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Abstract

One potential role of miRNAs is to buffer variation in gene expression, although conflicting results have been reported. To
investigate the buffering role of miRNAs in response to Salmonella infection in pigs, we sequenced miRNA and mRNA in
whole blood from 15 pig samples before and after Salmonella challenge. By analyzing inter-individual variation in gene
expression patterns, we found that for moderately and lowly expressed genes, putative miRNA targets showed significantly
lower expression variance compared with non-miRNA-targets. Expression variance between highly expressed miRNA targets
and non-miRNA-targets was not significantly different. Further, miRNA targets demonstrated significantly reduced variance
after challenge whereas non-miRNA-targets did not. RNA binding proteins (RBPs) are significantly enriched among the
miRNA targets with dramatically reduced variance of expression after Salmonella challenge. Moreover, we found evidence
that targets of young (less-conserved) miRNAs showed lower expression variance compared with targets of old
(evolutionarily conserved) miRNAs. These findings point to the importance of a buffering effect of miRNAs for relatively
lowly expressed genes, and suggest that the reduced expression variation of RBPs may play an important role in response to
Salmonella infection.

Citation: Bao H, Kommadath A, Plastow GS, Tuggle CK, Guan LL, et al. (2014) MicroRNA Buffering and Altered Variance of Gene Expression in Response to
Salmonella Infection. PLoS ONE 9(4): e94352. doi:10.1371/journal.pone.0094352

Editor: Szabolcs Semsey, Niels Bohr Institute, Denmark

Received January 13, 2014; Accepted March 13, 2014; Published April 9, 2014

Copyright: � 2014 Bao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the Applied Livestock Genomics Program (ALGP13) funded by Genome Alberta and Alberta Livestock and Meat Agency. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stothard@ualberta.ca (PS); lguan@ualberta.ca (LLG)

. These authors contributed equally to this work.

Introduction

MicroRNAs (miRNAs) are post-transcriptional regulators [1–3].

The proposed functions of miRNAs can be broadly classified into

two categories: tuning and buffering the expression of their target

genes [4–7]. The role of miRNAs to fine-tune the expression levels

(i.e., reset the mean expression levels) of their targets to promote

cell differentiation at specific times during developmental stages is

well known [4]. For example, miR-150 targets the Myb gene,

which then regulates the formation of pre-B and B1 cells in the

mouse immune system [8]. A high level of miR-150 holds Myb

expression in check, preventing the pre-maturation of pro-B cells

into pre-B cells.

The buffering effects of miRNA, however, are contentious,

mostly deriving support from simulation studies and only a few

cases with experimental validation. For example, a simulation

study showed that miRNAs within an incoherent feed forward

loop (IFFL) can reduce the noise during target gene expression [9].

Another simulation study suggested that noncoding RNAs can be

more effective than transcriptional factors (TFs) in filtering input

noises [10]. miRNA-mediated IFFLs are RNA-based, rather than

protein-based, and hence the mechanism of action is faster and

more cost-effective (requires less energy) [10]. A case study

supporting the buffering role of miRNAs showed that miR-7 can

stabilize the developmental process against temperature perturba-

tion in Drosophila by buffering the expression of yan and ato [11].

Another study, also done in Drosophila, showed that expression of

miR-8 is essential to regulate the atrophin gene within the required

expression range [12]. However, previous genome-wide studies

have reached mixed conclusions on buffering effects of miRNAs in

expression variation within and between species. By comparing

data from mammal and fly species, Cui et al. found that the cross-

species expression variation of miRNA targets is significantly lower

than that of other genes [13]. miRNA targets have also been

shown to be significantly enriched in stably expressed genes in

human [14]. However, Lu et al. [15] found increased variation of

miRNA target gene expression compared with non-targets among

the natural human population.

One explanation for the seemingly inconsistent results with

respect to miRNA buffering is that it only operates under certain

conditions. The buffering role of miRNAs may not be apparent

under normal, and/or environmentally stable conditions but

becomes evident under environmental perturbations [4]. Exposure

of cells to pathogenic infections or to any environment that

reduces cell viability or fitness can be considered perturbations.

Multi-cellular organisms have the capacity for internal homeosta-

sis, thus they can buffer extracellular changes to minimize

intracellular alterations [16]. miRNAs may act to provide stability

to some key molecular networks to maintain the internal
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homeostasis, which ensures the cell’s function, fitness and survival

under environmental perturbations.

Furthermore, the degree to which buffering effects operate on

genes with different expression levels is still poorly understood.

From an evolutionary perspective, it has been hypothesized that

the dual functions of miRNAs may represent two stages in their

evolution [4]. Compared to conserved miRNAs, young (less

conserved) miRNAs are not likely to reset the expression level of

several targets, but tend to increase fitness by reducing target

expression variance [4]. However, this hypothesis has not yet been

tested.

In this study, we investigated the potential roles of miRNAs in

buffering inter-individual variation in gene expression in pigs

challenged with Salmonella. We first tested whether targets of

miRNAs show lower expression variance (reduced variation across

individual pigs) compared with non-miRNA-targets by controlling

for differences in expression levels. Next, we characterized the

different patterns of expression variance change between miRNA

targets and non-miRNA-targets in response to infection. Further,

we identified enrichment of specific functional annotations of

miRNA targets with reduced variation of expression after

Salmonella challenge. Finally, we tested the hypothesis that young

miRNAs are likely to have stronger buffering effects compared

with old (evolutionarily conserved) miRNAs.

Results

Targets of miRNAs on Average showed Lower Expression
Variance Compared with Non-miRNA-targets
To investigate the potential buffering roles of miRNAs in

response to bacterial infection, we sequenced miRNAs and

mRNAs in whole blood from 15 pigs before (day 0) and after

Salmonella challenge (day 2). The raw count of reads mapped to

each miRNA was normalized to counts per million mapped reads

(cpm) using edgeR [17] (Table S1). Normalized expression values

(FPKM) for each mRNA gene was estimated by Cufflinks 2.0.0

[18] (Table S2). We identified 192 and 15,173 expressed miRNA

and mRNA genes, respectively. To provide evidence for the

buffering effects of miRNA, we compared the distribution of

variation of gene expression between targets of expressed miRNAs

and non-miRNA-targets. We used miRanda3.3a [19] and PITA

for prediction of miRNA targets in pig (see Methods). miRanda

and PITA predicted 7,978 and 10,803 miRNA targets, respec-

tively. We selected the genes predicted by both methods (7,962

targets) for further analysis. For each target gene, we calculated the

coefficient of variation (CV) to quantify the expression variation

among different samples.

It has been shown that mRNA expression variance is negatively

correlated with mRNA expression level [20,21]. Thus, in order to

Figure 1. Distribution of CV and number of genes for miRNA targets and non-miRNA-targets. Boxplot of CVs for predicted targets
(n = 7962) and non-miRNA-targets (n = 7211) under different expression bins (log2FPKM: 0–3, 3–6, 6–9, 9–12, 12–15) at day 0 (A) and day 2 (B). Barplot
of number of genes for predicted targets and non-miRNA-targets under different expression bins (log2FPKM: 0–3, 3–6, 6–9, 9–12, 12–15) at day 0 (C)
and day 2 (D).
doi:10.1371/journal.pone.0094352.g001
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control for the difference in expression level, we grouped the genes

into 5 bins based on average expression level (log2FPKM: 0–3, 3–

6, 6–9, 9–12, 12–15), then we compared the CV between miRNA

targets and non-miRNA-targets under each bin (Figure 1A and

1B). Indeed, we observed a negative correlation (r,20.5, p,2.2e-

16) between CV and expression level for both predicted miRNA

targets and non-miRNA-targets at day 0 and day 2. Predicted

targets on average showed lower expression variation compared

with non-miRNA-targets for lowly and medium expressed genes

(log2FPKM,=6) both before and after infection (p,1e-6, Mann-

Whitney U test) (Figure 1A and 1B). However, the expression

variance between miRNA targets and non-miRNA-targets with

extremely high expression levels (log2FPKM.6) was not signifi-

cantly different (p.0.1, Mann-Whitney U test) (Figure 1A and

1B). Notice that genes with log2FPKM,6 account for more than

90% of the total expressed genes (Figure 1C and 1D). Thus, for the

majority of expressed genes, predicted miRNA targets on average

showed lower expression variance compared with non-miRNA-

targets.

The Buffering Effect is Stronger for mRNAs Targeted by a
Greater Number of miRNAs
It is known that a single miRNA can regulate hundreds of

mRNAs and that a single mRNA can be regulated by multiple

miRNAs [22]. In our data, approximately 50% of the genes were

targeted by less than 10 miRNAs each and below 1% were

targeted by over 50 miRNAs each (Figure S1A). The distribution

of target genes per miRNA is provided in Figure S1B. It is possible

that the buffering effect is stronger for mRNAs targeted by a

greater number of miRNAs. To test this hypothesis, we calculated

the correlation between the number of miRNA regulators per

target gene and the CV of target expression. We found a strong

negative correlation between the CV of target expression and the

number of miRNA regulators per target gene at both day 0 (r =2

0.76, p,0.001, Figure 2A) and day 2 (r =20.88, p,0.001,

Figure 2B). Further, the decreasing CV with increasing number of

miRNA regulators cannot be explained by the previously

described tendency of more highly expressed genes to have lower

CV, since the genes with more miRNA regulators tend to exhibit

lower expression (Figure S2). Taken together, the results suggest

that the buffering effect is stronger for mRNAs targeted by a

greater number of miRNAs.

Different Pattern of Expression Variance change between
miRNA Targets and Non-miRNA-targets in Response to
Infection
A previous study found that a number of genes have a

significant increase or decrease in expression variance between

different biological states (e.g. diseased and non-diseased) [23].

First, we analyzed the expression variance change of miRNA

targets and non-miRNA-targets before and after infection. The

median CV of predicted miRNA targets showed a 23.6%

reduction after infection (p,2.2e-16, Mann-Whitney U test), but

non-miRNA-targets showed no significant change (p = 0.5, Mann-

Whitney U test) (Figure 3A). Next, we applied the same tests to the

genome-wide average expression. The median expression level of

both miRNA targets and non-miRNA-targets showed no signif-

icant differences after infection (p.0.1). Although the genome-

wide average expression did not change significantly, several genes

indeed showed increased (log2 fold change,0, n= 6976) or

decreased (log2 fold change.0, n = 8197) expression after

infection, and this can substantially contribute to the variation of

gene expression between different conditions. Thus, to further

control for the difference in expression level between day 0 and

day 2, we analyzed the CV change separately for genes with

increased (log2 fold change,0) or decreased expression (log2 fold

change.0) after infection (Figure 3B and 3C, respectively). For

non-miRNA-targets, the change of CV was negatively correlated

(r =20.53, p,2.2e-16) with the change of expression levels, which

is to be expected given the general relationship between CV and

expression. Interestingly, miRNA targets showed on average

reduced expression variance regardless of whether their expression

is increased or decreased in response to infection. The results

indicate that Salmonella infection is accompanied by decreased

expression variance for miRNA targets but not for non-miRNA

targets. Furthermore, this result cannot be explained by the

tendency of more highly expressed genes to have lower CV.

Figure 2. Correlation between CV of target genes and miRNA regulators per gene. All target genes were assigned into 20 equal-sized bins
by the number of miRNA regulators. The mean CV and the mean number of miRNA regulators for each bin were plotted using data from day 0 (A)
and day 2 (B).
doi:10.1371/journal.pone.0094352.g002

MicroRNA Buffering in Response to Infection

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94352



Reduced Expression Variance of Transcripts Encoding
RNA Binding Proteins in Response to Infection
We next examined whether any particular gene functions were

enriched among the miRNA targets showing substantially reduced

(.50%) variation after Salmonella infection. As stated earlier, genes

with higher expression tend to have lower CV. To avoid including

genes with reduced variation solely due to their increased

expression, we discarded genes with substantial increased expres-

sion (expression fold change.1.2). We identified 759 predicted

miRNA targets (expression fold change,=1.2) that showed more

than 50% reduction of CV after infection. We then looked for

enriched gene ontology (GO) terms in these genes. In the GO

molecular function category, there was an enrichment in RNA

binding (FDR,1e-9), and in the biological process category there

was an enrichment in RNA processing related terms (FDR,1e-4).

Complete GO enrichment results are shown in Table 1.

Next, we compared the distribution of CV and expression level

between miRNA targets and non-miRNA-targets of RNA binding

proteins (RBPs). miRNA targets of RBPs demonstrated signifi-

cantly reduced variance of expression after Salmonella challenge

(p = 3.65e-07, Mann-Whitney U test) (Figure 4A). However, non-

miRNA-targets of RBPs also showed lower but not significant

(p = 0.22, Mann-Whitney U test) change of expression variance

(Figure 4A). The difference in expression level of both miRNA

targets and non-miRNA-targets of RBPs between day0 and day2

was not significant (p.0.1, Mann-Whitney U test) (Figure 4B).

Furthermore, miRNA-targeted RBPs showed lower expression

variance than non-miRNA-targets of RBPs at d0 and d2

(p = 0.004 and 6.59e-7, respectively, Mann-Whitney U test)

(Figure 4A). Taken together, the results suggest that RBPs in

general show reduced expression variance following infection, but

that the level of reduction is more dramatic for RBPs targeted by

miRNAs.

Targets of Young miRNAs showed Lower Expression
Variance Compared with Targets of Old miRNAs
It has been hypothesized that the dual functions of miRNAs

may represent two stages in the evolution of miRNAs, with young

(less-conserved) miRNAs playing a greater role in expression

buffering than old miRNAs (evolutionarily conserved) [4]. We

tested this hypothesis by analyzing the difference of CV between

targets of young and old miRNAs. To identify relatively young and

old miRNAs, six animal genomes (human, dog, cattle, mouse, rat

and chicken) were used for conservation analysis. We considered

pig-specific miRNAs to be relatively young miRNAs (n= 9) and

miRNAs conserved in all six species as old miRNAs (n= 62).

Indeed, targets of young miRNAs on average showed significantly

lower expression variance compared with targets of old miRNAs

for lowly and medium expressed genes (log2FPKM,=6) at both

0 and 2 dpi (p,0.05, Mann-Whitney U test) (Figure 5A and 5B).

Thus these results support the hypothesis that young miRNAs tend

to have stronger buffering effects compared with old miRNAs.

Discussion

One of the most remarkable features of biological systems is

their inherent robustness against external perturbations [24].

miRNAs have been hypothesized as canalizing genes [4,5].

However, when there are no input perturbations, the buffering

function might not be easily noticeable. Such states or noises

requiring this function could be present at various developmental

stages or under stress conditions including severe infection,

chemical or radiation treatment. Here, we showed that miRNA

targets had lower expression variation compared with non-

Figure 3. Change of CV in response to infection. (A) Boxplot of
CVs for predicted miRNA targets (n = 7962) and non-miRNA-targets
(n = 7211) before and after infection. (B) Boxplot of CVs for predicted
miRNA targets (n = 2947) and non-miRNA-targets (n = 4029) with
decreased expression after infection. (C) Boxplot of CVs for predicted
miRNA targets (n = 5015) and non-miRNA-targets (n = 3182) with
increased expression after infection.
doi:10.1371/journal.pone.0094352.g003
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miRNA-targets for lowly and medium expressed genes both before

and after infection. It has been shown that lowly expressed genes

have higher expression variation [21]. Thus, our results point to

the importance of a buffering effect of miRNAs for lowly and

moderately expressed genes. Further, we found that the CV of

target genes is negatively correlated with the number of miRNA

regulators. Thus, multiple miRNAs may have additive buffering

effects on a single target gene.

From an evolutionary perspective, it has been hypothesized that

young miRNAs may play a greater role in expression buffering

than old miRNAs [4]. The results of our analysis on the difference

in CV between targets of young miRNAs and targets of old

miRNAs support this hypothesis. As adjusting the mean expression

levels of several target genes is generally deleterious, young

miRNAs are not likely to increase fitness by dramatically

modulating the expression levels of a large number of target

genes when they are born. Instead, they may confer a selective

advantage by buffering the variances in gene expression. After the

new miRNAs become fixed into the genome, the tuning function

(regulating the mean expression level of targets) may evolve

gradually through random drift [25] or positive selection.

It has been shown that the actions of miRNAs and TFs are often

highly coordinated and connected as network motifs [26]. One of

the most important motifs is the miRNA-mediated IFFL in which

the genes that encode an miRNA and that miRNA’s target mRNA

are both positively regulated by a TF, and simultaneously the

target gene is negatively regulated by the miRNA. Further, it has

been shown that IFFLs can reduce the stochastic noise in

expression of such target genes [9]. According to simulation

studies, the degree of buffering within an IFFL depends on the

expression levels of TFs and miRNAs and on the suppression

strengths of the miRNAs [9]. Further, a previous study [27]

analyzed the relationship between TFs and miRNAs in gene

regulation networks and found that miRNAs predominantly target

positive regulatory motifs. It has been reported that the genes with

more TF binding sites have a higher probability of being targeted

by miRNAs and have more miRNA-binding sites on average [28].

Our results in light of previous studies suggest that the regulatory

networks consisting of miRNAs and TFs may contribute to reduce

the expression variance of miRNA targets in pigs.

Another interesting finding of this study is that Salmonella

infection is accompanied by decreased expression variance for

miRNA targets but not for non-miRNA targets. Even for down-

regulated genes after infection, miRNA targets still showed

reduced variation, suggesting a major role of miRNAs in

conferring robustness to infection. From a network perspective,

one explanation of reduced variation of miRNA targets is that the

transcriptional network may be re-wired more tightly after

infection. For example, expression of additional miRNAs and

TFs following Salmonella infection may re-wire the existing

networks or establish new network modules specific to the

infection condition. Further, the expression of miRNAs and TFs

may change to their optimal level to buffer variations more

efficiently during Salmonella infection. An extensive survey of the

Table 1. GO enrichment of miRNA target genes with reduced variation of gene expression.

GO Term Count FDR

mRNA processing 34 1.0e-5

Biological Process mRNA metabolic process 32 1.3e-5

RNA processing 47 1.1e-5

Molecular Function RNA binding 66 4.1e-10

Acid-amino acid ligase activity 24 1.4e-4

doi:10.1371/journal.pone.0094352.t001

Figure 4. Distribution of CV and expression levels for RBPs. (A) Boxplot of CVs for predicted miRNA targets of RBPs (n = 179) and non-miRNA-
targets of RBPs (n = 122) before and after infection. (B) Boxplot of mean expression level for predicted miRNA targets of RBPs (n = 179) and non-
miRNA-targets of RBPs (n = 122) before and after infection.
doi:10.1371/journal.pone.0094352.g004

MicroRNA Buffering in Response to Infection

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94352



expression of TF, miRNA and experimentally verified targets

within known regulatory networks under different conditions in

model species might be informative about how miRNA affect the

noise of target gene expression.

RBPs are the key regulators of noise buffering in numerous

downstream cellular processes [29]. Due to the central role of

RBPs, alteration in their expression has been reported to be the

cause of several human diseases [30]. Previous studies showed that

RBPs have very little variation and tend to be highly connected in

the TF regulatory network [31]. Several RBPs were found to be

regulated by miRNAs in tumor models [32]. However, the

potential role of miRNAs in buffering expression variation of

RBPs has not been investigated previously. Here, we show

evidence that miRNAs may also contribute to buffering expression

variance of RBPs. Transcripts encoding RBPs in general showed

reduced expression variance following the infection, but the level

of reduction is more dramatic for RBP RNAs targeted by

miRNAs. Further, RBPs were also found to play an important role

in immune response [33,34]. For example, HuR (an RBP gene)

can maintain inflammatory homeostasis by controlling macro-

phage plasticity and migration in mice [33]. In our study, we

found that the CV of HuR in pig decreased from 0.12 to 0.06 after

infection. Six miRNAs (miR-144, miR-145, miR-2483, miR-27b,

miR-296 and miR-324) may target HuR based on our predictions.

A more comprehensive analysis of known miRNA and RBP

interactions in human or mouse cell models might be helpful to

better understand miRNA-mediated regulation of RBP homeo-

stasis.

The current study and previous ones [13–15] have focused on

the buffering effects of miRNAs on inter-individual variation in

gene expression. However, little is known about the buffering

effects of miRNAs on expression variation among single cells. The

availability of data [35,36] generated using the recently developed

single cell RNA-seq technology would make it possible to

investigate miRNA buffering effects on cell-to-cell variation in

gene expression.

In conclusion, these findings point to the importance of

buffering effects of miRNAs, and suggest that the reduced

expression variation of RBPs may play an important role in

response to Salmonella infection. A more comprehensive under-

standing of the miRNA-mediated regulation of expression

variation could improve our ability to predict miRNA targets

and biological functions, and provide insight into the mechanistic

basis for their buffering activities.

Materials and Methods

miRNA and mRNA Sequencing of Whole Blood Samples
from Pigs
Fifteen pig blood samples were used for miRNA and mRNA

sequencing before and after Salmonella challenge (2 dpi). Peripheral

whole blood (approximately 2.5 mL) was collected from the

jugular vein of pigs, into PAXgene Blood RNA tubes (BD, Cat.

No. 762165) and processed according to the manufacturer’s

instructions. Total RNA (1.5 mg for each sample) was used to

construct miRNA and mRNA libraries using the TruSeq Small

RNA and mRNA Sample Preparation Kit(Illumina, San Diego,

CA), respectively, according to the manufacturer’s instructions.

Globin reduction treatment with pig globin specific oligonucleo-

tides was performed using a modified Affymetrix globin reduction

protocol [37]. Sequencing was performed on the HiScan SQ

system (Illumina) using the TruSeqTM SBS Kit v3 (50 cycels,

Illumina). All procedures involving animals were approved by the

USDA-ARS-NADC Animal Care and Use Committee (approval

ID: ACUP #3586).

Quantification of miRNA and mRNA Expression in Pig
Samples
miRNA reads were mapped onto known pig miRNAs (miRBase

19.0) using miRDeep2 [38]. mRNA reads were mapped onto pig

genome using Tophat1.4.0 [39]. The raw count of reads mapped

to each miRNA was normalized to counts per million mapped

reads (cpm) using edgeR [17]. Normalized expression value

(FPKM) for each mRNA gene was estimated by Cufflinks 2.0.0

[18]. After that, normalized expression levels were log2 trans-

formed.

Calculation of Variation of Gene Expression
We analyzed the difference of expression variation between

miRNA targets and non-targets as described by Lu [15]. We used

the coefficient of variation (CV), which is computed for each gene

by dividing the standard deviation of its expression measures

Figure 5. Distribution of CV for targets of young and old miRNAs. Boxplot of CVs for targets of young miRNAs (n = 4162) and targets of old
miRNAs (n = 7415) under different expression bins (log2FPKM: 0–3, 3–6, 6–9, 9–12, 12–15) at day 0 (A) and day 2 (B).
doi:10.1371/journal.pone.0094352.g005
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across a sample population by its average expression, to quantify

the extent of expression variation.

miRNA Target Prediction
To identify high-confidence miRNA targets, we used both

miRanda3.3a [19] and PITA. Alignment score.=145 and

energy,=210 kcal/mol were used for miRanda as suggested

by Zhang [40]. PITA determines the change in free energy (ddG)

necessary for the binding to occur. ddG score,=210 was used

for PITA [41]. Only miRNA targets predicted by both methods

were used.

Gene Ontology Analysis and Identification of RBPs
The genes with more than 50% reduced expression variation

after infection were subjected to GO enrichment analysis using the

web-based functional annotation tool, DAVID version 6.7 (http://

david.abcc.ncifcrf.gov/) [42]. We downloaded human RBPs from

the RNA binding protein database (RBPDB) (http://rbpdb.ccbr.

utoronto.ca/) [43]. We used pig orthologous as RBPs identified in

pigs.

Supporting Information

Figure S1 Distribution of miRNA regulators and target
genes. (A) The distribution of the number of miRNA regulators

per gene. (B) The distribution of the number of target genes per

miRNA.

(TIF)

Figure S2 Correlation between expression of target
genes and miRNA regulators per gene. All target genes

were assigned into 20 equal-sized bins by the number of miRNA

regulators. The mean expression level and the mean number of

miRNA regulators for each bin were plotted using data from day 0

(A) and day 2 (B).

(TIF)

Table S1 Normalized miRNA expression level in pigs.

(XLSX)

Table S2 Normalized mRNA expression level in pigs.

(XLSX)
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