignment matrix Piz 4 is

’

defined as
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000 0
- 1000
1000
1000

1000

PHZ,Q 0000
0000
0000
0100
0001

0100

0 10 0

The question concerning the existence of a solution to the CTT
problem is equivalent to the question as to the existence of a
4-coloration for the graph G(V,A.P P!, ). Following the results

12,4°712,4

[ [ [ ' -
and illustrations in Chapter b, G(V’A’Plz,h’Plz,h) is b-colorable
if and only if 6" (V,A",d,8) is k-colorable where V = VU{(VIB, Vi V]S},

and
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7\11 =

01
00

00

00

000
010
000
000
000

000

00000

00
01
00
10
00
11
00

00

10 1]

01
00

00

000
000
000
000
000
111
000

000

101

110

12

5

Following the example given in Chapter 3, the upper bounds of

X(G") of Brooks [11], Welsh and Powel) [46], Peck and Williams [41],

Williams [47], and Formby [20] are 12, 6 ,5, 6, and 5, respectively.

Thus 4 lies in the interval [BL,BU) = [4,5); hence, the existence of

a b-coloration of G'" cannot be determined from the known bounds of

X(6").

98



The submatrices indicated in A" show that A" has the form

corresponding to the almost algebraic cases discussed in Section 3.3.4.

Hence, the computation of Iu(ij)elpij‘ is immediate, following the
example given in Chapter 3, and is found to equal 24, Thus " has a

h-coloration, and hence, similarly for G. Therefore, the above CTT

problem does have a sclution.

Jo find a 4-coloration of ", let Cs Cg» Cg and cy be the 4
available colors and use a 15-stage decision process to find a b-
coloration, which is known to exist, as discussed in Section 4.3,

Let theith stage correspond to assigning vertex vy to some color Cj'
Then the first three stages allow no choice. After the completion of
each stage, it is immediate that no incorrect decision is possible as
6" (V,A",8,8) with the corresponding preassignment constraints is
equivalent to &" (V,A",@,8) without the corresponding preass i gnment
constraints, from Theorem 4,1, Hence assign vy to ¢y, Yy to ¢, and
to c.. At stage 4, temporarily assign vertex v, to ¢;. From

3 3

A", such an assignment is valid; and hence, 1 is an element of Jh’

v

where Jb is defined as in Section 4.3. Consider now the graph

& (V,A",8,0) = G(V,A ,8,8) with the 4 preassignment constraints
corresponding to the first 4 stages and where A = A", From Theorem
L., such a graph is 4-colorable if and only if the graph &' (V,A',8,0)

is 4-colorable where
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01701100101 0000]
101111110101000
1170111001000000
011011001010000
111101110000 002
LI O T T O O R I O
ol1o0011010100000
A' = 010010100000000
1]01101000010100
01000110000 i 001
loololooiloo00110
010001000100100
00000100101 1011

00000100001 0101

0000010001001 10

But for G'(V,A',8,8), K(G') = 5. Hence G Is not k-¢colorable and

1 Is not an element of JL where JL is defined as in Section 4.3.
Hence 4 is In JL, as 2 and 3 are not in Jh’ and G is known to have

a lb-coloration. Thus assign vy to ¢y Continuing in this manner, éhe
following 4-coloration is obtained: {v], Ve v8}, {VZ’ Vg Vlh}’

{v3, Vs Vips Vg VIS}’ {Vh’ Ve Vi v]3} are assigned to colors
¢ €9 €3 and cy respectively. Now, A" was defined so as to correspond

V) v]3, vy and VIS to classes that are to meet at 8:00 A.M., 9:00 A.M.,

100
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10:00 A.M., and 11:00 A.M. respectively. Then a solution to the

CTT problem has been obtained by associating €y i cy and c3 with
8:00 A.M., 9:00 A.M., 10:00 A.M., and 11:00 A.M. respectively.

Thus the classes that meet at 8:00 A:M., 9:00 A.M., 10:00 A.M. and
11:00 A.M. are {v], v6}, {Vh’ Ve VIO}’ {v2, v9}, and {v3, Vg i
VIZ} respectively. |t is easy to check that all the given requirements

have been satisfied.

For the sake of clarity, define the following four sets of
graphs, all of which may correspond to CTT problems: Let Class] be the
set of all graphs; Class2 be the set of all graphs with preassignment
constraints; Class3 be the set of all graphs with prevention of
assignment constraints; and, Classh be the set of all graphs with

preassignment and prevention of assignment constraints.

The number of cases for which the determination of the existence
of a solution can be realized has been improved for CTT problems.
The improvement is based on identifying a property, called the

triangle property, of the adjacency matrix of a graph.

Theorem 4.1 shows that for any CTT problem that is equivalent
to.a graph in Class2 for which an n-coloration is to be obtained, is
also equivalent to a graph in Class, for which an n-coloration is to be

obtained. Similarly, Theorem 4.2 shows that for any CTT problem that
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i; equivalent to a graph in Class3 for which an n-coloration is to be
obtained, is also equivalent to a graph in Class] for which an n-
coloration i; to be obtained. There are many graphs in Class] for

which known methods are able to determine the existence of an n-coloration.
Hence there are many CTT problems, previously unanswered, for which

the given results enable the determination of the exfstence of a

solution. The same conclusion also appliés to CTT problems that are

equivalent to graphs in Classh.

A correspondence between the completed.stages'of a multi-stage
decision process and preassignment constraints was shown in Section
4.3, Gotlieb [21] gave a necessary condition for the existence of a
solution to CTT(A) probiems with preassignment constraints. He
stated that it must hold after stage i in order to possibly attain a
solution. However, as pointed out earlier, Gotlieb's condition is
not sufficient; plus; it is restricted to a particular class of
problems. The condition given in Section 4.3, the existence of a
coloration, is both necessary and sufficient. It provides the basis
for a very flexible means of determining an n-coloration of a graph
in either of Classi, i =1, 2, 30r 4 More importantly, the same
applies for determining a solution of a CTT problem that is equivalent

to such graphs.
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For the CTT problems considefed by Gotlieb (previously labelled
as CTT(A) problems), no condition which is both necessary and
sufficient for the existence of a solution was known when
preassignment constraints are present, except for problems with only
one class or one teacher. From the concept of introducing new edges
as for graphs in Classi, i=1,2,3and b, such a necessary and

sufficient condition is immediate.

A CTT(A) problem with no preassignment constraints has a
solution, provided no teacher or no class is involved in more than y
meetings. Given a CTT(A) problem that has a solution and no
preassignment constraints, let the y meetings of a class cj be
represented by y distinct vertices. Doing this for each class, a total
of 8.y vertices is obtained. Subdivide each set of y vertices
corresponding to a class into subsets such that the vertices of any
such subset corresponds to meetings with a particular teacher. If
Eirij <y, then there will be meetings for.which class cj does not
meet with any teacher. Let the corresponding vertices belong to a
subset which corresponds to meeting with a dummy teacher. Join every
pair of vertices in each subset for each class, including the one
correspondinglto meeting the dummy teacher. Next join each pair of
vertices belonging to subsets which correspond to different classes
and which meet the same teacher, excluding those meeting a dummy
teacher. Then, a graph G corresponding to the CTT(A) problem with no

preassignment constraints is obtained.
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Using the results presented, a graph G' is obtained that
corresponds to the CTT(A) problem with preassignment constraints.
Then a necessary and sufficient condition for the exlistence of a
solution to the corresponding CTT(A) problem is that G' have a y-
coloration; similarly, for CTT(A) problems with prevention of assign-

ment constraints.

Theorem 3.10 shows, by means of identifying properties of a
sequence of adjacency matrices, that the four color problem is
equivalent to showing the medial graph of any cubic graph to be a
perfect graph. The theorem is of interest from the point of

recognizing a difficult and unsolved problem from yet another direction.

Finally, the relationship which is shown to exist between the
triangle property and triangulated graphs hints at relationships
between the problems being faced by graph theorists and computer
scientists. These problems are the characterization of graphs and
the search for efficient algorithms for certain combinatorial

problems. These problems appear to be perpetually unsolvable.

The advances reported are relevant to other resource allocation
problems. For example, the results apply to job scheduling problems.

As shown by Welsh and Powell [46], each job scheduling prohlem
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is a graph G(V,E) with |V| = m where m jobs are to be scheduled
during different days such that certain pairs of jobs are not
scheduled on the same day. The solution seeks the minimum number
of days required for such a schedule. Finding an upper bound of
the chromatic number of a graph corresponds to finding a sub-
optimal solution to the above job scheduling problem. The results
presented permit finding sub-optimal solutions to such job schedul-
fng problems, with the additional constraints that some jobs have
been prescheduled to specific days, and/or some jobs are not to be

scheduled on specified days.

This study lends itself to some further research of an experiméntal
nature. First, the results reported allow the comparison of the
chromatic number X(G) to known upper bounds of x(G) fdr graphs G
corresponding to adjacency matrices that have the triangle property,
or almost so. Welsh and Powell [46] suggested such a comparison.
Previously, such a comparison was feasible only for graphs that were
known to be perfect, that is x(6) = K(G). This should be done so as
to learn as much as possible concerning the chromatic number and
known upper bounds of the chromatic number; this applies particularly
to cases when known methods are unable to determine the chromatic
number of a graph. Second, future work should relate graph models
to CTT(B) problems with courses that are offered more than

once (muiti-sectioned courses).
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