
Some Business Concerns around Service-Oriented
Architectures

Eleni Stroulia

Department of Computing Science
University of Alberta

stroulia@cs.ualberta.ca

Abstract. The objective of this paper is to explore the relationship between the
engineering of Service-Oriented Applications and some strategic and economic
concerns of the organizations that (consider to) adopt this architecture style for
the development of their software systems. To that end, (a) we discuss some
pragmatic observations regarding the potential role of SOAs in the current
economy, (b) we identify some distinct types of applications envisioned to be
developed in the SOA style, (c) we correlate some strategic business decisions
with different types of SOA evolution scenarios, and (d) we outline a novel
model for estimating the ROI of such evolution scenarios. This work rests
squarely within the newly articulated area of “Service Science, Management,
and Engineering (SSME)” [15,19] as an “interdisciplinary approach to the
study, design, and implementation of service systems, i.e., complex systems in
which specific arrangements of people and technologies take actions that
provide value for others”.

1 The role of SOAs in a Services Economy

It is becoming increasingly apparent that the services sector accounts for a
substantial percentage of the worldwide economic activity and that this percentage
has been steadily increasing. According to IBM [24] “The world is becoming one
global service system. Five of the top ten nations ranked by labor force size have
more than half of their labor working in services (versus agriculture or goods
production). China and India are not yet in the top five – but with roughly 40% of the
combined worldwide labor force, as these “sleeping giants” migrate towards services
the implications are profound.” Even more importantly, the percentage of workers
engaged by the services sector increases at the expense of the corresponding
percentages of workers in agriculture and goods production. These statistics underline
the increasing importance of the services sector in the world economy and give rise to
the need for clarifying which exactly activities are included in this sector.

According to Zysman [25], there are four different types of economic activities that
are accounted under the general label of “services”.
1. The first is an artifact of financial engineering: activities outsourced from

manufacturing are relabeled as services because they are conducted by different
organizations, even when they remain essentially the same.

2. The second category involves an increasing number of the traditional activities

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 2

involved in business-consumer interactions and between-business interactions.
3. The third service category accounts for the conversion of unpaid domestic work

(traditionally the responsibility of women) into commercial services, as women
increasingly work outside the home.

4. The fourth category represents a fundamentally new and innovative class of
service activities, facilitated by software systems, which are increasingly used to
formalize, codify and drive the execution of business processes.

This last category, characterized as the “fourth service transformation” by Zysman,
is the focus of this paper. Zysman points out that “tools and technologies based on
algorithmic decomposition of service processes may have the power to revolutionize
business models, by displacing and by complementing the people (involved in these
processes)” thus implying a tight inter-dependence between the evolution of today’s
software systems and the business processes they support.

Service-oriented architecture is a new software-engineering paradigm, which is
being increasingly adopted [38,39,40], and which advocates the design and
development of complex software systems through the composition of (independently
designed and developed) “services”. The term “services” in this context refers to
software components, which, although implemented in a variety of platforms and
programming languages, are interoperable through open XML-based specifications of
their interfaces.

A quite sophisticated stack of open standards (based on XML syntax) is currently
under development to support the specification of various aspects of service-oriented
applications. For example, in addition to the services’ interfaces represented in WSDL
[32], the run-time information exchange among services is governed by the SOAP
protocol [30], and the composition of services (including data and control flow among
them) is represented in BPEL [26]. These three specifications are quite mature, as
evidenced by the variety of existing implementations and tool support. A set of less
mature specifications are also under development to elaborate the nature of
transactional support required for these complex systems with long-running
workflows [37], the agreements between the collaborating services [35], and the
relevant security requirements [36].

The use of the term “service” in these two contexts, namely as (a) a value-
producing process between an organization and its customers (business context), and
(b) a reusable software component delivering a coherent set of functionalities
(software-engineering context), is an indication of the importance of the abstraction it
captures: “software services” can be recursively composed to develop complex
processes, whose execution, in turn, drives “business services”. The declarative
composition specification (in terms of WSDL and BPEL) constitutes an effective
formalization and codification (as per Zysman’s fourth definition) of the business
processes.

The specification process changes, and in some cases it even revolutionizes, the
current business processes since it explicitly considers which activities can and should
be automated, which should be mediated by organization employees (acting in
specific roles), which might be driven directly by the interaction between the
customer and the SOA application, and which should be outsourced to SOAs of the
organization’s business partners (B2B interactions).

This phenomenon signifies a “phase transition” in the traditional interface between

3 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

business-process modeling and engineering and software engineering, the most
significant aspects of which are as follows.
• Software-architecture descriptions are now visible to CEOs, who can consider

specific investments in IT adoption and evolution in the context of their strategic
business planning. On the opposite side, the economic and strategic business
concerns can now more explicitly influence software-architecture decisions.

• We are increasingly witnessing the development of domain-specific repositories of
software services, based on which complex compositions can be developed across
individual organizations. Although the global UDDI [31] repositories envisioned
by OASIS do not seem to gain sufficient momentum, business consortia develop
their own standardized vocabularies [2,10] to describe their products, information
and activities, thus paving the way to the development of shareable services
automating these activities and the information exchange among them.

• The SOA stack of standards supports a rich set of metadata, about sector-specific
vocabularies and software, which can be potentially considered in the context of
business decisions.
• Service-Language Agreements can be used to formalize different service

variants, corresponding to different classes of workflows subject to different
regulatory and performance constraints.

• As application sectors define standard vocabularies and services, test-beds can
be specified to define acceptable and desired performance targets, against which
new service implementations can be measured.

• Finally, as multiple services offering similar functionalities become available,
their user programmability, as reported in developers’ forums, becomes yet
another criterion for their adoption.

2 Innovations in the Service-Oriented Computing Paradigm

Having reviewed the general economic environment to which SOAs are envisioned to
contribute, let us now discuss the essential properties of this software design and
development paradigm.

The SOA paradigm is not fundamentally new; in fact, the field has already made
several attempts to develop standards for the composition of complex applications
based on independently developed components available in shareable repositories.
However, there is a set of important innovations that this new paradigm encapsulates,
which makes its widespread adoption more likely.

Services are network-accessible components, which may have been developed in
any of a broad range of programming languages. Their broad accessibility and
utilization is enabled by their WSDL-specified interfaces and the fact that at run time
they can be invoked through SOAP, an XML-based protocol. Never in the past have
interface-description languages been agnostic of programming languages and
platforms: CORBA has been partial to C++, COM/DCOM has depended on the
Microsoft platform, and, more recently, we have seen a variety of Java-specific
protocols (such as Jini for example) as part of “Java as middleware” trend [23]. The
SOA standards, based on XML, are open in a way none of these precursors were and
we are already seeing a variety of commercial and open-source IDEs supporting the

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 4

development of services in a variety of programming languages. Furthermore, SOAP,
the run-time invocation is also XML based and can be implemented on HTTP (as well
as on a variety of platform-specific protocols) which makes it less sensitive to
firewalls and other organization boundaries. The choice of XML as the syntax
underlying the SOA stack of standards constitutes an innovation of great potential
importance for their widespread adoption.

The second important innovation is the flexibility of the service-discovery
scenarios supported by the discovery-related standards. Originally, the UDDI [31]
registry structure and discovery protocol envisioned globally accessible repositories
of general services, organized under multiple overlapping taxonomies. However,
there were not enough rich taxonomies to precisely classify organizations and their
services, and no clear business motivation was articulated for why businesses should
advertise their software services in these registries, which were too public and did not
offer much support for the developers (beyond browsing). Consortia-specific and
private UDDI registries are seen some adoption and the Web-Services Inspection
Language (WSIL) [33] offers an alternative, lightweight scheme for the advertisement
and discovery of services, which should be increasingly usable as specific sectors and
consortia develop their own taxonomies for specifying the information they exchange
and their interactions [2,10].

Finally, the most interesting and powerful innovation of the new standards is the
fact that they enable recursive composition of services in increasingly complex
services specified in BPEL, whose interfaces are again specified in WSDL.
Traditional distributed middleware has aimed at “transparency”: through syntactic
extensions to traditional programming-language constructs, the middleware designers
have tried to hide from developers the complexities of accessing components outside
their system boundaries. By making distributed components seem just like any other
component – at the programming-language syntax level- the learning curve of the
middleware frameworks is simplified, at the cost, however, of hiding the
dependencies across domains of software ownership and control. This approach is
eminently inapplicable to today’s vision of enabling interoperation across
organizations through the Internet. Different organizations want to integrate their
software systems and processes in order to increase the effectiveness and efficiency of
their partnerships. At the same time, they need to maintain control over how to
manage their own software assets and how to grant access to their partners, subject to
their own strategic goals and governance rules. To enable the flexible maintenance
and possible evolution of processes involving multiple organizations, the rules of
composition among components across organization boundaries have to be explicit.
This is why BPEL is critically important for accomplishing the envisioned Internet-
wide interoperability across programming-languages and organization boundaries.

3 Some Issues in the SOA Research Agenda

We believe that the software-engineering research agenda [11] for supporting the
development and management of SOAs should cover the following four broad areas
of research.

5 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

Defining a taxonomy of SOAs: The first concern is to identify the different types
of SOAs, for which there is a pragmatic need. Not all new software systems should be
developed in the SOA style and some existing systems should probably be migrated
to an SOA style. The question then becomes to develop requirements-analysis
methods that can recognize when an organization should migrate to an SOA [26]
(whether through reengineering of existing systems or through development of new
ones according to best practices associated with each distinct type).

Run-time SOA monitoring and adaptation: Once an SOA is developed and
deployed, its run-time performance will have to be monitored to ensure that the
orchestration instances are progressing as expected and the various SLAs applicable
to the constituent services are respected. When orchestration instances fail or SLAs
are (about to be) violated, autonomic, run-time reconfigurations might be possible to
address the (potential) violations. Although there exist a variety of autonomic-
adaptation algorithms for managing the performance of different types of
computations (database query latency, network throughput, web-server request
throughput) the task of end-to-end management, especially when the constituent
components belong in different administrative domains, arises as a grand challenge in
SOA research.

SOA evolution management: Inevitably, SOAs will have to evolve. Evolution is
part of most software systems’ lifecycles and it is bound to be even more important
for SOAs, since evolvability is one of the main motivating factors for adopting the
modular SOA style for an application. Given the modular nature of SOAs, the
question then becomes to articulate (a) a taxonomy of “canonical” adaptations, (b) the
opportunities that may motivate them in the operating environment of the
organization that the SOA supports, and (c) the best practices for carrying out these
adaptations. A critical element of such a “best practices” list is a method for
understanding the economic trade-offs of SOA adaptations, especially when multiple
alternative adaptations are possible, in terms of return-on-investment estimation.

Mixed service delivery with SOAs: Finally, we have to study the nature of
interactions between SOA systems and users. This question will have to be informed
by ergonomic and cognitive-science theories about what tasks people are good at (as
opposed to tasks that people need help with) and by a study of the canonical roles that
people (employees and customers) fulfill in service processes. The BPEL4People
specification [29] is a first attempt at characterizing these roles, the nature of user-
system interactions they imply and what the technical solutions for the necessary user
interfaces might be. Clearly further study is required to refine our understanding of
people-mediated and automated activities so that SOAs can be developed with an
appropriate mix of the two types.

3.1 A taxonomy of SOAs

As an initial investigation of the question “what types of applications is an SOA good
for” we have examined research publications and white papers to come up with a set
of three distinct types of SOAs.

First, it is clear that SOAs, based on the web-services stack of standards, are
perceived as the natural evolution of business frameworks that support complex
business workflows. To date, we have seen organizations transition from legacy

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 6

systems, custom-built to the specifications of the organization, to (b) sector-specific
frameworks – like SAP and PeopleSoft – customized to meet the differential
requirements of each organization, to (c) J2EE (Java2 Enterprise Edition) frameworks
that enable a greater degree of flexibility in system development, enabling the
integration of COTS components with custom components, which sometimes may
wrap legacy subsystems. This trend has been driven by the need to map the
organization’s processes onto its software systems (through integration of custom
elements) while at the same time enabling (some) integration with partner systems
(through reuse of general frameworks and integration of COTS). Both these
requirements are extremely well met by the SOA standards, in fact better than all
these previous middleware as application sectors standardize their information and
interactions. Therefore, we expect to see a third wave of transitions to standard SOAs,
especially from J2EE systems (since there is substantial tool support for this type of
migration).

We believe however that there is an interesting conceptual difference between
J2EE components and services, which should be accounted for in this transition.
Although, services are frequently discussed as analogous to java interfaces and
classes [7], they are meant to offer a coherent set of related functionalities, which
together support an interesting complex capability and would be more appropriately
conceived as use cases, for modeling and assembly purposes, which could be reverse
engineered from the existing system, in cases of migration to SOA. Then, a WSDL
specification can be developed to describe the external interface of the service and a
BPEL specification can be developed to define its usage protocol. These two
specifications can enable automatic means-ends compositions of services, possibly
even at run time [5,6].

A different type of services is exemplified by mash-ups. According to Vint Cerf
“mashups represent new ways of applying existing basic infrastructures, not originally
intended by their designers” [1]. This ad-hoc and opportunistic development of
services is becoming especially interesting when associated with an on-line social
network since it supports “long- tail” business activities [3]. Essentially, social-
networking sites enable the formation of small niche markets of people with common
interests, thus defining target markets for niche products and services, which might
not be profitable in a more traditional economies-of-scale model. According to an
Amazon employee: “We sold more books today that didn't sell at all yesterday than
we sold today of all the books that did sell yesterday.” [3] SOA as an enabler of
efficient, low-cost service composition is well poised to become the de-facto
architectural style for developing such niche applications.

The third distinct type of SOAs are motivated by the need to exploit
cyberinfrastructure installations. The term cyberinfrastructure denotes a collection of
powerful computational clusters, large-capacity storage devices, high-speed wired
networks, ad-hoc, mobile networks and sensor networks. Today these installations are
being used for special, resource intensive applications developed by researchers’
teams, mostly in areas such as E-Science. The grid middleware [34] builds on the
web-services standards to provide additional support for this type of applications,
including job scheduling, data distribution and load balancing, aiming at the
virtualization of the underlying resources and the simplification of application
development on them, so as to encourage a wider variety of applications by a larger

7 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

community. As the variety of grid applications and the types of underlying hardware
resources increase, more middleware for enabling the efficient development of
applications needs to be developed. As grid services are increasingly adopted, we
expect to see extensions of this type of SOA middleware, designed to enable the
utilization of other types of resources, such as sensor and RFID networks. This is a
necessary pre-requisite for exploiting the promise of these inexpensive devices that
are envisioned to cover our world with “smart dust” feeding us with continuous
information about it.

3.2 Run-time SOA Monitoring and Adaptation

Autonomic computing has been, in recent years, a fertile area of research, focusing (a)
on predicting trends in the performance of the subject system and (b) configuring the
system’s operating parameters so that it meets its performance requirements. To our
knowledge, most autonomic-computing solutions focus on monitoring and managing
homogeneous system resources, at a small temporal granularity.

Two fundamentally new autonomic-configuration problems arise in the context of
complex SOA applications. First, as a natural extension to autonomic performance
management, research will have to address end-to-end management of complex
systems. In this more complex conceptualization of the problem, one has to consider
that the subject system utilizes a variety of resources and that, for any given
anticipated violation, multiple alternative reconfigurations might be relevant, each one
addressing different plausible root causes, having different impact to the system
configuration, and implying different costs and risks. The objective then will be to
synthesize multiple sources of performance metrics, to infer alternative root causes
that could “cover” the collected evidence, and to decide on an economic and effective
reconfiguration.

The second autonomic-management task is to recognize orchestration failures due
to the independent evolution of the constituent services. Even when the WSDL
specifications of these services do not change, their usage protocols may change due
to the particular policies and regulations to which they may be subject. For example,
suppose that Organization A starts imposing a particular ordering to the invocations
of two of its operations that used to be independent. BPEL orchestrations that used to
work will now start to fail. If BPEL orchestration middleware becomes explicitly
aware of the usage protocols of the constituent services, when they evolve it will be
able to automatically reconfigure the failing orchestrations to accommodate the
changes.

An initial approach to addressing this problem is exemplified in our WRABBIT
project [5,6]. This research examines the avoidance of orchestration failures that
result from out-of-sync service-usage models. WRABBIT views service composition
and coordination as a conversation among intelligent agents, each of which is
responsible for delivering the services of a participating organization. Each such
service is characterized by its WSDL interface and the abstract BPEL specifications
of its usage protocols. In this context, an agent is a layer wrapping each peer
organization, and is able to communicate with the other agents responsible for partner
services, recognize mismatches between its own conversation model and the models
of other agents (as these are revealed by conversation failures), and adapt the models

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 8

as necessary to eliminate these errors. This approach applies to situations where the
basic information and operations required for the successful completion of the agents’
conversation is available to them and failures can be addressed by renegotiating the
conventions of the conversation. Further research is necessary to address failures
resulting from actual differences between the required and available ontologies and
operations.

3.3 SOA Evolution Management

3.3.1 SOA Modification Operators and Scenarios

Software-architecture research has identified several qualities supported by modular
design [19, 12]. Baldwin and Clark [4] examined specific software systems – like the
IBM 360 – which owed their significant business success in their modularity. Based
on their case-studies analysis, they formulated six modularity operators, in terms of
which any change to a modular system can be described:
(a) Splitting - Modules can be separated into multiple independent modules.
(b) Substituting - Modules in a system can be substituted by other modules.
(c) Excluding - Existing Modules can be removed from a system to build a new

solution.
(d) Augmenting - New Modules can be added to systems to create new solutions.
(e) Inverting - The hierarchical dependencies between modules can be rearranged.
(f) Porting - Modules can be applied to different contexts.

In this subsection, we discuss different variants of the above operators in the
context of SOA evolution scenarios, we identify potential business-strategy contexts
that may motivate these scenarios, and we review the tool support that they require.

Splitting: As a particular service becomes increasingly reused in the context of
multiple SOAs, a variety of SLAs may be developed to further refine the constraints
on its performance. For example, a given service may be invoked to provide just-in-
time updates of a real-time variable, like stock prices, or a periodic report of the same
variable at a lower cost to the subscriber.

Furthermore, different types of usage protocols may emerge as variants and/or
refinements of its original usage protocol, based on the needs of its clients. For
example, some clients may use only a subset of the possible combinations of the
service operation parameters, i.e., for low-cost items in a product catalog, users never
exercise the additional insurance-buying option. According to the “Interface
Segregation principle” [16] clients should not depend on interfaces they do not use;
therefore as particular variants of the original service become widely adopted, a new
service should be developed to meet these specific needs.

To enable the recognition of service variants as candidates for becoming
independent services, an automated monitoring capability could be exploited to
recognize patterns in the SLA constraints and the usage record of a given service by
its various clients. In addition, an automated workflow-refactoring process could
potentially support the integration of the discovered variant services as potential
alternatives for (some of) the roles that the original general service used to fulfill.

9 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

Substituting: Several different types of substitution scenarios exist. First, an
organization may decide to provide an automated alternative for an employee-
mediated task. For example, while previously a customer had to contact an employee
to place an order, an on-line product-order form is now available. This type of
substitution does not appear to require any special support, if there already exists a
user interface for the employee receiving the order; this user interface can be migrated
to a web-accessible platform and can still drive the original order service.

Alternatively, an organization may decide to select an alternative partner for an
outsourced service, such as instead of using the FedEx “Saturday delivery” service,
they start using a similar UPS service. This scenario requires support for an example-
based service discovery API: developers can use the interface and usage protocol of
the service they currently employ as an example for discovering similar services that
can be used to fulfill the role of the retired service. Neither UDDI [31] nor WSIL [33]
offer such an API but a substantial body of research exists in this area, including some
of our own integrating lexical, syntactic and semantic information available in WSDL
specification to assess similarity [21,18]. This work is not mature enough to support
automated discovery, which will eventually rely on semantic-web technologies.

Excluding: At any point in time, the process-monitoring engine may recognize
that execution paths, although possible in terms of the BPEL-orchestration
specification, are not actually exercised. For example, a path of a “pick” structured
activity is never exercised, since users never choose to fill optional questionnaires. Or,
alternatively, some condition in a “case” structure activity is never met. In such cases,
all redundant services may be excluded from the process, so as that the specification
better reflects the actual practice. To support this type of modification, one envisions
a BPEL-process transformation utility, which should be able to automatically
transform the configuration of the affected BPEL structured activities, ensuring the
consistency of the impacted data and control flow.

In cases where some parts of a service are used while others are not, when for
example only a subset of the service API is used – when the monitoring engine for
example observes that the high-cost stock-price service variant is not used - this
modification may necessitate a “splitting” operator first, before excluding the not
utilized parts of the service interface.

Augmenting: One can imagine a variety of augmentation scenarios, motivated by
the organization’s need to differentiate its offerings from those of its competitors and
its own current offerings. The first is conceptually the inverse of the “splitting”
scenario: through SLA negotiations, the organization may discover that an extended
variant for an existing service is required. For example, in addition to the notification
that an order is ready for pick-up, a feed for changes to the transit state of the order
may be desired by some clients. Another augmentation scenario is conceptually the
inverse of the “excluding” scenarios above: a new service may be added as one more
option in a “pick” structured activity. For example, a new discounting mechanism is
added to enable a new type of special pricing promotions. Both these types of
scenarios require some support from the BPEL-process transformation utility.

The above augmentation scenarios have a rather local impact on the BPEL process
specification. One can imagine a more challenging augmentation scenario. For
example, the organization may decide to offer more features in its process, such as to
enhance a product-catalog service with a recommender service. Or, motivated by a

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 10

strategic partnership, the organization may decide to integrate its processes with a
partner’s process. For example, in addition to selling the products in their own
product catalog, a business may act as reseller to a partner product catalog, thus
necessitating additional interactions with the partner accounting and warehousing
services. These types of augmentation modifications will require a sophisticated
BPEL-process planning utility.

Inverting: Inversion scenarios are essentially standardization scenarios. For
example, in order to enable the introduction of multiple alternative services where
only one was invoked, the essential, and common across all alternatives, interface
needs to be decided. Consider, for example, the case where a business product catalog
enabled books’ ordering only and has evolved to also enable ordering CDs. At this
point, if the more general “product” concept is specified, any spurious book-related
dependencies between the ordering process and the original product-catalog service
can be eliminated.

Porting: Two fundamentally different porting scenarios exist. The first involves
the migration of an application from a traditional middleware platform to an SOA
relying on the web-services tack of standards (e.g. from a J2EE framework to Apache
Axis). This scenario can be supported by code-transformation tools. Although to our
knowledge no such tools exist yet for this specific transformation, there is a
substantial body of research in syntactic code transformations [10], which could
provide a substantial basis for this task.

A different type of porting scenario may involve the migration of a service from
one domain to another, such as for example, porting a book product-catalog service to
the DVD domain. This type of modification would be motivated by the organization’s
need to expand its offerings and would require support with the alignment of the
ontologies underlying the source and target service domains [26].

3.3.2 Return-on-Investment estimation of SOA decisions

We hope that the example scenarios motivating the SOA modification operators in the
above subsection sufficiently demonstrate that the gap between investing in SOA
development and evolution and enabling strategic business decisions becomes
increasingly smaller. This implies the need of a more sophisticated model for
estimating the cost and the value of any particular SOA evolution investment.

Traditionally, software-engineering economic models have focused on the
prediction and analysis of the costs associated with the development of an application
[7]. The implicit assumption is that the value of a software product is known from the
outset, based on a contract between the software company and the business client. As
the value is constant, profit for the software development company can be maximized
simply by reducing operating and development costs.

In our recent work [22], we have been examining present an initial step towards
such an integrated model for cost/value estimation of SOA evolution. We adopt
COCOMOII [8] as a software-development cost-estimation model because it
explicitly models software-development cost as a function of several factors of the
reuse-based development process, which SOA represents. In effect, COCOMOII
estimates the cost of creating a software-development project as a function of the

11 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

complexity of the transformation of the application from an existing state to its
envisioned state. In estimating the value of a software-development project, one has
to consider both the revenues produced directly by marketing the newly supported
services and also the non-tangible value of the potential service that could “easily” be
built in the future using the evolved service-oriented application.

The flexibility and reusability of a service composition can be modeled with real
option theory [12]. Real-option analysis, in conjunction with traditional service-
valuation market research, enables the determination of the value of an SOA project.
Combined with the cost analysis of developing and maintaining the system, a
complete service-based economic model can be developed.

3.4 Mixed Service-Delivery with SOAs

Today, mixed-contact B2C service-delivery processes, i.e., processes incorporating
automated, self-service and employee-mediated activities, are the de-facto standard
for service delivery. For example, customers may order goods from the online product
catalog of a business, pay through PayPal, have the products shipped to their address,
receive them, and then benefit from ancillary services, such as an exchange policy,
and a bricks and mortar store near them.

Given this range of interactions among consumers, employees and systems in the
context of service delivery, the research question becomes to design and manage
high-quality service-delivery environments, with multiple heterogeneous points of
contact between the consumers and the environment. To date, SOA standards have
been mostly silent regarding the roles that people play in the execution of BPEL-
driven processes: any such interactions have to be hidden as asynchronous messages
sent to the process. The BPEL4People specification [29] is layered on top of the
BPEL language so that its features can be composed with the BPEL core features
whenever needed. It represents an effort to define the types of roles that people play
and the precise mechanism by which the user interfaces through which they interact
with the SOA can be integrated with the core BPEL process.

In this context, the service-delivery environment should be designed to
accommodate heterogeneity in how diverse groups of consumers utilize the mixed
contact automated and employee-delivered service. In the end, the technical
specifications of the automated and human service-service delivery systems must
translate into customer-relevant service quality attributes (including service fees) that
yield both customer satisfaction and organizational sustainability (i.e., profitability).

4 Concluding Remarks

In this paper, we have attempted to discuss a framework around research activities in
the area of SOA engineering and to provide an overview of some important pragmatic
concerns for this research. To summarize, we have tried to argue that
1) SOA is well suited to support traditional business processes, offering a huge

potential inter-organization system integration. Furthermore, it is also appropriate

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 12

for the development of ad-hoc, bottom-up integrations of existing services to
deliver functionalities to niche markets of social networks. Finally, it can provide
a powerful vehicle for software development for a wide variety of applications on
cyberinfrastructure.

2) Run-time SOA management requires solutions to a more extended set of
problems than the ones addressed by traditional autonomic-computing work, such
as dynamic process workflow reconfiguration and end-to-end SLA management.

3) The evolution of SOA systems closely reflects the evolution of the organization
business processes and it can be understood in terms of the Baldwin-and-Clark
modularity operators. This type of systematic understanding also enables the
cost-effectiveness analysis of each considered evolution scenario, based on
software-development cost estimation and the real options created for the
organization by the evolved SOA.

4) Finally, we argue that SOA orchestration should explicitly model the role of the
users involved in their execution, as most organizations today rely on mixed-
service delivery processes, involving multiple contact points among customers,
employees and automated software systems.

13 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

References

1. Q&A: Vint Cerf on Google's challenges, aspirations
http://www.computerworld.com/developmenttopics/development/story/0,1080
1,106535,00.html, November 25, 2005

2. Allianz Global Risks, Sekhon Associates: Allianz Global Risks: International
Claims Reporting Using ACORD XML and Web Services.
http://www.acord.org/Standards/pdfs/AllianzSekhon.pdf, February 2005

3. Chris Anderson: “The Long Tail: Why the Future of Business Is Selling Less of
More”. Hyperion, 2006.
http://longtail.typepad.com/the_long_tail/2005/01/definitions_fin.html

4. Carliss Y. Baldwin, Kim B. Clark: “Design Rules, Vol. 1: The Power of
Modularity”, MIT Press Cambridge, MA, USA, 1999.

5. Warren Blanchet, Eleni Stroulia, Renée Elio: Supporting Adaptive Web-Service
Orchestration with an Agent Conversation Framework. ICWS 2005: 541-549

6. Warren Blanchet, Renée Elio, Eleni Stroulia: Conversation Errors in Web
Service Coordination: Run-time Detection and Repair. Web Intelligence 2005:
442-449

7. Barry W. Boehm, Kevin J. Sullivan: Software economics: a roadmap. ICSE -
Future of SE Track 2000: 319-343

8. Barry W. Boehm, Alexander Egyed, Daniel Port, Archita Shah, Julie Kwan,
Raymond J. Madachy: A Stakeholder Win-Win Approach to Software
Engineering Education. Annals of Software Engineering 6: 295-321 (1998)

9. William R. Cook, Janel Barfield: Web Services versus Distributed Objects: A
Case Study of Performance and Interface Design. ICWS 2006: 419-426

10. James R. Cordy: The TXL source transformation language. Science of
Computer Programming 61(3): 190-210 (2006)

11. Philippe Deschênes: B2B Business Models- Case studies, MCETECH2006,
http://www.michelleblanc.com/images/Presentation%20of%20various%20B2
B%20Business%20models%20case%20study.pdf

12. M. Hakan Erdogmus, Jennifer Vandergraaf: Quantitative Approaches for
Assessing the Value of COTS-Centric Development. IEEE METRICS 1999:
279-

13. Rick Kazman, Mark Klein, Paul Clements: ATAM: Method for Architecture
Evaluation,
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.html

14. Kostas Kontogiannis, Grace A. Lewis, Dennis B. Smith, Marin Litoiu, Hausi A.
Müller, Stefan Schuster, and Eleni Stroulia, “The Landscape of
Service_Oriented Systems: A Research Perspective,” Proceedings
International Workshop on Systems Development in SOA Environments
(SDSOA 2007); Workshop at 29th IEEE/ACM Int. Conf. on Software
Engineering (ICSE 2007), Minneapolis, Minnesota, USA; May 21, 2007, 6
pages, May 2007.

15. Paul P. Maglio, Savitha Srinivasan, Jeffrey T. Kreulen, Jim Spohrer: Service
systems, service scientists, SSME, and innovation. Communications of the
ACM 49(7): 81-85 (2006)

Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures 14

16. Robert Martin: “The Interface Segregation Principle”,
http://www.objectmentor.com/resources/articles/isp.pdf

17. Robert Martin: “The Dependency Inversion Principle”,
http://www.objectmentor.com/resources/articles/dip.pdf

18. Rimon Mikhaiel, Eleni Stroulia: Examining Usage Protocols for Service
Discovery. ICSOC 2006: 496-502

19. David Lorge Parnas: On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM 15(12): 1053-1058 (1972)

20. Linda Dailey Paulson: Services Science: A New Field for Today's Economy.
IEEE Computer 39(8): 18-21 (2006)

21. Eleni Stroulia, Yiqiao Wang: Structural and Semantic Matching for Assessing
Web-service Similarity. International Journal of Cooperative Information
Systems 14(4): 407-438 (2005)

22. Brendan Tansey, Eleni Stroulia: Valuating Software Service Development:
Integrating COCOMO II and Real Options Theory, 29th International
Conference on Software Engineering Workshops, 2007: 87-89.

23. Tom Welsh: Has Java become middleware?
http://www.middlewarespectra.com/abstracts/2000_11_06.htm

24. John Zuk: “IBM Venture Capital Group Report” 19 Oct 2005, http://www-
304.ibm.com/jct03004c/businesscenter/venturedevelopment/us/en/inthenewste
mp/!!/gcl_xmlid=35968

25. John Zysman: The algorithmic revolution---the fourth service transformation.
Communications of ACM 49(7): 48 (2006)

26. Ontology Alignment Evaluation Initiative, http://oaei.ontologymatching.org/
27. ISIS Approach: Service Migration and Reuse Technique (SMART)

http://www.sei.cmu.edu/isis/smart.htm
28. BPEL: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
29. BPEL4People

http://www.ibm.com/developerworks/webservices/library/specification/ws-
bpel4people

30. SOAP: http://www.w3.org/TR/soap
31. UDDI: http://www.uddi.org/
32. WSDL: http://www.w3.org/TR/wsdl
33. Web Services Inspection Language:

http://www.ibm.com/developerworks/library/specification/ws-wsilspec/
34. Open Grid Services Architecture, http://www.globus.org/ogsa/
35. Web Services Agreement Specification,

http://www.ogf.org/Public_Comment_Docs/Documents/Oct-2005/WS-
AgreementSpecificationDraft050920.pdf

36. Web Services Security,
http://www.ibm.com/developerworks/library/specification/ws-secure/

37. Web Services Transactions specifications,
http://www.ibm.com/developerworks/library/specification/ws-tx/

38. Web Services usage survey, CBDI report
http://www.cbdiforum.com/bronze/webserv_usage/webserv_usage.php3

39. Adoption of Web Services and Technology Choices, TechMetrix Research
http://www.techmetrix.com/products/products.php?type=rep

15 Eleni Stroulia: On the Evolutionary Development of Service-Oriented Architectures

40. Gartner Surveys Show Web Services Are Entering the Mainstream
http://www4.gartner.com/DisplayDocument?doc_cd=114570

