
University of Alberta

Indexing and Querying Natural Language Text

by

Pirooz Chubak

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Pirooz Chubak
Spring 2012

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University ofAlberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association withthe copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Abstract

Natural language text is a prominent source of representing and communicating information

and knowledge. It is often desirable to search in granularities of text thatare smaller than

a document or to query the syntactic roles and relationships within syntacticallyannotated

text sentences, often represented by parse trees. In this thesis, we study the problems of

efficiently indexing and querying natural language text in the scenarios where (1) text is

modelled as flat sequences of words and (2) text is modelled as collections of syntactically

annotated trees.

In the first scenario, we study some of the index structures that are capable of answering

the class of queries referred to here as wild card queries and performan analysis of their

performance. Our experimental results on a large class of queries fromdifferent sources

(including query logs and parse trees) and with various datasets revealsome of the perfor-

mance barriers of these indexes. We present Word Permuterm Index (WPI) and show that

it supports a wide range of wild card queries, is quick to construct and is highly scalable.

Our experimental results comparing WPI to alternative methods on a wide range of wild

card queries show a few orders of magnitude performance improvement for WPI while the

memory usage is kept the same for all compared systems.

In the second scenario, we study index structures and access methods that improve the

performance of querying over syntactically parsed sentences. We propose a novel indexing

scheme over unique subtrees as index keys. We also introduce theroot-splitcoding scheme

that concisely stores structural subtree information, making it possible to perform exact

axes matching over subtrees. We theoretically study the properties of our coding and the

limitations it imposes over query processing. Our extensive set of experiments show that

root-split coding reduces the index size of a baseline index which stores the intervalcodes

of all nodes by a factor of up to5 (i.e. 80% reduction) and speeds up querying runtime by

more than6 times on average, when subtrees of sizes1, . . . , 5 are indexed.

Acknowledgements

Many people have supported, helped and encouraged me during my PhD program and thesis

writing. It is my great pleasure to thank them and appreciate their work.

My most sincere thanks to my supervisor, Davood Rafiei, who has alwaysprovided me

with constructive feedback and support. He has done a tremendous job as a mentor and

supervisor, and put a great deal of time and energy into my research and other academic

and life challenges. I would also like to thank him for being understanding and supportive

of me working remotely in the final year of my PhD.

My appreciation and gratitude to my examiners, Raymond T. Ng, John Newman and

Denilson Barbosa for carefully reading my thesis and providing me with excellent com-

ments and deep questions which contributed greatly to the quality of this thesis. Also thanks

to Dekang Lin and J̈org Sander for reading my candidacy proposal and providing me with

valuable suggestions at early stages of my PhD research.

Many thanks to Rachel Pottinger who helped me greatly with settling down in Vancou-

ver and supported me with space and resources in UBC during the last year of my PhD. I

greatfully acknowledge Dennis Shasha, Shane Bergsma, and Christopher Pinchak for pro-

viding me with their expert opinion on specific subjects related to my research.Finally,

many thanks to other database faculty members Osmar Zaiane and Mario Nascimento, from

whom I learned much during my PhD.

I would like to also thank a few wonderful people at the Department of Computing

Science, University of Alberta. Special thanks to Edith Drummond and Frances Moore for

dealing with graduate student issues and always providing me with their help.Many thanks

to Steve Sutphen for always helping with technical issues beyond his duties.

My friends and peers at University of Alberta and Edmonton have always been there

whenever life was too difficult as a graduate student. I would like to thank Reza Sadoddin,

Reza Sherkat and Azad Shademan in the department of Computing Science.Occasional

discussions on a wide range of academic and non-academic topics, made a big difference in

my view and experience as a PhD student. Also, I would like to thank my wonderful friends

Iman Khosravifard, Raman Yazdani and Ali Hendi. They made my life as a graduate student

much easier and less frustrating.

My deepest thanks and appreciation go to my parents, who have always encouraged me

with their love and support. They never stopped caring and encouragingme with my goals

from so far away in my homeland. My warmest gratitude goes to my sister and my brother,

who gave me lots of confidence and supported me throughout my life and studies. Finally,

it is my pleasure to greatfully thank Niousha Bolandzadeh. She gave me lots ofmotivation

and energy and did a tremendous job of helping me in so many ways, especiallyduring the

last year of my PhD.

Table of Contents

1 Introduction 1
1.1 Searching Beyond the Document Level 1

1.1.1 Document-level Search Systems 1
1.1.2 Question Answering Systems . 2
1.1.3 Information Extraction Systems 2

1.2 Motivation . 3
1.3 Problem . 6
1.4 Contributions . 7
1.5 Organization of the Thesis . 8

2 Preliminaries and Background 10
2.1 Sequential Model . 10

2.1.1 Wild Card Queries . 11
2.2 Structural Model . 12

2.2.1 Data Model and Corpora . 12
2.2.2 Query Model and Matching . 13
2.2.3 Navigational Axes . 15
2.2.4 Structural Indexes . 15

3 Related Work 18
3.1 Natural Language Text as Sequences of Words 19

3.1.1 Discussion of the Query Types . 19
3.1.2 Supporting Wild Card Queries . 20

3.2 Natural Language Text as Linguistically Annotated Trees 23
3.2.1 Querying over Linguistically Annotated Trees 23
3.2.2 Query Languages over XML Documents 27
3.2.3 Querying over Trees . 32
3.2.4 Querying over Graphs . 34

3.3 Natural Language Question Answering . 36

4 Sequential Indexing and Querying of Natural Language Text 38
4.1 Baseline Methods . 38

4.1.1 Full Scan . 38
4.1.2 Inverted Index . 39
4.1.3 Neighbor Index . 39

4.2 Permuterm Index over Natural Language Text 40
4.2.1 Word Level Burrows-Wheeler transformation 40
4.2.2 Maintaining the Alphabet . 41
4.2.3 Rank Data Structures . 42
4.2.4 Algorithms and Analysis . 43

5 Structural Indexing and Querying of Natural Language Text 48
5.1 Subtree Index . 48

5.1.1 Subtree Indexes over Syntactically Parsed Trees 49
5.1.2 SI construction . 52
5.1.3 Query Matching Over Subtree Indexes 54

5.1.4 Coding Schemes . 55
5.2 Query Splitting Strategies . 58

5.2.1 Monotonicity of Posting List Sizes 58
5.2.2 Join Optimality . 60

5.3 Join Approaches over SI . 66
5.3.1 Joins . 67
5.3.2 Injective Matching . 67

6 Experimental Results 71
6.1 Natural Language Text as Sequences of Words 71

6.1.1 Experimental Setup . 71
6.1.2 Performance of Querying . 72
6.1.3 WPI Performance with Limited Physical Memory 74
6.1.4 Index Construction Time . 76

6.2 Natural Language Text as Syntactically Annotated Trees 77
6.2.1 Experimental Setup . 77
6.2.2 Index Construction . 78
6.2.3 Querying Performance . 82

7 Conclusions and Future Directions 89
7.1 Summary and Discussion . 89

7.1.1 Word Permuterm Index . 89
7.1.2 Subtree Index and Root-split coding 90
7.1.3 Discussion . 90

7.2 Future Directions . 91

Bibliography 93

A Supplementary Tables and Figures 100

B Proof of Lemmata and Theorems 107

C Supplementary Algorithms 110

List of Tables

2.1 Samples of natural language questions and their corresponding wild card
queries . 12

3.1 A list of flat query types in the literature and their result sets 20
3.2 Summary of the literature on query languages over syntactically annotated

trees. Refer to the text for the meaning of abbreviations. 25

4.1 Different wild card query patterns over WPI and their corresponding range
of matches . 46

4.2 The running time complexity analysis of queries in Table 4.1 47

6.1 Summary of the performance of the indexes in terms of the running time in
seconds . 72

6.2 Index construction time of WPI compared to the neighbor index in seconds76
6.3 Ratio of the subtree index size whenmss is 5 to the index size whenmss

is 1 . 80
6.4 Average running time of queries in seconds for queries in FB query set

classes using Subtree index with root-split coding (mss = 3), ATreeGrep
and Frequency-based approaches with varying frequency cutoff thresholds. 84

6.5 Total number of joins required over queries in the WH query set. r=root-
split, s=subtree interval. 85

A.1 The list of WH queries and their corresponding query structures 102
A.2 List of high, mediumandlow frequency labels used in building FB queries. 103
A.3 Summary of the query runtimes forwhoparsed queries 103
A.4 Summary of the query runtimes forwhichparsed queries 103
A.5 Summary of the query runtimes forwhereparsed queries 104
A.6 Summary of the query runtimes forwhatparsed queries 104
A.7 Summary of the query runtimes for parsed queries overlow frequency la-

bels . 104
A.8 Summary of the query runtimes for parsed queries overmediumfrequency

labels . 105
A.9 Summary of the query runtimes for parsed queries overmediumand low

frequency labels . 105
A.10 Summary of the query runtimes for parsed queries overhight frequency

labels . 105
A.11 Summary of the query runtimes for parsed queries overhigh an low fre-

quency labels . 106
A.12 Summary of the query runtimes for parsed queries overhigh andmedium

frequency labels . 106
A.13 Summary of the query runtimes for parsed queries overhigh, mediumand

low frequency labels . 106

List of Figures

1.1 (a) Parse tree of a sample question, (b) parse tree of a sample match. The
bold labels and dashed edges indicate the match. Edge labels indicate role
of the child relative to its parent and node labels include offset, word and
POS tags. 4

1.2 Constituency Parse trees a sample query and a sample sentence contain-
ing a match. The bold labels and dashed edges indicate a match. Internal
nodes indicate the syntactic role of its subtree and leaves indicate words in
a sentence. 5

3.1 Architecture of an inverted index . 21
3.2 Architecture of a neighbor index . 22
3.3 Sample query, data tree and match results for a twig matching problem. . . 29

4.1 Sorted permutations of a sample set of sentences and the first and last word
lists,F andL. 41

4.2 Rank function computes the occurrences ofe in prefix1 . . . i of L 43
4.3 A sample wavelet tree. In each node a bit string and two arrays,super

block rank andblock rank , are stored. 44
4.4 A constant-timenodeRank, returning binary rank at each node 45
4.5 backwardSearch algorithm for traversingL in backward order 45

5.1 Number of index keys (unique subtrees) as a function of the input sizein
terms of the number of sentences . 50

5.2 Average number of subtrees extracted in terms of the branching factorof
roots of subtrees . 52

5.3 Algorithm for extracting all unique subtrees of sizes1 tomss from a treet 53
5.4 An example of how unique subtrees are extracted, (a) input tree, (b)unique

subtrees of size2, (c) unique subtrees of size3 53
5.5 A naive algorithm that guarantees a root-split cover 58
5.6 Example of a query having deep branching anomaly formss = 4 for a

root-split join optimal cover . 62
5.7 Join optimality on all possible queries of size5 with mss values of2, 3 and

4 from left to right columns. 63
5.8 Algorithm that computes a join optimal cover of sizemss 65
5.9 Algorithm that computes the best root-split cover of sizemss 66
5.10 Example of a query and its corresponding cover that can lead to falseposi-

tive matches . 68
5.11 The algorithm that computes extra joins that guarantee injective matching .70

6.1 The performance of the indexes based on the number of bindings of queries
over 10 million sentences of news data 73

6.2 The performance of the indexes based on the number of bindings of queries
over 1 million documents of web data . 74

6.3 Scalability of the indexes over web data of growing sizes. 75
6.4 The performance of WPI vs. the neighbor index using paging on NewsData

of sizes 4, 6, 8, 10,12, 14, 16 and 18 million sentences 76

6.5 The performance of WPI vs. the neighbor index using paging on Web Data
of sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents 77

6.6 SI size for filter-based, root-split and subtree interval codings, withmss =
1, . . . , 5. Input size is (top left)100 sentences, (top right)1000 sentences,
(bottom left)10, 000 sentences, (bottom right)100, 000 sentences. 79

6.7 Total number of postings over all keys for filter-based, root-split and subtree
interval codings, with varying input sizes andmss values. Input size is
(top left) 100 sentences, (top right)1000 sentences, (bottom left)10, 000
sentences, (bottom right)100, 000 sentences. 80

6.8 Total number of index keys for varying input sizes andmss values. (Left)
absolute number of keys, (right) cumulative number of keys. 81

6.9 Index construction time for filter-based, root-split and subtree interval cod-
ings, withmss = 1, . . . , 5. Input size is (top left)100 sentences, (top right)
1000 sentences, (bottom left)10, 000 sentences, (bottom right)100, 000
sentences. 82

6.10 Average runtime of queries in terms of their number of matches for filter-
based, root-split and subtree interval codings andmss values of1 to 5 . . . 86

6.11 Average runtime of queries in terms of the size of queries for filter-based,
root-split and subtree interval codings andmss values of1 to 5 87

6.12 Average runtime of queries (mss = 3) over groups of FB queries over
datasets of1k, 10k, 100k and 1m sentences and using different coding
schemes. 88

A.1 Sample natural language text sentences that contain nodes with high branch-
ing factors . 100

A.2 Number of subtrees with sizes varying between2 to 5 in terms of the
branching factor of the nodes over which the subtrees are constructed. . . 101

C.1 Algorithm for extracting subtrees of sizen rooted att. 111
C.2 Algorithm that computes all the combinations of sizes of children that lead

to a given subtree size . 111

Chapter 1

Introduction

With natural language text evolved as an efficient medium for communication among peo-

ple, it has also become a prominent form of representing information and knowledge. Huge

volumes of natural language text are available electronically. Emails, news-group mes-

sages, web pages, research papers, books, news, etc. are almostentirely authored in human

readable natural languages. Such data is also a major source of information for many appli-

cations including search engines, Question Answering (QA) systems, andanalytical tools

built on more ad-hoc basis.

1.1 Searching Beyond the Document Level

Natural language text is a major feed to a wide range of search applications. Many of

these systems consider natural language text as an arbitrary bag or sequence of words (or

characters). However, this view of text imposes a few limitations on searching; e.g. it

ignores the regularities and inherent structure that exist in finer granularity portions of text

such as clauses and sentences. In this section, we briefly review a few search systems that

use natural language text and discuss their approach in modeling it.

1.1.1 Document-level Search Systems

Information Retrieval (IR) systems including search engines mostly provideaccess to a

ranked list of documents, sorted based on their relevance to a keyword query. This document-

level retrieval model has a few limitations. First, the unit of expressing factual information

(e.g. named entities, facts and relations) is often smaller than a document. However, the

storage model and access methods supported by IR engines are not optimized for answer-

ing text units smaller than a document. Harvesting fine granularity information from the

documents will therefore require extra processing or manual work. Second, keyword-based

1

queries used by IR engines, are expressed as flat sequences of words. This representa-

tion is not expressive enough to capture the relationships between the words or to filter the

matches based on their part of speech tags (e.g. adjective or noun-phrase) or grammatical

role (e.g. subject or verb). Finally, the term-document inverted indexing model used by IR

systems, does not support queries that ask for syntactic relationships (e.g. parent-child or

ancestor-descendant). These relationships can be obtained by processing natural language

text sentences using a syntactic parser (See [77] for more on syntactic parsing).

1.1.2 Question Answering Systems

Question Answering (QA) systems leverage the syntactic and semantic properties of nat-

ural language text to find relevant facts and meaningful answers to questions. QA sys-

tems address the problem of finding answers to arbitrary questions such as ‘Who is the

mayor of New York city?’ or ‘Which state is Chicago located in?’ .

In order to answer the above questions, QA systems translate the questionsinto one or

more queries. A common practice is to translate the question into a keyword query that is

supported by a search engine and scan the returned documents for the answers.However,

this approach can be inefficient when scaling for larger sets of documents and queries.

Also, documents are returned based on their relevance to a keyword sequence representa-

tion which does not capture all the information that can be obtained from a question. As

we discuss in Section 3.3, many question answering systems improve the accuracy of their

answers by using augmented text such as POS-tagged or syntactically parsed text. Syntactic

parsers for example are used for question typing, answer typing [66] and parsing snippets

of text returned from posing keyword queries to a search engine.

1.1.3 Information Extraction Systems

Information Extraction (IE) systems focus on extracting fine granularity information such

as entities and relationships mainly from sources on the Web. The idea here isto gather or

tag these entities and relationships which can later be queried in a structured fashion or be

integrated with structured data (e.g. in a database). Two examples of information extrac-

tion systems are KnowItAll [34] and TextRunner [8]; they both rely on learning patterns

from the huge number of instances found over the Web, and are reported extracting a large

numbers of facts in a short time. However, it is also reported that the quality of extraction

can be improved greatly if the structural information of the text is taken into consideration.

For instance, a body of recent work [25, 115] focuses on improving the precision and recall

2

of IE systems by attending to the inherent structure underlying natural language text. They

use the output of a syntactic parser or a semantic role labeler to learn the weight of features

for their extractions and achieve up to70% improvement in terms of the F-measure com-

pared to TextRunner extractions. However, their extractions are sloweddown by orders of

magnitude.

The aforementioned systems suffer from one or more of the following. (1)The retrieval

unit is large, making the search for finer granularity elements cumbersome and costly. (2)

The inherent structure in natural language text is ignored, resulting in inaccurate extractions

or limited search functionalities. (3) The structural information within sentencesis taken

into account, but a high price is paid for such information due to lack of efficient storage

mechanisms and access methods. Our goal in this thesis is to address or alleviate those lim-

itations. The following section provides a few examples that demonstrate how the structure

in natural language text can be exploited to achieve more accurate answers.

1.2 Motivation

Example 1.2.1. Assume we are interested in finding the answer to the question,‘Who

is the mayor of New York city?’ . Without any knowledge about the correct

answer, we can conclude that the answer is the name of a person, because we have a who

question, and that the answer is in the class of mayor names. Thus, if we have access to a

knowledge base that contains a list of mayor names we can effectively prune many of the

potential matches that have been found.

The question discussed in Example 1.2.1 is a factoid question. It is relatively easier

to find candidate matches for this class of questions compared to other types of questions

such asdefinition, reasoningandhow-toquestions. The reason is that answers to factoid

questions are in most cases short entity names that can be tagged by a PartOf Speech (POS)

tagger as nouns or noun-phrases.

If we have access to a document-level search system that receives asinput a keyword

query and returns a relevance-ranked list of documents (as most web search engines do),

we can convert the question to queries such asQ1=‘mayor of New York city’ or

Q2=‘is the mayor of New-York city’ and evaluate them using the search en-

gine. The answer is often found in the first few matching documents. However, even for

factoid questions, it is not efficient to scan one or multiple documents per query and join the

candidate matches with the knowledge base. The problem will be more severeif we want to

3

automate the question answering process for a large number of questions.Therefore, more

efficient access methods to potential matches could improve the performanceof question

answering.

Wild card queries [99] (as discussed in Section 2.1.1) may help writing those queries,

but we would need efficient storage mechanisms and access methods that would more effi-

ciently support wild card queries.

lex−modlex−mod

N N
1.Michael2.Rubens

lex−mod

lex−modmod

U
6.February5.born

A
7.14 8.,

UU

lex−mod

N

N
30.having

N

subj

E2.~

s i

obj

E5.Michael Rubens Bloomberg
N

32.worth
N

mod mod

Prep
33.of31.net

A

pcomp−n

36.billion
N

34.US 35.18 37.in
U U

38.2010

pred

N

pcomp−n

lex−mod lex−mod
mod

mod

13.current
A

puncpunc

19.,
U

20.and
U

conj

24.person
N

mod

A

det

3.Bloomberg

s

N
4.(
U

punc

9.1942
N

mod

10.)
U

punc punc mod

29.,
U E0.vpsc

C

21.the
Det

22.8th
A

23.richest

modmod

Prep
25.in

pcomp−n

28.States

27.United

lex−mod

U

N

26.the
Det

det

E1.*

11.is
VBE

14.mayor

E4.Michael Rubens Bloomberg

18.city

16.New 17.York
UU

N

15.of
Prep

12.the
Det

i

pred

det

mod

subj

pcomp−n

lex−mod lex−mod

N

(b) Sentence Parse Tree(a) Question Parse Tree

5.of

1.Who 2.is 9.?

3.the

4.mayor

E0.*

Prep

N

VBEN

E2.Who
N

whn i punc

U

pred

moddet subj

Det

pcomp−n

8.city
N

7.York

lex−mod

6.New

lex−mod

UU

Figure 1.1: (a) Parse tree of a sample question, (b) parse tree of a samplematch. The bold
labels and dashed edges indicate the match. Edge labels indicate role of the child relative
to its parent and node labels include offset, word and POS tags.

Example 1.2.2. If we pass the question in Example 1.2.1 to a dependency parser, such

as Minipar [82], more information about the syntax of the answer can be found. Fig-

ures 1.1(a),(b) show the Minipar parse trees of the question, and the parse tree of a sample

sentence that contains the answer1, respectively. In these parse trees, the edges are labelled

by the role of the child, relative to its parent and nodes are labelled using theword offset in

the sentence, the word itself and its part of speech tag.

Looking at these two parse trees we conclude that although the answer, Michael Rubens

1The first sentence from the Wikipedia page of Michael Bloomberg on September 22, 2010.‘‘Michael
Rubens Bloomberg (born February 14, 1942) is the current May or of New
York City, and the 8th richest person in the United States, ha ving net
worth of US$18 billion in 2010’’

4

Bloomberg, and the identifying question terms, mayor of New York city, are far apart from

each other in the original sentence, the parser manages to find their syntactic relationship

correctly and associate them using edges in the tree. Moreover, the corresponding terms in

the question and the sentence have the same POS tags, roles and syntactic relationships.

Example 1.2.3. In this example we use constituency parsing to answer a factoid ques-

tion. Suppose we want to find the answer to the questionWhat kind of animal is

agouti? , chosen from the TREC-2004 question answering track [110]. Using akeyword-

based search engine, we can send a query such asagouti and skim through the returned

pages for the desired answer. Alternatively, if a corpus of syntacticallyparsed sentences that

contain the answer exists, we can parse the text snippetagouti is a kind of , using

Stanford Parser [62] and match against the database of parsed sentences. As Figure 1.2

shows, aNNnode is added to the query parse tree to indicate that the sought word is a noun

and thus achieving a more accurate result set. This snippet correctly matches the parse

of the sentenceThe agouti is a short-tailed, plant eating rodent .

The matched subtree has been marked with dashed lines for better visualization. As Fig-

ure 1.2 shows, there are a few words between the answer,rodent , and the words of the

query,agouti is a , in the matched sentence. However, the parser correctly identifies

the relationships between the corresponding words and a structural matchcan extract the

answer.

The

DT NNS

S

agouti

NP

ROOT

VP

VBZ NP

is DT JJ NNJJ ,

a plant−eatingshort−tailed , rodent

NNS

S

agouti

NP VP

VBZ

is

NP

DT

a

NN

(a) parse tree of a sample query (b) parse tree of a matching sentence

Figure 1.2: Constituency Parse trees a sample query and a sample sentencecontaining a
match. The bold labels and dashed edges indicate a match. Internal nodes indicate the
syntactic role of its subtree and leaves indicate words in a sentence.

Examples 1.2.2, 1.2.3 show how answers to natural language questions canbe more

effectively found using a parse tree. Syntactically annotated trees may also be used in for

5

finding or verifying some linguistic phenomena in text, checking the accuracyof parsers or

gathering some statistical evidence. More generally, we can state that searching over text

can be significantly improved in terms of effectiveness and usability provided that we have

an efficient and scalable access to parsed text. With the current state of the art parsers, it

is possible to parse text fairly accurately, and since one can run them on alarge number of

machines at the same time, it is not far-fetched to think about the whole Web being parsed

and indexed (see [71] for a web-scale part-of-speech annotated example).

Supporting the above applications boils down to searching for patterns andrelationships

over parse trees. There exist query systems that support a rich set of queries over syntactic

trees (see Section 3.2.1 for a survey). While these systems work on clean and often small

corpora, there has been little focus on the performance of these systems or any reports on

their scalability over large text collections.

The given examples demonstrate some of the areas where more expressive and direct

queries can improve the effectiveness of searching over natural language text. In this thesis

we study the problem of efficiently supporting queries over natural language text. We focus

on the two scenarios where natural language text is either modelled as sequences of words

or as syntactic trees containing word labels and relationships. Next sectiondiscusses more

details of the problems we address, the challenges involved and the areas we cover.

1.3 Problem

With all the benefits of searching over linguistic relationships accessible in a syntactic parse

tree or other forms of fine-grained text, there are also some challenges, and an important

one is the efficiency of the searches; this is also the challenge we take on in this thesis.

In particular, we study the storage structures and access methods undertwo scenarios: (1)

when a sentence is modelled as a flat sequence of words and (2) when a sentence is modelled

as a syntactically annotated tree.

In the scenario where sentences are modelled as flat sequences of words, we look at

the problem of efficiently supporting wild card queries over large-scale text. The syntax

and semantics of wild card queries are defined in more detail in Section 2.1.1. We study

index structures that directly support word-level matchings required for answering wild

card queries. Moreover, we study the performance gain over the scenario where a match

is a document and wild card matching requires post-processing. The querying algorithms

and access methods are developed with regard to the underlying index structure and with

6

respect to the extraction needs. The challenges involved include minimizing theresponse

time of queries while keeping the index size and index construction time at a reasonable

level.

In the second scenario where sentences are parsed and modelled as syntactic trees, we

study the problem of answering a set of unordered, node-labelled treequeries. The syntax

of such queries and the semantics of matchings are defined in Section 2.2.2. In order to

improve the efficiency of query matching, we propose a novel index structure over the set

of unique subtrees of the input parse tree corpus. A large number of challenges are involved

with regards to query evaluation and storage schemes over the proposedsubtree index. We

study the problem of query splitting both theoretically and experimentally and investigate

existence of optimal query splits, in terms of the number of joins required for evaluating the

query. Another challenge in developing a subtree index is often the enormous index size.

We study ways of storing structural subtree information concisely and the effect of different

coding schemes on the index size, index construction time and the number of joins involved

for query evaluation.

1.4 Contributions

In this thesis we make the following contributions.

Contribution 1.4.1. We introduce Word Permuterm Index (WPI) [26] as an efficient method

for evaluating wild card queries over natural language text. WPI extendsPermuterm Index

(PI) [41] in several aspects. (1) By construction, WPI supports pattern matching over key-

words rather than characters, (2) WPI supports a wider range of queries than PI, adding

support for queries that are more frequently used over natural language text, and (3) WPI

returns the actual keywords that match a wild card query whereas PI is mostly used to find

the range of elements that match a pattern. Thus, WPI goes one more step toward matching

the keywords after finding the range of matching elements.

Contribution 1.4.2. We propose a Subtree Index (SI) over syntactically parsed corpora of

natural language text. SI stores all unique subtrees (up to a certain size)from the corpora

as index keys. It also stores the structural information of each subtree ina set of posting

lists which can be used to perform exact tree query matchings. We show theoretically and

experimentally that SI can achieve a large query run-time speedup compared to the scenario

where only structural information of nodes are stored (see [9] for an example). To the best

7

of our knowledge, SI is the first work on indexing tree structured data that stores the set of

unique subtrees as index keys.

Contribution 1.4.3. A novel root-split coding scheme and corresponding query splitting

and evaluation algorithms are proposed. We discuss that root-split codingconcisely stores

the structural information of subtrees within SI, making it possible to performexact match-

ing, while reducing the index size, index construction time and query response times. Root-

split coding and our baseline coding schemes are discussed in Chapter 5.

Contribution 1.4.4. We develop efficient query splitting algorithms over root-split and our

baseline methods, subtree interval and filter-based codings, in the scenario where query

matching is not injective (See Section 2.2.2 for a discussion of injective matching). Over

subtree interval and filter-based codings, we propose a query splitting algorithm that achieves

optimality in terms of the number of joins required to evaluate the query. Over root-split

coding, we present an efficient query splitting algorithm that decomposesthe query into

smallest number of subtrees possible for a root-split query evaluation.

Contribution 1.4.5. In the scenario where query matching over SI is required to be in-

jective, we propose novel pruning techniques to achieve efficient query splitting and query

evaluation algorithms, reducing the overall number of joins required compared a naive ap-

proach.

Contribution 1.4.6. The last contribution of this thesis is the broad set of experiments

and analyses. (1) We compare the performance of WPI to alternative baseline methods.

Our performance comparison includes cases where WPI is given a limited memory and is

forced to do paging. To the best of our knowledge this is the first work that experimentally

compares traditional inverted file indexes with more recent succinct full-text self indexes

(See the survey in [90]). (2) We experimentally show that SI storing subtrees larger than

one node can outperform the node approach. Moreover, we show that our root-split coding

outperforms our baseline coding schemes in terms of the query response times, is highly

scalable and has a reasonably small index size and index construction time.

1.5 Organization of the Thesis

The organization of this thesis is as follows. In the next chapter, we present some back-

ground information required for understanding the discussions in the rest of thesis, specif-

ically the material presented in Chapters 4 and 5. Next chapter also definesmore formally

8

the preliminary concepts used of this thesis such as the syntax and semantics of the queries

we support, our data models and the metrics we use to evaluate our algorithms and solu-

tions.

In Chapter 3, a comprehensive review of the literature around queryingand indexing

natural language text is presented. This chapter includes related work on topics such as

query systems over syntactically annotated corpora, question answeringover natural lan-

guage text, and querying over XML documents, to name a few. We further discuss how

these systems and solutions relate to our work and discuss the advantages and drawbacks

of each approach.

Chapter 4 discusses the problems associated with querying natural language text in

its sequential representation. We propose Word Permuterm Index (WPI), and study its

architecture and data structures. We also present a set of query processing algorithms over

WPI and asymptotically analyze the time complexity of such algorithms.

In Chapter 5 we propose a novel Subtree Index (SI) structure that improves the perfor-

mance of querying over syntactically annotated trees at the price of a larger index size. We

theoretically analyze the properties of SI, and propose baseline algorithmsfor splitting and

evaluating queries over SI. We also introduce root-split coding and its corresponding query

evaluation algorithms and discuss some of the benefits and limitations.

In Chapter 6 we present a broad range of experiments to verify the effectiveness of our

index structures and querying algorithms. We use different hardware and software settings

and parameters in order to check the robustness of our algorithms in different scenarios.

We also perform several experiments to show the scalability of our methods tolarge text

corpora.

Finally, in Chapter 7, we conclude with a discussion of the achievements and the limi-

tations of the thesis. Moreover, we present a set of ideas and future avenues that can lead

to interesting new problems or that potentially could improve the results presented in this

thesis.

9

Chapter 2

Preliminaries and Background

This chapter provides a more formal definition of some of the concepts, terminology and

notations relevant to the scope of the problem that we study in this thesis. Since we con-

sider two different settings where text is modelled as (1) flat sequences of words or (2)

syntactically annotated trees, our discussion in this section also treats them separately.

2.1 Sequential Model

Under a sequential model, a text search often refers to finding pieces in text that match

a sequential pattern. More formally, consider a text collection containing a sequence of

elements,C =< e1, · · · , en >, where each element is a sequence of terms1 taken from

an alphabetΣ; i.e. ei =< ti1 · · · tik >, wheretij ∈ Σ. The following definitions more

precisely describe text pattern matching over natural language text.

Definition 2.1.1. (Match) A match of a queryQ =< q1 · · · qm > is an elemente =<

t1 · · · tp >, where for everyqi in Q, there is atj in e, such thatqi ∼ tj , meaning thatqi and

tj are the same alphabet tokens.

More intuitively, the above definition requires every match (a document, sentence, para-

graph, etc.) to contain all query elements (usually keywords). In other words, all the query

terms have to appear in every match at least once.

Definition 2.1.2. (Order-Preserving Match)An order-preserving match of a queryQ =<

q1 · · · qm > is a matche =< t1 · · · tp >, where for everyqi ∼ tj andqk ∼ tl if i < k then

j < l.

1words, phrases and perhaps punctuation

10

Definition 2.1.3. (Phrasal Match)A phrasal match of a queryQ =< q1 · · · qm > is an

order-preserving matche =< t1 · · · tp >, where for everyqi ∼ tj andqk ∼ tl if k = i+ 1

thenl = j + 1. In this setting,Q is referred to as aphrasal query.

Definition 2.1.1 treats text as a bag of words whereas Definitions 2.1.2 and 2.1.3 treat

it as a sequence of words and add some constraints on order and adjacency of terms within

a match. Next we describe a class of queries, called wild card queries, that further expands

word-level matchings.

2.1.1 Wild Card Queries

In contrast with the traditional (usually information retrieval based) definition of a match,

where a keyword query matches whole elements of the collection, wild card queries contain

place-holders, called wild cards, which match single text pieces within collection elements.

A more formal definition of a wild card query follows.

Definition 2.1.4. (Wild Card Query) A wild card queryQ =< q1 · · · qm >, is a phrasal

query, where eachqi ∈ Σ ∪ {%}, and% is an extractor wild card. A match for a wild card

query is a tupleei =< ti1 · · · tim > of terms such that there is an assignment of terms inei

to wild cards% in Q such that the assignment would makeei a phrasal match forQ.

Wild card queries supporting word-level extractions are particularly important for sev-

eral reasons. First, a large class of natural language questions, known as factoid questions,

can intuitively be translated into one or more wild card queries (See Table 2.1 for a set of

examples). Second, the results of such queries can easily be joined with data that may reside

in a database. For example, candidate answers for thewhichquestion in Table 2.1 can be

further refined by looking up the values returned by the first query in a database populated

with a list of city names (second query). Finally, question answering systemsoften rely

on NLP components that may directly or indirectly use wild card queries. Examples are

taxonomy construction, fact extraction, named entity recognition and queryexpansion.

Information extraction can also be enriched using wild card queries. Rafiei and Li [99]

present a data extraction system using wild card queries over web text. They discuss several

techniques such as query expansion and relevance ranking to increase the precision and

recall of extractions.

11

Table 2.1: Samples of natural language questions and their corresponding wild card queries

Question Translation
Who invented the light bulb? % invented the light bulb
What is glass made of? glass is made of %
Which city hosted 1988 % hosted 1988 Olympics
Olympics? % is a city
Where is Grand Canyon located? Grand Canyon is located in %
How tall is the Empire State Building? Empire State Building is % tall
How many electrons are there in a sodium atom?There are % electrons in a sodium atom

2.2 Structural Model

In this scenario, natural language text is modelled as collections of syntactically annotated

trees. Such collections can be generated automatically (using syntactic parsers), manually

or semi-automatically. Regardless of the approach used for generating such corpora of

syntactic trees, the text here is often modelled as collections of unranked node-labelled

trees. Such trees are unranked, meaning that every node can have any arbitrary number of

children.

In this section, we briefly study different types of corpora and how we model them

for our querying task. Further we describe our query and matching models, and touch on

relevant background on binary axes matching, interval coding schemesand structural joins.

2.2.1 Data Model and Corpora

Linguistic corpora can exist in several different form; e.g. there existtext and speech

corpora. Text corpora are often represented as hierarchical structures, and can exist as

constituency-based or dependency-based, each with a different set of tags, semantics of re-

lationships and annotation levels. In the following, we describe in more detail, some of the

variations in linguistic corpora.

Annotation Grammar

Two main classes of syntactically annotated text corpora (also known as treebanks) can be

identified, based on the grammar that is used for parsing and annotating the text; these are

the dependency-based and constituency-based syntactically annotatedcorpora. Dependency-

based treebanks (e.g. Prague Dependency Treebank [85]), mark the relationships between

individual words in a sentence with their dependents. Constituency-Based treebanks (e.g.

Penn Treebank of English text [78]) are often obtained by constituencyparsers and mark the

nested structure of constituents within a sentence, such as verbs and noun phrases. As such,

12

there are constituents that contain other constituents. For example, a verb phrase containing

a verb and perhaps a noun.

Annotation Levels

Annotations can happen at many different levels. Depending on the type of grammar used,

constituency or dependency, the annotation levels might be different. Dependency-based

corpora are concerned with the dependencies between words in a sentence. Some of the

supported annotations are as follows. Themorphologicallevel stores information about

morphemes. The result of a morphological tagging is a flat structure with annotations on

individual words in a sentence. The analytical or syntactic level has the structural rela-

tionships between dependents in a sentence and their governors. Theanalyticalannotation

generates a single-rooted tree structure, where the order of siblings can be defined to be the

order of their words in the sentence. Thetectogrammaticalor semantic level is a more com-

plex annotation, marking the semantic relatedness of the words within a sentence. Similar

to the analytical level, the tectogrammatical level generates a tree structure. However, the

mapping between the semantic level nodes and the analytical level nodes is not necessarily

one-to-one. For an example of these annotation levels see [84].

The annotations developed over a constituency grammar mark the constituentsof the

sentence and do not deal with the dependencies within the sentences. Someof the anno-

tation levels available are lexical, topological, phrasal and clausal (e.g. [55]). The lexical

level almost corresponds to the morphological level of dependency corpora, marking the

individual words with their lexical information. Thetopologicalannotations are descrip-

tive annotations about the constituents in a word, such as affixes. Thephrasalannotations,

identify the phrase structures in a sentence, such as noun-phrases orpropositional-phrases.

Finally, clausalannotations mark the boundaries of clauses.

2.2.2 Query Model and Matching

As discussed in Section 2.2.1, syntactic trees are modelled using unranked node-labelled

trees. At the abstract level, queries over syntactic trees are represented using trees whose

nodes represent the annotations to be matched, and the edges represent the binary relation-

ships that govern between the corresponding annotations. We call suchqueries Syntacti-

cally Annotated Tree Queries or SAT-Q. Two scenarios are possible forgenerating queries

over syntactic trees. First is the scenario where the queries are generated from natural lan-

guage questions (especially factoid questions) using the same method for generating syn-

13

tactic trees. This approach is perhaps the most favorable for the user, as natural language

questions are an easy and intuitive way to express the information need forhumans. In

this approach queries can be represented using unranked node-labelled trees, with nodes

marking the labels to be matched and edges denoting a parent-child relationship. Second is

the scenario where query trees are generated by an expert user, familiar with the grammar

of the language, syntax of trees in the treebank and the range and semantics of annotations.

Such queries vary greatly in terms of their expressive power, syntax and even semantics

across different querying systems over syntactically annotated trees (See Section 3.2.1 for

a brief survey on such systems). However, a majority of queries in this category can also

be represented using unordered unranked trees whose edge could denote a wider range of

navigational axes. The focus in this thesis is mostly on the first type of queries, while a

subset of the second category can also be supported.

Query matching happens by mapping query nodes to syntactic tree nodes that have the

same label. A formal definition of a match over syntactically annotated trees follows.

Definition 2.2.1. (SAT-Q Matching)Given a queryQ and a treeT , a matching is a map-

ping functionf : V (Q) 7→ V (T) that maps nodes ofQ to nodes ofV , such that (1) for

every query nodev ∈ V (Q) we havelabel(v) = label(f(v)) and (2) for each query edge

uv connecting nodesu andv of Q, thenf(u) andf(v) have the samerelationshipin T as

marked byuv.

In the above definition,label(v) denotes the annotation or label used on nodev. We

call T a match ofQ, if and only if there exists a matching fromQ to T . The relationships

over query edges are often represented using a set of navigational axes. The syntax and

semantics of these axes will be covered in Section 2.2.3.

Query nodes might have the same labels. In such a case, it is reasonable toassume

that nodes with the same label are mapped to distinct nodes of the data tree. Without

such an assumption, a few common queries cannot be expressed, wheretwo or more nodes

with the same label occur in the same relationship; e.g. (1) two adjectives modifying a

single noun or (2) two noun phrases such as subject and object as children of a verb phrase.

The assumption on the distinctness of the matching labels over the data tree requires the

mapping function to be injective. In general, an injective matching is more costlythan the

non-injective counter-part. We call such a matching, an injective matching and define it as

follows.

Definition 2.2.2. (SAT-Q Injective Match) Given a queryQ and a syntactically annotated

14

treeT , an injective match is a match whose mapping functionf : V (Q) 7→ V (T) is

injective. I.e. for allu, v ∈ V (Q) we havef(u) = f(v) if and only if u = v.

2.2.3 Navigational Axes

Navigational axes are binary structural relationships between pairs of nodes in a query tree.

These axes have widely been used in query matching over tree structureddata such as

eXtensible Markup Language (XML) documents and syntactically annotatedtrees.

The full set of navigational axes, expressed with respect to a contextnode are as follows.

(1) basic axesare single forward location steps including child, immediate-following and

immediate-following-sibling. (2)reverse axesare single backward location steps including

parent, immediate-preceding and immediate-preceding-sibling, (3)transitive closure axes

are multiple forward location steps including descendant, following and following-sibling.

Finally, (4) reverse transitive closure axesare multiple backward location steps which

include ancestor, preceding and preceding-sibling.

Based on their querying needs, different systems might support parts or all of the above

axes. XPath [27] for example, which is a path query language over XML documents sup-

ports all but the ones prefixed withimmediateword. LPath [9] which is an adaptation

of XPath over syntactically annotated trees, supports all navigational axes. Finally twig

queries, support only the parent-child and ancestor-descendant axes (See [47] for a survey).

2.2.4 Structural Indexes

Over large corpora, scanning individual trees for finding potential matches is not efficient.

As a result indexes are commonly used over tree structured data that storestructural infor-

mation of the nodes. The structural information of nodes are usually represented by a set of

numbers which uniquely identify a node within its hierarchical structure. These numbering

schemes have widely been used over XML documents. In this section, we briefly review

a few of such numbering schemes and a set of structural join approaches that utilize the

discussed numbering schemes to provide efficient access method over tree structured data.

Numbering Schemes

Assume we are given a queryA//B (A is an ancestor ofB) and we would like to find

the matches forA andB in a data tree. A naive approach to evaluate the query is to

start from every occurrence ofA in the data tree and traverse its entire subtree to check

if there are any descendents labelled asB. In order to avoid such costly traversals, a set

15

of numbering schemes have been developed to support/ (parent-child) and// (ancestor-

descendant) axes, efficiently. Using these numbering schemes, any pairof nodes over a

data tree can be checked in constant-time to find out if they match the given axisor not.

The most commonly used numbering schemes areinterval codingandDewey coding[16].

Numbering schemes have been first proposed by Dietz [32] over trees and have been used

extensively for querying XML trees.

Interval coding [120] assigns each node a pair ofpre andpostnumbers. These num-

bers indicate the interval spanned by the subtree rooted at the given node and correspond

to the pre-visit and post-visit numbers assigned to nodes while traversing the tree in any

depth-first search (DFS) traversal. As an example, the (pre, post) numbers for the nodes

in Figure 3.3(b) area1 : (1, 7), b1 : (2, 5), b2 : (3, 3), c1 : (4, 4) andc2 : (6, 6). The

(pre, post) numbers are also referred to as (left, right) and (begin, end) in different query-

ing systems. Axes evaluation using the PrePost coding is performed as follows. If node

a is an ancestor of nodeb, thena//b ⇔ a.pre < b.pre < a.post. The parent-child

axis can be checked by adding the level (depth) number to the interval coding. Thus,

a/b ⇔ a.pre < b.pre < a.post anda.level + 1 = b.level. By adding a parent id, the

interval coding can be extended to support all other axes supported byXPath [47].

Interval coding is very efficient for answering containment queries. Moreover, it is

very space efficient. However, with interval coding, updates in the data tree will be very

expensive, requiring a large number of node numbers to be updated. Dewey Coding, first

introduced for coding XML by Tatarinov et al. [106], can help reduce the cost of updates.

In Dewey coding, each node label is prefixed by the label of its parent and the siblings have

labels in the same order as they would appear in a depth-first traversal. Asan example, the

labels for the nodes in Figure 3.3(b) area1 : 1, b1 : 1.1, b2 : 1.1.1, c1 : 1.1.2 andc2 : 1.2.

Thus, any containment query will be converted to a prefix matching of the corresponding

node labels.

For the subject area of this thesis, the interval coding is more relevant as we are mostly

dealing with static data that almost never changes once stored and indexed.In the interval

coding, each interval is denoted by two values,left andright and each axis match is checked

by evaluating a set of inequalities on both numbers. Thus, the common practiceis to sort

the data on theleft values and use structural joins for efficiently matching queries. In the

next Section, we discuss some specialized join techniques that are developed for joining the

structural information.

16

Structural Joins

The coding schemes introduced above capture the nested structure of trees when indexing

tree structured data, such as XML documents and syntactically annotated trees. A large

body of work on XML query processing consider the scenario where each element of the

document is represented using a document id, and the numbersleft, right andlevel, with the

elements sorted on the document id and theleft values (See [47] for a survey). In particu-

lar, the interval coding has been utilized in the Multi-predicate merge join (MPMGJN) of

Zhang et al. [120], and this join method is shown to outperform regular database join tech-

niques. StackTree [1] introduces stack-based processing of structural joins, avoiding many

of the extra axis checks especially those for parent-child axis. A drawback of both these

approaches is that query trees have to be decomposed into individual binary axis matches

and the partial results need to be joined to form the final output. Since the sizeof interme-

diate results could grow very large, thus reducing the performance, a large body of work in

this area has been devoted to holistic twig query processing. More on thesetopics will be

discussed in Section 3.2.2.

17

Chapter 3

Related Work

In this chapter, we review the literature around indexing and querying over natural language

text. Similar to the structure of the rest of the thesis, this chapter is divided mainlyinto two

distinct topics. We differentiate between approaches that consider text as flat sequences of

words with the ones that take into consideration the syntactic structure of natural language

text.

The first set of works include works around indexing and querying text in the scenario

where text is modelled as sequences of words. We review a few indexing techniques includ-

ing those on handling wild card queries. Self-indexes are also reviewed as they succinctly

store text and are amenable for text compression.

The second set of approaches on indexing and querying natural language text benefits

from the grammatical structure of text obtained through syntactic parsing. Such approaches

introduce indexing and querying data that is represented by unranked node-labelled trees.

We study a body of work on querying systems over natural language text,mainly from

the linguistics and NLP literatures. Such systems mostly deal with an expressive set of

queries on a small, clean and often hand-tagged corpora. Performanceof querying over

syntactically annotated corpora has rarely been addressed in such systems. Further, we

study indexing and querying systems over tree structured data such as XML documents

mainly from a database perspective. In this latter set of works, the focusis on improving

the performance. In each case we compare our problem and algorithms withthe works that

are reviewed.

Finally, we study natural language question answering as an NLP application which

has received considerable attention in the past decades. We discuss how QA over relatively

smaller corpora has benefited from syntactic parsing, and how this is desirable for larger

text collections.

18

3.1 Natural Language Text as Sequences of Words

Natural language text data exists in large volumes in electronic format as longsequences

of words, delimiters and punctuations. The common approach in the literature for storing

text has been to build inverted lists of (non-stop) words that include the indexed elements,

occurrence frequencies, offsets, etc. In this section we review some of the query types

over flat text and discuss the advantages of wild card queries for word-level extractions

over natural language text. We further study some of the prominent workson indexing and

querying natural language text with more focus on indexing techniques that support wild

card queries.

3.1.1 Discussion of the Query Types

Question answering on a large corpus is a challenging task mainly because itis difficult to

analyze the whole (or a good portion of) data and to retrieve candidate answers. On open-

domain QA applications, such as question answering over the web (See OpenEphyra [91]

for an example), it would be very difficult to build a general QA system with high accuracy.

In those cases, a reasonable approach is to convert natural language questions into queries

and benefit from available querying engines to enhance the performanceof the search. The

choice of queries can further affect the efficiency of searching, ease of translating questions

to queries and the relevance of the results.

Table 3.1 gives a list of a few query types and some of the contexts where each query

type is used. Although our focus in this thesis is on wild card queries, other types of queries

or a combination of them might be interesting in question answering or other linguistic

applications.

From the list of queries in Table 3.1, this thesis mostly focuses on the queries presented

in rows two and four. Multi-keyword queries can improve the performance of keyword-

based querying by pre-materializing a few joins and reducing the size of theposting lists.

They are interesting because wild card queries can benefit from a multi-keyword index

structure, as each key may contain neighbor terms and wild card queries might be answered

without referring to the original data.

Note that by wild card queries, we specifically mean word level wild card queries. Full-

text search supports wild cards in the form of regular expressions, but they are not the focus

of this thesis. For instance, Lucene [74] supports∗ and? wild cards, which match‘zero or

more’and‘zero or one’characters, respectively. However, it does not differentiate between

19

Table 3.1: A list of flat query types in the literature and their result sets
Query Type Query Elements Result Set References
Keyword
queries

keywords, Boolean
operators

documents AltaVista [2], Google [44],
Yahoo [116]

Multi-keyword
queries

keywords, phrases documents [18], Nextword and Phrase
index [7, 114]

Proximity
queries

keywords, proxim-
ity radius

documents Lucene [74], INDRI [57],
[17]

Wild card
queries

queries, wild
cards(%)

list of keywords Dewild [99], BE [13],
KnowItAll [34]

Structured
queries

SQL, text predi-
cates

relations Oracle InterMedia Text[58],
DB2 Text Extender[75],
[14]

Full-text search characters, regular
expressions

strings Lucene [74]

word level matches and matches within words. Moreover, Lucene has to scan the entire data

collections for the prefix wild card queries such as‘ * oors’ , which can potentially match

‘doors’ and ‘floors’ . For this reason, earlier versions of Lucene did not support

prefix wild card matchings. In Section 3.1.2 we study a permuterm index which supports

a class of full-text search queries having wild cards and forms a baselinefor our Word

Permuterm Index discussed in Chapter 4.

3.1.2 Supporting Wild Card Queries

Wild card queries, defined in Section 2.1.1, are fill-in-the-blank queries that are appropriate

for word level extractions. Supporting them efficiently brings some interesting challenges.

In this section, we describe how state of the art indexing schemes supportwild card queries.

Inverted Index

There has been a great deal of activity around increasing the efficiency of keyword-based

queries. However, the same structures and algorithms would not necessarily be useful

or efficient for evaluating wild card queries. Assume we are given an inverted index

structure, such as the one depicted in Figure 3.1 with four terms and three documents.

Each termt in the index has a list of postings, each posting in the form of a triplet<

d, ft,d, [o1, · · · , oft,d] > whered is a document id,ft,d is the frequency oft in d and

o1 · · · oft,d are offsets ind wheret appears.

Given a keyword queryQ1:‘world population’ and a wild card queryQ2:‘world

population is %’ , the algorithm for evaluatingQ1 involves only intersecting the

20

posting lists of terms‘world’ and ‘population’ , and finding the list of matching

documents. However, forQ2, each matching document has to further be scanned in or-

der to find the keywords that match the wild card. In the above example,Q1 matches

<1,2,[37,56]>, <2,1,[124]> and<3,1,[7]>, andQ2 matches‘6706993152’ which is

located on offset 10 of document 3. AlthoughQ2 matches its answer in fewer documents

thanQ1, the query response time forQ2 using inverted indexes in one of our experiments

was 12 times larger. This indicates that inverted indexes are not appropriate for evaluating

wild card queries.

6706993152→<3,1,[10]>

is →<1,4,[12,154,184,190]>,<2,4,[379,401,427,503]>,<3,1,[9]>

population→<1,7,[8,30,38,57,153,170,194]>,<2,2,[125,155]>,<3,1,[8]>

world →<1,3,[11,37,56]>,<2,2,[29,124]>,<3,1,[7]>

Figure 3.1: Architecture of an inverted index

Solutions on multi-keyword queries such as phrase and nextword indexes[7, 114] can

help reduce the time it takes to intersect the posting lists, but won’t help in the keyword

matching step, which is in most cases the dominant process. Therefore, development of

solutions for efficient retrieval of keyword matches from text seems essential.

Neighbor Index

Neighbor index, as proposed by Cafarella and Etzioni [13], is an inverted index that is

more suitable for queries over natural language text data. The index stores for each term

both its left and right neighbors. As shown in Figure 3.2 for our running example (given

in Figure 3.1), the inverted lists have grown significantly larger, but the answers to wild

card matches are stored within the index and can be found by looking at the appropriate

neighbors of a query literal. For example, to find the matches forQ2 in the neighbor index,

the search is conducted in the inverted index until offseto = 10 in documentd = 1 is

identified as an answer. To obtain the actual answer, it is sufficient to lookat the right

neighbor of the term at offset9 in the index without retrieving the document. This can speed

up the evaluation of wild card queries by 1-2 orders of magnitude comparedto inverted

index, as reported by the authors and confirmed in some of our experimentsin Chapter 6.

Permuterm Index and Self-indexes

Recently, there has been an evolving trend in developing index structuressupporting fast

full-text searches over large text corpora. These systems study the theoretical and practical

21

6706993152→ <3,1,[(10,is,<DBM1>)]>

is→ <1,4,[(12,world,estimated),(154,population,expected),(184,Earth,experiencing),(190,consensus,that)]>,

<2,4,[(379,sector,equally),(401,there,a),(427,there,a),(503,action,not)]>,

<3,1,[(9,population,6706993152)]>

population→ <1,7,[(8,human,of),(30,human,to),(38,world,has),(57,world,growth),(153,world’s,is),(170,human,over),

(194,current,expansion)]>,<2,2,[(125,world,and),(155,a,set)]>,<3,1,[(8,world,is)]>

world→ <1,3,[(11,the,is),(37,The,population),(56,of,population)]>

,<2,2,[(29,and,population),(124,fastgrowing,population)]>,<3,1,[(7,the,population)]>
1 Document Boundary Marker

Figure 3.2: Architecture of a neighbor index

aspects of index succinctness, search efficiency and compression. As a result, succinct

indexes have been developed and many interesting problems associated withthem have

been studied [90]. A succinct index, is an index that is able to store text in size proportional

to the information-theoretic lower bound of the text, while maintaining search efficiency.

One of the key ideas that led to the development of such indexes have beenthe idea

of the Permuterm Index by Garfield [41]. A permuterm index, computes all the sorted

cyclic rotations of the text, reducing the pattern matching into prefix searches. As a re-

sult, permuterm index requiresO(N2) space, whereN is the size of the dataset, which is

prohibitive. Motivated by the idea of a permuterm index, Burrows-Wheeler transformation

(BWT) [12], achieves a text transformation that is more amenable for compression. BWT,

discussed in Section 4.2.1, is thus used in building succinct indexes. Ferragina and Ven-

turini [39] use BWT to build a compressed permuterm index (CPI) that supports wild card

queries. CPI benefits from a rich set of previous work on efficient pattern matching over

BWT and strings.

Despite being highly efficient, CPI supports only a limited number of wild card queries

and is tuned to answer full-text searches over strings rather than natural language text

queries. A word-level adaption of the permuterm index has been developed by Chubak

and Rafiei in [26] which improves upon CPI in a few directions. Compared toCPI, WPI

supports a wider range of wild card queries. Moreover WPI supports word-level extractions

and variable size alphabets. WPI is covered in detail in chapter 4.

Other related work to WPI are the keyword-based generalizations of textindex struc-

tures such as word suffix arrays [37] and word suffix trees [4]. Finally, Manning et al. [76]

propose solutions for extending CPI to support more than one wild cards.They propose

materializing the range of matching rotations for one substring of query literalsand inter-

secting with the results obtained from the prefix range returned by the restof the query

22

literals.

Other Sequential Text Indexes

Querying over natural language text is often addressed in the literature by indexes that are

based on inverted lists. For large text corpora, these indexes run into theproblem of high

costs of intersecting long posting lists. As a result, solutions for multiple keywords have

been proposed that materialize posting lists for more than one keyword. Examples are the

works on phrase index and nextword index [7, 114]. Phrase index extracts natural language

phrases from a query log and stores inverted lists for such phrases. Anextword index,

for each term, keeps a list of high frequency terms that follow it in the text and the pair’s

corresponding inverted list. Chaudhuri et al. [18] propose breakinglong posting lists into

smaller ones by storing lists for multiple keywords. As a result they can guarantee an upper

bound for the worst case running time of the queries. However, the above works have no

support for wild card queries.

3.2 Natural Language Text as Linguistically Annotated Trees

3.2.1 Querying over Linguistically Annotated Trees

There has been numerous systems developed in the past decade for querying over linguis-

tically annotated trees. These systems differ widely in terms of the expressiveness of the

queries they support, the types of corpora they address (e.g. treebank, parallel, time or

word-aligned), performance, architecture and last but not least the syntax of their queries.

Some of these differences for a handful of published systems have been studied (e.g. [67]).

In this section we present a more comprehensive study of the systems for querying linguis-

tically annotated corpora. Moreover, we classify and compare such querying systems in

terms of their performance.

Tgrep [97], or tree grep, is one of the earliest systems developed for querying syn-

tactically annotated trees. Tgrep and its successor Tgrep2 [101] support sequential and

hierarchical querying over parse trees in a treebank. It operates over its own corpus file

format, but sentences parsed in penn-treebank [98] style or Combinatory Categorial Gram-

mar (CCG) style can also be converted to Tgrep format and queried. Tgrep2 has support

for the full set of axes defined in Section 2.2.3, and boolean operators.However, it does

not support quantifiers and thus tgrep2 is not First Order (FO) complete. The syntax of its

language is simple and can easily be used by non-expert users. Unlike our approach on

23

querying syntactic trees, Tgrep2 does not benefit from any index forefficient access to the

parsed data. For any query, it scans the whole corpus; hence, as reported in [42], it does not

scale on large corpora.

LPath [9] is a more recent system which extends the axes supported by XPath [27] to a

wider range of linguistic queries. It is at least as expressive as Tgrep2 and is more expres-

sive than XPath [69]. LPath uses a numbering scheme similar to the PrePost Coding [120]

of XML for efficient access to the navigational axes. Moreover, it uses a relational database

to store structural information about nodes in parse trees and creates several indexes for

efficient access. Performance analysis in [9] shows that LPath outperforms tgrep2 and Cor-

pusSearch [100] in most cases and has comparable efficiency to XPath when developed

under an engine using the labeling scheme proposed in [31]. In contrast,our system stores

the structural information of subtrees rather than nodes. In the case where the size of sub-

trees stored is at most1, our system is very similar to LPath. Moreover, our focus in this

thesis has been both on improving the performance of querying and on the conciseness of

the index.

Other querying systems over syntactically annotated corpora either focuson increasing

the expressiveness of the queries or focus on particular types of treebanks. Kepser devel-

oped Finite Structure Query (FSQ) [60] which is a lisp-like language for querying syntac-

tically annotated trees. Despite this query language being very expressive (full first order

logic) supporting extensive use of quantification, it is very inefficient and has a difficult

syntax. MONASearch, a later work by Kepser et al. [61, 79], adds Monadic Second Order

(MSO) elements to the querying language, adding even more to the expressiveness. Some

queries such as counting are only expressible in MSO. MONASearch uses tree automata for

its matchings, which results in an inefficient linear-time scan of the whole corpus for every

query. The reported performance of MonaSearch in [79] shows thatit outperforms FSQ, but

has a worse query time than TIGERSearch [64] on simple queries. TIGERSearch is a tool

for querying different treebanks, originally developed for queryinga German newspaper

treebank.

Table 3.2 gives a comprehensive summary of different querying systemsover syntac-

tically annotated trees, sorted based on the year these systems have been developed. In

this table, we compare some of the major query languages in terms of their expressiveness,

querying approach, target corpus and architecture. We also indicate ifthere has been any

report of the performance over these query systems and provide references. Unfortunately,

due to differences in the types of queries and corpora supported, we cannot provide a fair

24

comparison of all the querying systems in terms of performance. However,we will discuss

such comparisons when possible in the rest of this Section.

Table 3.2: Summary of the literature on query languages over syntactically annotated trees.
Refer to the text for the meaning of abbreviations.

Year Query Express- Target Corpus Querying Architecture Performance Ref.
Started System iveness Language Type Method Medium Reported

1994 Tgrep Axxx English SW Scan Disk Native N/A [97]
1998 NetGraph AxxV Czech MW Scan Disk Native N/A [83, 84, 86]
1999 ICECUP ABxx English MW+MT N/A N/A N/A N/A [111, 112]
2000 CorpusSearch AxxV English1 SW Scan Disk Native [9] [100]
2000 NXT Search2 ABQV German SW+ST Scan Memory Native [80] [54, 35, 80]
2001 Tgrep2 ABxV English SW Scan Disk Native [9, 42, 24] [101]
2001 Emu xxxx English SW+ST N/A Memory N/A N/A [15]
2001 TIGERSearch ABxV German SW Index Memory Native [79, 24] [64, 63]
2002 Emdros xxxV generic corpora Index Disk Relational [96] [95, 96]
2002 VIQTORYA xBxV German SW Index Disk Relational N/A [105]
2003 FSQ FOL German SW Scan Disk Native [79] [60]
2004 MONASearch MSO German SW Scan Disk Native [79] [61, 79]
2004 LPath ABxx English SW Index Disk Relational [9] [9, 69, 67]
2005 LPath+ FOL English SW N/A N/A N/A N/A [68, 69]
2005 LQL xBxV English MW Index Disk Relational [89] [89]
2006 DDDQuery AxxV German MW Index Disk Relational N/A [36]
2006 Tregex ABxV English SW Scan Disk Native [24] [70]
2007 ANNIS2 xxxx Multilingual3 MW+MT Index Disk Relational N/A [65]
2007 TreeAligner SM ABxV Multilingual4 MW Index Memory Native N/A [109]
2009 PML-TQ AxxV Czech MW N/A Disk Relational N/A [92]
2010 LPath-IR Axxx English SW Index Disk Native [42] [42]
2010 TPE Axxx English5 SW Scan Disk Native [24] [24]
1 Also Portuguese and French, seehttp://corpussearch.sourceforge.net/CS-manual/

Corpora.html
2 The query language is called NiteQL or NQL
3 Mostly German but also other languages such as Hindi and African languages
4 English, German and Swedish
5 Text abstracts from PUBMED containing protein names

Expressiveness of Query Languages

Expressiveness, or the expressive power, of a query language measures the range of ele-

ments expressible in that query languages. In Table 3.2 we use a raw metric for reporting

the expressiveness of the query languages. Aside from languages which are as expressive

as First-Order Logic, denoted by FOL, or as expressive as Monadic Second-Order Logic,

denoted by MSO, we use four characters to roughly describe the expressiveness of the other

query languages. Note that FOL is strictly more expressive than non-FOLlanguages and

MSO is strictly more expressive than FOL.

In the third column of Table 3.2, the first letter,A, refers to the language supporting the

navigational axes. For anA to appear in the expressiveness column of a query language, it

is usually enough if it supports parent (or child), ancestor (or descendant), immediate fol-

lowing (or immediate preceding), following (or preceding) and any of the sibling axes. If

the language does not support enough axes or if we cannot find enough clues in the query-

25

ing system manual or references, we mark it by anx in the respective column. The second

letter,B, refers to supporting boolean operators over expressions. We require that the lan-

guage supports negation, and either of conjunction or disjunction.Q refers to the support

of universal quantifier (∀) and existential quantifier (∃). Languages which support both of

these quantifiers usually explicitly define the notation of implication (→) as well. More-

over, nodes or variables are often existentially quantified, thusQ usually reduces to finding

if the query language supports universal quantifiers. Finally,V refers to the support for

defining variables over expressions. Using variables not only makes thetask of composing

the queries easier, but also allows the definition of cycles in the query pattern.

If any of the the above four fields is marked with anx, it means that the language does

not support the given feature or we could not find a clue. Note that notall the querying

features over syntactically annotated trees can be expressed using the above four letters.

For example edge alignment, scoping and regular expressions are not accounted for in our

formulation, while are supported by a large number of reviewed systems. Also note that the

semantics of operators and matchings might vary from system to system. As a result, the

same query might be evaluated differently by two querying systems which support it.

Table 3.2 also reports on the properties of theTarget Corpusfor each query system,

including the language and the type of the corpus.SWrefers to a Single-layer Word-aligned

corpus, hence a treebank, andMW refers to a Multi-layer Word-aligned parallel corpus.

Finally STandMT refer to a Single-layer or a Multi-layer Time-aligned parallel corpus.

Our work in this thesis has an expressive power ofAxxx, given the above formulation,

and focuses more on subtree matching. Our solutions are not bound to a specific language

or a parser, however, they only operate on single-layer word-alignedcorpora.

Performance

A large number of the query languages discussed above lack greatly on addressing the issue

of performance. There are only a few systems that report the runtime of some queries on

their system, and even those systems do not report on the other performance measures such

as the size of the indexes, memory requirements or index construction time. Thesizes of

the corpora used are usually small, ranging from a few thousand sentences to a few million

sentences.

There are a large number of query systems whose performance is linear on the size of

the corpus. Examples of such systems, as denoted in Table 3.2 by Scan under querying

method, are tgrep2, FSQ (Finite Structured Query), MONASearch, Tregex and TPE (Tree

26

Pattern Expression). In order to do their matchings, they have to compare each query with

every tree in the corpus. Their query execution time is thus determined by boththe corpus

size and the time it takes to evaluate a query against a data tree.

The approaches that scale well are usually the index-based approaches. Among the few

reported in Table 3.2 only four have their performance reported either bythemselves or as

benchmarks for other methods. These four are LPath, LPath-IR, LQL and Emdros. LPath-

IR [42] uses a large datasets of a few million sentences and reports on the performance

analysis with different types and sizes of queries. However, all the queries it reports the

performance for are path queries. Moreover, they only return the trees which match a given

query, without finding the individual matches within the same sentences.

LQL [89] very briefly reports the performance of its queries over a corpus of 10 million

sentences to be in the order of a few minutes. However, it does not elaborate on the experi-

mentation setup and the details of their access methods. Emdros [95, 96] supports querying

on generic corpora and has a relatively extensive study of its performance. Unfortunately,

the type of corpora and the queries reported makes it difficult to compare the performance

of Emdros with other systems. Finally, LPath [9] compares its performance withtgrep2 and

CorpusSearch as its baseline methods and outperforms both for most queries.

In comparison with our Subtree Index in this thesis, LPath and LPath-IR have the most

similar approach as they both develop indexes over structural information of the trees. Our

Subtree Index is similar to LPath in the case where the size of the largest subtree stored is

1, thus storing only nodes of the trees. However, LPath and LPath-IR do not consider the

injective matching assumption. As a result, the result set of queries could bedifferent when

there are multiple nodes with the same label within the query tree.

3.2.2 Query Languages over XML Documents

EXtensible Markup Language (XML) is extensively used for storing semi-structured data.

Similar to syntactically annotated trees, XML documents can be modeled as unranked node-

labelled trees. Unlike syntactically annotated trees which could be modelled as ordered or

not ordered, XML documents are often modelled as ordered trees. Query languages such

as XPath [27] and XQuery [29] over XML documents, support similar functionalities as the

query systems presented in Section 3.2.1. XPath [27] for example, supports querying over

navigational axes such as child, following and self. XQuery uses XPath as its navigational

building block and adds FLWOR1 expressions. In this section, we briefly discuss the se-

1For-Let-Where-Order By-Return

27

mantics of XQuery and XPath queries and the related work on efficiently processing such

queries.

Index Graph Schemes

As an alternative to numbering schemes which assign unique set of numbersto data tree

nodes, a set of approaches have been developed whose main idea areto summarize XML

data such that structural information is preserved. Examples are the workonStrong DataGuide

by Goldman and Widom [43] and1-Indexby Milo and Suciu [81]. These approaches use

a similar approach used for converting a non-deterministic finite automaton (NFA) to a de-

terministic one (DFA). As a result, the structure of all XML trees are preserved within the

index graph scheme and at each state or particular node label, it would be clear which other

nodes/labels are reachable. Query processing is done by navigating these summaries, which

are in practice much smaller than the actual data, specifically for tree structured XML data.

XPath

XPath is a path query language. Every query consists of a context node(from where the

search begins) and a set of axis steps which narrow down the result ofthe query. Hence, the

result of an XPath query is a set of nodes matching the context node in the query tree.

Most of the literature around XPath is due to the work of Grust [50] and Gottlob [45].

This line of work mostly focuses on using the querying power of a relationalengine to sup-

port XPath axis steps. For example, Grust [50] presents an encoding that maps each node to

a point in a two-dimensional plane of the node pre-order and postorder ranks and converts

each XPath axis query into a range query over this plane. He suggests using an R-Tree, in

order to efficiently support the range queries. Staircase join [51] is another relational ap-

proach that stores a set of structural information of XML trees within a database to achieve

a better performance for XPath axes over a sequence of context nodes. It performs three

additional optimizations over Grust’s XPath Accelerator [50], namely pruning, partitioning

and skipping. The basic idea behind these optimizations are to avoid redundant checks and

evaluations, when performing an axis evaluation over a sequence of context nodes.

XQuery

XQuery [29] is a Turing-complete general purpose language supporting a broad set of

querying functionalities such as variable and function definitions, recursion and loops. As

a result, it is far more expressive than XPath. A complete review of the workon efficiently

28

supporting different aspects of XQuery is out of the scope of this thesis. As a result, we

only cover a few closely related to our work. As in XPath, relational databases have been

the backbone for supporting XQuery. DeHaan et al. [31] propose animplementation strat-

egy based ondynamic intervalscoding for storing XML in relations and mapping XQuery

to SQL. Their strategy supports function definitions and nested FLWR expressions. Chen

et al. [23] introduceGeneralized Tree Patterns(GTPs) which augments tree patterns with

optional edges and boolean operators over nodes. These GTPs are shown to support sig-

nificant XQuery features such as nesting, aggregation, quantifiers and joins. Finally, Boncz

et al. [10] introduce loop-lifted staircase join for efficiently supporting XPath expressions

within XQuery nestedFor loops.

Twig Queries

The most commonly used axes in XPath and XQuery are the child axis and the descendant

axis, denoted as/ and// (alsop-c anda-d axes orpc andad axes), respectively [47].

A twig query is an (unordered) unranked node-labelled tree, whose edges indicate either a

child or a descendent relationship, denoted by a single or a double line, respectively. There

has been an extensive line of research focusing on theTwig Pattern Matching, which looks

at the problem of finding matches for nodes of a query tree within a set of XML trees. Thus,

a match is a set of data nodes having the relationship given in the query tree.An example

of a twig query, a tree representation of an XML document and the corresponding query

matches are illustrated in Figures 3.3(a),(b) and (c), respectively. Note that in this figureA1

belongs to the class of nodes that have label of typeA. Similarly, B1, B2 belong to label

typeB andC1, C2 belong to label typeC. We denote query nodes by only the label types,

which can match any of the data tree nodes belonging to the same class.

(c) Query Matches

B

C

C

(b) Data Tree

C

A

B

(a) Query

<A1,B2,C2>
<A1,B1,C2>

1A

B1 2

12

Figure 3.3: Sample query, data tree and match results for a twig matching problem.

In the rest of this section, we will discuss two major approaches to solving twigqueries,

relational and native. Most of these approaches use the numbering schemes and structural

joins discussed in Section 2.2.4 as their building blocks. We further discuss how our subtree

29

index over syntactically annotated trees might overlap with or benefit from the approaches

reviewed in this section, and clarify our contributions compared to these approaches.

Relational Approaches

The relational approaches for tackling twig matching benefit from the rich storage mecha-

nisms, query optimization and concurrency control, developed over relational engines. In

these approaches, the structural information of the trees are stored in relational tables and

twig queries are mapped into SQL queries that can retrieve the matches. In general, while

relational approaches are easier to implement and they benefit from existing development in

relational databases, they cannot address certain performance issues related to twig queries.

For instance, unless the structural join is integrated within a database engine, the size of in-

termediate results from partial solutions might be very large while evaluating twigqueries.

In general, native join approaches are more efficient and favorable for matching twig

queries.

The common relational approaches for storing XML are (1) the edge approach, (2)

the node approach, (3) path materialization, and (4) the DTD approach. In the edge ap-

proach [40], an XML document is considered as an edge-labelled tree.Edges are stored

in a relational table with (Source, Target) pairs as keys, indicating the source and target

nodes of an edge. The edge approach could be very inefficient for long queries and queries

containing// axis, as many joins might be necessary. The node approach [120] stores node

information such as the interval codes, parent id and the node tag in a relational table. It

is more efficient for queries with// axis than the edge approach. The path materialization

approach avoids expensive joins by pre-materializing paths, either fromthe root to nodes

as in [118] and using the interval coding or from nodes to the root as in [93] and using

a variant of Dewey coding. The twig queries are decomposed into path queries and the

SQL LIKE function is used to perform path matchings. The path materialization might

be inefficient for queries with multiple//’s and might produce incorrect results for trees

with recursion [47]. The DTD approach uses the relationships and data types defined in

the XML Document Type Descriptors (DTDs) to design the architecture of the relational

tables, hence reducing the number of joins [102].

Of the above relational join approaches, the first three could be considered as special

cases of our subtree index, ignoring the injective matching assumption. Thenode approach

is similar to the case where we only store subtrees of size1 and the edge approach can be

represented with the scenario where we only store subtrees of size2. The path material-

30

ization would be the scenario where we only keep subtrees that consist ofunary branches

rather than all subtrees. As we show in our experiments in Chapter 6, subtree index per-

forms better for larger sizes of subtrees, outperforming the node and edge approaches. The

path materialization approach would not be suitable for our matching tasks as it does not

distinguish between paths that have nodes in common and distinct paths. For instance trees

such asT1:A(B(C)(C)) andT2:A(B(C))(B(C)) will both be decomposed into two

A(B(C)) paths.

Native Twig Join Approaches

Given the interval codes over XML nodes, evaluating twig queries requires the use ofθ-

joins (joins involving inequalities) as a fundamental operation. These joins can be expen-

sive in relational engines as large intermediate results might be generated. Native twig join

approaches try to perform structural joins as efficiently as possible. These approaches as-

sume that the structural information of nodes, i.e.DocId, Pre, Post, Levelvalues are stored

in an inverted list, sorted onDocIdandPrevalues.

Multi-Predicate MerGe JoiN (MPMGJN) [120] is an adaptation of the merge-join

for parent-child and ancestor-descendant queries. Given a queryA/B (or A//B), the

algorithm instantiates two cursors at the beginnings of the sorted lists forA andB and

for eachA posting, iterates through allB postings, whereA.DocId = B.DocId and

A.Pre ≤ B.Pre ≤ A.Post. One problem with this approach is that anA node is com-

pared with all itsB descendents, even forA/B queries. Motivated by this, StackTree [1]

uses a global stack to pushA nodes as they are seen in the sequence of the input stream.

Thus, everyB node is only compared to the top of the stack for parent-child axes, reducing

the overall number of comparisons.

Both algorithms operate on a single query axis at a time and the partial results from these

axes have to be computed and joined, which could be costly if the size of the intermediate

results is large. PathStack [11] reduces the size of the intermediate results by decomposing

twig queries into several root to leaf paths. It then solves for these pathsand joins the results.

Instead of using one global stack, PathStack uses one stack for each label in the query.

Nodes are pushed into their corresponding stacks once they are seen inthe input stream with

a pointer to the top of their parent stack. Once a leaf is observed, solutionsare enumerated

and sent to the output. TwigStack [11] is the first holistic twig join algorithm. Similar to

PathStack, it uses multiple stacks for labels in the query and uses agetNext()function to

filter intermediate results that will not be part of a final match.getNext()guarantees that

31

no data node, sayA1 in Figure 3.3, is pushed over its corresponding stack unless all its

descendents in the query tree exist in the subtree rooted byA1 and its children have this

property recursively. TwigStack is shown to be optimal for queries with only // edges. By

optimality we mean no redundant intermediate results are pushed over the stack. Thus, as

for TwigStack, every node that is pushed over a stack in a// only query, contributes to a

solution. Thus, an optimal solution is linear on the sum of the input and output sizes and is

independent of the intermediate results generated. TwigStack is sub-optimalwhen used for

general twig queries.

The problem of optimality has been the focus of interest for other twig join algorithms.

TwigStackList [73] uses lists to cache limited number of nodes in the memory and ob-

tains optimality for twig queries in which/ edges are under non-branching nodes only.

iTwigJoin [20] extends the TwigStack by adding several inverted sublists based on the level

of the nodes in the data trees, achieving optimality for queries with only/ axis as well as

// only queries.Twig2Stack [19] is the first optimal algorithm for addressing the twig

join problem. It uses a complicated list of trees of stacks data structure for storing the in-

termediate results and enumerating the solutions. Recently, Grimsmo et al. [48] proposed

TJStrictPre and TJStrictPost, which are both optimal and fast.

The subtree index developed in this thesis uses a native approach and therefore it could

benefit from the above join approaches. However, it should be noted that certain tweaks

have to be applied for such algorithms to work with subtree index. First, twig pattern

matching does not make the injective matching assumption and the matches obtainedfor a

twig match have to be further pruned. Moreover, stack based approaches such as StackTree

and TwigStack require some modifications over non root-split coding scenarios as the post-

ing list of subtrees are sorted on thePre values of the subtree roots. However, joins could

be performed over non-root nodes of subtrees, whose lists might not be sorted on theirPre

values.

3.2.3 Querying over Trees

In this section we briefly review some of the related works on querying overgeneral tree

structured data. These include Unordered Tree Pattern Matching (UTPM), Ordered Tree

Pattern Matching (OTPM) and Approximate Subtree Matching (ASM).

32

Unordered Tree Pattern Matching

Chen and Cooke study the problems of Unordered Tree Pattern Matching (UTPM) and strict

UTPM [21]. UTPM and strict UTPM study the problem of pattern matching over general

trees using the same mapping functions as the ones we define in definitions 2.2.1 and 2.2.2,

respectively. They show that strict UTPM is NP-complete and propose analgorithm for

UTPM that runs inO(|D||Q|) time, whereD andQ are data and pattern trees, respectively.

Götz et al. [46] study the problem oftree homeomorphism. In their approach all query

edges will be mapped to ancestor-descendant axes over the data tree.

Similar to our approach, there are works that use index elements larger thannodes or

edges to improve the performance of querying. Shasha et al. [103, 104] proposed ATree-

Grep, which facilitates approximate and exact matching over unordered trees. ATreeGrep

stores all paths of the set of input trees into a suffix array. It also usesa hash index over

all nodes and edges to filter a set of candidate trees and improve overall querying perfor-

mance. Tree matching is done by decomposing the query tree into its root to leafpaths,

and evaluating them against the suffix array. In contrast to our subtreeindex, ATreeGrep

does not support distinct labels over different children of a node. Italso does not support

single node queries. Moreover, our subtree interval and root-split codings remove the need

for post-validations. As a result, as confirmed by our experiments, our subtree index using

root-split coding performs orders of magnitude faster than ATreeGrep.

Ordered Tree Pattern Matching

The problem of Ordered Tree Pattern Matching (OTPM) refers to finding exact matches of

an ordered query treeQ over a a node-labelled ordered data treeD. More specifically, the

task is to find a mapping between nodes inQ and nodes inD, such that the same parent-

child and sibling order relationship that exist between nodes inQ exist between mapped

nodes inD. The obvious approach to solving OTPM is to try matching every subtree of

D with Q which takesO(mn) time [56], wheren is the size of the data tree andm is the

size of the query tree. Faster approaches [33] use suffix trees and solve the problem in

O (n
√
mpolylog(m)), achieving a more efficient solution to this problem. To the best of

our knowledge the fastest approach proposed so far achievesO(n log3m) [28].

Approximate Subtree Matching

Given a pattern treeQ, (Top-k) Approximate Subtree Matching ((T)ASM) refers to finding

subtrees of a large data tree or a forestD that are similar toQ. The similarity is usually

33

defined as the tree edit distance [121] which is the minimum number of tree operations

to convert one tree to another. Two subtrees are considered similar whentheir distance

is smaller than a certain threshold. The output is usually a sorted set of subtrees, ranked

based on how similar they are to the query pattern. Guha et al. [52] address the problem

of approximate joins over XML documents. They introduce the notion of a reference set,

which is a projection of the join sets into the metric space to reduce the size of the joins.

They also propose inexpensive computation of upper and lower boundson the distance

between two XML documents that effectively prunes a large number of join candidates.

Similar to the idea of relevance ranking in information retrieval, query trees can be scored

and ranked. Amer-Yahia et al. [3] propose path and twig scoring over twig queries that

capture structure and content of the trees. Finally, recently Augsten et al. [6] proposed

an algorithm to compute an upper-bound on the size of the subtrees in the datatree based

on the query tree. Then, they proposed a prefix ring buffer to prune the subtrees that are

above this size in one scan of the data tree. Approximate Subtree Matching can be of

interest as a future work on querying linguistic trees. As an example, given the non-uniform

distribution of labels over the data and query trees and the localities that existamong the

labels, heuristics can be developed to lead the search into regions of the data tree more

prone for matches in order to find the top-k matches faster.

3.2.4 Querying over Graphs

There exist annotations over natural language text that cannot be modelled using trees and

require to be represented using DAGs or general graphs. Moreover, Indexing and querying

graphs have lots in common with trees and are relevant. In this section we review the

major recent works regarding the index structures and query algorithms over graphs. Graph

indexing can be divided into two major categories. Exact subgraph matching(subgraph

isomorphism) and approximate (similarity) subgraph matching. Both problems areNP-hard

in their general form and as a result most solutions are either computationally prohibitive

for large graphs or use heuristics for reducing the problem size.

Exact Matching

GraphGrep [103] addresses the problem of exact subgraph matchingover undirected node-

labelled graphs. It stores all paths of sizes less than a threshold (usuallya small number)

found in the graph database into hash tables. The query graph is traversed in depth-first

order and shredded into multiple paths, which are evaluated against the hash tables for

34

matches. GIndex [117] discusses why path-based indexing schemes for graphs could pro-

duce incorrect results or be inefficient and proposes a frequent sub-graph mining algorithm

in order to store frequent sub-graph structures instead of paths. They use a larger support

threshold for larger frequent sub-graphs in order to avoid storing exponentially many sub-

graphs and therefore they are able to reduce the index size. GIndex is shown to outperform

GraphGrep by an order of magnitude. The work by Williams et al.i [113] on subgraph

isomorphism, stores the canonical forms of all subgraphs into an index. However, they

assume that the input graphs are very small, making it possible to compute and store the

exponentially many subgraphs of all sizes. Their approach cannot be used over parse trees

as computing subtrees of all sizes takes tremendous amount of time to complete for a single

parse tree. TreePi [123] uses frequent subtrees as elements of its index for subgraph iso-

morphism problem. TreePi prunes the search space of candidate graphs, and finds the set

of matches using post validations. Compared to TreePi, our approach stores all subtrees up

to a certain size and performs exact matching over the index. Moreover, our root-split and

subtree interval codings do not require any post validations. As we discuss in Chapter 6,

an adaptation of TreePi to indexing parse trees results in smaller index sizes, but a worse

querying performance compared to our root-split coding.

Approximate Matching

He and Singh [53] propose C-Tree, an R-tree based index that supports both exact and ap-

proximate subgraph queries. C-Tree stores a hierarchy of graphs in atree. For similarity

queries, they use the edit distance as their measure of similarity and supportk-nearest neigh-

bor and range queries. SAGA [107] introduces an approximate subgraph matching tech-

nique that accounts for node gaps, structural mis-matches and node mis-matches. SAGA

uses a similarity measure based on the distance of two subgraphs. It prunes and stores

subgraphs having nodes up to a certain threshold in an index for fast look-ups. The match-

ing algorithm works by shredding the query into small fragments, finding the matches to

the small fragments and joining the results. TALE [108] proposes a heuristicapproach to

efficiently support approximate subgraph matching over large graphs. It introduces neigh-

borhood index which is a disk-based augmented index that stores certain properties about

the adjacent nodes of each node in the graph. Matching is done based oncertain properties

holding for the node and its neighborhood. TALE does not guarantee to find all matches

or that matches don’t have false positives, however, it reports high precisions and recalls in

the experiments.

35

3.3 Natural Language Question Answering

In this section, we review some of the works in the literature around question answering

over natural language text that could potentially benefit from our index structures and access

methods in this thesis.

Question Answering (QA) refers to the task of finding “correct” responses to questions

expressed in a human readable natural language. QA in open domains is a challenging task

as questions and answers can be expressed using various syntaxes and wordings. Many

different types of questions have been studied, but recent QA systemshave made more

progress with factoid, list and definition questions mostly due to their relative simplicity.

Factoid questions are questions whose answer is a fact or a set of factsand list questions

are an extension of factoid questions specifically denoting the output to be alist of facts.

These three types of questions have been the main focus of the Text REtrieval Con-

ference (TREC) QA track. The state-of-the-art systems are able to finda correct answer

to around70% of the factoid questions within their first try [30] on a corpus of blogs and

a corpus of news. During the several years in which TREC held the QA tracks, some of

the best systems achieving very high accuracies such as PowerAnswerfor TREC-2002 [87]

have used syntactic parsing to obtain more accurate results. Moldovan et al. in [88] show

that using the linguistic information in QA such as part of speech tags and syntactic parsing

significantly improves the recall of the answers. However, there is a trade-off between the

accuracy obtained and the performance of these systems. Finally, Ittycheriah et al. [59] pro-

pose techniques for constructing syntactic queries that can lead to effective answers. They

model the answer selection as a classification task which maximizes the conditional proba-

bility that the query has matches, and thus try to maximize the number of matches foreach

query.

Recently, automated QA systems have focused mostly on question answering over the

world wide web (See [72] for a survey of techniques). Most techniquesdeveloped over the

web benefit from statistical methods and redundancy of answers to compensate for the low

accuracy of a large scale open domain question answering task. Due to thelarge volume of

pages over the web, most QA systems over the web consist of (1) an IR engine which ex-

tracts the relevant documents that might contain the answers, (2) a questionanalyzer, which

based on the question type, generates an appropriate query and sendsit to the IR engine, and

(3) the answer extractor which finds the answers in the retrieved documents. MULDER [66]

is one of the earliest question answering systems over the web. It extensively uses syntactic

36

parsing in several components of its system such as finding the question type and parsing

the text snippets returned from Google searches. They report that therecall of their QA

system is around60% for the top1000 answers for the TREC-08 questions. With efficient

querying systems available over large text collections, QA systems can benefit from more

efficient access methods and querying algorithms over syntactic relationships.

37

Chapter 4

Sequential Indexing and Querying of
Natural Language Text

In this chapter, we discuss the problem of indexing and querying naturallanguage text in

the scenario where text is modelled as a sequence of words. Specifically we study index

structures and querying algorithms for handling word-level wild card queries. Our study

includes a review of a few baseline methods and a discussion of how they handle wild

card queries. Further, we introduce Word Permuterm Index (WPI) as anovel and efficient

indexing scheme, study its architecture and analyze its performance.

4.1 Baseline Methods

Without loss of generality, we consider phrase queries that have exactlyone wild card and

any number of non-wild card terms, referred to as literals. For queries withmultiple wild

cards, one can find the matches for query sub-sequences that have only one wild card,

substitute the wild card with its matches and look for further matches.

Next, we introduce a few baseline access methods that are used within natural language

applications and study their performance. Regardless of the access strategy, a wild card

query evaluation can be often divided into two phases: (1)Binding phase, where the indexed

elements (e.g. sentences, paragraphs or documents) are filtered basedon the query literals

that are present and maybe their order, and (2)Matching phasein which filtered elements

are scanned and the keywords that match the wild card are retrieved.

4.1.1 Full Scan

A straightforward approach for answering wild card queries is to scan the dataset elements

one by one and check every element for possible query matches. If the dataset fits in main

38

memory, a full scan may not be a bad idea given that the initial cost of loadingis negligible

when amortized over a reasonable-sized set of queries.

4.1.2 Inverted Index

As illustrated in Figure 3.1, our implementation of an inverted index stores a linearvector

of posting triplets< d, ft,d, [o1, · · · , oft,d] >. Wild card query evaluation over inverted

index can be easily adapted from the standard implementations of keyword queries. Key-

word queries are evaluated by intersecting the posting lists of query literals and finding the

matching documents and corresponding offsets. The key idea behind wild card query eval-

uation is to sequentially scan these documents and to find and extract the wild card matches.

Thus, in order to do the wild card matching we need to store and access the text dataset as

well.

The complexity of wild card matching over an inverted index isO(
∑m

i=1,qi 6=% ‖qi‖) +
O(‖Q‖ · |davg|), where‖P‖ is the number of bindings of a patternP 1. The first expression

gives the cost of matching query keywords and retrieving partial matches. Since we have

to go through all the matching elements in order to find the wild card matches, this cost is

‖Q‖ · |davg|, wheredavg is the average size of an indexed element.

4.1.3 Neighbor Index

As introduced in Section 3.1.2, a neighbor index is an inverted index that stores for each

term both its left and right neighbor terms within its postings. The original implementation

of the neighbor index stores for each neighbor in addition to the term, both its part of speech

(e.g. noun-phrase) and its role (e.g. term). In our sequential modeling oftext, tags are

not explicitly used in the queries, thus we implement a simplified version of the neighbor

index, where for each offset, only one left neighbor and one right neighbor are stored with

no further information. Therefore, the structure of a posting in our implementation of the

neighbor index looks like< d, ft,d, [(o1, l1, r1), · · · , (oft,d , lft,d , rft,d)] >, whereli andri

are the left and right neighbors of thei’th occurrence oft in d, respectively.

Given that neighbor index is an inverted index, the algorithm for evaluatingwild card

queries over neighbor index follows the same bind-and-match process ofany inverted in-

dex, except that thematching phaseis much less costly. Once the matching documents and

offsets are found, the wild card matches can be extracted in without referring to the docu-

ments. Thus, the running time of wild card query evaluation over a neighbor index will be

1The number of documents matchingP

39

O(
∑m

i=1,qi 6=% ‖qi‖) +O(‖Q‖).

4.2 Permuterm Index over Natural Language Text

This section presents our Word Permuterm Index (WPI) as an efficient access method that

supports wild card querying over natural language text. WPI is an adaptation of the per-

muterm index [41, 39] and as such it has the following three components. (1) A word level

Burrows-Wheeler (BW) transformation of text [12], (2) an efficient mechanism to store and

access the alphabet, and (3) an efficient mechanism to access the ranks. Next, we discuss

these components in more detail.

4.2.1 Word Level Burrows-Wheeler transformation

Burrows-Wheeler transformation (BWT) is a reversible transformation that is used in well-

known compression algorithms such as bzip2 and is believed to give a permutation that is

more amenable to compression. The transformation, when applied to a character string,

can change the ordering of the characters in the string but not their values. Our work ap-

plies BWT to words instead of characters; a word-level transformation has some interesting

properties especially in answering wild card queries.

Assume we are given a dataset containing three sentencesS1:‘Rome is a city’ ,

S2:‘countries such as Italy’ andS3:‘Rome is the capital of Italy’ ,

and we would like to index them using WPI. Adapting the ideas proposed by Manning et

al. [76] and Ferragina and Venturini [39], we sort this dataset lexicographically2 and use

the $ symbol, to mark the sentence boundaries and the˜ symbol, to mark the end of the

dataset. This results in our dataset to look likeT:‘$ Rome is a city $ Rome is

the capital of Italy $ countries such as Italy $ ˜’ .

A word-level BWT is obtained by (1) computing all the cyclic rotations of the words,

(2) sorting the rotations, and (3) finding the vector that contains the last word in the rotations

in the same order after the sorting. Figure 4.1 depicts the result of applying these three steps

to T in the given example. Note that the set of sentences are rotated by one word at each

level. We denote the vector of last words, BW-transformation, byL and the sorted vector

of first words, byF .

BWT has some very interesting properties. First, for any word inT , thej’th occurrence

of the word inL and thej’th occurrence of the word inF correspond to the same word of

the sequence. For instance, the second occurrence of the word‘Italy’ in L is preceded

2Sorting guarantees nice properties on BWT, See Section 4.2.4

40

1

2

3

4

5

6

7

8
9

10
11

12

13

14
15

16

17
18
19

the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is
~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $

countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $
is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome
is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome

such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries

of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital

capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the

city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a

as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such

a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is

Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $

Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $

Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such as
Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of

$ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy

$ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city

$ countries such as Italy $ ~ $ Rome is a city $ Rome is the capital of Italy

$ Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~

Li F

Figure 4.1: Sorted permutations of a sample set of sentences and the first and last word lists,
F andL.

by ‘as’ , and so is the second‘Italy’ in F ; hence,L(4) = F (6). Second, for every row,

L(i) precedesF (i) in T . Given these two properties, Ferragina and Manzini [38] propose

the following function for traversingL in backward order:

LF (i) = C[L[i]] +RankL[i](L, i)

whereC[L[i]] is the number of words smaller thanL[i] andRankL[i](L, i) is the number

of timesL[i] appears in the sub-sequenceL[1..i]. LF (i) tells where the element preceding

L[i] in T is located inL. E.g.LF (6) = C[′as′] +Rank′as′(L, 6) = 9+1 = 10 andL(10)

is ‘such’ and is the word precedingL(6) =‘as’ in T . SinceT is sorted, one can start

from L(1) = F (n) and repeatedly callLF to findL(n) = F (1), traversing the whole text

in backward order. Therefore,L is reversible, meaning that givenL, any sub-sequence of

words inT can be re-constructed. We can use this property to turnL into an index that can

support searches over word sequences. The challenges would be tosupport a wide range of

wild card queries and to efficiently support access toC andRank, required for traversing

L in backward order. Next, we discuss these challenges and the proposed solutions.

4.2.2 Maintaining the Alphabet

A major difference between the permuterm index and WPI is in the size of their alphabets.

The alphabet in permuterm index typically consists of ASCII characters and symbols which

41

are small in size and are not required to be explicitly stored. However, the alphabet size in

WPI grows with the size of the text dataset almost linearly. When|Σ| is in the order of

millions, efficient access to alphabet elements, their ordering and their frequency is crucial.

In order to provide efficient access toΣ, we built one array and one hash table. The

array stores the elements ofΣ in ascending order, therefore the first element is always $

and the last is̃. The array helps to find which alphabet element is represented by which

numerical code, which is its index in the array. Coding the alphabet is essential for efficient

implementation of algorithms such asbackwardSearch andRank. Without coding,

we will not be able to achieve the time complexities we later report for these algorithms.

Moreover, coding reduces the index size, replacing a keyword and a delimiter by a code

which uses smaller number of bits.

The hash table stores the same information in the reverse order; given an alphabet ele-

ment, the hash returns the code of the element, together with its frequency and cumulative

frequency,C. Thus,C[t] counts the number of alphabet elements in the whole dataset that

are smaller thant. In the above example,|Σ| = 13 and the hash table provides constant-time

access toC values for all the alphabet elements.

4.2.3 Rank Data Structures

Rankc(L, i) returns the number of occurrences ofc ∈ Σ in the prefix1 · · · i of arrayL.

In order to evaluate queries over WPI, we make frequent accesses toRank and therefore,

quick access would be required. Naive baseline solutions to the rank problem are as fol-

lows. (1) Start from the first element inL and compute rank by counting, which has space

complexity and average search complexity ofO(n). (2) Keep a matrix of all the alphabet

elements and all the locations inL and pre-compute all the values. This approach has the

optimal constant search time but a space requirement ofO(n|Σ|), which is too much given

the fact that|Σ| grows relative to the size of the dataset. Given the large size of our alpha-

bet, we chose a combination of a wavelet tree [49] and a three level architecture to support

constant time rank operation over a bit sequence [90].

A wavelet tree is a perfect binary tree, with a bit sequence at each noderepresenting the

occurrences of a sequence of alphabet elements. The root representsΣ overL and each leaf

represents one of the alphabet elements. A non-leaf nodev represents alphabet elements

Σv = {ei · · · ej} and contains a bit sequenceBv = bi · · · bj . For eachi ≤ k ≤ j we

havebk = 0, if L[k] ∈ {ei · · · e(i+j)/2} andbk = 1, if L[k] ∈ {e(i+j)/2+1 · · · ej}. The bit

sequence at the left child ofv will represent elements ofΣ in {ei · · · e(i+j)/2} and the right

42

Rank(Node,f,l,e,i)
1 if i = j
2 return nodeRank(Node,i)

else
3 if e ≤ ⌊f+l

2 ⌋
4 return Rank(Node→left, f, ⌊f+l

2 ⌋, e, i - nodeRank(Node,i))
else

5 return Rank(Node→right,⌊f+l
2 ⌋+1,l, e,nodeRank(Node,i))

Figure 4.2: Rank function computes the occurrences ofe in prefix1 . . . i of L

child represents alphabet elements{e(i+j)/2+1 · · · ej}, recursively. Thus, the algorithm for

computing rank of an alphabet elemente ∈ Σ in prefix 1 . . . i of L, using the wavelet tree,

would be as shown in Figure 4.2.

In Figure 4.2,nodeRank(Node, e, i) counts the number of1’s in the prefix1 . . . i at

nodeNode. The count of0’s can be obtained byi − nodeRank(Node, e, i). Counting

the number of1’s in each node by sequential scanning is very in-efficient. There are afew

solutions that provide constant-time access to binary rank values over a bitsequence [90].

In our work, we use a solution which usesn + o(n) bits of additional storage at each

node, wheren is the length of the bit sequence in the node. Figure 4.3 depicts our wavelet

tree solution overL for the example of Section 4.2.1. For thenodeRank to operate in

constant time, two arrays are maintained at each node, namelysbr andbr 3. For each

node,sbr[i] stores the count of1’s in the range[b0 . . . bi×S2
b
−1], whereSb = ⌈logn⌉ and

i ∈ {0 . . . ⌊ n
S2
b

⌋}. br[i] stores the count of1’s for the range[b
⌊
i×Sb

S2
b

⌋×S2
b

. . . bi×Sb−1]. Finally,

a table calledSmall Rank (sr) is pre-populated, which stores the binary rank values

for bit sequences of sizet = ⌊Sb/2⌋+ 1.

Recall thatnodeRank function returns the rank of a prefix of the bit string stored at a

given node. As depicted in Figure 4.4,nodeRank usessbr , br andsr arrays to compute

the rank in constant time.nodeRank is computed as shown in Figure 4.4. In this figure,

b2d(bs, p, len) returns the decimal equivalent of the bit sub-sequencebsp . . . bsp+len.

4.2.4 Algorithms and Analysis

Ferragina and Manzini in [38] benefit from the properties of the Burrows-Wheeler trans-

formation discussed in Section 4.2.1 and proposebackwardSearch algorithm, which

searches for a pattern over PI in backward order and returns the range of matching strings.

A term-level adaptation ofbackwardSearch over WPI is depicted in Figure 4.5. Given

3These stand forsuper block rank andblock rank , respectively

43

city of ~

0 1 0 00
0 0 00

0 2 2 0 3
0 0
 100100000010 1001100

 000010110 100 1000 100

0
0 2 4 5

 1000100011100000110

0
0

0
0

 11 1111 1 1 1 11 11 1 1 1
00 0 00 0 00
00 000 00 0

$ countriescapitalItaly Rome a as is such the

 100 110000 01 1 101 1 01 1
00 0 0 0 0 0 0

0 00 2 0 00 0 0

0 1 2

0 0 0000
0 0 1001
0 1 1010
0 1 2011
1 1 1100
1 1 2101
1 2 2110
1 2 3111

sr

Figure 4.3: A sample wavelet tree. In each node a bit string and two arrays, super block
rank andblock rank , are stored.

a sequence of natural language wordsP = p1 · · · pq, backwardSearch finds the range

[first, last] of the sorted cyclic rotations prefixed byP . For the example provided in Fig-

ure 4.1,backwardSearch returns the range[7, 8] for the patternP = ‘Rome is’ ,

which is the range of cyclic rotations prefixed byP .

backwardSearch makesO(|P |) accesses toC andRank. We adjust the hash table

size so that it provides constant time access to hash elements. The wavelet tree access

for Rank requires traversing from the root to one of the leaves which requiresO(log |Σ|)
accesses to the tree nodes. Thus,backwardSearch has a complexity ofO(|P | log |Σ|).

After adding delimiters and sorting strings as discussed in Section 4.2.1, permuterm

index supports wild-card pattern matching over dictionary strings. More specifically, it

supports (1) Prefix ($α%), (2) Suffix (%β$), (3) Substring (γ) and (4) PrefixSuffix ($α%β$)

queries whereα, β andγ are arbitrary sequences of characters [39]. We use the above four

queries to express our wild card keyword matching over natural language text. Thus in our

queriesα, β andγ are sequences of natural language text words.

44

nodeRank(Node,e,i)

1 Rsbr = sbr
[
⌊ i
S2
b

⌋
]
, Rbr = br

[
⌊ i
Sb
⌋
]

2 if
(
i− Sb × ⌊ i

Sb
⌋
)
< t

3 Rsr = sr
[
b2d

(
Node→ bs, Sb × ⌊ i

Sb
⌋, t

)] [
i− Sb × ⌊ i

Sb
⌋ − 1

]

4 else if
(
i− Sb × ⌊ i

Sb
⌋
)
= t

5 Rsr = sr
[
b2d

(
Node→ bs, Sb × ⌊ i

Sb
⌋, t

)]
[t− 1]

6 else if
(
i− Sb × ⌊ i

Sb
⌋
)
> t

7 Rsr = Rsr + sr
[
b2d

(
Node→ bs, Sb × ⌊ i

Sb
⌋+ t, t

)] [
i− Sb × ⌊ i

Sb
⌋ − t− 1

]

Figure 4.4: A constant-timenodeRank, returning binary rank at each node

backwardSearch(P)
1 i = |P |, c = P [i], first = C[c] + 1, last = C[c+ 1]
2 while ((first ≤ last) and (i ≥ 2)) do
3 c = P [i]
4 if 1 ≤ first ≤M , incrementfirst by 1
5 if 1 ≤ last ≤M , incrementlast by 1
6 first = C[c] +Rankc (L, first− 1) + 1
7 last = C[c] +Rankc (L, last)
8 i = i− 1
9 return the range[first, last]

Figure 4.5: backwardSearch algorithm for traversingL in backward order

Over WPI, we add support for queries such as (5)α%, (6) %β, (7) α%β, (8) α%β$

and (9)$α%β whereα or β can be in arbitrary places in the document. The set of queries

supported by PI are very limited and we often need to search for natural language patterns

that are neither a prefix nor a suffix in a document. One other advantage of WPI over PI

is that it makes word-level extractions possible. Therefore, even for the first four queries,

PI provides character level matches, which are not desired when querying over natural

language text. Finally, since WPI performs word-level rotations, it requires fewer number

of backward searches compared to PI for the same set of queries.

The key idea behind supporting wild card queries usingbackwardSearch is to con-

vert them into prefix searches over rotations. Table 4.1 gives a summary of how to eval-

uate wild card queries usingbackwardSearch . In this table, the columns from left

to right displays the different types of queries supported by WPI, the pattern(s) to invoke

backwardSearch with and the range of wild card keyword matches, respectively. The

time complexity of the queries are depicted in Table 4.2. As displayed in these tables, the

45

Table 4.1: Different wild card query patterns over WPI and their corresponding range of
matches

Q P Wild Card Match
(1)$α% $α T [IF [first] + |$α|] . . . T [IF [last] + |$α|]
(2)%β$ β$ L [first . . . last]

(3)γ γ matches documents1

(4)$α%β$ β$α L [first . . . last]

(5)α% α T [IF [first] + |α|] . . . T [IF [last] + |α|]
(6)%β β L [first . . . last]

(7)α%β α, T [IF [firstα] + |α|] . . . T [IF [lastα] + |α|] if ‖α‖ ≤ ‖β‖
β T [IF [firstβ]− 1] . . . T [IF [lastβ]− 1] if ‖α‖ > ‖β‖

(8)α%β$ α, T [IF [firstα] + |α|] . . . T [IF [lastα] + |α|] if ‖α‖ ≤ ‖β$‖
β$ T [IF [firstβ]− 1] . . . T [IF [lastβ]− 1] if ‖α‖ > ‖β$‖

(9)$α%β $α, T [IF [firstα] + |$α|] . . . T [IF [lastα] + |$α|] if ‖$α‖ ≤ ‖β‖
β T [IF [firstβ]− 1] . . . T [IF [lastβ]− 1] if ‖$α‖ > ‖β‖

1 SeedisplayString in [39] for details

first six queries could be matched with only one call tobackwardSearch , while the last

three require two invocations ofbackwardSearch as the sequence of words are sepa-

rated by a wild card. For these queries,firstα and lastα are respectively the beginning

and the end of the range returned bybackwardSearch when invoked byα. Recall that

backwardSearch returns only a range of matching rotations, prefixed by a given pattern.

Therefore, it does not provide any efficient support for extractingkeyword matches for a

wild card. We solved this problem by storing two additional lists,T andIF , whereIF is the

list of locations of elements ofF overT ; henceT [IF [i]] = F [i]. These lists requireO(n)

extra space. However, since the overall space consumption of the indexis O(n log |Σ|),
storing these additional lists will not change the space complexity of WPI.

In Chapter 6 we provide experiments that compare WPI with the baseline methods

introduced in Section 4.1 in terms of the query runtimes, index construction time and index

size. The next Chapter discusses indexing and querying over structural natural language

text.

46

Table 4.2: The running time complexity analysis of queries in Table 4.1
Q P Runtime Complexity
(1)$α% $α O(|$α| log |Σ|)
(2)%β$ β$ O(|β$| log |Σ|)
(3)γ γ O(|γ| log |Σ|)
(4)$α%β$ β$α O(|β$α| log |Σ|)
(5)α% α O(|α| log |Σ|)
(6)%β β O(|β| log |Σ|)
(7)α%β α, O[(|α|+|β|) log |Σ|] +

β O[min(‖α‖|β|, ‖β‖|α|)]
(8)α%β$ α, O[(|α|+|β$|) log |Σ|] +

β$ O[min(‖α‖|β$|, ‖β$‖|α|)]
(9)$α%β $α, O[(|$α|+|β|) log |Σ|] +

β O[min(‖$α‖|β|, ‖β‖|$α|)]

47

Chapter 5

Structural Indexing and Querying of
Natural Language Text

In this chapter, we consider the scenario where text is available as a collection of syn-

tactically annotated trees, and study the problems associated with indexing andquerying.

We propose a novel subtree index and a few storage and querying techniques over this

index. We present some structural properties of the index and an analytical study of its

performance. Specifically, we study how interval coding can be adaptedto represent the

structural information of subtrees and introduce our novel root-split coding; the root-split

coding leads to a more concise index, which further reduces the response time of queries as

well as index construction time.

5.1 Subtree Index

Given a set of syntactically annotated treesS and a sizemss, consider the set of all unique

subtrees of sizes1, 2, . . . ,mss that can be extracted from trees inS, and associate to each

subtree a posting list consisting of the ids of trees inS where the subtree appears. We want

to organize the pairs of subtrees and posting lists in an index, referred to as Subtree Index

(or SI for short), such that our queries can benefit from this structuring.

There has been work on indexing nodes, edges and paths in XML documents (as re-

viewed in Section 3.2.2), and similar approaches have been used over syntactically an-

notated trees (e.g. LPath [9]). Since the subtree index stores all unique subtrees of sizes

1, 2, . . . ,mss, it generalizes node- and edge-based indexes. In the scenario wheremss = 1,

the index only stores information about individual nodes, and this is very similar to the re-

lationalNodeapproach. For Larger values ofmss, a subtree index can offer the following

benefits: (a) Reduced number of joins compared to relationalNodeandEdgeapproaches,

48

by pre-materializing subtrees of larger sizes. (b) Better preserving the structure of trees

which can lead to better query response time. Bird et al. [9] show that nodeapproach out-

performs TGrep2 [101] (which uses sequential scan) in terms of the querying performance

and scalability. In this thesis, we show that SI with largermss values perform better than

the case withmss = 1 (or the node approach). We also provide results on the performance

and the scalability of SI over a baseline that uses indexing to filter candidate matches and

tree scans to find the exact set of matches. This baseline, which we call filter-based coding,

is described in Section 5.1.4.

In the rest of this chapter we discuss some of the challenges involved in using SI for

querying syntactically annotated trees. Specifically, we study the following problems over

subtree indexes. (1) Coding structural information of a tree into an inverted list of subtrees,

where we adapt previous approaches such as navigational and interval coding in order to

come up with two baseline approaches, referred to as filter-based codingand subtree interval

coding. (2) Efficiently decomposing query trees into smaller subtrees, forwhich we study

the properties of a “good” cover over a query tree. (3) Query matchingover SI for which

we study both the scenarios where matching requires injective mapping and when it does

not (See Section 2.2.2 for a discussion on matchings with injective mapping functions).

5.1.1 Subtree Indexes over Syntactically Parsed Trees

In this section, we study the properties of syntactically annotated trees, which make subtree

indexes practical and scalable over them. Subtree Indexes can improve the performance of

querying over natural language queries by (1) pre-materializing partialsubtree solutions,

thus reducing the number of joins required for evaluating a tree query, and (2) reducing

sizes of posting lists in most cases1 by grouping together smaller subtrees and building

larger subtrees.

One drawback of subtree indexes is that their size could potentially grow dramatically

asmss increases. Two factors that affect the size of a subtree index are (1)the number of

unique subtrees or index keys, and (2) the total number of extracted subtrees. This latter

number gives an upper bound on the total number of postings2. Next we discuss some of the

issues that play a role in the growth of these two factors and a discussion ofwhy building

SI can be practical and scalable for syntactically annotated trees.

1In Section 5.2 we discuss that sizes of posting lists might not be monotonically reduced for larger subtrees
if the index uses subtree interval coding

2Number of postings could be smaller for the scenarios where subtree interval coding is not used

49

Number of Index Keys

One nice property of a subtree index is that the number of index keys (unique subtrees)

grows linearly with the size of the input, for different values ofmss. As a result, the

body of the index does not grow dramatically as more data is being indexed, regardless of

the value ofmss. One reason for this is that similar structures are abundant throughout

the corpus of parsed trees. This is based on the observation that there isonly a finite and

relatively small set of grammatical structures used in natural languages, and the number of

such unique structures does not grow dramatically even considering differences in writing

styles and parsing errors.

Figure 5.1 shows the number of unique subtrees as a function of the input size, for

different values ofmss, over collections of parse trees containing1 to 106 sentences from

a news corpus. The figure shows approximately the same rate of growth in the number

of keys, for different values ofmss. Moreover, the number of index keys grows almost

linearly with the size of the indexed data.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of parsed sentences (logscale)

N
um

be
r

of
 u

ni
qu

e
su

bt
re

es
 (

lo
gs

ca
le

)

mss=1
mss=2
mss=3
mss=4
mss=5

Figure 5.1: Number of index keys (unique subtrees) as a function of the input size in terms
of the number of sentences

Number of Extracted Subtrees

For a parse tree of sizen, the number of subtrees of size1 ≤ m ≤ mss could range from

n −m + 1 to
(
n−1
m−1

)
. The former belongs to the case where the tree is a unary branch of

50

heightn, and the latter demonstrates the case where the parse tree is of height2 and consists

of a root withn− 1 leaf children. Note that the number of subtrees of sizes1, . . . ,mss of

a tree gives an upper bound on the number of postings stored for it in the index. Therefore,

for large values ofmss andn, the number of postings stored in the index could be very

large, resulting in a huge index. As we show later, the number of subtrees isin practice

orders of magnitude smaller than the worst case scenario, making it possibleto build SI for

small values ofm (e.g.1 ≤ m ≤ 5).

To investigate how the number of extracted subtrees changes over syntactically anno-

tated trees, we conducted an experiment on more than50, 000 nodes from a (constituency)

parsed corpus of news. Over each node, we extracted every possible subtree of sizes2 to

5, and counted the number of such subtrees. Figure 5.2 depicts how the number of subtrees

changes with the branching factor of the nodes, for this dataset. In this figure, the x-axis dis-

plays the branching factor of nodes, and the y-axis shows the averagenumber of subtrees

extracted from nodes with the given branching factor. As displayed in thisfigure, nodes

with higher branching factors, lead to a larger number of subtrees, on average. We also

present the non-aggregated results for the same set of nodes in FigureA.2 in Appendix A,

which displays the number of distinct subtrees in terms of the branching factor of the node

over which such subtrees are constructed. Motivated by these two figures, in the rest of this

section, we elaborate on some of the important characteristics of syntacticallyannotated

trees that distinguishes them from other data types modelled as trees.

Rare Nodes with Large Branching Factors. In syntactically annotated trees, we expect

to see a few nodes with relatively high branching factors. In what follows, we provide some

supporting experimental results and a discussion of why such nodes areexpected to be rare

in English. In Figure A.2 we see only two nodes that have a branching factor larger than10.

For these two nodes, the branching factors of19 and23 are still small compared to XML

documents, which could have branching factors of a few hundreds or even larger. Reasons

for such a characteristic in syntactically annotated trees could be the following.

(i) Parse trees are relatively small trees. The number of nodes in a dependency tree and

the number of leaves in a constituency tree are equal to the number of wordsin the

underlying parsed sentence. As a result, the total number of nodes in a parse tree is

in the range of tens to at most a few hundreds of nodes.

(ii) High branching factor nodes in parse trees are due to repetitive structures. In well-

written and clean natural language corpora, such repetitive structuresare rarely too

51

0 5 10 15 20 25
10

0

10
1

10
2

10
3

10
4

10
5

branching factor of nodes

av
er

ag
e

nu
m

be
r

of
 e

xt
ra

ct
ed

 s
ub

tr
ee

s
(lo

gs
ca

le
)

ss=2
ss=3
ss=4
ss=5

Figure 5.2: Average number of subtrees extracted in terms of the branching factor of roots
of subtrees

long, as they can create difficult sentences to read and understand.

Example 5.1.1. Examples of repetitive structures in syntactically annotated trees can be

(a) (NN) * VB as in a parse ofTom, Sarah, Alex and Mary attended the

tea party and (b) a structure likeDT (JJ) * NN as inIt is an amazing warm

sunny day . Parse trees of these examples, parsed using the Stanford parser, are depicted

in Appendix A in Figure A.1. As this figure shows, the above examples lead to parse trees

with maximum branching factors of7 and5, respectively.

Small Average Branching Factor. Syntactically annotated trees have a small average

branching factor. The total average branching factor for the above dataset is0.98. The

average branching factor for internal nodes only is1.52. Thus, on average, each internal

node has less than two children, which makes syntactically annotated trees very suitable for

indexing.

In the next section, we provide details on constructing subtree indexes including our

subtree extraction algorithm and a few tweaks that can help reducing the index size.

5.1.2 SI construction

A subtree index is parameterized bymss, the maximum subtree size. Givenmss and a

set of parsed trees, SI is constructed by extracting all unique subtrees, then flattening and

52

encoding them in the index.

Subtree Extraction

For each input treet, the algorithm in Figure 5.3 extracts all unique subtrees of size1, . . . ,mss.

In this algorithm,|t| is the size of the subtree rooted att in terms of the number of nodes.

The process starts at the root of the input treet and recursively descend into its descendant

in a pre-order traversal, and for each nodet callssubtrees(t, i), wherei ranges between 1

andmin(|t|,mss). The call tosubtrees(t, i) computes and returns every possible subtree

of sizei rooted att. This algorithm is depicted in Figure C.1 in Appendix C. As an example

of how extractalgorithm works, Figure 5.4(b) depicts the set of all unique subtrees of size

3 originating from the root of the tree in Figure 5.4(a).

extract(t)

1 res← ∅, m = min(|t|,mss)
2 for i ∈ {1, . . . ,m}
3 res← res ∪ subtrees(t, i)
4 for c ∈ t.children
5 res← res ∪ extract(c)
6 return res

Figure 5.3: Algorithm for extracting all unique subtrees of sizes1 tomss from a treet

C

A

D

BC

BAC

A

B
A

C A
A

A B

(a) (b)

C B D

AA

A A A

B

(c)

A

A

C

A

A B

DB

Figure 5.4: An example of how unique subtrees are extracted, (a) input tree, (b) unique
subtrees of size2, (c) unique subtrees of size3

Flattening and Encoding

In order to store the unique subtrees as keys into the index, they have to beflattened. We do

the flattening by traversing each subtree in a pre-order traversal and for each node capturing

53

its label and size. Given a pre-order traversal, the original subtree can be re-constructed.

Alternatively, a well known approach is to use a DFS traversal together withdelimiters to

convert the structure of a tree into a flat representation, as in [122]. Withthis flattening, the

tree in Figure 5.4(a) could be flattened as(A(C)(A(C)(B(D)))(B)) or more concisely

asAC)A)BD)))B)) . To further reduce the key size and tune coding to parse trees which

are generally small in size, we choose to store the size of nodes instead of delimiters. A tree

can be encoded concisely by exactlymss(⌈log2(mss+ 1)⌉+ ⌈log2 |Σ|⌉) bits, whereΣ is

the alphabet of node labels. In this formula, the first term is the number of bitsrequired to

encode the size of each node and the second term is the number of bits required to encode

the label. Notice that sizes of nodes are orders of magnitudes smaller than size of the

alphabet for index keys and for that reason, encoding using node sizes requires much less

space than using delimiters.

5.1.3 Query Matching Over Subtree Indexes

Query matching over a subtree index happens in two phases, (1) thesplit phasein which the

queries are shredded into smaller subtrees, where each subtree size is at mostmss, and the

posting lists of subtrees are fetched from the index, and (2) thejoin phasein which result

set of subtrees are joined to evaluate the final results. In this section we provide a brief

overview of these two phases for our proposed coding schemes. In Section 5.2 we provide

a thorough study of the first query matching phase, i.e.split phase. Section 5.3 provides an

in depth study of thejoin phaseand includes a discussion of query matching in the scenario

when the matching is injective.

Definition 5.1.2. For two treesT andT ′, we say thatT is a subtree ofT ′ and denote it by

T - T ′ if and only if (1)V (T) ⊆ V (T ′) and (2)E(T) ⊆ E(T ′).

In the above definition,V (T) andE(T) are the set of nodes and set of edges of treeT ,

respectively.

Definition 5.1.3. A setC = {c1, . . . , ck} of trees is anode-coverof treeT , if and only if

(1) for all ci ∈ C, we haveci - T and (2) for allv ∈ V (T) there exists at least oneci ∈ C

such thatv ∈ V (ci).

Intuitively, anode-coverof a treeT is a set of subtrees ofT such that every node ofT

appears on at least one of the subtrees of the node-cover.

54

Definition 5.1.4. A setC = {c1, . . . , ck} of trees is afull-coverof T , if and only if (1)C

is a node-coverof T , and (2) for alle ∈ E(T) there exists at least oneci ∈ C such that

e ∈ E(ci)

According to the above definition, afull-coverC of treeT , covers both nodes and edges

of T . Hereafter in the thesis, we refer to bothfull-coversandnode-coverssimply ascovers,

when the meaning is clear from the context.

Definition 5.1.5. Given a queryQ and a parametermss, C = {c1, . . . , ck} is a valid cover

of Q with respect tomss if and only if there does not exist a subtreeci ∈ C such that

|ci| > mss, for all 1 ≤ i ≤ k.

In the rest of the thesis, we assume that all covers are valid, unless otherwise noted.

Our goal in thesplit phaseis to find a “good” cover for a given query. A “good” cover

can be informally defined in terms of its closeness to a cover that results in the least query

execution cost. A query could have a large number of covers, and the choice of which cover

to pick can have a large effect on the query evaluation cost. While query optimization is not

the topic of interest in this thesis, in Section 5.2 we study a few properties of covers over

coding schemes that help us prune the search space for “good” covers.

In the join phase, we have a cover for a query and we want to intersect the posting lists

of the subtrees in the cover to find the set of matching parse trees. Next wediscuss our

coding schemes over subtree indexes.

5.1.4 Coding Schemes

In this section we propose three coding schemes for describing the structural information

of subtrees stored as keys in a subtree index. The first two coding schemes are adaptations

of current coding schemes over text or xml documents; they are mainly used as baseline

methods. The third coding scheme, root-split coding, is a novel approachwe propose to

store the structural information of subtrees more concisely.

Filter-Based Coding

The filter-based coding is a minimal coding scheme which does not store any structural

information about the keys being indexed. Similar to any inverted index structure, the filter-

based coding stores a sorted list of unique tree identifiers,tids, of the trees that contain the

indexed subtrees.

55

A query matching for the filter-based coding starts by finding a query cover and fetching

the posting lists of the subtrees in the cover. The join phase of the query matching includes

the pairwise intersection of the sorted lists oftids to obtain the list of candidatetids. Unlike

the other two coding schemes, Query matching for the filter-based coding has a third phase,

called thefiltering phase. In the filtering phase, the parse trees corresponding to candidate

tids are all fetched and checked if they actually match. Note that since the structural infor-

mation of the subtrees are not stored, exact matching over the posting lists ofthe subtree

index is not possible and a final (usually costly) filtering phase is requiredto find the set of

matching trees. Ourfiltering phasein the case of filter-based coding only checks if a tree

matches a query, and it does not report all query matches but only the first match. This is

unlike our next two coding schemes for which the matching algorithm finds all matches.

Subtree Interval Coding

As noted in Section 2.2.4, the node interval coding stores for each node a pair of left and

right values to handle reachability queries and alevel value to answer parent-child axes

queries. A subtree interval coding generalizes the node interval codingand stores in addi-

tion the structural information of individual nodes in an indexed subtree.

As for the structural information, we keep the order in which each node is visited in the

DFS traversal used for flattening the subtrees. Thus keeping anordervalue for each subtree

node is required because we assume that the indexed subtrees are not ordered, and two

subtrees such asA(B)(C) andA(C)(B) are indexed under the same entry. For instance,

assume that both subtrees are represented asA(B)(C) . In such a scenario, postings which

representA(C)(B) subtrees, have order equal to0, 2 and1, for A, C andB, respectively.

As a result, a query such asA(C(D)(E))(B) , requiring an equality join ofA(C)(B)

andC(D)(E) on theC node, can be correctly evaluated, by selecting the second set of

numbers whenC ’s order is2 and the third set of numbers whenC ’s order is1.

The structure of a posting describing a subtree of sizem is therefore as follows

{tid,m,< l1, r1, v1, o1 >, . . . , < lm, rm, vm, om >}

wheretid is an identifier of the tree that contain the subtree and< li, ri, vi, oi > values are

the left, right, level and order numbers, respectively.

The query matching for a queryQ is performed by computing a cover ofQ, fetching its

posting lists and joining them. In Section 5.2 we discuss how to compute an efficient query

56

cover over a subtree index with subtree interval coding. In Section 5.3, we discuss in more

detail the matching algorithms over SI with subtree interval coding.

Root-Split Interval Coding

The idea behind root-split (interval) coding is to avoid storing unnecessary structural infor-

mation and to represent each subtree as concise as possible. Root-split coding stores for

each subtree only the tree identifier andleft, right andlevelvalues of its root. Compared to

subtree interval coding, root-split coding reduces the size of each posting by a factor larger

thanm, wherem is the size of the subtree being indexed.

Similar to the previous two coding methods, query matching over root-split coding also

consists of asplit phase and ajoin phase. Note that since the structural information of

individual nodes are not stored in a root-split coding, the queries cannot be arbitrarily split

and joined. In the following, we define the types of covers required overroot-split coding.

Definition 5.1.6. Given a queryQ, C = {c1, . . . , ck} is aroot-split cover ofQ if and only

if eitherC = {Q} or for every subtreeci, there exists a subtreecj , 1 ≤ i, j ≤ k, such that

one of the following hold: (1) bothci andcj are rooted at the same node inQ, (2) ci is

rooted at the parent ofcj in Q, or (3)cj is rooted at the parent ofci in Q.

Intuitively, a root-split cover is a cover which can be evaluated only by performing joins

over the roots of its subtrees. Such a cover would be useful for our root-split coding as we

only store structural information over roots of index keys.

Lemma 5.1.7. Every queryQ has at least one root-split cover.

Proof. The proof can be achieved by simply building a coverC as a set containing individ-

ual nodes ofQ. C is a (valid) root-split cover and the lemma is proved.

In Figure 5.5, we present a naive algorithm for generating a root-split cover, which is

more practical than a cover of all query nodes and better exploits the power of subtree in-

dexes and creates a foundation for more efficient algorithms that follow in the next section.

Lemma 5.1.8. The algorithm in Figure 5.5 computes a root-split cover.

Proof. Proof is by induction.

Base. For |Q| ≤ mss, naiveRC addsQ to the cover and returns. A cover that contains

onlyQ is root-split, thus the base case holds.

Induction. AssumenaiveRC generates root-split covers for individual children ofQ by

calls in line 6 of the algorithm. We would like to prove that the final cover, which is

57

naiveRC(Q)

1 C ← ∅
2 if |Q| ≤ mss then
3 C ← C ∪Q, return C
4 pick any subtree fromsubtrees(Q,mss), add it toC
5 for c ∈ Q.children
6 C ← C ∪ naiveRC(c)
7 return C

Figure 5.5: A naive algorithm that guarantees a root-split cover

the union of all such root-split covers, plus the subtreesQ generated at a call to line4 of

algorithm is root-split (subtrees algorithm is covered in Figure C.1 in Appendix C). By

definition of a root-split cover,sQ is rooted at the parent of the subtrees covering its children

and therefore, the final cover is root-split. Thus, lemma is proved.

In the next Section, we analyze root-split coding and show that it can be used for both

correctly and efficiently evaluating queries. We compare the three proposed coding schemes

in terms of their performance analytically.

5.2 Query Splitting Strategies

In this section, we study the theoretical properties of the root-split coding and compare it

in terms of applicability and optimality with the subtree interval and filter-based codings.

As will be discussed in this section, root-split coding reduces the size of posting lists, by

reducing the number of postings and the size of each posting. As a result, the size of SI

with root-split coding is smaller than its corresponding SI using subtree interval coding, by

a large factor.

5.2.1 Monotonicity of Posting List Sizes

In the context of relational query optimization, intersection of the posting lists of subtrees

indexed in SI, maps to select-project-join queries, with selections using indexscan and

joins using merge joins over sorted data streams (posting lists). In such a context a query

optimizer over a subtree index, often generates query execution plans in the form of left-

deep (or right-deep) trees resulting in a linear order of joins. Given a queryQ, an efficient

query plan can be obtained by (1) picking a “good” cover ofQ whose subtrees serve as data

streams over leaves of the query plan, and (2) searching the space of available plans for the

selected cover and finding an efficient or optimal query execution plan. The second step is

58

the task of a query optimizer and we do not study it in this thesis. However, in this section

we study what properties of a cover make it more amenable for query optimization.

The first property we study is how the size of the posting lists change for subtrees of

different sizes, for our proposed coding schemes.

Lemma 5.2.1. For any two index keyss1 ands2 over a given SI, wheres1 - s2, we have

(i) The posting list ofs2 is always a subset of the posting list ofs1 for filter-based coding.

(ii) The posting list ofs2 is a subset of the posting list ofs1 for root-split coding if and

only if s1 ands2 share the same root.

(iii) The posting list ofs2 is not guaranteed to be a subset of the posting list ofs1 for

subtree interval coding.

Proof. Appears in the Appendix B.

Lemma 5.2.2. For any two index keyss1 and s2 of a SI with root-split coding, where

s1 - s2 and s1’s root has a different label froms2’s root, then for each posting in the

posting list ofs1 there is at most one posting in the posting list ofs2 associated with it.

Proof. Given the conditions of this lemma,s1 must be a descendant ofs2’s root. Since

ancestor-descendant relationship is a one to many relationship, there mustbe only one

posting in the posting list ofs2 for any number of its descendants, hence the lemma is

proved.

The direct conclusion from Lemmata 5.2.1 and 5.2.2 is that the size of the postinglists

monotonically decrease as subtrees grow for filter-based and root-splitcodings, while we

do not have such a guarantee for the subtree interval coding. This is a very useful property

and we will discuss some of the interesting conclusions that this monotonicity will provide.

Theorem 5.2.3.Given a queryQ and a subtree index with root-split coding and maximum

subtree sizemss, an optimal query plan forQ cannot have a subtree of size less thanmss.

Proof. Appears in the Appendix B.

The above theorem is true for filter-based coding as well, but not for subtree interval

coding. Therefore, we can conclude that the search space of queryoptimizers for the op-

timal query execution plan using filter-based and root-split codings are smaller compared

to subtree interval coding, which is an advantage. Finding optimal query execution plan

59

requires building histograms of subtree selectivities or estimating the selectivities of sub-

trees (See [22] for an example). However, the focus of this thesis is noton addressing the

problem of query plan optimization over subtree indexes, therefore we assume any cover

in which all subtrees have sizemss would be a good enough cover for our query execution

task.

5.2.2 Join Optimality

As discussed earlier, root-split coding constrains query splitting to covers in which subtrees

can be joined over their roots only. In this Section, we investigate the ramifications of such

a constraint on the size of the root-split covers. We study the number of joins required to

evaluate a cover as a measure of its efficiency. Moreover, we study the problem of join

optimality for root-split and non-root split covers.

Max Covers

We showed earlier by Lemma 5.1.7 that for every queryQ there exists at least one root-split

coverC. Depending on howQ is structured,C might have subtrees ranging in size from

1 to mss. One interesting problem is to investigate if there exists an algorithm that can

always generate a root-split cover, where the size of every split is equal to mss. We call

such a cover a max-cover. According to the discussion in the previous section, such a cover

would achieve an efficient query evaluation plan.

Theorem 5.2.4. For every queryQ and sizemss such that|Q| ≥ mss, there exists a

root-split max-coverC; i.e. for every subtreec ∈ C we have|c| = mss.

Proof. Appears in the Appendix B.

Among all max-covers ofQ, only a few are root-split, and among such max-covers,

those with the smallest size, in terms of the number of subtrees, are desirable as they lead

to our definition of a join-optimal cover.

Definition 5.2.5. For a given queryQ, a join-optimal cover ofQ, is a max-cover overQ

that has the smallest size in terms of the number of subtrees among all covers of Q.

Note that for any coverC, there exists a max-cover which has size smaller than or

equal toC. As a result, we do not need to worry about non max-covers that might bejoin-

optimal. Selecting covers among max-covers is also desirable for filter-based coding, but

not necessarily for subtree interval coding.

60

According to Lemma 5.2.1, it is not always desirable to select covers over asubtree

interval coding from max-covers. As that lemma shows, larger subtrees inthe covers do

not necessarily lead to smaller posting lists, when subtree interval coding is used. To study

the effects of the non-monotonicity of the posting list sizes on the performance of subtree

interval coding if max-covers are always selected, we conducted an experiment on a sample

dataset of around1000 sentences from a news corpus. The dataset contained more than

112 thousand index keys of sizes1 to 5. Over this dataset, we exhaustively compared every

key ki with every other keykj and counted the cases whereki is a subtree ofkj , but the

size of the posting list ofkj is larger than that ofki. Out of more than6 billion pair-

wise comparisons made, only26495 cases met the condition, and this accounts to less than

0.0005% of such comparisons. This confirms that max-cover may be a good heuristicfor

evaluating queries over the subtree interval coding scheme. In the rest of this thesis and for

all of our coding schemes, we only consider max-covers, ignoring any non-max covers. In

the rest of this section, we study join-optimality over max-covers (hereafterreferred to as

simply as covers).

Join Optimal Covers

In this section, we study the problem of finding join optimal covers, in the scenario where

matchings are not required to be injective. Query matching under the injective matching

assumption is discussed in Section 5.3.

Definition 5.2.6. Given a queryQ, and a coverC over it, we say thatC hasdeep branching

anomaly, if there exist subtreessi andsj in C such that (1)si andsj share at least one node

of Q, sayv ∈ V (Q), such thatv is not root ofsi, andv is not root ofsj , and (2)v has at least

two childrenu andu′, such thatu ∈ V (si), u 6∈ V (sj) andu′ ∈ V (sj) andu′ 6∈ V (si).

Deep branching anomaly, as defined in Definition 5.2.6, describes a situationwhere

two subtrees in a given cover cannot represent the structure of partof the query they cover,

uniquely. Deep branching anomaly can result in an incorrect set of matches for root-split

codings, due to extra matches. As a result of a deep branching anomaly, extra subtrees

might be required to be added to the root-split covers to fix this anomaly.

For non-root-split codings, deep branching anomaly can be dealt with, efficiently. Such

an anomaly does not cause any problems for filter-based codings as the final set of matches

is obtained by scanning over the candidate parse trees. For subtree interval coding this

anomaly can be dealt with by joining on the deepest shared branching nodeof the two

61

subtrees. In the example that follows, we demonstrate how it is possible to handle deep

branching for subtree interval coding.

Example 5.2.7. Consider the query in Figure 5.6.(a) and letmss = 4. A join-optimal

root-split cover of the query isC1={A(B(C(D))), B(C(E)(F)) } Figure 5.6.(b) shows

multiple tree structures that match the given root-split cover. The result setobtained by an

anomalous join over roots of the subtrees ofC1, i.e. A andB nodes, thus might result in

extra incorrect matches. For subtree interval coding, this situation can bedealt with by an

equality join on the deepest branching node, i.e.C. By sacrificing join optimality, we can

obtain root-split covers that do not have the deep branching anomaly, asin the following

coverC2={A(B(C(D))), B(C(E)(F)), C(D)(E)(F) }.

B

C

D E

A

F

(b)Matches(a)Query

B

C

D E

A

F

B

C

B

C

D E

A

F

C

B

C

D E

A

F

Figure 5.6: Example of a query having deep branching anomaly formss = 4 for a root-split
join optimal cover

Figure 5.7 displays every possible query structure of size5, and the minimum number

of root-split joins required for different values ofmss. In this figure, the first column

displays subtree structures and columns2, 3 and4 display the number of joins required for

evaluating the best possible root-split cover whenmss is equal to2, 3 and4, respectively.

The values in bold display the cases where the best possible root-split joinsdo not achieve

join optimality. In such cases, the number of extra joins required is indicated in front of the

number of joins in brackets; e.g. (+1).

Note that in most cases in Figure 5.7, there exists a join optimal root-split coverfor

the given query structures. From a total of14 tree structures listed,13 have a join optimal

root-split cover whenmss = 2, and9 have a join optimal root-split cover whenmss = 3.

The number of extra joins required in each case for non-optimal covers are only1, however,

there could be cases where more extra joins are required.

Proposition 5.2.8. The number of extra joins required for evaluating a root-split cover of

a queryQ is at most|Q| − ⌈ |Q|
mss⌉ −mss+ 1, compared to a join optimal cover.

62

1

1

1

1

1

mss 2 3 4

2(+1)3

2(+1)2

13

12

3(+1) 2(+1)

Figure 5.7: Join optimality on all possible queries of size5 with mss values of2, 3 and4
from left to right columns.

Proof. The worst case happens when the tree is structured as a unary branchof height|Q|.
In this case, the number of subtrees for a root-split cover is given by|Q| −mss+ 1, while

the number of subtrees in a join optimal cover is given by⌈ |Q|
mss⌉. The difference of these

two terms gives our proposition bound.

The above proposition provides an untight upper bound on the number ofextra joins

required to evaluate a root-split cover. In practice however, as we will show in Section 6.2.3,

the actual number of extra joins is much smaller than this bound. In the rest of this section,

we provide algorithms for computing covers for both root-split and non-root-split codings.

Our algorithmoptimalCover, as shown in Figure 5.8, generates for each query a

join optimal cover, with the size of every covered subtree equal tomss. The algorithm

63

starts with an empty coverC, and in each step either adds a subtree of sizemss or calls

optimalCover on larger subtrees.

Thus, at the base of the recursion,optimalCover handles only children ofQ having

size less than or equal tomss. Any child ofQ with size equal tomss is added immediately

to the coverC. Children with sizes smaller thanmss are handled by callingassign until

the total number of unassigned nodes in the subtree ofQ and includingQ is less thanmss.

At this point if Q is not the root of the original query,Q and its unassigned nodes can be

part of a subtree originating from parent ofQ, and thus theoptimalCover. Otherwise, if

Q is the root of the original pattern, all that is left to do is to cover the last set of unassigned

nodes, whose number is less thanmss. This is achieved by one last call toassign in lines

9 − 10. The algorithmassign is also presented in the same figure. Intuitively, a call of

assign(t) computes a subtree of sizemss, rooted att, which has the most possible set of

unassigned nodes. It starts by picking larger unassigned children oft and once it runs out

of unassigned nodes, adds assigned nodes until the size of subtree ismss.

Example 5.2.9.Consider the tree shown in Figure 1.2.(a) and suppose we run the algorithm

optimalCover on this tree withmss = 3. The first child ofS is NP(NNS(agouti))

of size3 and this child is added toC immediately. The second child ofS, VP, is of size

7, so optimalCover(VP) is called, which in turn callsoptimalCover on NP of size4.

SinceDT(a) andNNboth have size less thanmss, assign(NP) is called; the call returns

NP(DT(a)) which is added toC and sets|NP | = 2. SinceNP is not a root (line9

of optimalCover), C is returned to the caller. The next steps of the algorithm will add

VP(VBZ(is)) , VP(NP(NN)) andS(NP(NNS)) to the cover. Note that a join of sub-

treesVP(NP(NN)) andNP(DT(a)) must be in the form of an equality join on nodeNP,

to avoid erroneous results due to deep branching anomaly.

Lemma 5.2.10. Given a parametermss ≤ 6 and a treet, where |t| > mss and all

children oft have size less thanmss, repeated calls ofassign overr(t) partitionst into a

join optimal cover.

Proof. Since children oft all have size less thanmss, any subtree that covers them have

to be rooted atr(t). Thus, the partitioning problem reduces to the integer bin packing

problem, where the bin capacity ismss− 1 and children sizes are the volumes of the items

to be stored. The objective is to minimize the number of bins (subtrees in our problem).

Our assign algorithm sorts children in a non-increasing order of their sizes, which maps

to thefit first decreasing (FFD)approximation algorithm for bin packing. FFD in general

64

optimalCover(Q)

1 C ← ∅
2 for c ∈ Q.children
3 if |c| = mss
4 C ← C ∪ c, |Q| = |Q| − |c|, c.assigned = true
5 else if|c| > mss
6 C ← C ∪ optimalCover(c)
7 while |Q| ≥ mss
8 C ← C ∪ assign(Q)
9 if |Q| > 0 andisRoot(Q)
10 C ← C ∪ assign(Q)
11 return C

assign(Q)

1 cnt = 1, t.root = Q.root, Q.assigned = true
2 sortQ.children on size, descending
3 for c ∈ Q.children
4 if c.assigned = false
5 if (mss− cnt− |c|) ≥ 0
6 c.assigned = true, t.children← t.children ∪ c
7 |Q| = |Q| − |c|, cnt = cnt+ |c|
8 if cnt = mss then return t
9 if cnt < mss
10 for c ∈ (Q.children− t.children)
11 if (mss− cnt− |c|) ≥ 0 then
12 t.children← t.children ∪ c, cnt = cnt+ |c|
13 else
14 add any subtree fromsubtrees(c,mss− cnt) to t.children
15 return t

Figure 5.8: Algorithm that computes a join optimal cover of sizemss

gives approximation ratio of119 OPT + 1 [119] and is shown to be optimal for integer bin

packing with bin sizes less than or equal to6, which proves our lemma.

The above lemma proves that for small values ofmss, assign provides an optimal par-

titioning and for generalmss, it achieves a good approximation ratio. As discussed earlier,

the number of extracted subtrees could grow dramatically asmss increases and therefore,

in practice we will not be dealing withmss values larger than6. In our experiments, we

limitedmss to be at most5.

Theorem 5.2.11.optimalCover returns a join optimal cover if (1)mss ≤ 6 and (2)

injective matching is not assumed.

Proof. Appears in Appendix B.

65

Through some modifications of theoptimalCover algorithm, we can develop an al-

gorithm that obtains the smallest root-split cover in terms of size. This algorithm,referred

to asminRC, is presented in Figure 5.9. This new algorithm takes a bottom-up approach

and descends into subtrees of smaller sizes until children have size less than or equal to

mss. Then, it covers the given subtree entirely, before moving up to higher levels. This

guarantees that every child of a given nodev is covered, beforev is covered and as a result

deep branching anomaly cannot occur.

minRC(Q)

1 C ← ∅
2 for c ∈ Q.children
3 if |c| = mss
4 C ← C ∪ c, |Q| = |Q| − |c|, c.assigned = true
5 else if|c| > mss
6 C ← C ∪minRC(c)
7 while |Q| ≥ 0
8 C ← C ∪ assign(Q)
9 return C

Figure 5.9: Algorithm that computes the best root-split cover of sizemss

Example 5.2.12.TheminRC algorithm generates the following cover over the query in

Figure 1.2.(a).C = {NP(NNS(agouti)), NP(DT(a)), NP(DT)(NN), VP(VBZ(is)),

S(NP(NNS)) }. The subtree ordering shown is the same as the order by whichminRC

adds subtrees toC. C is join optimal, and it has the same number of subtrees as an optimal

cover, given in Example 5.2.9.

Theorem 5.2.13.minRC returns the smallest root-split cover possible if (1)mss ≤ 6 and

(2) injective matching is not assumed.

Proof. Appears in Appendix B.

5.3 Join Approaches over SI

In this section we study some of the problems associated with joining structural information

stored under the root-split and the subtree interval codings. As for the filter-based coding,

the problem does not arise since no structural information is stored and thefiltering is done

through scanning candidate parse trees.

66

5.3.1 Joins

Join Types

Given two subtrees in a coverC of a queryQ, we often want to join them to obtain our

matches forQ. Two major types of joins are possible, and these are equality joins and

structural joins. Structural joins were briefly discussed in Sections 2.2.4 and 3.2.2. A large

number of structural join algorithms have been proposed in the literature. Inthis thesis we

use the MPMGJN algorithm [120] for its easy adaptation to our problem.

An equality join happens when two subtrees share a node ofQ and are joined on the

equality condition over that node. As a result, only equal postings in the corresponding

posting lists are returned. Equality joins can be performed very efficiently,as all the matches

can be obtained by a linear scan of the sorted posting lists of the corresponding subtrees.

Thus, if two subtrees can be joined in several ways, as might occur in subtree interval

coding, equality joins are preferred.

Join Selection

Any two subtrees in a root-split cover have only one way to be joined, and that is a join

over their roots. However, subtree interval codings might have multiple ways to be joined.

Given two subtreessi andsj of a queryQ, the order of priority for selecting joins over

subtree interval covers is as follows.

(i) If si andsj suffer from deep branching anomaly, select the equality join on the deep-

est shared node ofQ.

(ii) If there are any shared nodes betweensi andsj , select the equality join on the shared

node.

(3) Select a structural join over nodes ofsi andsj .

5.3.2 Injective Matching

As discussed in Chapters 2 and 3, it is often desirable for queries over syntactically anno-

tated trees to have an injective matching. Our next example shows some of the problems

that can arise when a matching is not injective.

Example 5.3.1.Figure 5.10(a) shows a query that looks for the set of noun phrases which

have oneDT child, twoJJ children and threeNNchildren. Given the subtrees from a join

optimal cover shown in Figure 5.10(b), the matching can lead to some false matches, one

67

of which is depicted in Figure 5.10(c). Therefore, for certain queries,the result set using an

injective matching and a non-injective matching would be different.

NP

DT

JJ

NN

JJ

NN

NN

(b)Splits(a)Query

NP

JJ NNDTJJ NNJJ NN NNDT

NP

NP

NP

NN

(c)A Sample Match

Figure 5.10: Example of a query and its corresponding cover that can lead to false positive
matches

The query in Figure 5.10(a) is one example where extra effort needs to be made in

order for the matching to be injective. We want to find more general cases where our

regular splitting and query matching algorithms discussed so far might fail in providing a

guarantee on the injectivity of the matching.

Definition 5.3.2. Given a queryQ, if there exists subtreessB andsP of Q such that (1)

sB andsP share the same parent, (2)sB andsP have the same root label, and (3)sB is a

subtree ofsP , then we say thatsP hidessB, as every match forsB is included insP .

Theorem 5.3.3.Given a queryQ, if there exist subtreessB andsP ofQ such thatsP hides

sB, then there exist covers overQ which do not guarantee a correct set of results if an

injective matching is required.

Proof. Appears in Appendix B.

Definition 5.3.4. Given a queryQ, if there exists a nodev such that one subtree child ofv,

saysB, is hidden by one or more other subtree children ofv, saysP1
, . . . , sPk

, we call the

subtree spanned byv, sB andsP1
, . . . , sPk

a recurrencesubtree of degreek + 1 of Q, or a

k+1-recurrence subtree ofQ as there are exactlyk+1 occurrences ofsB in children ofv.

We use the notations ofsB andsP used in Definition 5.3.2 in the rest of this section to

refer to the subtree and the supertree that can lead to a violation of the injective matching

property. Note thatsB andsP could be equal subtrees, andsB does not have to be a proper

subtree ofsP . In order to guarantee that injective matching property holds for all matches,

68

we need to guarantee that every node ofsB matches distinct postings, compared to the

posting matched by its corresponding node insP . In Example 5.3.1, eachJJ node can hide

the otherJJ node and eachNNnode can hide the other twoNNnodes. Thus,NP(JJ)(JJ)

is a2-recurrenceandNP(NN)(NN)(NN) is a3-recurrencesubtree of the query.

Definition 5.3.5. Thegranularityof a join over a parent-child axisv/u, wherev andu are

subtrees of a given queryQ, is the minimum number of distinct instances ofu that must

participate in the join withv, in order foru andv to form a match.

Definition 5.3.5 can be used to define a constraint on a parent-child join requiring a

match to have more than one instance of the child per parent. This constraint will be helpful

in forcing injective matching in the scenarios where the query explicitly requires more than

one match for a child, and the matching is injective.

The idea behind solving the injective matching is that for each hidden subtreesB under

a recurrencesubtreeS of degreed, there must be at leastd distinct occurrences ofsB in

a parent-child relationship withS. Thus, adding a join with granularity equal tod will

guarantee that all the matches forsB are distinct. In order to guarantee that a queryQ is

matched injectively, all suchrecurrencesubtrees have to be found and the corresponding

joins have to be added to the list of joins (which include those required for thecover ofQ,

and obtained using one of our previous algorithms).

In Figure 5.11 we propose an algorithm that adds additional joins or updates current

ones in order to guarantee that matching is injective. As this figure shows, inlines4− 5 of

theaddRCJoins algorithm, for each childci of Q, we count the number of children ofQ

that hideci, and store the count inhs. The isASubtree algorithm returns true ifci - cj

and false otherwise. In lines6− 7, if hs > 1, meaning that there is at least another child of

Q that hidesci, we update the set of joins by a parent-child join with parent equal toQ and

child equal toci. TheupdateJoins algorithm checks the list of joins in whichp is a parent

and if finds a join in whichc is a child, updates its join granularity. If there is no such a

join, it adds the join to the list ofp’s joins and returns.

In the next chapter, we experimentally study the performance of the index structures

and access methods proposed in Chapters 4 and 5.

69

addRCJoins(Q)

1 for ci ∈ Q.children
2 hs = 1
3 for cj ∈ Q.children
4 if isASubtree(cj, ci) andci 6= cj
5 hs = hs+ 1
6 if hs > 1
7 updateJoins(Q, ci,hs)
8 for c ∈ Q.children
9 addRCJoins(c)

updateJoins(p, c,g)

1 for j ∈ p.joins
2 if c = j.child andj.type = ParentChild
3 j.granularity = g
4 return
5 p.joins← p.joins ∪ Join(p, c, g, ParentChild)

Figure 5.11: The algorithm that computes extra joins that guarantee injectivematching

70

Chapter 6

Experimental Results

In this chapter, we experimentally study the performance of our proposedsolutions. We first

consider the scenario where text is represented as sequences of words, and study the perfor-

mance of Word Permuterm Index compared to the baseline methods in terms of measures

such as query response time and index construction time. Next we study the performance of

our subtree index under our proposed coding schemes. We report theperformance in terms

of the number of joins involved in evaluating each query, the runtime of queries and size of

the index under different coding schemes.

6.1 Natural Language Text as Sequences of Words

6.1.1 Experimental Setup

For our experiments, we used all or parts of the following two text collections. (1) News

Datasetis the AQUAINT corpus of English News Text [5], which we processed and ex-

tracted the sentences to be indexed. It contains around 18 million sentencesand its size

is more than 2 GBs. (2)Web Datasetis our crawl of the web done on May 2008, which

contains around 2 million documents and is around 8 GBs in size.

We created three sets of wild card queries for our experiments. (1)WHQ query-set

was created by replacing thewh keywords inwho andwhat questions from AOL query

log [94] with a wild card. (2)SVO query-setwas generated by randomly replacing the

subject or the object of a Subject-Verb-Object relation with a wild card. Weobtained the

SVO relationships using the Minipar dependency parser [82]. Finally, (3) n-gram query-set

was generated by randomly replacing a keyword with a wild card in an n-gram, with n =

1..5. These n-grams were selected according to their number of bindings in ourdatasets, in

an attempt to cover a wide range of bindings.

WPI is a memory-based index, hence to be fair to other indexes we assignedin our

71

Table 6.1: Summary of the performance of the indexes in terms of the running timein
seconds

News data Web data
10M sentences 1M documents

n-gram WHQ SVO n-gram WHQ SVO
Avg Bindings 2.5e+5 0.4 3.3e+3 5.4e+5 5.1 220

M
in

WPI 2e-6 1e-6 4e-6 3e-6 2e-6 4e-6
Neighbor 1e-4 0.008 0.005 1.34e-4 0.274 0.013
Inverted 0.03 0.007 0.028 0.01 0.064 0.022

Memscan 82.0 86.6 83.5 30.8 29.4 29.7

M
ax

WPI 0.03 2.5e-4 2.6e-4 0.06 0.01 0.02
Neighbor 24.0 10.0 4.30 194 8.98 10.2
Inverted 1.6e+4 8.99 493 4.6e+4 4.03 35.8

Memscan 431 432.9 424.8 219.8 116 33.2

A
vg

WPI 3.5e-4 6.6e-5 1.2e-4 6.8e-4 2.5e-4 3e-4
Neighbor 1.37 0.93 1.20 5.42 1.44 0.77
Inverted 373 0.73 9.71 1.2e+3 0.75 1.66

Memscan 87 90.5 87.47 44.9 31.3 30.7

experiments as much cache to the inverted and the neighbor indexes as the memory used by

WPI. We ran each query multiple times and only considered the last running time,in order

to make sure cache is being utilized by the querying engine. Neighbor and inverted indexes

were implemented over Berkeley DB, with the terms as the keys and posting lists asvalues.

6.1.2 Performance of Querying

Our first set of experiments compared the performance of the indexes under different set-

tings, in terms of the average running time of queries in seconds. Table 6.1 gives a summary

of the performance of each index over 10 million sentences of news data and 1 million doc-

uments of the web data and all the query sets.

As Table 6.1 suggests, WPI performs the best among all indexes on any combination

of data and query sets. The third row of the table shows the average number of bindings

per query for each query and data set used. Neighbor index performs relatively good when

the number of bindings is high. Inverted index performs very poorly on queries that match

a large number of documents. MemScan performs relatively slow regardless of what type

of query is given. The statistical correlation of the running time of queries over indexes is

largest for inverted index and smallest for WPI. These correlations reflect how the indexes

perform when the number of bindings grow. Figures 6.1 and 6.2 depict thebehavior of

these four methods with respect to the number of bindings of a query, plottedover 100 n-

gram queries over 10 million sentences of news data and 1 million documents of web data,

72

respectively. As these figures show, the running time of WPI is almost entirely independent

of the number of bindings of the query. For the data presented in these figures, on average

WPI is 5 orders of magnitude faster than the neighbor index. The worst case performance

of WPI is still an order of magnitude faster than the neighbor index whereasin its best case,

WPI is 6-7 orders of magnitude faster. The worst case, observed as aspike in Figures 6.1

and 6.2 for the running time of WPI, belongs to the query‘the % of’ . The running time

of WPI on this particular query is relatively higher because the query is oftypeα%β whose

running time complexity is decided by‖α‖ and‖β‖ according to Table 4.1. Sinceα=’the’

andβ=’of’ are the two highest selective words in the alphabet, we observe thespike in these

two figures.

10
0

10
2

10
4

10
6

10
8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Number of bindings of a query (logscale)

Q
ue

ry
 r

un
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

MemScan(0.68)
WPI(−0.02)
Neighbor(0.66)
Inverted(0.99)

Figure 6.1: The performance of the indexes based on the number of bindings of queries
over 10 million sentences of news data

In order to compare the scalability of the indexes we conducted another experiment to

compare how the indexes perform as the dataset size grows. Figure 6.3 shows the total

querying time of the four indexes over 1000SVOqueries computed over web datasets of

sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents. As this figure shows, the running time of

WPI stays almost constant. Starting as low as0.095 seconds for0.4 million documents and

going up to at most0.118 seconds for2 million documents, WPI shows only24% growth

in the overall querying time. The running times of the neighbor and the invertedindexes

grow almost linearly with the dataset size. The minimum (maximum) running times are

73

10
0

10
2

10
4

10
6

10
8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Number of bindings of a query (logscale)

Q
ue

ry
 r

un
ni

ng
 ti

m
e

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

MemScan(0.90)
WPI(−0.02)
Neighbor(0.62)
Inverted(0.99)

Figure 6.2: The performance of the indexes based on the number of bindings of queries
over 1 million documents of web data

370 (1693) and 600 (2211) for the neighbor and the inverted indexes,respectively. Finally,

MemScan shows an exponential growth with respect to the dataset size. The maximum

running time (for 2 million documents) shows almost two orders of magnitude growth with

respect to the minimum running time of MemScan.

6.1.3 WPI Performance with Limited Physical Memory

Given that WPI is a memory-based index, it is important to evaluate its performance in set-

tings where the space consumption of WPI exceeds the available system physical memory.

This is a worst-case scenario for WPI whereas the inverted and the neighbor indexes are

not expected to be affected much by limitations on the size of memory. A straight-forward

solution would be to use disk as a supplementary storage and allocate more memory than

available and let the operating system do the paging1 (i.e. decide which memory blocks to

swap out to disk). In an attempt to push WPI to do paging, we ran a set of experiments on

the news data of sizes 4, 6, 8, 10, 12, 14, 16 and 18 million sentences and the web data of

sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents. We used a machine with 4 GBs of physical

memory, around 0.8 GB of which was reserved by a distribution of the Linux operating

system for kernel and other system processes. We report here the amount of memory that

was required for storing all data structures required by WPI, as a percentage of the available

1the terms swapping and paging are used interchangeably in this paper

74

400K 800K 1.2M 1.6M 2M
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Dataset size in terms of the number of documents

T
ot

al
 r

un
ni

ng
 ti

m
e

of
 1

00
0

sv
o

qu
er

ie
s

in
 s

ec
on

ds
 (

lo
gs

ca
le

)

WPI
Neighbor
Inverted
Memscan

Figure 6.3: Scalability of the indexes over web data of growing sizes.

system physical memory. These memory requirements are depicted on the horizontal axis

of Figures 6.4 and 6.5 for different sizes of data. The reported valuesare not the peak mem-

ory usage of operating system for WPI process as the process needed additional memory

for code, stack and other static and dynamic data items. Hence, the amount ofmemory

the process required exceeded the above figures, and paging could happen for the smaller

datasets as well.

Figures 6.4 and 6.5 show the total running time of 1000SVOqueries over WPI and

the neighbor index as the datasets vary in size. As Figure 6.4 shows, WPI’s running time

grows dramatically as its size grows to80% of the memory size. This shows the effect of

paging on the WPI process. Moreover, as the figures show, even when paging happens, the

running time of WPI is still much lower than the neighbor index. By increasing theswap

size, we were able to run WPI over datasets that required memory equal to approximately

10 times that of the available system memory. For large datasets, a major part ofthe index

resides over disk and increasing the dataset size, as our results suggest, does not dramati-

cally change the running time of the queries. Even with such a naive disk-based solution to

WPI, it performs pretty well and can scale up well with limited available memory.

75

The total running times of queries for the inverted index and MemScan exceed those of

the neighbor index in Figures 6.4 and 6.5 and have been omitted for brevity.

55% 80% 105% 129% 154% 179% 204% 230%
0

200

400

600

800

1000

1200

1400

1600

1800

2000

WPI memory consumption in terms of available system physical memory

T
ot

al
 r

un
ni

ng
 ti

m
e

of
 1

00
0

S
V

O
 q

ue
rie

s
(s

ec
on

ds
)

WPI
Neighbor

Figure 6.4: The performance of WPI vs. the neighbor index using pagingon News Data of
sizes 4, 6, 8, 10,12, 14, 16 and 18 million sentences

6.1.4 Index Construction Time

Table 6.2 shows the time required to construct WPI compared to the neighbor index for

our experiment in Section 6.1.3. As this table suggests, the construction time of WPI is

smaller than the neighbor index for the given sets of data. In most cases, inverted index has

a slightly lower construction time than WPI and memory scan can be considered as having

no construction time except loading the dataset once into the main memory.

Table 6.2: Index construction time of WPI compared to the neighbor index in seconds
News dataset sentences

4M 6M 8M 10M 12M 14M
WPI 457 689 796 1172 2191 2246

Neighbor 871 1439 2028 2265 3170 3853

76

253% 419% 592% 776% 945%
0

200

400

600

800

1000

1200

WPI memory consumption in terms of available system physical memory

T
ot

al
 r

un
ni

ng
 ti

m
e

of
 1

00
0

S
V

O
 q

ue
rie

s
(s

ec
on

ds
)

WPI
Neighbor

Figure 6.5: The performance of WPI vs. the neighbor index using pagingon Web Data of
sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents

6.2 Natural Language Text as Syntactically Annotated Trees

6.2.1 Experimental Setup

For our experiments in this section, we parsed a collection of sentences from the AQUAINT

corpus of English News Text [5], using Stanford Parser [62], and used this dataset or a part

of it in our experiments.

We further processed each parsed tree obtained from the parser andassigned ids and

structural tags to individual nodes of the subtrees. With this tagging, eachnode is described

as a tuple consisting oftreeId, nodeId, parentId, left, right, levelandlabel. The treeId value

points to the corresponding tree that contains the node. ThenodeIdis a numeric value that

uniquely identifies each node within a tree, andparentIdis thenodeIDof the parent node.

The left, right and level are the structural information of an individual node, as discussed

under numbering schemes in Chapter 2.

We constructed two sets of queries over syntactically annotated text for our experiments.

The first set,WH query-setwas created by a third person who was asked to select48 of the

questions extracted from AOL query log [94],12 questions from each ofwhat, which, where

andwhoquestions. She was then asked to rewrite the questions in the form of sentences that

have the same patterns as a sentence with a potential match. For instance a question such

aswho is the mayor of New York city?is converted tomayor of New York city is %match%.

77

Finally, we parsed these sentences using Stanford parser and removedfor each sentence the

leaves that contain terms from the sentence, leaving only the sentence structure. The list of

all these questions and their corresponding query structures are presented in Table A.1 in

Appendix A.

Our second query set was constructed by extracting subtrees from a set of parsed sen-

tences which were not included in our indexes. The extracted subtrees were selected ac-

cording to the frequencies of their nodes. To account for differences in the selectivities

of queries that are posed to our indexes, we constructed the following classes of subtrees

consisting of (1) all high frequency nodes denoted as H, (2) all medium frequency nodes

denoted as M, (3) all low frequency nodes denoted as L, (4) high and medium frequency

nodes denoted as HM, (5) high and low frequency nodes denoted as HL, (6) medium and

low frequency nodes denoted as ML, and (7) high, medium and low frequency nodes de-

noted as HML. For each class, we construct10 subtrees of different sizes, and whose labels

all fall in the given set of frequency classes. The size of the queries are selected randomly

to be a number between1 and10 nodes. We refer to these second category of queries as

Frequency Based orFB query-set. The list of high, medium and low frequency labels used

in generating queries inFB query-setappear in Table A.2 in Appendix A.

Our subtree index was implemented as a native disk-based B+Tree index over the flat-

tened unique subtrees as index keys. We did not implement a caching systemover the

B+Tree and relied on the page buffering of the operating system for anysavings in the

number of disk page accesses. Each leaf of the B+Tree index pointed to aposting list

which was sorted first based ontreeId and then onleft values. We also flattened and se-

quentially stored parse trees in a separate file, which we call the data file. The treeIdvalues

in the index provided the offset of each individual parse tree in the data file.

All our experiments were run on a 64-bit machine with64 GB of physical memory and

a 4x quad-core processor. The system page size was4096 bytes. The reported index sizes

will be different on 32-bit addressing systems or with different page sizes.

6.2.2 Index Construction

In this section we study the characteristics of the indexes built over syntactically annotated

trees experimentally. We investigate how the size of the index is affected by thechoice of

the coding scheme and size of the input data. We also study the index construction time for

different coding schemes and input sizes.

78

Index Size

Figure 6.6 shows the subtree index size for the three proposed coding schemes, varying

input sizes, with the top left sub-figure displaying the index sizes, when input size is100

sentences, and the top right, bottom left and bottom right sub-figures displaying the same

results for input sizes of1k, 10k and100k sentences, respectively. Furthermore, in each

sub-figure, we vary the maximum subtree size,mss, from 1 to 5, as shown on the X axis.

As the figure shows, the size of the index is smallest for filter-based coding, and largest

for the subtree interval coding in all cases. One interesting pattern in the results for sizes of

the index is that asmss increases, the gap between the sizes of root-split and subtree interval

codings grows. The reason is that for larger subtrees, subtree interval coding uses larger

postings, because it has to store the structural information for individualnodes. However,

the posting size in root-split coding has constant size, and the index size increases only due

to more keys being indexed.

1 2 3 4 5
0

1

2

3

4

5
x 10

6 100 sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

1

2

3

4
x 10

7 1k sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

1

2

3

4

5
x 10

8 10k sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

1

2

3

4
x 10

9 100k sents

filter−based
root−split
subtree interval

Figure 6.6: SI size for filter-based, root-split and subtree interval codings, withmss =
1, . . . , 5. Input size is (top left)100 sentences, (top right)1000 sentences, (bottom left)
10, 000 sentences, (bottom right)100, 000 sentences.

Table 6.3 shows the ratio of the index size whenmss is 5 to the the index size when

mss is 1, for all three coding schemes and four dataset sizes. As the table depicts, root-split

coding shows the smallest increase in the size of the index among all coding schemes.

The size reduction for root-split coding is due to (1) reducing the size of each posting as

only structural information of roots are stored, and (2) reducing the number of postings as

79

Table 6.3: Ratio of the subtree index size whenmss is 5 to the index size whenmss is 1
Filter-based Root-split Subtree Interval

100 22 15 48

1k 24 14 50

10k 23 13 59

100k 21 12 54

multiple subtrees which have the same key and the same root structural information will be

represented with only one posting in root-split coding, while every single subtree requires a

distinct posting using the subtree interval coding. Figure 6.7 depicts the number of postings

for our three coding schemes, varying the dataset size andmss. As this figure shows, for

mss = 1 the number of postings of root-split and subtree interval codings are equal and as

mss increases the gap between the number of postings for these coding schemes widens.

Filter-based coding has the smallest number of postings as it only stores unique treeIds,

and no structural information.

1 2 3 4 5
0

2

4

6

8

10
x 10

4 100 sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

2

4

6

8
x 10

5 1k sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

2

4

6

8
x 10

6 10k sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

2

4

6

8
x 10

7 100k sents

filter−based
root−split
subtree interval

Figure 6.7: Total number of postings over all keys for filter-based, root-split and subtree
interval codings, with varying input sizes andmss values. Input size is (top left)100 sen-
tences, (top right)1000 sentences, (bottom left)10, 000 sentences, (bottom right)100, 000
sentences.

The number of keys to index varies with changes in the input dataset and themss

values. Figure 6.8 displays the number of keys (in log-scale) in terms of varying input sizes

andmss values, with the left sub-figure showing the absolute number of keys and the right

sub-figure showing the cumulative number of keys. The figure shows that the number of

80

absolute keys grows dramatically formss = 4 andmss = 5. A reason for this increase in

the number of keys is that the total number of possible subtree structures ofsizem follows

themth Catalan number and asm increases, this number can grow dramatically. The first

five Catalan numbers are1, 1, 2, 5 and 14. The absolute number of keys grows almost

proportionately to these values. The cumulative numbers are the number of keys stored in

each index for different values ofmss.

100 1k 10k 100k 1m
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of indexed sentences

N
um

be
r

of
 in

de
x

ke
ys

 (
lo

gs
ca

le
)

Absolute number of keys

mss=1
mss=2
mss=3
mss=4
mss=5

100 1k 10k 100k 1m
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of indexed sentences

N
um

be
r

of
 in

de
x

ke
ys

 (
lo

gs
ca

le
)

Cumulative number of keys

mss=1
mss=2
mss=3
mss=4
mss=5

Figure 6.8: Total number of index keys for varying input sizes andmss values. (Left)
absolute number of keys, (right) cumulative number of keys.

Finally, to have an idea of the space overhead of the index, the size of a B+tree con-

structed over subtree inverted lists is comparable to the size of the data file formss = 1.

For larger values ofmss, the gap between the data file size and subtree index size grows.

Formss = 5 and subtree interval coding, the size of data file is two orders of magnitude

smaller than the subtree index size.

Index Construction Time

Figure 6.9 shows the construction time of the subtree index for different datasets, coding

schemes andmss values. As shown, the construction time is smallest for filter-based coding

and largest for subtree interval coding. Root-split has a construction timethat is slightly

larger than filter-based coding. Asmss increases the difference in the construction time

between subtree interval coding and the other two codings grows. This is mostly because

the size of the index for subtree interval coding is larger and as a result more data has to be

81

written on disk.

1 2 3 4 5
0

1

2

3

4

5

6
100 sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

10

20

30

40

50
1k sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

100

200

300

400

500

600
10k sents

filter−based
root−split
subtree interval

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000
100k sents

filter−based
root−split
subtree interval

Figure 6.9: Index construction time for filter-based, root-split and subtree interval codings,
with mss = 1, . . . , 5. Input size is (top left)100 sentences, (top right)1000 sentences,
(bottom left)10, 000 sentences, (bottom right)100, 000 sentences.

6.2.3 Querying Performance

In this section, we experimentally evaluate the performance of querying oursubtree index

under different settings. In particular, we investigate the runtime of queries in terms of

their number of matches for the filter-based, root-split and subtree interval codings asmss

values and query sizes vary. We also present some scalability results forthe three coding

schemes using data sizes of one thousand to one million sentences. Finally, westudy the

performance of our splitting algorithms by comparing the number of joins that are required

under each split policy.

Response time of queries

To obtain the query response time over our subtree index, we used all the48 WH queries

and70 FB queries, and tried each query 5 times and took the average running time per

query. We grouped the queries according to their number of matches into thefollowing

bins: (1) less than10, (2) between10 and100, (3) between100 and1k, (4) between1k and

10k and (5) larger than10k matches. Figure 6.10 shows the average run-time of queries

varying the number of matches, over100k sentences. Tables A.3 to A.13 in Appendix A

display the individual running times of the queries averaged over five runs.

82

As Figure 6.10 shows, the running time of the queries decreases for all coding schemes

asmss grows. This reduction is smallest for queries with large number of matches using

filter-based coding, as the time of thefiltering phase becomes a dominating factor. As

shown in the figure, Root-split coding performs better than subtree interval coding in all

cases. Filter-based coding performs better than root-split coding formss = 1 and less than

10 matches on average. However, for larger values ofmss, which are mainly interesting

for a subtree index, root-split coding performs better than the other two coding schemes.

Also, unlike the filter-based coding, both the root-split and subtree interval codings

display a reduction in their average query response times for larger number of matches.

This happens for the following two reasons: (1) The intermediate result size of a query

with a small number of matches could be large and this would affect the runtime ofqueries

under root-split and subtree interval codings, but not under filter-based coding. (2) As can

be consulted with Tables A.3 to A.13 in Appendix A, our queries with larger number of

terms have on average smaller number of matches; however, these queriesrequire a larger

number of joins and take longer for these two coding schemes. This pattern can also be

seen in Figure 6.11 where the running time is depicted as the query size varies.

Figure 6.11 displays the runtime of queries in terms of the query size using the same

settings as in Figure 6.10. In this figure, we only included queries which have100 and more

matches. As this figure shows, root-split and subtree interval codings show an increasing

trend with respect to the size of queries. Filter-based coding displays a somewhat random

behavior with respect to the query size as its performance is mostly determinedby the

number of matches and how well the splits can perform filtering. According tothis figure,

asmss increases, root-split and subtree interval codings perform better on larger queries as

they require smaller number of joins to compute the result set of queries.

Comparison with Other systems

Table 6.4 displays the results of comparing our SI using root-split coding withATree-

Grep [104] and a frequency-based approach that is an adaptation ofTreePi [123] for in-

dexing parse trees. These results are over100k sentences and SI usesmss = 3. Similar to

TreePi, the frequency-based approach stores in the index all single nodes and a percentage

of larger highest frequency subtrees. This percentage is denoted in brackets in the last three

columns of Table 6.4.

The results in Table 6.4 are obtained over the queries in ourFB query-setand are

grouped by the frequency classes. Since ATreeGrep does not support all the queries, the

83

results are averaged over as many queries as there were results for. As this table depicts, SI

with root-split coding outperforms other index structures by at least one order of magnitude

over all frequency classes.

Table 6.4: Average running time of queries in seconds for queries in FB query set classes
using Subtree index with root-split coding (mss = 3), ATreeGrep and Frequency-based
approaches with varying frequency cutoff thresholds.

RS ATG FB(0.1%) FB(1%) FB(10%)
L 0.09 1.9 3.05 3.03 3.04
M 0.01 10.06 12.32 0.8 0.35
ML 0.25 2.13 10.3 9.62 9.25
H 1.73 22.4 39.21 34.51 34.53
HL 1.57 32.97 34.58 34.61 34.6
HM 1.76 37.08 35.54 31.40 31.57
HML 1.76 86.02 49.03 42.97 43.13

Scalability Results

Figure 6.12 presents the runtime of our queries over four subsets of ourparsed collection:

1k, 10k, 100k and1m sentences. We usedmss = 3 for the results reported in this figure,

but the result for other values ofmss were similar. The reported runtimes are the average

query response times for each group ofFB queriesand using our three coding schemes.

The results in this figure show that all three coding schemes display a similar pattern as the

dataset size increases, i.e. the running time grows approximately linearly with the number

of sentences indexed.

Figure 6.12 also shows that the root-split coding scales up better with the dataset size.

This is mostly evident on the figure between1k and10k as well as between10k and100k

results, especially for query classes that containhigh frequency labels; i.e.H, HL, HM and

HML. Averaged over all7 FB query-set categories, ranging from1k to 1m sentences of our

parsed collection, the query runtime increases for filter-based, subtreeinterval and root-split

codings by a factor of1025, 752 and529, respectively.

Splitting Algorithms Results

Table 6.5 displays the number of joins required per group of12 queries ofWho, Which,

WhereandWhatqueries formss values of2 to 5. The values reported for root-split coding

are the total number of joins required for evaluating a cover generated using theminRC

in addition to the joins obtained fromaddRCJoins algorithm. Similarly, joins reported

84

for subtree interval codings are due tooptimalCover andaddRCJoins algorithms (See

Sections 5.2.2 and 5.3.2).

As Table 6.5 shows,optimalCover achieves a fewer number of joins for all groups

of queries andmss values2. Despite a fewer number of joins obtained for filter-based and

subtree interval codings, root-split still manages to have a smaller query response time, by

minimizing the I/O cost and avoiding to perform filtering.

Table 6.5: Total number of joins required over queries in the WH query set.r=root-split,
s=subtree interval.

Query-set mss = 2 mss = 3 mss = 4 mss = 5
r s r s r s r s

Who 71 65 57 40 36 26 29 20
Which 82 75 65 51 51 36 39 27
Where 59 57 53 40 32 25 27 19
What 67 64 55 40 35 27 27 19

2In the case wheremss = 1, root-split and subtree interval will have equal number of joins, which isequal
to |Q| − 1

85

10
0

10
5

0

10

20

30

40

Number of matches (logscale)

Q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 1

10
0

10
5

0

10

20

30

40

Number of matches (logscale)

Q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 2

10
0

10
5

0

10

20

30

40

Number of matches (logscale)

Q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 3

10
0

10
5

0

10

20

30

40

Number of matches (logscale)

Q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 4

10
0

10
5

0

10

20

30

40

Number of matches (logscale)

Q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 5

Filter−based coding
Root−split coding
Subtree Interval coding

Figure 6.10: Average runtime of queries in terms of their number of matches for filter-based,
root-split and subtree interval codings andmss values of1 to 5

86

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Query size

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 1

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Query size

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 2

0 2 4 6 8 10 12
0

10

20

30

40

Query size

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 3

0 2 4 6 8 10 12
0

10

20

30

40

Query size

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 4

0 2 4 6 8 10 12
0

10

20

30

40

Query size

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
(s

ec
on

ds
)

mss = 5

Filter−based coding
Root−split coding
Subtree Interval coding

Figure 6.11: Average runtime of queries in terms of the size of queries for filter-based,
root-split and subtree interval codings andmss values of1 to 5

87

L M ML H HL HM HML

10
−2

10
0

10
2

Query groups

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

Filter−based (mss=3)

1k
10k
100k
1m

L M ML H HL HM HML

10
−2

10
0

10
2

Query groups

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

Root−split (mss=3)

1k
10k
100k
1m

L M ML H HL HM HML

10
−2

10
0

10
2

Query groups

A
ve

ra
ge

 q
ue

ry
 r

un
tim

e
in

 s
ec

on
ds

 (
lo

gs
ca

le
)

Subtree Interval (mss=3)

1k
10k
100k
1m

Figure 6.12: Average runtime of queries (mss = 3) over groups of FB queries over datasets
of 1k, 10k, 100k and1m sentences and using different coding schemes.

88

Chapter 7

Conclusions and Future Directions

This chapter concludes this thesis by providing a discussion of the benefitsof the ap-

proaches presented, their limitations, and the avenues this thesis opens forfuture work

and improvements.

7.1 Summary and Discussion

In this thesis we studied the problems of indexing and querying over naturallanguage text

under two scenarios. In the first scenario, we considered text as sequences of words and

studied indexing techniques over word level wild card queries. In the second scenario, we

considered text as a collection of syntactically annotated trees, and studiedefficient methods

for retrieving subtrees matching a query tree.

7.1.1 Word Permuterm Index

In the first scenario, we discussed the development of Word Permuterm Index (WPI) which

supports single wild card natural language queries. WPI fills in the gap fora time-efficient

index supporting a wide range of wild card queries over natural language text. Our asymp-

totic analysis of the complexity bounds of querying over different indexesshows a better

time complexity for WPI over other approaches. Our wide range of experiments over dif-

ferent combinations of data and query sets and the number of bindings show a large gap

in terms of the performance between WPI and the neighbor and the inverted indexes. Our

results also show that WPI performs better than the neighbor index even in the lack of suf-

ficient physical memory, resulting in paging memory pages in and out of the disk which

greatly reduces its performance. Word permuterm index is limited to wild card queries con-

taining only a single wild card. More general wild card queries have not been the focus of

word permuterm index and further optimization might be necessary to support queries with

89

more than one wild card.

7.1.2 Subtree Index and Root-split coding

In the second scenario, we proposed subtree index (SI) as a novel indexing strategy over

syntactically annotated trees. We studied the architecture of SI and provided algorithms for

building it. We further investigated different coding schemes for encodingsubtree infor-

mation into inverted lists of SI and proposed two baseline coding schemes, filter-based and

subtree interval codings, and a novel root-split coding scheme. Later,we discussed query

matching over SI which includes two phases, a split phase and a join phase.In the split

phase, we studied algorithms that compute join optimal covers over subtree interval and

filter-based codings. We also proposed theminRC algorithm that computes the best possi-

ble root-split cover, which might not be join optimal. In the join phase, we studied the join

approaches over SI and discussed how query matching is affected when we have injective

matching assumption. Our experimental results shows that root-split coding performs better

than subtree-interval coding in all cases and filter-based coding might outperform root-split

coding in a rare case where SI is constructed only over the nodes and thenumber of matches

of the query is very small. We also experimentally showed that the index size and index

construction time of root-split coding are better than those of subtree interval coding and

slightly larger than those of filter-based coding. Finally, we showed that over our set of

queries,minRC algorithm generates covers which are smaller than the theoretical worst

case discussed, in terms of the number of their subtrees.

One limitation of the current implementation of SI is that it does not support all axes as

efficiently as the parent-child axis. For instance, a query containing all ancestor-descendant

axes has to be split into its nodes. Thus, storing larger subtrees in the indexwill not be

beneficial for such queries.

7.1.3 Discussion

Word permuterm index and subtree index were introduced in this thesis to address two

scenarios that natural language text is often represented with. These scenarios consider text

as sequences of words or as collections of parse trees. However, natural language text can

be represented in numerous other formats. For instance, one could consider flat structures

that are annotated with part of speech tags. As another example, annotations exist over

text that can be modelled using a directed acyclic graph or a general graph. It is important

to note that this thesis only studies two of these scenarios and leaves the restto the future

90

work.

Subtree index (SI) provides the functionality to search for node labels and relationships

between them expressed using navigational axes. Therefore, it can provide more informed

forms of searches compared to WPI. WPI provides very fast in-memory searches over wild

card queries, while SI does not directly support wild cards in its queries and requires extra

effort to answer such queries. Direct support of wild card queries over SI could be an

interesting future work. While the two approaches address different querying needs and

query formats, they might both be useful in retrieving more meaningful answers to natural

language questions.

7.2 Future Directions

Our solutions and algorithms can be extended in a few interesting directions.

(i) Allowing the operating system to swap memory pages in and out of the disk is anaive

approach for solving the high memory consumption of WPI. One future extension

would be to benefit from the localities available in natural language text to store WPI

structures over disk in such a way that the number of disk block accessesis optimized,

hence, increasing the efficiency.

(ii) High space consumption is currently one of the main drawbacks of WPI. An area

for improvement is finding compression techniques that can further reduce the size

of WPI. Another area is to make use of parallelism and distribute WPI over multiple

machines.

(iii) SI improves the query response time at the expense of more space consumption and

a longer index construction time. One possible improvement over SI would be to

materialize certain subtrees, rather than all subtrees. Which subtrees to materialize

could be learned from the distribution of the subtrees in a query log over syntactically

annotated trees, if one is available. Otherwise, an objective cost functioncan be used

to estimate the cost of joins to build each subtree and materialize subtrees whosecosts

exceeds a certain threshold, hence limiting the worst case query runtime performance.

(iv) Our query splitting algorithms for different coding schemes over SI only take into

account the size of a cover, in terms of the number of subtrees included, as a measure

for improving the query execution performance. It would be interesting to study how

91

much the performance can be improved by using more levels of optimizations such

as building histograms and taking selectivities of subtrees into account.

(v) Currently the subtree interval and the root-split codings use the multi-predicate merge

join approach which performs extra comparisons for parent-child axes. As a result,

querying performance over these two coding schemes is degraded compared to the

filter-based approach, which uses a straightforward sorted list intersection approach.

It would thus be interesting to adopt more recent structural join approaches such as

StackTree [1] and TwigStack [11] for our coding schemes, and study the performance

of SI under such algorithms.

92

Bibliography

[1] S. Al-Khalifa, HV Jagadish, N. Koudas, J.M. Patel, D. Srivastava,and Y. Wu. Struc-
tural Joins: A Primitive for Efficient XML Query Pattern Matching. InProceedings
of International Conference on Data Engineering (ICDE), 2002.

[2] Altavista. http://www.altavista.com .

[3] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure and
content scoring for XML. InProceedings of International Conference on Very Large
Databases (VLDB), 2005.

[4] A. Andersson, N.J. Larsson, and K. Swanson. Suffix trees on words. Algorithmica,
23(3):246–260, 1999.

[5] The aquaint corpus of english news text, 2002.http://www.ldc.upenn.edu/
Catalog/docs/LDC2002T31/ .

[6] N. Augsten, D. Barbosa, M. Bohlen, and T. Palpanas. Tasm: Top-k approximate
subtree matching. InProceedings of International Conference on Data Engineering
(ICDE), 2010.

[7] D. Bahle, H.E. Williams, and J. Zobel. Efficient phrase querying with anauxiliary
index. InProceedings of the International Conference on Information Retrieval (SI-
GIR), 2002.

[8] M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open infor-
mation extraction from the web. InProceedings of International Joint Conference
on Artificial Intelligence (IJCAI), 2007.

[9] S. Bird, Y. Chen, S.B. Davidson, H. Lee, and Y. Zheng. Designingand evaluating an
xpath dialect for linguistic queries. InProceedings of International Conference on
Data Engineering (ICDE), 2006.

[10] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, andJ. Teubner. Mon-
etDB/XQuery: a fast XQuery processor powered by a relational engine. InProceed-
ings of International Conference on Management of Data (SIGMOD), 2006.

[11] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pat-
tern matching. InProceedings of International Conference on Management of Data
(SIGMOD), 2002.

[12] M. Burrows and D.J. Wheeler.A block-sorting lossless data compression algorithm.
Technical Report 124, Digital Equipment Corporation, 1994.

[13] M.J. Cafarella and O. Etzioni. A search engine for natural language applications. In
Proceedings of International Conference on World Wide Web (WWW), 2005.

[14] M.J. Cafarella, C. Re, D. Suciu, and O. Etzioni. Structured querying of web text data:
A technical challenge. InProceedings of the Biannual Conference on Innovative
Data Systems Research (CIDR), 2007.

93

[15] S. Cassidy and J. Harrington. Multi-level annotation in the Emu speechdatabase
management system.Speech Communication, 33(1-2):61–77, 2001.

[16] Online Computer Library Center. Dewey decimal classification, 2006.http://
www.oclc.org/dewey .

[17] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing scoring functions and indexes
for proximity search in type-annotated corpora. InProceedings of International Con-
ference on World Wide Web (WWW), 2006.

[18] S. Chaudhuri, K. Church, A.C. Konig, and L. Sui. Heavy-tailed distributions and
multi-keyword queries. InProceedings of the International Conference on Informa-
tion Retrieval (SIGIR), 2007.

[19] S. Chen, H.G. Li, J. Tatemura, W.P. Hsiung, D. Agrawal, and K.S. Candan. Twig
2 Stack: bottom-up processing of generalized-tree-pattern queries over XML doc-
uments. InProceedings of International Conference on Very Large Databases
(VLDB), 2006.

[20] T. Chen, J. Lu, and T.W. Ling. On boosting holism in XML twig pattern matching
using structural indexing techniques. InProceedings of International Conference on
Management of Data (SIGMOD), 2005.

[21] Y. Chen and D. Cooke. Unordered tree matching and strict unordered tree matching:
The evaluation of tree pattern queries. InProceedings of Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2010.

[22] Z. Chen, HV Jagadish, F. Korn, N. Koudas, S. Muthukrishnan,R. Ng, and D. Srivas-
tava. Counting twig matches in a tree. InProceedings of International Conference
on Data Engineering (ICDE), 2001.

[23] Z. Chen, HV Jagadish, L.V.S. Lakshmanan, and S. Paparizos. From tree patterns
to generalized tree patterns: On efficient evaluation of XQuery. InProceedings of
International Conference on Very Large Databases (VLDB), 2003.

[24] Y.S. Choi. Tree pattern expression for extracting information from syntactically
parsed text corpora.Data Mining and Knowledge Discovery, 1(2):211–231, 2011.

[25] J. Christensen, Mausam, S. Soderland, and E. Etzioni. Semantic rolelabeling for
open information extraction. InProceedings of the North American Chapter of The
Association for Computational Linguistics (NAACL), 2010.

[26] P. Chubak and D. Rafiei. Index Structures for Efficiently Searching Natural Language
Text. In Proceedings of International Conference on Information and Knowledge
Management (CIKM), 2010.

[27] J. Clark and S. DeRose. Xml path language (xpath), 1999.http://www.w3.org/
TR/xpath .

[28] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching
in deterministic O (n log 3 n)-time. InProceedings of the Symposium on Discrete
algorithms (SIAM), 1999.

[29] W3C Consortium. Xquery 1.0: An xml query language, 2007.http://www.w3.
org/TR/xquery/ .

[30] H.T. Dang, D. Kelly, and J. Lin. Overview of the TREC 2007 questionanswering
track. InProceedings of Text REtrieval Conference (TREC), 2007.

[31] D. DeHaan, D. Toman, M.P. Consens, and M.T. Ozsu. A comprehensive XQuery
to SQL translation using dynamic interval encoding. InProceedings of the Interna-
tional Conference on Management of Data (SIGMOD), 2003.

94

[32] P.F. Dietz. Maintaining order in a linked list. InProceedings of the Symposium on
Theory of Computing (STOC), 1982.

[33] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matching.Journal of the
ACM, 41(2):205–213, 1994.

[34] O. Etzioni, M.J. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soder-
land, D.S. Weld, and A. Yates. Web-scale information extraction in knowitall: (pre-
liminary results). InProceedings of International Conference on World Wide Web
(WWW), 2004.

[35] S. Evert and H. Voormann. The nite query language, 2002.http://www.ltg.ed.
ac.uk/NITE/documents/NiteQL.v2.1.pdf .

[36] L. Faulstich, U. Leser, and T. Vitt. Implementing a Linguistic Query Language for
Historic Texts.Proceedings of the Conference on Current Trends in Database Tech-
nology (EDBT), 2006.

[37] P. Ferragina and J. Fischer. Suffix arrays on words. InProceedings of the Symposium
on Combinatorial Pattern Matching (CPM), 2007.

[38] P. Ferragina and G. Manzini. Indexing compressed text.Journal of the ACM,
52(4):581, 2005.

[39] P. Ferragina and R. Venturini. Compressed permuterm index. InProceedings of
International Conference on Information Retrieval (SIGIR), 2007.

[40] D. Florescu and D. Kossmann. Storing and Querying XML Data usingan RDMBS.
Data Engineering Bulletin, 22(3):27–34, 1999.

[41] E. Garfield. The permuterm subject index: An autobiographical review. American
Society for Information Science, 27(5):288–291, 1976.

[42] S. Ghodke and S. Bird. Fast Query for Large Treebanks.Proceedings of the North
American Chapter of The Association for Computational Linguistics (NAACL), 2010.

[43] R. Goldman and M. Jarke. Dataguides: Enabling query formulation and optimiza-
tion in semistructured. InProceedings of International Conference on Very Large
Databases (VLDB), 1997.

[44] Google.http://www.google.com .

[45] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries.Transactions on Database Systems, 30(2):491, 2005.

[46] M. Götz, C. Koch, and W. Martens. Efficient algorithms for the tree homeomorphism
problem. InProceedings of the International Conference on Database Programming
Languages (DBPL), 2007.

[47] G. Gou and R. Chirkova. Efficiently querying large XML data repositories: A survey.
Transactions on Knowledge and Data Engineering, 19(10):1381–1403, 2007.

[48] N. Grimsmo, T.A. Bjorklund, and M.L. Hetland. Fast Optimal Twig Joins. In Pro-
ceedings of International Conference on Very Large Databases (VLDB), 2010.

[49] R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-compressed text indexes. In
Proceedings of the Symposium on Discrete Algorithms (SIAM), 2003.

[50] T. Grust. Accelerating XPath location steps. InProceedings of International Con-
ference on Management of Data (SIGMOD), 2002.

[51] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach arelational DBMS
to watch its (axis) steps. InProceedings of International Conference on Very Large
Databases (VLDB), 2003.

95

[52] S. Guha, HV Jagadish, N. Koudas, D. Srivastava, and T. Yu. Approximate XML
joins. In Proceedings of International Conference on Management of Data (SIG-
MOD). ACM, 2002.

[53] H. He and A.K. Singh. Closure-tree: An index structure for graphqueries. InPro-
ceedings of International Conference on Data Engineering (ICDE), 2006.

[54] U. Heid, H. Voormann, J.T. Milde, U. Gut, K. Erk, and S. Pado. Querying both time-
aligned and hierarchical corpora with NXT Search. InProceedings of Conference on
Language Resources and Evaluation (LREC), 2004.

[55] E. Hinrichs, S. K̈ubler, K. Naumann, H. Telljohann, and J. Trushkina. Recent de-
velopments in linguistic annotations of the tüba-d/z treebank. InProceedings of the
Third Workshop on Treebanks and Linguistic Theories (TLT), 2004.

[56] C.M. Hoffmann and M.J. O’Donnell. Pattern matching in trees.Journal of the ACM,
29(1):68–95, 1982.

[57] Indri - language modeling meets inference networks. http://www.
lemurproject.org/indri/ .

[58] Oracle text, an oracle technical white paper, 2005.http://www.oracle.com/
technology/products/text/pdf/10gR2text_twp_f.pdf .

[59] A. Ittycheriah, M. Franz, and S. Roukos. IBM’s statistical question answering sys-
tem. Proceedings of Text REtrieval Conference (TREC), 2002.

[60] S. Kepser. Finite Structure Query: A tool for querying syntacticallyannotated cor-
pora. InProceedings of the Conference on European Chapter of the Associationfor
Computational Linguistics (EACL), 2003.

[61] S. Kepser. Querying linguistic treebanks with monadic second-order logic in linear
time. Journal of Logic, Language and Information, 13(4):457–470, 2004.

[62] D. Klein and C.D. Manning. Accurate unlexicalized parsing. InProceedings of the
Annual Meeting on Association for Computational Linguistics (ACL), 2003.

[63] E. Konig and W. Lezius. The TIGER language: a Description Language for Syntax
Graphs.Technical Report, University of Stuttgart, 2001.

[64] E. Konig, W. Lezius, and H. Voormann. TIGERSearch user’s manual. University of
Stuttgart, 2003.

[65] T. Krause, J. Richling, V. Rosenfeld, A. Zeldes, F. Zipser, C. Chiarcos, and J. Ritz.
Annis2, search and visualization in multilevel linguistic corpora, 2009.http://
www.sfb632.uni-potsdam.de/d1/annis/ .

[66] C. Kwok, O. Etzioni, and D.S. Weld. Scaling question answering to the Web.Trans-
actions on Information Systems, 19(3):242–262, 2001.

[67] C. Lai and S. Bird. Querying and updating treebanks: A critical survey and require-
ments analysis. InProceedings of the Australian Language Technology Workshop,
2004.

[68] C. Lai and S. Bird. LPath+: A first-order complete language for linguistic tree query.
In Proceedings of the Pacific Asia Conference on Language, Information and Com-
putation (PACLIC), 2005.

[69] C. Lai and S. Bird. Querying linguistic trees.Journal of Logic, Language and
Information, 19(1):53–73, 2010.

96

[70] R. Levy and G. Andrew. Tregex and Tsurgeon: tools for querying and manipulating
tree data structures. InProceedings of the Conference on Language Resources and
Evaluation (LREC), 2006.

[71] D. Lin, K. Church, H. Ji, S. Sekine, D. Yarowsky, S. Bergsma, K. Patil, E. Pitler,
R. Lathbury, V. Rao, et al. New tools for web-scale n-grams. InProceedings of
Conference on Language Resouces and Evaluation (LREC), 2010.

[72] J. Lin and B. Katz. Question answering techniques for the World WideWeb. Pro-
ceedings on the Conference on European Chapter of the Association for Computa-
tional Linguistics (EACL) - Tutorial, 2003.

[73] J. Lu, T. Chen, and T.W. Ling. Efficient processing of XML twig patterns with parent
child edges: a look-ahead approach. InProceedings of International Conference on
Information and Knowledge Management (CIKM), 2004.

[74] Apache lucene. http://lucene.apache.org/java/2_3_2/
queryparsersyntax.html .

[75] A. Maier and H.J. Novak. Db2’s full-text search products - white paper, 2006.

[76] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval.
Cambridge University Press, 2008.

[77] C.D. Manning and H. Scḧutze.Foundations of statistical natural language process-
ing. MIT Press, 2000.

[78] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of English: The Penn Treebank.Computational linguistics, 19(2):330, 1993.

[79] H. Maryns and S. Kepser. Monasearch: Querying linguistic treebanks with monadic
second-order logic. InThe International Workshop on Treebanks and Linguistic
Theories, 2009.

[80] N. Mayo, J. Kilgour, and J. Carletta. Towards an alternative implementation of
NXT’s query language via XQuery. InProceedings of the Annual Meeting on Asso-
ciation for Computational Linguistics (ACL), 2006.

[81] T. Milo and D. Suciu. Index structures for path expressions.Proceedings of the
International Conference on Database Theory (ICDT), 1999.

[82] Minipar home page.http://webdocs.cs.ualberta.ca/ ˜ lindek/minipar.
htm .

[83] J. Mirovsky. Netgraph: A tool for searching in prague dependency treebank 2.0.
Proceedings of the Workshop on Treebanks and Linguistic Theories (TLT), 2006.

[84] J. Mirovsky. Netgraph - Making Searching in Treebanks Easy. In Proceedings of the
International Joint Conference on Natural Language Processing (IJCNLP), 2008.

[85] J. Mirovsky. PDT 2.0 requirements on a query language.Proceedings of the Annual
Meeting on Association for Computational Linguistics (ACL), 2008.

[86] J. Mirovsky. Towards a Simple and Full-Featured Treebank QueryLanguage. InPro-
ceedings of the International Conference on Global Interoperability for Language
Resources (ICGL), 2008.

[87] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, F. Lacatusu, A. Novischi,
A. Badulescu, and O. Bolohan. Lcc tools for question answering. InProceedings of
Text REtrieval Conference (TREC), 2002.

97

[88] D. Moldovan, M. Pacsca, S. Harabagiu, and M. Surdeanu. Performance issues and
error analysis in an open-domain question answering system.Transactions on Infor-
mation Systems, 21(2):133–154, 2003.

[89] P. Nakov, A. Schwartz, B. Wolf, and M. Hearst. Supporting annotation layers for
natural language processing. InProceedings of the Annual Meeting on Association
for Computational Linguistics (ACL), 2005.

[90] G. Navarro and V. Makinen. Compressed full-text indexes.Computing Surveys,
39(1):2, 2007.

[91] Openephyra - ephyra question answering system.http://mu.lti.cs.cmu.edu/
trac/Ephyra/wiki/OpenEphyra .

[92] P. Pajas and J.̌Sťeṕanek. System for querying syntactically annotated corpora. In
Proceedings of the International Joint Conference on Natural Language Processing
(IJCNLP), 2009.

[93] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis, and V. Zolotov. Indexing
XML data stored in a relational database. InProceedings of International Conference
on Very Large Databases (VLDB), 2004.

[94] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In Proceedings of the
International Conference on Scalable Information Systems, 2006.

[95] U. Petersen. Emdros: A text database engine for analyzed or annotated text. In
Proceedings of the Annual Meeting on Association for Computational Linguistics
(ACL), 2004.

[96] U. Petersen. Querying both parallel and treebank corpora: Evaluation of a corpus
query system. InProceedings of Conference on Language Resouces and Evaluation
(LREC), 2006.

[97] R. Pito. Tgrep Manual Page.Linguistic Data Consortium, University of Pennsylania,
1994.

[98] The penn treebank project, 1999.http://www.csi.upenn.edu/ ˜ treebank/ .

[99] D. Rafiei and H. Li. Data extraction from the web using wild card queries. InPro-
ceedings of International Conference on Information and Knowledge Management
(CIKM), 2009.

[100] B. Randall. CorpusSearch users manual.University of Pennsylvania, 2000.

[101] D.L.T. Rohde. TGrep2 User Manual version 1.15.Massachusetts Institute of Tech-
nology.http://tedlab.mit.edu/dr/Tgrep2 , 2005.

[102] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt, and J.F. Naughton.
Relational databases for querying XML documents: Limitations and opportunities.
In Proceedings of International Conference on Very Large Databases (VLDB), 1999.

[103] D. Shasha, J.T.L. Wang, and R. Giugno. Algorithmics and applications of tree and
graph searching. InProceedings of the Symposium on Principles of Database Sys-
tems (PODS), 2002.

[104] D. Shasha, J.T.L. Wang, H. Shan, and K. Zhang. Atreegrep: Approximate searching
in unordered trees. InProceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM), 2002.

[105] I. Steiner and L. Kallmeyer. VIQTORYA–a visual query tool for syntactically anno-
tated corpora. InProceedings of Conference on Language Resources and Evaluation
(LREC), 2002.

98

[106] I. Tatarinov, S.D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. InProceed-
ings of International Conference on Management of Data (SIGMOD), 2002.

[107] Y. Tian, R.C. McEachin, C. Santos, D. J. States, and J. M. Patel. SAGA: a subgraph
matching tool for biological graphs.Bioinformatics, 23(2):232, 2007.

[108] Y. Tian and J.M. Patel. Tale: A tool for approximate large graph matching. Proceed-
ings of International Conference on Data Engineering (ICDE), 2008.

[109] M. Volk, J. Lundborg, and M. Mettler. A search tool for paralleltreebanks. In
Proceedings of the Linguistic Annotation Workshop, 2007.

[110] E. M. Voorhees and D. M. Tice. Building a question answering testcollection. In
Proceedings of the International Conference on Information Retrieval (SIGIR), 2000.

[111] S. Wallis and G. Nelson. Exploiting fuzzy tree fragment queries in theinvestigation
of parsed corpora.Literary and Linguistic Computing, 15(3):339–361, 2000.

[112] S. Wallis and G. Nelson. Knowledge discovery in grammatically analysed corpora.
Data Mining and Knowledge Discovery, 5(4):305–335, 2001.

[113] D.W. Williams, J. Huan, and W. Wang. Graph database indexing usingstructured
graph decomposition. InProceedings of International Conference on Data Engi-
neering (ICDE), 2007.

[114] H.E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with combined indexes.
Transactions on Information Systems, 22(4):573–594, 2004.

[115] F. Wu and D.S. Weld. Open information extraction using wikipedia. InProceedings
of the Annual Meeting on Association for Computational Linguistics (ACL), 2010.

[116] Yahoo! search - web search.http://search.yahoo.com .

[117] X. Yan, P.S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In
Proceedings of International Conference on Management of Data (SIGMOD), 2004.

[118] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based ap-
proach to storage and retrieval of XML documents using relational databases.Trans-
actions on Internet Technology, 1(1):110–141, 2001.

[119] M. Yue. A simple proof of the inequalityffd(l) ≤ 11/9opt(l) + 1, ∀l for the
ffd bin-packing algorithm.Acta Mathematicae Applicatae Sinica (English Series),
7(4):321–331, 1991.

[120] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On supporting contain-
ment queries in relational database management systems. InProceedings of Interna-
tional Conference on Management of Data (SIGMOD), 2001.

[121] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems.SIAM Journal of Computing, 18(6):1245–1262, 1989.

[122] N. Zhang, V. Kacholia, and M.T. Ozsu. A succinct physical storage scheme for effi-
cient evaluation of path queries in XML. InProceedings of International Conference
on Data Engineering (ICDE), 2004.

[123] S. Zhang, M. Hu, and J. Yang. TreePi: A novel graph indexingmethod. InProceed-
ings of International Conference on Data Engineering (ICDE), 2007.

99

Appendix A

Supplementary Tables and Figures

In this chapter we present a few supplementary tables and figures. Figure A.1 displays two

sample parse trees with high branching nodes described in Example 5.1.1.

.

.

S

VP

VBD
NP

DT NN

Root

the

attended

tea

NN

party

NP

NNP

,

,

,

,NNPNNP CC

Maryand

NNP

SarahTom Alex

(a)

.

.

S

Root

(b)

VP

VB

give

NPNP

PRP

me
DT

the

JJ

heavy

NN

hammer

JJ

brokenblue

JJ

Figure A.1: Sample natural language text sentences that contain nodes withhigh branching
factors

100

Figure A.2 displays the number of extracted subtrees in terms of the branching factor

of the corresponding node over which the extraction happens (See Section 5.1).

0 10 20 30
0

10

20

30

branching factor

ex
tr

ac
te

d
su

bt
re

es

ss=2

0 10 20 30
0

100

200

300

branching factor

ex
tr

ac
te

d
su

bt
re

es

ss=3

0 10 20 30
0

1000

2000

3000

branching factor

ex
tr

ac
te

d
su

bt
re

es

ss=4

0 10 20 30
0

5000

10000

15000

branching factor

ex
tr

ac
te

d
su

bt
re

es

ss=5

Figure A.2: Number of subtrees with sizes varying between2 to 5 in terms of the branching
factor of the nodes over which the subtrees are constructed

Table A.1 depicts the individual set of questions used in generating the queries inWH

query setand their corresponding queries used in our experiments (See Section 6.2.1. Note

that the questions listed might have misspellings and errors which originate from the queries

in the query-log.

Table A.2 depicts the set of low, medium and high frequency labels we use for generat-

ing our set ofFB query-setin Section 6.2.1.

Tables A.3 to A.13 display display the individual running times of the queries averaged

over five runs for our queries inWH query-setandFB query-set.

101

Table A.1: The list of WH queries and their corresponding query structures
who got fired on tonight’s S(NP(NN)VP(VBD VP(VBN PP(IN NP(NP(NP(NN
episode of the apprentice? POS))NN)PP(IN NP(DT NN))))))
who is patch adams? S(NP(NN NNS)VP(VBZ NP(NN)))
who was cinderella? S(NP(NN)VP(VBD NP(NN)))
who wants to be a millionaire? S(NP(NN)VP(VBZ S(VP(TO VP(VB NP(DT NN))))))
who won the boxing fight last S(NP(NP(JJ NN)PP(IN NP(NP(NN)PP(IN NP
night on pay per view? (NN NN)))))VP(VBD NP(DT NN NN)))
who designed the statue of liberty? S(NP(NN)VP(VBD NP(NP(DT NN)PP(IN NP(NN)))))
who is de vince? S(NP(FW FW)VP(VBZ NP(NN)))
who invented the tv? S(NP(DT NN)VP(VBD VP(VBN PP(IN NP(NN)))))
who killed jesus? S(NP(NN)VP(VBD NP(NNS)))
who is adolf hitler? S(NP(NN NN)VP(VBZ NP(NN)))
who created chocolate? S(NP(NN)VP(VBD NP(NN)))
who sings bottom line? S(NP(NN)VP(VBZ NP(JJ NN)))
which woman had made the most movies? S(NP(NN)VP(VBD VP(VBN NP(DT JJS NNS))))
which golf ball is the best? S(NP(NN NN NN)VP(VBZ NP(DT JJS)))
which greek god loved apollo? S(NP(NP(NN NN)NP(NN))VP(VBD NP(NN)))
which pda is the best to buy? S(NP(NN)VP(VBZ NP(NP(DT JJS

NN)SBAR(S(VP(TO VP(VB)))))))
which planet is called the red planet? S(NP(NN)VP(VBZ VP(VBN NP(DT JJ NN))))
which presdient started social security? S(NP(NN NN)VP(VBD NP(JJ NN)))
which cell phone works best S(NP(NN NN NN)VP(VBZ
for rural coverage? NP(NP(JJS)PP(IN NP(JJ NN)))))
which color does hispanic S(NP(JJ NNS)VP(VBP
women like on their toes? NP(NP(NN NN)PP(IN NP(PRP$ NNS)))))
which is the best wave S(NP(NN)VP(VBZ(NP(NP(DT JJS NN
grease to use? NN)SBAR(S(VP(TO VP(VB))))))))
which paper towel is the most absorbant? S(NP(NN NN NN)VP(VBZ NP(DT JJS NN)))
which cell phone plan is best in miami? S(NP(NN NN NN NN)VP(VBZ NP NP(JJS)PP(IN NP(NN))))
which state has the most black people? S(NP(NN NN)VP(VBZ NP(DT ADJP(RBS JJ)NNS)))
where is hell? S(NP(NNP)VP(VBZ PP(IN NP(NN))))
where bloating occurs? S(NP(NN)VP(VBZ PP(IN NP(NN))))
where is costa rica? S(NP(FW FW)VP(VBZ PP(IN NP(NN))))
where the sidewalk ends? S(NP(DT NN)VP(VBZ PP(IN NP(NN))))
where did the mound builders live? S(NP(DT NN NS)VP(VBD PP(IN NP(NN))))
where have all the flowers gone? S(NP(PDT DT NNS)VP(VBP VP(VBN S(VP(TO VP(VB))))))
where does lightning begin? S(NP(NN)VP(VBZ PP(IN NP(NN))))
where to get steroids? S(VP(VB NP(NNS)PP(IN NP(NN))))
where can i buy lg washer? S(VP(VB NP(NN NN)PP(IN NP(NN))))
where are they now? S(NP(PRP)VP(VBP PP(IN NP(NN))ADVP(RB)))
where to meet cowboys? S(VP(VB NP(NNS)PP(IN NP(NN))))
where does zac efron live? S(NP(NN NN)VP(VBZ PP(IN NP(NN))))
what is a trojan? S(NP(DT NN)VP(VBZ NP(DT NN)))
what year did the battle of S(NP(NP(DT NN)PP(IN NP(NN)))
trenton take place? VP(VBD NP(NP(NN)PP(IN NP(NN NN)))))
what’s hot? S(NP(NN)VP(VBZ ADJP(JJ)))
what does invoke mean? S(NP(JJ NNS)VP(VBP))
what to bring to your road test? S(VP(VB NP(NN)PP(TO NP(PRP$ NN NN))))
what is a state of emergency? S(NP(NN)VP(VBZ NP(NP(DT NN)PP(IN NP(NN)))))
what to put on a wedding registry? S(NP(NN)VP(VBP PP(IN NP(DT NN NN))))
what can ferret eat? S(NP(NNP)VP(MD VP(VB NP(NN))))
what does an effective school psychologist do?S(NP(DT JJ NN NN)VP(VBZ NP(NN)))
what is good for stress? S(NP(NN)VP(VBZ ADJP(JJ PP(IN NP(NN)))))
what the bible says about gossip? S(NP(DT NN)VP(VBZ NP(NP(NN)PP(IN NP(NN)))))
what does the giant squid eat? S(NP(DT JJ NN)VP(VBP NP(NN)))

102

Table A.2: List ofhigh, mediumandlow frequency labels used in building FB queries.
high DT, IN, JJ, NN, NNP, NNS, NP, PP, VP, S

medium ADJP, ADVP, CC, CD, MD, NP-TMP, POS PRP, PRP$

QP, RB, SBAR, TO, VB, VBD, VBG, VBN, VBP, VBZ

low CONJP, EX, FRAG, FW, JJR, JJS, NNPS, NX, PDT, PRN, PRT

RBR, RBS, RP, SINV, UCP, WHADVP, WHNP, WHPP, WP, WRB

Table A.3: Summary of the query runtimes forwhoparsed queries
1 2 3 4 5

M S f r s f r s f r s f r s f r s
q1 0 20 10.6 45.6 55.7 7.9 12.7 33.6 1.7 5.9 16.2 0.5 1.3 5.6 0.4 0.7 3.7
q2 8 8 17.4 17.6 21.3 16.3 3.8 12.22 2.3 0.5 2.4 0.12 0.04 0.3 0.15 0.06 0.3
q3 1819 7 53.2 20.1 23.8 51.8 3.7 11.9 10.2 0.7 3.9 4.7 0.2 1.7 3.6 0.16 1.5
q4 28 13 13.3 23.9 28.9 9.3 6.4 16.5 5.4 1.2 6.4 0.5 0.6 2.9 0.25 0.25 0.7
q5 0 21 42.9 50.8 62.4 37.5 18.2 33.8 3.4 5.5 15.9 0.5 1.5 7.2 0.34 0.92 5.5
q6 94 13 51.5 36.5 44.4 39.8 9.4 25.6 12.9 3.4 12.1 8.5 0.8 9 1.8 0.5 4.9
q7 0 8 1.6 13 16.4 0.7 1.7 5.7 0.2 0.2 1.7 0.03 0.03 0.08 0.04 0.04 0.1
q8 210 12 26.5 28 33.7 23.4 6.9 20.2 10.8 2.7 10.2 2.9 0.7 3.9 1.7 0.4 3.5
q9 859 7 42.6 16.8 20.5 40.9 3.1 9.2 6.1 0.5 3.2 2.3 0.2 1.4 1.8 0.1 1.2
q10 52 8 22.1 17.8 21.9 20.8 3.5 8 4 0.6 3 0.2 0.05 0.4 0.2 0.06 0.5
q11 1819 7 52.9 19.8 23.9 51.2 3.7 11.7 10.1 0.7 3.8 4.6 0.2 1.7 3.5 0.2 1.5
q12 107 8 22.1 19.3 24.1 19.8 4.4 14 8.6 0.6 3.7 1.9 0.2 2.6 0.3 0.06 0.5

Table A.4: Summary of the query runtimes forwhichparsed queries
1 2 3 4 5

M S f r s f r s f r s f r s f r s
q13 0 13 2.9 20.3 24.8 1.3 4 11.6 0.5 0.8 5 0.2 0.3 1.5 0.1 0.1 1
q14 0 11 3.5 15.7 19.9 1.7 2.9 5.5 1.1 3 8.5 0.2 0.6 1.3 0.07 0.06 0.6
q15 8 11 49.8 29.3 36.3 47.5 9.4 18.2 9.5 2.5 11.2 1.9 1.3 9.4 0.1 0.1 1
q16 0 16 3.9 24.3 30.7 2 6.6 15.7 0.6 2.1 8 0.3 1.5 3.1 0.2 0.3 2.2
q17 22 11 15.2 21.5 26.5 13 5.8 17.6 1.8 1.2 4.5 2.7 0.3 2.7 0.3 0.1 1.2
q18 103 9 43.1 19.2 23.7 38.9 5.1 12.3 15.2 0.9 5.1 1 0.2 2.7 0.4 0.1 0.5
q19 0 15 4.7 28.6 35.9 2.9 7.5 15.9 1.5 3.5 10.5 0.4 1 2.8 0.1 0.2 1.3
q20 0 15 5.5 26.7 33.6 3.6 5.5 15.7 0.7 1.8 6.1 0.3 0.3 3.2 0.1 0.1 0.9
q21 0 17 4.2 25.5 32.2 2 6.9 13.3 0.5 1.9 5.6 0.2 1.5 2.5 0.2 1.1 2.1
q22 0 9 3.7 15.5 19.9 2.1 4.1 9.8 1 2.8 6.3 0.2 0.6 1.3 0.06 0.1 0.6
q23 0 15 4.9 30.2 37.5 2.2 6.7 13.7 1.5 3.5 11.6 0.8 1.9 5.3 0.4 0.7 4.7
q24 0 8 2.8 14.8 19 1.4 3.6 7.7 0.4 0.6 2.6 0.1 0.1 1.2 0.1 0.1 0.4

103

Table A.5: Summary of the query runtimes forwhereparsed queries
1 2 3 4 5

M S f r s f r s f r s f r s f r s
q25 127 9 20.9 23.5 28.6 19.5 4.5 15.8 5.7 2 6.7 6.1 0.4 5.8 2 0.2 2.3
q26 180 9 24.4 23.3 28.4 23 4.8 15.1 6.4 2 5.9 6.9 0.4 4.6 2.4 0.2 2.1
q27 0 10 2.1 17.6 22.0 1 3.2 10 0.5 1.7 5.8 0.3 0.3 3.4 0.1 0.1 1.7
q28 111 10 22.6 24.8 30.2 21 6.5 18.9 9.8 2.5 8.5 4.9 0.5 4.2 1.8 0.2 2.9
q29 29 11 36.2 23.2 28.8 34 6.4 19.4 5.5 2.7 9.9 2.5 1 4.5 0.4 0.2 2.3
q30 3 14 2.8 15.2 19.4 1.2 4.2 8.6 0.4 1 4.7 0.2 1.1 1.8 0.2 0.3 2.1
q31 180 9 24.4 23.4 28.3 22.9 4.8 15.1 6.4 2 5.8 6.9 0.4 4.6 2.3 0.2 2.1
q32 23 9 33.4 20.3 24.9 31.8 4.2 13 0.8 1.3 4.9 0.9 0.3 3.3 0.2 0.2 1.7
q33 7 10 40.8 22.7 27.7 34 5.1 14.2 0.9 2.1 5.5 2.4 0.5 3.9 0.2 0.2 2.1
q34 2 11 4.1 18 22.9 2.8 3.6 10.6 1.2 1.9 5.9 0.5 0.3 3.1 0.2 0.1 1.9
q35 23 9 33.6 20.4 24.9 31.9 4.2 12.8 0.8 1.3 4.9 0.9 0.3 3.3 0.2 0.2 1.7
q36 35 10 22.3 22.6 27.6 20.5 5.1 12.4 5.5 2.1 7.1 1.6 0.3 3.7 0.6 0.2 2.4

Table A.6: Summary of the query runtimes forwhatparsed queries
1 2 3 4 5

M S f r s f r s f r s f r s f r s
q37 65 9 22.7 19.5 23.6 21.4 6.6 18.7 17.8 1.3 5.7 1.2 0.3 2.2 0.3 0.1 2.3
q38 1 19 48.6 49.5 59.9 36.4 14.3 28.9 12 5.8 18.4 0.5 1.4 7.9 0.5 0.9 2.1
q39 450 7 7.4 11.7 14.1 5.9 2.3 6.9 1.9 0.3 1.9 1.4 0.2 1.3 0.9 0.1 1.7
q40 1557 6 12.9 6.8 8.7 11.6 2.6 6.8 7.9 0.3 1.6 2.4 0.1 0.8 2.1 0.1 2.9
q41 0 11 10.5 17.7 21.8 4 3.7 8.9 0.3 0.6 2.7 0.1 0.2 0.8 0.1 0.2 2.3
q42 56 13 24.7 35.5 42.7 19.4 8.8 24.6 6.7 3.3 10.6 4.2 0.8 7.6 1.1 0.5 2.1
q43 4 9 15.1 21.5 26 13.5 6.2 14.7 1.5 2 5.7 0.3 0.4 1.9 0.1 0.1 2.1
q44 558 9 16.8 20.7 24.9 15.4 3.1 12.2 4.5 0.8 4.7 3.1 0.3 3.3 1.9 0.2 1.7
q45 7 10 18.7 19.2 23.5 16.6 4 10.7 2.2 0.8 4.1 0.2 0.3 1.1 0.2 0.1 2.1
q46 18 11 8.4 23.8 28.7 6.4 4.9 15.1 1.2 1.9 3.9 1.1 0.4 3.8 0.1 0.1 1.9
q47 76 13 23.9 32.6 39.9 18.9 8.6 23.9 10.6 3 13.8 2.5 1 6.2 0.9 0.8 1.7
q48 3 9 12.5 17.9 22 11 5.1 15.7 1.2 1.3 3.3 0.6 0.8 2.8 0.1 0.1 2.8

Table A.7: Summary of the query runtimes for parsed queries overlow frequency labels
1 2 3 4 5

M S f r s f r s f r s f r s f r s
q1 9136 1 7.6 0.2 0.2 7.7 0.2 0.2 7.6 0.2 0.2 7.7 0.2 0.2 7.6 0.2 0.2
q2 5652 2 4.3 0.2 0.2 4.3 0.1 0.2 4.3 0.1 0.2 4.3 0.1 0.2 4.3 0.1 0.2
q3 9136 1 7.6 0.2 0.2 7.7 0.2 0.2 7.6 0.2 0.2 7.7 0.2 0.2 7.6 0.2 0.2
q4 4330 1 3.4 0.1 0.1 3.4 0.1 0.1 3.4 0.1 0.1 3.4 0.1 0.1 3.4 0.1 0.1
q5 6745 1 4.4 0.1 0.1 4.4 0.1 0.2 4.4 0.1 0.2 4.4 0.1 0.2 4.4 0.2 0.2
q6 981 1 0.2 0.02 0.02 0.2 0.03 0.03 0.2 0.03 0.03 0.2 0.04 0.03 0.2 0.04 0.03
q7 679 1 0.5 0.02 0.02 0.5 0.02 0.02 0.5 0.02 0.02 0.5 0.03 0.03 0.5 0.03 0.03
q8 981 1 0.2 0.02 0.02 0.2 0.02 0.02 0.2 0.02 0.02 0.2 0.02 0.02 0.2 0.02 0.03
q9 2356 2 2 0.1 0.1 2 0.06 0.09 1.9 0.06 0.09 2 0.08 0.09 1.9 0.06 0.09
q10 1209 1 0.9 0.03 0.04 0.9 0.03 0.03 0.9 0.03 0.04 0.9 0.04 0.03 0.9 0.04 0.04

104

Table A.8: Summary of the query runtimes for parsed queries overmediumfrequency labels

1 2 3 4 5
M S f r s f r s f r s f r s f r s

q11 229 3 4.3 0.4 0.5 0.2 0.03 0.07 0.2 0.02 0.02 0.2 0.02 0.03 0.2 0.02 0.03
q12 2840 2 4.9 0.4 0.4 2.1 0.06 0.1 2.1 0.07 0.1 2.1 0.08 0.1 2.1 0.08 0.1
q13 35012 1 26.6 0.7 0.7 27 0.7 0.7 26.7 0.7 0.7 26.8 0.7 0.7 26.5 0.7 0.7
q14 34357 1 26 0.6 0.7 26.3 0.6 0.7 26.2 0.7 0.7 26.2 0.7 0.7 25.7 0.7 0.7
q15 33828 1 25.7 0.6 0.7 25.9 0.6 0.7 25.9 0.6 0.7 25.9 0.6 0.7 25.4 0.7 0.7
q16 22526 1 15.1 0.4 0.4 15.3 0.4 0.4 15.2 0.4 0.5 15.3 0.4 0.4 15.1 0.4 0.4
q17 346 2 22.31 0.6 0.7 0.5 0.01 0.02 0.5 0.01 0.03 0.5 0.02 0.03 0.5 0.02 0.04
q18 49512 1 33.9 0.9 1 34.3 0.9 1 34.0 0.9 1 34.3 0.9 1 33.8 0.9 1
q19 6 3 11.4 0.5 0.6 0.3 0.02 0.03 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01
q20 35973 1 27.8 0.7 0.7 28.2 0.7 0.7 28.0 0.7 0.7 28.1 0.7 0.7 27.6 0.7 0.7

Table A.9: Summary of the query runtimes for parsed queries overmediumand low fre-
quency labels

1 2 3 4 5
M S f r s f r s f r s f r s f r s

q21 23571 1 16.4 0.4 0.4 16.6 0.4 0.5 16.6 0.4 0.5 16.6 0.4 0.5 16.6 0.4 0.5
q22 981 1 0.2 0.02 0.02 0.2 0.02 0.02 0.2 0.02 0.02 0.2 0.02 0.03 0.2 0.02 0.03
q23 15178 1 10.5 0.3 0.3 10.6 0.3 0.3 10.6 0.3 0.3 10.6 0.3 0.3 10.6 0.3 0.3
q24 22305 2 16.1 0.8 0.9 16.0 0.4 0.7 16.0 0.4 0.7 16.0 0.4 0.7 16.0 0.4 0.7
q25 22305 2 16.1 0.8 0.9 16.0 0.4 0.7 16.0 0.4 0.7 16.0 0.4 0.7 16.0 0.4 0.7
q26 42535 1 26.1 0.9 1.0 26.5 0.9 1.0 26.5 0.9 1.0 26.5 0.9 1.0 26.5 0.9 1.0
q27 34 3 7.0 0.8 1.0 0.3 0.1 0.3 0.03 0.01 0.01 0.03 0.01 0.01 0.04 0.01 0.01
q28 22526 1 15.1 0.4 0.4 15.3 0.4 0.4 15.3 0.4 0.4 15.3 0.4 0.4 15.3 0.4 0.4
q29 9250 3 8.0 1.2 1.4 7.9 0.8 1.0 5.9 0.2 0.5 5.9 0.2 0.5 5.9 0.2 0.5
q30 75 3 4.4 0.5 0.6 4.4 0.3 0.4 0.1 0.01 0.01 0.1 0.01 0.01 0.1 0.01 0.01

Table A.10: Summary of the query runtimes for parsed queries overhight frequency labels
1 2 3 4 5

M S f r s f r s f r s f r s f r s
q31 72830 2 68.3 6.3 7.4 68.3 1.4 2.5 68.3 1.4 2.5 68.3 1.4 2.5 68.3 1.4 2.5
q32 952 8 55.8 20.8 25.4 46.5 4.1 9.9 7.7 1.1 10.7 4.9 0.2 5.3 2.5 0.2 5
q33 18 10 45.0 23.2 28.7 35.6 6.7 15.9 8.5 1.4 14.4 0.5 0.4 4.3 0.06 0.2 0.3
q34 6334 3 55.7 5.1 6.1 8.3 1.1 2.8 6.7 0.1 0.3 6.7 0.1 0.3 6.7 0.1 0.3
q35 899 7 50.8 26.5 32 48.8 5.1 16.4 9.6 2.4 7.0 8.7 0.6 5.1 1.8 0.1 0.8
q36 72830 2 68.5 6.1 7.3 68.3 1.4 2.5 68.3 1.4 2.5 68.3 1.4 2.5 68.3 1.4 2.5
q37 1738 8 56.6 17.1 21.1 44.6 2.7 4.9 21.8 2.5 6.0 21.6 1.7 3.1 3.5 0.2 32.6
q38 14 9 53.5 22.7 27.8 52.5 7.2 14 1.4 2.6 4.3 14.5 1.1 18.9 0.9 0.1 9.5
q39 183 7 49.3 14.8 18.3 8.3 3.3 5.3 3.8 1.9 3.6 1.2 1.4 11.2 0.5 0.4 6.1
q40 929 8 57.5 21.9 26.6 52.2 4.7 9.5 27.7 2.5 6.1 7.6 0.3 12.8 2.3 0.2 8.9

105

Table A.11: Summary of the query runtimes for parsed queries overhigh an low frequency
labels

1 2 3 4 5
M S f r s f r s f r s f r s f r s

q41 3555 6 55.9 13.2 16.1 46.3 2.6 5 17.2 1.4 9.3 7.0 0.3 6.0 5.4 0.2 7.1
q42 651 9 58.6 25.6 31.2 46.2 7.1 11.9 24.1 1.8 13.7 6.6 0.5 7.6 3.7 0.2 5.6
q43 292 10 62.1 26.9 33 56.4 10.1 17.9 13.8 2.9 8.5 3.8 0.8 5.7 2 0.3 3.5
q44 4830 5 51.8 11.1 13.7 43.1 2.1 5.3 12.5 1.2 2.2 7.1 0.3 1.9 6.1 0.1 0.7
q45 74296 1 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8
q46 32240 3 65.6 10.9 13 60.6 2.3 5.7 34.9 0.5 1.9 34.9 0.5 1.9 34.9 0.5 1.9
q47 1753 7 60.5 15.6 19.1 56.1 4.2 9.1 14.3 1.0 5.7 5.2 0.7 2.4 2.6 0.5 1.4
q48 28 10 50.3 24.4 29.8 47.4 6.2 10.3 14.2 1.8 4.5 5.2 1.5 2.7 4.8 1.5 2.2
q49 1116 8 57.1 22.0 26.3 8.9 6.0 13 5.5 2.8 9.4 3.2 2.2 2.7 2.2 0.8 3.7
q50 72830 2 68.5 6.1 7.2 67.8 1.4 2.5 67.8 1.4 2.5 67.8 1.4 2.5 67.8 1.4 2.5

Table A.12: Summary of the query runtimes for parsed queries overhigh and medium
frequency labels

1 2 3 4 5
M S f r s f r s f r s f r s f r s

q51 1906 8 52.4 17.8 21.7 48.4 4.1 9 25.7 3.6 6.0 8.1 0.9 13.1 11.2 0.5 9.0
q52 121 8 93.5 20.8 25.4 19.5 4.2 10.8 2.2 0.8 3.4 0.6 0.4 2.1 0.1 0.1 0.1
q53 74296 1 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8
q54 34 7 44.7 10.9 13.8 35.8 2.2 5.2 0.9 0.8 1.8 0.2 0.2 0.5 0.3 0.6 1.0
q55 1233 6 47.2 10.8 13.2 45.9 3.5 6.5 17.4 1.6 2.7 23.4 0.9 16.5 7.4 0.6 3.0
q56 74296 1 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8
q57 357 8 49.7 13.3 16.2 9.2 3.1 6.1 8.9 2.3 5.2 7.4 1.4 2.3 1.6 0.8 30.6
q58 72830 2 68.5 6.1 7.3 67.8 1.4 2.5 67.8 1.4 2.5 67.8 1.4 2.5 67.8 1.4 2.5
q59 16257 4 57.7 9.6 11.5 56.5 3.9 10.5 22.3 1.0 3.9 17.3 0.3 1.4 17.3 0.3 3.7
q60 966 9 54.4 26.5 31.7 49.8 6.8 17.4 15.3 2.7 8.5 4.9 0.5 5.6 3.2 0.4 3.5

Table A.13: Summary of the query runtimes for parsed queries overhigh, mediumandlow
frequency labels

1 2 3 4 5
M S f r s f r s f r s f r s f r s

q61 8266 5 53.9 10.4 12.6 52.9 2.3 3.8 52.3 2.8 3.9 25.5 1.0 16.5 10.3 0.2 7.9
q62 7650 2 56.5 2.3 2.9 7.7 0.1 0.2 7.7 0.1 0.2 7.7 0.1 0.2 7.7 0.1 0.2
q63 68541 2 59.5 8.4 9.7 58.9 1.5 4.6 58.9 1.5 4.6 58.9 1.5 4.6 58.9 1.5 4.6
q64 70973 2 61.7 9.9 11.8 57.6 1.6 3.5 57.6 1.6 3.5 57.6 1.6 3.5 57.6 1.6 3.5
q65 74296 1 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8 49.1 1.6 1.8
q66 20539 5 51.6 13.2 16.1 49.8 3.4 8.6 32.6 1.2 5.7 25.7 1.1 4.3 24.3 0.4 2.1
q67 89451 1 49.8 3.8 4.3 49.8 3.8 4.3 49.8 3.8 4.3 49.8 3.8 4.3 49.8 3.8 4.3
q68 3478 7 48.7 14.2 17.4 45.5 2.7 5.1 45.3 3.5 5.2 45.7 3.5 5.1 44.9 3.5 5.1
q69 72830 2 68.5 6.1 7.3 67.8 1.4 2.5 67.8 1.4 2.5 67.8 1.4 2.5 67.8 1.4 2.5
q70 31564 4 52.2 12.7 15.0 51.7 2.5 8.8 36.2 1.9 2.9 35.1 0.6 3.4 34.1 0.6 3.4

106

Appendix B

Proof of Lemmata and Theorems

In this chapter, we provide the proof of a few of the lemmata and theorems presented in

Chapter 5.

Lemma (Body of Lemma 5.2.1). For any two index keyss1 ands2 over a given SI, where

s1 - s2, we have

(i) The posting list ofs2 is always a subset of the posting list ofs1 for filter-based coding.

(ii) The posting list ofs2 is a subset of the posting list ofs1 for root-split coding if and

only if s1 ands2 share the same root.

(iii) The posting list ofs2 is not guaranteed to be a subset of the posting list ofs1 for

subtree interval coding.

Proof of Lemma 5.2.1.The proof is based on the structure of the three proposed codings.

(i) In filter-based coding only thetid values are stored. If there exists a treetk in the

posting list ofs2 (i.e. s2 - tk), sinces1 - s2, then we haves1 - tk. The subtree

relationship,-, similar to subset relationship is transitive.

(ii) For root-split coding, whens1 - s2 ands1 ands2 share the same root, if there exists

a tuple< tk, lk, rk, vk > in the posting list ofs2, sinces1 - s2, it will be encoded

using the same interval codings for its root and< tk, lk, rk, vk > exists in its posting

list. Therefore,s2’s posting list is a subset ofs1’s.

(iii) For subtree interval coding, we prove using a counter example. Assume we are given

a SI withmss = 2 which has only the following tree indexedNP(NN)(NN)(NN) .

Apparently,NP - NP(NN) , however, there are three entries in the posting list size

of NP(NN) , while there is only one entry in the posting list size ofNP, which proves

that the posting list of subtrees is not guaranteed to be supersets.

107

Theorem (Body of Theorem 5.2.3). Given a queryQ and a subtree index with root-split

coding and maximum subtree sizemss, an optimal query plan forQ cannot have a subtree

of size less thanmss.

Proof of Theorem 5.2.3.Assume by contradiction that there exists an optimal query plan

some of whose leaves have a smaller size thanmss, we denote this plan byP ∗
opt. We build

a planPopt by growing the subtreessi at leaves ofP ∗
opt whose sizes are less thanmss as

follows. We randomly add nodes fromQ to si in such a way thatsi holds its property of

being a subtree ofQ and stop when|si| = mss. Thus, each subtree at a leaf ofP ∗
opt is a

subtree of a subtree at a leaf ofPopt. By Lemma 5.2.1 and Lemma 5.2.2 we have that the

selectivities of leaves ofP ∗
opt are at most as high as those ofPopt and therefore,P ∗

opt cannot

be an optimal plan.

Theorem (Body of Theorem 5.2.4). For every queryQ and sizemss such that|Q| ≥ mss,

there exists a root-split max-coverC; i.e. for every subtreec ∈ C we have|c| = mss.

Proof of Theorem 5.2.4.We prove by induction thatminRC algorithm in Figure 5.9 com-

putes a max-cover.

Base.At the base of this algorithm, lines7 − 9, minRC assigns subtrees of sizemss by

callingassign onQ. Theassign algorithm always returns a subtree of size equal tomss,

and therefore, base of the induction is proved.

Induction. Assume thatminRC generates root-split max-covers for all children ofQ with

size larger thanmss. All children with size equal tomss will also be immediately added to

the cover by lines3 and4 of the algorithm. Thus, if we prove thatQ is also covered using

a subtree of sizemss, the induction is proved. Once allQ’s children get covered,Q will be

covered by a call toassign which is guaranteed to return a subtree of sizemss. Thus, our

theorem is proved.

Theorem (Body of Theorem 5.2.11). optimalCover returns a join optimal cover if (1)

mss ≤ 6 and (2) injective matching is not assumed.

Proof of Theorem 5.2.11.We assume that|Q| ≥ mss, otherwise,Q can be covered using

a single subtree, which is obviously join optimal.optimalCover starts from the root of

Q. For each childc of Q, we have one of the following three cases, (1)|c| < mss, (2)

|c| = mss, and (3)|c| > mss. Case (1) is handled byassign algorithm which we showed

108

join optimality in Lemma 5.2.10. Case (2) is directly assigned into an individual subtree

partition at line3 of theoptimalCover. Finally, case (3) is handled by recursive calls of

optimalCover until either of cases (1) or (2) occur. Over internal nodes with condition

of case (1), as soon as enough of their children are assign and their remaining size reduces

to less thanmss, optimalCover returns and leaves their handling to the ancestor which

satisfies case (1). As a resultoptimalCover achieves a globally join optimal cover over

Q.

Theorem(Body of Theorem 5.2.13). minRC returns the smallest root-split cover possible

if (1) mss ≤ 6 and (2) injective matching is not assumed.

Proof of Theorem 5.2.13.minRC handles internal nodes that fall into case (1) of the proof

in Theorem 5.2.11 different fromoptimalCover. To avoid deep branching anomaly, it

requires that each internal node is assigned to a subtree, before any of its ancestors are as-

signed. As a result, there are cases whereminRC does not achieve optimality. However,

since all root-split covers have to handle deep branching anomaly,minRC achieves the

smallest cover possible among them, by repeatedly callingassign on non-assigned sub-

trees, which was shown to be optimal.

Theorem (Body of Theorem 5.3.3). Given a queryQ, if there exist subtreessB andsP of

Q such thatsP hidessB, then there exist covers overQ which do not guarantee a correct

set of results if an injective matching is required.

Proof of Theorem 5.3.3.We prove by showing how to build a cover which violates the in-

jective matching assumption. SincesP hidessB, any tree that matchessB, matchessP as

well. Therefore, if a cover requiressB andsP to participate in the same join (e.g. a parent-

child join with their shared parent), any minimal tree that matches the subtree containing

sP and its parent, and for which there exist only a single node matching at leastone node

of sB, will be a wrong match forQ. The reason is thatQ requires distinct pair of nodes

matching nodes insB and their corresponding nodes insP to guarantee injective matching.

Therefore, such a cover will violate the injective matching property.

109

Appendix C

Supplementary Algorithms

A few supplementary algorithms are covered in this chapter.

subtrees algorithm This algorithm extracts all unique subtrees of sizen from an input

tree t. The base of this algorithm, lines1 to 3, solves for the case wheren ≤ 1 and

therefore, only one subtree is possible. For largern, line 4 computes a vector of vectors,

which correspond to the different combinationsn−1 nodes can be selected from children of

t, to make subtrees of sizen overt. The rest of the algorithm computes all combinations of

subtrees whose sizes have been computed incs over children oft and adds them as children

of t. For example, ifn = 4 andt has three children with sizes4, 2 and1, Thencs will look

like {[3, 0, 0], [2, 1, 0], [2, 0, 1], [1, 2, 0], [1, 1, 1], [0, 2, 1]}. For each element ofcs which is a

vector of numbers,mult stores the possible number of combinations possible. For instance

for [3, 0, 0], there are at most3 possible combinations, as all the3 nodes will be selected

from child of t with size4. In the worst case, this child has a root with3 children which

leads to3 combinations of different possible subtrees of size4 over t, using[3, 0, 0]. This

process will be repeated over all elements ofcs until all subtrees have been extracted.

combinations algorithm Given a vector of treesvt and a numbering valuen, this algo-

rithm computes the different combinations of sizes of trees invt that add up ton. It works

by assigningvt[c] from0 tomin(n, |vt[c]|) and for each assignment computing the different

combinations overvt[1], . . . , vt[c− 1], recursively.

110

subtrees(t,n)

1 if n = 0 return ∅
2 rTree = t.root, resV ec← rTree
3 if n = 1 return resV ec
4 cs = combinations(t.children, |t.children| − 1,n− 1)
5 for i ∈ 1, . . . , |cs|
6 TC ← ∅, mult = 1
7 for j ∈ 1, . . . , |cs[i]|
8 T ← subtrees(t.children[j], cs[i][j])
9 TC ← TC ∪ T
10 if |T | > 0
11 mult = mult ∗ |T |
12 for j ∈ 1, . . . ,mult
13 val = j
14 for k ∈ 1, . . . , |TC|
15 m = val%|TC[k]|
16 rTree.children← rTree.children ∪ TC[k][m]
17 val = val/|TC[k]|
18 resV ec← resV ec ∪ rTree
19 return resV ec

Figure C.1: Algorithm for extracting subtrees of sizen rooted att.

combinations(vt, c,n)

1 sum = 0
2 for i ∈ 1, . . . , |vt|
3 sum = sum+ |vt[i]|
4 temp← ∅, res← ∅
5 if c = 0
6 if sum < n return res
7 elsetemp← n, res← temp, return res
8 if sum < n return res
9 TR← ∅
10 for j ∈ 0, . . . ,min(n, |vt[c]|)
11 TR← combinations(vt, c− 1,n− j)
12 for k ∈ 1, . . . , |TR|
13 TR[k]← TR[k] ∪ j
14 res← res ∪ TR[k]
15 return res

Figure C.2: Algorithm that computes all the combinations of sizes of children that lead to a
given subtree size

111

