University of Alberta

Indexing and Querying Natural Language Text

by

Pirooz Chubak

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

(©Pirooz Chubak
Spring 2012
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries terkpre single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific reegaurposes only. Where the thesis is
converted to, or otherwise made available in digital form, the UniversiMioérta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in associatiotheittopyright in the thesis and,
except as herein before provided, neither the thesis nor any sublgt@ntian thereof may be printed or
otherwise reproduced in any material form whatsoever without the esifhréor written permission.

Abstract

Natural language text is a prominent source of representing and conatingimformation
and knowledge. It is often desirable to search in granularities of texatkadmaller than
a document or to query the syntactic roles and relationships within syntactralbtated
text sentences, often represented by parse trees. In this thesis,dydlstproblems of
efficiently indexing and querying natural language text in the scenarmsemM1) text is
modelled as flat sequences of words and (2) text is modelled as collectisyistactically
annotated trees.

In the first scenario, we study some of the index structures that arbleagdanswering
the class of queries referred to here as wild card queries and pesfoanalysis of their
performance. Our experimental results on a large class of queriesdiffarent sources
(including query logs and parse trees) and with various datasets smraalof the perfor-
mance barriers of these indexes. We present Word Permuterm Indeby &\ show that
it supports a wide range of wild card queries, is quick to construct anijfigyhscalable.
Our experimental results comparing WPI to alternative methods on a wide cdnwild
card queries show a few orders of magnitude performance improveor@MH| while the
memory usage is kept the same for all compared systems.

In the second scenario, we study index structures and access methadwptioae the
performance of querying over syntactically parsed sentences. \Weg®g@ novel indexing
scheme over unique subtrees as index keys. We also introdummtksplitcoding scheme
that concisely stores structural subtree information, making it possiblertorpeexact
axes matching over subtrees. We theoretically study the properties obdungcand the
limitations it imposes over query processing. Our extensive set of expasmsbow that

root-split coding reduces the index size of a baseline index which stores the inteded

of all nodes by a factor of up to (i.e. 80% reduction) and speeds up querying runtime by

more tharp times on average, when subtrees of sizes. , 5 are indexed.

Acknowledgements

Many people have supported, helped and encouraged me during my &riamrand thesis
writing. It is my great pleasure to thank them and appreciate their work.

My most sincere thanks to my supervisor, Davood Rafiei, who has alpraygded me
with constructive feedback and support. He has done a tremendous plmantor and
supervisor, and put a great deal of time and energy into my reseadcbtla@r academic
and life challenges. | would also like to thank him for being understandidgsapportive
of me working remotely in the final year of my PhD.

My appreciation and gratitude to my examiners, Raymond T. Ng, John Newnthn a
Denilson Barbosa for carefully reading my thesis and providing me withllextecom-
ments and deep questions which contributed greatly to the quality of this thésisthAnks
to Dekang Lin and @g Sander for reading my candidacy proposal and providing me with
valuable suggestions at early stages of my PhD research.

Many thanks to Rachel Pottinger who helped me greatly with settling down inodanc
ver and supported me with space and resources in UBC during the lasifyeg PhD. |
greatfully acknowledge Dennis Shasha, Shane Bergsma, and Chest®iplchak for pro-
viding me with their expert opinion on specific subjects related to my resediiclally,
many thanks to other database faculty members Osmar Zaiane and Mario Na@e¢cinoen
whom | learned much during my PhD.

| would like to also thank a few wonderful people at the Department of Caimpu
Science, University of Alberta. Special thanks to Edith Drummond andcEsaloore for
dealing with graduate student issues and always providing me with theirMatp; thanks
to Steve Sutphen for always helping with technical issues beyond his.duties

My friends and peers at University of Alberta and Edmonton have avb@en there
whenever life was too difficult as a graduate student. | would like to thazia Badoddin,
Reza Sherkat and Azad Shademan in the department of Computing Scieocasional
discussions on a wide range of academic and non-academic topics, mgdgfeelence in

my view and experience as a PhD student. Also, | would like to thank my whandéends

Iman Khosravifard, Raman Yazdani and Ali Hendi. They made my life aadugite student
much easier and less frustrating.

My deepest thanks and appreciation go to my parents, who have ameaysraged me
with their love and support. They never stopped caring and encouraggngith my goals
from so far away in my homeland. My warmest gratitude goes to my sister andatheb
who gave me lots of confidence and supported me throughout my life aridstédhally,
it is my pleasure to greatfully thank Niousha Bolandzadeh. She gave me loistivhtion
and energy and did a tremendous job of helping me in so many ways, espduially the
last year of my PhD.

Table of Contents

1 Introduction 1
1.1 Searching Beyond the DocumentLevel 1
1.1.1 Document-level Search Systems 1
1.1.2 Question Answering Systems 2
1.1.3 Information Extraction Systems 2
1.2 Motivation. 3
1.3 Problem 6
1.4 Contributions e 7
1.5 Organizationofthe Thesis 8
2 Preliminaries and Background 10
2.1 SequentialModel 10
211 WildCardQueries e 11
2.2 StructuralModel 12
221 DataModelandCorpora 12
2.2.2 Query Modeland Matching 13
2.2.3 Navigational AXes 15
2.24 StructuralIndexes 15
3 Related Work 18
3.1 Natural Language Text as SequencesofWords 19
3.1.1 DiscussionoftheQueryTypes 19
3.1.2 Supporting Wild Card Queries 20
3.2 Natural Language Text as Linguistically Annotated Trees 23
3.2.1 Querying over Linguistically Annotated Trees 23
3.2.2 Query Languages over XML Documents 27
3.2.3 QueryingoverTrees o i i i i e e 32
3.24 QueryingoverGraphs 34
3.3 Natural Language Question Answering. 6 3
4 Sequential Indexing and Querying of Natural Language Text 38
4.1 BaselineMethods 38
411 FullScan 38
41.2 InvertedIndex 39
4.1.3 Neighborindex 39
4.2 Permuterm Index over Natural Language Text 40
4.2.1 Word Level Burrows-Wheeler transformation 40
4.2.2 Maintaining the Alphabet 41
423 RankDataStructures 42
4.2.4 Algorithmsand Analysis 43
5 Structural Indexing and Querying of Natural Language Text 48
5.1 Subtreelndex 48
5.1.1 Subtree Indexes over Syntactically Parsed Trees 9. 4
5.1.2 Slconstruction 52

5.1.3 Query Matching Over Subtree Indexes 54

514 CodingSchemes,

5.2 Query Splitting Strategies e 58
5.2.1 Monotonicity of Posting ListSizes. 58
522 JoinOptimality 60
5.3 Join ApproachesoverSl 0. 66
531 JOINS e 67
5.3.2 Injective Matching, 67
6 Experimental Results 71
6.1 Natural Language Textas SequencesofWords 71
6.1.1 ExperimentalSetup. 71
6.1.2 PerformanceofQuerying. 72
6.1.3 WPI Performance with Limited Physical Memory 74
6.1.4 Index ConstructionTime 76
6.2 Natural Language Text as Syntactically Annotated Trees 77
6.2.1 ExperimentalSetup.00, 77
6.2.2 Index Construction 78
6.2.3 QueryingPerformance, 82
7 Conclusions and Future Directions 89
7.1 Summary and DiSCUSSION 89
7.1.1 Word Permutermindexo 89
7.1.2 Subtree Index and Root-splitcoding 90
7.1.3 DISCUSSION 90
7.2 FutureDirections 91
Bibliography 93
A Supplementary Tables and Figures 100
B Proof of Lemmata and Theorems 107

C Supplementary Algorithms 110

List of Tables

2.1 Samples of natural language questions and their corresponding wdld car

QUETIES . . o o o e e e e e 12
3.1 Alistof flat query types in the literature and their resultsets a 2
3.2 Summary of the literature on query languages over syntactically annotated

trees. Refer to the text for the meaning of abbreviations. 25
4.1 Different wild card query patterns over WPI and their correspandinge

ofmatches 46
4.2 The running time complexity analysis of queriesin Table 4.1 47
6.1 Summary of the performance of the indexes in terms of the running time in

SECONAS e e 72
6.2 Index construction time of WPI compared to the neighbor index in seconts
6.3 Ratio of the subtree index size wherss is 5 to the index size whemss

ST o e 80
6.4 Average running time of queries in seconds for queries in FB quéry se

classes using Subtree index with root-split codings§ = 3), ATreeGrep

and Frequency-based approaches with varying frequency cutediitblds. 84
6.5 Total number of joins required over queries in the WH query set. t=roo

split, s=subtreeinterval. 85
A.1 The list of WH queries and their corresponding query structures . . . 102
A.2 List of high, mediumandlow frequency labels used in building FB queries. 103
A.3 Summary of the query runtimes fathoparsed queries 103
A.4 Summary of the query runtimes fashichparsed queries 103
A.5 Summary of the query runtimes fathereparsed queries 104
A.6 Summary of the query runtimes fathatparsed queries 104
A.7 Summary of the query runtimes for parsed queries merfrequency la-

bels e 104

.8 Summary of the query runtimes for parsed queries avediumfrequency

labels 105
A.9 Summary of the query runtimes for parsed queries ovediumand low

frequencylabels 105
A.10 Summary of the query runtimes for parsed queries bigit frequency

labels 105

A.11 Summary of the query runtimes for parsed queries bighn an low fre-

guencylabels 106
A.12 Summary of the query runtimes for parsed queries bigit andmedium

frequencylabels 106
A.13 Summary of the query runtimes for parsed queries bigh, mediumand

lowfrequencylabels 106

List of Figures

1.1 (a) Parse tree of a sample question, (b) parse tree of a sample magch. Th
bold labels and dashed edges indicate the match. Edge labels indicate role
of the child relative to its parent and node labels include offset, word and
POStags. e 4

1.2 Constituency Parse trees a sample query and a sample sentence contain-
ing a match. The bold labels and dashed edges indicate a match. Internal
nodes indicate the syntactic role of its subtree and leaves indicate words in

asSentenCe. e e 5
3.1 Architectureofaninvertedindex 21
3.2 Architecture of aneighborindex 22
3.3 Sample query, data tree and match results for a twig matching problem. . . 29
4.1 Sorted permutations of a sample set of sentences and the first andridst w

lists, FandL. e 41
4.2 Rank function computes the occurrences iofprefix1...s0of L 43
4.3 A sample wavelet tree. In each node a bit string and two arsayr

block rank andblock rank ,arestored. 44
4.4 A constant-timerode Rank, returning binary rank at eachnode 45
4.5 DbackwardSearch algorithm for traversibgn backward order 45
5.1 Number of index keys (unique subtrees) as a function of the inputrsize

terms of the number of sentences L. 50
5.2 Average number of subtrees extracted in terms of the branching tdctor

rootsof subtrees 52
5.3 Algorithm for extracting all unique subtrees of size® mss from atreet 53
5.4 An example of how unique subtrees are extracted, (a) input tragitip)e

subtrees of siz@, (c) unique subtreesofsize 53
5.5 A naive algorithm that guarantees a root-splitcover 58
5.6 Example of a query having deep branching anomalyrfes = 4 for a

root-split join optimalcover 62
5.7 Join optimality on all possible queries of siz@ith mss values of2, 3 and

4fromlefttorightcolumns. L 63
5.8 Algorithm that computes a join optimal cover of simas 65
5.9 Algorithm that computes the best root-split cover of sizes 66
5.10 Example of a query and its corresponding cover that can lead tfase

tive matches 68
5.11 The algorithm that computes extra joins that guarantee injective matchirp .
6.1 The performance of the indexes based on the number of bindingsr@sjue

over 10 million sentencesofnewsdata 73
6.2 The performance of the indexes based on the number of bindingsr@sjue

over 1 million documents of webdata 74
6.3 Scalability of the indexes over web data of growing sizes. 5 7
6.4

The performance of WPI vs. the neighbor index using paging on Betes
of sizes 4, 6, 8, 10,12, 14, 16 and 18 million sentences 76

6.5 The performance of WPI vs. the neighbor index using paging on Ve D

of sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents 77
6.6 Sl size for filter-based, root-split and subtree interval codings,with =

1,...,5. Input size is (top left)l00 sentences, (top righf)000 sentences,

(bottom left)10, 000 sentences, (bottom right0, 000 sentences. 79
6.7 Total number of postings over all keys for filter-based, root-sptitsubtree

interval codings, with varying input sizes amdss values. Input size is

(top left) 100 sentences, (top righ)000 sentences, (bottom leff)0, 000

sentences, (bottom rightp0, 000 sentences. 80
6.8 Total number of index keys for varying input sizes amgk values. (Left)

absolute number of keys, (right) cumulative number of keys. 1
6.9 Index construction time for filter-based, root-split and subtree irteoch

ings, withmss = 1,...,5. Input size is (top left) 00 sentences, (top right)

1000 sentences, (bottom leff)0, 000 sentences, (bottom right)00, 000

SENIENCES. e e e 82
6.10 Average runtime of queries in terms of their number of matches for filter-

based, root-split and subtree interval codings and values ofl to5 . . . 86
6.11 Average runtime of queries in terms of the size of queries for filtezehas

root-split and subtree interval codings ands values ofl to5 87
6.12 Average runtime of queriesns = 3) over groups of FB queries over

datasets oflk, 10k, 100k and 1m sentences and using different coding

schemes. 88

A.1 Sample natural language text sentences that contain nodes with hmghbra
iNgfactors 100

A.2 Number of subtrees with sizes varying betwexio 5 in terms of the
branching factor of the nodes over which the subtrees are constructed 101

Algorithm for extracting subtrees of sirgooted att. 111
Algorithm that computes all the combinations of sizes of children that lead
toagivensubtreesize 111

Chapter 1

Introduction

With natural language text evolved as an efficient medium for communicatiomg peo-
ple, it has also become a prominent form of representing information awlé&dge. Huge
volumes of natural language text are available electronically. Emails, geaug mes-
sages, web pages, research papers, books, news, etc. areaaitinet authored in human
readable natural languages. Such data is also a major source of infarfioatioany appli-
cations including search engines, Question Answering (QA) systemsraiygtical tools

built on more ad-hoc basis.

1.1 Searching Beyond the Document Level

Natural language text is a major feed to a wide range of search applicatiary of
these systems consider natural language text as an arbitrary bagienseaf words (or
characters). However, this view of text imposes a few limitations on searchig. it
ignores the regularities and inherent structure that exist in finer gréudartions of text
such as clauses and sentences. In this section, we briefly review adesh systems that

use natural language text and discuss their approach in modeling it.

1.1.1 Document-level Search Systems

Information Retrieval (IR) systems including search engines mostly praddess to a
ranked list of documents, sorted based on their relevance to a keywenrg @ his document-
level retrieval model has a few limitations. First, the unit of expressing &atéormation
(e.g. named entities, facts and relations) is often smaller than a documentyvétptie
storage model and access methods supported by IR engines are notegfionianswer-
ing text units smaller than a document. Harvesting fine granularity information the

documents will therefore require extra processing or manual worlarfse&eyword-based

gueries used by IR engines, are expressed as flat sequencesdsf Wdis representa-
tion is not expressive enough to capture the relationships between tbe arao filter the
matches based on their part of speech tags (e.g. adjective or ncasepbr grammatical
role (e.g. subject or verb). Finally, the term-document inverted indeximdpinesed by IR
systems, does not support queries that ask for syntactic relationstgpspérent-child or
ancestor-descendant). These relationships can be obtained bggingceatural language

text sentences using a syntactic parser (See [77] for more on syntagiog).

1.1.2 Question Answering Systems

Question Answering (QA) systems leverage the syntactic and semantictEspd nat-
ural language text to find relevant facts and meaningful answers ttignge. QA sys-
tems address the problem of finding answers to arbitrary questionssWha is the
mayor of New York city?’ or'Which state is Chicago located in?’

In order to answer the above questions, QA systems translate the quéstmose or
more queries. A common practice is to translate the question into a keyworglthaéis
supported by a search engine and scan the returned documents fostersaHowever,
this approach can be inefficient when scaling for larger sets of dodsnaen queries.
Also, documents are returned based on their relevance to a keywardnaegrepresenta-
tion which does not capture all the information that can be obtained fronestiqn. As
we discuss in Section 3.3, many question answering systems improve tha@coltheir
answers by using augmented text such as POS-tagged or syntacticadlgl fext. Syntactic
parsers for example are used for question typing, answer typing f@bparsing snippets

of text returned from posing keyword queries to a search engine.

1.1.3 Information Extraction Systems

Information Extraction (IE) systems focus on extracting fine granulariggrination such
as entities and relationships mainly from sources on the Web. The idea hegaither or
tag these entities and relationships which can later be queried in a strucaheaifor be
integrated with structured data (e.g. in a database). Two examples of itilmmneatrac-
tion systems are KnowltAll [34] and TextRunner [8]; they both rely onnéay patterns
from the huge number of instances found over the Web, and are rd@ottiacting a large
numbers of facts in a short time. However, it is also reported that the quékixti@ction
can be improved greatly if the structural information of the text is taken intsideration.

For instance, a body of recent work [25, 115] focuses on improviegthcision and recall

of IE systems by attending to the inherent structure underlying naturaldaegext. They
use the output of a syntactic parser or a semantic role labeler to learn th# wiligatures
for their extractions and achieve up76% improvement in terms of the F-measure com-
pared to TextRunner extractions. However, their extractions are sldoxed by orders of
magnitude.

The aforementioned systems suffer from one or more of the followingiHéyetrieval
unit is large, making the search for finer granularity elements cumbersodneoatly. (2)
The inherent structure in natural language text is ignored, resultingdaounate extractions
or limited search functionalities. (3) The structural information within senteisctgen
into account, but a high price is paid for such information due to lack ofiefficstorage
mechanisms and access methods. Our goal in this thesis is to address aealt®sa lim-
itations. The following section provides a few examples that demonstrate lecstrtitture

in natural language text can be exploited to achieve more accurate answer

1.2 Motivation

Example 1.2.1. Assume we are interested in finding the answer to the quesidmg

is the mayor of New York city?’ . Without any knowledge about the correct
answer, we can conclude that the answer is the name of a personsdeoahave a who
guestion, and that the answer is in the class of mayor names. Thus, if @@beess to a
knowledge base that contains a list of mayor names we can effectivelg pnany of the

potential matches that have been found.

The question discussed in Example 1.2.1 is a factoid question. It is relatiasigre
to find candidate matches for this class of questions compared to other tygasstions
such aglefinition reasoningandhow-toquestions. The reason is that answers to factoid
guestions are in most cases short entity names that can be tagged b@&3zech (POS)
tagger as nouns or noun-phrases.

If we have access to a document-level search system that receivgsiaa keyword
qguery and returns a relevance-ranked list of documents (as mosteasthsngines do),
we can convert the question to queries suc@as‘'mayor of New York city’ or
Q2='is the mayor of New-York city’ and evaluate them using the search en-
gine. The answer is often found in the first few matching documents. Haweven for
factoid questions, it is not efficient to scan one or multiple documents pey god join the

candidate matches with the knowledge base. The problem will be more gaveneant to

automate the question answering process for a large number of que3t@nsfore, more
efficient access methods to potential matches could improve the performgguestion
answering.

Wild card queries [99] (as discussed in Section 2.1.1) may help writing thoeges,
but we would need efficient storage mechanisms and access methodstidtvere effi-

ciently support wild card queries.

3.Bloon’11berg EO.vpsc

lex—m |ex—mod s i

1.Mich§el2.Rub§ns E2N~ 30.having

' obj
sub)

E5.Michael Rubenﬁ Bloomberg 324w’\t‘)rth

. mod” |mod
Y U 2 ki < 31 33)of
.net 0
whpi unc /l\;i ha'l b ! oonb A Prep
1Who 2is 97 /EA' chdel Rubens Bl oomberg 24 person pmmp‘#
NooVBE U 18 7%¢ de 36.billlon
pred Prep m mod nod N mod
4.mayor pcomp-n 21the 22.8t 237ichest 25.in Iex—mfg/#e/ximo
\ 18! ci pet A A Piep 3au$ 3518 37l
tcit . . .in
M@Su\bj\ N ty pcom&:—n u V] pl)red
3.th of “E2Who lex-mog " fex-mod 28!States ol
pet prep N lG’Ne 1? Yor k d { d P ’
. New 17. Yor et ex—mo
pcomp-n U U /\ 38.2010
.ty 26the 27.United N
Det U

lex-mo lex-mod

6.New 7.York
U U

(a) Question Parse Tree (b) Sentence Parse Tree

Figure 1.1: (a) Parse tree of a sample question, (b) parse tree of a saatple The bold
labels and dashed edges indicate the match. Edge labels indicate role ofdirelative
to its parent and node labels include offset, word and POS tags.

Example 1.2.2.If we pass the question in Example 1.2.1 to a dependency parser, such
as Minipar [82], more information about the syntax of the answer can bedfo Fig-

ures 1.1(a),(b) show the Minipar parse trees of the question, and the tpae of a sample
sentence that contains the anstyeespectively. In these parse trees, the edges are labelled
by the role of the child, relative to its parent and nodes are labelled usingotfteoffset in

the sentence, the word itself and its part of speech tag.

Looking at these two parse trees we conclude that although the ansisbgdViRubens

1The first sentence from the Wikipedia page of Michael Bloomberg oteBsger 22, 2010 Michael
Rubens Bloomberg (born February 14, 1942) is the current May or of New
York City, and the 8th richest person in the United States, ha ving net
worth of US$18 billion in 2010”

Bloomberg, and the identifying question terms, mayor of New York city, aragart from
each other in the original sentence, the parser manages to find theirtgyrgationship
correctly and associate them using edges in the tree. Moreover, tiesponding terms in

the question and the sentence have the same POS tags, roles and sydtionsngs.

Example 1.2.3.In this example we use constituency parsing to answer a factoid ques-
tion. Suppose we want to find the answer to the questibiat kind of animal is

agouti? , chosen from the TREC-2004 question answering track [110]. Uskeg\aord-
based search engine, we can send a query suahgagi and skim through the returned
pages for the desired answer. Alternatively, if a corpus of syntactipatlyed sentences that
contain the answer exists, we can parse the text snggmeiti is a kind of , using
Stanford Parser [62] and match against the database of parsedcesntéts Figure 1.2
shows, a\Nnode is added to the query parse tree to indicate that the sought wordua a no
and thus achieving a more accurate result set. This snippet correctlyasdtah parse

of the sentenc@&he agouti is a short-tailed, plant eating rodent

The matched subtree has been marked with dashed lines for better visualizZsdiéig-

ure 1.2 shows, there are a few words between the ansadent , and the words of the
query,agouti is a , in the matched sentence. However, the parser correctly identifies
the relationships between the corresponding words and a structural ozsataxtract the

answer.

S ROOT

NP VP
‘\ /N
NP VP
VBZ
‘ NP /| |\\\
NP

is DT NNS VBZ NP
DT NN ‘ | | ~ ~

> ~

NNS

agouti

| | - ~

The agouti s DT J3 , JJ NN
Ve

N\

plant-eating roden

a /
a short-tailed ',

(a) parse tree of a sample query (b) parse tree of a matching sentence

Figure 1.2: Constituency Parse trees a sample query and a sample seoi@iadgng a
match. The bold labels and dashed edges indicate a match. Internal ndideseirthe
syntactic role of its subtree and leaves indicate words in a sentence.

Examples 1.2.2, 1.2.3 show how answers to natural language questiobs caore

effectively found using a parse tree. Syntactically annotated trees nmapealssed in for

finding or verifying some linguistic phenomena in text, checking the accuwbpsgrsers or
gathering some statistical evidence. More generally, we can state thetiisgaover text
can be significantly improved in terms of effectiveness and usability prdviue we have
an efficient and scalable access to parsed text. With the current state ait farsers, it
is possible to parse text fairly accurately, and since one can run thenaggeanumber of
machines at the same time, it is not far-fetched to think about the whole Welp fieised
and indexed (see [71] for a web-scale part-of-speech annotatecpd).

Supporting the above applications boils down to searching for patternelationships
over parse trees. There exist query systems that support a richcgegtres over syntactic
trees (see Section 3.2.1 for a survey). While these systems work on déaftan small
corpora, there has been little focus on the performance of these systamg i@ports on
their scalability over large text collections.

The given examples demonstrate some of the areas where more expeessidirect
queries can improve the effectiveness of searching over naturaidgedext. In this thesis
we study the problem of efficiently supporting queries over natural lagegtext. We focus
on the two scenarios where natural language text is either modelled ansequf words
or as syntactic trees containing word labels and relationships. Next sditmrsses more

details of the problems we address, the challenges involved and the &reasen.

1.3 Problem

With all the benefits of searching over linguistic relationships accessibleyimtadiic parse
tree or other forms of fine-grained text, there are also some challengkgnamportant
one is the efficiency of the searches; this is also the challenge we take as thehis.
In particular, we study the storage structures and access methodstwodmenarios: (1)
when a sentence is modelled as a flat sequence of words and (2) wédrgerace is modelled
as a syntactically annotated tree.

In the scenario where sentences are modelled as flat sequencesdsf werlook at
the problem of efficiently supporting wild card queries over large-scake tBhe syntax
and semantics of wild card queries are defined in more detail in Section 2.% Bty
index structures that directly support word-level matchings requirecriswering wild
card queries. Moreover, we study the performance gain over tharscevhere a match
is a document and wild card matching requires post-processing. Thgmgeaigorithms

and access methods are developed with regard to the underlying indeixiistrand with

respect to the extraction needs. The challenges involved include minimizimgspense
time of queries while keeping the index size and index construction time at anagze
level.

In the second scenario where sentences are parsed and modellathatisirees, we
study the problem of answering a set of unordered, node-labelleduerées. The syntax
of such queries and the semantics of matchings are defined in Section 2iZ&lef to
improve the efficiency of query matching, we propose a novel indextsteiover the set
of unique subtrees of the input parse tree corpus. A large numbealiécbes are involved
with regards to query evaluation and storage schemes over the prapudxesk index. We
study the problem of query splitting both theoretically and experimentally arediigate
existence of optimal query splits, in terms of the number of joins required/é&buating the
qguery. Another challenge in developing a subtree index is often the ensrindex size.
We study ways of storing structural subtree information concisely andfd ef different
coding schemes on the index size, index construction time and the numbersahymived

for query evaluation.

1.4 Contributions

In this thesis we make the following contributions.

Contribution 1.4.1. We introduce Word Permuterm Index (WPI) [26] as an efficient method
for evaluating wild card queries over natural language text. WPI exteéadauterm Index
(P1) [41] in several aspects. (1) By construction, WPI supports pattatching over key-
words rather than characters, (2) WPI supports a wider range ofeguban PI, adding
support for queries that are more frequently used over natural dgegiext, and (3) WPI
returns the actual keywords that match a wild card query whereas PI tfymsead to find
the range of elements that match a pattern. Thus, WPI goes one more stapriatehing

the keywords after finding the range of matching elements.

Contribution 1.4.2. We propose a Subtree Index (Sl) over syntactically parsed corpora o
natural language text. Sl stores all unique subtrees (up to a certairfreixethe corpora
as index keys. It also stores the structural information of each subtresen of posting
lists which can be used to perform exact tree query matchings. We shoretically and
experimentally that SI can achieve a large query run-time speedup cahtpdhe scenario

where only structural information of nodes are stored (see [9] foxample). To the best

of our knowledge, Sl is the first work on indexing tree structured datestbees the set of

unique subtrees as index keys.

Contribution 1.4.3. A novel root-split coding scheme and corresponding query splitting
and evaluation algorithms are proposed. We discuss that root-split coalrgsely stores
the structural information of subtrees within SI, making it possible to pertoact match-
ing, while reducing the index size, index construction time and query regfdones. Root-

split coding and our baseline coding schemes are discussed in Chapter 5.

Contribution 1.4.4. We develop efficient query splitting algorithms over root-split and our
baseline methods, subtree interval and filter-based codings, in theriscema&re query
matching is not injective (See Section 2.2.2 for a discussion of injective mgjchbwver
subtree interval and filter-based codings, we propose a query spligioigtam that achieves
optimality in terms of the number of joins required to evaluate the query. Ovéisphio
coding, we present an efficient query splitting algorithm that decompbgegquery into

smallest number of subtrees possible for a root-split query evaluation.

Contribution 1.4.5. In the scenario where query matching over Sl is required to be in-
jective, we propose novel pruning techniques to achieve efficiemypditting and query
evaluation algorithms, reducing the overall number of joins required cad@Eanaive ap-

proach.

Contribution 1.4.6. The last contribution of this thesis is the broad set of experiments
and analyses. (1) We compare the performance of WPI to alternatiedineamethods.
Our performance comparison includes cases where WPI is given a limitedmnambis
forced to do paging. To the best of our knowledge this is the first woitketki@erimentally
compares traditional inverted file indexes with more recent succinct fullstek indexes
(See the survey in [90]). (2) We experimentally show that Sl storing sabtiarger than
one node can outperform the node approach. Moreover, we shoauheoot-split coding
outperforms our baseline coding schemes in terms of the query responseisrhaghly

scalable and has a reasonably small index size and index construction time.

1.5 Organization of the Thesis

The organization of this thesis is as follows. In the next chapter, we resene back-
ground information required for understanding the discussions in thefrésesis, specif-

ically the material presented in Chapters 4 and 5. Next chapter also defimedormally

the preliminary concepts used of this thesis such as the syntax and seméthtegueries
we support, our data models and the metrics we use to evaluate our algorittireslan
tions.

In Chapter 3, a comprehensive review of the literature around queayidgndexing
natural language text is presented. This chapter includes related wddpizs such as
qguery systems over syntactically annotated corpora, question answegngatural lan-
guage text, and querying over XML documents, to name a few. We furtbengs how
these systems and solutions relate to our work and discuss the advamdgiawabacks
of each approach.

Chapter 4 discusses the problems associated with querying natural dentpxd in
its sequential representation. We propose Word Permuterm Index ,(\&fil)study its
architecture and data structures. We also present a set of quegsgirag algorithms over
WPI and asymptotically analyze the time complexity of such algorithms.

In Chapter 5 we propose a novel Subtree Index (Sl) structure thaduepthe perfor-
mance of querying over syntactically annotated trees at the price of a ladgx size. We
theoretically analyze the properties of Sl, and propose baseline algofihsitting and
evaluating queries over Sl. We also introduce root-split coding and itegmonding query
evaluation algorithms and discuss some of the benefits and limitations.

In Chapter 6 we present a broad range of experiments to verify thetieffieess of our
index structures and querying algorithms. We use different hardvmarsaftware settings
and parameters in order to check the robustness of our algorithms irediffecenarios.
We also perform several experiments to show the scalability of our methddsgtotext
corpora.

Finally, in Chapter 7, we conclude with a discussion of the achievements adidhih
tations of the thesis. Moreover, we present a set of ideas and futeneies that can lead
to interesting new problems or that potentially could improve the results presenteis

thesis.

Chapter 2

Preliminaries and Background

This chapter provides a more formal definition of some of the concepts, t@oginand
notations relevant to the scope of the problem that we study in this thesise Becon-
sider two different settings where text is modelled as (1) flat sequeriogerds or (2)

syntactically annotated trees, our discussion in this section also treats tharatséy.

2.1 Sequential Model

Under a sequential model, a text search often refers to finding piecestith& match
a sequential pattern. More formally, consider a text collection containiregaesce of
elementsC =< ey,---,e, >, Where each element is a sequence of tértaken from
an alphabeb; i.e. e; =< t;1---ti, >, wheret;; € X. The following definitions more

precisely describe text pattern matching over natural language text.

Definition 2.1.1. (Match) A match of a quen®@ =< qi--- ¢, > iIs an element =<
t1---t, >, where for everyy; in Q, there is &; in e, such that; ~ t;, meaning that; and

t; are the same alphabet tokens.

More intuitively, the above definition requires every match (a documenteises, para-
graph, etc.) to contain all query elements (usually keywords). In othedsyall the query

terms have to appear in every match at least once.

Definition 2.1.2. (Order-Preserving Match)An order-preserving match of a quey=<
q1---qm >Iisamatche =<ty ---t, >, where for everyy; ~ t; andg;, ~ t; if i < k then

j<l.

Ywords, phrases and perhaps punctuation

10

Definition 2.1.3. (Phrasal Match)A phrasal match of a quer§) =< ¢; --- g, > IS an
order-preserving match=< t; - - - t, >, where for every;; ~ t; andg, ~ t;if k =i+ 1

then/ = j + 1. In this setting() is referred to as phrasal query.

Definition 2.1.1 treats text as a bag of words whereas Definitions 2.1.2 arftizat
it as a sequence of words and add some constraints on order andhagjateerms within
a match. Next we describe a class of queries, called wild card queriegytmner expands

word-level matchings.

2.1.1 Wild Card Queries

In contrast with the traditional (usually information retrieval based) defmitiba match,
where a keyword query matches whole elements of the collection, wild carégcontain
place-holders, called wild cards, which match single text pieces within colfeet@ments.

A more formal definition of a wild card query follows.

Definition 2.1.4. (Wild Card Query) A wild card query@Q =< ¢1 - - - ¢, >, is a phrasal
query, where eacly;, € ¥ U {%}, and% is an extractor wild card. A match for a wild card
query is a tuple;; =< t;, - - - t;,, > of terms such that there is an assignment of terms in

to wild cards% in @ such that the assignment would make phrasal match fa®.

Wild card queries supporting word-level extractions are particularly itapofor sev-
eral reasons. First, a large class of natural language questiong lasdfactoid questions,
can intuitively be translated into one or more wild card queries (See TableRaldet of
examples). Second, the results of such queries can easily be joined taithalamay reside
in a database. For example, candidate answers fowlieh question in Table 2.1 can be
further refined by looking up the values returned by the first query iataldise populated
with a list of city names (second query). Finally, question answering systées rely
on NLP components that may directly or indirectly use wild card queries. Ebesnape
taxonomy construction, fact extraction, named entity recognition and @xpagnsion.

Information extraction can also be enriched using wild card queries.iRafie.i [99]
present a data extraction system using wild card queries over web text didtuss several
techniques such as query expansion and relevance ranking to mdheaprecision and

recall of extractions.

11

Table 2.1: Samples of natural language questions and their corresgavittircard queries

Question Translation

Who invented the light bulb? % invented the light bulb

What is glass made of? glass is made of %

Which city hosted 1988 % hosted 1988 Olympics

Olympics? % is a city

Where is Grand Canyon located? Grand Canyon is located in %

How tall is the Empire State Building? Empire State Building is % tall

How many electrons are there in a sodium atomPhere are % electrons in a sodium atom

2.2 Structural Model

In this scenario, natural language text is modelled as collections of syaigcaonotated
trees. Such collections can be generated automatically (using syntacgcspansanually
or semi-automatically. Regardless of the approach used for generatihgcerpora of
syntactic trees, the text here is often modelled as collections of unrankkdlaoelled
trees. Such trees are unranked, meaning that every node can aadbiarary number of
children.

In this section, we briefly study different types of corpora and how weehthem
for our querying task. Further we describe our query and matching Isyazted touch on

relevant background on binary axes matching, interval coding schexmaestructural joins.

2.2.1 Data Model and Corpora

Linguistic corpora can exist in several different form; e.g. there exist and speech
corpora. Text corpora are often represented as hierarchicatwgtes, and can exist as
constituency-based or dependency-based, each with a diffetarfttags, semantics of re-
lationships and annotation levels. In the following, we describe in more detaik sbthe

variations in linguistic corpora.

Annotation Grammar

Two main classes of syntactically annotated text corpora (also knownedmatries) can be
identified, based on the grammar that is used for parsing and annotatingtthbdee are
the dependency-based and constituency-based syntactically anmotateh. Dependency-
based treebanks (e.g. Prague Dependency Treebank [85]), rearddkionships between
individual words in a sentence with their dependents. ConstituencydBesgbanks (e.g.
Penn Treebank of English text [78]) are often obtained by constityssrsers and mark the

nested structure of constituents within a sentence, such as verbs anphmaeses. As such,

12

there are constituents that contain other constituents. For example, awaske pontaining

a verb and perhaps a noun.

Annotation Levels

Annotations can happen at many different levels. Depending on the typaramar used,
constituency or dependency, the annotation levels might be differenteridepcy-based
corpora are concerned with the dependencies between words in acgenome of the
supported annotations are as follows. Therphologicallevel stores information about
morphemes. The result of a morphological tagging is a flat structure withtaions on
individual words in a sentence. The analytical or syntactic level hastthetgral rela-
tionships between dependents in a sentence and their governorandliggcal annotation
generates a single-rooted tree structure, where the order of siblindge ckefined to be the
order of their words in the sentence. Tieetogrammaticabr semantic level is a more com-
plex annotation, marking the semantic relatedness of the words within a sen&indlar
to the analytical level, the tectogrammatical level generates a tree structownevet, the
mapping between the semantic level nodes and the analytical level nodésiecassarily
one-to-one. For an example of these annotation levels see [84].

The annotations developed over a constituency grammar mark the constatigmts
sentence and do not deal with the dependencies within the sentences.ofStheanno-
tation levels available are lexical, topological, phrasal and clausal (€5§). [bhelexical
level almost corresponds to the morphological level of dependen@oarmarking the
individual words with their lexical information. Thpologicalannotations are descrip-
tive annotations about the constituents in a word, such as affixephrasalannotations,
identify the phrase structures in a sentence, such as noun-phragsepositional-phrases.

Finally, clausalannotations mark the boundaries of clauses.

2.2.2 Query Model and Matching

As discussed in Section 2.2.1, syntactic trees are modelled using unranttedabelled
trees. At the abstract level, queries over syntactic trees are refgeésesing trees whose
nodes represent the annotations to be matched, and the edges Itetheeberary relation-
ships that govern between the corresponding annotations. We caltjgedles Syntacti-
cally Annotated Tree Queries or SAT-Q. Two scenarios are possibiefwrating queries
over syntactic trees. First is the scenario where the queries are tgehizcam natural lan-

guage questions (especially factoid questions) using the same method éoatijen syn-

13

tactic trees. This approach is perhaps the most favorable for the ssefwaal language
guestions are an easy and intuitive way to express the information nebdrf@ns. In
this approach queries can be represented using unranked notleddbees, with nodes
marking the labels to be matched and edges denoting a parent-child relatidcdstgmd is
the scenario where query trees are generated by an expert uséigrfavith the grammar
of the language, syntax of trees in the treebank and the range and seméatinotations.
Such queries vary greatly in terms of their expressive power, synt@deen semantics
across different querying systems over syntactically annotated treesSg&stion 3.2.1 for
a brief survey on such systems). However, a majority of queries in thigagtean also
be represented using unordered unranked trees whose edge enatéd d wider range of
navigational axes. The focus in this thesis is mostly on the first type of guervlgle a
subset of the second category can also be supported.

Query matching happens by mapping query nodes to syntactic tree notleawbdhe

same label. A formal definition of a match over syntactically annotated treew/fllo

Definition 2.2.1. (SAT-Q Matching) Given a query) and a tredl’, a matching is a map-
ping functionf : V(Q) — V(T') that maps nodes d@ to nodes ofl/, such that (1) for
every query node € V(Q) we havelabel(v) = label(f(v)) and (2) for each query edge
uv connecting nodes andv of @, thenf(u) and f(v) have the sameelationshipin 7" as

marked byuv.

In the above definitionjabel(v) denotes the annotation or label used on nodé&\Ve
call T"a match of@, if and only if there exists a matching fro@ to T". The relationships
over query edges are often represented using a set of navigatiesal &he syntax and
semantics of these axes will be covered in Section 2.2.3.

Query nodes might have the same labels. In such a case, it is reasonabihoe
that nodes with the same label are mapped to distinct nodes of the data treeutWith
such an assumption, a few common queries cannot be expressedwitereanore nodes
with the same label occur in the same relationship; e.g. (1) two adjectives rimgdédy
single noun or (2) two noun phrases such as subject and object a®nhifch verb phrase.
The assumption on the distinctness of the matching labels over the data treegé¢he
mapping function to be injective. In general, an injective matching is more dbstlythe
non-injective counter-part. We call such a matching, an injective matchidglefine it as

follows.

Definition 2.2.2. (SAT-Q Injective Match) Given a query) and a syntactically annotated

14

tree T, an injective match is a match whose mapping functfon V(Q) — V(7)) is

injective. l.e. for allu, v € V(Q) we havef(u) = f(v) if and only if u = v.

2.2.3 Navigational Axes

Navigational axes are binary structural relationships between pairgdefrin a query tree.
These axes have widely been used in query matching over tree strudateduch as
eXtensible Markup Language (XML) documents and syntactically annotises.

The full set of navigational axes, expressed with respect to a carddetare as follows.
(1) basic axesare single forward location steps including child, immediate-following and
immediate-following-sibling. (2jeverse axesare single backward location steps including
parent, immediate-preceding and immediate-preceding-siblintyai®itive closure axes
are multiple forward location steps including descendant, following and foitpwibling.
Finally, (4) reverse transitive closure axesare multiple backward location steps which
include ancestor, preceding and preceding-sibling.

Based on their querying needs, different systems might support paitbthe above
axes. XPath [27] for example, which is a path query language over Xdtlughents sup-
ports all but the ones prefixed wiimmediateword. LPath [9] which is an adaptation
of XPath over syntactically annotated trees, supports all navigational &ieally twig

queries, support only the parent-child and ancestor-descenden{@ee [47] for a survey).

2.2.4 Structural Indexes

Over large corpora, scanning individual trees for finding potential nestés not efficient.
As a result indexes are commonly used over tree structured data thaststmteral infor-
mation of the nodes. The structural information of nodes are usuallyseqmed by a set of
numbers which uniquely identify a node within its hierarchical structuresé@meimbering
schemes have widely been used over XML documents. In this section,iefly beview
a few of such numbering schemes and a set of structural join appso#udieutilize the

discussed numbering schemes to provide efficient access method everaictured data.

Numbering Schemes

Assume we are given a query//B (A is an ancestor oB) and we would like to find
the matches ford and B in a data tree. A naive approach to evaluate the query is to
start from every occurrence of in the data tree and traverse its entire subtree to check

if there are any descendents labelledRasin order to avoid such costly traversals, a set

15

of numbering schemes have been developed to suppgarent-child) and'/ (ancestor-
descendant) axes, efficiently. Using these numbering schemes, aryf paides over a
data tree can be checked in constant-time to find out if they match the giveoraxa.
The most commonly used numbering schemesrdesval codingandDewey coding16].
Numbering schemes have been first proposed by Dietz [32] over tneldsaae been used
extensively for querying XML trees.

Interval coding [120] assigns each node a paipaf and postnumbers. These num-
bers indicate the interval spanned by the subtree rooted at the giveranddcorrespond
to the pre-visit and post-visit numbers assigned to nodes while traversrtgen in any
depth-first search (DFS) traversal. As an example, the (pre, posthens for the nodes
in Figure 3.3(b) arev; : (1,7), b1 : (2,5), b2 : (3,3), c1 : (4,4) andey = (6,6). The
(pre, post) numbers are also referred to as (left, right) and (begi),iewmlifferent query-
ing systems. Axes evaluation using the PrePost coding is performed assollbnode
a is an ancestor of nodeg thena//b < a.pre < b.pre < a.post. The parent-child
axis can be checked by adding the level (depth) number to the intervadgcodhus,
a/b < a.pre < b.pre < a.post anda.level + 1 = b.level. By adding a parent id, the
interval coding can be extended to support all other axes supportéBda [47].

Interval coding is very efficient for answering containment querierddver, it is
very space efficient. However, with interval coding, updates in the degavill be very
expensive, requiring a large number of node numbers to be updatedgeyieoding, first
introduced for coding XML by Tatarinov et al. [106], can help reduaedbst of updates.
In Dewey coding, each node label is prefixed by the label of its parehttee siblings have
labels in the same order as they would appear in a depth-first traversah ésample, the
labels for the nodes in Figure 3.3(b) are: 1,51 : 1.1,b9 : 1.1.1, ¢; : 1.1.2 andcy : 1.2.
Thus, any containment query will be converted to a prefix matching of tiresygonding
node labels.

For the subject area of this thesis, the interval coding is more relevarg asawnostly
dealing with static data that almost never changes once stored and intiexieel.interval
coding, each interval is denoted by two valdeft,andright and each axis match is checked
by evaluating a set of inequalities on both numbers. Thus, the common priadiiceort
the data on théeft values and use structural joins for efficiently matching queries. In the
next Section, we discuss some specialized join techniques that are da/Bdojpining the

structural information.

16

Structural Joins

The coding schemes introduced above capture the nested structuresofvtren indexing
tree structured data, such as XML documents and syntactically annotagsd #kdarge
body of work on XML query processing consider the scenario whaoh element of the
document is represented using a document id, and the nutefterigiht andlevel with the
elements sorted on the document id andléfievalues (See [47] for a survey). In particu-
lar, the interval coding has been utilized in the Multi-predicate merge join (MPN)@®f
Zhang et al. [120], and this join method is shown to outperform regulabdagsjoin tech-
nigques. StackTree [1] introduces stack-based processing of saljcins, avoiding many
of the extra axis checks especially those for parent-child axis. A dekvbiaboth these
approaches is that query trees have to be decomposed into individag} bixis matches
and the partial results need to be joined to form the final output. Since thefsiterme-
diate results could grow very large, thus reducing the performanceyebady of work in
this area has been devoted to holistic twig query processing. More onttese will be

discussed in Section 3.2.2.

17

Chapter 3

Related Work

In this chapter, we review the literature around indexing and querying@ataral language
text. Similar to the structure of the rest of the thesis, this chapter is divided niaialywo
distinct topics. We differentiate between approaches that considerstéat sequences of
words with the ones that take into consideration the syntactic structure eséhi@nguage
text.

The first set of works include works around indexing and queryingitethe scenario
where text is modelled as sequences of words. We review a few indeximgigeies includ-
ing those on handling wild card queries. Self-indexes are also reviesvergby succinctly
store text and are amenable for text compression.

The second set of approaches on indexing and querying naturaldgedext benefits
from the grammatical structure of text obtained through syntactic parsitdn &proaches
introduce indexing and querying data that is represented by unramkkdlabelled trees.
We study a body of work on querying systems over natural languagentaitly from
the linguistics and NLP literatures. Such systems mostly deal with an expesstivof
queries on a small, clean and often hand-tagged corpora. Perforrmbgoerying over
syntactically annotated corpora has rarely been addressed in suemsysFurther, we
study indexing and querying systems over tree structured data such hsdgdliments
mainly from a database perspective. In this latter set of works, the fequsimproving
the performance. In each case we compare our problem and algorithnthewtlorks that
are reviewed.

Finally, we study natural language question answering as an NLP appticakiczh
has received considerable attention in the past decades. We diseu€fmver relatively
smaller corpora has benefited from syntactic parsing, and how this islesfor larger

text collections.

18

3.1 Natural Language Text as Sequences of Words

Natural language text data exists in large volumes in electronic format asémgences
of words, delimiters and punctuations. The common approach in the literatuséofing

text has been to build inverted lists of (non-stop) words that include theéaddelements,
occurrence frequencies, offsets, etc. In this section we review sértie @uery types
over flat text and discuss the advantages of wild card queries for-Moedl extractions
over natural language text. We further study some of the prominent workslexing and
qguerying natural language text with more focus on indexing techniquéstpaort wild

card queries.

3.1.1 Discussion of the Query Types

Question answering on a large corpus is a challenging task mainly bec&uddfitult to
analyze the whole (or a good portion of) data and to retrieve candidatees1sOn open-
domain QA applications, such as question answering over the web (Se&apea [91]
for an example), it would be very difficult to build a general QA system wigfinkaccuracy.
In those cases, a reasonable approach is to convert natural lenguesfions into queries
and benefit from available querying engines to enhance the perforroftieesearch. The
choice of queries can further affect the efficiency of searchirgg etranslating questions
to queries and the relevance of the results.

Table 3.1 gives a list of a few query types and some of the contexts whaeheggiery
type is used. Although our focus in this thesis is on wild card queries, othes Bf queries
or a combination of them might be interesting in question answering or otheridtitgu
applications.

From the list of queries in Table 3.1, this thesis mostly focuses on the quesgssnped
in rows two and four. Multi-keyword queries can improve the performarideepword-
based querying by pre-materializing a few joins and reducing the size giodtang lists.
They are interesting because wild card queries can benefit from a mykhickeé index
structure, as each key may contain neighbor terms and wild card querietstmighswered
without referring to the original data.

Note that by wild card queries, we specifically mean word level wild cardigstefull-
text search supports wild cards in the form of regular expressiohthdyare not the focus
of this thesis. For instance, Lucene [74] supperéd? wild cards, which matcteero or

more’and‘zero or one’characters, respectively. However, it does not differentiate betwee

19

Table 3.1: A list of flat query types in the literature and their result sets

Query Type Query Elements Result Set References

Keyword keywords, Boolean documents AltaVista [2], Google [44],

queries operators Yahoo [116]

Multi-keyword | keywords, phrases| documents [18], Nextword and Phrase

queries index [7, 114]

Proximity keywords, proxim-| documents Lucene [74], INDRI [57],

queries ity radius [17]

Wild card | queries, wild| list of keywords| Dewild [99], BE [13],

queries cards(%) KnowltAll [34]

Structured SQL, text predi-| relations Oracle InterMedia Text[58]

queries cates DB2 Text Extender[75],
[14]

Full-text search | characters, regular strings Lucene [74]

expressions

word level matches and matches within words. Moreover, Lucene haandlseentire data
collections for the prefix wild card queries such' aoors’ , which can potentially match

‘doors’ and‘floors’ . For this reason, earlier versions of Lucene did not support
prefix wild card matchings. In Section 3.1.2 we study a permuterm index whigbosts
a class of full-text search queries having wild cards and forms a badeliraur Word

Permuterm Index discussed in Chapter 4.

3.1.2 Supporting Wild Card Queries

Wild card queries, defined in Section 2.1.1, are fill-in-the-blank queri¢satkappropriate
for word level extractions. Supporting them efficiently brings some intieiggeshallenges.

In this section, we describe how state of the art indexing schemes suyglolcaird queries.

Inverted Index

There has been a great deal of activity around increasing the effjcadrkeyword-based
queries. However, the same structures and algorithms would not nelgebgsauseful
or efficient for evaluating wild card queries. Assume we are given aertes index
structure, such as the one depicted in Figure 3.1 with four terms and thceendots.
Each termt in the index has a list of postings, each posting in the form of a triglet
d, fr.a, o1, -
o1 --- oy, , are offsets inl wheret appears.

,0f,4,0 > Whered is a document id.f; 4 is the frequency ot in d and

Given a keyword quer@1:‘world population’ and awild card quer@2:‘world

population is %’ , the algorithm for evaluatin@)1 involves only intersecting the

20

posting lists of termsworld’” and ‘population’ , and finding the list of matching
documents. However, fd@2, each matching document has to further be scanned in or-
der to find the keywords that match the wild card. In the above exan@ienatches
<1,2,[37,56}>, <2,1,[124}> and<3,1,[7]>, andQ2 matches6706993152" which is
located on offset 10 of document 3. Althou@2 matches its answer in fewer documents
thanQ1, the query response time fQ@2 using inverted indexes in one of our experiments
was 12 times larger. This indicates that inverted indexes are not appeofoiavaluating
wild card queries.
6706993152 <3,1,[10>

IS —<1,4,[12,154,184,190}, <2,4,[379,401,427,503], <3,1,[9]>

population—<1,7,[8,30,38,57,153,170,194] <2,2,[125,155}, <3,1,[8]>
world —<1,3,[11,37,56}, <2,2,[29,124}, <3,1,[7]>

Figure 3.1: Architecture of an inverted index

Solutions on multi-keyword queries such as phrase and nextword infilexes4] can
help reduce the time it takes to intersect the posting lists, but won't help in tveoke
matching step, which is in most cases the dominant process. Therefoedpmaent of

solutions for efficient retrieval of keyword matches from text seemsndisd.

Neighbor Index

Neighbor index, as proposed by Cafarella and Etzioni [13], is an teddndex that is
more suitable for queries over natural language text data. The indes dtoreach term
both its left and right neighbors. As shown in Figure 3.2 for our runnixeyrele (given

in Figure 3.1), the inverted lists have grown significantly larger, but thevarssto wild
card matches are stored within the index and can be found by looking appiepaiate
neighbors of a query literal. For example, to find the matche®#&in the neighbor index,
the search is conducted in the inverted index until oftset 10 in documentd = 1 is
identified as an answer. To obtain the actual answer, it is sufficient tododike right
neighbor of the term at offsétin the index without retrieving the document. This can speed
up the evaluation of wild card queries by 1-2 orders of magnitude comparieserted

index, as reported by the authors and confirmed in some of our experiméispter 6.

Permuterm Index and Self-indexes

Recently, there has been an evolving trend in developing index strucupgsrting fast

full-text searches over large text corpora. These systems study tivetical and practical

21

6706993152 <3,1,[(10,isx DBM%)]>
IS — <1,4,[(12,world,estimated),(154,population,expec{@®y,Earth,experiencing),(190,consensus, that)]

<2,4,[(379,sector,equally),(401,there,a),(427,tt@grgh03,action,not)},
<3,1,[(9,population,6706993152)]

population— <1,7,[(8,human,of),(30,human,to),(38,world,has),(5Fldigrowth),(153,world’s,is),(170,human,over),
(194, current,expansiony], <2,2,[(125,world,and),(155,a,se8)] <3,1,[(8,world,is)}>

world — <1,3,[(11,the,is),(37,The,population),(56,0f, popida)] >

,<2,2,[(29,and,population),(124,fastgrowing,populaf]o-, <3,1,[(7,the,population}}

[
[
[
[

1 Document Boundary Marker

Figure 3.2: Architecture of a neighbor index

aspects of index succinctness, search efficiency and compressim. résult, succinct
indexes have been developed and many interesting problems associatédewitihave
been studied [90]. A succinct index, is an index that is able to store teidmpeoportional
to the information-theoretic lower bound of the text, while maintaining searatiefty.

One of the key ideas that led to the development of such indexes haveheerlea
of the Permuterm Index by Garfield [41]. A permuterm index, computes alktrted
cyclic rotations of the text, reducing the pattern matching into prefix searches re-
sult, permuterm index requir@(NQ) space, wheréV is the size of the dataset, which is
prohibitive. Motivated by the idea of a permuterm index, Burrows-Wheaed@sformation
(BWT) [12], achieves a text transformation that is more amenable for @sajpm. BWT,
discussed in Section 4.2.1, is thus used in building succinct indexes.gifar@nd Ven-
turini [39] use BWT to build a compressed permuterm index (CPI) thatatppvild card
queries. CPI benefits from a rich set of previous work on efficiettepamatching over
BWT and strings.

Despite being highly efficient, CPI supports only a limited number of wild caatigs
and is tuned to answer full-text searches over strings rather than Inkzngaage text
queries. A word-level adaption of the permuterm index has been dextlop Chubak
and Rafiei in [26] which improves upon CPI in a few directions. ComparetiRh WPI
supports a wider range of wild card queries. Moreover WPI suppantdevel extractions
and variable size alphabets. WPI is covered in detail in chapter 4.

Other related work to WPI are the keyword-based generalizations oinidex struc-
tures such as word suffix arrays [37] and word suffix trees [4]alfinManning et al. [76]
propose solutions for extending CPI to support more than one wild cdiusy propose
materializing the range of matching rotations for one substring of query litaralsnter-

secting with the results obtained from the prefix range returned by thefrédsé query

22

literals.

Other Sequential Text Indexes

Querying over natural language text is often addressed in the literatuneléxes that are
based on inverted lists. For large text corpora, these indexes run inppchiem of high
costs of intersecting long posting lists. As a result, solutions for multiple keysaagte
been proposed that materialize posting lists for more than one keyworthfiesare the
works on phrase index and nextword index [7, 114]. Phrase indexatx natural language
phrases from a query log and stores inverted lists for such phrasesextdvord index,
for each term, keeps a list of high frequency terms that follow it in the tedttha pair's
corresponding inverted list. Chaudhuri et al. [18] propose bredking posting lists into
smaller ones by storing lists for multiple keywords. As a result they can gtgean upper
bound for the worst case running time of the queries. However, thesalborks have no

support for wild card queries.

3.2 Natural Language Text as Linguistically Annotated Trees
3.2.1 Querying over Linguistically Annotated Trees

There has been numerous systems developed in the past decaderyorgjaeer linguis-
tically annotated trees. These systems differ widely in terms of the expeassw of the
gueries they support, the types of corpora they address (e.g. tkegizallel, time or
word-aligned), performance, architecture and last but not leasytitaxsof their queries.
Some of these differences for a handful of published systems haueshebed (e.g. [67]).
In this section we present a more comprehensive study of the systemsefyirg linguis-
tically annotated corpora. Moreover, we classify and compare sudlyiggesystems in
terms of their performance.

Tgrep [97], or tree grep, is one of the earliest systems developedufayiag syn-
tactically annotated trees. Tgrep and its successor Tgrep2 [101] rsiggoential and
hierarchical querying over parse trees in a treebank. It operagrsitevown corpus file
format, but sentences parsed in penn-treebank [98] style or ComlyirGategorial Gram-
mar (CCG) style can also be converted to Tgrep format and queriedpZ gigs support
for the full set of axes defined in Section 2.2.3, and boolean operattnwever, it does
not support quantifiers and thus tgrep2 is not First Order (FO) compléie syntax of its

language is simple and can easily be used by non-expert users. Unlilkgmoach on

23

guerying syntactic trees, Tgrep2 does not benefit from any indexfficient access to the
parsed data. For any query, it scans the whole corpus; henc@gaateckin [42], it does not
scale on large corpora.

LPath [9] is a more recent system which extends the axes supportedatly pF] to a
wider range of linguistic queries. It is at least as expressive as Zgreg is more expres-
sive than XPath [69]. LPath uses a numbering scheme similar to the Predttiag(120]
of XML for efficient access to the navigational axes. Moreover, iswseelational database
to store structural information about nodes in parse trees and creatralsadexes for
efficient access. Performance analysis in [9] shows that LPath éotpesrtgrep2 and Cor-
pusSearch [100] in most cases and has comparable efficiency to XRathdeveloped
under an engine using the labeling scheme proposed in [31]. In comuasystem stores
the structural information of subtrees rather than nodes. In the case igesize of sub-
trees stored is at mo$t our system is very similar to LPath. Moreover, our focus in this
thesis has been both on improving the performance of querying and oprhbiseness of
the index.

Other querying systems over syntactically annotated corpora eitherdodasreasing
the expressiveness of the queries or focus on particular types bhatrege Kepser devel-
oped Finite Structure Query (FSQ) [60] which is a lisp-like language ferygng syntac-
tically annotated trees. Despite this query language being very exmdadivfirst order
logic) supporting extensive use of quantification, it is very inefficierdt has a difficult
syntax. MONASearch, a later work by Kepser et al. [61, 79], addeada Second Order
(MSO) elements to the querying language, adding even more to the expreess. Some
gueries such as counting are only expressible in MSO. MONASearstingseautomata for
its matchings, which results in an inefficient linear-time scan of the whole sdgoevery
qguery. The reported performance of MonaSearch in [79] show# thatperforms FSQ, but
has a worse query time than TIGERSearch [64] on simple queries. TIE&RSIs a tool
for querying different treebanks, originally developed for queryan@German newspaper
treebank.

Table 3.2 gives a comprehensive summary of different querying sysieensyntac-
tically annotated trees, sorted based on the year these systems haveebelepedi. In
this table, we compare some of the major query languages in terms of theisgixpreess,
guerying approach, target corpus and architecture. We also indidhtrdéf has been any
report of the performance over these query systems and providemeés. Unfortunately,

due to differences in the types of queries and corpora supportedanv®icprovide a fair

24

comparison of all the querying systems in terms of performance. Howeeewjll discuss

such comparisons when possible in the rest of this Section.

Table 3.2: Summary of the literature on query languages over syntacticalbyaead trees.
Refer to the text for the meaning of abbreviations.

Year Query Express- Target Corpus Querying Architecture | Performance Ref.
Started System iveness| Language | Type |Method|Medium Reported

1994 Tgrep AXXX English SW Scan Disk Native N/A [97]
1998 NetGraph AxxV Czech MW Scan Disk Native N/A [83, 84, 86]
1999 ICECUP ABXxX English [MW+MT | N/A N/A N/A N/A [111, 112]
2000 | CorpusSearch AxxV Englistt SW Scan Disk Native [9] [100]
2000 | NXT SearcR | ABQV German | SW+ST| Scan | Memory Native [80] [54, 35, 80]
2001 Tgrep2 ABxV English SW Scan Disk Native [9, 42, 24] [101]
2001 Emu XXXX English | SW+ST| N/A |Memory N/A N/A [15]
2001 | TIGERSearch| ABxV German SW Index |Memory| Native [79, 24] [64, 63]
2002 Emdros XXXV generic corpora Index Disk Relational [96] [95, 96]
2002 | VIQTORYA xBxV German SW Index Disk Relational N/A [105]
2003 FSQ FOL German SW Scan Disk Native [79] [60]
2004 | MONASearch| MSO German SW Scan Disk Native [79] [61, 79]
2004 LPath ABXx English SW Index Disk Relational [9] [9, 69, 67]
2005 LPath™ FOL English SW N/A N/A N/A N/A [68, 69]
2005 LQL xBxV English MW Index Disk Relational [89] [89]
2006 DDDQuery AxxV German MW Index Disk Relational N/A [36]
2006 Tregex ABxV English SW Scan Disk Native [24] [70]
2007 ANNIS2 xxxX | Multilingualf MW+MT | Index Disk Relational N/A [65]
2007 |TreeAligner SM ABxV |Multilingual] MW Index | Memory Native N/A [109]
2009 PML-TQ AxxV Czech MW N/A Disk Relational N/A [92]
2010 LPath-IR AxXxx English SW Index Disk Native [42] [42]
2010 TPE AXXX Englisi? SW Scan Disk Native [24] [24]

1 Also Portuguese and French, shitp://corpussearch.sourceforge.net/CS-manual/
Corpora.html

2 The query language is called NiteQL or NQL

3 Mostly German but also other languages such as Hindi andafiienguages

4 English, German and Swedish

5 Text abstracts from PUBMED containing protein names

Expressiveness of Query Languages

Expressiveness, or the expressive power, of a query languaggunes the range of ele-
ments expressible in that query languages. In Table 3.2 we use a raw roetépdrting
the expressiveness of the query languages. Aside from langudmels ave as expressive
as First-Order Logic, denoted by FOL, or as expressive as Monadiord-Order Logic,
denoted by MSO, we use four characters to roughly describe thessympess of the other
query languages. Note that FOL is strictly more expressive than nonkki@uages and
MSO is strictly more expressive than FOL.

In the third column of Table 3.2, the first lettet, refers to the language supporting the
navigational axes. For aA to appear in the expressiveness column of a query language, it
is usually enough if it supports parent (or child), ancestor (or delsog)h immediate fol-
lowing (or immediate preceding), following (or preceding) and any of thingjlaxes. If

the language does not support enough axes or if we cannot fingewctues in the query-

25

ing system manual or references, we mark it byzan the respective column. The second
letter, B, refers to supporting boolean operators over expressions. Weadlat the lan-
guage supports negation, and either of conjunction or disjuncgjorefers to the support
of universal quantifiery) and existential quantifiedj. Languages which support both of
these quantifiers usually explicitly define the notation of implicatier) @&s well. More-
over, nodes or variables are often existentially quantified, ¢husually reduces to finding
if the query language supports universal quantifiers. Fin&llyefers to the support for
defining variables over expressions. Using variables not only makeaske®f composing
the queries easier, but also allows the definition of cycles in the querymatter

If any of the the above four fields is marked with anit means that the language does
not support the given feature or we could not find a clue. Note thaalhdthe querying
features over syntactically annotated trees can be expressed usirgptteefaur letters.
For example edge alignment, scoping and regular expressions arecoohtex for in our
formulation, while are supported by a large number of reviewed systems nAte that the
semantics of operators and matchings might vary from system to system.e&slg the
same query might be evaluated differently by two querying systems whigiostip

Table 3.2 also reports on the properties of Taeget Corpusfor each query system,
including the language and the type of the corf@Mirefers to a Single-layer Word-aligned
corpus, hence a treebank, aWiV refers to a Multi-layer Word-aligned parallel corpus.
Finally STandMT refer to a Single-layer or a Multi-layer Time-aligned parallel corpus.

Our work in this thesis has an expressive poweAof:z, given the above formulation,
and focuses more on subtree matching. Our solutions are not bounddoificsanguage

or a parser, however, they only operate on single-layer word-aligolgubra.

Performance

A large number of the query languages discussed above lack greatligimsaing the issue
of performance. There are only a few systems that report the runtinmntd gueries on
their system, and even those systems do not report on the other peréermaasures such
as the size of the indexes, memory requirements or index construction timesiZEiseof
the corpora used are usually small, ranging from a few thousand sestena few million
sentences.

There are a large number of query systems whose performance is Im#dae size of
the corpus. Examples of such systems, as denoted in Table 3.2 by Seanquedying
method, are tgrep2, FSQ (Finite Structured Query), MONASearcheXragd TPE (Tree

26

Pattern Expression). In order to do their matchings, they have to compehegeery with
every tree in the corpus. Their query execution time is thus determined byhsotorpus
size and the time it takes to evaluate a query against a data tree.

The approaches that scale well are usually the index-based apesodchong the few
reported in Table 3.2 only four have their performance reported eithdrdrgselves or as
benchmarks for other methods. These four are LPath, LPath-IR, In@QIEandros. LPath-
IR [42] uses a large datasets of a few million sentences and reports orrloenpance
analysis with different types and sizes of queries. However, all theéeguit reports the
performance for are path queries. Moreover, they only return the whih match a given
guery, without finding the individual matches within the same sentences.

LQL [89] very briefly reports the performance of its queries over @gsiof 10 million
sentences to be in the order of a few minutes. However, it does not atatwor the experi-
mentation setup and the details of their access methods. Emdros [95, 96ktsupperying
on generic corpora and has a relatively extensive study of its penfmendJnfortunately,
the type of corpora and the queries reported makes it difficult to compaugetifiormance
of Emdros with other systems. Finally, LPath [9] compares its performanceagr@p2 and
CorpusSearch as its baseline methods and outperforms both for mdssquer

In comparison with our Subtree Index in this thesis, LPath and LPath-IR thamost
similar approach as they both develop indexes over structural informdttbe trees. Our
Subtree Index is similar to LPath in the case where the size of the largestesshired is
1, thus storing only nodes of the trees. However, LPath and LPath-IRdcomsider the
injective matching assumption. As a result, the result set of queries codiffédrent when

there are multiple nodes with the same label within the query tree.

3.2.2 Query Languages over XML Documents

EXtensible Markup Language (XML) is extensively used for storing ssetmietured data.
Similar to syntactically annotated trees, XML documents can be modeled akedrode-
labelled trees. Unlike syntactically annotated trees which could be modelledered or
not ordered, XML documents are often modelled as ordered treesy @uguages such
as XPath [27] and XQuery [29] over XML documents, support similacfiomalities as the
query systems presented in Section 3.2.1. XPath [27] for example, ssipp@rying over

navigational axes such as child, following and self. XQuery uses XPRa4ts aavigational

building block and adds FLWORexpressions. In this section, we briefly discuss the se-

'For-Let-Where-Order By-Return

27

mantics of XQuery and XPath queries and the related work on efficientbepsing such

queries.

Index Graph Schemes

As an alternative to numbering schemes which assign unique set of nutoliata tree
nodes, a set of approaches have been developed whose main ides@memarize XML
data such that structural information is preserved. Examples are thewStkong DataGuide
by Goldman and Widom [43] antl-Indexby Milo and Suciu [81]. These approaches use
a similar approach used for converting a non-deterministic finite automatak) (N de-
terministic one (DFA). As a result, the structure of all XML trees are preskwithin the
index graph scheme and at each state or particular node label, it woulebioevbich other
nodes/labels are reachable. Query processing is done by navigasegtimmaries, which

are in practice much smaller than the actual data, specifically for tree sedc{iL data.

XPath

XPath is a path query language. Every query consists of a context(frodewhere the
search begins) and a set of axis steps which narrow down the rethdt @fiery. Hence, the
result of an XPath query is a set of nodes matching the context node in¢ng tee.

Most of the literature around XPath is due to the work of Grust [50] antil@x0[45].
This line of work mostly focuses on using the querying power of a relatiemgine to sup-
port XPath axis steps. For example, Grust [50] presents an encodittpéps each node to
a point in a two-dimensional plane of the node pre-order and postadks and converts
each XPath axis query into a range query over this plane. He suggesisansR-Tree, in
order to efficiently support the range queries. Staircase join [51] ithancoelational ap-
proach that stores a set of structural information of XML trees within abdato achieve
a better performance for XPath axes over a sequence of contexd.ntigeerforms three
additional optimizations over Grust’'s XPath Accelerator [50], namely pgyrpartitioning
and skipping. The basic idea behind these optimizations are to avoid redwhegks and

evaluations, when performing an axis evaluation over a sequencetektoondes.

XQuery

XQuery [29] is a Turing-complete general purpose language supgaatinroad set of
querying functionalities such as variable and function definitions, resuend loops. As

aresult, it is far more expressive than XPath. A complete review of the aroeficiently

28

supporting different aspects of XQuery is out of the scope of this thésisa result, we
only cover a few closely related to our work. As in XPath, relational daedhave been
the backbone for supporting XQuery. DeHaan et al. [31] proposmplementation strat-
egy based odynamic intervalsoding for storing XML in relations and mapping XQuery
to SQL. Their strategy supports function definitions and nested FLWResgjons. Chen
et al. [23] introduceGeneralized Tree Patter{&TPs) which augments tree patterns with
optional edges and boolean operators over nodes. These GTHwware t® support sig-
nificant XQuery features such as nesting, aggregation, quantifidijeiais. Finally, Boncz
et al. [10] introduce loop-lifted staircase join for efficiently supporting ¥Rexpressions

within XQuery nestedror loops.

Twig Queries

The most commonly used axes in XPath and XQuery are the child axis andsitendant
axis, denoted ag and// (alsop-c anda-d axes orpc andad axes), respectively [47].
A twig query is an (unordered) unranked node-labelled tree, whapesdaddicate either a
child or a descendent relationship, denoted by a single or a double lipecte®ly. There
has been an extensive line of research focusing omlig Pattern Matchingwhich looks
at the problem of finding matches for nodes of a query tree within a se¥ibftees. Thus,
a match is a set of data nodes having the relationship given in the querAtresxample
of a twig query, a tree representation of an XML document and the quneling query
matches are illustrated in Figures 3.3(a),(b) and (c), respectively. Naitmttnis figureA,
belongs to the class of nodes that have label of typeSimilarly, By, B2 belong to label
type B andC1, Cs belong to label typ&€'. We denote query nodes by only the label types,

which can match any of the data tree nodes belonging to the same class.

A A,
C B B, Cz
/\ <Al, B1, C2>
<Al, B2, C2>
B, C,
(2) Query (b) Data Tree (c) Query Matches

Figure 3.3: Sample query, data tree and match results for a twig matchingmroble

In the rest of this section, we will discuss two major approaches to solvingijgges,
relational and native. Most of these approaches use the numberiagestand structural

joins discussed in Section 2.2.4 as their building blocks. We further disouseur subtree

29

index over syntactically annotated trees might overlap with or benefit fremapproaches

reviewed in this section, and clarify our contributions compared to theseaqgpes.

Relational Approaches

The relational approaches for tackling twig matching benefit from the tmiage mecha-
nisms, query optimization and concurrency control, developed over mddgmgines. In
these approaches, the structural information of the trees are storddtianal tables and
twig queries are mapped into SQL queries that can retrieve the matchesidraevhile
relational approaches are easier to implement and they benefit from gxistialopment in
relational databases, they cannot address certain performancersisted to twig queries.
For instance, unless the structural join is integrated within a database gihgirseze of in-
termediate results from partial solutions might be very large while evaluatingjuwéges.

In general, native join approaches are more efficient and favorabl@ditching twig
queries.

The common relational approaches for storing XML are (1) the edgeoappr (2)
the node approach, (3) path materialization, and (4) the DTD approacthe ledge ap-
proach [40], an XML document is considered as an edge-labelled Eéges are stored
in a relational table with (Source, Target) pairs as keys, indicating thesaund target
nodes of an edge. The edge approach could be very inefficientrfgijoeries and queries
containing// axis, as many joins might be necessary. The node approach [12G] state
information such as the interval codes, parent id and the node tag in amelaable. It
is more efficient for queries witjl/ axis than the edge approach. The path materialization
approach avoids expensive joins by pre-materializing paths, eithertfremoot to nodes
as in [118] and using the interval coding or from nodes to the root as3hgAd using
a variant of Dewey coding. The twig queries are decomposed into patieswnd the
SQL LIKE function is used to perform path matchings. The path materialization might
be inefficient for queries with multiplg¢ /’s and might produce incorrect results for trees
with recursion [47]. The DTD approach uses the relationships and da¢a tefined in
the XML Document Type Descriptors (DTDs) to design the architecture eofekational
tables, hence reducing the number of joins [102].

Of the above relational join approaches, the first three could be coedids special
cases of our subtree index, ignoring the injective matching assumptiomotieeapproach
is similar to the case where we only store subtrees of simed the edge approach can be

represented with the scenario where we only store subtrees o.sikke path material-

30

ization would be the scenario where we only keep subtrees that consisanf branches
rather than all subtrees. As we show in our experiments in Chapter 6eslbttex per-
forms better for larger sizes of subtrees, outperforming the node aysdaggproaches. The
path materialization approach would not be suitable for our matching tasks @ssitnot
distinguish between paths that have nodes in common and distinct pathssteocmtrees
such asT1:A(B(C)(C)) andT2:A(B(C))(B(C)) will both be decomposed into two
A(B(C)) paths.

Native Twig Join Approaches

Given the interval codes over XML nodes, evaluating twig queries regfre use of-
joins (joins involving inequalities) as a fundamental operation. These joinbeaxpen-
sive in relational engines as large intermediate results might be generaii@ce tWig join
approaches try to perform structural joins as efficiently as possibleselrapproaches as-
sume that the structural information of nodes, Decld, Pre, Post, Levelalues are stored
in an inverted list, sorted oRocld andPre values.

Multi-Predicate MerGe JoiN (MPMGJN) [120] is an adaptation of the merge-jo
for parent-child and ancestor-descendant queries. Given a quéBy(or A//B), the
algorithm instantiates two cursors at the beginnings of the sorted listd fond B and
for each A posting, iterates through alB postings, whered.Docid = B.Docld and
A.Pre < B.Pre < A.Post. One problem with this approach is that Amode is com-
pared with all itsB descendents, even fet/ B queries. Motivated by this, StackTree [1]
uses a global stack to pushnodes as they are seen in the sequence of the input stream.
Thus, everyB node is only compared to the top of the stack for parent-child axes, reducin
the overall number of comparisons.

Both algorithms operate on a single query axis at a time and the partial resoitdiese
axes have to be computed and joined, which could be costly if the size of theétiate
results is large. PathStack [11] reduces the size of the intermediate rgsdésdmposing
twig queries into several root to leaf paths. It then solves for these aathjgins the results.
Instead of using one global stack, PathStack uses one stack for émthinlahe query.
Nodes are pushed into their corresponding stacks once they are seemiout stream with
a pointer to the top of their parent stack. Once a leaf is observed, solatersnumerated
and sent to the output. TwigStack [11] is the first holistic twig join algorithm. Similar to
PathStack, it uses multiple stacks for labels in the query and uget\ext()function to

filter intermediate results that will not be part of a final matgetNext()guarantees that

31

no data node, say; in Figure 3.3, is pushed over its corresponding stack unless all its
descendents in the query tree exist in the subtree rooted; kand its children have this
property recursively. TwigStack is shown to be optimal for queries with gp edges. By
optimality we mean no redundant intermediate results are pushed over the Hiack as

for TwigStack, every node that is pushed over a stack jiri anly query, contributes to a
solution. Thus, an optimal solution is linear on the sum of the input and ouyas and is
independent of the intermediate results generated. TwigStack is sub-optimalused for
general twig queries.

The problem of optimality has been the focus of interest for other twig joirrighgos.
TwigStackList [73] uses lists to cache limited number of nodes in the memory land o
tains optimality for twig queries in whicli edges are under non-branching nodes only.
iTwigJoin [20] extends the TwigStack by adding several inverted sublésisdon the level
of the nodes in the data trees, achieving optimality for queries with palyis as well as
// only queries. Twig?Stack [19] is the first optimal algorithm for addressing the twig
join problem. It uses a complicated list of trees of stacks data structuréofimgsthe in-
termediate results and enumerating the solutions. Recently, Grimsmo et alr¢#8pd
TJStrictPre and TJStrictPost, which are both optimal and fast.

The subtree index developed in this thesis uses a native approach esfdréné could
benefit from the above join approaches. However, it should be notedtéhntain tweaks
have to be applied for such algorithms to work with subtree index. First, twiignpa
matching does not make the injective matching assumption and the matches ofuinaed
twig match have to be further pruned. Moreover, stack based apg®aabh as StackTree
and TwigStack require some modifications over non root-split coding sosres the post-
ing list of subtrees are sorted on tRee values of the subtree roots. However, joins could
be performed over non-root nodes of subtrees, whose lists mighersurbked on theiPre

values.

3.2.3 Querying over Trees

In this section we briefly review some of the related works on querying geeeral tree
structured data. These include Unordered Tree Pattern Matching (JT®Mdered Tree
Pattern Matching (OTPM) and Approximate Subtree Matching (ASM).

32

Unordered Tree Pattern Matching

Chen and Cooke study the problems of Unordered Tree Pattern MatthiiiM) and strict
UTPM [21]. UTPM and strict UTPM study the problem of pattern matching general
trees using the same mapping functions as the ones we define in definitions2.2.2.2,
respectively. They show that strict UTPM is NP-complete and proposdgamithm for
UTPM that runs irO(|D||Q|) time, whereD and@ are data and pattern trees, respectively.
Gotz et al. [46] study the problem dfee homeomorphismin their approach all query
edges will be mapped to ancestor-descendant axes over the data tree.

Similar to our approach, there are works that use index elements largemdtdas or
edges to improve the performance of querying. Shasha et al. [LOBpddpbsed ATree-
Grep, which facilitates approximate and exact matching over unorderesl #dreeGrep
stores all paths of the set of input trees into a suffix array. It also aisesh index over
all nodes and edges to filter a set of candidate trees and improve owsgafireg perfor-
mance. Tree matching is done by decomposing the query tree into its root joakbaf
and evaluating them against the suffix array. In contrast to our suibtieg, ATreeGrep
does not support distinct labels over different children of a nodelsti does not support
single node queries. Moreover, our subtree interval and root-splihge remove the need
for post-validations. As a result, as confirmed by our experiments, duireguindex using

root-split coding performs orders of magnitude faster than ATreeGrep.

Ordered Tree Pattern Matching

The problem of Ordered Tree Pattern Matching (OTPM) refers to findiagtenatches of

an ordered query tre@ over a a node-labelled ordered data tfeeMore specifically, the
task is to find a mapping between nodegjrand nodes inD, such that the same parent-
child and sibling order relationship that exist between nodeg ixist between mapped
nodes inD. The obvious approach to solving OTPM is to try matching every subtree of
D with @ which takesO(mn) time [56], wheren is the size of the data tree andis the

size of the query tree. Faster approaches [33] use suffix treesohralte problem in

O (ny/mpolylog(m)), achieving a more efficient solution to this problem. To the best of

our knowledge the fastest approach proposed so far achidvelsg® m) [28].

Approximate Subtree Matching

Given a pattern tre€, (Top-k) Approximate Subtree Matching ((T)ASM) refers to finding

subtrees of a large data tree or a forBsthat are similar ta). The similarity is usually

33

defined as the tree edit distance [121] which is the minimum number of treatimper
to convert one tree to another. Two subtrees are considered similar tvierdistance
is smaller than a certain threshold. The output is usually a sorted set oéasibtanked
based on how similar they are to the query pattern. Guha et al. [52] adthieproblem
of approximate joins over XML documents. They introduce the notion ofereete set,
which is a projection of the join sets into the metric space to reduce the size ofitke jo
They also propose inexpensive computation of upper and lower bamdse distance
between two XML documents that effectively prunes a large number of milidates.
Similar to the idea of relevance ranking in information retrieval, query tree$eascored
and ranked. Amer-Yahia et al. [3] propose path and twig scoring ovigr dueries that
capture structure and content of the trees. Finally, recently Augsteln [6] aroposed
an algorithm to compute an upper-bound on the size of the subtrees in thieedalmsed
on the query tree. Then, they proposed a prefix ring buffer to prumsubtrees that are
above this size in one scan of the data tree. Approximate Subtree Matchringecaf
interest as a future work on querying linguistic trees. As an exampla tieenon-uniform
distribution of labels over the data and query trees and the localities thabexistg the
labels, heuristics can be developed to lead the search into regions oftthereamore

prone for matches in order to find the top-k matches faster.

3.2.4 Querying over Graphs

There exist annotations over natural language text that cannot be ntbdeitgy trees and
require to be represented using DAGs or general graphs. Mordondexing and querying
graphs have lots in common with trees and are relevant. In this section wev ringe
major recent works regarding the index structures and query algorithengaphs. Graph
indexing can be divided into two major categories. Exact subgraph mat¢ithgraph
isomorphism) and approximate (similarity) subgraph matching. Both problem#ahard

in their general form and as a result most solutions are either computationatiijpiive

for large graphs or use heuristics for reducing the problem size.

Exact Matching

GraphGrep [103] addresses the problem of exact subgraph matwrengndirected node-
labelled graphs. It stores all paths of sizes less than a threshold (uawstiall number)
found in the graph database into hash tables. The query graph is é@dwerdepth-first

order and shredded into multiple paths, which are evaluated against thdatdess for

34

matches. Gindex [117] discusses why path-based indexing schenwsitns could pro-
duce incorrect results or be inefficient and proposes a frequbrgrsyph mining algorithm
in order to store frequent sub-graph structures instead of pathy. UBeea larger support
threshold for larger frequent sub-graphs in order to avoid storipgreentially many sub-
graphs and therefore they are able to reduce the index size. GIndews $ outperform
GraphGrep by an order of magnitude. The work by Williams et al.i [113] witggaph
isomorphism, stores the canonical forms of all subgraphs into an indexevdo, they
assume that the input graphs are very small, making it possible to computéoamdhe
exponentially many subgraphs of all sizes. Their approach cannatdaktaver parse trees
as computing subtrees of all sizes takes tremendous amount of time to compéesingle
parse tree. TreePi [123] uses frequent subtrees as elements ofeitsfandsubgraph iso-
morphism problem. TreePi prunes the search space of candidates gamghfinds the set
of matches using post validations. Compared to TreePi, our approael atbsubtrees up
to a certain size and performs exact matching over the index. Moreavemat-split and
subtree interval codings do not require any post validations. As westisa Chapter 6,
an adaptation of TreePi to indexing parse trees results in smaller index lsigesworse

guerying performance compared to our root-split coding.

Approximate Matching

He and Singh [53] propose C-Tree, an R-tree based index that gsiiqooh exact and ap-
proximate subgraph queries. C-Tree stores a hierarchy of graphisae.aFor similarity

queries, they use the edit distance as their measure of similarity and skqp@antest neigh-
bor and range queries. SAGA [107] introduces an approximate spibgnatching tech-
nigue that accounts for node gaps, structural mis-matches and node tolemaSAGA

uses a similarity measure based on the distance of two subgraphs. [t @Endestores
subgraphs having nodes up to a certain threshold in an index for f&stfm The match-
ing algorithm works by shredding the query into small fragments, finding thehes to

the small fragments and joining the results. TALE [108] proposes a heuajgtimach to

efficiently support approximate subgraph matching over large graphgrdduces neigh-
borhood index which is a disk-based augmented index that stores cextpigriies about
the adjacent nodes of each node in the graph. Matching is done basedain properties
holding for the node and its neighborhood. TALE does not guaranteadafi matches
or that matches don’t have false positives, however, it reports higtigions and recalls in

the experiments.

35

3.3 Natural Language Question Answering

In this section, we review some of the works in the literature around questi®mesing
over natural language text that could potentially benefit from our inttextsires and access
methods in this thesis.

Question Answering (QA) refers to the task of finding “correct” regasto questions
expressed in a human readable natural language. QA in open domairsiteaging task
as questions and answers can be expressed using various symdxesrdings. Many
different types of questions have been studied, but recent QA sys$tamesmade more
progress with factoid, list and definition questions mostly due to their relatiglisity.
Factoid questions are questions whose answer is a fact or a set olrfiaclist questions
are an extension of factoid questions specifically denoting the output ttidi@afacts.

These three types of questions have been the main focus of the TextiaEG@mEn-
ference (TREC) QA track. The state-of-the-art systems are able t@fouirect answer
to around70% of the factoid questions within their first try [30] on a corpus of blogs and
a corpus of news. During the several years in which TREC held the @kdraome of
the best systems achieving very high accuracies such as PowerAnsWBREC-2002 [87]
have used syntactic parsing to obtain more accurate results. Moldovariref&8] show
that using the linguistic information in QA such as part of speech tags amacsigrparsing
significantly improves the recall of the answers. However, there is a-tfidetween the
accuracy obtained and the performance of these systems. Finally, itgfcbeal. [59] pro-
pose techniques for constructing syntactic queries that can lead ttweffanswers. They
model the answer selection as a classification task which maximizes the coriditioima
bility that the query has matches, and thus try to maximize the number of matclesfor
query.

Recently, automated QA systems have focused mostly on question answegirtgev
world wide web (See [72] for a survey of technigues). Most technigeesloped over the
web benefit from statistical methods and redundancy of answers to osatpdor the low
accuracy of a large scale open domain question answering task. Duddoggn@olume of
pages over the web, most QA systems over the web consist of (1) arglReamhich ex-
tracts the relevant documents that might contain the answers, (2) a quasigner, which
based on the question type, generates an appropriate query and getidsIR engine, and
(3) the answer extractor which finds the answers in the retrieved do¢sinMidLDER [66]

is one of the earliest question answering systems over the web. It exdignsies syntactic

36

parsing in several components of its system such as finding the quest®arigparsing
the text snippets returned from Google searches. They report theadhk of their QA
system is around0% for the top1000 answers for the TREC-08 questions. With efficient
guerying systems available over large text collections, QA systems cafitlieora more

efficient access methods and querying algorithms over syntactic reldpfensh

37

Chapter 4

Sequential Indexing and Querying of
Natural Language Text

In this chapter, we discuss the problem of indexing and querying ndamgiage text in
the scenario where text is modelled as a sequence of words. Specifieafijudy index
structures and querying algorithms for handling word-level wild cardigse Our study
includes a review of a few baseline methods and a discussion of how tinejehaild

card queries. Further, we introduce Word Permuterm Index (WPI)rasa and efficient

indexing scheme, study its architecture and analyze its performance.

4.1 Baseline Methods

Without loss of generality, we consider phrase queries that have exaelwild card and
any number of non-wild card terms, referred to as literals. For queriesmittiple wild
cards, one can find the matches for query sub-sequences that migvene wild card,
substitute the wild card with its matches and look for further matches.

Next, we introduce a few baseline access methods that are used withial teriguage
applications and study their performance. Regardless of the accasggti@awild card
guery evaluation can be often divided into two phasesB{dgling phasewhere the indexed
elements (e.g. sentences, paragraphs or documents) are filterecbbdkedjuery literals
that are present and maybe their order, andM@)ching phasén which filtered elements

are scanned and the keywords that match the wild card are retrieved.

4.1.1 Full Scan

A straightforward approach for answering wild card queries is to saaddbaset elements

one by one and check every element for possible query matches. lathsed fits in main

38

memory, a full scan may not be a bad idea given that the initial cost of logsimegligible

when amortized over a reasonable-sized set of queries.

4.1.2 Inverted Index

As illustrated in Figure 3.1, our implementation of an inverted index stores a Meetor
of posting triplets< d, f; 4, [01,--- , 0y, ,] >. Wild card query evaluation over inverted
index can be easily adapted from the standard implementations of keyweneguKey-
word queries are evaluated by intersecting the posting lists of query literéSmaing the
matching documents and corresponding offsets. The key idea behindanddjgery eval-
uation is to sequentially scan these documents and to find and extract thenditdatahes.
Thus, in order to do the wild card matching we need to store and accessttdataset as
well.

The complexity of wild card matching over an inverted inde®i® " | | o [laill) +
O(||Qll - |davg|), where|| P| is the number of bindings of a patteft. The first expression
gives the cost of matching query keywords and retrieving partial mat@iese we have
to go through all the matching elements in order to find the wild card matches, #tisco

Q]| - |davg|, Whered,,, is the average size of an indexed element.

4.1.3 Neighbor Index

As introduced in Section 3.1.2, a neighbor index is an inverted index thatsstor each
term both its left and right neighbor terms within its postings. The original impl¢ztien
of the neighbor index stores for each neighbor in addition to the term, botéritefpspeech
(e.g. noun-phrase) and its role (e.g. term). In our sequential modelitexipftags are
not explicitly used in the queries, thus we implement a simplified version of thélmeaig
index, where for each offset, only one left neighbor and one rigigihfier are stored with
no further information. Therefore, the structure of a posting in our impléatien of the
neighbor index looks like< d, f; 4, [(01,01,71),+ , (0f, 45 s, 47 1,.4)] >, Wherel; andr;
are the left and right neighbors of thiéh occurrence of in d, respectively.

Given that neighbor index is an inverted index, the algorithm for evaluatifthcard
queries over neighbor index follows the same bind-and-match process/ofverted in-
dex, except that thmatching phasé much less costly. Once the matching documents and
offsets are found, the wild card matches can be extracted in withoutingfeo the docu-

ments. Thus, the running time of wild card query evaluation over a neightiex iwill be

The number of documents matchifiy

39

01 gz llaill) + ORI
4.2 Permuterm Index over Natural Language Text

This section presents our Word Permuterm Index (WPI) as an effiatieesa method that
supports wild card querying over natural language text. WPI is an adapta the per-
muterm index [41, 39] and as such it has the following three componenta.wbrd level
Burrows-Wheeler (BW) transformation of text [12], (2) an efficienicmenism to store and
access the alphabet, and (3) an efficient mechanism to access theNMamkswe discuss

these components in more detail.

4.2.1 Word Level Burrows-Wheeler transformation

Burrows-Wheeler transformation (BWT) is a reversible transformationishased in well-
known compression algorithms such as bzip2 and is believed to give a péaontket is
more amenable to compression. The transformation, when applied to atehastaing,
can change the ordering of the characters in the string but not theirsvalug work ap-
plies BWT to words instead of characters; a word-level transformatisistime interesting
properties especially in answering wild card queries.

Assume we are given a dataset containing three sent&ic&ome is a city’ ,
S2:'‘countries such as Italy’ andS3:'Rome is the capital of Italy’
and we would like to index them using WPI. Adapting the ideas proposed mnivig et
al. [76] and Ferragina and Venturini [39], we sort this dataset lexaigjcally’ and use
the $ symbol, to mark the sentence boundaries and #iyenbol, to mark the end of the
dataset. This results in our dataset to look k&6 Rome is a city $ Rome is
the capital of Italy $ countries such as ltaly $ -

A word-level BWT is obtained by (1) computing all the cyclic rotations of thedgo
(2) sorting the rotations, and (3) finding the vector that contains the lastiwthe rotations
in the same order after the sorting. Figure 4.1 depicts the result of applysg three steps
to 7' in the given example. Note that the set of sentences are rotated by oteteach
level. We denote the vector of last words, BW-transformation.tand the sorted vector
of first words, byF'.

BWT has some very interesting properties. First, for any wofH,ithe j’th occurrence
of the word inL and thej’th occurrence of the word i’ correspond to the same word of

the sequence. For instance, the second occurrence of theltadyd in L is preceded

2Sorting guarantees nice properties on BWT, See Section 4.2.4

40

Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city
countries such as ltaly $ ~ $ Rome is a city $ Rome is the capital of Italy
~ $ Rome is a city $ Rome is the capital of Italy $ countries such as Italy
Italy $ dqountries such as Italy $ ~ $ Rome is a city $ Rome is the capital of
Italy $ 1 $ Rome is a city $ Rome is the capital of Italy $ countries such as
Romag is a city $ Rome is the capital of Italy $ countries such as ltaly $ ~ $
Romg is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $
9 alcity $ Rome is the capital of Italy $ countries such as ltaly $ ~ $ Rome is
10| as lfaly $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries such
11| capital ofitaly $ countries such as Italy $ ~ $ Rome is a city $ Rome is the
12| city $|Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome is a
13| countries such as ltaly $ ~ $ Rome is a city $ Rome is the capital of Italy $
14| is a city $ Rome is the capital of Italy $ countries such as Italy $ ~ $ Rome
15| is the capital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome
16| of [taly $ countries such as ltaly $ ~ $ Rome is a city $ Rome is the capital
17| such ps Italy $ ~ $ Rome is a city $ Rome is the capital of Italy $ countries
the dapital of Italy $ countries such as Italy $ ~ $ Rome is a city $ Rome is
Rome is a city $ Rome is the capital of Italy $ countries such as ltaly $

E
$[Rome is a city $ Rome is the capital of Italy $ countries such as Italy $ ~
$
$

0 ~NOoO U~ WNBRE
©

Figure 4.1: Sorted permutations of a sample set of sentences and theditasaword lists,
FandL.

by‘as’ ,andso is the secoridaly’ in F'; hence L(4) = F(6). Second, for every row,
L(i) preceded’(i) in T. Given these two properties, Ferragina and Manzini [38] propose

the following function for traversingd. in backward order:

LF(Z) = C[L[ZH + Rank:L[i](L, Z)

whereC[L[i]] is the number of words smaller thdni] and Rankp; (L,) is the number
of times L[i] appears in the sub-sequendi@..i]. LF'(i) tells where the element preceding
L[i]inT islocated inL. E.g. LF(6) = C['as’| + Rank/as (L,6) = 9+1 = 10 and L(10)

is ‘such’ and is the word preceding(6) ='as’ in 7. SinceT is sorted, one can start
from L(1) = F(n) and repeatedly call F to find L(n) = F(1), traversing the whole text
in backward order. Thereford, is reversible, meaning that givdn any sub-sequence of
words inT" can be re-constructed. We can use this property tofumo an index that can
support searches over word sequences. The challenges woulduggptart a wide range of
wild card queries and to efficiently support accesé’'tand Rank, required for traversing

L in backward order. Next, we discuss these challenges and the pdogmisé&ons.

4.2.2 Maintaining the Alphabet

A major difference between the permuterm index and WPI is in the size of ip&alaets.

The alphabet in permuterm index typically consists of ASCII characte&syambols which

41

are small in size and are not required to be explicitly stored. However|ghalzet size in
WPI grows with the size of the text dataset almost linearly. Wh&nis in the order of
millions, efficient access to alphabet elements, their ordering and theiriney is crucial.

In order to provide efficient access ¥y we built one array and one hash table. The
array stores the elements Bfin ascending order, therefore the first element is always $
and the last is. The array helps to find which alphabet element is represented by which
numerical code, which is its index in the array. Coding the alphabet isteenefficient
implementation of algorithms such aésckwardSearch andRank. Without coding,
we will not be able to achieve the time complexities we later report for theseithlgst
Moreover, coding reduces the index size, replacing a keyword amdiraitbr by a code
which uses smaller number of bits.

The hash table stores the same information in the reverse order; givéphabet ele-
ment, the hash returns the code of the element, together with its frequencyrantative
frequencyC'. Thus,Ct] counts the number of alphabet elements in the whole dataset that
are smaller thah In the above examplés:| = 13 and the hash table provides constant-time

access ta@’ values for all the alphabet elements.

4.2.3 Rank Data Structures

Rank.(L,1) returns the number of occurrencesco& X in the prefix1---i of array L.

In order to evaluate queries over WPI, we make frequent accessasuo and therefore,
quick access would be required. Naive baseline solutions to the rableprare as fol-
lows. (1) Start from the first element ih and compute rank by counting, which has space
complexity and average search complexity(f). (2) Keep a matrix of all the alphabet
elements and all the locations Iinand pre-compute all the values. This approach has the
optimal constant search time but a space requiremef{0f%|), which is too much given

the fact thatX| grows relative to the size of the dataset. Given the large size of our alpha-
bet, we chose a combination of a wavelet tree [49] and a three level atainédo support
constant time rank operation over a bit sequence [90].

A wavelet tree is a perfect binary tree, with a bit sequence at eachraprEsenting the
occurrences of a sequence of alphabet elements. The root regeswer L. and each leaf
represents one of the alphabet elements. A non-leaf naderesents alphabet elements
¥y = {ei---¢;} and contains a bit sequend® = b;---b;. Foreachi < k < j we
haveb, = 0, if L[k] € {e;---e@j)/2} andby = 1, if L[k] € {e(i1j)/241 - ¢€;}. The bit

sequence at the left child efwill represent elements af in {e; - - - ¢(;15) 2} and the right

42

Rank(Node,f,l,e,i)

1 ifi=j
2 return nodeRank(Node,i)
else
3 ife< [
4 return Rank(Node-left, f, | 1], e, i - nodeRank(Node,i))
else
5 return Rank(Node»right,L%ﬁl,l, e,nodeRank(Node,i))

Figure 4.2: Rank function computes the occurrencesiofprefix1...i of L

child represents alphabet elemefits;, ;) /241 - - - 5}, recursively. Thus, the algorithm for
computing rank of an alphabet element X in prefix1...: of L, using the wavelet tree,
would be as shown in Figure 4.2.

In Figure 4.2 nodeRank(Node, e, i) counts the number aof’s in the prefix1...: at
node Node. The count of0’'s can be obtained by — node Rank(Node, e, 7). Counting
the number ofi’s in each node by sequential scanning is very in-efficient. There faw a
solutions that provide constant-time access to binary rank values ovesegoience [90].
In our work, we use a solution which uses+ o(n) bits of additional storage at each
node, where: is the length of the bit sequence in the node. Figure 4.3 depicts our wavelet
tree solution ovetrl for the example of Section 4.2.1. For thedeRank to operate in
constant time, two arrays are maintained at each node, nabelyandbr 3. For each
node, sbr[i] stores the count of’s in the rang€gby . . 'bixsg—l]' whereS, = [logn| and
ief{0... Lsigj}. br[i] stores the count dfs for the ranngLigngXsE .

a table calledSmall Rank (sr) is pre-populated, which stores the binary rank values

.bixs,—1]. Finally,

for bit sequences of size= [S,/2] + 1.

Recall thatnode Rank function returns the rank of a prefix of the bit string stored at a
given node. As depicted in Figure 4#hde Rank usessbr , br andsr arrays to compute
the rank in constant timenode Rank is computed as shown in Figure 4.4. In this figure,

b2d(bs, p, len) returns the decimal equivalent of the bit sub-sequénge. . bs, 1 jcn.

4.2.4 Algorithms and Analysis

Ferragina and Manzini in [38] benefit from the properties of the BusrVheeler trans-
formation discussed in Section 4.2.1 and propeaekwardSearch algorithm, which
searches for a pattern over Pl in backward order and returns the cimatching strings.

A term-level adaptation diackwardSearch over WPI is depicted in Figure 4.5. Given

3These stand fasuper block rank andblock rank , respectively

43

_Sr 1012 1000100011100000110
000fo 0 O 8 > 45
001l(o 0 1
010|o 1 1
0110 1 2
10011 1 1
1011 1 2
1101 2 2
11111 2 3 (00100000010 {001100
0 2 2 0 3
000010110 1000
/\ /\ty /\ /\
110000 101
0
0
taly Ro /\\pltal countrigs is sucf/\
1111 11
0 0
0 0

Figure 4.3: A sample wavelet tree. In each node a bit string and two astgyer block
rank andblock rank , are stored.

a sequence of natural language words= p; - - - pq, backwardSearch finds the range
[first,last] of the sorted cyclic rotations prefixed . For the example provided in Fig-
ure 4.1,backwardSearch returns the rangér, 8] for the patternP = ‘Rome is’
which is the range of cyclic rotations prefixed By

backwardSearch makesO(|P|) accesses t6¢’ and Rank. We adjust the hash table
size so that it provides constant time access to hash elements. The waaelattess
for Rank requires traversing from the root to one of the leaves which requifés; |X|)
accesses to the tree nodes. ThegkwardSearch has a complexity 0O (|P|log |3]).

After adding delimiters and sorting strings as discussed in Section 4.2.1, feenmu
index supports wild-card pattern matching over dictionary strings. Moeeisgally, it
supports (1) Prefix{a%), (2) Suffix (%,3$), (3) Substring{) and (4) PrefixSuffix§a%5$)
gueries where, 5 and~ are arbitrary sequences of characters [39]. We use the above four
gueries to express our wild card keyword matching over natural lamgieaty Thus in our

gueriesx, § and~y are sequences of natural language text words.

44

nodeRank(Node,e,i)
1 Ry, — sbr [L?gJ] Ry, = br [LS%J}
2 i (z’—be LS%J) <t
3 Ry, =sr [b2d(Node—>bs,Sb>< LSLbJ,tﬂ {i—be LS%J—l]
4 eIseif(i—be Lsi'bj):t
5 Ry =sr [bzd (Node 5 bs, Sp lebj,t)} [t —1]
6 eIseif(z‘—be LS%J) > ¢
7 Ry =Ry +sr [b2d (Node — bs, Sy x | & | +t,t)} [z — Sy x (]t 1}

Figure 4.4: A constant-timeode Rank, returning binary rank at each node

backwardSearch(P)

i = |P|,c= Pli], first = C[c] + 1, last = Clc + 1]
2 while ((first <last)and (i > 2)) do

3 ¢ = PJi]

4 if 1< first < M, incrementfirst by 1

5 if 1<last < M, incrementast by 1
6

7

8

9

=

first = C|c] + Rank. (L, first —1) + 1
last = C[c] + Rank. (L, last)
1=1—1

return the rangg first, last]

Figure 4.5: backwardSearch algorithm for traversinigp backward order

Over WPI, we add support for queries such asd%), (6) %3, (7) a%g, (8) a%S$
and (9)$a%s wherea or 5 can be in arbitrary places in the document. The set of queries
supported by Pl are very limited and we often need to search for natarpldge patterns
that are neither a prefix nor a suffix in a document. One other advantaly®loover Pl
is that it makes word-level extractions possible. Therefore, even éofirt four queries,

Pl provides character level matches, which are not desired wheriggever natural
language text. Finally, since WPI performs word-level rotations, it reguiewer number
of backward searches compared to PI for the same set of queries.

The key idea behind supporting wild card queries usiagkwardSearch s to con-
vert them into prefix searches over rotations. Table 4.1 gives a sumrhhowato eval-
uate wild card queries usinigackwardSearch . In this table, the columns from left
to right displays the different types of queries supported by WPI, thienpés) to invoke
backwardSearch with and the range of wild card keyword matches, respectively. The

time complexity of the queries are depicted in Table 4.2. As displayed in thess, tdide

45

Table 4.1: Different wild card query patterns over WPI and their cpording range of
matches

Q P Wild Card Match

(L)$a% $ov T [Ir [first] + 8] ... T [Ir [last] + |$«]]

(2)%5% 8% L|[first...last]

)y v matches documerits

(4)3a%p% | BSa L[first...last]

(5)a% a T I [first] + |a] ... T [IF [last] + |o|]

(6)%p B Lfirst.. last]

(N)a%B a, | Tp[firsta] +|af]... T [IF [lasta] + |e] i [of| < [|A]]
B T[Ip[firstg] —1]...T [Ip [lasts] — 1] if [lof] > ||B]]

B)a%ps | a, | T[Ip[firsta] +]af]... [IF [asta] + [al] if [laf| < [|53]
8% T [Ip [firstg] —1]... T [Ip [lastg] — 1] if [[af| > [|53]]

93%a%p | Sa, | T[Ip[firsta] + |$af]... T [IF [lasts] + [$a] if ||$a| < [|B]]
B T Ip firstg] —1]...T [Ip [lastg] — 1] if ||$a|| > ||8]|

1 SeedisplayString in [39] for details

first six queries could be matched with only one calbexkwardSearch , while the last
three require two invocations dfackwardSearch as the sequence of words are sepa-
rated by a wild card. For these querig3rst, andlast, are respectively the beginning
and the end of the range returnedimckwardSearch when invoked byy. Recall that
backwardSearch returns only a range of matching rotations, prefixed by a given pattern.
Therefore, it does not provide any efficient support for extradtiegword matches for a
wild card. We solved this problem by storing two additional liftand/r, wherelr is the
list of locations of elements of overT'; hencel'[Ir[i]] = F[i]. These lists requir®(n)
extra space. However, since the overall space consumption of the i;dEx log |X|),
storing these additional lists will not change the space complexity of WPI.

In Chapter 6 we provide experiments that compare WPI with the baseline sethod
introduced in Section 4.1 in terms of the query runtimes, index construction tichiedex
size. The next Chapter discusses indexing and querying over saloatural language

text.

46

Table 4.2: The running time complexity analysis of queries in Table 4.1

Q P Runtime Complexity
(1)$a% $a O(|$alog |X])
(2%5% 8% O(|B3]log X))
3k gl O(ly|log %))
(H)$a%s$ | BSa O(|B%allog |S])
(5)a% a O(lo| log |X])
(6)%5 B O(|8l1og |])
(Ma%B | «a O[(lal*5]) log |]] +
B | Ofmin(|lal|], [|8]lle)]
@)a%ps | a, | O[(lal+[B3])log|3]] +
p$ | Olmin(|l||83], [|53]||a])]
9)$a%p | S, | O[(|Sa+|B]) log |X]] +
p__| Ofmin(||Sall|], [|8]l|$e)]

47

Chapter 5

Structural Indexing and Querying of
Natural Language Text

In this chapter, we consider the scenario where text is available as aticollet syn-
tactically annotated trees, and study the problems associated with indexinmiarnyihg.
We propose a novel subtree index and a few storage and queryinggeel over this
index. We present some structural properties of the index and an aabbtiicly of its
performance. Specifically, we study how interval coding can be adaptezbresent the
structural information of subtrees and introduce our novel root-sptitngp the root-split
coding leads to a more concise index, which further reduces the respioesof queries as

well as index construction time.

5.1 Subtree Index

Given a set of syntactically annotated tréeand a sizenss, consider the set of all unique
subtrees of sizes, 2, ..., mss that can be extracted from treesSnand associate to each
subtree a posting list consisting of the ids of treeS§ ivhere the subtree appears. We want
to organize the pairs of subtrees and posting lists in an index, referrescSisbdree Index
(or Slfor short), such that our queries can benefit from this structuring.

There has been work on indexing nodes, edges and paths in XML datsii@es re-
viewed in Section 3.2.2), and similar approaches have been used ovactgally an-
notated trees (e.g. LPath [9]). Since the subtree index stores all unigtrees of sizes
1,2,...,mss, itgeneralizes node- and edge-based indexes. In the scenariemier= 1,
the index only stores information about individual nodes, and this is vemjas to the re-
lationalNodeapproach. For Larger values ofss, a subtree index can offer the following

benefits: (a) Reduced number of joins compared to relatiNndeand Edgeapproaches,

48

by pre-materializing subtrees of larger sizes. (b) Better preservingtrihefige of trees
which can lead to better query response time. Bird et al. [9] show thataygol®ach out-
performs TGrep2 [101] (which uses sequential scan) in terms of thyigggperformance

and scalability. In this thesis, we show that S| with largess values perform better than
the case withmss = 1 (or the node approach). We also provide results on the performance
and the scalability of Sl over a baseline that uses indexing to filter candidathesaand

tree scans to find the exact set of matches. This baseline, which we calbéited coding,

is described in Section 5.1.4.

In the rest of this chapter we discuss some of the challenges involved i 8kfior
guerying syntactically annotated trees. Specifically, we study the followinlglgms over
subtree indexes. (1) Coding structural information of a tree into an inlésteof subtrees,
where we adapt previous approaches such as navigational andairteding in order to
come up with two baseline approaches, referred to as filter-based @utirsybtree interval
coding. (2) Efficiently decomposing query trees into smaller subtreesytimh we study
the properties of a “good” cover over a query tree. (3) Query matobweg S| for which
we study both the scenarios where matching requires injective mappingterditxdoes

not (See Section 2.2.2 for a discussion on matchings with injective mappintidus).

5.1.1 Subtree Indexes over Syntactically Parsed Trees

In this section, we study the properties of syntactically annotated treed) wiasike subtree
indexes practical and scalable over them. Subtree Indexes can impegvertbrmance of
querying over natural language queries by (1) pre-materializing parlzttree solutions,
thus reducing the number of joins required for evaluating a tree quedy(Zmreducing
sizes of posting lists in most caddsy grouping together smaller subtrees and building
larger subtrees.

One drawback of subtree indexes is that their size could potentially granvatically
asmss increases. Two factors that affect the size of a subtree index atieg(humber of
unigue subtrees or index keys, and (2) the total number of extractéesb This latter
number gives an upper bound on the total number of postimlggxt we discuss some of the
issues that play a role in the growth of these two factors and a discussiamydfuilding

Sl can be practical and scalable for syntactically annotated trees.

!In Section 5.2 we discuss that sizes of posting lists might not be monollgmieduced for larger subtrees
if the index uses subtree interval coding
2Number of postings could be smaller for the scenarios where subtregainteding is not used

49

Number of Index Keys

One nice property of a subtree index is that the number of index keysugisigbtrees)
grows linearly with the size of the input, for different valuesmts. As a result, the
body of the index does not grow dramatically as more data is being indesgatdtess of
the value ofmss. One reason for this is that similar structures are abundant throughout
the corpus of parsed trees. This is based on the observation that tioatg &finite and
relatively small set of grammatical structures used in natural languaggshe@ number of
such unique structures does not grow dramatically even consideriregetiffes in writing
styles and parsing errors.

Figure 5.1 shows the number of unique subtrees as a function of the izputfar
different values ofnss, over collections of parse trees containingp 10° sentences from
a news corpus. The figure shows approximately the same rate of growth muthber
of keys, for different values ofnss. Moreover, the number of index keys grows almost

linearly with the size of the indexed data.

10 T T T T
—*%— mss=1

—H— mss=2

=
o
~

mss=3 3

o

=
o

Number of unique subtrees (logscale)

10 L L L L L
10 10 10° 10° 10* 10° 10°
Number of parsed sentences (logscale)

Figure 5.1: Number of index keys (unique subtrees) as a function of plug dize in terms
of the number of sentences

Number of Extracted Subtrees

For a parse tree of size the number of subtrees of site< m < mss could range from

n—m+1to (»~1). The former belongs to the case where the tree is a unary branch of

50

heightn, and the latter demonstrates the case where the parse tree is ofaightonsists

of a root withn — 1 leaf children. Note that the number of subtrees of sizes. , mss of

a tree gives an upper bound on the number of postings stored for it indee. itherefore,

for large values ofnss andn, the number of postings stored in the index could be very
large, resulting in a huge index. As we show later, the number of subtréepiactice
orders of magnitude smaller than the worst case scenario, making it pdsdioigd S| for
small values ofn (e.g.1 < m < 5).

To investigate how the number of extracted subtrees changes overtmaikp@anno-
tated trees, we conducted an experiment on moreibhad00 nodes from a (constituency)
parsed corpus of news. Over each node, we extracted every [possiiiree of size8 to
5, and counted the number of such subtrees. Figure 5.2 depicts how themofishbtrees
changes with the branching factor of the nodes, for this dataset. In this fitpe x-axis dis-
plays the branching factor of nodes, and the y-axis shows the aveuageer of subtrees
extracted from nodes with the given branching factor. As displayed infithise, hodes
with higher branching factors, lead to a larger number of subtrees, enags. We also
present the non-aggregated results for the same set of nodes in EigureAppendix A,
which displays the number of distinct subtrees in terms of the branching fafdtoe node
over which such subtrees are constructed. Motivated by these twodjdutae rest of this
section, we elaborate on some of the important characteristics of syntacticalbyated

trees that distinguishes them from other data types modelled as trees.

Rare Nodes with Large Branching Factors. In syntactically annotated trees, we expect
to see a few nodes with relatively high branching factors. In what follavesprovide some
supporting experimental results and a discussion of why such nodegaeted to be rare
in English. In Figure A.2 we see only two nodes that have a branching facger thanl 0.

For these two nodes, the branching factord @and23 are still small compared to XML
documents, which could have branching factors of a few hundredsearlarger. Reasons

for such a characteristic in syntactically annotated trees could be the fajjowin

(i) Parse trees are relatively small trees. The number of nodes in adpntree and
the number of leaves in a constituency tree are equal to the number of wdlas
underlying parsed sentence. As a result, the total number of nodes eatpee is

in the range of tens to at most a few hundreds of nodes.

(i) High branching factor nodes in parse trees are due to repetitivetstesc In well-

written and clean natural language corpora, such repetitive struawgeaarely too

51

”

=
o

—*%— ss=2
—H—ss=3

ss=4
—O6—ss=5 E

£

=
o
T

=
o
w
T
L

average number of extracted subtrees (logscale)

0 5 10 15 20 25
branching factor of nodes

Figure 5.2: Average number of subtrees extracted in terms of the brgrfetaitor of roots
of subtrees

long, as they can create difficult sentences to read and understand.

Example 5.1.1. Examples of repetitive structures in syntactically annotated trees can be
(@) (NN) » VB asin a parse ofom, Sarah, Alex and Mary attended the

tea party and (b)astructurelikBT (JJ) * NN asinlt is an amazing warm

sunny day . Parse trees of these examples, parsed using the Stanford parskepiated

in Appendix A in Figure A.1. As this figure shows, the above examples leadrsefrees

with maximum branching factors @fand5, respectively.

Small Average Branching Factor. Syntactically annotated trees have a small average
branching factor. The total average branching factor for the abatesdt is0.98. The
average branching factor for internal nodes only.i2. Thus, on average, each internal
node has less than two children, which makes syntactically annotated trgasiitable for
indexing.

In the next section, we provide details on constructing subtree indexesliimg our

subtree extraction algorithm and a few tweaks that can help reducing #vesiae.

5.1.2 Sl construction

A subtree index is parameterized byss, the maximum subtree size. Givenss and a

set of parsed trees, Sl is constructed by extracting all unique suptieesflattening and

52

encoding them in the index.

Subtree Extraction

For each input treg the algorithm in Figure 5.3 extracts all unique subtrees ofisize , mss.
In this algorithm,|¢| is the size of the subtree rootedtah terms of the number of nodes.
The process starts at the root of the input treaed recursively descend into its descendant
in a pre-order traversal, and for each nedrlls subtrees(t, i), wherei ranges between 1
andmin(|t|, mss). The call tosubtrees(t, i) computes and returns every possible subtree
of sizei rooted at. This algorithm is depicted in Figure C.1 in Appendix C. As an example
of how extractalgorithm works, Figure 5.4(b) depicts the set of all unique subtreegef s

3 originating from the root of the tree in Figure 5.4(a).

extract(t)
1 res < (0, m = min(|t|, mss)
2 forie{l,...,m}
3 res < res U subtrees(t, i)
4 for c € t.children
5 res < res U extract(c)
6 return res

Figure 5.3: Algorithm for extracting all unique subtrees of sizésmss from a treet

A A

/\ A A /\ A A A

é B
A B /\AAB
N . N
A C B D

D /\

D B A B

(a) (b) (©)
Figure 5.4: An example of how unique subtrees are extracted, (a) irgmyt({v) unique
subtrees of siz@, (c) unique subtrees of size
Flattening and Encoding

In order to store the unique subtrees as keys into the index, they havfattéeed. We do

the flattening by traversing each subtree in a pre-order traversabaaddh node capturing

53

its label and size. Given a pre-order traversal, the original subtre®eae-constructed.
Alternatively, a well known approach is to use a DFS traversal togetherdeltmiters to
convert the structure of a tree into a flat representation, as in [122].tW&Hlattening, the
tree in Figure 5.4(a) could be flattened A¢C)(A(C)(B(D)))(B)) or more concisely
asAC)A)BD)))B)) . To further reduce the key size and tune coding to parse trees which
are generally small in size, we choose to store the size of nodes instegldfars. A tree
can be encoded concisely by exaathgs([logy(mss + 1)] + [logsy |X|]) bits, whereX: is
the alphabet of node labels. In this formula, the first term is the number afjtéred to
encode the size of each node and the second term is the number of bitedeqiencode
the label. Notice that sizes of nodes are orders of magnitudes smaller tieaaf stze
alphabet for index keys and for that reason, encoding using noeg igguires much less

space than using delimiters.

5.1.3 Query Matching Over Subtree Indexes

Query matching over a subtree index happens in two phases, @jlthehasen which the
gueries are shredded into smaller subtrees, where each subtree sin@&tass, and the
posting lists of subtrees are fetched from the index, and (2)othghasein which result

set of subtrees are joined to evaluate the final results. In this sectionovel@ra brief
overview of these two phases for our proposed coding schemescitiinisb.2 we provide

a thorough study of the first query matching phase sipdit phase Section 5.3 provides an

in depth study of thgoin phaseand includes a discussion of query matching in the scenario

when the matching is injective.

Definition 5.1.2. For two treesl’ and7”, we say thafl" is a subtree of” and denote it by
T 2T ifandonly if (1) V(T) C V(T") and (2)E(T) C E(T").

In the above definitiony (T") and E(T") are the set of nodes and set of edges of Tree

respectively.

Definition 5.1.3. AsetC = {ci,...,c;} of trees is anode-covenf tree T, if and only if
(1) forall¢; € C, we havee; X T and (2) for allv € V(T') there exists at least onge C
such that € V (¢;).

Intuitively, anode-covenf a treeT is a set of subtrees @f such that every node af

appears on at least one of the subtrees of the node-cover.

54

Definition 5.1.4. A setC = {c, ..., ¢} of trees is dull-coverof T, if and only if (1) C
is anode-covenof T, and (2) for alle € E(T) there exists at least ong € C such that
e € B(g)

According to the above definition fall-coverC of treeT’, covers both nodes and edges
of T'. Hereatfter in the thesis, we refer to bdtiti-coversandnode-coversimply ascovers

when the meaning is clear from the context.

Definition 5.1.5. Given a query and a parametenss, C' = {c1,..., ¢} is a valid cover
of @) with respect tomss if and only if there does not exist a subtreee C such that

lci| > mss, forall1 <i <k.

In the rest of the thesis, we assume that all covers are valid, unleswistheoted.

Our goal in thesplit phaseis to find a “good” cover for a given query. A “good” cover
can be informally defined in terms of its closeness to a cover that results irasteyleery
execution cost. A query could have a large number of covers, and dieeabf which cover
to pick can have a large effect on the query evaluation cost. While gypéinjiaation is not
the topic of interest in this thesis, in Section 5.2 we study a few propertiesvefcover
coding schemes that help us prune the search space for “good’scover

In thejoin phase we have a cover for a query and we want to intersect the posting lists
of the subtrees in the cover to find the set of matching parse trees. Nedisowess our

coding schemes over subtree indexes.

5.1.4 Coding Schemes

In this section we propose three coding schemes for describing the safuoformation
of subtrees stored as keys in a subtree index. The first two codingieshare adaptations
of current coding schemes over text or xml documents; they are maintiyassbaseline
methods. The third coding scheme, root-split coding, is a novel apprmagiropose to

store the structural information of subtrees more concisely.

Filter-Based Coding

The filter-based coding is a minimal coding scheme which does not storetracjusal
information about the keys being indexed. Similar to any inverted index stey¢he filter-
based coding stores a sorted list of unique tree identifigis, of the trees that contain the

indexed subtrees.

55

A query matching for the filter-based coding starts by finding a queryr@netfetching
the posting lists of the subtrees in the cover. The join phase of the queryintptictiudes
the pairwise intersection of the sorted listgafs to obtain the list of candidatéds. Unlike
the other two coding schemes, Query matching for the filter-based codirggthad phase,
called thefiltering phase In the filtering phase, the parse trees corresponding to candidate
tids are all fetched and checked if they actually match. Note that since thausadunfor-
mation of the subtrees are not stored, exact matching over the posting libes sifibtree
index is not possible and a final (usually costly) filtering phase is requirédd the set of
matching trees. Ouiltering phasen the case of filter-based coding only checks if a tree
matches a query, and it does not report all query matches but only shenfitch. This is

unlike our next two coding schemes for which the matching algorithm finds atihraa.

Subtree Interval Coding

As noted in Section 2.2.4, the node interval coding stores for each noale af peft and
right values to handle reachability queries antkeel value to answer parent-child axes
qgueries. A subtree interval coding generalizes the node interval cadithgtores in addi-
tion the structural information of individual nodes in an indexed subtree.

As for the structural information, we keep the order in which each nodsited in the
DFS traversal used for flattening the subtrees. Thus keepingdanvalue for each subtree
node is required because we assume that the indexed subtrees ardemetipand two
subtrees such &(B)(C) andA(C)(B) are indexed under the same entry. For instance,
assume that both subtrees are representddB$C) . In such a scenario, postings which
represenA(C)(B) subtrees, have order equald®@ andl, for A, C' and B, respectively.

As a result, a query such 2dC(D)(E))(B) , requiring an equality join o&A(C)(B)
andC(D)(E) on theC node, can be correctly evaluated, by selecting the second set of
numbers wheit’’s order is2 and the third set of numbers whéfs order isl.

The structure of a posting describing a subtree of size therefore as follows

{tid, m, < l1,71,v1,01 >, ..., < lim, Tm, Um, Om >}

wheretid is an identifier of the tree that contain the subtree angl r;, v;, o; > values are
the left, right, level and order numbers, respectively.
The query matching for a quefy is performed by computing a cover @f, fetching its

posting lists and joining them. In Section 5.2 we discuss how to compute an dftjciery

56

cover over a subtree index with subtree interval coding. In Section & 8liseuss in more

detail the matching algorithms over Sl with subtree interval coding.

Root-Split Interval Coding

The idea behind root-split (interval) coding is to avoid storing unnecgssarctural infor-
mation and to represent each subtree as concise as possible. Roabdiplif stores for
each subtree only the tree identifier deff, right andlevelvalues of its root. Compared to
subtree interval coding, root-split coding reduces the size of eat¢imgdyy a factor larger
thanm, wherem is the size of the subtree being indexed.

Similar to the previous two coding methods, query matching over root-split g@dso
consists of asplit phase and goin phase. Note that since the structural information of
individual nodes are not stored in a root-split coding, the queriesatdr@arbitrarily split

and joined. In the following, we define the types of covers required matrsplit coding.

Definition 5.1.6. Given a quen®, C = {c1, ..., cx} is aroot-splitcover of@ if and only
if either C' = {Q} or for every subtree;, there exists a subtreg, 1 < 4, j < k, such that
one of the following hold: (1) botle; andc; are rooted at the same node@) (2) ¢; is

rooted at the parent ef; in @, or (3) ¢, is rooted at the parent of in Q.

Intuitively, a root-split cover is a cover which can be evaluated only lofopming joins
over the roots of its subtrees. Such a cover would be useful for otispit coding as we

only store structural information over roots of index keys.
Lemma 5.1.7. Every query has at least one root-split cover.

Proof. The proof can be achieved by simply building a coteas a set containing individ-

ual nodes ofy. C is a (valid) root-split cover and the lemma is proved. O

In Figure 5.5, we present a naive algorithm for generating a root-gplgrc which is
more practical than a cover of all query nodes and better exploits ther pdwabtree in-

dexes and creates a foundation for more efficient algorithms that follove ingkt section.
Lemma 5.1.8. The algorithm in Figure 5.5 computes a root-split cover.

Proof. Proof is by induction.

Base. For |Q| < mss, naiveRC adds(@ to the cover and returns. A cover that contains
only @ is root-split, thus the base case holds.

Induction. Assumenaive RC generates root-split covers for individual childrenc@fby

calls in line 6 of the algorithm. We would like to prove that the final cover, which is

57

naiveRC(Q)
1 C«0

if |Q] < mssthen

C+ CuQ@,retun C
pick any subtree froraubtrees(Q, mss), add it toC
for ¢ € Q.children

C < C UnaiveRC(c)
return C

~No o WDN

Figure 5.5: A naive algorithm that guarantees a root-split cover

the union of all such root-split covers, plus the subtsgegenerated at a call to ling of
algorithm is root-split §ubtrees algorithm is covered in Figure C.1 in Appendix C). By
definition of a root-split cover is rooted at the parent of the subtrees covering its children

and therefore, the final cover is root-split. Thus, lemma is proved. O

In the next Section, we analyze root-split coding and show that it carsédxe for both
correctly and efficiently evaluating queries. We compare the three pedposgling schemes

in terms of their performance analytically.

5.2 Query Splitting Strategies

In this section, we study the theoretical properties of the root-split codidgcampare it
in terms of applicability and optimality with the subtree interval and filter-basedhged
As will be discussed in this section, root-split coding reduces the sizestingdlists, by
reducing the number of postings and the size of each posting. As a resutizéhof Sl
with root-split coding is smaller than its corresponding Sl using subtree aiteoding, by

a large factor.

5.2.1 Monotonicity of Posting List Sizes

In the context of relational query optimization, intersection of the posting Ifsssilatrees
indexed in Sl, maps to select-project-join queries, with selections using sahex and
joins using merge joins over sorted data streams (posting lists). In suchextamuery
optimizer over a subtree index, often generates query execution plars farth of left-
deep (or right-deep) trees resulting in a linear order of joins. Givereaydy, an efficient
guery plan can be obtained by (1) picking a “good” cove@)oirhose subtrees serve as data
streams over leaves of the query plan, and (2) searching the spaaalabke plans for the

selected cover and finding an efficient or optimal query execution plae.s&€cond step is

58

the task of a query optimizer and we do not study it in this thesis. Howevelisiseltion
we study what properties of a cover make it more amenable for query optiiomza
The first property we study is how the size of the posting lists change bdress of

different sizes, for our proposed coding schemes.
Lemma 5.2.1. For any two index keys; ands, over a given Sl, wherg; < s5, we have
() The posting list 0§, is always a subset of the posting listsgffor filter-based coding.

(i) The posting list ofsy is a subset of the posting list ef for root-split coding if and

only if s; and s, share the same root.

(iii) The posting list ofsy is not guaranteed to be a subset of the posting lis¢,ofor

subtree interval coding.
Proof. Appears in the Appendix B. O

Lemma 5.2.2. For any two index keys; and s, of a Sl with root-split coding, where
s1 = so and s;’s root has a different label fromsy’s root, then for each posting in the

posting list ofs; there is at most one posting in the posting liskphassociated with it.

Proof. Given the conditions of this lemma; must be a descendant ef’s root. Since
ancestor-descendant relationship is a one to many relationship, therédoenosly one
posting in the posting list of, for any number of its descendants, hence the lemma is

proved. O

The direct conclusion from Lemmata 5.2.1 and 5.2.2 is that the size of the plisting
monotonically decrease as subtrees grow for filter-based and rootagiitgs, while we
do not have such a guarantee for the subtree interval coding. Thieiry aseful property

and we will discuss some of the interesting conclusions that this monotonicityrewide.

Theorem 5.2.3.Given a query) and a subtree index with root-split coding and maximum

subtree sizenss, an optimal query plan fo€) cannot have a subtree of size less thass.
Proof. Appears in the Appendix B. O

The above theorem is true for filter-based coding as well, but not foiresel interval
coding. Therefore, we can conclude that the search space of gptnyizers for the op-
timal query execution plan using filter-based and root-split codings arkbesrnampared

to subtree interval coding, which is an advantage. Finding optimal queguérn plan

59

requires building histograms of subtree selectivities or estimating the selestwitgib-
trees (See [22] for an example). However, the focus of this thesis ismatdressing the
problem of query plan optimization over subtree indexes, therefore steresany cover

in which all subtrees have sizess would be a good enough cover for our query execution

task.

5.2.2 Join Optimality

As discussed earlier, root-split coding constrains query splitting to séwavhich subtrees
can be joined over their roots only. In this Section, we investigate the ramifisaticsuch
a constraint on the size of the root-split covers. We study the number afjequired to
evaluate a cover as a measure of its efficiency. Moreover, we studyrdbiem of join

optimality for root-split and non-root split covers.

Max Covers

We showed earlier by Lemma 5.1.7 that for every qugtyere exists at least one root-split
cover(C'. Depending on how® is structured(C might have subtrees ranging in size from

1 to mss. One interesting problem is to investigate if there exists an algorithm that can
always generate a root-split cover, where the size of every split ial éguss. We call

such a cover a max-cover. According to the discussion in the previotisrsesuch a cover

would achieve an efficient query evaluation plan.

Theorem 5.2.4. For every query@ and sizemss such that|@Q| > mss, there exists a

root-split max-cover’; i.e. for every subtree € C' we havec| = mss.
Proof. Appears in the Appendix B. O

Among all max-covers of), only a few are root-split, and among such max-covers,
those with the smallest size, in terms of the number of subtrees, are dessadbhkydead

to our definition of a join-optimal cover.

Definition 5.2.5. For a given queryy, a join-optimal cover of), is a max-cover ovef)

that has the smallest size in terms of the number of subtrees among all cbgers o

Note that for any covet’, there exists a max-cover which has size smaller than or
equal toC. As a result, we do not need to worry about non max-covers that migbirbe
optimal. Selecting covers among max-covers is also desirable for filtedlcaskng, but

not necessarily for subtree interval coding.

60

According to Lemma 5.2.1, it is not always desirable to select covers osabtace
interval coding from max-covers. As that lemma shows, larger subtreth® inovers do
not necessarily lead to smaller posting lists, when subtree interval codisgds To study
the effects of the non-monotonicity of the posting list sizes on the perforenainsubtree
interval coding if max-covers are always selected, we conductedpamigent on a sample
dataset of around000 sentences from a news corpus. The dataset contained more than
112 thousand index keys of sizégo 5. Over this dataset, we exhaustively compared every
key k; with every other key:; and counted the cases whétgis a subtree of:;, but the
size of the posting list ok; is larger than that ok;. Out of more thart billion pair-
wise comparisons made, ori#g495 cases met the condition, and this accounts to less than
0.0005% of such comparisons. This confirms that max-cover may be a good hetwistic
evaluating queries over the subtree interval coding scheme. In the th thesis and for
all of our coding schemes, we only consider max-covers, ignoring anynmax covers. In
the rest of this section, we study join-optimality over max-covers (hereagterred to as

simply as covers).

Join Optimal Covers

In this section, we study the problem of finding join optimal covers, in theatewhere
matchings are not required to be injective. Query matching under the irgjeathtching

assumption is discussed in Section 5.3.

Definition 5.2.6. Given a query), and a cove€’ over it, we say thaf” hasdeep branching
anomaly, if there exist subtregsands; in C' such that (1}; ands; share at least one node
of @, sayv € V(Q), such thaw is not root ofs;, andv is not root ofs;, and (2)v has at least
two childrenu andw/, such thatw € V(s;), u € V (s;) andu’ € V(s;) andu’ & V (s;).

Deep branching anomaly, as defined in Definition 5.2.6, describes a sitwatiene
two subtrees in a given cover cannot represent the structure affghg query they cover,
uniquely. Deep branching anomaly can result in an incorrect set of e&foh root-split
codings, due to extra matches. As a result of a deep branching anoxtadysabtrees
might be required to be added to the root-split covers to fix this anomaly.

For non-root-split codings, deep branching anomaly can be dealt \fithieetly. Such
an anomaly does not cause any problems for filter-based codings asateeti of matches
is obtained by scanning over the candidate parse trees. For subtrelictting this

anomaly can be dealt with by joining on the deepest shared branchingofidde two

61

subtrees. In the example that follows, we demonstrate how it is possible diehdeep

branching for subtree interval coding.

Example 5.2.7. Consider the query in Figure 5.6.(a) and tets = 4. A join-optimal
root-split cover of the query i§,={A(B(C(D))), B(C(E)(F)) } Figure 5.6.(b) shows
multiple tree structures that match the given root-split cover. The resuwbsaned by an
anomalous join over roots of the subtrees’§f i.e. A andB nodes, thus might result in
extra incorrect matches. For subtree interval coding, this situation cdadiewith by an
equality join on the deepest branching node, €CeBy sacrificing join optimality, we can

obtain root-split covers that do not have the deep branching anomaly,tias following

coverC>={A(B(C(D))), B(C(E)(F)), C(D)E)(F) }-
A A A A
B
C C C C C C
E °®F E °F E °F E °F
(a)Query (b)Matches

Figure 5.6: Example of a query having deep branching anomaty fer= 4 for a root-split
join optimal cover

Figure 5.7 displays every possible query structure of §jznd the minimum number
of root-split joins required for different values afss. In this figure, the first column
displays subtree structures and colurgngand4 display the number of joins required for
evaluating the best possible root-split cover whess is equal to2, 3 and4, respectively.
The values in bold display the cases where the best possible root-splitlpimst achieve
join optimality. In such cases, the number of extra joins required is indicatednihdf the
number of joins in brackets; e.g. (+1).

Note that in most cases in Figure 5.7, there exists a join optimal root-split éowver
the given query structures. From a totalldftree structures listed3 have a join optimal
root-split cover whemnss = 2, and9 have a join optimal root-split cover whenss = 3.
The number of extra joins required in each case for non-optimal coxemiéy 1, however,

there could be cases where more extra joins are required.

Proposition 5.2.8. The number of extra joins required for evaluating a root-split cover of

a query@ is at most Q| — (MW — mss + 1, compared to a join optimal cover.

mss

62

H\)ﬁ 2 |2(+1) 1
/{\ R

3(+1) 2(+1) 1

Figure 5.7: Join optimality on all possible queries of sizeith mss values of2, 3 and4
from left to right columns.

Proof. The worst case happens when the tree is structured as a unary bfdrsght|Q)|.
In this case, the number of subtrees for a root-split cover is givea®py mss + 1, while
the number of subtrees in a join optimal cover is given[%%}. The difference of these

two terms gives our proposition bound. O

The above proposition provides an untight upper bound on the numlextraf joins
required to evaluate a root-split cover. In practice however, as welvaill$n Section 6.2.3,
the actual number of extra joins is much smaller than this bound. In the ress$ sktttion,
we provide algorithms for computing covers for both root-split and nat-split codings.

Our algorithmoptimalCover, as shown in Figure 5.8, generates for each query a

join optimal cover, with the size of every covered subtree equahis. The algorithm

63

starts with an empty cover', and in each step either adds a subtree of size or calls
optimalCover on larger subtrees.

Thus, at the base of the recursioptimalCover handles only children of) having
size less than or equal tass. Any child of Q with size equal tanss is added immediately
to the coverC. Children with sizes smaller thanss are handled by callingssign until
the total number of unassigned nodes in the subtrégarid includingQ is less thannss.

At this point if) is not the root of the original query) and its unassigned nodes can be
part of a subtree originating from parent@f and thus theptimalCover. Otherwise, if

Q is the root of the original pattern, all that is left to do is to cover the lastfagtassigned
nodes, whose number is less thars. This is achieved by one last call é8sign in lines

9 — 10. The algorithmassign is also presented in the same figure. Intuitively, a call of
assign(t) computes a subtree of sizess, rooted at, which has the most possible set of
unassigned nodes. It starts by picking larger unassigned childreanaf once it runs out

of unassigned nodes, adds assigned nodes until the size of subtree is

Example 5.2.9.Consider the tree shown in Figure 1.2.(a) and suppose we run the algorithm
optimalCover on this tree withmss = 3. The first child ofS is NP(NNS(agouti))

of size3 and this child is added t6' immediately. The second child &, VP, is of size

7, so optimalCover(VP) is called, which in turn calleptimalCover on NP of size 4.
SinceDT(a) andNNboth have size less thanss, assign(NP) is called; the call returns
NP(DT(a)) which is added ta” and set§NP| = 2. SinceNPis not a root (line9

of optimalCover), C is returned to the caller. The next steps of the algorithm will add
VP(VBZ(is)) ,VP(NP(NN)) andS(NP(NNS)) to the cover. Note that a join of sub-
treesVP(NP(NN)) andNP(DT(a)) must be in the form of an equality join on nobié,

to avoid erroneous results due to deep branching anomaly.

Lemma 5.2.10. Given a parameteinss < 6 and a treet, where|t| > mss and all
children oft have size less thamss, repeated calls ofissign overr(t) partitionst into a

join optimal cover.

Proof. Since children ot all have size less thamss, any subtree that covers them have
to be rooted at:(¢). Thus, the partitioning problem reduces to the integer bin packing
problem, where the bin capacityrisss — 1 and children sizes are the volumes of the items
to be stored. The objective is to minimize the number of bins (subtrees in obleprh

Our assign algorithm sorts children in a non-increasing order of their sizes, whicrsmap

to thefit first decreasing (FFDppproximation algorithm for bin packing. FFD in general

64

optimalCover(Q)

1 C+0
2 for c € Q.children

3 if |c| = mss

4 C+ CUc, |Q| =|Q| — |c|, c.assigned = true
5 else if|c| > mss

6 C + C U optimalCover(c)

7 while |Q] > mss

8 C + CUassign(Q)

if |Q] > 0 andisRoot(Q)

10 C + CUassign(Q)

11 return C

assign(Q)
1 cont=1,troot = Q.root, Q.assigned = true
2 sortQ.children on size, descending
3 for c € Q.children

4 if c.assigned = false

5 if (mss —ent —|c]) >0

6

7

8

9

©

c.assigned = true, t.children < t.children U c
Q1 = QI — lel, ent = ent + |
if ent = mssthenreturn ¢
if ent < mss

10 for ¢ € (Q.children — t.children)

11 if (mss —ent — |¢]) > 0 then

12 t.children < t.children U ¢, cnt = cnt + |c|

13 else

14 add any subtree frosubtrees(c, mss — cnt) to t.children
15 return t

Figure 5.8: Algorithm that computes a join optimal cover of sizes

gives approximation ratio o{%OPT + 1[119] and is shown to be optimal for integer bin

packing with bin sizes less than or equabtavhich proves our lemma. O

The above lemma proves that for small valuesfs, assign provides an optimal par-
titioning and for generahss, it achieves a good approximation ratio. As discussed earlier,
the number of extracted subtrees could grow dramatically.@sincreases and therefore,
in practice we will not be dealing witimss values larger thag. In our experiments, we

limited mss to be at mosb.

Theorem 5.2.11. optimalCover returns a join optimal cover if (1)nss < 6 and (2)

injective matching is not assumed.

Proof. Appears in Appendix B. Ol

65

Through some modifications of thetimalCover algorithm, we can develop an al-
gorithm that obtains the smallest root-split cover in terms of size. This algortfarred
to asminRC, is presented in Figure 5.9. This new algorithm takes a bottom-up approach
and descends into subtrees of smaller sizes until children have size Iassrtbqual to
mss. Then, it covers the given subtree entirely, before moving up to highkersle This
guarantees that every child of a given nads covered, before is covered and as a result

deep branching anomaly cannot occur.

minRC(Q)

1 C+0

2 for ¢ € Q.children
3 if |c| =mss

4 C+ CUgc, |Q| =|Q| — |¢|, c.assigned = true
5 else if|c| > mss
6 C <+ C UminRC(c)
7 while |Q| >0

8 C + C Uassign(Q)

9 return C

Figure 5.9: Algorithm that computes the best root-split cover of size

Example 5.2.12. The min RC' algorithm generates the following cover over the query in
Figure 1.2.(a)C = {NP(NNS(agouti)), NP(DT(a)), NP(DT)(NN), VP(VBZ(is)),
S(NP(NNS)) }. The subtree ordering shown is the same as the order by wiietRC

adds subtrees t0. C is join optimal, and it has the same number of subtrees as an optimal

cover, given in Example 5.2.9.

Theorem 5.2.13.min RC returns the smallest root-split cover possible if {1}s < 6 and

(2) injective matching is not assumed.

Proof. Appears in Appendix B. O

5.3 Join Approaches over Sl

In this section we study some of the problems associated with joining structionahition
stored under the root-split and the subtree interval codings. As forlteeldased coding,
the problem does not arise since no structural information is stored afittehiag is done

through scanning candidate parse trees.

66

5.3.1 Joins
Join Types

Given two subtrees in a covér of a query@, we often want to join them to obtain our
matches for). Two major types of joins are possible, and these are equality joins and
structural joins. Structural joins were briefly discussed in Sections 21 82.2. A large
number of structural join algorithms have been proposed in the literatuthislthesis we

use the MPMGJN algorithm [120] for its easy adaptation to our problem.

An equality join happens when two subtrees share a nodg afid are joined on the
equality condition over that node. As a result, only equal postings in thresmnding
posting lists are returned. Equality joins can be performed very efficiastBll the matches
can be obtained by a linear scan of the sorted posting lists of the corcisg@ubtrees.
Thus, if two subtrees can be joined in several ways, as might occur inesuimterval

coding, equality joins are preferred.

Join Selection

Any two subtrees in a root-split cover have only one way to be joined, andstlagjoin
over their roots. However, subtree interval codings might have multiple wape joined.
Given two subtrees; ands; of a query@, the order of priority for selecting joins over

subtree interval covers is as follows.

(i) If s; ands; suffer from deep branching anomaly, select the equality join on the deep-

est shared node @j.

(i) If there are any shared nodes betwegands;, select the equality join on the shared

node.
(3) Select a structural join over nodesspfands;.

5.3.2 Injective Matching

As discussed in Chapters 2 and 3, it is often desirable for queries ymerctically anno-
tated trees to have an injective matching. Our next example shows some abkhenps

that can arise when a matching is not injective.

Example 5.3.1.Figure 5.10(a) shows a query that looks for the set of noun phrasies w
have oneDT child, two JJ children and thre&INchildren. Given the subtrees from a join

optimal cover shown in Figure 5.10(b), the matching can lead to some falseasatnie

67

of which is depicted in Figure 5.10(c). Therefore, for certain quetiestesult set using an

injective matching and a non-injective matching would be different.

DT JJ
%&. A i
DT JJ J3 NNRNN RN 3 NPNN mﬁm
(a)Query (b)Splits (c)A Sample Match

Figure 5.10: Example of a query and its corresponding cover that cdnddalse positive
matches

The query in Figure 5.10(a) is one example where extra effort needs tmdale in
order for the matching to be injective. We want to find more general cabesewour
regular splitting and query matching algorithms discussed so far might faibiriding a

guarantee on the injectivity of the matching.

Definition 5.3.2. Given a queryQ, if there exists subtreesz andsp of () such that (1)
sp andsp share the same parent, (£} andsp have the same root label, and (3) is a

subtree ofp, then we say thatp hidessg, as every match fosg is included insp.

Theorem 5.3.3.Given a queny, if there exist subtreesz andsp of Q such thatsp hides
sg, then there exist covers ové} which do not guarantee a correct set of results if an

injective matching is required.
Proof. Appears in Appendix B. O

Definition 5.3.4. Given a queny, if there exists a node such that one subtree child of
saysg, is hidden by one or more other subtree childrem,daysp, , ..., sp,, we call the
subtree spanned by s andsp,, ..., sp, arecurrencesubtree of degrek + 1 of), or a

k -+ 1-recurrence subtree ¢f as there are exactly+ 1 occurrences aof g in children ofv.

We use the notations @fz andsp used in Definition 5.3.2 in the rest of this section to
refer to the subtree and the supertree that can lead to a violation of theviajeaiching
property. Note that g andsp could be equal subtrees, and does not have to be a proper

subtree ofsp. In order to guarantee that injective matching property holds for all matche

68

we need to guarantee that every nodesgfmatches distinct postings, compared to the
posting matched by its corresponding noden In Example 5.3.1, each) node can hide
the otherdJ node and eacNNnode can hide the other tWwéNnodes. ThuaNP(JJ)(JJ)

is a2-recurrenceandNP(NN)(NN)(NN) is a3-recurrencesubtree of the query.

Definition 5.3.5. Thegranularity of a join over a parent-child axis/«, wherev andu are
subtrees of a given quexd, is the minimum number of distinct instanceswthat must

participate in the join withv, in order foru andwv to form a match.

Definition 5.3.5 can be used to define a constraint on a parent-child joitrirepa
match to have more than one instance of the child per parent. This constitbio® elpful
in forcing injective matching in the scenarios where the query explicitly requirore than
one match for a child, and the matching is injective.

The idea behind solving the injective matching is that for each hidden suhireeder
arecurrencesubtreeS of degreed, there must be at leadtdistinct occurrences ofg in
a parent-child relationship witl§. Thus, adding a join with granularity equal tbwill
guarantee that all the matches fgr are distinct. In order to guarantee that a quérys
matched injectively, all suctecurrencesubtrees have to be found and the corresponding
joins have to be added to the list of joins (which include those required faraer of(Q,
and obtained using one of our previous algorithms).

In Figure 5.11 we propose an algorithm that adds additional joins or updateent
ones in order to guarantee that matching is injective. As this figure sholirsegat — 5 of
the add RC Joins algorithm, for each chil@; of @, we count the number of children ¢f
that hidec;, and store the count ihs. TheisASubtree algorithm returns true it; < c;
and false otherwise. In lings— 7, if hs > 1, meaning that there is at least another child of
@ that hides:;, we update the set of joins by a parent-child join with parent equal amd
child equal toc;. TheupdateJoins algorithm checks the list of joins in whighis a parent
and if finds a join in whiche is a child, updates its join granularity. If there is no such a
join, it adds the join to the list gf’s joins and returns.

In the next chapter, we experimentally study the performance of the iridexiges

and access methods proposed in Chapters 4 and 5.

69

addRCJoins(Q)

1 for ¢; € Q.children

2 hs=1

3 for ¢; € Q.children
4 if isASubtree(c;, c;) andc; # ¢;
5 hs =hs+1
6 if hs > 1

7 updateJoins(Q, c;, hs)
8 for c € Q.children

9 addRCJoins(c)

updateJoins(p, c, g)
1 for j € p.joins
2 if ¢ = j.child andj.type = ParentChild
3 j.granularity = g
4 return
5 p.joins < p.joins U Join(p, ¢, g, ParentChild)

Figure 5.11: The algorithm that computes extra joins that guarantee injetitging

70

Chapter 6

Experimental Results

In this chapter, we experimentally study the performance of our prommetions. We first
consider the scenario where text is represented as sequenceslsf armat study the perfor-
mance of Word Permuterm Index compared to the baseline methods in termssfregea
such as query response time and index construction time. Next we studyrfoemance of
our subtree index under our proposed coding schemes. We reppdrfioemance in terms
of the number of joins involved in evaluating each query, the runtime of caiand size of

the index under different coding schemes.

6.1 Natural Language Text as Sequences of Words

6.1.1 Experimental Setup

For our experiments, we used all or parts of the following two text collecti¢ghsNews
Datasetis the AQUAINT corpus of English News Text [5], which we processad ax-
tracted the sentences to be indexed. It contains around 18 million sentantés size
is more than 2 GBs. (2)Veb Dataseis our crawl of the web done on May 2008, which
contains around 2 million documents and is around 8 GBs in size.

We created three sets of wild card queries for our experimentsWH® query-set
was created by replacing thveh keywords inwho and what questions from AOL query
log [94] with a wild card. (2)SVO query-setvas generated by randomly replacing the
subject or the object of a Subject-Verb-Obiject relation with a wild card.o¥ained the
SVO relationships using the Minipar dependency parser [82]. Fina)iy-Bam query-set
was generated by randomly replacing a keyword with a wild card in anmsgséth n =
1..5. These n-grams were selected according to their number of bindings datasgets, in
an attempt to cover a wide range of bindings.

WPI is a memory-based index, hence to be fair to other indexes we assigoed

71

Table 6.1: Summary of the performance of the indexes in terms of the runningrtime
seconds

News data Web data
10M sentences 1M documents
n-gram| WHQ | SVO | n-gram| WHQ | SVO
Avg Bindings | 2.5e+5| 0.4 | 3.3e+3| 5.4e+5| 5.1 220
WPI 2e-6 le-6 4e-6 3e-6 2e-6 | 4e-6
£| Neighbor | 1e-4 | 0.008 | 0.005 | 1.34e-4| 0.274 | 0.013
2 Inverted 0.03 | 0.007 | 0.028 0.01 | 0.064 | 0.022
Memscan| 82.0 86.6 83.5 30.8 29.4 | 29.7
WPI 0.03 | 2.5e-4| 2.6e-4| 0.06 0.01 | 0.02

&S| Neighbor | 24.0 10.0 4.30 194 8.98 10.2
= |nverted | 1.6e+4| 8.99 | 493 | 4.6e+4| 4.03 | 35.8
Memscan| 431 4329 | 424.8 | 219.8 116 33.2
WPI 3.5e-4 | 6.6e-5| 1.2e-4| 6.8e-4 | 2.5e-4| 3e-4

3 Neighbor 1.37 0.93 1.20 5.42 1.44 0.77
<[Inverted 373 0.73 9.71 1.2e+3| 0.75 1.66

Memscan 87 90.5 | 87.47 449 31.3 | 30.7

experiments as much cache to the inverted and the neighbor indexes as they mssddoy
WPI. We ran each query multiple times and only considered the last runningitimmeler
to make sure cache is being utilized by the querying engine. Neighbor asrtieidindexes

were implemented over Berkeley DB, with the terms as the keys and posting hstlias.

6.1.2 Performance of Querying

Ouir first set of experiments compared the performance of the indexies different set-
tings, in terms of the average running time of queries in seconds. Tables6slagsummary
of the performance of each index over 10 million sentences of news dataraiilion doc-
uments of the web data and all the query sets.

As Table 6.1 suggests, WPI performs the best among all indexes on antyragion
of data and query sets. The third row of the table shows the average noftiiadings
per query for each query and data set used. Neighbor index perfelatively good when
the number of bindings is high. Inverted index performs very poorly ariga that match
a large number of documents. MemScan performs relatively slow regafieghat type
of query is given. The statistical correlation of the running time of quenes imdexes is
largest for inverted index and smallest for WPI. These correlatiorsctdibw the indexes
perform when the number of bindings grow. Figures 6.1 and 6.2 depidtehavior of
these four methods with respect to the number of bindings of a query, ptotézdl00 n-

gram queries over 10 million sentences of news data and 1 million documenébafata,

72

respectively. As these figures show, the running time of WPI is almost lgriticependent
of the number of bindings of the query. For the data presented in thesedjgun average
WPl is 5 orders of magnitude faster than the neighbor index. The wastgrformance
of WPl is still an order of magnitude faster than the neighbor index whémgtssbest case,
WPI is 6-7 orders of magnitude faster. The worst case, observedikeain Figures 6.1
and 6.2 for the running time of WPI, belongs to the quérg % of . The running time
of WPI on this particular query is relatively higher because the querytigoein% S whose
running time complexity is decided Blyy|| and||3|| according to Table 4.1. Sinee="the’
andg="of’ are the two highest selective words in the alphabet, we obsengpike in these

two figures.

10

—MemScan(O.GBj

* WPI(-0.02)
Neighbor(0.66) .

10* I Inverted(0.99) 4

107 -]

Query running time in seconds (logscale)
=y
T
|

*
10 * . ¥ o s@ﬁ%w%%%% * % A

*
K

Xk Kk x FORERRE S gt

° 10° 10" 10° 10

Number of bindings of a query (logscale)

10
10

Figure 6.1: The performance of the indexes based on the number of ggndirqueries
over 10 million sentences of news data

In order to compare the scalability of the indexes we conducted anotheriment to
compare how the indexes perform as the dataset size grows. Figurbodv8 the total
qguerying time of the four indexes over 108¥Oqueries computed over web datasets of
sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents. As this figure shows, the gutimi@ of
WPI stays almost constant. Starting as lovo#95 seconds fof).4 million documents and
going up to at mosf.118 seconds fo2 million documents, WPI shows onBA% growth
in the overall querying time. The running times of the neighbor and the invartiekes

grow almost linearly with the dataset size. The minimum (maximum) running times are

73

10°

——MemScan(0.90)
* WPI(-0.02)
Neighbor(0.62)

10* | * Inverted(0.99) - |
o
©
? .
& -
g .
Q.2 .
=10° & " |
8
5 s
Q L.
S o’

. - . . -\ ‘4
£10° - . N |
o O B *
£
j=2)
£ o e &
€107 |
2
>
] *
S *
4k «
107 * * Hﬁ*%%% * %k *]
*
10~ .))
10° 10° 10° 10° 10°

Number of bindings of a query (logscale)

Figure 6.2: The performance of the indexes based on the number of ¢gnoirqueries
over 1 million documents of web data

370 (1693) and 600 (2211) for the neighbor and the inverted indesgectively. Finally,
MemScan shows an exponential growth with respect to the dataset sieematimum
running time (for 2 million documents) shows almost two orders of magnitudetneith

respect to the minimum running time of MemScan.

6.1.3 WPI Performance with Limited Physical Memory

Given that WPI is a memory-based index, it is important to evaluate its penfaeria set-
tings where the space consumption of WPI exceeds the available systeiogbinyemory.
This is a worst-case scenario for WPl whereas the inverted and theboeigluexes are
not expected to be affected much by limitations on the size of memory. A straigufd
solution would be to use disk as a supplementary storage and allocate moreyntieamor
available and let the operating system do the pdgfng. decide which memory blocks to
swap out to disk). In an attempt to push WPI to do paging, we ran a sepefiments on
the news data of sizes 4, 6, 8, 10, 12, 14, 16 and 18 million sentenceseawelthdata of
sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents. We used a machine with 4 GBgsafglh
memory, around 0.8 GB of which was reserved by a distribution of the Limeraiing
system for kernel and other system processes. We report hermthenbof memory that

was required for storing all data structures required by WPI, as apege of the available

lthe terms swapping and paging are used interchangeably in this paper

74

10 :
—%-WPI
Neighbor
5 [| = Inverted

@
o
0
(=]
2
—~ 10" &]
©°
c
3
e 58
" 77777777577777777
£10° F 5 :
g B
[}
3
010’ b]
>
n
o
o
S
510" £]
[}
£
2
€10° £]
c
3
s
o ”)
Foe K "

107 ‘ ‘ |

400K 800K 1.2M 1.6M M

Dataset size in terms of the number of documents

Figure 6.3: Scalability of the indexes over web data of growing sizes.

system physical memory. These memory requirements are depicted on itentadraxis
of Figures 6.4 and 6.5 for different sizes of data. The reported vaheasot the peak mem-
ory usage of operating system for WPI process as the processthagdiéional memory
for code, stack and other static and dynamic data items. Hence, the amauetrairy
the process required exceeded the above figures, and paging emylerhfor the smaller
datasets as well.

Figures 6.4 and 6.5 show the total running time of 1@MDqueries over WPI and
the neighbor index as the datasets vary in size. As Figure 6.4 showss YWRHing time
grows dramatically as its size grows86% of the memory size. This shows the effect of
paging on the WPI process. Moreover, as the figures show, evampaging happens, the
running time of WPI is still much lower than the neighbor index. By increasingstvegp
size, we were able to run WPI over datasets that required memory equadrimxanately
10 times that of the available system memory. For large datasets, a major freatimdex
resides over disk and increasing the dataset size, as our resultstSulygs not dramati-
cally change the running time of the queries. Even with such a naive dsddlsmlution to

WPI, it performs pretty well and can scale up well with limited available memory.

75

The total running times of queries for the inverted index and MemScan @&xicese of

the neighbor index in Figures 6.4 and 6.5 and have been omitted for brevity.

2000

Iwpi
Il Neighbor
1800

16001
1400

1200

I I ﬁ| m| ﬂ‘ ﬂ| H| H‘]

55% 80% 105% 129% 154% 179% 204% 230%
WPI memory consumption in terms of available system physical memory

o =)

(=} (=]

=] =]
T T

N

(=3

=]
T

Total running time of 1000 SVO queries (seconds)

n

(=]

=]
T

o

Figure 6.4: The performance of WPI vs. the neighbor index using pamiridews Data of
sizes 4, 6, 8, 10,12, 14, 16 and 18 million sentences

6.1.4 Index Construction Time

Table 6.2 shows the time required to construct WPI compared to the neigtdzor fior
our experiment in Section 6.1.3. As this table suggests, the construction timeloisW
smaller than the neighbor index for the given sets of data. In most cageehindex has
a slightly lower construction time than WPl and memory scan can be considehaviag

no construction time except loading the dataset once into the main memory.

Table 6.2: Index construction time of WPI compared to the neighbor index ondsc
News dataset sentences

4M | 6M | 8M | 10M | 12M | 14M

WPI 457 | 689 | 796 | 1172| 2191 | 2246

Neighbor| 871 | 1439 | 2028 | 2265 | 3170 | 3853

76

1200

Cdwei
Il Neighbor

. HI Hl | W

253% 419% 592% 776% 945%
WPI memory consumption in terms of available system physical memory

1000+

®

(=]

=]
T

Total running time of 1000 SVO queries (seconds)
Py D
8 8
T T

N

o

=]
T

o

Figure 6.5: The performance of WPI vs. the neighbor index using pagiryeb Data of
sizes 0.4, 0.8, 1.2, 1.6 and 2 million documents

6.2 Natural Language Text as Syntactically Annotated Trees
6.2.1 Experimental Setup

For our experiments in this section, we parsed a collection of sentenoeffecAQUAINT
corpus of English News Text [5], using Stanford Parser [62], asatiuhis dataset or a part
of it in our experiments.

We further processed each parsed tree obtained from the parsassigded ids and
structural tags to individual nodes of the subtrees. With this tagging,remishis described
as a tuple consisting dfeeld, nodeld, parentld, left, right, levahdlabel. The treeld value
points to the corresponding tree that contains the noden@tleldis a numeric value that
uniguely identifies each node within a tree, gradentldis thenodelDof the parent node.
Theleft, right andlevelare the structural information of an individual node, as discussed
under numbering schemes in Chapter 2.

We constructed two sets of queries over syntactically annotated textrfexperiments.
The first setWH query-setvas created by a third person who was asked to sé¢keat the
guestions extracted from AOL query log [94], questions from each @fhat which where
andwhoquestions. She was then asked to rewrite the questions in the form ofsesteat
have the same patterns as a sentence with a potential match. For instanstan cueh

aswho is the mayor of New York city® converted tanayor of New York city is %omatch%.

77

Finally, we parsed these sentences using Stanford parser and refmogadh sentence the
leaves that contain terms from the sentence, leaving only the sentendarstride list of
all these questions and their corresponding query structures aenfgeésn Table A.1 in
Appendix A.

Our second query set was constructed by extracting subtrees fretrohmarsed sen-
tences which were not included in our indexes. The extracted subteresselected ac-
cording to the frequencies of their nodes. To account for differemtehe selectivities
of queries that are posed to our indexes, we constructed the followisgesl@f subtrees
consisting of (1) all high frequency nodes denoted as H, (2) all mediaquéncy nodes
denoted as M, (3) all low frequency nodes denoted as L, (4) high adéiumdrequency
nodes denoted as HM, (5) high and low frequency nodes denoted ,a$Hihedium and
low frequency nodes denoted as ML, and (7) high, medium and low érexyunodes de-
noted as HML. For each class, we constritsubtrees of different sizes, and whose labels
all fall in the given set of frequency classes. The size of the quergesedected randomly
to be a number betweeinand 10 nodes. We refer to these second category of queries as
Frequency Based ¢1B query-setThe list of high, medium and low frequency labels used
in generating queries iIRB query-sefppear in Table A.2 in Appendix A.

Our subtree index was implemented as a native disk-based B+Tree inglethevlat-
tened unique subtrees as index keys. We did not implement a caching syaterthe
B+Tree and relied on the page buffering of the operating system fosavipngs in the
number of disk page accesses. Each leaf of the B+Tree index pointegdstiag list
which was sorted first based oreeld and then orleft values. We also flattened and se-
guentially stored parse trees in a separate file, which we call the data fdére€hdvalues
in the index provided the offset of each individual parse tree in the data fi

All our experiments were run on a 64-bit machine withGB of physical memory and
a 4x quad-core processor. The system page sizel@gsbytes. The reported index sizes

will be different on 32-bit addressing systems or with different pagessiz

6.2.2 Index Construction

In this section we study the characteristics of the indexes built over symtihctnnotated
trees experimentally. We investigate how the size of the index is affected lmhthee of
the coding scheme and size of the input data. We also study the index ctiosttime for

different coding schemes and input sizes.

78

Index Size

Figure 6.6 shows the subtree index size for the three proposed codiiamss, varying
input sizes, with the top left sub-figure displaying the index sizes, whaut sipe is100
sentences, and the top right, bottom left and bottom right sub-figurelaylisp the same
results for input sizes ofk, 10k and 100k sentences, respectively. Furthermore, in each
sub-figure, we vary the maximum subtree siz&;s, from 1 to 5, as shown on the X axis.

As the figure shows, the size of the index is smallest for filter-based caaliggargest
for the subtree interval coding in all cases. One interesting pattern inghkséor sizes of
the index is that asiss increases, the gap between the sizes of root-split and subtree interval
codings grows. The reason is that for larger subtrees, subtreeahtemning uses larger
postings, because it has to store the structural information for indivithdgs. However,
the posting size in root-split coding has constant size, and the index sizases only due

to more keys being indexed.

x 10° 100 sents x 10" 1k sents

I filter-based

I filter—based

4 || I root-split [root-split
[Jsubtree interval 37| C___Jsubtree interval

x 10° 10k sents x10° 100k sents

5 4
I filter-based I filter—based

4 || I root-split [root-split
[subtree interval [subtree interval

Figure 6.6: Sl size for filter-based, root-split and subtree intervaingsd with mss =
1,...,5. Input size is (top left)l00 sentences, (top right)000 sentences, (bottom left)
10, 000 sentences, (bottom rightp0, 000 sentences.

Table 6.3 shows the ratio of the index size wheass is 5 to the the index size when
mss is 1, for all three coding schemes and four dataset sizes. As the taldésdepot-split
coding shows the smallest increase in the size of the index among all cotiemes.

The size reduction for root-split coding is due to (1) reducing the sizad posting as

only structural information of roots are stored, and (2) reducing the eumitpostings as

79

Table 6.3: Ratio of the subtree index size whess is 5 to the index size whemss is 1

Filter-based | Root-split | Subtree Interval
100 22 15 48
1k 24 14 50
10k 23 13 59
100k 21 12 04

multiple subtrees which have the same key and the same root structural itiéormdl be
represented with only one posting in root-split coding, while every sindleae requires a
distinct posting using the subtree interval coding. Figure 6.7 depicts thearwhpostings
for our three coding schemes, varying the dataset sizerassd As this figure shows, for
mss = 1 the number of postings of root-split and subtree interval codings am aqd as
mss increases the gap between the number of postings for these coding schiztass.
Filter-based coding has the smallest number of postings as it only storegetiniglds,

and no structural information.

x10* 100 sents x10° 1k sents
10 8

I filter—based I filter—based
g|| I root-split [N root-split
[Jsubtree interval 61| [subtree interval

x 10° 10k sents x 10" 100k sents

I filter—based

I filter—based

[root-split I root-split
6| C__] subtree interval 6| 1 subtree interval

Figure 6.7: Total number of postings over all keys for filter-basedt-spbt and subtree
interval codings, with varying input sizes antss values. Input size is (top leff)00 sen-
tences, (top right}000 sentences, (bottom left, 000 sentences, (bottom rightp0, 000
sentences.

The number of keys to index varies with changes in the input dataset anddhe
values. Figure 6.8 displays the number of keys (in log-scale) in termsyihganput sizes
andmss values, with the left sub-figure showing the absolute number of keys anittit

sub-figure showing the cumulative number of keys. The figure showsheanumber of

80

absolute keys grows dramatically forss = 4 andmss = 5. A reason for this increase in
the number of keys is that the total number of possible subtree structuszeof follows
them! Catalan number and as increases, this number can grow dramatically. The first
five Catalan numbers are 1,2,5 and 14. The absolute number of keys grows almost
proportionately to these values. The cumulative numbers are the numbeysoétored in

each index for different values afss.

Absolute number of keys Cumulative number of keys

10

10

I mss-1 I ss=1
I mss=2 I mss=2
107 || EEE mss=3 o 107 | I mss=3 M
[Imss=4 [Imss=4
[Imss=5 [__Imss=5 =

=
S}
>
T
=
o
>

N
S
G
T
=
[S)
]

=
o,
T

w
T

=
o
=
o

Number of index keys (logscale)
=
o
N
]
Number of index keys (logscale)
a

S
™

=
o
=
S

._.

o»a
T

.

107 F

10 - - - - 10 - - - -
100 1k 10k 100k 1m 100 1k 10k 100k 1m

Number of indexed sentences Number of indexed sentences

Figure 6.8: Total number of index keys for varying input sizes arh values. (Left)
absolute number of keys, (right) cumulative number of keys.

Finally, to have an idea of the space overhead of the index, the size ofreeBzon-
structed over subtree inverted lists is comparable to the size of the data filesfoe= 1.
For larger values ofnss, the gap between the data file size and subtree index size grows.
Formss = 5 and subtree interval coding, the size of data file is two orders of magnitude

smaller than the subtree index size.

Index Construction Time

Figure 6.9 shows the construction time of the subtree index for differdatei®s, coding
schemes anthss values. As shown, the construction time is smallest for filter-based coding
and largest for subtree interval coding. Root-split has a constructionttiates slightly
larger than filter-based coding. Asgss increases the difference in the construction time
between subtree interval coding and the other two codings grows. Thissidyrbecause

the size of the index for subtree interval coding is larger and as a resrétaata has to be

81

written on disk.

100 sents 1k sents
50

I filter-based I filter-based
r| [root-split 40 | [root-split
[subtree interval [subtree interval

o P N W N O O

10k sents 100k sents
600 6000
I filter—based I filter—based
500 | [root-split 5000 | [N root-split

[Jsubtree interval 4000 [Jsubtree interval

3000

2000

1000

Figure 6.9: Index construction time for filter-based, root-split and sabirerval codings,
with mss = 1,...,5. Input size is (top left)l00 sentences, (top right)000 sentences,
(bottom left)10, 000 sentences, (bottom rightp0, 000 sentences.

6.2.3 Querying Performance

In this section, we experimentally evaluate the performance of queryingutndiree index
under different settings. In particular, we investigate the runtime of quémi¢erms of
their number of matches for the filter-based, root-split and subtree ihtargdangs asnss

values and query sizes vary. We also present some scalability resulte ftlree coding
schemes using data sizes of one thousand to one million sentences. Finatydyéhe
performance of our splitting algorithms by comparing the number of joins teatguired

under each split policy.

Response time of queries

To obtain the query response time over our subtree index, we used 4B M queries

and 70 FB queries, and tried each query 5 times and took the average running ime pe
qguery. We grouped the queries according to their number of matches infollidweing

bins: (1) less tham0, (2) betweeri0 and100, (3) betweeri00 and1k, (4) betweerl k and

10k and (5) larger than0k matches. Figure 6.10 shows the average run-time of queries
varying the number of matches, ovEIOk sentences. Tables A.3 to A.13 in Appendix A

display the individual running times of the queries averaged over fiv& run

82

As Figure 6.10 shows, the running time of the queries decreases fodalgcechemes
asmss grows. This reduction is smallest for queries with large number of matclieg us
filter-based coding, as the time of tfikering phase becomes a dominating factor. As
shown in the figure, Root-split coding performs better than subtree ihtepding in all
cases. Filter-based coding performs better than root-split codingder= 1 and less than
10 matches on average. However, for larger valuesie§, which are mainly interesting
for a subtree index, root-split coding performs better than the other tdingschemes.

Also, unlike the filter-based coding, both the root-split and subtree iltendings
display a reduction in their average query response times for larger mwhbeatches.
This happens for the following two reasons: (1) The intermediate reseltaia query
with a small number of matches could be large and this would affect the runtimesoks
under root-split and subtree interval codings, but not under filteedaoding. (2) As can
be consulted with Tables A.3 to A.13 in Appendix A, our queries with larger resrmb
terms have on average smaller number of matches; however, these geguies a larger
number of joins and take longer for these two coding schemes. This patteralso be
seen in Figure 6.11 where the running time is depicted as the query size varies

Figure 6.11 displays the runtime of queries in terms of the query size usinguie s
settings as in Figure 6.10. In this figure, we only included queries whichTtévand more
matches. As this figure shows, root-split and subtree interval codings &hancreasing
trend with respect to the size of queries. Filter-based coding displaymewdtat random
behavior with respect to the query size as its performance is mostly deterimntuak
number of matches and how well the splits can perform filtering. Accordinigisdigure,
asmss increases, root-split and subtree interval codings perform bettergar lgueries as

they require smaller number of joins to compute the result set of queries.

Comparison with Other systems

Table 6.4 displays the results of comparing our Sl using root-split coding Allitee-
Grep [104] and a frequency-based approach that is an adaptatineefi [123] for in-
dexing parse trees. These results are @08k sentences and Sl usesss = 3. Similar to
TreePi, the frequency-based approach stores in the index all sindgs and a percentage
of larger highest frequency subtrees. This percentage is denoteatkelts in the last three
columns of Table 6.4.

The results in Table 6.4 are obtained over the queries inFBuquery-setand are

grouped by the frequency classes. Since ATreeGrep does natrs@tiphe queries, the

83

results are averaged over as many queries as there were results fthis fable depicts, S
with root-split coding outperforms other index structures by at least mitex of magnitude

over all frequency classes.

Table 6.4: Average running time of queries in seconds for queries in EB/get classes
using Subtree index with root-split codingnés = 3), ATreeGrep and Frequency-based
approaches with varying frequency cutoff thresholds.

RS | ATG | FB(0.1%) | FB(1%) | FB(10%)

L 0.09| 19 3.05 3.03 3.04
M 0.01| 10.06| 12.32 0.8 0.35
ML 0.25| 2.13 10.3 9.62 9.25

H 1.73| 224 39.21 34.51 34.53
HL 1.57| 32.97| 34.58 34.61 34.6
HM 1.76 | 37.08| 35.54 31.40 31.57
HML | 1.76| 86.02| 49.03 42.97 43.13

Scalability Results

Figure 6.12 presents the runtime of our queries over four subsets phosgd collection:
1k, 10k, 100k and1m sentences. We usedss = 3 for the results reported in this figure,
but the result for other values aiss were similar. The reported runtimes are the average
query response times for each groupF& queriesand using our three coding schemes.
The results in this figure show that all three coding schemes display a sinti@nmpas the
dataset size increases, i.e. the running time grows approximately linearly wittuthber

of sentences indexed.

Figure 6.12 also shows that the root-split coding scales up better with treetaize.
This is mostly evident on the figure betwetinand10k as well as betweei0k and100k
results, especially for query classes that conitég frequency labels; i.e-, HL, HM and
HML. Averaged over alf FB query-set categories, ranging frdfto 1m sentences of our
parsed collection, the query runtime increases for filter-based, siteeeal and root-split

codings by a factor 0f025, 752 and529, respectively.

Splitting Algorithms Results

Table 6.5 displays the number of joins required per group2ofjueries ofWhqg Which
WhereandWhatqueries formss values of2 to 5. The values reported for root-split coding
are the total number of joins required for evaluating a cover generated the min RC

in addition to the joins obtained fromdd RC Joins algorithm. Similarly, joins reported

84

for subtree interval codings are duedptimalCover andadd RCJoins algorithms (See
Sections 5.2.2 and 5.3.2).

As Table 6.5 showsyptimalCover achieves a fewer number of joins for all groups
of queries andnss valueg. Despite a fewer number of joins obtained for filter-based and
subtree interval codings, root-split still manages to have a smaller quspgnse time, by

minimizing the 1/O cost and avoiding to perform filtering.

Table 6.5: Total number of joins required over queries in the WH queryrsebot-split,

s=subtree interval.
Query-set] mss =2 | mss=3 | mss=4 | mss =05

r S r S r S r S
Who 71| 65 || 57| 40| 36| 26 || 29| 20
Which 82| 75| 65| 51| 51| 36 || 39| 27
Where 59| 57 || 53| 40 || 32| 25 || 27| 19
What 67| 64 || 55| 40 || 35| 27 || 27| 19

2In the case wherguss = 1, root-split and subtree interval will have equal number of joins, whicisal

to]Q| - 1

85

mss=1 mss =2

40 40
o)
° °
] 5
g 30t 8 30
< L
g g
£ 20f £ 20
2 2
2 2
S 100 S 10
(o4 (o4
0 0 5 0 0 5
10 10 10 10
Number of matches (logscale) Number of matches (logscale)
mss =3 mss = 4
40+ 40
o)
° °
= c
g 30t 3 30
< L
£ £
S 20t £ 20
2 2
g g
3 101 3, 10
(o4 [e4
0 5 s 0
10 10 10
Number of matches (logscale) Number of matches (logscale)
mss =5
401
g —&— Filter-based coding
§ 30t Root-split coding
2 —&— Subtree Interval coding
(]
£
= 20t
2
al
S 100
(o4

o

Number of matches (logscale)

Figure 6.10: Average runtime of queries in terms of their number of matchékdobased,
root-split and subtree interval codings ands values ofl to 5

86

mss=1 mss =2

@
=]

@
o

o
=]
o
o

IN
o
IN
o

n
o
n
o

-
o
=
o

Average query runtime (seconds)
w
o

Average query runtime (seconds)
w
o

-
L/

2 4 6 8 10 12
Query size Query size

o

o

o
o
N
IS
o
®
5
IS

mss =3 mss =4

N
o

IN
o

w
=]
w
o

i
S
\
\
i
=
o

B

58—
P J
2 4 6 8 10 12
Query size Query size

Average query runtime (seconds)
N
o

Average query runtime (seconds)
N
o

o

o

o
o
N
IS
o
®

10 12

mss =5

N
o

—2— Filter-based coding
Root-split coding
—&— Subtree Interval coding

w
=]

N
o

Average query runtime (seconds)
n
o

P

2 4 6 8 10 12

Query size

o

Figure 6.11: Average runtime of queries in terms of the size of querieslfer-tiased,
root-split and subtree interval codings ands values ofl to 5

87

10

10

Average query runtime in seconds (logscale)

10

10°

Average query runtime in seconds (logscale)

10

10

10"

Average query runtime in seconds (logscale)

Filter-based (mss=3)

10"

T T T T T

10"

I 1«
[10k
[J100k
I 1
L M ML H HL HM HML
Query groups
Root-split (mss=3)
I 1«
i [10k 1
[T 100k
I 1
L M ML H HL HM HML
Query groups
Subtree Interval (mss=3)
I 1«
[10k 1
[J1o0k
I 1
L M ML H HL HM HML
Query groups

Figure 6.12: Average runtime of queries{s = 3) over groups of FB queries over datasets
of 1k, 10k, 100k and1m sentences and using different coding schemes.

88

Chapter 7

Conclusions and Future Directions

This chapter concludes this thesis by providing a discussion of the beotfite ap-
proaches presented, their limitations, and the avenues this thesis opdntuferwork

and improvements.

7.1 Summary and Discussion

In this thesis we studied the problems of indexing and querying over néngiage text
under two scenarios. In the first scenario, we considered text aersees of words and
studied indexing techniques over word level wild card queries. In thenskscenario, we
considered text as a collection of syntactically annotated trees, and stffitezht methods

for retrieving subtrees matching a query tree.

7.1.1 Word Permuterm Index

In the first scenario, we discussed the development of Word Permuteien (WPI) which
supports single wild card natural language queries. WPI fills in the gag tiore-efficient
index supporting a wide range of wild card queries over natural laregteag. Our asymp-
totic analysis of the complexity bounds of querying over different indekesvs a better
time complexity for WPI over other approaches. Our wide range of expatsywer dif-
ferent combinations of data and query sets and the number of bindingsaslamge gap
in terms of the performance between WPI and the neighbor and the invedidks Our
results also show that WPI performs better than the neighbor index eves laxcthof suf-
ficient physical memory, resulting in paging memory pages in and out of thendigh
greatly reduces its performance. Word permuterm index is limited to wild candesucon-
taining only a single wild card. More general wild card queries have nen lige focus of

word permuterm index and further optimization might be necessary to supgemies with

89

more than one wild card.

7.1.2 Subtree Index and Root-split coding

In the second scenario, we proposed subtree index (Sl) as a ndeirig strategy over
syntactically annotated trees. We studied the architecture of S| and pil@lgterithms for
building it. We further investigated different coding schemes for encoslifdgree infor-
mation into inverted lists of SI and proposed two baseline coding schemesbéied and
subtree interval codings, and a novel root-split coding scheme. legedjscussed query
matching over S| which includes two phases, a split phase and a join phratdee split
phase, we studied algorithms that compute join optimal covers over subtreairgad
filter-based codings. We also proposedsttva RC' algorithm that computes the best possi-
ble root-split cover, which might not be join optimal. In the join phase, we stiitiie join
approaches over Sl and discussed how query matching is affectedwehbave injective
matching assumption. Our experimental results shows that root-split cogliftgmps better
than subtree-interval coding in all cases and filter-based coding miggerborm root-split
coding in arare case where Sl is constructed only over the nodes amaitier of matches
of the query is very small. We also experimentally showed that the index sizendex
construction time of root-split coding are better than those of subtree ihtargang and
slightly larger than those of filter-based coding. Finally, we showed thet our set of
queries,min RC algorithm generates covers which are smaller than the theoretical worst
case discussed, in terms of the number of their subtrees.

One limitation of the current implementation of Sl is that it does not support ali ax
efficiently as the parent-child axis. For instance, a query containing@saor-descendant
axes has to be split into its nodes. Thus, storing larger subtrees in theviiltlewt be

beneficial for such queries.

7.1.3 Discussion

Word permuterm index and subtree index were introduced in this thesis tesadtivo
scenarios that natural language text is often represented with. Téersmi®s consider text
as sequences of words or as collections of parse trees. Howeltenlnanguage text can
be represented in numerous other formats. For instance, one couldesditet structures
that are annotated with part of speech tags. As another example, anmoiet over
text that can be modelled using a directed acyclic graph or a generdl. gtap important

to note that this thesis only studies two of these scenarios and leaves tteethestuture

90

work.

Subtree index (SI) provides the functionality to search for node labelsadationships
between them expressed using navigational axes. Therefore, it@adgmore informed
forms of searches compared to WPI. WPI provides very fast in-memarglses over wild
card queries, while Sl does not directly support wild cards in its queniésequires extra
effort to answer such queries. Direct support of wild card queries &l could be an
interesting future work. While the two approaches address differesryong needs and
query formats, they might both be useful in retrieving more meaningful ersste natural

language questions.

7.2 Future Directions
Our solutions and algorithms can be extended in a few interesting directions.

() Allowing the operating system to swap memory pages in and out of the disiaiva
approach for solving the high memory consumption of WPI. One future sixten
would be to benefit from the localities available in natural language text te @t
structures over disk in such a way that the number of disk block acdesg@smized,

hence, increasing the efficiency.

(i) High space consumption is currently one of the main drawbacks of WRlarka
for improvement is finding compression techniques that can further eetthecsize
of WPI. Another area is to make use of parallelism and distribute WPI over daultip

machines.

(iii) Sl improves the query response time at the expense of more spaagngotien and
a longer index construction time. One possible improvement over S| would be to
materialize certain subtrees, rather than all subtrees. Which subtrees t@lizate
could be learned from the distribution of the subtrees in a query log ongacycally
annotated trees, if one is available. Otherwise, an objective cost furcetiobe used
to estimate the cost of joins to build each subtree and materialize subtreesouktsse

exceeds a certain threshold, hence limiting the worst case query runtifomnpence.

(iv) Our query splitting algorithms for different coding schemes over 18y take into
account the size of a cover, in terms of the number of subtrees inclugladnaasure

for improving the query execution performance. It would be interestingutyshow

91

(v)

much the performance can be improved by using more levels of optimizatiohs suc

as building histograms and taking selectivities of subtrees into account.

Currently the subtree interval and the root-split codings use the meltigate merge
join approach which performs extra comparisons for parent-child axes i&sult,
guerying performance over these two coding schemes is degradedreanipdhe
filter-based approach, which uses a straightforward sorted list iotensepproach.
It would thus be interesting to adopt more recent structural join appesasich as
StackTree [1] and TwigStack [11] for our coding schemes, and studydtformance

of Sl under such algorithms.

92

Bibliography

[1]

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

S. Al-Khalifa, HV Jagadish, N. Koudas, J.M. Patel, D. Srivastavel Y. Wu. Struc-
tural Joins: A Primitive for Efficient XML Query Pattern Matching. Rioceedings
of International Conference on Data Engineering (ICDE)O2.

Altavista. http://www.altavista.com

S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Tom&tructure and
content scoring for XML. IrProceedings of International Conference on Very Large
Databases (VLDB)}X005.

A. Andersson, N.J. Larsson, and K. Swanson. Suffix trees amlsv Algorithmicg
23(3):246-260, 1999.

The aquaint corpus of english news text, 200&tp://www.ldc.upenn.edu/
Catalog/docs/LDC2002T31/

N. Augsten, D. Barbosa, M. Bohlen, and T. Palpanas. Tasm: KTapproximate
subtree matching. IRroceedings of International Conference on Data Engineering
(ICDE), 2010.

D. Bahle, H.E. Williams, and J. Zobel. Efficient phrase querying wittaariliary
index. InProceedings of the International Conference on Information RetrieMal (
GIR), 2002.

M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, andt@o&i. Open infor-
mation extraction from the web. IRroceedings of International Joint Conference
on Artificial Intelligence (IJCAI)2007.

S. Bird, Y. Chen, S.B. Davidson, H. Lee, and Y. Zheng. Desigiind evaluating an
xpath dialect for linguistic queries. IRroceedings of International Conference on
Data Engineering (ICDE)2006.

P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, &riteubner. Mon-
etDB/XQuery: a fast XQuery processor powered by a relational endgimProceed-
ings of International Conference on Management of Data (SIGMQ0D(6.

N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optim&IX pat-
tern matching. IrProceedings of International Conference on Management of Data
(SIGMOD) 2002.

M. Burrows and D.J. WheeleA block-sorting lossless data compression algorithm
Technical Report 124, Digital Equipment Corporation, 1994.

M.J. Cafarella and O. Etzioni. A search engine for natural lang@ggplications. In
Proceedings of International Conference on World Wide Web (W\200Pp.

M.J. Cafarella, C. Re, D. Suciu, and O. Etzioni. Structured qugryfrweb text data:

A technical challenge. IProceedings of the Biannual Conference on Innovative
Data Systems Research (CIDRDO7.

93

[15] S. Cassidy and J. Harrington. Multi-level annotation in the Emu spdatdbase
management systerBpeech Communicatip83(1-2):61-77, 2001.

[16] Online Computer Library Center. Dewey decimal classification, 20@p:/
www.oclc.org/dewey

[17] S. Chakrabarti, K. Puniyani, and S. Das. Optimizing scoring funsteomd indexes
for proximity search in type-annotated corporaPhoceedings of International Con-
ference on World Wide Web (WW\ZD06.

[18] S. Chaudhuri, K. Church, A.C. Konig, and L. Sui. Heavy-tailedrihstions and
multi-keyword queries. IfProceedings of the International Conference on Informa-
tion Retrieval (SIGIR)2007.

[19] S. Chen, H.G. Li, J. Tatemura, W.P. Hsiung, D. Agrawal, and K.$\d@a. Twig
2 Stack: bottom-up processing of generalized-tree-pattern queriesXle doc-
uments. InProceedings of International Conference on Very Large Databases
(VLDB), 2006.

[20] T. Chen, J. Lu, and T.W. Ling. On boosting holism in XML twig pattern rhaig
using structural indexing techniques.Rmoceedings of International Conference on
Management of Data (SIGMODP2005.

[21] Y. Chen and D. Cooke. Unordered tree matching and strict uneddese matching:
The evaluation of tree pattern queries.Arceedings of Cyber-Enabled Distributed
Computing and Knowledge Discovery (Cyberg2)10.

[22] Z. Chen, HV Jagadish, F. Korn, N. Koudas, S. Muthukrishifari\lg, and D. Srivas-
tava. Counting twig matches in a tree. Pmoceedings of International Conference
on Data Engineering (ICDE)001.

[23] Z. Chen, HV Jagadish, L.V.S. Lakshmanan, and S. Paparizasn Fee patterns
to generalized tree patterns: On efficient evaluation of XQuenyPrateedings of
International Conference on Very Large Databases (VL2BP3.

[24] Y.S. Choi. Tree pattern expression for extracting information fromtesctically
parsed text corpordData Mining and Knowledge Discover$(2):211-231, 2011.

[25] J. Christensen, Mausam, S. Soderland, and E. Etzioni. Semantizbeléng for
open information extraction. IRroceedings of the North American Chapter of The
Association for Computational Linguistics (NAACRP10.

[26] P.Chubak and D. Rafiei. Index Structures for Efficiently Seag-Natural Language
Text. InProceedings of International Conference on Information and Knovdedg
Management (CIKM)2010.

[27] J. Clark and S. DeRose. Xml path language (xpath), 1888//mwww.w3.org/
TR/xpath .

[28] R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching abdesumatching
in deterministic O (n log 3 n)-time. IRroceedings of the Symposium on Discrete
algorithms (SIAM)1999.

[29] W3C Consortium. Xquery 1.0: An xml query language, 206i#p://imww.w3.
org/TR/xquery/

[30] H.T. Dang, D. Kelly, and J. Lin. Overview of the TREC 2007 questmswering
track. InProceedings of Text REtrieval Conference (TREXDD7.

[31] D. DeHaan, D. Toman, M.P. Consens, and M.T. Ozsu. A compsafeiXQuery
to SQL translation using dynamic interval encoding.Pioceedings of the Interna-
tional Conference on Management of Data (SIGMOZD03.

94

[32] P.F. Dietz. Maintaining order in a linked list. Proceedings of the Symposium on
Theory of Computing (STO{)982.

[33] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern matchilmyurnal of the
ACM, 41(2):205-213, 1994.

[34] O. Etzioni, M.J. Cafarella, D. Downey, S. Kok, A. Popescu, Tal&d, S. Soder-
land, D.S. Weld, and A. Yates. Web-scale information extraction in knowitaée-(
liminary results). InProceedings of International Conference on World Wide Web
(WWW) 2004.

[35] S. Evertand H. Voormann. The nite query Ianguage 266g//www.ltg.ed.
ac.uk/NITE/documents/NiteQL.v2.1.pdf

[36] L. Faulstich, U. Leser, and T. Vitt. Implementing a Linguistic Query Lizage for
Historic Texts.Proceedings of the Conference on Current Trends in Database Tech-
nology (EDBT) 2006.

[37] P. Ferragina and J. Fischer. Suffix arrays on word®rtiteedings of the Symposium
on Combinatorial Pattern Matching (CPM2007.

[38] P. Ferragina and G. Manzini. Indexing compressed tekburnal of the ACM
52(4):581, 2005.

[39] P. Ferragina and R. Venturini. Compressed permuterm indexPrdoeedings of
International Conference on Information Retrieval (SIGIR)07.

[40] D. Florescu and D. Kossmann. Storing and Querying XML Data usmBDMBS.
Data Engineering Bulletin22(3):27-34, 1999.

[41] E. Garfield. The permuterm subject index: An autobiographicaéve American
Society for Information Scienc27(5):288-291, 1976.

[42] S. Ghodke and S. Bird. Fast Query for Large Treebamkeceedings of the North
American Chapter of The Association for Computational Linguistics (NAAZTI10.

[43] R. Goldman and M. Jarke. Dataguides: Enabling query formulatidnogtimiza-
tion in semistructured. IfProceedings of International Conference on Very Large
Databases (VLDB)1997.

[44] Google.http://www.google.com

[45] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for preieg XPath
gueries.Transactions on Database Systei®8(2):491, 2005.

[46] M. Gotz, C. Koch, and W. Martens. Efficient algorithms for the tree homeonignph
problem. InProceedings of the International Conference on Database Progragimin
Languages (DBPL)2007.

[47] G.Gou and R. Chirkova. Efficiently querying large XML data rafmges: A survey.
Transactions on Knowledge and Data Engineerihg(10):1381-1403, 2007.

[48] N. Grimsmo, T.A. Bjorklund, and M.L. Hetland. Fast Optimal Twig Joins.Pro-
ceedings of International Conference on Very Large Databases BY,LZD10.

[49] R. Grossi, A. Gupta, and J.S. Vitter. High-order entropy-cormrgmes$ext indexes. In
Proceedings of the Symposium on Discrete Algorithms (SI2803.

[50] T. Grust. Accelerating XPath location steps. Rroceedings of International Con-
ference on Management of Data (SIGMOR)02.

[51] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teaetational DBMS
to watch its (axis) steps. IRroceedings of International Conference on Very Large
Databases (VLDB)X2003.

95

[52] S. Guha, HV Jagadish, N. Koudas, D. Srivastava, and T. Yppréximate XML
joins. In Proceedings of International Conference on Management of Dat@a-(SlI
MOD). ACM, 2002.

[53] H. He and A.K. Singh. Closure-tree: An index structure for grgphries. InPro-
ceedings of International Conference on Data Engineering (IGR22ED6.

[54] U. Heid, H. Voormann, J.T. Milde, U. Gut, K. Erk, and S. Pado. Qing both time-
aligned and hierarchical corpora with NXT SearchPhaceedings of Conference on
Language Resources and Evaluation (LREZD0A4.

[55] E. Hinrichs, S. Kibler, K. Naumann, H. Telljohann, and J. Trushkina. Recent de-
velopments in linguistic annotations of thigh-d/z treebank. IRroceedings of the
Third Workshop on Treebanks and Linguistic Theories (TRUD4.

[56] C.M. Hoffmann and M.J. O’Donnell. Pattern matching in treksurnal of the ACM
29(1):68-95, 1982.

[57] Indri - language modeling meets inference networks. http://www.
lemurproject.org/indri/ .

[58] Oracle text, an oracle technical white paper, 200%&p://www.oracle.com/
technology/products/text/pdf/10gR2text_twp_f.pdf .

[59] A. lttycheriah, M. Franz, and S. Roukos. IBM's statistical quastoswering sys-
tem. Proceedings of Text REtrieval Conference (TREXDD2.

[60] S. Kepser. Finite Structure Query: A tool for querying syntacticafipotated cor-
pora. InProceedings of the Conference on European Chapter of the Assodiation
Computational Linguistics (EACL2003.

[61] S. Kepser. Querying linguistic treebanks with monadic secondrdwdé in linear
time. Journal of Logic, Language and Informatioh3(4):457—-470, 2004.

[62] D. Klein and C.D. Manning. Accurate unlexicalized parsingPhaceedings of the
Annual Meeting on Association for Computational Linguistics (AQDP3.

[63] E. Konig and W. Lezius. The TIGER language: a Description Lagguor Syntax
Graphs.Technical Report, University of Stuttga001.

[64] E. Konig, W. Lezius, and H. Voormann. TIGERSearch user'sumaariniversity of
Stuttgart 2003.

[65] T. Krause, J. Richling, V. Rosenfeld, A. Zeldes, F. Zipser, Gia@os, and J. Ritz.
Annis2, search and visualization in multilevel linguistic corpora, 2068&p://
www.sfb632.uni-potsdam.de/d1/annis/ .

[66] C. Kwok, O. Etzioni, and D.S. Weld. Scaling question answering to teb.Wans-
actions on Information Systen9(3):242—-262, 2001.

[67] C. Lai and S. Bird. Querying and updating treebanks: A criticateyiand require-
ments analysis. IProceedings of the Australian Language Technology Workshop
2004.

[68] C. LaiandS. Bird. LPath+: A first-order complete language fordistic tree query.
In Proceedings of the Pacific Asia Conference on Language, InformatidrCam-
putation (PACLIC) 2005.

[69] C. Lai and S. Bird. Querying linguistic treesJournal of Logic, Language and
Information 19(1):53-73, 2010.

96

[70] R. Levy and G. Andrew. Tregex and Tsurgeon: tools for qugryand manipulating
tree data structures. Froceedings of the Conference on Language Resources and
Evaluation (LREC)2006.

[71] D. Lin, K. Church, H. Ji, S. Sekine, D. Yarowsky, S. Bergsma,Ratil, E. Pitler,
R. Lathbury, V. Rao, et al. New tools for web-scale n-grams.Pioceedings of
Conference on Language Resouces and Evaluation (LREXD.

[72] J. Lin and B. Katz. Question answering techniques for the World \Widb. Pro-
ceedings on the Conference on European Chapter of the Associatiomhop@a-
tional Linguistics (EACL) - Tutorial2003.

[73] J.Lu, T. Chen, and T.W. Ling. Efficient processing of XML twig{eans with parent
child edges: a look-ahead approachPhoceedings of International Conference on
Information and Knowledge Management (CIKNDO4.

[74] Apache lucene. http://lucene.apache.org/java/2_3 2/
gueryparsersyntax.htmi

[75] A. Maier and H.J. Novak. Db2’s full-text search products - whia@er, 2006.

[76] C.D. Manning, P. Raghavan, and H. &itze. Introduction to information retrieval
Cambridge University Press, 2008.

[77] C.D. Manning and H. Sdlize. Foundations of statistical natural language process-
ing. MIT Press, 2000.

[78] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a largenatated
corpus of English: The Penn Treebar@omputational linguistics19(2):330, 1993.

[79] H. Maryns and S. Kepser. Monasearch: Querying linguistic ek with monadic
second-order logic. ImThe International Workshop on Treebanks and Linguistic
Theories 2009.

[80] N. Mayo, J. Kilgour, and J. Carletta. Towards an alternative impleatiem of
NXT’s query language via XQuery. IAroceedings of the Annual Meeting on Asso-
ciation for Computational Linguistics (AC|2006.

[81] T. Milo and D. Suciu. Index structures for path expressioRsoceedings of the
International Conference on Database Theory (ICDPI999.

[82] Minipar home pagehttp://webdocs.cs.ualberta.ca/ ~ lindek/minipar.
htm.

[83] J. Mirovsky. Netgraph: A tool for searching in prague depemgie¢reebank 2.0.
Proceedings of the Workshop on Treebanks and Linguistic Theotid3, (2006.

[84] J. Mirovsky. Netgraph - Making Searching in Treebanks Eas{Prbceedings of the
International Joint Conference on Natural Language ProcessingNILP), 2008.

[85] J. Mirovsky. PDT 2.0 requirements on a query langudgyeceedings of the Annual
Meeting on Association for Computational Linguistics (AC0Q08.

[86] J.Mirovsky. Towards a Simple and Full-Featured Treebank Quamguage. IiPro-
ceedings of the International Conference on Global Interoperability fonduage
Resources (ICGL.R008.

[87] D. Moldovan, S. Harabagiu, R. Girju, P. Morarescu, F. Laaatus. Novischi,

A. Badulescu, and O. Bolohan. Lcc tools for question answeringrdceedings of
Text REtrieval Conference (TREQ@PO02.

97

[88] D. Moldovan, M. Pacsca, S. Harabagiu, and M. SurdeanufofPeaince issues and
error analysis in an open-domain question answering syskeamsactions on Infor-
mation System®21(2):133-154, 2003.

[89] P. Nakov, A. Schwartz, B. Wolf, and M. Hearst. Supporting dation layers for
natural language processing. Pnoceedings of the Annual Meeting on Association
for Computational Linguistics (ACI.2005.

[90] G. Navarro and V. Makinen. Compressed full-text index€omputing Surveys
39(1):2, 2007.

[91] Openephyra - ephyra question answering systetp.//mu.lti.cs.cmu.edu/
trac/Ephyra/wiki/OpenEphyra

[92] P. Pajas and Stépének. System for querying syntactically annotated corpora. In
Proceedings of the International Joint Conference on Natural LagglWRrocessing
(IJCNLP), 20009.

[93] S. Pal, I. Cseri, O. Seeliger, G. Schaller, L. Giakoumakis, andol6tdv. Indexing
XML data stored in a relational databasePlimceedings of International Conference
on Very Large Databases (VLDB)004.

[94] G. Pass, A. Chowdhury, and C. Torgeson. A picture of sedrcRroceedings of the
International Conference on Scalable Information Syst&166.

[95] U. Petersen. Emdros: A text database engine for analyzed otaed text. In
Proceedings of the Annual Meeting on Association for Computational lstigsl
(ACL), 2004.

[96] U. Petersen. Querying both parallel and treebank corporalu&van of a corpus
guery system. IProceedings of Conference on Language Resouces and Evaluation
(LREC) 2006.

[97] R. Pito. Tgrep Manual Pagkinguistic Data Consortium, University of Pennsylania
1994,

[98] The penn treebank project, 1998tp://www.csi.upenn.edu/ ~ treebank/

[99] D. Rafiei and H. Li. Data extraction from the web using wild card @serinPro-
ceedings of International Conference on Information and Knowledgeagiement
(CIKM), 20009.

[100] B. Randall. CorpusSearch users manukdiversity of Pennsylvanj@000.

[101] D.L.T. Rohde. TGrep2 User Manual version 1.Massachusetts Institute of Tech-
nology.http://tedlab.mit.edu/dr/Tgrep2 , 2005.

[102] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J. DeWitt]) &h Naughton.
Relational databases for querying XML documents: Limitations and oppbetsin
In Proceedings of International Conference on Very Large Databadd3BY, 1999.

[103] D. Shasha, J.T.L. Wang, and R. Giugno. Algorithmics and applicatibtree and
graph searching. IRroceedings of the Symposium on Principles of Database Sys-
tems (PODS)2002.

[104] D. Shasha, J.T.L. Wang, H. Shan, and K. Zhang. Atreegrepr@ximate searching
in unordered trees. IRroceedings of the International Conference on Scientific and
Statistical Database Management (SSDBR002.

[105] I. Steiner and L. Kallmeyer. VIQTORYA-a visual query tool fgnsactically anno-

tated corpora. IiProceedings of Conference on Language Resources and Evaluation
(LREC) 2002.

98

[106] I. Tatarinov, S.D. Viglas, K. Beyer, J. Shanmugasundaramh&kifa, and C. Zhang.
Storing and querying ordered XML using a relational database systeRroteed-
ings of International Conference on Management of Data (SIGMQ0D(2.

[107] Y. Tian, R.C. McEachin, C. Santos, D. J. States, and J. M. Pad&ASa subgraph
matching tool for biological graph®ioinformatics 23(2):232, 2007.

[108] Y. Tian and J.M. Patel. Tale: A tool for approximate large graph niagchroceed-
ings of International Conference on Data Engineering (ICDE)08.

[109] M. Volk, J. Lundborg, and M. Mettler. A search tool for paraltedebanks. In
Proceedings of the Linguistic Annotation Worksh2@07.

[110] E. M. Voorhees and D. M. Tice. Building a question answeringdeBéction. In
Proceedings of the International Conference on Information Retri&i&IR) 2000.

[111] S. Wallis and G. Nelson. Exploiting fuzzy tree fragment queries inrhestigation
of parsed corporal.iterary and Linguistic Computingl5(3):339-361, 2000.

[112] S. Wallis and G. Nelson. Knowledge discovery in grammatically andlgsepora.
Data Mining and Knowledge Discovery(4):305-335, 2001.

[113] D.W. Williams, J. Huan, and W. Wang. Graph database indexing w$imgtured
graph decomposition. IRroceedings of International Conference on Data Engi-
neering (ICDE) 2007.

[114] H.E. Williams, J. Zobel, and D. Bahle. Fast phrase querying with aoedindexes.
Transactions on Information Systernd2(4):573-594, 2004.

[115] F. Wu and D.S. Weld. Open information extraction using wikipedi€Proceedings
of the Annual Meeting on Association for Computational Linguistics (A20}0.

[116] Yahoo! search - web seardfittp://search.yahoo.com

[117] X.Yan, P.S. Yu, and J. Han. Graph indexing: A frequent stmecbased approach. In
Proceedings of International Conference on Management of Da@NE&ID), 2004.

[118] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel:tla-lpased ap-
proach to storage and retrieval of XML documents using relational degabaans-
actions on Internet Technolog¥(1):110-141, 2001.

[119] M. Yue. A simple proof of the inequality fd(l) < 11/9opt(l) + 1,VI for the

ffd bin-packing algorithm.Acta Mathematicae Applicatae Sinica (English Series)
7(4):321-331, 1991.

[120] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. Ompsttng contain-
ment queries in relational database management systefAsdaedings of Interna-
tional Conference on Management of Data (SIGMOZ)01.

[121] K. Zhang and D. Shasha. Simple fast algorithms for the editing disthatween
trees and related problemSIAM Journal of Computingl8(6):1245-1262, 1989.

[122] N. Zhang, V. Kacholia, and M.T. Ozsu. A succinct physicalagerscheme for effi-
cient evaluation of path queries in XML. Proceedings of International Conference
on Data Engineering (ICDE)2004.

[123] S. Zhang, M. Hu, and J. Yang. TreePi: A novel graph indexmeghod. InProceed-
ings of International Conference on Data Engineering (ICPH)07.

99

Appendix A

Supplementary Tables and Figures

In this chapter we present a few supplementary tables and figurese Fdudisplays two

sample parse trees with high branching nodes described in Example 5.1.1.

Root
S
NP VP .
/\ VBD\)
NP
NNP 3 NNP NNP CC NNP ‘
‘ ‘ attended
DT NN NN
Tom ? Sarah 1 Alex and Mary ‘
the tea party
(a)
Root

the heavy blue broken hanune
(b)

Figure A.1: Sample natural language text sentences that contain nodédghittranching
factors

100

Figure A.2 displays the number of extracted subtrees in terms of the brgrfelcior

of the corresponding node over which the extraction happens (Séersed).

30 300
’)
(] (O]
g o
5 20 5 200
=} 3
(%] [2])
°© °©
2 2
§ 10 § 100
% =
() ()
0 0
0 10 20 30 0 10 20 30
branching factor branching factor
3000 15000
[} Q
g g
5 2000 5 10000
] >
[(%]
© ©
z z
§ 1000 § 5000
= =
(O] ()
0 Liobowr 0
0 10 20 30 0 10 20 30
branching factor branching factor

Figure A.2: Number of subtrees with sizes varying betw2ams in terms of the branching
factor of the nodes over which the subtrees are constructed

Table A.1 depicts the individual set of questions used in generating thieegueWH
guery setand their corresponding queries used in our experiments (See SectibnNoge
that the questions listed might have misspellings and errors which originatetfeoqueries
in the query-log.

Table A.2 depicts the set of low, medium and high frequency labels we ugeffierat-
ing our set ofFB query-setn Section 6.2.1.

Tables A.3 to A.13 display display the individual running times of the queriesaaed

over five runs for our queries WH query-seandFB query-set

101

Table A.1: The list of WH

gueries and their corresponding query strastur

who got fired on tonight’s
episode of the apprentice?

S(NP(NN)VP(VBD VP(VBN PP(IN NP(NP(NP(NN
POS))NN)PP(IN NP(DT NN))))))

who is patch adams?

S(NP(NN NNS)VP(VBZ NP(NN)))

who was cinderella?

S(NP(NN)VP(VBD NP(NN)))

who wants to be a millionaire?

S(NP(NN)VP(VBZ S(VP(TO VP(VB NP(DT NN))))))

who won the boxing fight last
night on pay per view?

S(NP(NP(3J NN)PP(IN_ NP(NP(NN)PP(IN NP
(NN NN))))VP(VBD NP(DT NN NN)))

who designed the statue of liberty?

S(NP(NN)VP(VBD NP(NP(DT NN)PP(IN NP(NN)))))

who is de vince?

S(NP(FW FW)VP(VBZ NP(NN)))

who invented the tv?

S(NP(DT NN)VP(VBD VP(VBN PP(IN NP(NN)))))

who killed jesus?

S(NP(NN)VP(VBD NP(NNS)))

who is adolf hitler?

S(NP(NN NN)VP(VBZ NP(NN)))

who created chocolate?

S(NP(NN)VP(VBD NP(NN)))

who sings bottom line?

S(NP(NN)VP(VBZ NP(JJ NN)))

which woman had made the most movies?

S(NP(NN)VP(VBD VP(VBN NP(DT JJS NNSY)))

which golf ball is the best?

S(NP(NN NN NN)VP(VBZ NP(DT JJS)))

which greek god loved apollo?

S(NP(NP(NN_NN)NP(NNY)VP(VBD NP(NN)))

which pda is the best to buy?

S(NP(NN)VP(VBZ NP(NP(DT JJS
NN)SBAR(S(VP(TO VP(VB)))))

which planet is called the red planet?

S(NP(NN)VP(VBZ VP(VBN NP(DT JJ NN))))

which presdient started social security?

S(NP(NN NN)VP(VBD NP(3J NN)))

which cell phone works best
for rural coverage?

S(NP(NN NN NN)VP(VBZ
NP(NP(JJS)PP(IN NP(JJ NN)))))

which color does hispanic
women like on their toes?

S(NP(3J NNS)VP(VBP
NP(NP(NN NN)PP(IN NP(PRP$ NNS)))))

which is the best wave
grease to use?

S(NP(NN)VP(VBZ(NP(NP(DT JJS NN
NN)SBAR(S(VP(TO VP(VB))))))

which paper towel is the most absorbant?

S(NP(NN NN NN)VP(VBZ NP(DT JJS NN)))

which cell phone plan is best in miami?

S(NP(NN NN NN NN)VP(VBZ NP NP(JJS)PP(IN NP(NN))))

which state has the most black people?

S(NP(NN NN)VP(VBZ NP(DT ADJP(RBS JJ)NNS)))

where is hell?

S(NP(NNP)VP(VBZ PP(IN NP(NN))))

where bloating occurs?

S(NP(NN)VP(VBZ PP(IN NP(NN))))

where is costa rica?

S(NP(FW FW)VP(VBZ PP(IN NP(NN))))

where the sidewalk ends?

S(NP(DT NN)VP(VBZ PP(IN NP(NN))))

where did the mound builders live?

S(NP(DT NN NS)VP(VBD PP(IN NP(NN))))

where have all the flowers gone?

S(NP(PDT DT NNS)VP(VBP VP(VBN S(VP(TO VP(VB))))))

where does lightning begin?

S(NP(NN)VP(VBZ PP(IN NP(NN))))

where to get steroids?

S(VP(VB NP(NNS)PP(IN NP(NN))))

where can i buy Ig washer?

S(VP(VB NP(NN NN)PP(IN NP(NN))))

where are they now?

S(NP(PRP)VP(VBP PP(IN NP(NN))ADVP(RBY)))

where to meet cowboys?

S(VP(VB NP(NNS)PP(IN NP(NN))))

where does zac efron live?

S(NP(NN NN)VP(VBZ PP(IN NP(NN))))

what is a trojan?

S(NP(DT NN)VP(VBZ NP(DT NN)))

what year did the battle of
trenton take place?

S(NP(NP(DT NN)PP(IN NP(NN)))
VP(VBD NP(NP(NN)PP(IN NP(NN NN)))))

what's hot?

S(NP(NN)VP(VBZ ADJP(J))

what does invoke mean?

S(NP(JJ NNS)VP(VBP))

what to bring to your road test?

S(VP(VB NP(NN)PP(TO NP(PRP$ NN NN))))

what is a state of emergency?

S(NP(NN)VP(VBZ NP(NP(DT NN)PP(IN NP(NN)))))

what to put on a wedding registry?

S(NP(NN)VP(VBP PP(IN NP(DT NN NN))))

what can ferret eat?

S(NP(NNP)VP(MD VP(VB NP(NN))))

what does an effective school psychologist

B@AP(DT JJ NN NN)VP(VBZ NP(NN)))

what is good for stress?

S(NP(NN)VP(VBZ ADJP(JJ PP(IN NP(NN)))))

what the bible says about gossip?

S(NP(DT NN)VP(VBZ NP(NP(NN)PP(IN NP(NN)))))

what does the giant squid eat?

S(NP(DT JJ NN)VP(VBP NP(NN)))

102

Table A.2: List ofhigh, mediumandlow frequency labels used in building FB queries.

high DT, IN, JJ, NN, NNP, NNS, NP, PP, VP, S

medium| ADJP, ADVP, CC, CD, MD, NP-TMP, POS PRP, PRP$
QP, RB, SBAR, TO, VB, VBD, VBG, VBN, VBP, VBZ

low CONJP, EX, FRAG, FW, JJR, JJS, NNPS, NX, PDT, PRN, PRT
RBR, RBS, RP, SINV, UCP, WHADVP, WHNP, WHPP, WP, WRB

Table A.3: Summary of the query runtimes feho parsed queries

1 2 3 4 5

M |S]| f r S f r S flr| s f r S f r |s
gl | 0 |20/10.6/45.6/55.7| 7.9|12.7| 33.6| 1.7|5.9/16.2/ 0.5| 1.3 5.6|0.4| 0.7 |3.7
g2 | 8 |8|17.4/17.6/121.316.3 3.8(12.22 2.3|0.5| 2.4 0.12/0.04| 0.3|0.15/0.06/0.3

g3 |1819 7|53.2120.1)23.851.8 3.7| 11.9/10.2/0.7/ 3.9/ 4.7|0.2| 1.7| 3.6 |0.16/1.5

g4 | 28 |13|13.3/123.9/28.9 9.3| 6.4| 16.5|5.4|1.2/6.4|0.5|0.6| 2.9|0.25/0.250.7

g5 | 0 |21|42.950.8/62.437.518.2/ 33.8| 3.4|5.5/15.9/ 0.5| 1.5| 7.2|0.34/0.92/5.5

g6 | 94 |13|51.5/36.5/44.439.8 9.4| 25.6|12.9/3.4/12.1 85|0.8| 9 |1.8|0.5|4.9

g7 | 0 |8|1.6|13|16.4 0.7|1.7| 5.7 | 0.2|0.2| 1.7 |0.03/0.03/0.08 0.04/0.04/0.1
g8 | 210|12|26.5| 28 |33.7/23.4 6.9| 20.2|10.8/2.7|10.2/ 2.9 0.7 3.9| 1.7| 0.4|3.5
g9 | 859| 7142.6/16.820.540.9 3.1| 9.2 | 6.1|0.5/3.2/2.3|0.2|1.4|{1.8]0.1|1.2
q10, 52 | 8 |22.1/17.8/21.920.8 3.5| 8 4 |10.6/ 3 [0.2]0.05 0.4|0.2(0.06/0.5
q11/1819 7 |52.9/19.8/23.951.2/ 3.7 | 11.7/10.10.7/ 3.8 | 4.6 | 0.2| 1.7 3.5| 0.2|1.5
ql2 107| 8 |22.1/19.3/124.1/19.8 4.4| 14 |8.6|0.6/3.7|1.9|0.2| 2.6| 0.3|0.060.5

Table A.4: Summary of the query runtimes fehichparsed queries
1 2 3 4 5

MIS| fl|lr|s | f|lr|s|flr|s|f|lr|s|f]|r]|s
gl3| 0 |13/ 2.9/20.324.8 1.3| 4 |11.6/ 0.5[0.8)/ 5 |0.2/0.3{1.5/0.1|0.1| 1
gl4| 0 |11] 3.5(15.7/19.9| 1.7|2.9/ 55| 1.1| 3 | 8.5|0.2/0.6/1.3/0.07|0.06/0.6
gl5| 8 [11]49.8/29.336.3/47.5/9.4/18.2/ 9.5(2.5/11.2/1.9/1.3(9.4/ 0.1/ 0.1| 1
glée| 0 16| 3.9(24.330.7| 2 |6.6/15.7/0.6|2.1] 8 |0.3]1.5/3.1] 0.2| 0.3|2.2
gl7| 22|11/15.2/21.526.5 13 |5.8/17.6/ 1.8|1.2| 4.5|2.7|0.3/2.7/ 0.3| 0.1|1.2

q18/103| 9 [43.1/19.2/23.7|38.9/5.1|12.3/15.210.9| 5.1 | 1 |0.2|2.7| 0.4| 0.1 |0.5

gl9 0 |15]| 4.7|28.6/35.9 2.9|7.5[15.9 1.5|3.5/{10.50.4| 1 {2.8/ 0.1| 0.2|1.3
g20| 0 |15] 5.5|26.7|33.6/ 3.6 |5.5/15.7/ 0.7 |1.8| 6.1|0.3/0.3{3.2| 0.1| 0.1 |0.9
g21] 0 (17| 4.2|25.532.21 2 |6.9/13.3/ 0.5|1.9] 5.6|0.2/{1.5[2.5/ 0.2| 1.1|2.1
g22| 0 |9]3.7|15519.9 2.14.1)9.8| 1 |2.8/6.3|0.2/0.6/1.3/0.06 0.1|0.6
g23| 0 |15/ 4.9|30.237.5 2.2/6.7/13.7| 1.5|3.5/11.6/0.8/1.9/5.3| 0.4 | 0.7 |4.7
g24/ 0 |8]2.8|14.8 19|1.4|3.6/ 7.7/ 0.4/0.6/ 2.6|0.1/0.1{1.2/ 0.1| 0.1 |0.4

103

Table A.5: Summary of the query runtimes fehereparsed queries
1 2 3 4 5
MI|S| f |r|s|flr|s|flr|s|f|lr|s|f|r]|s
(25127 9 |20.9/23.5/28.6/19.5/4.5|15.8 5.7| 2 [6.7|6.1/0.4/5.8] 2 |0.2/2.3
(26(180| 9 |24.4/123.3/128.4 23 |4.8/15.1/6.4| 2 |5.9/6.9/0.4/4.6/2.4/0.2|2.1
g27| 0 (10| 2.1|17.6/22.0 1 |3.2 10 |0.5/1.7/5.8/0.3/0.3/3.4/0.1|0.1|1.7
028/111{10|22.6/24.8/30.2 21 |6.5/18.99.8/2.5/8.5|4.9/0.5/4.2/1.8/0.2/2.9
29| 29 (11|36.2/23.2/128.8 34 |6.4/19.4/5.5/2.7/9.9|2.5| 1 |4.5/0.4/0.2/2.3
030 3 [14| 2.8|15.2/19.4{ 1.2 4.2/ 8.6|0.4| 1 |4.7/0.2/1.1/1.8|0.2/0.3|2.1
031/180| 9 |24.4/23.4/28.322.94.8/15.1/6.4| 2 |5.8/6.9/0.4/4.6/2.3|0.2|2.1
032 23| 9|33.4/20.3|24.9/31.8 4.2| 13 |0.8/1.3|4.9/0.9/0.3(3.3/0.2/0.2|1.7
gq33| 7 [10|40.8/22.7|27.7| 34 |5.1|14.2/0.9/2.1/5.5|2.4/0.5/3.9/0.2|0.2|2.1
q34| 2 (11| 4.1| 18 |22.9 2.8|3.6/10.6/1.2/1.9/5.9/0.5/0.3/3.1/0.2|0.1|1.9
35| 23| 9|33.6/20.4/24.931.94.2/12.8 0.8/1.3/4.9/0.9/0.3/3.3/0.2|0.2|1.7
36| 35(10|22.3/22.6/27.6/20.5/5.1/12.4/5.5|2.1/7.1|1.6/0.3|3.7/0.6|0.2|2.4

Table A.6: Summary of the query runtimes fehatparsed queries

1 2 3 4 5
M |S|f|r|s|f|r|s]|flr|]s|f|lr|s|f|r]|s
g37| 65 | 922.7/19.5/23.6/21.4) 6.6 18.7/17.8/1.3| 5.7 |1.2/0.3|2.2/0.3(0.1/2.3
g38| 1 [19|48.6/49.5/59.9/36.4/14.328.9 12 |5.8/18.4/0.5|1.4/7.9/0.5/0.9/2.1
g39/450| 7| 7.4|11.7/114.1 59| 2.3 6.9]1.9|0.3] 1.9|1.4/0.2/1.3(0.9/0.1| 1.7
g40(1557, 6 |12.9 6.8| 8.7 |11.6| 2.6 | 6.8| 7.9|0.3| 1.6 |2.4{0.1|0.8/2.1|0.1|2.9
g41| 0O |11/10.517.7|21.8) 4 |3.7|8.9|/0.3|0.6/ 2.7|0.1/0.2|0.8/0.1/0.2/2.3
g42| 56 |13|24.7/35.5/42.7/19.4| 8.8 |24.6| 6.7 |3.3/10.6/4.2|0.8|7.6/1.1/0.5|2.1
g43| 4 |9(15.121.5 26 [13.5/6.2|14.7/1.5| 2 | 5.7|0.3/0.4/1.9(0.1/0.1|2.1
g44| 558 | 9 |16.8/20.7|24.9/15.4| 3.1|12.2 4.5|0.8] 4.7 |3.1/0.3|3.3(1.9/0.2| 1.7
g45| 7 |10(18.7/19.2/23.5/16.6| 4 |10.7| 2.2|0.8/ 4.1|0.2/0.3|1.1|0.2|0.1|2.1
g46| 18 |11| 8.4|23.8/28.7/6.4|4.9(15.1 1.2|1.9/ 3.9|1.1/0.4/3.8/0.1/0.1|1.9
g47| 76 |13|23.9/32.6/39.9/18.9| 8.6(23.910.6| 3 {13.8/2.5| 1 |6.2/0.9/0.8/1.7
g48 3 |9(12.517.9 22| 11|5.1|15.7/1.2|1.3] 3.3|0.6/0.8/2.8/0.1/0.1|2.8

Table A.7: Summary of the query runtimes for parsed queriesloveirequency labels
1 2 3 4 5
fulr s | f|r s | f|r s | f|r s | flr S
7.6/ 0.2/ 0.2(7.7/0.2/0.2|7.6/0.2]0.2|7.7/0.2| 0.2|7.6/ 0.2| 0.2
43/02(02(43/0.1/0.2(4.310.1{0.2(4.310.1/0.2(4.3/0.1|0.2
7.6/ 0.2|0.2(7.7/0.2|/0.2|7.6/0.2]0.2|7.7/0.2] 0.2]|7.6/ 0.2| 0.2
34/01{01/34/01/0.1{3.40.1{0.1{34/0.1/0.1(3.4/0.1(0.1
4401(0.1(4.4/01]/0.2|4.4/0.1|{0.2|4.4/0.1|/0.2|4.4/0.2|0.2
0.2/0.02/0.02/0.2(0.03/0.03/0.2/0.03/0.03/0.2|0.04{0.03|0.2{0.04{0.03
0.5/0.02/0.02/0.5/0.02/0.02/0.5{0.02/0.02/0.5/0.03/0.03/0.5/0.03/0.03
0.2/0.02/0.02/0.2(0.02/0.02/0.2/0.02/0.02/0.2|0.02/0.02/0.2{0.02/0.03
210.1|/0.1| 2|0.06/0.09/1.9/0.06/0.09 2 |0.08/0.09/1.9/0.06/0.09
0.9/0.03{0.04/0.9/0.03/0.03/0.9/0.03/0.04{0.9|0.04{0.03|0.9/0.04{0.04

M
ql (9136
92 5652
93 9136
q4 4330
95 6745
q6 | 981
q7 | 679
q8 | 981
q9 [2356
q10[1209

RN R R R R RPN R0

104

Table A.8: Summary of the query runtimes for parsed queriesraediurmfrequency labels

1 2 3 4 5

M |S| f ris| f r S f r S f r S f r S
gll] 229 |3| 4.3 |0.4/0.5/ 0.2 |0.030.07| 0.2 |0.020.02 0.2]0.02/0.03 0.2|0.02/0.03
ql2| 2840|2| 4.9 |0.4/0.4/ 2.1|0.06/ 0.1| 2.1|0.07/ 0.1| 2.1/0.08 0.1| 2.1|0.08 0.1
gl3|350121| 26.6|0.7|0.7| 27 | 0.7| 0.7 |26.7| 0.7| 0.7 |26.8/ 0.7 | 0.7 |26.5/ 0.7 | 0.7
14|343571| 26 |0.6/0.7|26.3/ 0.6 | 0.7(26.2 0.7| 0.7 |26.2/ 0.7 | 0.7 |25.7/ 0.7 | 0.7
15/338281| 25.7|0.6/0.7|25.9/ 0.6 | 0.7 |25.9 0.6| 0.7 |25.9/ 0.6 | 0.7 |25.4/ 0.7 | 0.7
q16/225261| 15.1|0.4/0.4/15.3 0.4 | 0.4|15.21 0.4| 0.5|15.3/ 0.4| 0.4|15.11 0.4| 0.4
ql7| 346 |2|22.31/0.6/0.7| 0.5(0.01/0.02| 0.5|0.01/0.03| 0.5[0.02/0.03 0.5|0.02/0.04
018/495121|33.9|0.9/ 1|34.3109| 1 [34009| 1 343 09| 1 (33809 1
gql9 6 |3|11.4|0.5/0.6/ 0.3|0.02/0.030.01/0.01/0.01/0.02/0.01/0.01/0.02/0.02/0.01
020/359731| 27.8|0.7/0.7|28.2| 0.7 | 0.7 |28.0, 0.7 | 0.7 |28.1] 0.7 | 0.7 |27.6/ 0.7 | 0.7

Table A.9: Summary of the query runtimes for parsed queries magtiumand low fre-
quency labels

1 2 3 4 5

f r S f r S f r S f r s f r S

16.4 0.4/ 0.4]16.6/ 0.4| 0.5(16.6/ 0.4| 0.5|16.6/ 0.4| 0.5|/16.6 0.4| 0.5
0.2/0.020.02 0.2]0.02/0.02 0.2 0.02/0.02| 0.2|0.02/0.03 0.2|0.02/0.03
10.5/ 0.3 0.3|10.6/ 0.3] 0.3(10.6/ 0.3| 0.3/10.6/ 0.3| 0.3[10.6/ 0.3| 0.3
16.1 0.8/ 0.9|16.0, 0.4| 0.7 |16.0 0.4| 0.7 |16.0/ 0.4| 0.7 |16.0| 0.4| 0.7
16.1 0.8/ 0.9|16.0, 0.4| 0.7 (16.0, 0.4| 0.7 |16.0/ 0.4| 0.7 |16.0| 0.4 | 0.7
26.1 0.9]/1.0(26.5 0.9|1.0(26.50.9|1.0|26.5/0.9|1.0{26.5 0.9| 1.0
7.0/0.8{1.0/0.3|0.1|0.3]{0.03/0.01/0.01/0.03/0.01/0.01/0.04/{0.01{0.01
15.1 0.4 0.4(15.3 0.4/ 0.4{15.3 0.4| 0.4|15.310.4| 0.4|15.3 04| 0.4
80(12|14(79/08|10|59|0.2/05|59|0.2{05|/59|0.2|05
44105/06]4.4|0.3/0.4|0.1/0.01/0.01/ 0.1|0.01{0.01] 0.1|0.0110.01

M
g21/23571
g22| 981
g23/15178
g24/22305
g25/22305
g26/42535
27| 34
g28/22526
g29| 9250
g30| 75

WWERWERINNRFP R RFPW]

Table A.10: Summary of the query runtimes for parsed queriestogatfrequency labels

1 2 3 4 5

M |S| f|r|s|flr|s|flr]s]|f|r|s|f|r]|s
g31/72830 2 (68.3 6.3| 7.4|68.3/1.4| 2.5(68.3/1.4| 2.5|68.3/1.4| 2.5|68.3|1.4| 2.5
032 952 | 8 (55.820.8/25.4/46.5(4.1/ 9.9| 7.7(1.1/10.7/ 4.9|0.2/| 5.3| 2.5(0.2| 5
g33] 18 |10(45.023.2/28.7/35.6/6.7/15.9| 8.5(1.4{14.4/ 0.5|0.4| 4.3|0.06/0.2| 0.3
34| 6334| 3(55.7/5.1|6.1|8.3|1.1/ 2.8|/6.7|0.1/ 0.3| 6.7|0.1/ 0.3| 6.7|0.1 0.3
g35| 899 | 7 |50.8/26.5 32 |48.8/5.1/16.4/ 9.6 2.4/ 7.0| 8.7|0.6/ 5.1| 1.8|0.1/ 0.8
036|72830 2 (68.5/ 6.1| 7.3|68.3/1.4| 2.5(68.3/1.4| 2.5|68.3 1.4/ 2.5|68.3|1.4| 2.5
37| 1738| 8 |56.6/17.1|121.1)44.6|2.7| 4.9 |21.8/2.5/ 6.0(21.6/1.7| 3.1| 3.5|0.2/32.6
038 14 |9 (53.5/22.7|27.8/52.5/7.2| 14 | 1.4|2.6] 4.3|14.5/1.1|{18.9 0.9|0.1) 9.5
g39 183 |7 (49.3114.818.3 8.3|3.3/ 5.3(3.8(1.9/3.6|1.2|1.4{11.2/ 0.5|0.4/ 6.1
g40| 929 | 857.5/21.9/26.6(52.2/4.7| 9.5|27.7|2.5| 6.1 | 7.60.3/12.8 2.3|0.2| 8.9

105

Table A.11: Summary of the query runtimes for parsed queriestoglranlow frequency
labels

1 2 3 4 5

M |S|flr|s | f|r|s|flr|s]|f|lr|s|f]|r]|s
g41| 3555| 6 [55.913.2/116.1/146.3 2.6 | 5 |17.2/1.4/ 9.3| 7.0|0.3/6.0[5.4[0.2|7.1
g42| 651 | 958.6/25.6/31.2/46.2 7.1|11.9/24.1/1.8/13.7| 6.6 |0.5/7.6| 3.7 |0.2(5.6
43| 292 |10(62.1/26.9 33 |56.4{10.1/17.9/13.8/2.9| 8.5| 3.8|0.8/5.7| 2 [0.3(3.5
g44| 4830| 5(51.8/11.1113.7/43.1] 2.1 | 5.3|12.5/1.2| 2.2| 7.1|0.3/1.9| 6.1 |0.1|0.7
g45/74296 149.1 1.6| 1.8|49.1 1.6 | 1.8 (49.1/1.6] 1.8 (49.1/1.6/1.8/49.1/1.6(1.8
g46/3224Q0 3 |65.6/10.9| 13 |60.6/ 2.3 | 5.7 [34.9/0.5| 1.9 (34.9/0.5/1.9/34.9/0.5(1.9
g47| 1753| 7 |60.515.6/19.1/56.1] 4.2 | 9.1 (14.3/1.0| 5.7 | 5.2|0.7|2.4| 2.6 |0.5(1.4
g48| 28 |10|50.324.4{29.847.4 6.210.3(14.2/1.8/ 4.5|5.2|1.5/2.7| 4.8|1.5(2.2
g49| 1116| 8 |57.1/22.0/126.3 8.9| 6.0| 13 | 5.5|2.8/ 9.4 | 3.2|2.2|2.7| 2.2|0.8(3.7
g50(72830 2 |68.5/ 6.1| 7.2|67.8/ 1.4 | 2.5|67.8/1.4| 2.5|67.8/1.4/2.5|67.8/1.4|2.5

Table A.12: Summary of the query runtimes for parsed queries logér and medium
frequency labels

1 2 3 4 5
M S| f|r|s | flr]s| f|r|s|f|r|s]| f]|r]s
g51| 1906|8(52.4/17.821.7/48.4{4.1| 9 |25.7/3.6/6.0/ 8.1]0.9/13.1/11.2/0.5| 9.0
g52| 121 |8|93.520.825.4/19.5(4.2/10.8/ 2.2|0.8/3.4/ 0.6 |0.4/ 2.1| 0.1|0.1]| 0.1
053|742961|49.1 1.6| 1.8 (49.1/1.6| 1.8 49.1/1.6/1.8/49.1/1.6| 1.8 |49.1/1.6| 1.8
g54| 34 |7|44.7/10.913.8/35.8/2.2| 5.2/ 0.9/0.8/1.8/ 0.2]0.2| 0.5| 0.3|0.6| 1.0
g55| 1233|6|47.2/10.8/13.2/45.9/3.5| 6.5[17.4{1.6|2.7/23.4/0.9/16.5| 7.4|0.6| 3.0
056|742961(49.1 1.6| 1.8|49.1{1.6| 1.8 49.1/1.6/1.8{49.1/1.6| 1.8 49.1]1.6| 1.8
g57| 357 |8|49.7/13.316.2/ 9.2 3.1/ 6.1| 8.9(2.3|5.2| 7.4 |1.4/ 2.3| 1.6 |0.8/30.6
058/728302(68.5 6.1| 7.3|67.8/1.4| 2.5|67.8/1.4/2.5(67.8 1.4/ 2.5|67.8 1.4/ 2.5
05916257 4|57.7| 9.6 |11.5/56.5/3.9/10.5/22.3/1.0{3.9/17.3/0.3| 1.4 |17.3/0.3| 3.7
60| 966 |9|54.4/26.531.7/49.8/6.8/17.4/15.3/2.7/8.5[4.9/0.5/ 5.6 | 3.2|0.4| 3.5

Table A.13: Summary of the query runtimes for parsed querieshigly mediumandlow
frequency labels

1 2 3 4 5
flr | s|{flr|s|f|r|s|] f|r|s|f]|r]|s
53.9/10.4{12.6/52.9/2.3|3.8/52.3/2.8/3.9/25.5/1.0|16.5/10.3/0.2| 7.9
56.5 2.3|2.9|7.7|0.1/0.2| 7.7|0.1/0.2| 7.7]0.1) 0.2| 7.7 |0.1/0.2
59.5 8.4| 9.7 (58.9/1.5/4.6/58.9/1.5|4.6/58.9/1.5| 4.6 |58.9/1.5/4.6
61.7/ 9.9111.8/57.6/1.6/3.5/57.6/1.6/3.5|57.6/1.6| 3.5|57.6/1.6/3.5
49.11.6| 1.8/49.1/1.6/1.8/49.1/1.6/1.8{49.1/1.6| 1.849.1/1.6/1.8
51.6/13.2/16.1{49.8/3.4/8.6/32.6(1.2|5.7|25.7|1.1| 4.3|24.3/0.4/2.1
49.8 3.8| 4.3/49.8/3.8/4.3|49.8/3.8/4.3{49.8 3.8 4.349.83.8/4.3
48.7/14.2/117.4/45.5(2.7|5.1/45.3/3.5|5.2|45.7|3.5| 5.1 |44.9 3.5|5.1
68.5/6.1| 7.3|67.8/1.4/2.5/67.8/1.4{2.5/67.8/1.4| 2.5|67.8/1.4/2.5
52.2/112.7/15.0/51.7/2.5/8.8/36.2/1.9/2.9|35.1/0.6| 3.4 34.1/0.6/3.4

M
61| 8266
62| 7650
063(68541]
96470973
65/74296
66|20539
067/89451
68| 3478
069/72830
q70/31564

BINN R ORDNNN W

106

Appendix B

Proof of Lemmata and Theorems

In this chapter, we provide the proof of a few of the lemmata and theorerseries in
Chapter 5.

Lemma (Body of Lemma 5.2.1) For any two index keys, and s, over a given Sl, where

s1 3 s2, we have
(i) The posting list 0§, is always a subset of the posting listseffor filter-based coding.

(i) The posting list ofse is a subset of the posting list ef for root-split coding if and

only if s; and sy share the same root.

(iii) The posting list ofse is not guaranteed to be a subset of the posting list;ofor

subtree interval coding.
Proof of Lemma 5.2.1The proof is based on the structure of the three proposed codings.

(i) In filter-based coding only théid values are stored. If there exists a ttgan the
posting list ofss (i.e. so =), sinces; 3 so, then we haves; = t. The subtree

~ ~ ~

relationship,3, similar to subset relationship is transitive.

(ii) For root-split coding, when; = s, ands; andss share the same root, if there exists
a tuple< tx, lx, i, v > in the posting list ofso, sinces; = sq, it will be encoded

using the same interval codings for its root andy, lx, 7, vy > €xists in its posting

list. Therefores,'s posting list is a subset 6f;’s.

(i) For subtree interval coding, we prove using a counter example.rAgsue are given
a Sl withmss = 2 which has only the following tree index@dP(NN)(NN)(NN) .
Apparently,NP =< NP(NN), however, there are three entries in the posting list size
of NP(NN), while there is only one entry in the posting list sizeN#®, which proves

that the posting list of subtrees is not guaranteed to be supersets.

107

O]

Theorem (Body of Theorem 5.2.3)Given a query) and a subtree index with root-split
coding and maximum subtree siz&s, an optimal query plan fo€) cannot have a subtree

of size less thamss.

Proof of Theorem 5.2.3Assume by contradiction that there exists an optimal query plan
some of whose leaves have a smaller size thas, we denote this plan by, ;. We build

a planP,,; by growing the subtrees; at leaves ofP;,, whose sizes are less tharss as

opt
follows. We randomly add nodes frof to s; in such a way thag; holds its property of
being a subtree af) and stop whers;| = mss. Thus, each subtree at a leaff,, is a
subtree of a subtree at a leaf Bf,;. By Lemma 5.2.1 and Lemma 5.2.2 we have that the

selectivities of leaves aP*

oyt are at most as high as those/of,; and thereforef”; , cannot

be an optimal plan. O

Theorem (Body of Theorem 5.2.4)For every query) and sizenss such that@| > mss,

there exists a root-split max-coveér, i.e. for every subtree € C we havec| = mss.

Proof of Theorem 5.2.4We prove by induction thatin RC algorithm in Figure 5.9 com-
putes a max-cover.

Base. At the base of this algorithm, lineés— 9, min RC' assigns subtrees of sizess by
calling assign on). Theassign algorithm always returns a subtree of size equahts,
and therefore, base of the induction is proved.

Induction. Assume thatnin RC generates root-split max-covers for all childrer(pivith
size larger thamss. All children with size equal tenss will also be immediately added to
the cover by line$ and4 of the algorithm. Thus, if we prove thé} is also covered using
a subtree of sizeuss, the induction is proved. Once &J's children get coveredy will be
covered by a call tassign which is guaranteed to return a subtree of sizes. Thus, our

theorem is proved. O

Theorem (Body of Theorem 5.2.11)optimalCover returns a join optimal cover if (1)

mss < 6 and (2) injective matching is not assumed.

Proof of Theorem 5.2.11We assume that)| > mss, otherwise () can be covered using
a single subtree, which is obviously join optimaiptimalCover starts from the root of
Q. For each child: of @), we have one of the following three cases, [d)< mss, (2)

|c| = mss, and (3)|c| > mss. Case (1) is handled hyssign algorithm which we showed

108

join optimality in Lemma 5.2.10. Case (2) is directly assigned into an individual eseibtr
partition at line3 of the optimalCover. Finally, case (3) is handled by recursive calls of
optimalCover until either of cases (1) or (2) occur. Over internal nodes with condition
of case (1), as soon as enough of their children are assign and tieiinieg size reduces

to less thannss, optimalCover returns and leaves their handling to the ancestor which

satisfies case (1). As a resulitimalCover achieves a globally join optimal cover over

Q. O

Theorem (Body of Theorem 5.2.13)min RC returns the smallest root-split cover possible

if (1) mss < 6 and (2) injective matching is not assumed.

Proof of Theorem 5.2.13min RC handles internal nodes that fall into case (1) of the proof
in Theorem 5.2.11 different fromptimalCover. To avoid deep branching anomaly, it
requires that each internal node is assigned to a subtree, beforéitmgrcestors are as-
signed. As a result, there are cases whefe RC does not achieve optimality. However,
since all root-split covers have to handle deep branching anométyRC achieves the
smallest cover possible among them, by repeatedly calliaggn on non-assigned sub-

trees, which was shown to be optimal. O

Theorem (Body of Theorem 5.3.3)Given a queny, if there exist subtreesg andsp of
@ such thatsp hidessg, then there exist covers ovér which do not guarantee a correct

set of results if an injective matching is required.

Proof of Theorem 5.3.3We prove by showing how to build a cover which violates the in-
jective matching assumption. Singg hidessp, any tree that matches;, matchessp as
well. Therefore, if a cover requires; andsp to participate in the same join (e.g. a parent-
child join with their shared parent), any minimal tree that matches the subtrésirdog

sp and its parent, and for which there exist only a single node matching atleastode

of sp, will be a wrong match fo). The reason is thap requires distinct pair of nodes
matching nodes inp and their corresponding nodessp to guarantee injective matching.

Therefore, such a cover will violate the injective matching property. O

109

Appendix C

Supplementary Algorithms

A few supplementary algorithms are covered in this chapter.

subtrees algorithm This algorithm extracts all unique subtrees of sizéom an input
treet. The base of this algorithm, linesto 3, solves for the case where < 1 and
therefore, only one subtree is possible. For langeline 4 computes a vector of vectors,
which correspond to the different combinations 1 nodes can be selected from children of
t, to make subtrees of sizeovert. The rest of the algorithm computes all combinations of
subtrees whose sizes have been computeg dver children of and adds them as children
of t. For example, if. = 4 andt has three children with sizds 2 and1, Thencs will look

like {[3,0,0],[2,1,0],[2,0,1],[1,2,0],[1,1,1],[0,2,1]}. For each element @k which is a
vector of numbersynult stores the possible number of combinations possible. For instance
for [3,0,0], there are at most possible combinations, as all tBenodes will be selected
from child of ¢ with size4. In the worst case, this child has a root witfchildren which
leads to3 combinations of different possible subtrees of siaevert, using(3, 0, 0]. This

process will be repeated over all elementg©fintil all subtrees have been extracted.

combinations algorithm Given a vector of treest and a numbering value, this algo-
rithm computes the different combinations of sizes of treeg ithat add up to:. It works
by assigningt[c| from 0 to min(n, |vt[c]|) and for each assignment computing the different

combinations ovevt[1], ..., vt[c — 1], recursively.

110

subtrees(t,n)

1 ifn=0return 0
rI'ree = t.root, resVec < rilree
if n=1return resVec
¢s = combinations(t.children, |t.children| — 1,n — 1)
foriel,... |cs|
TC + 0, mult =1
for je1,...,|es[i]
T <+ subtrees(t.children[j], csli][j])
TC «+TCUT
10 if [T] >0

O© 0O ~NO O WN

11 mult = mult x |T|

12 forjel,...,mult

13 val = j

14 forkel,...,|TC|

15 m = val%|TCk]|

16 rTree.children < rTree.children UTC[k][m]
17 val = val /|TC[k]|

18 resVec <+ resVecUrTree
19 return resVec

Figure C.1: Algorithm for extracting subtrees of sizeooted att.

combinations(vt,c, n)
1 sum=0

foriel,..., |vt|

sum = sum + |vt[i]|
temp < 0, res < 0
ifc=0

if sum < nreturn res

elsetemp < n, res < temp, return res
if sum < nreturn res
TR+« 0
for j €0,...,min(n, |vt[c]])

TR <+ combinations(vt,c — 1,n — j)
12 forkel,...,|TR|
13 TR[k| « TR[kUj
14 res < res U TRIk]
15 return res

O©CoOoO~NOOUTh,WN

el
(N

Figure C.2: Algorithm that computes all the combinations of sizes of childrernead to a
given subtree size

111

