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Abstract

One way to approach control design for complex plants is to obtain a linear approxi-
mation of the original nonlinear model at different operating conditions, followed by
the application of linear control design techniques at each one of these points. The
controllers so designed are then “scheduled” as the plant changes operating points.
This practice, however, still lacks a systematic stability and performance analysis.
This thesis investigates the virtues and shortcomings of the recently introduced input-
output approach to systems described by multiple models by means of a case study.
This theory is applied to the speed control of a series dc motor. Different experi-
ments are designed and conducted to obtain a nonlinear model, which is linearized
at various operating points. The mixed-sensitivity H., optimal control method is
applied to design controllers for each local model. A gain scheduling algorithm is

then implemented and the performance of the resulting controllers is evaluated.
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Chapter 1

Introduction

1.1 Introduction of Control System

The art of automatic control systems has permeated into all of our lives: the toaster,
the washing machine, the car, the aircraft and so on. It, together with other modern
technologies, has totally changed our way of living.

During the development of modern technology, people not only have designed
the machines, which release themselves from intolerable amount of monotonous work,
but also constructed devices which automatically control or regulate the operation
of machines and processes. Because of the development of these control systems, it
has extended people’s own physical capacities. For example: a coachman can handle
a horse-drawn coach with his own experience and capacity. However, a complicated
aircraft, on the other hand, cannot be flown without the help of various control
systems, which can regulate the flight of the aircraft automatically or translate the
pilot’s manual commands to corresponding movements of the aircraft. Technological
developments have made it possible for people to travel in the outer space and explore
the unknown for this endless universe. All of these depend on using a large number
of control systems.
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1.2 History and Development of Linear Control
Systems

As in the evolution of other engineering disciplines, control engineering began as an
art, originated by those practicing engineers using their common sense and creativity.
However, the early invention soon led to problems. People could not only rely on a
collection of classical analytical and numerical methods and their intuition for most
of the problems encountered in engineering. Furthermore, it was difficult for deeper
analysis and better design without the assistance of theoretical guidance. At the
same time, the growth of other scientific areas, especially in mathematics, motivated
theoretical studies of automatic control systems. Since then, the development of
control systems became an interaction between theory and practice. Control practice
indicated the need for theoretical analysis. In turn, theoretical research enlarged the
engineers’ abilities for solving practical problems and designing better performance
control systems [15].

A typical control problem is the following: Given a plant and a desirable ref-
erence signal, find a control input so that the output of the plant will be as close as
possible to the desirable reference signal. The control signal is independent of the
actual response of the plant. This is called the open-loop control systems. Of course,
this type of control is not satisfactory if there are disturbances or changes in the sys-
tem [9]. This disadvantage induces the key concept in control theory, which is that of
feedback or closed-loop control system [13]. It means the control signal contains the
actual response of the plant. Instead of using people for the purpose of checking the
actual value for the plant with respect to the desirable or reference signal, the output
of the plant is fed back to the control input. The difference between the reference
signal and feedback signal acts to maintain the output at the desirable value. This
improves the performance of the closed-loop control system.

James Watt’s flyball governor for controlling speed, developed in 1788, can be
considered the first widely used feedback control system [11]. J. C. Maxwell, in 1868,
made an analytic study of the stability of the flyball governor [3]. He explained
that flyball system could be described by an ordinary linear differential equation and
the instability of the system came from the exponential functions in the solution
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of the equation. Maxwell’s famous work was followed later by two mathematicians:
Routh and Hurwitz. In 1895, they independently discovered the remarkable criterion
for analysis the stability of a system described by low or high-order ordinary linear
differential equation (3].

Until 1940s, people devoted much attention to maintain the static value of the
control system to the reference signal. But this emphasis changed during the second
world war due to the need for designing advanced weapons. People eagerly wanted
to capture the transient response characteristics of the control system. However,
excluding relatively simplistic systems, methods based on trying to get the solution
for ordinary linear differential equations is tedious. Use of Laplace transform to obtain
the frequency response of the corresponding linear differential equation simplifies the
analysis. Obviously, it was necessary to have the regulation for frequency response
stability analysis. A significant stability criterion was discovered by H. Nyquist 3].
In fact, his criterion unlike that of Routh and Hurwitz, give a simple quantitative way
for measuring how close to the edge of instability for a stable feedback control system.
Moreover, Nyquist’s criterion introduced concepts of gain margin and phase margin.
These concepts turned out to be closely related, at least qualitatively, to the transient
response of the feedback control system. These provide very useful tools for control
engineers to design closed-loop systems with high quality transient performance as
well as accurate static value. Nyquist’s work was extended by Black and Bode, who
furthered the development of control theory (5], [6]. Another important contribution
to the theory was made by W. R. Evans in 1948, when he presented the root-locus
method [12]. This method provides a simple, direct, graphical display of the roots’
properties of the system. It is a major complementation to Nyquist criterion for
control system analysis and design. By then, the well known classical control theory
was established.

After the second world war, the rapid growth of feedback control system was
also speeded up by use of computers [31],(21],(38], [39]. However, due to the increase
of requirements for designing more complex control system in industry and society,
the classical control theory turned out to have its limitations.

First, it is restricted to linear system, which satisfies the principle of superpo-
sition. However, in real life, physical systems are always inherently nonlinear. Actu-
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ally, all control systems are nonlinear to a certain extent. Under certain conditions,
nonlinear systems can be approximated by linear differential equations. This approx-
imation however may lead to poor performance or even instability of the feedback
loop. Thus, classical control theory may not be suitable to such complex nonlinear
control problems.

Secondly, classical control theory is restricted to time-invariant systems. This
means that the parameters of the system do not change with time, that is, the ordinary
differential equation has constant coefficients. This is, however, not always the case.
Therefore, time-variant systems have received a lot of attention since the 1950s.

Thirdly, classical control theory is constrained to single-loop feedback systems.
In this class of systems, there is only one input terminal and only one output terminal
(8]. Today, in many control problems we have to deal with multiple inputs as well as
multiple outputs.

During the 1950s and the 1960s, the introduction of state-space expression over-
came the drawbacks of the input-output description. It described not only the input-
output relation, but also the internal behaviors of a system. Furthermore, by using
the concepts of input, output and state vectors, it made the expression of multi-
variable system as easy as that of single-variable system. Simultaneously, a great
deal of new concepts, design approaches and control theories were boomed, such as
controllability, observability concepts, optimization techniques and so on (18], [23],
22], [42], (17]. All of these constituted the foundation of modern control theory and
made people have more sophisticated understanding of the internal behaviors of the
systems.

Since the 1970s, several important developments have been made in linear con-
trol theory, such as the geometric approach and the transfer-function matrices in
fractional forms, called the matrix-fraction description. The geometric approach is
well covered in [41]. And the transfer-function matrix in fractional form is included
in [9].
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1.3 Introduction of Nonlinear Control Systems

Interest in nonlinear systems started from 1950s. Kalman helped to emphasize Lya-
punov’s work, which was published in the late 19th century [28], [24]. However, no
comprehensive theory of nonlinear control was available at that time. Phase plane
analysis of second order nonlinear systems, describing function approximation ap-
proach and Lyapunov stability theorem dominated the scene in nonlinear systems
analysis. Nonlinear control developed rapidly since 1970, motivated by increased de-
mands in performance. Feedback linearization, sliding control, adaptive control [25],
gain scheduling method and so on have occupied an increasingly important place in
control theory.

1.3.1 Motivations for Nonlinear Control theory

The standard method dealing with nonlinear systems design is to replace the nonlin-
ear model by a linearized version, which provides an acceptable description of plant
dynamics in the vicinity of an equilibrium point. Therefore, the behavior of the non-
linear system can be investigated by the efficient tools available for linear systems.
However, the assumption of small operating range is invalid in many cases. When
the required operation range is large, the resuits derived from the linear models can
be poor or even erroneous both quantitatively and qualitatively, because the linear
theory fails to reveal the nonlinear characteristics.

Another assumption for linearizing the nonlinear system is that the actual per-
formance of the nonlinear model does not differ considerably from that predicted
using an approximate linear model. But some systems are highly nonlinear and a
linear approximation may yield misleading results. These are called “hard nonlinear-
ities” including saturation, dead-zones, and backlash, which are often found in control
systems.
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1.3.2 Behavior of Nonlinear Control Systems

The analysis of linear time-invariant systems is relatively easily accomplished using
a variety of mathematical tools in both the time and complex frequency domain.
However, nonlinear systems are more complex, since the superposition principle does
not apply any more.

Nonlinear systems frequently have multiple equilibrium points [36]. Therefore,
when a steady state is attained it may not be the same for all initial conditions. A
further possibility is that a nonlinear system can display oscillations of fixed amplitude
and fixed period, which is known as limit cycle. Unlike the linear second order system
with no damping, where the oscillation amplitude depends on the initial conditions,
in a nonlinear system the same limit cycle can result from many different initial
conditions.

Another specific phenomenon in nonlinear systems is bifurcation. When the
values of the parameters of nonlinear systems are changed, the stability of the equi-
librium points and the number of the equilibrium points can change. The quantitative
change of parameters causing the qualitative change of system properties is the topic
of bifurcation theory [36].

Further characteristics of nonlinear systems include jump resonance, which
means that a slight change in the input amplitude or frequency can cause the system
to change states, and chaos, which indicates that the system output is extremely
sensitive to initial conditions.

1.3.3 Difficulties for the Analysis of Nonlinear Control Sys-
tem

As mentioned above, nonlinear systems have much richer and more complex behav-
iors than linear systems. The development of nonlinear control faces real difficulties.
It is impossible to encompass all these phenomena in a single method of analysis [40].
There are no universal mathematical methods for the solution of nonlinear differen-
tial equations which are the mathematical models of nonlinear systems, because the
nonlinear differential equations cannot in general be solved analytically. Moreover,
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the useful mathematical tools, such as Laplace and Fourier transforms are no longer
suited for nonlinear systems. As a result, there are no general ways for analyzing
nonlinear systems. There are many methods dealing with specific classes of nonlinear
systems and therefore, best applicable to different problems. In recent years, more
and more advanced techniques have been developed for nonlinear system analysis and
design, which make this area fruitful.

1.3.4 Methods for Studying Nonlinear Control System

Phase-plane Method. The phase-plane methcd is a graphical apprcach which
can be used to obtain the solutions for first and second order nonlinear differential
equations. The result is a family of system motion trajectories on a two-dimensional
plane, which is called the phase plane. The motion trajectories depend on system
initial condition, and are helpful for examining the qualitative features of the system.
This method allows us to have visual observation of the motion patterns of the sys-
tem. It is useful for studying the transient behavior as well as the stability of first
and second order systems. The fundamental disadvantage of the method is that its
applications are essentially limited to first or second order systems [1].

Describing Function Method. Unlike the phase plane method, the describ-
ing function method is normally suitable for the study of higher order systems [2],
[4]. The original and most widely used describing function is that for a single sinu-
soidal input. Its basic idea is to approximate the nonlinear components in nonlinear
systems by an almost equivalent linear part. If a nonlinear element is excited with
a sinusoidal function, then the output is periodic, but 1. We can thus represent the
output by a Fourier series. In the describing function method, it is assumed that the
fundamental frequency component of the output is the most significant part and the
higher harmonics may be neglected [13].

Lyapunov Method. Stability as an essential characteristic of the motion
of dynamic systems has long been under consideration. According to this theory,
a stable equilibrium point X, is the one that satisfies the following property: if the
initial condition is near X, then the resulting trajectory remains in the neighborhood
of X, for future time. Lyapunov theory was initiated in 1892 by A. M. Lyapunov. His
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work, however, received little attention outside Russia until late 1950s. An accurate
introduction to Lyapunov’s work was provided by LaSalle and Lefschetz [27]. Since
then, research in the application of Lyapunov theory to nonlinear system analysis and
design rapidly developed.

Differential Geometric Method. During the past two decades or so, there
has been a great deal of interest in the study of the differential geometric theory of
nonlinear control systems,such as [20], (19] and [30]. The method attempts to deal
with the basic questions in the state space formulation of nonlinear control systems,
including the problems of controllability and observability, (minimal) realization the-
ory and more importantly, feedback linearization [7].

Feedback linearization involves techniques for transforming original complex
nonlinear models into equivalent simpler models. Feedback linearization can be used
as a good nonlinear control design method or model-simplifying technique. First, it
transforms the nonlinear dynamics into a linear form by using state feedback, with
input-state linearization corresponding to complete linearization and input-output
linearization to partial linearization. By choosing different state representation, we
get a simpler fully or partially linear form. Then we can use the well-known and
powerful linear design approaches to complete the design target. The “linearization”
concept used here is totally different from the conventional linearization idea. Be-
cause feedback linearization is achieved by exact transformation and feedback. Unlike
Jacobian linearization, there is no linear approximation of the dynamics. Feedback
linearization method can be used for both stabilization and tracking problems, with
single-input or multiple-inputs. It has been successfully applied to a number of prac-
tical nonlinear control problems, such as helicopter control, industrial robots control
and aircraft control.

The important shortcomings for feedback linearization method are apparent. It
does not apply to all kinds of nonlinear control systems. Some specific conditions must
be satisfied. Since full state has to be measured, it also causes difficulties in finding
observers for nonlinear control systems. And due to the fact that the sensitivity to
modeling errors may be particularly severe, there is no guarantee for the robustness
when parameter uncertainties or unmodeled dynamics occur [36]. Of course, great
efforts have been made to overcome these drawbacks.
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Robust Control. In general, it is impossible to get a precise model for a phys-
ical system. Those model imprecision may come from the actual uncertainties about
the plant, such as some unknown parameters, or from the simplified model of real
dynamics, such as neglected nonlinearities or time-delays. These model inaccuracies
can have severe effects on linear or nonlinear control systems. Robust control theory
deals with the effects of model uncertainties in control design. Robust controller de-
sign is based on the consideration of both the nominal and some characterization of
the model uncertainties.

Gain Scheduling Method. The basic idea of gain scheduling is conceptually
simple. In many situations, it is well known how the dynamics of a process will
change when the operating conditions change. So the first step is to select a number
of operating points. Then, linearize the nonlinear plant at each operating point so as
to get the linear time-invariant model. Thus linear design methods can be applied to
these models. We have a set of linear feedback systems. Each of them satisfies all of
the performance requirements when it is operated near the corresponding operating
point. The next step is where the term “gain scheduling” comes from. It devises a
scheme to change the parameters of the linear controllers by monitoring the operating
conditions of the process. Usually, the parameters of the controllers are changed
as a function of scheduling variables, which have close relationships with operating
conditions.

The main advantage of gain scheduling method is that the powerful linear design
methods can be applied to the linearized models at each operating point. This method
based on the measurements of different operating conditions is often a good way to
compensate for the variations in process or the known nonlinearities of process due
to its real-time computation and fast response.

On the other hand, the main problem in gain scheduling is that it has only
limited theoretical guarantees of stability in nonlinear operation. And how to find
suitable scheduling variable is also a problem. There are only some loose practical
rules of thumb, such as “the scheduling variables should change slowly” and “the
scheduling variable should capture the plant’s nonlinearities”. Of course, as the com-
plexity of the system increases, these simple rules are not sufficient. We need to
search for the theoretical guidelines for the development of gain scheduling method.
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An elementary introduction to this method is provided in [37]. An analytical frame-
work for the design of gain scheduled controllers for nonlinear systems is proposed
by W. J. Rugh [32]. J. S. Shamma and M. Athans [33], [34] study the conditions
which guarantee stability, robustness and performance properties of the global gain
scheduled designs and the limitations of current gain scheduling practice together
with some reformulations. However, due to the very restrictive assumptions in their
papers, the analysis approach is impossible to use in practice. There is a big gap
between theory and applications in the stability analysis of gain scheduling method.
All of these motivate our interest in providing a different theory that can deal with
the stability analysis of system described by multiple models in a systematic manner,
assuming only local information available.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces the input-output
approach to systems described by multiple local models, which is proposed in refer-
ence [29]. This reference gives us a rather simple, yet complete characterization of
stability analysis for the gain scheduling method. The main ob jective of this thesis is
to investigate the virtues and shortcomings of the input-output approach by means
of a case study: the speed control of the armature voltage controlled series dc motor.
In chapter 3, by conducting a series of experiments, the nonlinear model of the series
dc motor is obtained. It is built in a computer and to be used throughout the rest
of the thesis. In chapter 4, according to the input-output approach, the complex
nonlinear model is linearized at different operating points, and a number of local
linear models are obtained. In chapter 3, the powerful mixed-sensitivity H, optimal
control method is applied to the local linear models, and closed-loop local systems are
acquired. For the purpose of verifying the theory, in chapter 6, all of the H,, optimal
controllers are connected with the nonlinear model in the computer and performance
of the nonlinear feedback system is simulated. Finally, in chapter 7, the problems
encountered are discussed. We also elaborate on ideas which might improve the per-
formance of the nonlinear systems for which the input-output approach is applicable,
and the relationship with other methods. All of these comprise the principal part of
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this thesis.
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Chapter 2

Gain Scheduling

2.1 Introduction of Gain Scheduling Method

Physical systems are inherently nonlinear. Thus, good mathematical models of phys-
ical systems contain at least some form of nonlinearity. Despite this fact, for a variety
of reasons, control system design is often based on a simplified linearized version of
the original nonlinear model. These approximations, however, deteriorate rapidly
under large excursions about normal operating conditions. In many cases, the non-
linear control system works in a rather large operation range. This occurs frequently
especially when dealing with large industrial facilities, such as in process control and
flight control. In these situations, control design based on a linear approximation can
result in very poor performance.

One way to improve controller performance, while still employing linear tech-
niques is to linearize the original (nonlinear) plant at a number of different operating
points, and then design linear controllers for each one of the resulting linearized mod-
els of the plant. These controllers can then be switched as the plant changes operating
conditions.

This technique, in its many forms, is known as gain scheduling. Many successful
applications of gain scheduling have been reported, particularly when the process is
such that there exists a variable (usually known as the scheduling variable) which
correlates well with the changes in process dynamics. This can be represented graph-

12
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ically in figure 2.1. However, gain scheduling remains largely an ad hoc technique
where stability and performance are typically evaluated by simulation.

Controller . )
parameters | Gain Scheduling variables
schedule (Operating condition)
Reference Emror Control
input signal input Output
Controlles————» Plant Py

Figure 2.1: Block Diagram of Gain Scheduling Method

2.2 Development of Gain Scheduling Method

The concept of gain scheduling originated with the development of flight control
systems. In this application, the speed and the dynamic pressure are measured by
sensors and used as scheduling variables in order to adjust the flight controllers to
different operating conditions. The idea of relating the controller parameters to oper-
ating condition is old. However, since the controller parameters must be determined
for many operating points, and the performance must be checked by extensive simu-
lations, there is a big computational burden involved in the gain scheduling design.
This method has thus only been used in high-performance aircraft control and other
special cases. In recent years, the development of high-speed hardware and computer-
controlled systems makes it possible to easily implement the gain scheduling method.
The controller parameters can be changed very quickly in response to the chang-
ing conditions. So gain scheduling has become a widely used design methodology in
many practical applications. Some results have been reported over the last 10 years,
which try to put gain scheduling in a proper theoretical framework. K. J. Astrém
and B. Wittenmark give an elementary introduction to gain scheduling, along with
some applications [37]. W. J. Rugh [32] describes the analytical framework for the
design of gain-scheduled controller for nonlinear systems. He gives some hints on how
to deal with difficulties in the design procedure. J. S. Shamma and M. Athans [33],
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[34] prove that the gain scheduling approach “can” work, provided the verification
of the theorems, which guarantee stability, robustness and performance properties of
the global gain scheduled designs. However, their results have little practical value in
application, since these theorems require hard-to-obtain information in real dynami-
cal systems. So the gain scheduling control approach is still in the absence of a sound
systematic stability theory.

In this thesis, the input-output approach recently proposed by H. J. Marquez
[29] will be applied to the speed control of the series dc motor. In the remainder of
this chapter the main features of the results from reference [29] are summarized.

2.3 An Input-Output Approach to Gain Schedul-
ing Stability Analysis

2.3.1 Introduction

As mentioned before, in control systems, when dealing with complex nonlinear sys-
tems, it is a standard practice to use the gain scheduling design approach. We assume
that the universal global model of the physical system in question is obtained from
physical principles and experimental data, but it is too complex to be of any practical
use. Local models, which are derived from the nonlinear model by linearization at
different operating points, on the other hand, are readily available for use in control
system design. The stability theory proposed in reference [29] is designed to deal
with this class of complex systems, which have multiple models of the same physical
device, assuming only local information.

Unlike most references who search for the global stability, the approach in refer-
ence (29] is novel in that it concentrates on local stability and provides a mechanism
that ensures “safe” transitions between different operating points. Specific questions
studied in [29] are: How can these local models remain stable? More importantly,
how can we keep the local stability when the system switches from one local model
to another? What class of stability would this be? Lyapunov? Input-output?

Roughly speaking, there are two conceptually different approaches to stability



CHAPTER 2. GAIN SCHEDULING 15

theory, namely (i) Lyapunov, and (ii) input-output methods. The former studies the
stability of an equilibrium state of the free or unforced system, while the latter regards
systems as mappings between inputs and outputs, and assumes that the system is
initially at rest (i.e., all initial conditions are nil). Moreover, the Lyapunov theory is
essentially a local theory and due to the lack of external excitations, it is impossible
to deal with systems which work on different operating conditions and need various
input control signals. On the contrary, the input-output theory is essentially a global
theory. It is applicable for a very general space of input functions. As a result of null
initial conditions, this theory can hardly deal with multiple models system whose
initial conditions of each model may be non-zero. Therefore, none of the classical
stability theories can solve the stability problem involved in gain scheduling method.

Reference [29] provides a definite answer to this stability problem based on the
new introduced concept of stable motion. It can be regarded as a generalization of
stability along a trajectory associated with the Lyapunov theory. Thus, this work
not only keeps the essence of the classical stability theory, but also has its own spirit.
It has two fundamental aspects. First only local models are used for the design
and analysis. All of these local models are only valid for a well defined class of
input functions. The selection of the space of the input functions will have profound
implications in the whole theory. The space of the input functions will be chosen to be
meaningful from a systems point of view, and at the same time permits generalization
of the fundamental results of the classical input-output theory. Secondly, systems will
be defined as a mapping from input to state, rather than from input to output. This
understanding of systems will overcome the drawback of the classical input-output
theory, which could not incorporate the initial conditions into the systems stability
analysis. This big improvement makes it possible for us to use input-output approach
to analyze the long lasting gain scheduling stability problem.

2.3.2 Mathematical Preliminaries

In the sequel, R represents the field of real numbers, R" the set of n-tuples of real
numbers, and R* the set of non-negative real numbers. Q2 will represent a subset of
R*, which has the form Q = [¢,,2,], or Q = [t;, 00). Z is the linear space of measurable
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functions 2: Q2 — R?. Now, we will define a space of input functions which captures
the properties of small signal and has general characteristics of input signals from
practical point of view. We will denote by X, the binormed linear subspace X of Z
defined as follows:

X={u€eZ:| |lo<oc, and || - ll2< oo}

where || - || and || - ||2 are the usual Lo and £, norms.

In other words, X is the space of measurable functions, which have finite energy and
are essentially bounded. We will use X'([to,¢,]) to indicate that X is defined at the
time t € (to, ;). Typically, the input function u is assumed to be vector-valued, i.e.,
u : 2 —» R9. However, the dimension of u is no need to be explicit in our notation.
So we will use u € L, instead of u € £J. The extension of the space X, denoted by
A, is defined as the space of all input functions « whose truncation ur belongs to X,
where

_Jut) ift<T
"T(t)‘{o ift>T

We will also need the subset Xg of X, defined as follows:
Ag={ueX:|u]w<q}

In general, z € R" represents the state of the system. Thus z(t) represents a
motion in the state space. It can be seen as a function R — R" as well. Similarly,
the set of bounded motions, denoted by X, is defined as follows:

Xa = {z € X([0,00)) : [| 2(t) [lo< a}
In our applications, the local models to be considered are linear time-invariant.

Definition 2.3.1 For a given physical system, a local linear time-invariant model
about (z.,u.), denoted H(z.,u.], has the following form:
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t(t) = Az +Bu tto € RY,t > tg, (u—u.) € Xg,|z0 — 7.| <
y(it) = Czre X,

where ¢ and z, represent the time instant and initial state at which the input » was
applied. (ze, u.) is an equilibrium point. The mappings from input to state and also
from state to output are well defined provided that two assumptions are satisfied.
(i) the initial zo at o is within an o-neighborhood of z,, with the neighborhood
defined according to the Euclidean norm in R", and (ii) the input function u is in a
@-neighborhood of u,, with neighborhood defined in the sense of the binormed linear
space X.

As mentioned above, the main limitation of the classical input-output theory is
that it cannot deal with the effect of non-zero initial conditions. However, by consid-
ering the system as a mapping from input to state, and then from state to output in
the definition of a local linear time-invariant model, we not only keep the input-output
formulation, but also easily incorporate the effect of non-zero initial conditions into
the state equation. This makes the stability theory proposed in reference [29] over-
come the drawback of the classical input-output theory. Furthermore, the definition
2.3.1 tries to emphasize that the local linear time-invariant model H{z,,u,| is used
to estimate the behavior of a more complex nonlinear system, about the equilibrium
point (z.,u.). It is also clear that when the size of the input function increases (i.e.,
for large excursions from the equilibrium point), the error in the predictions obtained
by this model will tend to increase as well. Thus the local linear time-invariant mod-
els are only valid, namely within the tolerance limit, for the well defined small space
of input functions. This means a model should be considered along with some form
of uncertainty description, as well as the space of the input functions for which the
model is assumed to be valid.

In general, a local linear time-invariant model can be seen as a mapping from
Xq — X.. We can say that H[z.,u,] is locally stable whenever z(t) is a bounded
subset of X,. More precisely,
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Definition 2.3.2 H{z.,u,] is said to be locally stable if

u — u, € &g, Izo—xelsa=>(x-ze)€4’a

In other words, a locally stable system is one where small signal inputs produce
motions which have finite energy, and are also bounded within a defined amplitude.

2.3.3 Stability Analysis

In order to pursue the precise solution to the stability problem in gain scheduling
method, we now introduce the concept of stable motion from zq to f

Definition 2.3.3 A system is said to ezperience a stable motion from an initial state
Zo att =0 to a final state z; at t =ty if the following conditions are satisfied:

1. There are m locally stable local models H|z.;, Uei), 1 =1,2,...,m, withzg € A,,
and Ty € An.

2. For each t = t* we have:

(a) z(t*) € Ai for some k=1,2,...,m.
(5) 3e > 0: (u(t) — uek(t)) € X([t*, gk, t* <t <t +e.

where Ay, = {z € R* : |z — 14| < a}, £ = 1,2,...,m. This definition can
be regarded as a generalization of the concept of stability along a trajectory in the
sense of Lyapunov. There are several key elements in this concept. First, all of local
models considered must be locally stable, in the sense of definition 2.3.2. Secondly,
the condition 1 indicates that the initial state g is in the domain of the first local
model and the final state z; is in the image of the last model. Thirdly, the condition
2(a) implies that for each ¢, z(t) must be in the domain of at least one of the local
models. Furthermore, the condition 2(b) implies that the instantaneous value of the
input function u(t) must be in the domain of the same local model. Therefore, at any
time, the instantaneous evolution of the state is captured by one of the local models.

The following is the most important stability theorem.
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Theorem 2.3.1 Consider a physical system and m local models, H [TeiyUei], T =
1,2,...,m. If condition 1-2 below are satisfied, then it is possible to steer the system
from an initial state 7o € R™ to a final state z; € R™ at t = t; following a stable
motion.

1. o € Ay, .'L‘fe.Am.

2. ANAi #0,i=12,...,m—1.

This theorem, together with the important concept of stable motion provides
a precise solution to the stability problem in gain scheduling. Every local model
can be seen as a mapping from an initial state zy;, which near the equilibrium point
(Zei, Uei), to a neighborhood A; of (z.;, u.;) in the state space. An instance with two
dimensional state space is shown in figure 2.2.
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~ I'd

Figure 2.2: Local Model with Two Dimensional State Space

In practice, people are typically interested in making a physical system free to
move around a region of state space, denoted by M. If m local models are available,
according to the theorem 2.3.1, the following conditions will guarantee that the stable
motions can occur between any two points in M.

® MGU:’;[ {-
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e Given any two points z;, z; € M, the A; are such that

1. yp € A; = Ay, (i.e., Ty belongs to some A;, denoted by A,).
2.z €A, 1 <k <m.
3. AiNAii #0,i=1,2,... k-1

This idea can be shown in figure 2.3 with two dimensional state space.

I2

1
(zel ’ uel)

Figure 2.3: Multiple Local Models with Two Dimensional State Space

The theorem is a re-formulation of the classical input-output theory. It can be
seen as a local version, which preserve the essential stability results from the classical
theory. By using small signal analysis, it demonstrates that a model can be regarded
as accurate with well defined model uncertainties, only if explicitly defining the class
of input signals. This is because no model can remain accurate for arbitrarily large
signals. This important idea which was overlooked by robust control theory is now
presented in reference [29]. In this paper, local stability is defined with respect to
the size of the input functions, thus it can be directly verified by user and enforced
by designer. The paper also points out the key concept of stable motion between
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two states and uses it in the study of stability of systems described by multiple local
models. The application of this simple, yet complete characterization of the stability
problem to gain scheduled control system will be discussed in following chapters.



Chapter 3

Motor

3.1 Introduction of Electrical Machinery

In general, an electrical machine can be defined as an apparatus that can be used
either to convert electrical energy into mechanical energy or to convert mechanical
energy into electrical energy. The former is called a motor; the latter is called a
generator. The energy conversion in both of them is associated with the action of the
magnetic field.

The use of electrical machines has been quickly and widely developed during
this century. It makes our lives much more convenient than ever. There are three
main classes of rotating electrical machines: (i) polyphase synchronous machines, (ii)
polyphase induction (i.e., asynchronous) machines, and (iii) direct-current (i.e., dc)
machines. Moreover, there are other rotating machines which operate basically on
the same principles, such as rotating rectifier, permanent magnet machines and so
on. A synchronous machine is an ac machine, which can work as a generator or as
a motor. Typically, such machines are used as motors in constant speed drives in
industrial applications. On the other hand, almost all three-phase power is generated
by three-phase synchronous generators [26]. Even though the induction machines can
be used as generators, their performance characteristics, especially in comparison to
synchronous generators are not satisfactory for most applications. Thus, induction
generators are occasionally used. However, because of their relatively low cost, simple
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construction, minimal maintenance requirements, and good operating characteristics
which satisfy a wide variety of loads, the induction motors are the most commonly
used type of motors. Direct-current (i.e., dc) machines are versatile. However, the
use of dc machines as dc generators to produce bulk power has rapidly disappeared
due to the economic advantages involved in the use of alternating-current generation,
transmission, and distribution. Today, the need for dc power is often met by the use
of solid-state-controlled rectifiers. Nevertheless, by means of various combinations
of series and separately excited (shunt) field windings, dc motors can be designed
to display a wide variety of volt-ampere or speed-torque characteristics for both dy-
namic and steady-state operation. They provide constant mechanical power output
or constant torque, adjustable motor speed over wide ranges, precise speed or position
control, efficient operation over a wide speed range, rapid acceleration and decelera-
tion, and responsiveness to feedback signals. Because of these advantages, dc motors
are still extensively used in many industrial applications: from fractional horsepower
motors used in small mechanical systems to hundreds of watts and kilowatts servo
systems and so on [14].

3.2 DC Motor Speed Control

The speed of dc motors can be controlled easily over a wide range above and below
the rated speed. Speed control methods for dc motors are simpler and less expensive
than those used for ac motors. The motor speed equation is known as follows (16):
Vt - Ia ) Ra
K, %

where the speed of a dc motor depends on the applied terminal voltage V;, the ar-
mature current I, the armature resistance R,, and the field flux per pole ® ¢- The
parameter K, is the armature constant, which depends on the armature winding and
cannot be changed to control the motor speed. By observing the speed equation, we
can conclude that there are three most common speed control methods:

1. Field control method.

2. Armature resistance control method.
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3. Armature voltage control method.

The Field control method is the simplest and cheapest method of all three and
is most applicable to shunt motors. In this method, the armature resistance R, and
the terminal voltage V; are kept constant. The armature current I, is fixed at the
nameplate value in shunt motor. The speed is controlled by adjustment of the field
current and hence the flux. Within the speed range, the back e.m.f. E, and the motor
output E, - I, remain constant in shunt motor. Thus this speed control method is also
called a constant power drive. Torque, however, varies directly with flux and hence
has its highest allowable value at the lowest speed. Therefore, field control method is
best suited for drives requiring increased torque at low speed.

The Armature resistance control method consists of obtaining reduced speed
by the insertion of external series resistance in the armature circuit. In this method,
the armature terminal voltage V;, the field current I ¢ thus the field flux ®; and the
armature current I, are maintained constant at their rated values. The armature
resistance control method can be used in series, shunt, and compound motors. It is
simple to perform and requires a small initial investment. It offers a constant torque
drive due to the constant armature current I, in the speed range. However, the
considerable power loss in the external resistance and the overall low efficiency are
the main disadvantages, especially when the speed is greatly reduced [35].

The Armature voltage control method is the most flexible method of speed
control and avoids the disadvantages of power loss and low efficiency in armature re-
sistance control method. The armature resistance R, and the field current [ r are kept
constant in this method, and the speed is controlled by varying the armature termi-
nal voltage V;. It can be applied to series, shunt, and compound motors. The speed
is easily controlled from zero to maximum safe speed in either forward or backward
directions. Therefore, this method has been widely used in practical industrial appli-
cations. The following sections in this chapter focus on armature voltage controlled
series dc motor’s parameter testing and model simulation.
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3.3 Armature Voltage Controlled Series DC Mo-
tor

A series dc motor is a dc motor whose field winding is connected in series with the
armature winding and therefore, its field current is the armature current. In the
experiments, a small fractional horsepower portable dc machine set is used and the
various dc and ac power supplies are obtained from the lab bench. The machine set
consists of a dc motor which is connected mechanically to an electrodynamometer.
The dynamometer is used to apply a load to the dc motor. It has a field on the stator,
similar to that of a dc machine. The stator has a variable voltage supply which is
obtained using a diode rectifier and a variac. The rotor consists of conductors similar
to that of the cage induction machine. When these conductors rotate, they pass
through the dc field of the stator and experience an induced voltage. The resultant
current flowing through the rotor conductors dissipates power in the form of I2R Cu
losses. This power is drawn from the dc motor and represents the load. Therefore,
the dc motor load can be controlled via the dynamometer supply variac. The circuit
is shown as figure 3.1:

The equations relating the variables of the series dc motor in figure 3.1 are:

dl,
‘/t = Ea+Ia'(Ra+R’)+(La+L5)"at— (3.1)
dw
J - E = Te - T;oad - Tlass (32)

In the above equations, J is the rotor inertia and T, is the airgap torque. T4
represents the output or load torque. 7Tj,,, is the total torque loss by friction and
windage and so on.

Consider the back e.m.f. voltage F, and the airgap torque T},

Ee = Ky 0 w=K-I, wu=K-1I, w (3.3)

. - Ea.I,,:K.Ia.w.I,,:K.I: 34
) w

Substituting the equations (3.3), (3.4) into (3.1) and (3.2), we get

dl, .
i = K-I,,.w+Ia-(R,.+R,)+(L,.+L,).E (3.5)
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Figure 3.1: Circuit for Series DC Motor
dw
2
Jﬁ = K- Ia — Tioad — Tioss (3.6)

Now, we want to obtain the state space model of the series dc motor from the cir-
cuit equations. When we use armature voltage control method, the armature terminal

voltage V; is considered as control input, and of course

the speed w is the interested

output. The armature current I, and speed w can be seen as states. Substituting the

following equations (3.7) into (3.10) to (3.5) and (3.6):

v = WV (3.7)

I = Ia, (38)

Iy = (39)

y = (3.10)

We get the state space model:
. R, + R, K
~ 2 - g : 3.11
zl La + L, zl La + LS xl 22 + LG + LS u ( )
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K T Ty,
£ = 7.5{-&3& (3.12)

y = o (3.13)

where K, J, Ry, R,, L,, Ly,Tj0aq4 and Tj,,, are constant coefficients.

By observing the above state space model, we can easily find that the armature
voltage controlled series dc motor is a nonlinear system. In general, the speed of the
series dc motor can start from zero to the maximum allowable speed in either forward
or backward directions. Due to its nonlinearities and wide speed control range, this
model can be regarded as a good control object to apply the gain scheduling method,
so as to verify the control theory proposed by H. J. Marquez. Before starting the
control system design, it is necessary to get the nonlinear model of the armature
voltage controlled series dc motor. Therefore, we need to do a series of experiments
in order to obtain all the constant coefficients in the state space model.

3.4 Experiments for Constant Coefficients

3.4.1 Measurements of Field and Armature Windings Resis-
tance

First, the field and armature resistance are measured directly across each winding
using a Fluke 25 meter. This gave the resistance when the motor was cool, namely
before the motor was ran. However, these measured values would become inaccu-
rate after the motor begins to run, because the current went through the windings
generating heat and thus increasing the values of the field and armature resistance.
So the values of them after the motor ran for 10 minutes need to be measured as
well. This time, the resistance values are obtained by Chm’s law. In another words,
tested the corresponding values of voltage and current, then used R = % to get R,
and R,. When conducting these tests, attention should be made on the current going
through the field and armature windings to make sure that it was within the maxi-
mum value. Otherwise, the excessive current would damage the field and armature
windings of the dc motor. These experiments were conducted several times so as to
acquire the average values for R, and R,. In this way, the errors can be eliminated as
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much as possible and more accurate nonlinear model for the series dc motor can be
acquired. Tables A.1 and table A.2 are the measured and calculated values for field
and armature resistance R, and R,.

Average field resistance:
R, =1.90Q (3.14)

Average armature resistance:

R, = 8.6Q (3.13)

3.4.2 Measurements of Field and Armature Windings Induc-
tance

Since the armature and field current I, and I, vary when we adjust the speed of the
series dc motor. The effect of field inductance L, and armature inductance L in the
circuit cannot simply be ignored. Therefore, it is necessary to measure the value of
the inductance. Two methods have been used to measure the inductance in order to
reduce the errors.

First, 115V ac supply from the lab bench induction motor panel was connected
with the bridge rectifier circuit, which consisted of diodes. The output of the bridge
rectifier was taken as the power supply to the armature winding. By adjusting the
trigger circuit, various values of rectified de voltage were obtained. It still included ac
components. Then Fluke 39 meter together and another Fluke camp-on meter were
used to measure the voltage and current of the armature winding at 0 Hz and 120 Hz
frequencies. The formulas to calculate the inductance are as follows:

Vi
Tﬂ = R, (3.16)
0
Vim Zin (3.17)
L1
(2-Q-L)*+R: = Z%, (3.18)

where 0 = 7 - 120 = 377. Substituting the equations (3.16) and (3.17) into (3.18), I
obtained the value of armature inductance L,.
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The second method was to introduce the ac power supply from the lab bench
induction motor panel to the field winding. Regulated the induction motor panel
variac so as to get a range of ac voltages. A Fluke 39 meter was used to measure the
voltage, the current, and the angle out of phase with respect to each other at 60 Hz.
Then the following formulas are used to calculate the field inductance:

Ve
-2 .cos§ = R, (3.19)
Iso
Yo Gnp = x, (3.20)
Igo

X, X, _

o - ﬁ_L’ (3.21)

Now, the values of field and armature inductance L,, L, have been acquired by
two different methods. Both of experiments need to be repeated several times. The

average values are used as the results. Tables A.3 and A.4 show the measured and
calculated values.

Average field inductance:

L, =5mH (3.22)
Average armature inductance:

L, = 65mH (3.23)

3.4.3 Measurements of Motor Constant

Observing the back e.m.f. voltage E, equation:

Ea=K, & w=K-I,-w (3.24)

We know that in order to get the value of motor constant K, we need to fix the speed
of the motor w, namely the motor revolution NV, then find the relationship between I,

and E,. This was achieved by a carefully designed experiment to acquire the E, — I,
curve.

In the experiment, the 0-24V dc supply from the lab bench synchronous machine
panel was connected with the series field winding. This voltage is represented by V.
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The 115V ac supply from the lab bench induction motor panel was introduced to the
bridge rectifier circuit, which consisted of four diodes and the output of the bridge
rectifier V, was connected with the dc motor armature winding. By controlling the
synchronous machine panel variac, a variable voltage V; was obtained to make the
series field current I, vary from 3.5A to 0A. Due to the changes in I, thus the field flux,
the motor revolution N, would change correspondingly. In order to keep the motor
revolution N, at the rated value 1200rpm, the trigger circuit had to be adjusted to
change the output voltage of the bridge rectifier V, simultaneously. Hence the current
which went through the dc motor armature winding I, would vary at the same time.
Then using the following equation:

E,=V,-I,-R, (3.25)

The values of back e.m.f. E, corresponding to various field current I, was found.
At this point, we make the following observations: First, there was no load in this
experiment. The motor belt was even took off so as to reduce the influence from
friction and so on. Second, the connection between the two joints of the field winding
was switched, and the above procedure was repeated. Then, the average values of I,
and corresponding E, were used as the data points for further analysis. Third, the
motor revolution N, was measured by a frequency counter, which was connected to
the connector on the dc machine apparatus. Since it was very difficult to fix the dc
motor revolution N, at exact 1200rpm, I transfered the E, at, for example, 1210rpm
to the E; at 1200rpm by the following formula:

5 _ g . 1200

a a 1210 (3-26)

These experiments were repeated several times. Tables A.5 to A.13 are the measured
and calculated values.

By using the averaged data of I, and E,, we get groups of points. Then in
MATLARB, the first-degree, second-degree, and even higher degree curves are fitted to
the groups of data by the least-squares method, so as to get the best fitting curves.
The plots for different groups of the measured and calculated values and the averaged
curves are shown in figures B.1, B.2, B.3 and 3.2.
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Figure 3.2: E, and I, Average Relationship ( No Load, No Belt and Speed = 1200
rpm )

According to figures B.1, B.2, B.3 and 3.2, which corresponding to the relation-
ships of E, and I, I find that E, and I, are not related with a simple linear equation.
Even though the first-degree line can be fitted to the data points, the sum of the
squares of the errors is much higher than that of higher degree curves. Therefore,
second-degree, third-degree, and even higher degree curves are fitted to the points.
It turns out that there is no big difference in the sum of the squares of the errors
between second-degree and higher degree curves. Thus, in order to reduce the errors
between real world nonlinear system and the nonlinear model, as well as make the
mathematical description concise, the second-degree curve is used to represent the
relationship between E, and I,:

—~2.4889 - 12 + 31.8393 - I, + 5.1727 _

W1200
—2.4889 - I7 + 31.8393 - I, +5.1727 y

125.6637

E, =

w

(3.27)
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3.4.4 Measurements of Motor Output or Load Torque

In order to obtain the relationship between the dc motor speed w and the dc¢ mo-
tor output or load torque Tj,q4, the load part of the dc machine set, namely the
electrodynamometer need to be studied. As mentioned earlier, the dynamometer is
mechanically connected with the dc motor and works as the load. Its field winding
on the stator has a variable voltage supply, obtained by the diode rectifier and the
variac. When the percentage meter on the dynamometer is changed, actually, the
variac is changed. Thus different field voltages are applied, in other word, various
strengths of the field flux are applied. When the rotor is rotated by the dc motor,
it passes through the field of the stator and experiences an induced voltage, which is
related to the strength of the field flux and the speed of the dc motor w. The induced
current flowing through the rotor conductors dissipates power in the form of I2R Cu
losses. This power represents the load. The load torque can be read directly from the
torque meter, which is attached to the dynamometer. By fixing the percentage meter
at various graduation, namely, fixing the field flux and changing the dc motor speed
w, the motor load torque 7j,,4 can be represented as a function of dc motor speed
w. Moreover, no matter what kind of connection between the field circuit and the
armature circuit of the dc motor, for example, shunt/separately excited field winding
or series field winding, there is no influence on the relationship between motor load
torque Tjgeq and dc motor speed w.

The following experiments were conducted several times. 115V ac supply from
the lab bench induction motor panel was introduced to the dynamometer variac.
The percentage meter on the dynamometer was fixed at 40%, 30%, 20% and 10%
separately. The dc source from the field supply on the lab bench dc machine panel
was introduced to the shunt field winding of the de motor. By adjusting the shunt
field rheostat, the shunt field current was kept constant at approximate 0.4A, and
0-120V dc supply from the lab bench synchronous machine panel was connected with
the dc motor armature winding. At first, the synchronous machine panel variac was
set to zero, then applied power. The variac was adjusted gradually so as to obtain
the dc motor revolution N, at approximate 100rpm, 200rpm,..., and 1200rpm. At
the same time, the motor load torque Tj,uq, the motor revolution N, and so on were
written down. The circuit is shown as figure 3.3.
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Figure 3.3: Circuit for Shunt/Separately Excited DC Motor

Tables A.14 to A.21 list the measured and calculated values. The formula of
transferring the dc motor revolution N, to its speed w is as follows:

T

=N, —
v 30

(3.28)

In MATLAB, the third-degree and higher degree curves are fitted to the mea-
sured and calculated values of different dynamometer field flux strengths by the least-
squares method. The plots are shown in figures 3.4, B.4, B.5 and B.6.

From the motor load torque Tj,4 and motor speed w plots shown in figures
3.4, B4, B.5 and B.6, we can see that they had relatively complex relationships.
The third-degree, fourth-degree and fifth-degree polynomials are fitted to the mea-
sured and calculated values, in order to make the sum of the squares of the errors
smaller. Anyone of the dynamometer field flux strengths can be used in the fur-
ther experiments. We select the 40% field flux strength. According to figure 3.4,
the fourth-degree polynomial curve is more suitable to the measured and calculated
values than others. Although the fifth-degree curve fits well, it also increases the
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Figure 3.4: Tjssq and w Relationship ( Dynamometer Field Flux Strength: 40% )

complexity for application. Thus the fourth-degree curve is used as our Tj 4 and w
function. From the program written in MATLAB, we get:

Tioad = —7.3401-107% - w" +2.4414-10° - w® ~ 0.0028 - w? +0.1190 - w — 0.0215 (3.29)

3.4.5 Measurements of Total Motor Torque Loss

We know that except for the field winding loss, armature copper loss, and brush
contact loss, there are torque loss due to friction and windage as well. For the purpose
of measuring the total motor torque loss T, as a function of the motor speed w,
the following experiment were conducted in the circumstances of no load. Since the
total motor torque loss T;,,, does not relate to the connection between the field circuit
and the armature circuit, either shunt/separately excited field winding or series field
winding can be used.

In the experiment, we chose the shunt/separately excited field winding. Its
circuit is shown in figure 3.3. By adjusting the dc source from the field supply on the
lab bench dc machine panel, the field current Iy was kept at approximate 0.4A. The
synchronous machine panel variac, namely the armature voltage V, was changed, so
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as to make the motor revolution N, at approximate 1200rpm, 1100rpm,.. ., 100rpm.
At the same time, the armature voltage V, and armature current I, were written
down. Then the following calculation formulas are used to obtain the total motor
torque loss Tj,,, at the corresponding motor speed w.

E, = Vu,-1,-R, (3.30)
Ploss = Ea ’ Ia (331)
T
= N;p+— .

w 30 (3.32)
Py,

Tigss = L (333)
W

The measured and calculated values are listed in the tables A.22 and A.23.

In MATLAB, the first-degree, second-degree, and third-degree polynomial curves
are fitted to the above measured and calculated values by the least-squares method.
Figure 3.5 shows the curves.

ek ] T T T

—— first—degree
- second-degree

third—degree

01r

X3

L i L L "
Q 20 40 80 80 100 120
[ ]

Figure 3.5: Tioes and w Average Relationship ( No Load and Keep Belt )

It is obvious that there is no much difference between the first-degree curve and
higher degree curves. In order to keep the mathematical description of the nonlinear
system concise, the first-degree curve is chosen to represent the relationship between
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the total motor torque loss Tj,s, and the motor speed w. Thus, the following equation
is obtained:
T10ss = 0.0008 - w + 0.1499 (3.34)

3.4.6 Measurements of Rotor Inertia

In order to measure the rotor inertia J, at first, we want to get the decreasing curve
of motor revolution N, with respect to the time ¢ after the power to the field circuit
and the armature circuit is turned off. However, the equipment is a small fractional
horsepower portable dc machine set. Its rotor inertia J is quite smail and it only
takes the motor a few seconds to stop after turn off the power. Thus it is impossible
to precisely write down the motor revolution N, at different time before the motor
stops. It is easier to estimate how long it will take for the motor to stop after cutting
off the power. Hence, another method is used to measure the rotor inertia J.

Under the circumstances of no load, the motor was run at the rated speed,
namely 1200rpm. Then the power supplies to both the field circuit and the armature
circuit were turned off. A stopwatch was used to see how long it would take for the
motor to stop, for example, ¢, seconds. From the total motor torque loss measure-
ments, we have already known the function of Tj,,, and the motor speed w, which is
shown in equation (3.34). After cutting off the power supplies to the motor circuits,
the friction and windage make the motor stop. Therefore, the following equation is

obtained:
dw

T;au =J- Ft. (335)
Substituting (3.34) into (3.35), we get:
J- ‘;—‘: = 0.0008 - w + 0.1499 (3.36)

It is easy to see that the motor speed w is a function of time ¢ and an unknown
constant J. Solve the above differential equation (3.36) analytically by using MAPLE
and get the function w(t, J). As measured early, it takes t, seconds for the motor to
stop after cut off the power. Thus substituting ¢, into the function w(t, J), we get:

w(te, J) =0 (3.37)
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Solve the equation (3.37) again using MAPLE, the constant rotor inertia J is obtained:
J =0.0062K g - m? (3.38)

3.5 Analysis of Series DC Motor Characteristics

3.5.1 Series DC Motor Power Flow and Efficiency

Consider the circuit diagram of the series dc motor shown in 3.1, the power flow
diagram of the motor is shown in figure 3.6.

Armature Airgap
terminal power power
Py =V, P, =V, 1, Po=E,I, Pyy= Pnhaft = Tigadw
o e - L

Field winding loss Armature winding loss Friction and windage loss
P, = IZRI Py = IzRo Piogs

+ brush contact loss

Figure 3.6: Power Flow of Series DC Motor
The efficiency of the series dc motor can be determined from:

Py
Ef ficiency = P—f (3.39)

Thus, the percentage efficiency can be expressed as:

n= Fout 100% (3.40)
Pin
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3.5.2 Series DC Motor Speed, Current and Torque Charac-
teristics

In order to study the series dc motor characteristics of the speed w or the revolution
N, the armature current I, and the airgap torque T, the following experiments
were conducted. The 115V ac supply from the lab bench induction motor panel was
applied to the dynamometer, which worked as the load to the series dc motor. The
dynamometer variac was set to the lowest point. Then connected the series dc motor
as shown in the 3.1. The synchronous machine panel variac was changed so as to
maintain the terminal voltage V; at 100V. The dynamometer variac was used to vary
the machine load, thus different armature currents I, were obtained. At the same
time, the terminal voltage had to be kept constant at 100V. The armature current
I,, the motor revolution NV, and the motor load torque T},,4 were recorded. Then the
terminal voltage V; was maintained at 75V, 50V, and 25V separately, and the similar
experiments were repeated several times. By using the following formulas, the back
e.m.f. E, and the airgap torque 7, are determined:

E, = Vi—I-(R,+R,) (3.41)
E, I,
A (3.42)

The measured and calculated values are shown in tables A.24 to A.31.

According to the measured and calculated values, we draw the plots of w — T},
w ~ I, and T, — I, using MATLAB. In each plot, different degrees of polynomial
curves are fitted to the measured and calculated values, when the terminal voltage V;
is equal to 100V, 75V, 30V, and 25V separately. The plots are shown in figures 3.7,
3.8 and 3.9.

These plots give us clear idea about how the motor speed w, the airgap torque
T,, and the armature current I, relate to each other in series dc motor.

3.5.3 Nonlinear Model from Experiments

According to the above experiment results, I substitute the measured and calculated
data and estimated functions in equations (3.14), (3.15), (3.22), (3.23), (3.27), (3.29),
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Figure 3.8: w and I, Relationships ( V, = 100v, 75v, 30v, 25v )

39
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Figure 3.9: T, and I, Relationships ( V; = 100v, 75v, 50v, 25v )

(3.34) and (3.38) into the state space model (3.11) and (3.12). Therefore, we have
the mathematical nonlinear state space model:

z' — _M Iy — M - + 1 - U
YT T La+L, YT Le+L, I 4L,
_ 105 = —24889.27+31.8393 7 +5.1727 I S
- To12 ! 0.12- 125.6637 27012
= —87.5-z;+0.16505031 - 22 - 1, — 2.1114092 - z, - z,
—0.343025 -z, + 8.33 - u (3.43)
. _ K(Ia) Tlaad + Tloaa
xz =3 — Il —_———

J J
—2.4889 - 2 + 31.8393 - z, + 5.1727 .

Z

0.0062 - 125.6637
1

~0.0062
+0.1190 - z — 0.0215 + 0.0008 - z, + 0.1499)

—3.194522081 - 7} + 40.86598372 - 22 + 6.639199794 - 1,

(—7.3401-107° - 3 + 2.4414 - 1075 - 23 ~ 0.0028 - z?

+1.1838871-107° - z3 — 3.937742 - 1073 - 3 + 0.451613 - 22

—19.32258 - z, — 20.71

(3.44)
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Using SIMULINK toolbox in MATLAB, we build the block diagram of the
nonlinear model for the series dc motor, which is our plant. The diagram is shown in
figure 3.10.

In order to confirm the correctness of the nonlinear model, some experiments
were performed. At first, the series dc motor was connected as in figure 3.1. 0-
120V dc supply from the lab bench synchronous machine panel was introduced as the
control input voltage. The 115V ac supply from the lab bench induction motor panel
was given to the dynamometer, which worked as the load. The percentage meter on
the dynamometer was fixed at 40%, i.e., 40% strength of the field flux was applied.
Then by tuning the control input voltage V, at various values, the corresponding
armature current I, and motor revolution N,, namely motor speed w were obtained.
These measured values were recorded. The above experiments were repeated. The
measured and calculated values are shown in the tables A.32 and A.33.

In the simulation, I introduced the same control input voltage V; as the different
values which were given to the real series dc motor in the former experiment, to the
nonlinear model. By using the nonlinear model, which was built in MATLAB, I
simulated the real series dc motor performance in a computer and wrote down the
simulation results of the armature current I, and the motor speed w in the following
tables A.34 and A.35.

According to the measured data from the real series dc motor and the simulated
data from the nonlinear model, different degrees of polynomials are fitted to the points
by the least-squares method. The plots of I, — V, and w — V, averaged relationships
are shown separately in figure B.7 and figure B.8.

Comparing the averaged relationships of I, — V. and w — V. between measured
data and simulated data, we can find that there is no big difference between them.
For the purpose of having quantitative estimation of their difference, the bar graphs
of absolute errors and relative errors for I, — V. and w — V, curves are shown in figure
B.9 to figure B.16.

From the calculation, we know that there is less than 10% relative errors in
the armature current I, and the motor speed w between the real series dc motor
and the nonlinear model. It is within the accuracy of our requirements. Therefore,
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Figure 3.10: Block Diagram of Nonlinear Model for Series DC Motor
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the nonlinear model will represent the real series dc motor in future control system
design.



Chapter 4

Model Linearization

4.1 Linearization and Equilibrium Points

In chapter 3, we obtained the mathematical nonlinear state space model, described
by equations (3.43) and (3.44). It is quite difficult to directly design a nonlinear
controller for this nonlinear plant. According to the control theory explained in
chapter 2, instead of dealing with the complicated nonlinear model, we linearize it
at different operating points, so as to get a number of linearized models. Then the
powerful linear control design techniques can be applied to each linear model with
respect to various design requirements.

Consider a non-autonomous nonlinear system with the control input u and
assume that f(x, u) is continuously differentiable:

x = f(x,u) (4.1)

Using Taylor expansion at the equilibrium point (x,, u.), such that f (Xe, Ue) = O,
then

o= fu)+(5) x4 (3) -t
_ (%)m (x-xa) + (%) i w) o) (42)

where f}, ,. stands for higher-order terms in x and u. Let A denotes the Jacobian

44
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matrix of f with respect to x at the equilibrium point (x.,u.), and B denotes the
Jacobian matrix of f with respect to u at the same equilibrium point (Xe, Ue):

of
A = (_) (4.3)
ax Xe,Ue
of
B = [— (4.4)
au Xa, e
If the dimension of the state vector x is n, and the dimension of the input vector u is
m, then A is an n x n matrix of elements gf;-, i=1,...,n,7=1,...,n,and Bis an
n X m matrix of elements gf_—, i=1,...,n,j =1,...,m. Substituting the equations

¢}

(4.3) and (4.4) into (4.2), and omitting the higher-order terms in x and u, we get:

x=A-(x-x)+B:(u—u.) (4.5)
Suppose:
¥ = x-—x. 4
T = u—u, 4.7
We have:
x=A-¢+B.Y (4.8)

This is the linearization of the original non-autonomous nonlinear system (4.1) at the
equilibrium point (xe, ue). It is obvious that the system (4.8) is a local linear time-
invariant system. In the following sections in this chapter, the above linearization
method is applied in a computer so as to extract the local linear models. However,
before starting the linearization, we need to acquire the equilibrium points of the
nonlinear model for different control input signals.

At first, the performance of the nonlinear model is simulated in a computer when
the control input voltage u, = 0V,0—1V,... 84 —85V. At each control voltage, after
the step input signal is given to the nonlinear system at time ¢ = 2o, the step response
of the system is recorded for 20 seconds. In fact, except for small numerical €ITors,
the system can be assumed to be in steady state after 1 or 2 seconds.
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In order to check whether the results are correct or not, we substitute the
values of the equilibrium point (x.,u.) into the state space function f(x.,u,). we
find that when the input voltage u, increases, the value of the state space function
f(xe, ue) increases as well. When u, is 85V, the norm of f(x., ue) becomes 0.53159.
However, according to the definition of the equilibrium point, the value of the function
f(xe, ue) should be equal to zero. This means that the above method for calculating
the equilibrium points of the nonlinear model is not very accurate. Therefore, a better
method needs to be considered.

We use MAPLE instead of MATLAB in our calculation. For the non-autonomous
nonlinear system, after the input voltage u, is given, we solve the following equations:

f(xe, ue) =0 (4.9)

Thus we obtain the values of the steady state x., namely the corresponding equilib-
rium point (Xe, ue). The disadvantage of this method is that there exist many groups
of numerical solutions for equations (4.9) at each input value u.. But there is only
one group of values which is correct from practical point of view among all of the
solutions. In order to find out which group of values is the real solution, we need to
compare all of them with the approximate solution which is got by the simulation
method. Then, we can determine the equilibrium point (x., u.).

We also substitute the final result x. into the equation (4.9), and find that
the second method is much more accurate than the first one. For example, when the
input voltage u. is 85V, the norm of f(x, u.) is 0.00187. Therefore, we use the second
method with the help of the first one to calculate the equilibrium points (xe, ue) of
the nonlinear model at different input voltages u,. The results are shown in tables
A.36 and A.37.

4.2 First Local Linearized Model

According to the linearization analysis in the above section, it is implemented in a
computer by MATLAB functions. The first local linearized model is shown as below:

x = A-0+B,-T (4.10)
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~87.5851 —1.6751 8.3333
(56.7877 —19.2820)"I’+< 0 )'T (4.12)

Its block diagram is built by using SIMULINK toolbox in MATLAB. The dia-
gram is shown in figure 4.1.

N
Scope1
28 o
Step State-Space Demux
N
Scope2

Figure 4.1: Block Diagram of Local Linear Model

Similar to the nonlinear model, the performance of local linear model can be
simulated in a computer. When different control input voltages are given to it, the
mean values of the steady state are calculated. However, like the nonlinear model,
the results obtained in this way are not very accurate. Therefore, MAPLE is used to
solve the linear equations:

A,-¥+B,-T=0 (4.12)

where T = 0V, 1V, 2V, ... This method gives us unique and more accurate results at
various values of T.

For this local linear model, because we linearized the nonlinear model at the
equilibrium point:
0.6655
Xe1 = ( 0.0450 ) (4.13)

when
Uel = 144 (4 14)

Substituting the above equations into (4.6) and (4.7), we obtain:
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U, +0.6655 _
< W, +0.0450 ) (4.15)
4= THua=T+7 (4.16)

This means that we need to add the values of the equilibrium point of the
nonlinear model to the steady states of the local linear model, so as to get the real
values of the states. The table A.38 shows the steady values for both ¥ and x.

In order to compare the steady state values of the first local linear model with
those of the nonlinear model, when the control input voltage u = 7V,8V,..., we
calculate the relative errors of them using the following equations:

Izl_linear -z l.nanlinear'

g = (4.17)
Zi_nonlinear
z . —I .
0y = | 2_linear 2_nonlmear| (4.18)
I2_nonlinear

We find out that when the control input voltage u = 7V and 8V, both of the
relative errors are less than 5%, which satisfy our requirement. However, if the input
voltage goes up to 9V, the o is still less than 5%:; the o, will become approximate
to 8.5%. Thus, the second local linearized model needs to be found so as to satisfy
our requirements.

4.3 Second Local Linearized Model

The similar procedure is applied to linearize the nonlinear model at the equilibrium
point:

0.7548
Xea = ( 0.3238 ) (4.19)
when
Uea = 8V (420)

Then, we have the second local linearized model:
X = Az“I’-{"Bz"r (4.21)

. -88.1030 —1.8427 8.3333
* = (62.8708 -19.0313)“I’+( 0 )'T (4.22)



CHAPTER 4. MODEL LINEARIZATION 49

It has the similar block diagram as the first one, which is built in the computer
as well. We also used MAPLE to calculate the steady states of the second local
linear model, when T = —1V,0V,1V,... The equilibrium point in equations (4.19)
and (4.20) are substituted into (4.6) and (4.7), we have:

X = W4 Xeq
U, +0.7548
( U, +0.3238 ) (4.23)
u = THup=T+8 (4.24)

Adding the values of the equilibrium point of the nonlinear model to the steady
states of the local linear model, we get the table A.39.

The equations (4.17) and (4.18) are applied to the second local linear model
and the nonlinear model, when the control input voltage u = 7V, 8V, ... We find that
after the input voltage increases to 11V, the o, becomes 8.5%. But when the control
input voltage u = 8V,9V and 10V, all the relative errors are less than 5%. Moreover,
the operating range of the second local linear model overlaps with that of the first
local linear model, when the control input voltage u € 7.9 8.1). All of these satisfy
our requirements for valid local linear models. Therefore, we keep these two local
models and find all the other linearized models as well.

4.4 Other Local Linearized Models

Applying the same method of linearization and calculation as we used in the first
and the second local linear models, we obtain other local linear models at different
equilibrium points. They have the same values of matrix B:

B= ( 8'35’33 ) (4.25)

However, the values of matrix A are different from each other. These are shown in
the tables A.40 and A.41:

All of these local linear models have the similar block diagram as figure 4.1.
And their steady state values can be calculated in MAPLE, when different control
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input voltages u are introduced to the linear system separately. With the addition
of the corresponding equilibrium point of the nonlinear model to the steady states
of the local linear model, the final state values for each linear system are obtained.
They are all shown in table A.42 to table A.53.

The equations (4.17) and (4.18) are used to the local linear systems and the
nonlinear model to calculate the relative errors between them at various control input
voltage u. We try to make sure that the errors are within 5%. Furthermore, we also
ensure that any two neighbouring local linear models intersect with each other.

There are fourteen local linear models altogether. In order to compare the
steady state values of the local linear systems and the nonmlinear model, we draw
figure 4.2.

B L
. ~— noninear mode!
% = - kneanzed models

as

Figure 4.2: Compare the Relationship of I, and w between Nonlinear Model and
Linearized Models

The bar graphs of the relative errors between the nonlinear model and the local
linear approximations for the armature current I, and the motor speed w are shown
separately in figure B.17 and figure B.18.

At this point, all of the local linearized approximations are obtained from the
nonlinear plant. A powerful linear control design technique can be used to these linear
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models.



Chapter 5

Control System Design

3.1 H, Optimal Control System

For purpose of analysis and design, we consider the standard continuous-time control
system, which has the idealized form shown in figure 5.1 [10].

< T

--— —

G

| —————

Figure 5.1: Standard Continuous-Time Control System

The z, y, r and u are continuous-time signals, whose amplitudes can be any real
numbers. z represents the signal to be controlled; y is the measured signal, namely
the input signal to the controller K; r represents the exogenous input to the system,
including reference command, disturbance and sensor noise; and u is the control input,
namely the input signal to the generalized plant G.

52
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y € RP u€ R™

 E —— G —-———— ———

Figure 5.2: Control System

As we know, for the system in figure 5.2, the Hy norm of G is defined in
equation (3.1).
lgllec = Sgp Umaz[g(Jw)] (5.1)

where §(s) is a p x m complex transfer matrix. p is the dimension of the system
output and m is the dimension of the system input. ¢p,,;[§(jw)] denotes the maximum
singular value of §(jw). The Hy norm of the transfer matrix §(s) has the important
property:

19llee = sup{lyllz : [lull2 = 1} (3.2)

this means that the H,, norm equals the system’s gain, that is, maximum L, norm of
the output over all inputs of unit norm. It is a worst-case system gain for unknown
inputs.

Consider the standard control system in figure 5.1. Let G, denotes the closed-
loop system from r to z, with transfer matrix §,,(s). The Hy, optimal control problem
is to compute an internally stabilizing controller K that minimizes ||§.r ||oo-

For a linear generalized system G, it has four types of external variables: z, y,
r and u. They are correlated through the linear state space equation:

G= (%Hg—) (5.3)

Because the input and output of G are partitioned as ( ; ) and ( ; ), we have

A|B B,
G= C]_ D“_ Dlg (54)

C2| Dy Dnp
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In our case, Dy; = 0, that is, the transfer function from u to y is strictly proper. This
condition guarantees the existence of closed-loop transfer matrices. The following
requirements need to be checked about the open-loop system G as well, so as to
guarantee the existence of an optimal controller K:

1. (A, By) is stabilizable and (C,, A) is detectable.

2. D3 has full column rank and D,, has full row rank.

3. A-jul B, ) has full column rank for all w, and
Cl Dl2

full row rank for all w.

A- ](UI B[
C, Dy ) has

If all the above requirements are satisfied, in MATLAB, we can use the functions
in p toolbox to compute the H, optimal controller K. Because the controller that
actually minimizes ||§..||« is really hard to obtain, a simpler method is to search
for a controller K that gives ||g:r[l« < v. In MATLAB, the value of v is updated
based on a modified bisection algorithm. The iteration procedure continues until
the magnitude of the difference between the smallest v value that has passed as the
largest v value that has failed less than the pre-specified tolerance.

5.2 Continuous-Time H,, Optimal Controller De-
sign

We obtained all of the continuous-time local linearized models from the nonlinear
plant in the above chapter. Now the closed-loop diagram of the armature voltage
controlled series dc motor is shown in figure 5.3.

From figure 5.3 we can see that P is the local linearized model derived from
the nonlinear plant. r = w represents the reference signal to the closed-loop system.
It is the motor speed w, which is obtained from the nonlinear plant. y = Aw is the
error of the motor speed between the reference signal w and the output of the local
linear model &. The H, optimal controller K needs to be designed. u represents
the input to the plant, namely the control armature voltage. The weighted error is
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[4]]
(1]

21
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L y=Aw u &
| K [ & P J -

Figure 5.3: Block Diagram of Closed-Loop System

z= ( :“ﬁg) ) = ( ? ), where the weight W, is a low pass filter and W, is a high
2 2

pass filter.

In this control system design problem, we use mixed-sensitivity Hy, control,
which means to shape the sensitivity function S = - +}, = along with the closed-loop
transfer function T = 2Kz, We want to reject the disturbance entering at the
plant output. In our case, it is typically at the low frequencies. Therefore, it will be
successfully rejected if the maximum singular value of S is made small over the same
low frequencies. To do this a scalar low pass filter W, with a bandwidth equal to that
of the disturbance can be selected. Hence we have obtained the first cost function
[W1S||oc. However, this cost function alone is not very practical. The closed-loop
transfer function T needs to be shaped as well. It is desirable for tracking problems
and noise attenuation. The noise is mainly a high frequency signal, therefore, it can
be mostly attenuated if the maximum singular value of T is made small over the high
frequencies. A scalar high pass filter W, with a bandwidth equal to that of the noise

is selected. Thus, the second cost function is ||W2T||w. The control specification is
wiS
WaT '

oc

At first, we need to convert the closed-loop system in figure 5.3 to the standard

to find a stabilizing controller K that minimizes
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control system in figure 5.1. According to the definitions of z, y and r, we have:

<= (5)= (i) = ("5)

(5.3)
y = Aw=r-Pu (5.6)
T = w (3.7)

z r -
(y) = G(s)(u) (5.8)

Substituting equations (5.5), (5.6) and (5.7) into (5.8), we get:
21

Gu | Gz T -

[3) - &) 6
W, | -WP ;
= | o| wmyp ( : ) (5.10)
1 -P

In MATLAB, we built the block diagram of linear time-invariant model for
transfer matrix G(s) and the interconnection matrix. Then we derived the state
space model for the generalized plant G in standard control system. Thus the original
closed-loop system in figure 5.3 has been converted to the standard form.

Now we need to check whether the generalized plant G = g lB) ) satisfies all

the requirements for the existence of an optimal controller K. Before doing the H,
optimal controller design, we examine and find that all of the fourteen local general-
ized plants satisfy the requirements 1, 2 and 3 in the former section. Therefore, by
now the Hy optimal controller design procedure can be implemented in a computer.

After the H optimal controller K is obtained, we use the feedback loop to
connect the linear model P and the optimal controller K together, so as to get the
closed-loop control system. The block diagram is shown in figure 5.4.

When P is the first local linear model, the bode diagram of the corresponding
feedback system, namely the closed-loop transfer function T is shown in figure 3.5.
Moreover, the closed-loop response of w for the first feedback system is shown in
figure 5.6 as well.
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Figure 5.4: Block Diagram of Continuous-Time Feedback System
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Figure 5.5: The Bode Diagram of Closed-Loop Transfer Function T for First Local
Linear System
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Figure 5.6: The Closed-Loop Response of w for First Local Linear System

According to Nyquist criterion, we can say that the closed-loop linear system
is stable. And at the low frequencies, the magnitude of the transfer function T
is approximate 0 dB, which means that the closed-loop system has good tracking
property. On the contrary, at the high frequencies, the magnitude of the transfer
function T drops off quickly. This shows the successful noise attenuation for the
feedback system. The closed-loop response of w indicate the fast transient response
and close steady state value to that of nonlinear plant. Therefore, the closed-loop
control system has better performance with the help of Hy optimal controller K.

However, before this H, optimal controller can be applied in the testing ex-
periments, we need to examine the value of the input to the plant u in figure 5.4.
Because the first local linearized plant P is only valid when its control input u is less
than 1.1V. We derive the transfer function of u as follows. Since

NP

P = D—P' (0.11)
NK =
u K -
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Substituting equations (5.11) and (5.12) into (5.13), we have:

NK
= —_,?,5 NK
1+W'Ff('
NK - DP i
~ DP-DK +NP-NK (5.14)

U

In MATLAB, by using the transfer function in equation (5.14), the response of the
input signal to the plant is obtained. It is shown in figure 5.7.
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Figure 5.7: The Response of the Input Signal to the Plant for First Local Linear
System

From the response diagram, we find that the control input » to the plant is
approximately 1.03V. It is within the allowable control input 1.1V , and satisfies our
requirement. Therefore, the local linear model P and the H,, optimal controller K
are both valid for the feedback system.

The bode diagram of the sensitivity function S are plotted as well in figure 5.8. It
is clear that at the low frequencies, the magnitude of S is quite small. This property
guarantees that the disturbance entering at the plant output will be successfully
rejected.
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Figure 5.8: The Bode Diagram of the Sensitivity Function S for First Local Linear
System

Until now, we finish the Hy optimal controller design for the first local linear
model. The similar procedure is applied to all the other thirteen local linear models
so as to get their corresponding H, optimal controllers.

5.3 Characteristics of H,, Optimal Controller

During the H,, optimal controller design, there are a few points that need to be
mentioned. First, by changing the values of the weighting functions W, and W,, we
get different Hy optimal controllers K for the same local linear model P. The rule
to chose which controller satisfies our requirements is to see whether or not the value
of the control input to the plant u is within the valid operating range for each local
linear model P. In our simulation, we find that when different reference motor speeds
w are applied to the closed-loop system, the relative error between u and the allowable
control input is less than 5%. This is true for all of the continuous-time closed-loop
systems. This condition guarantees the validation for both the local linear plant P
and the Hy, optimal controller K.
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Secondly, the H,, optimal controller tries to make the output of the feedback
system in figure 5.4 as close as possible to the reference signal, which is the desirable
speed for the nonlinear plant. Therefore, with the help of the H., optimal controllers,
the steady state values of the closed-loop systems are much closer to those of the
nonlinear plant than without the H,, optimal controllers. This is true for all the
fourteen local linear models. Obviously, this demonstrates the improved performance
of the feedback system due to the Hy, optimal controller.

Thirdly, in our control system design, we consider the load torque as flexible.
According to the experiments of motor load torque measurements in chapter 3, we
know from equaticn (3.29), that the ioad torque is a function of the motor speed w.
That means the motor torque will change when the motor runs at different speed.
Along this speed and current trajectory, we derive the fourteen local linear models,
which have overlap and cover the whole trajectory. The multiple local linear models
in the state space is shown in figure 5.9.

Ty =W

e

v rmoqgemiminn

» 1 =1,

Figure 5.9: Multiple Local Linear Models in the State Space
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In practice, if we want to fix the motor load torque at a specific value and we
have enough knowledge about how the disturbance will influence the local torque, we
may need to cover larger part of the state space. Therefore, more local linear models
will be derived at different operating points. And the operating range of all of the
local linear models has to be large enough to cover the whole part of the state space
that will be used for the possible trajectory. This is shown in figure 3.10.

L.-._._.-.r._._,_
'

>.’L'1=Ia

Figure 5.10: Multiple Local Linear Models

Up to now, we have finished the H, optimal controllers design for continuous-
time local linear systems. However, whether the H, optimal controllers will work for
the nonlinear plant at different operating points is still unknown. I implement the
testing experiments in the next chapter so as to find the answer.
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Simulation

6.1 Introduction of Simulation

For the purpose of verifying the input-output theory, we need to connect all of the
H,, optimal controllers with the nonlinear plant. Because the controllers work at
different speed range, at each operating range, for the nonlinear model, we use the
proper controller to link with it and control its speed. Since every two neighbouring
controllers have overlap in their operating range, when entering these intersections
between them, we switch controllers from the previous one to the follow-up one.
In such a way, we can drive the motor starting from zero speed, accelerating, and
reaching the desirable speed.

6.2 System Configuration

According to the basic idea introduced in the above section, the nonlinear feedback
system is built in SIMULINK toolbox. It is shown in figure 6.1.

As we can see, the closed-loop system consists of six major parts:

1. 2-D look-up table and its supplement.

2. Reference signals and switches.

63
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3. Logical subsystems.

4. Local linear H, optimal controllers.

5. Nonlinear model.

6. Simulation termination.

We explain their functions separately in the following.

6.2.1 2-D Look-Up Table and Its Supplement

65

In figure 6.1, there is a small square block, which is called 2-D look-up table. Iis
contents are listed in table 6.1.

Row [-1.04 0.32 0.63 1.69 2.94 4.88 8.94
15.41 24.85 35.45 47.42 59.87 79.73 110.67 120.00]
Column [0.00 0.75 0.84 1.10 1.33 1.62 2.07
2.52 2.86 2.96 3.20 3.30 3.34 3.40 3.50]
Table M111111111111171;

122222222222222;
123333333333333;
123444444444444;

-----------

1234555555555 35;
1234566666666 6 6;
123456777777777,;
123456788888888;
123456789999999;
1234567891010101010 10;
123456789101111111111;
123456789101112121212
123456789101112131313;
1234567891011121314 14;

1234567891011121314 14]

Table 6.1: 2-D Look-Up Table

First, we define the value of the row and column parameters. The corresponding
possible output values are then defined as the table parameter. This block generates
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an output value by comparing the block inputs with the row and column parame-
ters. The first input identifies the row parameter, and the second input identifies the
column parameter, as shown by figure 6.2.

Row
—_— Table
Column — >

| J

Figure 6.2: 2-D Look-Up Table

If the inputs match row and column parameter values, the output is the table value
at the intersection of the row and the column. If the inputs do not match row
and column parameter values, the block generates output by linearly interpolating
between the appropriate table values. If either or both block inputs are less than the
first or greater than the last row or column parameter values, the block extrapolates
from the first two or last two points.

In our case, the motor speed and the armature current are introduced from
the nonlinear plant to the inputs of the 2-D look-up table block separately. The row
parameter represents the switching points of the motor speed, and the column param-
eter represents the switching points of the armature current for corresponding local
linear Hy, optimal controllers. All of the switching points belong to the intersections
of those local models. The table parameter indicates clearly the switching rule: the
switching between two neighbouring controllers happens when both the motor speed
and the armature current reach the switching points. During the simulation, we find
that there is no significant difference between the time for the motor speed to reach
its switching value and that for the armature current to reach its switching value.
Actually, the latter is a little shorter than the former.

Because the input values given to the 2-D look-up table block are continu-
ously changed, the output of the block is the linear interpolation of the table values.
However, in the following part of the control system, the positive integer signals are
required. Therefore, the output of the block is introduced to the rounding function
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block. This block performs common mathematical rounding functions. According to
our requirement, the floor function is selected. It truncates the whole decimal part
of the input signal, and generates integer values.

In the 2-D look-up table, both the row values and the column values, which
entered as vectors must increase monotonically. This causes another problem in our
application. Although the values of the motor speed for the nonlinear plant increase
monotonically, the values of the armature current do not follow this rule. After it goes
up to the maximum value, it will drop down until the motor reaches its rated speed.
Therefore, we cannot simply enter the switching points of the armature current as
the column vector. We have to manipulate the values of the armature current after it
arrives at its maximum value. The 2-D look-up table supplement accomplishes this
task. Before the specific motor speed, which corresponding to the maximum armature
current, it generates the same output values as the actual armature current. After
that point, it calculates the inverse of the armature current, and adds a constant
to it. In this manner, the output of the 2-D look-up table supplement will increase
monotonically. Instead of using actual armature current, this output is introduced
to the 2-D look-up table as the column input. The column parameter is defined
corresponding to the manipulated switching points of the armature current. Now,
with the help of the supplementary part, the 2-D look-up table will work properly.

6.2.2 Reference Signals and Switches

At the reference signals part, a group of reference signals are provided separately by
those constant blocks. These blocks generate specified values independent of time.
There are totally fourteen blocks, which correspond to the fourteen local linear H,
optimal controllers. We find that when the control input to the nonlinear plant is
small, the values of the motor speed are negative, and the values of the armature
current are positive. The reason that the nonlinear plant has negative speed values is
due to the existence of static friction. When a small control input voltage is given to
the motor, although there is current goes through the circuit, which means that the
value of the armature current is positive, the motor still cannot overcome the internal
static friction. Thus the value of the motor speed in nonlinear plant is negative. The



CHAPTER 6. SIMULATION 68

motor will begin to run only if the control input voltage is large enough to make the
motor overcome its internal static friction. Then the value of the motor speed will
become positive. This property of the nonlinear plant is reflected in the equation of
(3.44), which includes constant value -20.71. However, from practical point of view,
we will never control the nonlinear plant to make it work at the operating range where
the motor speed is negative. Therefore our linear H,, optimal controllers work at the
operating ranges where the nonlinear plant generates positive speed values.

We adjust the reference signals so as to make the motor speed reach the desirable
values at different operating range. All of the reference signals are connected with the
multiport switch block. This block chooses between a number of inputs. Its first (top)
input is the control input and the other inputs are the switch inputs. The value of the
control input determines which switch input to pass through to the output port. The
output of the rounding function block is introduced to the control input in order to
determine which reference signal will be given to the nonlinear feedback system at the
different operating range. The same multiport switch block is used at the position
which links the local linear H,, optimal controllers with the nonlinear plant. The
output of the rounding function block is introduced to its control input as well. This
means that the reference signals and the corresponding H,, optimal controllers are
switched simultaneously. It is definitely the requirement for the nonlinear feedback
system.

6.2.3 Logical Subsystems

The first and the second logical subsystems are shown in detail in figure 6.3 and figure
6.4 respectively. All the others have the same structure as the second one, except for
the different values in those constant blocks. There are fourteen logical subsystems
altogether, which correspond to the fourteen local linear H,, optimal controllers.

These logical subsystems consist of logical operator blocks and relational operator
blocks.

The first logical subsystem generates the enabling signal for the first H,, optimal
controller. The control strategy is that if either or both of the motor speed and the
armature current are less than their first corresponding switching values, the output
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of the first logical subsystem will be 1, which means that it will keep on enabling
the first H,, optimal controller until both of the states reach their switching values.
The second logical subsystem has similar structure and function as the first one. As
mentioned earlier, by simulation we find that the time for the armature current to
reach its switching value is shorter than that for the motor speed to reach its switching
value. Therefore, another “and” logical operator block is added to the second logical
subsystem, so as to ensure that when the armature current reaches its switching
value, the second H,, optimal controller will not be enabled. The first local linear
controller is still used to control the nonlinear plant until the motor speed reaches its
switching value as well. The logical subsystems have the same switching points as
those in the 2-D look-up table. This condition guarantees that the reference signals,

the corresponding H, optimal controllers and the enabling signals are all switched
at the same time.

6.2.4 Local Linear H,, Optimal Controllers

The next important part in the nonlinear feedback system is the local linear H, opti-
mal controllers. There are fourteen optimal controllers. Each of them is a subsystem.
They all have similar construction. The first one is shown in figure 6.5.

n
Enable

x' = Ax+Bu
B, P y-oxedu [
Int . out?
Controller_7 Saturation_1

Figure 6.5: First Local Linear H,, Optimal Controller

It is easy to see that this subsystem has an enabling port. This makes it an
enabled subsystem. It executes while the input received at the enabling port is greater
than zero. In the nonlinear feedback system, the outputs of the logical subsystems
will enable the different H,, optimal controllers when the nonlinear plant reaches
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its switching points. The local linear controllers are represented by the state-space
blocks. Because the Hy, optimal controllers are observable, the observable canonical
form is used to define their state-space parameters A, B, C and D. In this linear state-
space system, we define its behavior not only by matrix coefficients 4, B, C and D,
but also by the initial state vector, which gives the initial values of the states for the
linear controller. For the first local linear controller, its initial states are all set to be
zeros, because it is initially relaxed. For the second controller, because after the motor
speed and the armature current reach their switching values, the nonlinear feedback
system will switch its controller from the first one to the second one automatically.
In order to avoid any jump between the outputs of two neighbouring controllers when
switching, and furthermore, keep the outputs at the switching point have the same
value, we initialize the initial states of the second controller using the final states of
the first one. This method is applied to all the other controllers as well. It makes
the switching smooth. The saturation block limits the range of the output of the
controller, so as to ensure that the control signal to the nonlinear plant is within the
allowable range. This guarantees the nonlinear plant works properly.

6.2.5 Nonlinear Plant

The nonlinear part of the feedback system is exactly the same as the block diagram of
the nonlinear model for series dc motor, which is shown in figure 3.10. It implements
the nonlinear behavior of the real series dc motor. Before the simulation, the states of
the nonlinear plant needs to be initialized. As mentioned before, due to the internal
static friction, when the control input voltage to the nonlinear model is zero, the
value of the motor speed is negative. We use this value as the initial condition for the
motor speed. As for the armature current, it is approximately zero before starting
the simulation. Therefore, both of the initial states are set up. A number of local
linear Hy optimal controllers are used to control the speed of this nonlinear plant.

6.2.6 Simulation Termination

From practical point of view, as the operators, they do not care about the internal
construction of the nonlinear feedback system. The only thing they care about is
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how to regulate the motor to the desirable speed. Therefore, as designers, we add the
simulation termination part to the nonlinear feedback system. In this part, the stop
simulation block is used to terminate the simulation when the motor speed reaches
the desirable value. Thus the operators only have to change the value of the constant
block in the simulation termination part to whatever the desirable speed is. Then
after starting the simulation, the motor will stop automatically at that speed. This
accomplishes the task for the design purpose.

6.3 Simulation Results

In previous section, the construction and the function of the nonlinear feedback system
are introduced in detail. Now we perform a computer simulation.

We recall that our objective is to increase the motor speed from 0 rpm to 1200
rpm, “following a stable motion”. No attempt, however, will be made to smooth or
to speed up the response. The result is shown in figure 6.6.

120
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Figure 6.6: Simulation Result of the Motor Speed

This figure should be interpreted as follows: There are fourteen points of dis-
continuity in this response. Each one of these points corresponds to a switching point
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between two neighbouring local controllers. There are two main shortcomings in
this response: (i) lack of smoothness, and (ii) speed of response. Both problems are
indeed inter-related. The lack of smoothness originated from a very narrow intersec-
tion region in the domain of two neighbouring local controllers, which in turn requires
waiting virtually until reaching steady states before switching controllers. This limits
the speed of response which can be obtained. Suggestions for the improvement of
these problems are mentioned in the next chapter.



Chapter 7

Discussion and Conclusions

7.1 Discussion

In this section, we take a critical look at the results and procedures of the previous
chapters.

o The first step of our design consisted of the linearization of the nonlinear plant
in order to obtain the local linear time-invariant models at different equilibrium
points (xe,ue). For simplicity, we restricted my attention to “steady state
error” and required that the percentage steady state error between the nonlinear
plant and the linear approximation be less than 5%. This error is regarded as
the uncertainty of the linear approximation. In practice, however, robustness
constraints dictate that dynamic uncertainty needs to be considered as well.
More research is needed to quantify the uncertainty originated by the linear
approximation. This problem is important in any situation where a model of
a physical system is to be used, and it is critical when feedback system is to
be designed based on this model due to the propagation of model uncertainty
and consequent the risk of instability. In fact, the study of model uncertainties
and their incorporation in feedback design is the subject of the so-called robust
control theory which has inspired a lot of interest in recent years. Indeed, our
uncertainty research has important connection with robust control theory, and
furthermore, may impact the traditional uncertainty description characterized

74
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in the robust control literature.

e When dealing with the series dc motor speed control, our only concern was:
starting the motor from zero speed, accelerating, and reaching the desirable
final speed. We did not specify any smoothness requirements on the speed re-
sponse w(t). A quick look at the figure 6.6 shows that our approach results in
a non-smooth response. The curve of the motor speed looks like piecewise con-
tinuous functions. The lack of smoothness is originated by the way in which the
switching of the reference signals and the switching points were implemented.
In practice, this type of response may be undesirable for certain systems. For
example, when dealing with robotic systems, we are typically interested in pro-
ducing a motion along a predefined trajectory. In order to improve the response
curve, two approaches can be considered.

(i) First, we can enlarge the size of the intersection so as to make sure that
the latter part of the fast transient response in each local model falls inside
the intersection of two neighbouring local models. Thus, we can select the
switching points at the fast transient response part instead of those at the
slow part. In such a manner, we not only dramatically shorten the time
for speed acceleration, but also remarkably reduce the non-smoothness of
the motor speed curve. This idea can be expressed clearly in figure 7.1 and
figure 7.2.

(ii) Secondly, we need to review the space of the input functions. In our case,
the exogenous input signals to the nonlinear feedback system are a series
of step signals. As a consequence, the output motor speed curve is a group
of exponential curves connected successively. The exogenous input signals
and the output curve are shown in figure 7.3. In order to improve the
response curve, we have to limit the rate of change of the input signals, in
other words, limit the derivative of them. Instead of using many “steps”,
a exponential signal can be applied to the nonlinear feedback system as
the exogenous input. In this way, the motor speed curve will become
much smoother than before, as long as the rate of change of the motor
speed is fast enough to follow that of the exogenous exponential input



CHAPTER 7. DISCUSSION AND CONCLUSIONS

...............

TPy

—

Figure 7.1: Slow and Non-Smooth Speed Acceleration with Small Intersections
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Figure 7.2: Fast and Smooth Speed Acceleration with Large Intersections
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signal. Of course, we need to find a specific exponential signal which has
the proper rate of change. This approach provides smoother motor speed
curve, and at the same time, it dramatically simplifies the reference signals
in the nonlinear feedback system with a single exponential input signal.
Definitely, the combination of these two approaches can give us satisfactory
results.

Wre!,“—J

A

— L

Figure 7.3: Exogenous Input Signals and Output Curve

e Even though our object-the armature voltage controlled series dc motor is suc-
cessfully operated by the He optimal controllers using the input-output ap-
proach, there are still some problems involved with the control system design.
The reason we selected the H,, optimal control method is due to its popularity
in recent years, and furthermore, it is a well accepted method in robust control
system design. However, it may not be the best approach for the nonlinear
system.

First of all, there is an important notion in the input-output approach repre-
sented in reference (29], which is so-called the small signals. They are defined
by the binormed linear subspace X, which means || u [2< oc and || u ||lo< Q.
These signals indeed determine the character of the local linear system, since
no model can remain accurate for arbitrarily large signals while maintaining
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a predefined degree of accuracy. Therefore, when implementing the controller
design procedure, we need to keep track of the input function to the plant, so as
to make sure that the “size” of the input function is within the allowable range.
Otherwise, the local linear models will become invalid. The H., optimal design
method cannot incorporate this important restriction into its design procedure.
We have to design the H,, optimal controller first, then check the “size” of the
input function to the plant only “after” the design is completed. An alternative
to this approach would be to use the more recent L, control theory which is
“designed” to limit the “size” of the transient response.

Another feature of Hy, optimal control method is that, in essence, it is a steady
state specification. However, by observing the motor speed curve, we can find
that the nonlinear feedback system does not work in steady state conditions
during the whole procedure of the speed acceleration except for the final de-
sirable steady speed. We ignore the control of the dynamic state, and on the
contrary, excessively emphasize the control of the steady state. As mentioned
earlier, the L, theory can be used to compensate the control of the dynamic
state. Alternatively, we may use “windows” in the time domain so as to filter
out the actual useful transient state before applying the H,, optimal control
design procedure. To the best of our knowledge, this approach has not been
previously used in the control literature.

e Up until now, we have discussed the problems encountered in this thesis and
some potential improvements which can be done in the future. All of these
bring up another important question: namely, for what class of systems is the
input-output approach suitable. Like any other approach for the analysis and
design of nonlinear systems, this approach is not universally recommended.

The input-output approach appears to be very promising for a variety of sys-
tems. The best “candidate” are systems designed to operate for long period of
time under similar conditions. This is indeed the case in, for instance, aircraft
and process control systems. In the aircraft control systems, the speed and the
dynamic pressure are measured by sensors and used as scheduling variables in
order to adjust the flight controllers to different operating conditions. Since
there is no need for the flight to follow a predefined strict trajectory, and the
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aircraft does not need to switch its controllers a lot except for take-off and land-
ing, it is an ideal candidate for the input-output approach. The same thing for
the process control systems.

On the other hand, if the system requires a predefined state trajectory, such as
the high performance robotic system, this input-output approach may not be
recommended, since in order to produce good results, it might be necessary to
use too many local models.

7.2 Conclusions

In this thesis, we elaborated on the virtues and shortcomings of the theory of an
input-output approach to systems described by multiple local linear models [29]. It
is a re-formulation of the classical input-output theory. It not only keeps the essence
of the classical stability theory, but also overcomes its drawbacks. By defining the
local systems as a mapping from input to state, rather than from input to output, the
theory incorporates initial conditions into the system stability analysis. Unlike most
references who search for the global stability of the gain scheduling method, the input-
output approach concentrates on local stability. By introducing the important concept
of stable motion, it provides a mechanism that ensures “safe” transitions between
different operating points. Moreover, the key notion of small signal emphasizes that
when we define model uncertainties, we should never overlook the class of signals for
which this model is assumed to be valid. All of these make the input-output approach
a very practical method in dealing with the gain scheduling controlled systems.

This theory was applied to the speed control of a series dc motor. Through
this case study, we demonstrate that the theory is well developed and works great for
the nonlinear control system. Generally speaking, the input-output approach to gain
scheduling method is a rather simple, yet complete characterization of the stability
analysis of systems described by multiple models. We believe that it will attract more
and more research interests because of its theoretical value, and have more and more
extensive applications due to its practical significance.
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Appendix A

Table

Before Motor Ran | After Motor Ran for 10 Minutes

R, V-R,|I-R, R,

(@) (V) (A) (@)
1.7 2.27 1.05 2.16
1.6 2.78 1.24 2.24
1.8 2.15 1.03 2.09
1.7 2.94 1.45 2.08
1.8 3.10 1.47 2.11

Table A.1: Measured and Calculated Values of Field Resistance

Before Motor Ran | After Motor Ran for 10 Minutes

R, V-R,|I-R, R,

(€) (V) (4) (€2)

8.2 8.74 1.01 8.65
8.4 9.20 1.03 8.98
8.1 9.70 | 1.11 8.74
8.6 9.93 1.13 8.79
8.7 13.90 1.60 8.69

Table A.2: Measured and Calculated Values of Armature Resistance
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Veo | Ieo | 8 | X, L,
(V) 1 (4) [ (0| () | (mH)
24.0 11.01 | 58 | 20.15 53
25.7 | 1.01 | 55 | 21.84 55
51.2 | 2.00 | 33 | 20.45 94
63.8 | 2.50 | 34 | 20.65 59
39.8 1150 33 | 21.78 58
33.5 {131 | 35 | 20.95 56
01.311.99 | 36 | 21.97 57
37.1 | 1.33 | 37 | 20.84 94
25.1 | 1.02 | 36 | 20.40 54
39.6 | 1.51 | 55 | 21.48 57
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Table A.3: Measured and Calculated Values of Field Inductance Using L = X Method

(Q = 377)

‘/0 IO Ra Vl20 1120 ZI20 La
V)] (4 1@ [ V)]| (4 | (Q | (mH)
1.0 [0.114 [ 8.77] 6.2 [0.138 | 44.98| 58
1.2 | 0.137 | 8.76 | 8.2 | 0.160 | 51.25| 67
1.4 | 0.162 | 8.64 | 10.3 | 0.198 | 52.02| 68
1.5 | 0.175 | 8.57|11.3 | 0.201 | 56.22| %
1.2 | 0.141 | 851 | 8.1 |0.179 | 45.25| 59
1.1 {0128 | 859| 7.1 |0.140 | 50.71 | 66
1.0 | 0.112 | 8.93| 6.3 | 0.131 | 48.09| 63
1.3 | 0.152 | 8.55 | 9.2 | 0.196 | 46.94 | 61
1.6 | 0.185 | 8.65 | 12.4 | 0.226 | 54.87| 72
1.5 | 0.176 | 8.52 | 11.2 | 0.228 | 49.12| 64

Table A.4: Measured and Calculated Values of Armature Inductance Using (2 - Q -
L)? + R? = Z? Method (Q = 377)
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L [Vi | L [V, | N,
(4) | (V) | (4) | (V) | (rpm)
349 76.76 [ 0.12 [ 89.1 | 1207
3.00 | 5.87 | 0.12 | 82.6 | 1213
2.50 | 4.90 | 0.12 | 73.5 | 1209
2.00 [ 3.90 | 0.14 | 63.2 | 1214
1.50 | 2.92 | 0.15 | 51.3 | 1214
1.01 | 1.97 | 0.19 | 39.9 | 1259
0.51 | 1.00 | 0.29 | 25.3 | 1231
0.10 | 0.20 | 0.57 | 15.8 | 1168

Table A.5: Measured Values of E,—I, Curve (first time testing—part I: before switched
the connection between the two joints of the field winding)

Ia Vf Ia Va Nr
(4) | (V) | (4) | (V) | (rpm)
3.50 | 6.72 | 0.12 | 85.0 | 1205
3.00 | 584 |0.12|78.0| 1208
2.50 | 4.87 ] 0.12 | 69.0 | 1208
2.01 | 3.90 | 0.14 | 58.0 | 1195
1.51 1293 |0.16 | 46.8 | 1202
1.01 {196 | 0.20 | 33.3 | 1196
0.51 |1.00]0.34 | 21.9| 1225
010]0.21 | 1.35{17.7 | 1224

Table A.6: Measured Values of E; — I, Curve (first time testing-part II: after switched
the connection between the two joints of the field winding)
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I
(4)

Eal
(V)

a

vV

E!,

Ea2
(V)

Ee
V)

E,
(V)

3.495
3.000
2.500
2.005
1.505
1.010
0.510
0.100

88.068
81.568
72.468
61.996
50.010
98.266
22.796
10.848

87.5572
80.6938
71.9285
61.2811
49.4338
96.4728
22.9219
11.1452

83.968
76.968
67.968
56.796
45.424
31.580
18.936
6.120

83.6196
76.4589
67.5179
57.0336
45.9484
391.6856
18.5496
6.000

85.5884
78.5761
69.7232
59.1574
47.3909
34.0792
20.3858
8.5726

Table A.7: Calculated Values of E; — I, Curve (first time testing—part I11)

1,
(4)

Vy
(V)

I,
(4)

V.
(V)

N,
(rpm)

3.49
3.01
2.50
2.01
1.50
1.01
0.50
0.10

6.82
3.91
491
3.94
293
1.97
0.98
0.20

0.12
0.12
0.12
0.13
0.15
0.18
0.29
0.55

89.9
83.3
74.2
64.5
30.0
37.7
25.6
15.9

1215
1210
1224
1230
1187
1200
1245
1169

89

Table A.8: Measured Values of E, — I, Curve (second time testing-part I: before
switched the connection between the two joints of the field winding)
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L [V, [ L [V, N,
A (M) A [ (V)] (rpm)
350 | 6.73 | 0.12 | 84.5] 1194
3.00|579|0.12|77.3 | 1196
2.49 | 4.82 | 0.13 | 68.6 | 1200
2.01 | 3.88 | 0.14 | 57.6 | 1184
1.52 | 2.93 | 0.16 | 47.3 | 1202
1.00 | 1.92 | 0.20 | 34.4 | 1211
0.50 | 0.98 | 0.35 | 21.8 | 1228
0.10 | 0.21 | 1.20 | 17.2 | 1200

Table A.9: Measured Values of E, — I, Curve (second time testing—part II: after
switched the connection between the two joints of the field winding)

I, Eq E, Eq E, E,
4 [ (V) (V (V) (V) (V)
3.495 | 88.868 | 87.7709 | 83.468 | 83.8874 | 85.8292
3.005 | 82.268 | 81.5881 | 76.268 | 76.5231 | 79.0556
2.495| 13.168 | 71.7333 | 67.482 | 67.4820 | 69.6077
2.010 | 63.382 | 61.8361 | 56.896 | 57.1581 | 59.4971
1.510 | 48.710 | 49.2435 | 45.924 | 45.8476 | 47.5456
1.005 | 36.152 | 36.1520 | 32.680 | 32.3832 | 34.2676
0.500 | 23.126 | 22.2901 | 18.830 | 18.4007 | 20.83454

0.100| 11.200 | 11.4970 | 6.860 | 6.8600 | 9.1785

Table A.10: Calculated Values of E, — I, Curve (second time testing-part III)
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LV, [ L |V, W,
(4) 1 (V) | (4) | (V) | (rpm)
3.50 | 6.63 | 0.12 ] 90.0 | 1225
3.01{5.75|0.12|83.1] 1225
2.51 | 4.81 | 0.12 | 73.8 | 1219
2.02 | 3.86 | 0.13 | 63.7 | 1228
1.50 | 2.87 | 0.15 | 50.8 | 1215
1.00 | 1.91 | 0.19 | 37.3 | 1214
0.51|0.98 | 0.28 | 24.8 | 1218
0.10 | 0.20 | 0.57 | 15.9 | 1205

Table A.11: Measured Values of E, — I, Curve (third time testing-part I: before
switched the connection between the two joints of the field winding)

L Vi | L | Va| N,
(4) | V) | (4) | (V) | (rpm)
350 [6.75 [ 0.12 | 83.7 | 1185
3.00 584012784 1214
2.50 | 4.87 | 0.13 | 68.8 | 1199
2.01|3.91|0.14 | 58.8 | 1214
1.51 | 2.93 | 0.16 | 48.2 | 1230
1.01 [ 1.96 | 0.20 | 35.4 | 1234
0.51{0.99 | 0.35 | 21.9 | 1215
0.11]0.21|1.19]17.2| 1210

Table A.12: Measured Values of E, — I, Curve (third time testing—part II: after
switched the connection between the two joints of the field winding)
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I,
(4)

Eal
(V)

Eq,
(V)

Ea?.
(V)

By
(V)

Eq,
V)

3.500
3.005
2.505
2.015
1.505
1.005
0.510

88.978
82.068
72.768
62.582
49.510
35.666
22.422

87.1612
80.3951
71.6338
61.1550
48.8988
35.2547
22.0906

82.668
77.968
67.682
57.596
46.824
99.680
18.890

83.7144
76.4758
67.7984
56.9318
45.6820
32.7520
18.6568

85.4383
78.4945
69.6861
59.0484
47.2904
94.0084
20.3737
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0.105| 11.008 | 10.9623 | 6.926 | 6.8688 | 8.9156

Table A.13: Calculated Values of E, — I, Curve (third time testing—part III)

Nr w noad Ia Va If

(rpm) | (rad/sec) | (N-m) | (4) | (V) | (A)
0 0 0 0 0 0.38
101 10.5767 0.88 1.35 | 19.7 | 0.38
203 21.2581 1.50 | 226 35.3 | 0.37
309 32.3584 1.68 | 257 | 46.3 | 0.37
408 42.7257 1.57 241 | 33.1 {037
308 53.1976 1.40 216 | 39.4 | 0.37
606 63.4602 1.23 1.93 | 65.7 | 0.37
710 74.3510 1.09 1.72 | 724 | 0.37
806 84.4041 0.98 1.56 | 79.1 { 0.37
909 95.1908 0.88 1.42 | 86.5 | 0.37
1014 | 106.1858 | 0.81 132 | 944 | 0.37
1101 | 115.2965 | 0.75 |1.24101.1|0.37
1200 | 125.6687 | 0.70 | 1.16 | 108.8 | 0.37

Table A.14: Measured and Calculated Values of Tj,qq — w Curve (dynamometer field
flux strength 40%: first time testing)
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Nr w Tload Ia Va. If

(rpm) | (rad/sec) | (N-m) | (4) | (V) | (A)
0 0 0 0 0 0.38
102 10.6814 0.89 1.37 | 20.0 | 0.38
200 20.9440 1.49 | 225 34.8 | 0.38
300 81.4159 1.69 | 239 45.7 | 0.37
400 41.8879 1.59 246 | 52.8 | 0.37
303 52.6740 142 | 221 | 39.4 | 0.37
602 63.0413 1.25 | 197 | 65.7 | 0.37
708 74.1416 1.10 1.76 | 72.8 | 0.37
806 84.4041 0.99 160 79.6 | 0.37
906 94.8761 0.89 | 147 | 86.9 |0.37
1004 | 105.1586 0.82 1.36 | 94.1 | 0.37
1108 | 116.0295 | 0.75 |1.26|101.8 |0.36
1209 | 126.6062 | 0.70 | 1.18| 109.4 | 0.37
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Table A.15: Measured and Calculated Values of Tj,,y — w Curve (dynarnometer field
Hux strength 40%: second time testing)

N; w Tioad I, Va If
(rpm) | (rad/sec) | (N-m) | (4) | (V) | (A)
0 0 0 0 0 0.38
112 11.7286 0.71 1.09 | 18.3 | 0.38
209 21.8864 0.91 1.39 | 28.7 | 0.38
310 32.4631 0.83 1.30 | 36.4 | 0.38
403 42.2021 0.73 1.15 | 43.0 | 0.38
o911 53.5118 0.61 1.00 | 50.8 | 0.38
608 63.6696 0.53 (090 | 38.0 | 0.38
710 74.3510 046 |0.82] 65.9 |0.37
810 84.8230 0.41 0751 73.8 | 0.37
914 95.7139 037 |0.71| 82.1 |0.37
1006 | 105.5481 035 |0.67} 89.7 | 0.37
1104 | 115.6106 032 |064]| 97.8 |0.37
1204 | 126.0826 0.30 |0.61]|106.00.37

Table A.16: Measured and Calculated Values of Tjpeqy — w Curve (dynamometer field

flux strength 30%: first time testing)



APPENDIX A. TABLE 94

Nr w T;oad Ia. Va If
(rpm) | (rad/sec) | (N-m) | (4) | (V) | (4)
0 0 0 0 0 0.37

125 13.0900 070 |1.10} 19.5 | 0.37
209 21.8864 087 | 136} 28.5 |0.37
309 32.8584 0.83 |1.32 36.3 {0.36
403 42.2021 073 {119 43.0 | 0.36
303 52.6740 0.63 |1.05| 50.0 | 0.36
611 63.9838 0.53 |092} 57.9 | 0.36
702 73.5138 048 |0.84| 64.7 | 0.36
811 84.9277 041 (077 | 73.1 [ 0.36
907 94.9808 038 |0.72 | 80.6 | 0.36
1003 | 105.0839 | 0.35 | 0.68 | 88.3 | 0.36
1108 | 116.0295 | 0.32 | 0.64| 96.7 | 0.36
1200 | 125.6687 | 0.30 | 0.62 | 104.3 | 0.36

Table A.17: Measured and Calculated Values of Tj,,y — w Curve (dynamometer field
flux strength 30%: second time testing)

Nr w Tlaad Ia Va If
(rpm) | (rad/sec) | (N-m) | (4) | (V) | (4)
0 0 0 0 0 0.39

109 11.4145 032 |0.58| 13.9 | 0.39
203 21.2581 033 {060 | 21.9 | 0.38
303 31.7801 0.27 | 053} 29.7 | 0.38
404 42.3068 0.21 |047| 37.7 | 0.38
306 52.9882 0.19 {043 | 459 | 0.38
610 63.8791 0.16 | 041 34.5 | 0.38
712 74.5605 0.14 |0.39] 62.8 | 0.38
804 84.1947 0.13 |038| 704 | 0.38
906 94.8761 012 |0.36| 78.9 | 0.38
1010 | 105.7670 | 0.11 |0.35| 87.6 | 0.38
1110 | 116.2389 | 0.10 | 0.35| 96.0 | 0.38
1204 | 126.0826 | 0.10 | 0.35 | 104.0 | 0.38

Table A.18: Measured and Calculated Values of Tj,qq — w Curve (dynamometer field
flux strength 20%: first time testing)
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N; w Tioad I, Va If
(rpm) | (rad/sec) | (N-m) | (4) | (V) | (4)
0 0 0 0 0 0.38

129 | 185088 | 0.31 |0.57| 15.6 | 0.38
208 | 21.7817 | 031 |0.59| 222 | 0.37
316 | 3%.0944 | 026 |0.52]| 30.6 | 0.37
409 | 42.8%04 | 0.21 047! 37.9 | 0.37
503 | 52.6740 | 0.18 |043| 45.4 | 0.37
605 | 69.9555 | 0.16 |0.41| 53.7 |0.37
703 | 79.6180 | 0.14 |0.39! 61.7 | 0.37
809 | 84.718% | 0.12 |0.38| 705 |0.37
902 | 94.4572 | 011 |o0.37| 782 |0.37
1009 | 105.6622 | 0.10 |0.36| 87.1 | 0.37
1106 | 115.8200 | 0.10 |0.35| 95.2 | 0.37
1203 | 125.9779 | 0.09 |0.35 | 103.4 | 0.37

Table A.19: Measured and Calculated Values of Tj,,y — w Curve (dynamometer field
flux strength 20%: second time testing)

N, w Tioad I, Va [f
(rpm) | (rad/sec) | (N -m) | (4) | (V) | (4)
0 0 0 0 0 0.39

100 10.4720 0.07 025 11.1 | 0.39
202 21.15584 0.06 |0.25; 19.1 | 0.38
304 31.8348 0.05 |0.25]| 27.7 | 0.38
405 42.4115 005 |025]| 36.1 {0.38
o908 53.1976 0.04 |0.25| 44.8 | 0.38
600 62.8319 0.04 |0.26| 52.6 | 0.38
705 73.8274 0.04 [026| 61.4 | 0.38
807 84.5088 0.04 |0.26| 70.0 | 0.38
905 94.7714 0.03 |0.26| 78.3 | 0.38
1008 | 105.5575 | 0.03 |0.27| 87.0 | 0.38
1107 | 115.9248 | 0.03 |0.27| 95.5 | 0.38
1204 | 126.0826 | 0.03 |0.27 | 103.8 | 0.38

Table A.20: Measured and Calculated Values of Tjz0q — w Curve (dynamometer field
flux strength 10%: first time testing)
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Ny w Tioad I, Va If
(rpm) | (rad/sec) | (N-m) | (4) | (V) | (4)
0 0 0 0 0 0.39

125 13.0900 0.07 10.26 | 12.6 | 0.39
207 21.6770 0.06 |0.26| 19.5 |0.39
305 31.9395 005 |0.25| 27.7 | 0.38
404 42.3068 0.05 |0.25] 359 |0.38
504 52.7788 004 |0.25| 44.3 | 0.37
607 63.5649 0.04 |0.26| 529 | 0.37
705 73.8274 0.04 |0.26| 61.2 | 0.37
805 84.2994 003 |0.26| 69.5 | 0.37
905 94.7714 0.03 |0.27| 78.1 | 0.37
1008 | 105.5575 { 0.03 |0.27 | 86.8 | 0.37
1103 | 115.5059 | 0.03 |0.28 | 94.9 | 0.37
1202 | 125.8751 0.03 |0.28 | 103.4 | 0.37

Table A.21: Measured and Calculated Values of Tj,q — w Curve (dynamometer field
flux strength 10%: second time testing)

I, Va N; w Tioss
(4) | (V) | (rpm) | (rad/sec) | (N -m)
0.31 | 106.4 | 1204 126.08 0.256
030 976 | 1105 115.72 0.246
0.29 | 88.7 1004 105.14 0.2588
0.28 | 79.8 904 94.67 0.229
0.27 | 70.8 802 83.99 0.220
0.27 | 62.1 704 73.72 0.215
026 | 33.5 | 605 63.56 0.207
0.24 | 44.8 206 52.99 0.194
0.23 | 359 402 42.10 0.185
0.22 | 27.8 307 32.15 0.177
0.21] 19.0 205 21.47 0.168
0.20 | 10.6 108 11.81 0.158

Table A.22: Measured and Calculated Values of Tjys; — w Curve (first time testing)
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I, Va N; w Tioss
(4) | (V) | (rpm) | (rad/sec) | (N -m)
0.31 | 106.7 | 1208 126.50 0.255
0.29 | 97.9 | 1109 116.18 0.258
0.28 | 88.9 | 1009 105.66 0.229
0.27 | 80.0 908 95.09 0.221
0.26 | 70.8 803 84.09 0.212
0.26 | 62.3 705 78.88 0.212
0.25 | 33.6 606 63.46 0.208
0.24 | 45.0 207 53.09 0.194
0.23 | 359 402 42.10 0.185
0.22 | 28.0 309 32.36 0.178
021} 19.1 206 21.57 0.165
0.20 { 10.5 106 11.10 0.154
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Table A.23: Measured and Calculated Values of Tj,,, — w Curve (second time testing)

Vi I, N, w Tioad E, T,

(V) | (A) | (rpm) | (rad/sec) | (N-m) | (V) | (N-m)
100.0 | 1.33 | 1943 | 208.4705 0.36 86.035 | 0.5624
100.0 | 1.31 | 1770 | 185.3540 0.48 84.145 | 0.6855
100.0 | 2.01 | 1445 | 151.8200 0.82 78.895 | 1.0480
100.1 | 2.51 | 1236 | 129.4336 1.75 78.745 | 1.4301
100.0 { 3.01 | 1070 | 112.0501 1.56 68.395 | 1.8378
100.0 | 3.51 | 929 97.2847 1.94 | 63.145| 2.2783

Table A.24: Measured and Calculated Values of Series DC Motor Characteristics
(terminal voltage V; = 100V: first time testing)
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‘/t Ia Nr w ,Tload Ea Te

(V) | (4) | (rpm) | (rad/sec) | (N-m) | (V) [ (N-m)
100.1 | 1.34 | 2040 | 218.6283 | 0.36 | 86.080 | 0.5396
100.1 | 1.50 | 1870 | 195.8259 | 0.47 | 84.850| 0.6461
100.0 | 2.00 | 1498 | 156.8702 | 0.80 | 79.000| 1.0072
100.0 | 2.51 | 1259 | 181.8422 1.17 | 78.645 | 1.4020
100.1 | 3.01 | 1091 | 114.2493 1.05 | 68.495 | 1.8046
100.1 | 3.52 | 946 99.0649 1.93 | 68.140 | 2.2485

Table A.25: Measured and Calculated Values of Series DC Motor Characteristics

(terminal voltage V; = 100V: second time testing)

VZ Ia Nr w T;oad Ea Te

(V) | (A) | (rpm) | (rad/sec) | (N-m) | (V) | (N-m)
75.0 | 1.00 | 1859 | 194.6740 0.13 | 64.500 | 0.8318
75.1 | 1.49 | 1325 | 185.7587 0.44 59.455 | 0.6385
75.0 1 2.01 | 1028 | 107.6519 0.80 53.895 | 1.0063
73.0 1251 | 845 88.4882 1.16 | 48.646 | 1.8798
75.0|3.01 | 703 73.6180 1.35 | 48.895 | L7748
73.0 | 3.53 | 368 59.4808 1.94 | 97.935| 2.2518

Table A.26: Measured and Calculated Values of Series DC Motor Characteristics

(terminal voltage V; = 75V: first time testing)

Vi I, N, w Tigad E, T,
(V) | (4) | (rpm) | (rad/sec) | (N-m) | (V) | (N-m)
75.1 | 1.00 | 1834 | 192.0560 0.15 64.600 | 0.3564
75.1 | 1.49 | 1328 | 139.0678 0.45 59.455 | 0.6870
75.1 1 2.02 | 1019 | 106.7094 0.81 58.890 | 1.0201
75.1 250 843 88.2788 115 | 48.850 | 1.8854
75.0 | 3.00 | 700 78.3038 1.33 | 43.500 | 1.7808
75.1 | 3.50 283 61.0516 1.91 38.350 | 2.1985

Table A.27: Measured and Calculated Values of Series DC Motor Characteristics

(terminal voltage V; = 75V: second time testing)
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‘/t Ia Nr w Tioad Ea Te
(V) | (4) | (rpm) | (rad/sec) | (N-m) | (V) |(N-m)
50.1 | 0.76 | 1600 | 167.5516 | 0.02 | 42.120| 0.1911
50.1 | 1.01 | 1226 | 128.3864 0.14 | 89.495| 0.3107
30.1 1 1.31 | 936 98.0177 032 | 86.345| 0.4857
50.0 | 1.60 | 766 80.2153 0.50 | 3%.200| 0.6622
50.0 | 2.02 | 390 61.7847 079 | 28.790 | 0.9418
50.0 | 2.33 | 490 51.8127 1.01 25.585 | 1.1595
50.1 | 2.62 | 412 43.1445 1.22 | 22,590 | 1.3718
30.0 | 3.01 | 320 33.5108 1.51 18.895 | 1.6528
30.1 | 3.48 | 220 23.0388 1.B7 | 13.560 | 2.0488
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Table A.28: Measured and Calculated Values of Series DC Motor Characteristics
(terminal voltage V; = 50V: first time testing)

Vi I, N; w Tigad E, T.
(V) | (A) | (rpm) | (rad/sec) | (N-m) | (V) | (N -m)
50.0 | 0.73 | 1391 | 166.6091 0.02 42.8335 | 0.1855
50.0 | 1.01 | 1205 | 126.1873 0.15 39.395 | 0.3158
50.0 | 1.30 | 932 97.5988 0.32 36.350 | 0.4842
30.0 | 1.60 | 757 79.2729 0.50 38.200 | 0.6701
50.0 [ 1.99 | 395 62.3083 0.77 29.105 | 0.9296
50.0 | 2.31 | 489 51.2080 0.99 25.745 | 1.1614
30.0 | 2.63 | 405 42.4115 1.22 22.385 | 1.9881
50.0 | 2.96 | 323 35.8245 1.47 | 18.920 | 1.6557
50.0 { 3.45 | 212 22.2006 1.85 | 18.775| 2.1407

Table A.29: Measured and Calculated Values of Series DC Motor Characteristics
(terminal voltage V; = 50V: second time testing)
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Vt Ia Nr w Tload Ea Te
(V) | (A) | (rpm) | (rad/sec) | (N-m) | (V) | (N-m)
25.1 | 0.75 | 697 72.9897 0.02 17175 0.1765
25.0 | 1.00 | 491 51.4174 0.13 14.480 | 0.2816
25.1 11.30 | 332 34.7670 0.30 11.430 | 0.427%4
25.1 | 1.39 | 220 23.0388 0.49 8.385 | 0.5787
25.1 1195 | 119 12.4617 0.73 4.595 | 0.7190

Table A.30: Measured and Calculated Values of Series DC Motor Characteristics
(terminal voltage V; = 25V: first time testing)

Vi I, N, W Tioad E, T,

(V) | (4) | (rpm) | (rad/sec) | (N-m) | (V) | (N -m)
25.110.74 | 697 72.9897 0.02 17.5380 | 0.1757
25.1 | 1.00 | 483 50.5796 0.14 14.550 | 0.2877
25.1 | 1.28 | 330 34.5575 0.30 11.640| 0.4311
25.1 | 1.57 | 224 23.4572 0.48 8.565 | 0.5733
25.1 1194 | 120 12.5664 0.73 4.680 | 0.7225

Table A.31: Measured and Calculated Values of Series DC Motor Characteristics
(terminal voltage V; = 25V: second time testing)
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Vi I, N, w
(V) | (4) | (rpm) | (rad/sec)
30.1 | 245 120 12.5664
35.3 | 275} 151 15.8127
40.1 {298 | 182 19.0590
45.2 | 3.18 | 220 23.0383
499 | 3.29 | 267 27.9602
35.0 1325 345 36.1288
29.9 1294 | 480 50.2655
64.9 | 2.53 | 633 68.5820
70.2 | 2.24 | 825 86.3938
75.1 12.04| 980 | 102.6254
80.2 | 1.89 | 1136 | 118.9616
85.0 | 1.78 | 1280 | 134.0413

Table A.32: Measured and Calculated Values of I,, N, and ¢; at Different Vi (dy-
namometer field flux strength 40%: first time testing)

Vi I, N, w
(V) | (4) | (rpm) | (rad/sec)
J0.41]236 | 125 13.0900
34.9 1 258 | 131 15.8127
40.8 [ 2.86 | 190 19.8968
45.1 | 3.03 | 222 23.2478
30.0 { 3.18 | 267 27.9602
533.3 | 3.20 | 343 35.9189
60.0 | 2.97 | 465 | 48.6947
65.5 | 2.47 | 689 72.1519
70.0 { 2.21 | 872 91.8156
75.2 {2.00 | 1065 | 111.5265
80.2 | 1.85 | 1240 | 129.8525
85.1 | 1.75 | 1404 | 147.0265

Table A.33: Measured and Calculated Values of I,, N, and w at Different V; (dy-
namometer field flux strength 40%: second time testing)
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Vi I, w
(V) | (4) | (rad/sec)
30.1 | 2.2902 | 11.6974
35.3 | 2.5837| 15.6665
40.1 | 2.7166 | 19.8695
45.2 | 2.8625 | 25.0922
49.9 | 2.9436 | 380.8920
33.0 | 2.9539 | 388.9176
39.9 | 2.8477| 49.8607
64.9 | 2.5677 | 67.6446
70.2 | 2.3421 | 86.7644
73.1 | 2.2901 | 98.6997
80.2 | 2.2800 | 109.1042
85.0 | 2.2528 | 120.0023

Table A.34: Simulated Values of I, and w at Different V; (dynamometer field flux
strength 40%: first time testing)

Vi Iy w
(V) (A) | (rad/sec)
30.4 | 2.3060| 13.0900
34.9 | 2.5165| 15.8127
40.8 | 2.7898 | 19.8968
45.1 | 2.8602 | 23.2478
30.0 | 2.9446 | 27.9602
35.3 | 2.9512 | 85.9189
60.0 | 2.8438 | 48.6947
65.0 | 2.5296 | 72.1519
70.0 | 2.3463 | 91.8156
73.2 | 2.2896 | 111.5265
80.2 | 2.2800 | 129.8525
85.1 | 2.2511 | 147.0265

Table A.35: Simulated Values of I, and w at Different V; (dynamometer field flux
strength 40%: second time testing)
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Ue=Vi|Zie=l| Zoe=w |Ue=V,|Zie=14| T2e=w
(V) (A) (rad/sec) | (V) (A) (rad/sec)
0 0.0042 -1.0446 21 1.7579 5.9567
1 0.1015 -0.9921 22 1.8229 6.5192
2 0.1982 -0.9027 23 1.8868 7.0983
3 0.2940 -0.7779 24 1.9480 7.6942
4 0.5889 -0.6191 25 2.0081 4.8067
3 0.4825 -0.4280 26 2.0665 8.9361
6 0.5747 -0.2061 27 2.1238 9.5824
7 0.6655 0.0450 28 2.1785 10.2461
8 0.7548 0.3238 29 2.92821 10.9287
9 0.8424 0.6288 30 2.2840 11.6266
10 0.928% 0.9588 31 2.5348 12.5444
11 1.0125 1.3125 32 2.8830 18.0812
12 1.0950 1.68588 33 2.4801 18.8378
13 1.1757 2.0867 34 2.4754 14.6148
14 1.2546 2.5051 35 2.5191 15.4131
15 1.3317 2.94534 36 2.5611 16.2338
16 1.4071 3.4009 37 2.6041 17.0777
17 1.4807 3.8768 38 2.6399 17.9468
18 1.5526 4.3707 39 2.6767 18.8407
19 1.6227 4.8822 40 2.7115 19.7625

20 1.6912 5.4110

Table A.36: Equilibrium Points (xe, ue) of Nonlinear Model (part one)
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U=V |T1e=1 | Te=w [ U=V |T1e=1 | T2e=w
(V) (A) (rad/sec) | (V) (A) (rad/sec)
41 2.7445 | 20.7185 64 2.6277 | 68.8099
42 2.7755 | 21.6956 65 2.5619 | 67.9556
43 2.8046 | 22.7108 66 2.5008 | 72.1090
44 2.8515 | 28.7618 67 2.4473 | 76.0710
45 2.8562 | 24.8511 68 2.4045 | 79.7300
46 2.8787 | 25.9821 69 2.3712 | 838.0657
47 2.8987 | 27.158% 70 2.3459 | 86.1078
48 2.9163 | 28.5839 71 2.53269 | 88.9022
49 2.9811 | 29.66388 72 2.8128 | 91.4943
30 2.9432 | 31.0084 73 2.3024 | 58.9235
a1 2.9522 | 32.4095 74 2.2949 | 96.2231
92 2.9579 | 353.8899 75 2.2897 | 98.4208
a3 2.9602 | 85.4587 76 2.2860 | 100.5404
4 2.9586 | 87.1128 77 2.2856 | 102.6026
39 2.9528 | 58.8791 78 2.2819 | 104.6267
36 2.9424 | 40.7707 79 2.2807 | 106.6815
a7 2.9269 | 42.8076 80 2.2794 | 108.6370
a8 2.9058 | 45.0150 81 2.2778 | 110.6661
39 2.8782 | 47.4242 82 2.2752 | 112.7479
60 2.8436 | 50.0780 83 22711 | 114.9241
61 2.8012 | 53.0047 84 2.2642 | 117.2635
62 2.7505 | 56.2628 85 2.2524 | 119.9047
63 2.6920 | 59.8751
Table A.37: Equilibriura Points (x., u.) of Nonlinear Model (part two)
T=u—ue | ¥, =z, -1 Vo=2—Zze (u=V, |z1=], | To=w
(V) (A) (rad/sec) (V) (A) | (rad/sec)
0 0 0 7 0.6655 | 0.0450
1 0.0901 0.2653 8 0.7556 | 0.8103
2 0.1801 0.5305 9 0.8456 | 0.5755
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Table A.38: Steady State Values for ¥ and x (first local linear model: z;. = 0.6655,
Zge = 0.0450 and u,; = 7)
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T=u—up | V=1 -2, |Vo=z—zp |u=V, [T1=1, | z,=w
(V) (A) (rad/sec) (V) (A) | (rad/sec)

-1 -0.0885 -0.2923 7 0.6663 0.0815

0 0 0 8 0.7548 0.5238

1 0.0885 0.2928 9 0.8433 0.6161

2 0.1769 0.5845 10 0.9817 0.9083

3 0.2654 0.8768 11 1.0202 1.2006

Table A.39: Steady State Values for ¥ and x (second local linear model: T1. = 0.7548

Toe = 0.3238 and Uex = 8)

| Local Linear Models |

Values for Matrix A |

) —87.5851 —1.6751
56.7877 —19.2820
0 —88.1030 —1.8427
62.8708 —19.0313
3 —~89.2306 —2.1608
74.2528 —18.4674
4 —-91.0960 -2.5973
89.4847 —17.4888
5 —-93.7906 -3.1075
106.6483 —15.9957
6 —97.8418 —3.6435
128.7828 —13.9232
- (—103.2826 —4.3045)
148.8210 ~10.3436

Table A.40: Values of Matrix A for Different Local Linear Models (part one)
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| Local Linear Models

Values for Matrix A

8

9

10

11

12

13

14

—111.5397
157.7950
—121.4309
163.8682
—185.9895
164.1557
—150.4023
160.3874
—180.2963
151.0821
—206.9220
144.9816
—237.9510
143.0854

—4.8546
~5.7208
~5.1188
—1.6883
~5.1267
1.0754
—4.9624
2.4154
—4.5904
2.1386
—4.3624
0.884
—4.2961
0.1396

Table A.41: Values of Matrix A for Different Local Linear Models (part two)
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T=u-ug |V, =2~z | Vo=1p — o u=Vi o= | T2=w
(V) (A) (rad/sec) (V) (4) | (rad/sec)

-1 -0.0851 -0.3422 9 0.8432 | 0.6166

0 0 0 10 0.9288 | 0.9588

1 0.0851 0.3422 11 1.0184 1.8010

2 0.1702 0.6844 12 1.0985 | 1.64582

3 0.2558 1.0265 13 1.1886 | 1.9853

4 0.8404 1.3687 14 1.2687 | 2.3275

Table A.42: Steady State Values for ¥ and x (third local linear model: z,, = 0.9283,
Tge = 0.9588 and ue; = 10)

T=tu—uy | V1=2, -2 |Va=20s—2o |u=V, |1 =1, | T3=w
(V) (A) (rad/sec) (V) (A) | (rad/sec)

-2 -0.1597 -0.8169 11 1.0161 1.2697

-1 -0.0798 -0.4085 12 1.0959 1.6782

0 0 0 18 1.1757 | 2.0867

1 0.0798 0.4085 14 1.2555 2.4952

2 0.1597 0.8169 15 1.8854 2.9086

3 0.2395 1.2254 16 1.4152 3.8121

4 0.3198 1.6339 17 1.4950 3.7206

) 0.3992 2.0424 18 1.5749 | 4.1291

Table A.43: Steady State Values for ¥ and x (fourth local linear model: Ty = 1.1757,
Toe = 2.0867 and ug4 = 13)
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YT=u—teps | V1=, T | Vo=2Z0—-2Zo |(u=V, |z, =1, | To=w
(V) (A) (rad/sec) (V) (A) (rad/sec)
-3 -0.2075 -1.8831 14 1.2781 2.4938
-2 -0.1588 -0.9221 15 1.34283 | 2.9548
-1 -0.0692 -0.4610 16 1.4115 | 8.4158
0 0 0 17 1.4807 1 3.8768
1 0.0692 0.4610 18 1.5499 | 4.3878
2 0.1383 0.9221 19 1.6190 | 4.7989
3 0.2075 1.5831 20 1.6882 | 5.2599
4 0.2766 1.8442 21 1.7578 | 5.7210
5 0.8458 2.3052 22 1.8268 | 6.1820
6 0.4149 2.7663 28 1.8956 | 6.6431
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Table A.44: Steady State Values for ¥ and x (fifth local linear model: z,. = 1.4807,
Ty, = 3.8768 and u. = 17)

T=U—Ue6 ‘I’1=.'El—1713 ‘I’2=Ig—l'2e U=‘/t Il=Ia Iy =w
(V) (A) (rad/sec) (V) (A) (rad/sec)
-3 -0.1927 -1.7182 19 1.6308 | 4.8059
-2 -0.1285 -1.1421 20 1.6945 5.3710
-1 -0.0642 -0.5711 21 1.7587 | 5.9481
0 0 0 22 1.8229 6.5192
1 0.0642 0.5711 23 1.8871 7.0908
2 0.1285 1.1421 24 1.9514 7.6613
3 0.1927 1.71582 25 2.0156 8.2324
4 0.2569 2.2843 26 2.0798 8.8035
) 0.8212 2.8558 27 2.1441 9.3745
6 0.3854 3.4264 28 2.2083 | 9.9456
7 0.4496 3.9974 29 2.2725 | 10.5166
8 0.5139 4.5685 30 2.3368 | 11.0877
9 0.5781 5.1896 31 2.4010 | 11.6588

Table A.45: Steady State Values for ¥ and x (sixth local linear model: z,. = 1.8229,
Ty = 6.5192 and Ueg = 22)
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T=u—teg | V=2~ |Vo=2p~T2e |u=V, |T1=1, ]| ZT2=w
(V) (A) (rad/sec) (V) (A) (rad/sec)
-3 -0.2557 -3.5485 25 2.0285 8.0831
-4 -0.2046 -2.8848 26 2.0796 8.7918
-3 -0.1584 -2.1261 27 2.1807 9.5005
-2 -0.1028 -1.4174 28 2.1818 | 10.2092
-1 -0.0511 -0.7087 29 2.2829 | 10.9179
0 0 0 S0 2.2840 | 11.6266
1 0.0511 0.7087 31 2.3951 12,3858
2 0.1028 1.4174 32 2.3868 | 13.0400
3 0.1584 2.1261 33 2.4874 18.7527
4 0.2046 2.8348 34 24886 | 14.4614
2 0.2557 3.5435 35 2.5997 | 15.1701
6 0.8069 4.2522 36 2.5909 | 15.8788
7 0.8580 4.9606 37 2.6420 | 16.5875
8 0.4092 5.6696 38 2.6982 | 17.2962
9 0.4608 6.3789 39 2.7448 | 18.0049
10 0.5115 7.0870 40 2.7955 | 18.7136
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Table A.46: Steady State Values for ¥ and x (seventh local linear model: Ty =

2.2840, 17, = 11.6266 and u.; = 30)
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T=u-ug |(Vi=2, -2 | Va=23—Tp. 0=V, |21=1, | Tz=w
(V) (A) (rad/sec) (V) (A) (rad/sec)
-6 -0.2087 -5.6190 34 2.5075 | 14.1485
) -0.1698 -4.6825 35 2.5415 | 15.0800
-4 -0.1358 -8.7460 36 2.5755 | 16.0165
-3 -0.1019 -2.8095 37 2.6095 | 16.9580
-2 -0.0679 -1.8780 58 2.6485 | 17.8895
-1 -0.0340 -0.9865 39 2.6775 | 18.8260
0 0 0 40 2.7115 | 19.7625
1 0.0340 0.9565 41 2.7445 | 20.6990
2 0.0679 1.87380 42 2.7794 21.6855
3 0.1019 2.8095 43 2.8134 | 22.5720
4 0.1358 3.7460 44 2.8478 | 238.5085
5 0.1698 4.6825 45 | 2.8818 | 24.4450
6 0.2087 5.6190 46 2.9152 | 25.3815
7 0.2377 6.5555 47 2.9492 | 26.3180
8 0.2716 7.4920 48 2.9831 | 27.2545
9 0.3056 8.4285 49 3.0171 | 28.1910

Table A.47: Steady State Values for ¥ and x (eighth local linear model: z,, = 2.2840,
T2 = 11.6266 and u.g = 40)
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T=u—tg | V=21 T | Vs=To—To |u=V, |z =1, | T2=uw
(V) (A) (rad/sec) (V) (A) (rad/sec)
-5 -0.0674 -6.5463 44 2.86%6 | 28.1178
-4 -0.0540 -5.2371 45 2.8771 | 24.4266
-3 -0.0405 -3.9278 46 2.8906 | 25.7859
-2 -0.0270 -2.6185 47 2.9041 | 27.0452
-1 -0.0185 -1.8098 48 2.9176 | 28.3545
0 0 0 49 2.9811 | 29.6638
1 0.0135 1.8098 50 2.9446 | 30.9731
2 0.0270 2.6185 51 2.9581 | 32.2828
3 0.0405 3.9278 52 2.9716 | 33.5916
4 0.0540 5.2871 58 2.9851 | 84.9009
) 0.0674 6.5468 54 2.9985 | 86.2102
6 0.0809 7.8556 55 3.0120 | 87.5194
7 0.0944 9.1648 56 3.0255 | 398.8286
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Table A.48: Steady State Values for ¥ and x (ninth local linear model: z,, = 2.9311,
T2e = 29.6638 and u.y = 49)

T =u-—1ue, V) =12, -2 | Y2 =29 — To, u=WV o=, Iz =W
(V) (A) (rad/sec) (V) (A) (rad/sec)
-4 0.0514 -7.8450 52 2.9936 | 32.9255
-3 0.0885 -5.8838 53 2.9808 | 34.8868
-2 0.0257 -3.9225 94 2.9680 | 96.8481
-1 0.0128 -1.96138 1] 2.9552 | 58.8094
0 0 0 56 2.9424 | 40.7707
1 -0.0128 1.9613 37 2.9296 | 42.7820
2 -0.0257 3.9225 a8 2.9167 | 44.6982
3 -0.0885 5.8838 59 2.9089 | 46.6545
4 -0.0514 7.8450 60 2.8910 | 48.6157
d -0.0642 9.80638 61 2.8782 | 50.5770
6 -0.0771 11.7675 62 2.8653 | 52.5382

Table A.49: Steady State Values for ¥ and x (tenth local linear model: z,, = 2.9424,
I = 40.7707 and Uelo = 56)
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T=v—tey | V=2, =21 | Vo=29—2Zp, ju=V, [, =], ]| T3=w
(V) (A) (rad/sec) (V) (A) (rad/sec)
-3 0.1396 -9.2682 58 | 2.9407 | 43.7365
-2 0.0931 -6.1788 59 | 2.8942 | 46.8259
-1 0.0465 -3.0894 60 | 2.8477 | 49.9158
0 0 0 61 | 2.8012 | 53.0047
1 -0.0465 3.0894 62 | 2.7547 | 56.0941
2 -0.0981 6.1788 63 | 2.7081 | 59.1885
3 -0.1396 9.2682 64 | 2.6616 | 62.2729
4 -0.1861 12.8577 65 | 2.6151 | 65.9624
5 -0.2326 15.4471 66 | 2.5686 | 68.4518

Table A.50: Steady State Values for ¥ and x (eleventh local linear model: Tl =
28012, Toe = 33.0047 and Ue11 = 61)

T=u-—ter | Vi=21 2, | Vo=D2—T3e |u=V,|z1=1, | T2=w
(V) (A) (rad/sec) (V) (A) (rad/ sec)
-4 0.2314 -16.5469 62 2.7815 | 55.7622
-3 0.1785 -12.2602 63 2.6737 | 59.8489
-2 0.1157 -8.1884 64 2.6159 | 63.9356
-1 0.0578 -4.0867 65 2.5581 68.0223
0 0 0 66 2.5008 | 72.1090
1 -0.0578 4.0867 67 2.4425 | 76.1957
2 -0.1157 8.1784 68 2.5846 | 80.2824
3 -0.1785 12.2602 69 2.3268 | 84.3692
4 -0.2514 16.3469 70 2.2689 | 88.4559
5 -0.2892 20.4336 71 2.2111 92.5426

Table A.51: Steady State Values for ¥ and x (twelfth local linear model: z,, = 2.5003,
Tze = 72.1090 and u,;2 = 66)
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T=u—tUes | V1 =21 —Zpe |Vo=To—To |u=V, [z, =1, Ta=uw
(V) (A) (rad/sec) (V) (A) (rad/sec)
-4 0.0655 -10.7487 67 2.3925 | 78.1584
-3 0.0491 -8.0615 68 2.9761 80.8404
-2 0.0328 -5.8748 69 2.8597 | 83.5278
-1 0.0164 -2.6872 70 2.5488 | 86.2150
0 0 0 71 2.3269 | 88.9022
1 -0.0164 2.6872 72 2.3105 | 91.5894
2 -0.05828 5.3748 73 2.2941 94.2765
3 -0.0491 8.0615 74 2.2778 | 96.9637
4 -0.0655 10.7487 75 2.2614 99.6509
d -0.0819 18.4358 76 2.2450 | 102.3380
6 -0.0988 16.12380 77 2.2286 | 105.0252
7 -0.1147 18.8101 78 2.2122 | 107.7123
8 -0.1810 21.4973 79 2.1959 | 110.5995
9 -0.1474 24.1845 80 2.1795 | 113.0867
10 -0.1638 26.8716 81 2.1681 | 115.7738

Table A.52: Steady State Values for ¥ and x (thirteenth local linear model: Lie =
2.3269, 12, = 88.9022 and u.;3 = 71)

T=tu—ttey | V=2~ |Vo=2y—2o |u=V, |2, =1, | T2=w
(V) (A) (rad/sec) (V) (A) (rad/sec)
-4 0.0080 -8.2022 77 2.2858 | 102.4641
-3 0.0060 -6.1516 78 2.2838 | 104.5146
-2 0.0040 -4.1011 79 2.2818 | 106.5651
-1 0.0020 -2.0505 80 2.2798 | 108.6156
0 0 0 81 2.2778 | 110.6661
1 -0.0020 2.0505 82 2.2758 | 112.7166
2 -0.0040 4.1011 83 2.2738 | 114.7672
3 -0.0060 6.1516 84 2.2718 | 116.8177
4 -0.0080 8.2022 85 2.2698 | 118.8683

Table A.53: Steady State Values for ¥ and x (fourteenth local linear model: z,, =
2.2778, 19, = 110.6661 and ue;4 = 81)
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Figure B.2: E, and I, Relationship of Second Group Testing Data ( No Load, No
Belt and Speed = 1200 rpm )

T x
— first-degree
*=  second-degres
8ok - turd-degres ||
4 — - lourth—degres
0 o7
>»
’
s
60 o
pr
Rd
//
50 .
w® /
.

- -
40 ~,
0F
20 b

4
4

10 / .

we
0 L L i L i L A1

0 05 1 1.5 2 25 3 35 4

Figure B.3: E, and I, Relationship of Third Group Testing Data ( No Load, No Belt
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Figure B.4: Tisq and w Relationship ( Dynamometer Field Flux Strength: 30% )

04

0.35¢

~— third—degree

= lourth—degres
ftth-degree

= - sixth-degree (]

Figure B.3: Tjq and w Relationship ( Dynamometer Field Flux Strength: 20% )



APPENDIX B. FIGURE 117

0.1 \ T T T

~— thrd—degree
- fourth~-degres
0.09 fith-degree [
— - suxth-degree

008~ -

L e s L
20 40 60 80 100 120

Figure B.6: Tjoeq and w Relationship ( Dynamometer Field Flux Strength: 10% )

— real motor
— noninear mode!

a5 k|

-5+

Figure B.7: Compare the Average Relationship of I, and V; between Real Motor and
Nonlinear Model



APPENDIX B. FIGURE 118

—— raa} molor
—__noninear model

Figure B.8: Compare the Average Relationship of w and V; between Real Motor and

Nonlinear Model
]
I .-IIII
-02F I I I
=03pF .
» m %0 rm

Vi

o
L'

o
rS

o
(24

a
o
n

T

o
-

absolte error—J

o
T

s

1 L
70 80 9

Figure B.9: Absolute Error of I, between Real Motor and Nonlinear Model ( First
Time Testing: Average=-0.0366A, | Average |=0.2454A )
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Figure B.10: Relative Error of I, between Real Motor and Nonlinear Model ( First
Time Testing: Average=0.7929%, | Average |=10.1246% )
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Figure B.11: Absolute Error of I, between Real Motor and Nonlinear Model ( Second
Time Testing: Average=0.0332A, | Average |=0.2029A )
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Figure B.12: Relative Error of I, between Real Motor and Nonlinear Model ( Second
Time Testing: Average=3.4129%, | Average |=9.0767% )
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Figure B.13: Absolute Error of w between Real Motor and Nonlinear Model ( First

Time Testing: Average=-1.7520rad/sec, | Average [=3.2446rad/sec )
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Figure B.14: Relative Error of w between Real Motor and Nonlinear Model ( First
Time Testing: Average=-0.0421%, | Average |=5.3426% )
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Figure B.15: Absolute Error of w between Real Motor and Nonlinear Model ( Second
Time Testing: Average=-4.8686rad/sec, | Average |=6.6080rad/sec )
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Figure B.16: Relative Error of w between Real Motor and Nonlinear Model ( Second
Time Testing: Average=-2.6074%, | Average |=8.3561% )
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Figure B.17: Relative Error of I, between Nonlinear Model and Linearized Models



APPENDIX B. FIGURE 123

Figure B.18: Relative Error of w between Nonlinear Model and Linearized Models



