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Abstract

Heavy oil produced from a well must be transported from the well to a processing
facility. In Eastern Alberta and Western Saskatchewan, the primary method of
transport is by tanker truck. Oil producers are concerned about using pipelines
because of the potential for extreme pressure loss due to the high viscosity of
heavy oil. Viscosity of heavy oil is highly dependent upon temperature; therefore,
any calculation of pressure losses must consider the temperature of the oil
throughout the length of the pipeline. A steady-state calculation is easily done,
but this does not allow consideration of seasonal temperature changes and the
effects of changes in flow rate, and start ups and shutdowns. The present work is
the construction of a model for calculating temperature (and therefore viscosity

and pressure loss) in a heavy oil pipeline in transient conditions.
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1. Introduction

1.1 Background
In Eastern Alberta and Western Saskatchewan, particularly in the Lloydminster to

Cold Lake region, there are many heavy oil reservoirs. The oil found in this area
can have API gravity ranging from 8-15, and viscosity as high as 250,000 cp.
(See Section 2.3.1 for a definition of API gravity.) These reservoirs are typically
400 m to 600 m below the surface. (In general, the further north, the shallower
the reservoir.) A typical production well drilled intc these formations has the
following periods in its life:

e Start-up. This period is typically on the order of a few days. Production
rates ramp up from zero to a stable value in this time.

e Low water. In this period, which can last up to five years (although in
some wells it can be very short or even non-existent), the amount of
produced water is low (0-10%). There can be significant sand
production; in extreme cases as high as 50% of the total production earlier
in this period, although it typically decreases with time to about 2-5%.

e Water-breakthrough. Eventually, the water layer below the oil in the
reservoir breaks through to the wellbore, and the water fraction increases
drastically in a short period of time (perhaps a few months). Sand
production from this point on is typically quite low (0-5%).

® High water. For the remainder of the life of the well, far more water than
oil is produced. The water fraction will typically increase slowly
throughout this time.

The flow rate of oil from one of these wells can be 5-30 m¥d in the low water
period, and will normally decrease after water breakthrough, although the total

rate of produced fluid can increase dramatically after water breakthrough.



These heavy oil wells are usually produced with downhole progressing cavity
pumps. These are rotating positive displacement pumps, which have a non-
pulsating flow and a low internal shear rate. Many older wells still use the
commonly seen reciprocating pumps (evidenced by the presence of a pump jack

at surface), but these wells are usually producing high water fractions.

Figure 1.1 shows a typical heavy oil lease in this area. (This particular wellsite is
near Cold Lake.) Visible is the wellhead, with a drivehead for rotating the rods
connecting to the progressing cavity pump downhole, a hydraulic system (for
powering the drivehead) driven by a propane-powered internal combustion
engine, the flow line from the well to the tank, and the burner on the tank (the

projection on the right side of the tank) for heating the fluids within.

Storage Tank

PCP Drivehead
Burmner

Figure 1.1 A typical heavy oil lease

The oil produced from the well is normally piped a short distance (approximately
10 m) to a tank on the lease. This tank is heated to about 70°C. At this



temperature, the oil viscosity is substantially reduced from the temperature at
which it was produced (typically 15-20°C for Alberta and Saskatchewan heavy oil
wells). The lower viscosity is important to facilitate the separation of the oil,
water, and sand within the tank. The oil and water are drained from the tank into
tank trucks and transported in the trucks to a processing facility (called a battery).
The sand is emptied from the bottom of the tank using a vacuum truck and is

taken to a cleaning and disposal facility, which may or may not be located at the

battery.

There are several reasons why trucking the fluids from the wellsite to the battery
may not be the optimal solution for transport. Expense is a major issue. There is
no economy of scale for trucking fluids: the truck operators, who are independent
contractors, get paid per load, regardless of the number of loads that they carry.
This is especially of concern after the water breakthrough occurs. The oil
producing company must transport all the fluids from the wellsite: as the amount
of water increases, this clearly becomes more and more expensive, while the oil
production, and therefore revenue, decreases. A typical heavy oil reservoir has
less than 5-10% of the oil in place produced before it becomes either uneconomic
or technically unfeasible to continue producing wells in that reservoir. If the
relative cost of producing water from these reservoirs can be decreased, in many

cases it may be possible to increase the overall production from the reservoir.

Secondly, the areas of Alberta and Saskatchewan where these heavy oil reservoirs
are located are rich agricultural regicns. The wells are located in farmland, and
the roads from the wells to the batteries run through farmland. These roads
therefore are also used by farmers, and many of these farmers are unhappy with
the increasing numbers of large tank trucks driving around their neighbourhoods.
They are concemed, justifiably, with safety. They are also unhappy about the
noise produced by the large trucks, and about the dust thrown up by the trucks



driving on dirt roads. As the number of wells increases, and the flow rates from
each well increase as water breaks through, the amount of truck traffic will clearly

increase, and with it, the farmers’ concems.

The farmers place pressure on the regulatory bodies (in Alberta, this is the Alberta
Energy and Utilities Board, or AEUB) to reduce truck traffic. The farmers also
complain to the regulators about many other issues, including flaring and venting
of gas, and disrespect of their land by some oil company personnel. At one level,
the regulators have addressed this by requiring the oil companies to designate
specific truck routes. This is only a partial solution, though. The regulators have
in recent years encouraged oil companies to consider the possibility of pipelining
oil from the wells to the batteries. In fact, in their approval of one heavy oil
operation, the AEUB required one oil company to do a feasibility study (or

participate in a joint study) of pipelining heavy oil.

In lighter oil fields in the rest of Western Canada, and in fact in onshore light and
heavy oil fields around the world, it is most common for oil to be piped from the
wells to the batteries in pipelines. There are reasons why this has not commonly
been done in the Lloydminster-Cold Lake area:
® The viscosity of the oil in this area is among the highest found in any
oilfield in the world. Highly viscous fluid is problematic to flow in
pipelines of any significant length due to exceptionally high pressure
losses.
® The oil flow rates are typically quite low, as mentioned earlier. This
means the revenue stream is smaller than in most other oilfields in
Western Canada, and around the world. In addition, heavy oil is normally
worth less money per barrel then lighter oils; this further reduces potential

revenue from heavy oil wells. Oil companies are less likely to be willing



to spend capital dollars installing pipelines when the payback period is
quite long.

® In order to flow heavy oil through a pipeline, it would normally have to be
heated in order to reduce the viscosity. Because the climate in Western
Canada is so cold, especially in the winter, heat loss from a hot oil pipeline
becomes a significant concern. This is especially true if an unplanned shut
down occurs, for example if a power failure causes the pump to shut off.
As the oil is stationary within the pipe, it cools further, possibly to the
point at which it will become impossible to restart the flow without
expensive intervention.

® Sand content is a concern to the operators, who are not confident in the

ability of a heavy oil pipeline to carry sand.

Other heavy oil fields around the world, which do use pipelines to transport oil
from the wells to the batteries. have a some significant differences as compared to
Western Canadian heavy oil fields:

e They have much higher flow rates. This means that revenue is higher.
The capital cost of a pipeline is then less of a concem. It also means that
they can afford to import diluent from lighter oilfields to mix with the
heavy oil before transporting it. (This is common practice in Venezuela,
for instance.)

® In most cases, the climate is significantly warmer than in Canada. This
means the heat loss issues are significantly less of a problem.

¢ The oil is typicalily less viscous than in Western Canada, even for the same

density of oil at the same temperature.

Within Western Canada, there is essentially no activity in the area of pipelining
heavy oil with low water fractions in a gathering system situation. A few areas do

use pipelines to transport heavy oil from wells to central facilities, but these are



virtually all mixed with water in large amounts (either produced from the well in
large quantities, or recirculated from the facility) to ensure the overall pressure

loss is small.

1.2 HOGS Joint Industry Project, Phase I (HOGS I)
In 1998, C-FER Technologies, a research company located in Edmonton, formed

a joint industry project (JIP) entitled Heavy Oil Gathering Systems Alternatives
(HOGS). Several oil producing companies in Alberta and Saskatchewan, in
addition to the government of Alberta, joined the project. Some time after the JIP
was completed, in mid-1999, an Argentinean oil company also decided to join the

project in order to obtain its results.

1.2.1 Scope

The project was intended to consider alternatives to trucking over a wide range of
possible operating conditions. from both the technical and economic points of
view. Factors which were considered included fluid type, pipe size, pipeline
length, insulation thickness, cost of construction, price of oil, cost of water
disposal, discount rate, production performance, and many others. It would then
be possible to determine which conditions would be best suited to further study,
and which would be best left at the status quo (i.e., trucking). It would also
address which factors had the greatest effect on project economics. A technical
model was developed for the project which estimated pressure drop under steady
state conditions. It was not considered feasible to develop a transient model and
run hundreds of possible scenarios within a reasonable time frame. More
practical was to use a simpler (and much faster) model to screen the large number

of cases, and if the results were promising, a more detailed model could be built at

a later date.



1.2.2 Results
The first phase of HOGS indicated that it could be economically feasible to

pipeline heavy oil in many cases [1]. This is particularly true if wells were drilled
in a pad configuration, with several wells producing into the same lease tanks and
from there, pumped into the same pipeline. An added advantage of this is that the
technical and economic feasibility of the recovery of natural gas vented from the
well casing and from the tanks is improved. The effects of gas entrained in the
pipeline along with the produced oil and water are not considered in the present

work.

If a well is produced only until the water breakthrough occurs, it may not be
profitable to build a pipeline. However, if the pipeline was constructed at the start
of the well’s life, the pipeline would, in many cases, not only be profitable, but
have an improved net discounted cash flow over the life of the well, as compared
to trucking. This is because the cost of transporting the increased water from the
well by pipeline is very small compared to the cost of trucking it. Reduced water
handling costs lead in turn to an increased well life, since a well would be

produced only so long as its revenue exceeds its operating costs.

HOGS I analyzed a set of typical well production histories over the entire lives of
the wells (i.e., with varying water, oil, and sand flow rates). The flow calculations
assumed various types of flow regime, described in more detail in Chapter 2.
Where water needed to be added or removed from the flow to satisfy limits on
some of these flow regimes, the water could be sourced or disposed through a

second pipeline, a water source or disposal well, or by trucking.

The results from HOGS I of most relevance to the current work were the

following:



Heavy oil pipelines with higher flow rates are more likely to be technically
feasible. This makes groups of directional wells drilled from the same site
(a “pad” of wells) more attractive. (Some companies now routinely drill
pads of wells for other reasons.)

Short pipelines are more likely to be technically feasible.

Less viscous oil is more easily pipelined.

Flow regimes such as core-flow or water-assisted flow have the potential
to greatly increase the range of application of pipelining to heavy oil
transport, but have limits which must be addressed.

When a well is in its later stages of life, producing a very high water
fraction, the problems are more likely to be economic than technical
(although it must be assured that the produced water has a high enough
salt content to prevent freezing in longer pipelines, or if the flow is

stopped for some reason in winter).

These points will be addressed further in Chapter 2.

1.3 HOGS Joint Industry Project, Phase II (HOGS II)
The current work was conducted as part of the HOGS II research project.

1.3.1 Scope
The sole deliverable of HOGS II is a software tool for calculating the effects of

transient variations on the flow conditions in a heavy oil pipeline. Transient

conditions that could have an effect could include the following:

Seasonal temperature variations
Starting flow of hot oil into a cold pipe
Temporary stoppage of flow

Preheat of pipe by flowing hot water

The software tool will also be able to consider conditions such as:

Varying flow rates and water fractions through the life of the well



o Different flow regimes (emulsion, addition of diluent, core/annular flow,
water-assisted flow)
The work described here constitutes the technical development behind this

software tool.

The scope of this work does not include pressure transients caused during the start
and stop of flow (often called “water hammer”). Pressure waves caused by these
transients travel through the fluid at approximately the speed of sound in the fluid.
The current work is concerned with pressure effects caused by thermal transients.
The time scale of these effects is much longer. For the remainder of this work,

the term “transient” is used to refer only to thermal transients.

1.4 Outline of Thesis
The remaining chapters in this thesis are described below.

Chapter 2 covers issues relating to fluid flow and heat transfer. This includes the
effects of various flow regimes, and the effects of changing the temperature of the
fluid on the pressure loss. Methods of calculating the temperature in steady state

are discussed.

Effects of heat transfer within ground in which there is no pipeline are discussed
in Chapter 3. These are one-dimensional effects. Conduction within the ground,

and the effects of various boundary conditions at the surface are described.

A finite difference model for calculating the transient temperature distribution in
the ground surrounding a buried, insulated pipeline is developed in Chapter 4.
Included within this model is the effect of convection at the inner surface of the
pipe on the heat conduction and on the temperature of the fluid flowing within the

pipe.



Chapter 5 describes how the model developed in the previous chapter is built into
a method of calculating the temperature and pressure loss along the full length of
a pipeline. Also discussed are matrix solution methods which are used in

determining the temperature profile within the ground at each step in time.

Chapter 6 describes results of the calculation, showing the effects of variations in

certain parameters on the pressure loss and temperature in a pipeline.

In Chapter 7, the importance of choosing an appropriate level of discretization
within the numerica! model is discussed. Discretization in both time and space is

covered.

A finite difference model has some limitations. For this reason, a finite element

model is developed in Chapter 8. It is compared to the finite difference model

previously built.

Chapter 9 summarizes the current work. and presents conclusions and
recommendations. Chapter 10 briefly lists some work which must still be done in

order to fully realize the potential of the current work.
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2. Fluid Flow and Heat Transfer Considerations

2.1 Pressure Loss in Single Phase Flow
A primary concern when pumping fluid through a pipeline is the pressure loss. A

higher pressure loss means a higher inlet pressure is required; the pipe must be
capable of withstanding a greater pressure, and the pump at the start of the
pipeline must be larger and cost more to operate. These factors add both capital
and operating expense to the construction and operation of the pipeline. Pipelines
used to transport fluids over large distances use booster pumping stations spaced
along their length. It is unlikely, however, that this would be economically

feasible on gathering system pipelines, remembering that these would not

normally be longer than a few kilometres.

The pressure loss depends greatly on the flow regime. If the fluid flows as a
single phase, the flow regime is either laminar or turbulent, and the distinction is
determined by the Reynolds number (Re):
vDp

u

Re =

2.1)

Where:

v is the mean velocity

D is the pipe inside diameter

p is the fluid density

M is the fluid viscosity
If the Reynolds number is less than 2000, the flow regime is normally laminar,
and if it is greater than 4000, the flow regime is normally turbulent. Between
Reynolds numbers of 2000 and 4000, it is not normally possible to be certain
which regime the flow is in; the flow could be one or the other, or could be
oscillating between them. In the current work, flow is assumed to be laminar if

the Reynolds number is less than 2200, and turbulent above that. In laboratory
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conditions, laminar flows have been maintained to much higher Reynolds
numbers, and turbulent flows have been triggered at much lower Reynolds
numbers, but these have been accomplished under carefully controlled conditions

and this is extremely unlikely to occur in pipeline conditions.

The fluid can be considered to be a single phase for pressure loss calculations
when any different fluids coexistent in the pipeline are miscible, or if they are

very finely dispersed in one another (i.e. emulsified).

The current work does not consider flow of liquid with free gas. If any gas is
present, it must be in solution, in which case the density, viscosity, and other

properties of the fluid must reflect this.

2.1.1 Laminar Flow
Heavy oil flowing in a gathering system pipeline will aimost always be in laminar

flow. The pressure loss in laminar flow is calculated using the following

equations, which are derived analytically in [2]:

AP oSV 2.2)
L 2D
64
= ™ 2.3)
Where:
AP is the pressure loss
fis the friction factor
L is the pipe length
These can be combined into:
% = 32D‘§ ¥ Q.4)

Velocity can be calculated using:



v =%
2
4 (2.5)
7 D*
Where:
Q is the flow rate
A is the cross sectional area
So, in terms of flow rate, the pressure loss is:
2
AP _ 128 y‘Q 2.6)
L nD

This equation is based on the assumption that the viscosity and pipe diameter are
constant over the length for which the pressure loss is being calculated. The
constant viscosity assumption will be violated in the case where hot oil is piped

through a buried pipeline. The effects of violating this assumption will be

discussed in Section 2.3.

This pressure loss is due to fluid friction only; effects of changes in elevation are
not considered in the current work. Also, for a long length of pipeline, it is
assumed that the effects of any bends are not significant to the pressure loss, and

that there are no intermediate valves or fittings which will effect the pressure loss.

2.1.2 Turbulent Flow
When the pipelined fluid has a large water fraction, the flow is likely to be
turbulent. In this case, the pressure loss is still governed by the same base

equation as in laminar flow [2]:

-

AP _pfv:

L 2D

2.7

In turbulent flow, however, the friction factor is not so easily calculated. The

widely accepted formulation for the friction factor is the Colebrook equation [2]:
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Where:
€ is the surface roughness of the pipe

This is the equation which was used in developing the commonly used Moody
diagram for friction factors. The Colebrook equation is iterative. To use it, one
must estimate a friction factor and use this to calculate an improved estimate.
Normally only a small number of iterations are required. A non-iterative
(explicit) method is often considered preferable for use in computer applications.
There are large numbers of different variations on this in the literature. One such

equation is by Haaland [2]:

ool [ 2] %) @9

These equations again make the assumption that the fluid density and viscosity.
and the pipe diameter and roughness do not change over the length of the

pipeline.

2.1.3 Emulsion
An emulsion is essentially a dispersion of one phase within another in the form of

very small droplets. In oil-water flow, emulsions can be characterized as either
oil-in-water or water-in-oil, depending on which phase is dispersed within the
other. When calculating the flow losses of emulsions within a pipe, they can be
calculated in the same way as single phase flow, using an effective viscosity. The
fluid density can be easily calculated from the water fraction and the densities of

the water and oil:
p=WFp_ +(1-WF)p, (2.10)
Where:

WF is the water fraction

o refers to the oil

14



w refers to the water
The effective viscosity (4.4) is dependent on the viscosity of the continuous phase
and the concentration of the dispersed phase. There are various correlations

available in the literature; the one given in the Petroleum Engineering
Handbook(3] is:

Koy =M, (1+2.50+14.19) 2.11)

Where:

@ is the volumetric fraction of the dispersed phase

cont refers to the continuous phase
Knowing at what water fraction an oil-in-water will switch to water-in-oil. or vice
versa, is critical. This is called the inversion point. [t is not uncommon for an
emulsified flow with a water fraction of 60% to have the oil as the continuous
phase. In this case, it can be expected that the effective viscosity will be more
than 7.5 times the viscosity of the oil. The inversion point depends greatly upon
the fluid chemistry. Trace chemicals naturally present in either the produced

water or oil. or added by the oil company, can cause the inversion point to change

drastically.

Another critical issue is whether or not an emulsion is formed at all. An emulsion
requires that the dispersed phase be present only in very small droplets. In some
cases, a small amount of agitation may be all that is required to meet this
condition, and when formed the emulsion will be very stable (i.e. the droplets will
not tend to coalesce). In other cases, it may take a large amount of agitation to
produce an emulsion, and the emulsion will be unstable when formed. Again,
where in between these extremes a particular oil-water mixture will fall depends
greatly on the composition of the fluids. In some cases chemicals can be added to
the fluid to force an emulsion to become either more or less stable. Much

research [e.g., 4] has been done on this, but the chemical nature of oil and water

15



produced from different reservoirs can cause large differences in the types and

amounts of surfactants which must be added to create a stable emulsion.

Some companies form emulsions by adding water and surfactant specifically to
decrease pressure losses in transport over long distances [5]. The drawback with
this is that an emulsion which is stable for the length of time to travel 50-80 km
(in some cases) may be very difficult to de-emulsify when received at the end of
the pipeline. A product called Orimulsion® is available (from PDVSA, the state-
owned oil company in Venezuela), which is essentially a very stable heavy
oil/water emulsion with a high oil fraction but a relatively low viscosity [6,7].
PDVSA discovered it could be more economic to sell such a product for use as a

coal replacement fuel than to remove the water and further refine it.

2.1.4 Diluent
In some cases, oil companies will choose to mix a diluent with the heavy oil in

order to reduce its viscosity. The diluent is normally a lighter (and less viscous)
crude oil, although a refined product could aiso be used (but likely at a greater
cost). The two hydrocarbon phases (heavy oil and diluent) are normally miscible,
and so become a single phase after being mixed. This single hydrocarbon phase
will then flow with water in a flow regime such as emulsion (Section 2.1.3), core-
annular flow (Section 2.1.5) or another regime (Section 2.1.6). The viscosity of
the hydrocarbon mixture can be calculated in different ways. A weighted average
(by volume) is sometimes used, but a logarithmic mixing formula has been found
to match test data more accurately (8,9, 10]. This is the Arrhenius equation:
logu = DF logu, +(1- DF )log u, (2.12)
Where:
DF refers to the volumetric fraction of diluent
This formula was originally developed for oil-water mixtures, but has been found
to be suitable when used to match data from heavy oil and light hydrocarbon
mixtures, as published by AOSTRA [11].
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Other formulations for viscosity of hydrocarbon blends are discussed in [9] and
[10]. In some cases, especially if experimental data is available to determine an
empirical factor used in some formulations, these may be more accurate, but the
Arrhenius equation is simple, does not require an empirical correction factor, and

is widely used.

Diluent is used extensively in Venezuelan heavy oil fields, and those of other
countries. Diluent is either injected directly into oil wells in order to take
advantage of its effects in producing as well as transporting the oil, or is injected
into the gathering lines directly at the wellhead. At least one company imports
diluent from producing fields in Africa [12]; the combined heavy oil and diluent
mixture is often exported together, as this can be more economic than separating
and recirculating the diluent. While Canada has large heavy oil reserves, the
conditions are such that it is often not economic to use diluent (although it is used

in some fields).

2.1.5 Core-Annular Flow
A flow regime that has been of great interest in recent years is core-annular flow.

In this regime, a core of viscous oil surrounded by a thin annular layer of water
can be pumped with flow losses little more than those of pure water flow, while
maintaining a very small water fraction. Research into the creation and stability

of this type of regime is ongoing.

Published papers in this field include: Amey et al [13], Bobok et al [14], Ooms et
al [15], Nunez et al [5], Bannwart et al [16], Rivero st al [17], and Huang et
al [18], among many others. (Most of these papers refer to several other papers
not listed here.) Theoretical considerations, experimental work., and field

observations have all been incorporated into the literature to date.
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One issue which has been studied extensively is the stability of core-annular flow.
Various stability criteria have been researched extensively [e.g., 5, 15, 16]. It is
recognized that core-annular flow requires a core fluid of a much higher viscosity
than the annular fluid, and that the core must occupy most of the pipe (i.e., a
narrow range of water fraction is acceptable). Moreover, it has been observed
that a minimum velocity is generally required to maintain the flow regime. One
factor which has been observed is that if oil sticks to the pipe wall, the stability of
the core-annular flow or the pressure gradient can be negatively effected.
Experiments have been performed with cement-lined pipe [17], which is
hydrophilic, in efforts to combat this problem. Other issues which have been
studied include the use of special nozzles to help create the core flow at the start
of the pipeline, and whether the core-annular flow will re-establish itself after a

shutdown and restart of flow in a pipeline.

If core-annular flow can be created and stabilized within a heavy oil pipeline, one
method of estimating the pressure loss is by using the following set of

equations [13]:

R=1-1.35WF +035WF* 2.13)
p.=(1-R*)p.+R*p, (2.14)
m=ﬁt .15
l‘l)
Re, = p"—Dv(l +R* (m-1)) (2.16)
M,
L v
= f— _— 2
AP=f—p.— 2.17)

Where:
R is the ratio of the core diameter to the pipe inside diameter

P 1s the effective density of the core and annulus together
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m is the ratio of viscosities

Re, is an effective Reynolds number

fis the friction factor, which is a function of Reynolds number
A full derivation and discussion of these equations is given in [13]. The results
using these equations give pressure losses that are significantly less than the
pressure loss of the oil alone. These equations, however, do not consider the
stability of the regime, and whether it can be formed at all for the given flow rates

of oil and water:; this must be verified separately, as discussed above.

2.1.6 Other Flow Regimes
It is not well known just how viscous, heavy crude oil and water will flow when

pumped together in a pipeline. Studies by the Saskatchewan Research Council
(SRC) and others have shown that in some cases the pressure loss can be only a
bit higher than for water alone. This tends to occur over a reasonably small range
of water fractions, and in some cases only if a minimum flow velocity is
maintained [19]. These studies have not incorporated any flow visualization. so it
is not known if a core-annular flow regime is naturally formed. or if some other
flow regime exists. In general, flows in which the presence of low water fractions
can show significant decrease in pressure loss relative to pure oil flow can be

called “water-assisted flow”.

Work on the flow of heavy oil and water mixtures through horizontal pipes has
been studied for some time. Charles er al at the Alberta Research Council
performed experiments in this field over forty years ago [20]. The viscosity of the
oils used in these tests (6.3 to 65.0 cp) were far below the viscosities of interest in
the present work (see Section 2.3.1). Lighter oils were used, with carbon
tetrachloride added to increase the density to that of water. It is noted that the
viscosity of the fluids used in these tests is significantly less than the viscosity of
the heavy oil of interest in the current work. Charles et al observed and described

many different flow patterns in their experiments: water drops in oil, oil in water
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concentric (core flow), oil slugs in water, oil bubbles in water, and oil drops in
water. In their terminology, drops are small compared to the diameter of the pipe,
bubbles can approach the diameter of the pipeline but are not significantly longer
than they are wide, and slugs nearly fill the inside diameter of the pipeline and are
significantly longer than they are wide. The flow patterns were dependent on the
oil properties and the flow rates of both the water and oil. One of their
conclusions was: “The addition of increasing amounts of water to oil...lowers the
pressure gradient to a minimum, after which the addition of more water increases
the pressure gradient and, with sufficient water, the pressure gradient exceeds the
pressure gradient for the oil flowing alone.” It should be noted, though, that the
behaviour is somewhat different for each of the oils they tested. Taking note of
this, and considering that heavy oils, even of the same density and from the same
area, can have significant compositional differences, it is doubtful that a general

correlation can be developed for non-emulsified heavy oil/water flow.

2.2 Heat Transfer from Fluid
Heat transfer (when radiation is not a factor) is a linear process (i.e., heat transfer

is proportional to the temperature difference between two points). Because of
this, resistance to heat transfer through several layers can be calculated as a sum
of the resistance to heat transfer through each separate layer. This is often called
an electrical analogy—heat flux, thermal resistance and temperature difference
are analogous to current, resistance and voltage, respectively, in an electrical
circuit. Consider a steady state case with a constant fluid temperature specified
inside an insulated, buried pipe, and a constant temperature specified at the
surface of the ground. There are four separate thermal resistances through which
the energy must pass: convection to the pipe wall, the pipe wall itself, the

insulation, and the ground. The regions are shown in Figure 2.1.



Surface of Ground - -

Ground

Figure 2.1 Regions through which heat must flow

These resistances can be described by the following equations [21]:
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Where:

(2.18)
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(2.20)



R is a thermal resistance

h is the convective coefficient

ro is the inside radius of the pipe

ri is the outside radius of the pipe

r» is the outside radius of the insulation

k is the thermal conductivity

Z is the burial depth at the pipe centreline
p refers to the pipe

i refers to the insulation

g refers to the ground

The heat flow is then:

There is one problem with using the equations above to calculate heat loss. The
temperature difference is considered to be constant over the length of the pipe. In
fact, the fluid will cool as it travels through the pipe. so the temperature difference
will be less at the end of the segment than it was at the beginning. The above
formulation then is just an approximation which assumes that the fluid cools only
a very small amount relative to the temperature difference between the fluid and
the surface. When this assumption is not satisfied, there can be a large error in
these equations are used to calculate the heat transfer from the fluid to its

surroundings.

To determine the total heat loss from the fluid without making this assumption, it
is more convenient to first consider the change in temperature of the fluid.

Consider a small element of the pipeline, with a length dx, as shown in Figure 2.2.

9
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Figure 2.2 A fluid element in the pipe

The change in the fluid temperature, dT, in this element [21] is given by :

ar =44
mc

Where:
q is the heat flux (J/s: the dot indicates a rate per unit time)
nt is the mass flow rate

c is the specific heat of the fluid

Note that this formulation assumes that the fluid is incompressible.

accurately, the conservation of energy principle [23] is expressed as:

q=mAH
Where:
H is the enthalpy.
The enthalpy is:
H=u+—
Yo
Where:

(2.23)
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u is the internal energy
Since the density does not change with pressure or temperature in an
incompressible fluid, the change in enthalpy is equal to the change in internal

energy. The specific heat of a fluid in general is expressed in one of two ways:

du oH
. =|— | or ¢, =| — 2.26a, 2.26b
- [aTj" ’ (aT )P ( )
For an incompressible fluid (or solid), these two terms are identical [23]. The

current work uses the symbol ¢ to refer to the specific heat for liquids and solids.

The heat transfer from the fluid to the ground in this element is given by:

T-T, T-T,
dg = A (2.27)
R R

Where:
Ty is the temperature of the surroundings
R = Rdx (2.28)
R is the thermal resistance for a unit length of pipe
It is assumed that the thermal resistance does not change over the length of the

pipe. This implies that the various properties used in calculating the resistance

also do not change. The effects of this assumption are discussed below.

Combining equations 2.23 and 2.27, we get:

T-T
dTl = ———%dx (2.29)
Rmc
Rearrange this to obtain:
a___ & (2.30)
T-T, Rimc
Integrate both sides:
n@-1,)=--2-+C 2.31)
' Rmc



Take the exponential of both sides, and replace exp(C) with &:

T-T, =k-exp(— . J (2.32)
' Rmc

To solve for k, we need to apply a boundary condition. We know the temperature

at the start of the pipeline, so we can use this:
x=0 = T=T,
T -T,)=k (2.33)
So:

T=T,+(T, -T, )exp[— . J (2.34)

Rmc

This equation can now be used to determine the temperature at any point in a
buried pipeline flowing in a steady state. To determine how much heat is
transferred to the ground over a given length of pipe, L. the following equation is
used:

=0, -1, )irc (2.35)
Where:

Ty is the temperature after length L.

Insert the temperature at L into the equation:

q=|T, —[Tg +(T,. -T, )exp(— R'[’_'ICJHMC

7Tl T o ]

Rmc

.
Jn’tc (2.36)

=T, —T,{l—exp(— L Dmc
Rmc

Clearly, as L gets longer, the increase in heat loss from the fluid gets smaller.

The maximum energy the fluid can lose is when it has cooled to ground

temperature.



There is still an assumption that the ground temperature at the point where it is
specified (in this case at the surface) is not affected by the change in heat flux
over the length of the pipe. This assumption should normally be much safer than
the assumption (now removed) that the fluid temperature did not change over the
length. As the temperature changes, there will be slight changes in the thermal
conductivities of the pipe, insulation and ground, but these will normally be very
small, and should not have a noticeable effect on the overall results. What is
more important to be aware of is changes in the convective coefficient. If this
changes by any significant amount (for example, due to a change in flow regime),

the above equation will not be valid.

The convective coefficient is calculated depending on various properties. In

general it is found using Eq. 2.37 [21]:
h=——o 2.37)
D (

This is for single phase flow (with miscible constituents). If the flow is not single
phase (i.e., if it is an emulsion, core-annular flow, or some other flow regime),
special consideration is required. The calculation of the Nusselt number (Nu)
depends on whether the flow is laminar or turbulent. If the flow is laminar, the
Nusselt number is a constant. In the case where the surface temperature is
specified, this can be determined analytically to be 3.66, while in the case where
the flux is specified, this is determined to be 4.36 [21]. In the present case, the
fluid temperature is specified: this matches neither of the well-defined cases
demonstrated in many textbooks. The value for constant temperature (Nu = 3.66)

is used in the current work, as its conditions more closely match the given case.

In turbulent flow, there are several correlations available. One of the better ones,

according to Incropera and DeWitt is by Gnielinski [21], and is:



£ (Re —-1000)Pr

Nu = - (2.38)
1+12.7£(Pr% <1)
Where:
Pr is the Prandtl number
The Prandtl number is given by:
Pr= % (2.39)

The thermal conductivity of oil and water change slightly over the temperature
range of interest, but not enough to have a significant effect on the results. Of
more concern is whether the flow regime changes between laminar and turbulent
in the pipe, as this will cause a drastic change in the convective coefficient. Care
must be used to ensure that within a region of interest, the properties do not

change significantly: otherwise the calculations described here may be invalid.

From 0°C to 70°C, the thermal conductivity of water changes from 0.569 to 0.660
W/m-K. The thermal conductivity of engine oil (which is not the same as
unrefined heavy oil, but is used here as an illustration) changes from 0.147 to
0.139 W/m-K over the same range. These temperatures were chosen since 70°C
is a common temperature to which heavy oil tanks are heated, and 0°C is an
extreme value at the lower end of the temperature scale—it is unlikely that a
heavy oil pipeline in which the temperature dropped as low as 0°C could be

successfully operated.

Entrance effects may be significant in the heat transfer. In laminar flow, the
hydrodynamic entry length can be approximated by Eq. 2.40 {2].

Xu» =0.05D Re (2.40)
As an example, consider a heavy oil with a viscosity of 1000 cp and a density of

1000 kg/m? flowing at 1 m/s through a pipe with an inside diameter of 5 cm. The



Reynolds number for this flow will be 50, and the entrance length will be about
12.5 cm. This is very short relative to the length of the pipeline and can be
neglected in the pressure loss calculations. The thermal boundary layer
development, however, is not necessarily the same as the hydrodynamic boundary
layer. The length of the thermal boundary layer can be approximated by Eq. 2.41
[2):

Xun =0.05D Re Pr 240D
Consider again the example above. If the oil has a specific heat of 2000 J/kg'K
and a thermal conductivity of 0.1 W/m-K, then its Prandtl number is 20,000, and
the thermal entrance length is about 2.5 km. This has significant implications,
since the theoretical convective coefficient at the point where the thermal

boundary layer has not yet started to form approaches infinity.

A correlation is available for calculating the average convection coefficient in a
region with a fully developed velocity profile but developing thermal boundary
layer [2]:

0.0668(D/ L)Re Pr

Nu =3.66 +
1+0.04[(D/ L)Re Pr}

(2.42)

It should be noted that the region in which the thermal boundary layer has not yet
begun to form is at the outlet of the heated tank. The piping at this point is above
ground—it will lead from the tank to a pump and only then into the buried
pipeline. It should be feasible, both technically and economically to apply heat
tracing to this section of above ground piping to help prevent excessive heat
losses. In a typical case, for a well-insulated, buried pipeline, the thermal
resistance of the convection will be only 10-25% of the total thermal resistance:
the effect of reducing the convection resistance (as would be the case in the entry
region) can only reduce the overall resistance by that much, or less. Furthermore,
the Prandtl number of heavy oil is highly dependent upon temperature. The

effects of this in the entry region have not been investigated. It should be



expected that the oil in the boundary layer where it begins to form should cool
quickly due to the high convective coefficient, giving a very different Prandtl
number at the wall than in the bulk fluid. The effect of this on the validity of Eq.
2.42 has not been investigated. Entry effects are assumed to have only a smali

overall effect on the results, and are neglected in the current work.

2.3 Combined Heat Transfer and Pressure Loss

2.3.1 Effect of Temperature on Viscosity
The pressure loss equations in Section 2.1, are based on the assumption that the

fluid density and viscosity do not change throughout the pipeline. Clearly the
properties of any fluid do change with temperature. Over the temperature range
of interest, the density of water and oil change by only a very small amount, and
ignoring these will not introduce a significant error into the results. Similarly the
viscosity of water changes by less than three centipoise over the temperature
range of interest. While this is high on a percentage basis, it will not have a
significant effect on the pressure loss—a few Kilopascals more or less are not
significant to the design of a pipeline. The viscosity of oil. however, is very much
dependent on temperature to the point where it is very important to the overall
pressure loss—the viscosity of heavy oil can change by orders of magnitude over

the temperature range of interest.

In HOGS I, C-FER gathered oil viscosity data from several participants in the JIP.
The densities of the samples from which this data was derived ranged from 9-
13.3°API.  API gravity is the standard density measurement used in the oil
industry. 10°API is the same density at 15°C as water; smaller API gravities
indicate heavier oils. At 15°C, the relationship between the API gravity and the
specific gravity (SG) is:

apr =115 _ 13,5 (2.43)
SG




Figure 2.3 shows the viscosity of each of the samples tested over the range of
temperatures for which they were tested. As would be expected, the lighter the oil
the less viscous it is in general, but this is not always the case as is also evident on
the graph. Each sample decreased in viscosity as the temperature increased. The
scale is a logarithmic scale, so the decrease in viscosity is significant

(approximately two orders of magnitude over the 50°C range plotted).
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Figure 2.3 Viscosity vs. temperature relationship of Western Canadian
heavy oils

Any computation which will require knowing the viscosity of the fluid at arbitrary
temperatures must use a correlation of viscosity against temperature. Traditional
correlations in the oil industry have been based on API gravity and temperature,
and could be used as a good approximation of viscosity even if no test data from a
sample was available. This is much less true in heavy oil, and is even worse in
Western Canada than in other heavy oil fields around the world. To have any

expectation of accuracy, a sample of oil must be tested and then this data can be
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fitted to a specific correlation. One correlation that has been used historically,
and is quite successful is the assumption that the logarithm of the logarithm of
viscosity is a linear function of temperature. Historically, an offset of one
centipoise is applied to the relationship, but this is insignificant in the present
case, as the viscosities are so high, so this will not be used here. This was applied

to the previous data, and is shown in Figure 2.4.
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Figure 2.4. Linearized relationship between viscosity and temperature

Figure 2.4 shows that this is a valid correlation for this type of oil, as the plotted
lines are very nearly straight. The viscosity correlation is then (with viscosity in
centipoise):

log,,(log,,(1))= 4+ BT (2.44)
The 4 and B coefficients are determined from sample data. If there are two
sample points at different temperatures, the 4 and B can be solved for by solving

two equations for two unknowns. If there are more points, a least-squares
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regression can be used to determine the two parameters. At least two sample

points must normally be available to determine the values of A and B.

There are two reasons why a linearized equation for viscosity is valuable, as
compared to another form (e.g. polynomial fit). First, note that the lines in Figure
2.4 are roughly parallel. This means that if only one point is available for a
specific oil, we can use it to determine the value of A, while assuming that the
value of B is the same as for other similar oils. Second, some types of curve fit
methods (e.g. polynomials) can give very inaccurate results when extrapolated
beyond the range of the data used to generate the curve fit. While extrapolation
should never be recommended, a linearized equation can be extrapolated with
much more confidence than other methods. It should be noted that of the 137 data
points collected by C-FER in phase I of the HOGS project, none were at
temperatures below 20°C: in a buried pipeline. it is quite likely that the

temperature could go below this.

Figure 2.5 is a parity plot for this correlation, using the data collected by C-FER.
The correlation is applied to each oil sample individually. Only samples with
three or more data points are plotted here, as correlations calculated based on only

two points would be exact for those two points.
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Figure 2.5 Parity plot for viscosity correlation

It can be seen that this equation is quite accurate when used for individual

samples.

In HOGS I, C-FER developed a correlation based on the viscosity tests plotted in
the above figures[1]. This correlation relates viscosity to temperature and API
gravity. It is preferable to always use test data from a well or wells under
consideration. but when performing sensitivity analyses, it is easier to have a
single parameter to vary (in this case API gravity). The correlation is:

X =1.6194 —0.83991 log(API)-0.0045692 T (2.45)

u=10"" -
The viscosity given by this is in centipoise, so must be divided by 1000 to obtain

pascal-seconds. This is in the same form as the previous equation, where a

33



constant value of B is used, and A varies based on API gravity. This correlation
should only be used for Western Canadian heavy crude oils with API gravities
ranging from 9-13.3°APL. It gave a median error of 5.3%, with a standard
deviation of 36%. For comparison, four other commonly-used correlations were
also tested against the same data set; of these, the best had a median error of
56.6% with a standard deviation of 86% [1].

2.3.2 Pressure Loss, Considering Effect of Temperature
As was shown in Section 2.1.1, when the properties are constant throughout a

pipe and the flow is laminar, the pressure loss will be proportional to the fluid
viscosity. This means that the effect of temperature on pressure loss is going to
be proportional to the effect of viscosity on pressure loss, so long as the flow is
laminar. The flow of oil of these viscosities in the context of a gathering system
(i.e. low flow rates in small diameter pipes) will almost always be laminar. For
example, 200 m*/d of oil with a viscosity of 1000 cp, and a density of 1000 kg/m3
flowing through a pipe with an internal diameter of 100 mm will have a Reynolds
number of about 29.5. This is fully two orders of magnitude below the transition
to turbulent flow. Turbulent flow should only occur when the water fraction is

high. (This is not considering the possibility of a water-assisted flow regime.)

Over the length of a pipeline, the temperature could change significantly.
Therefore the oil viscosity could change considerably. This invalidates the
assumption of constant properties in the pressure loss equation. There are two
ways around this in laminar flow, only one of which can be easily generalized to
the other possible flow regimes. In laminar flow (as discussed in Section 2.1.1),
the pressure loss was given simply by:

]
Ap1284LQ

s (2.46)

Of the quantities in this equation, only the viscosity is changing. As stated in the

previous section, the viscosity, in pascal-seconds is given by:
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log,, (log,, (1000 u))= A+ BT (2.47)

or:

lolo,uy‘r
1000

M= (2.48)

The temperature is still required, and this is given by the following equation (see

Section 2.2):

T=T,+(, -T )exp[ ad ] (2.49)
Riirc

The thermal resistance is well defined and constant over the length of the pipeline

for laminar flow, assuming that the ground, pipe. insulation and fluid have

constant thermal conductivity, density and specific heat (i.e.. these properties do

not change with temperature).

Consider an elemental length of the pipeline. The pressure loss is given by:

2
dP = "8“? dx

(2.50)
nD
Substituting the viscosity:
7 lo,\»ﬂ-f
ap=128x10"_Q 2.51)
10007z D
Integrate this over the length of the pipeline from O to L:
2 & gvnr
- 1282 10" dx (2.52)

10007 D* {
The viscosity term could not be removed from inside the integral, since it is a
function of position. Finally, the pressure loss for laminar flow of oil is given by:

A8 Toolly -1y Jexp: R_:"
1280 J‘lolo

= d 2.53
10007 D° * (2.33)
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This integral must be solved numerically. Note also that this result is in pascals.

It must be divided again by 1000 to convert to kilopascals, if desired.

The other, more general, method of calculating the pressure loss is to split the
pipeline into a number of segments. The length of each individual segment
should be short enough to ensure that the viscosity changes very little over its
length. The pressure loss is calculated based on the temperature at the start of the
segment. The temperature at the end of the segment is then determined, and this
temperature is used to determine the viscosity in the next segment. This method
will also work in turbulent flow, or one of the more exotic flow regimes, as it does
in laminar flow, and is preferred for that reason. This method was used in

arriving at the results which appear in Chapter 6.

The accuracy can be improved somewhat by calculating the temperature at the
end of the segment before calculating the pressure loss. The viscosity can then be
evaluated at the average of the temperatures at the beginning and end of the
segment. This can be further improved by using a weighted average to consider

the fact that the viscosity is not a linear function of temperature.

2.3.3 Effects of Viscous Heating
Pressure loss in a flowing system is caused by fluid friction: both internal to the

fluid and at the fluid/wall interface. Conservation of energy clearly applies, so the
energy in the form of pressure which is lost must be converted to a different form
of energy. This is heat. In most systems, this is neglected because it is a small
amount and has no significant effect on the system. In a heavy oil pipeline,

however, it may be significant.

Consider rate of energy dissipation (i.e., power). The power lost due to flow

pressure from an incompressible fluid [21] is given by:

W =APQ (2.54)
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This power is converted to heat within the fluid (conservation of energy):
Gg=W (2.55)

The temperature increase in a fluid caused by a given rate of heat input is:

AT =L (2.56)
mc

Therefore the temperature increase is related to the pressure loss by:

AT = A{JQ (2.57)
rc
The mass flow rate and volume flow rate are related by:
m=pQ (2.58)
So:
AT = APQ (2.59)
pQc
or:
AT = AP (2.60)
pc

As an example, an oil with a density of 950 kg/m? and a specific heat of 2000
J/kg'K, flowing in a perfectly insulated pipe in which it has a pressure loss of
1000 psi (6.895x10° Pa), will have a temperature increase of 3.6°C. This

temperature rise is significant in the calculation of pressure losses in a viscous oil.

This effect, while not significant in typical liquid flows (e.g. water), is also
important in other fields, such as the high speed flow of gases [21]. A significant

non-dimensional parameter in these fields is the Eckert number:

Y

v

Ec=——r
@ -1)

(2.61)

Ref. 2 lists sources for further reference with respect to the Eckert number.
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2.3.4 Analysis of Steady State Results
In the following analyses, the effects of viscous heating are not considered, unless

specifically described, despite the significance shown above. This will give
somewhat larger values for pressure losses than would be expected, and is

therefore a conservative result for pipeline design.

First, a single case is considered over a range of flow rates. The values used for

the other quantities are given in Table 2.1.

Table 2.1 Base case values

Pipe outer diameter, in. 35
Pipe wall thickness. in. 0.216
Insulation thickness, in. 1.5
Pipe depth, ft. 4
Pipeline length, km 2
Inlet temperature, °C 70
Surface temperature. °C 2
Oil density., kg/m? 950
Oil conductivity. W/m-K 0.11
Oil specific heat, J/kg-K 2000
Oil test temperature 1, °C 30
Oil viscosity at test 1. cp 25000
Oil test temperature 2, °C 70
Oil viscosity at test 2, cp 800
Pipe conductivity, W/m-K 60
Insulation conductivity. W/m-K 0.04
Ground conductivity, W/m-K 0.5

The A and B parameters from Eq. 2.44 are calculated from the temperatures and

viscosities in the above table to be 0.7785 and —0.004510, respectively.

The pressure loss over a range of flow rates is given in Figure 2.6 below.
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Figure 2.6 Relationship of pressure loss to flow rate

The most obvious thing about this graph is that it is not monotonically increasing
as would be expected on a typical pressure loss versus flow rate graph. The
reason for this is the temperature loss. Clearly at zero flow rate there is zero
pressure loss; as the flow rate increases from zero, the pressure loss grows very
rapidly. This is because the fluid is essentially at the ground temperature of 2°C
everywhere (the fluid loses its initial temperature very quickly). At 2°C, the
viscosity correlation yields a viscosity of 762,000 cp. As the flow rate increases,
the fluid is able to retain proportionately more energy for a longer portion of the
pipeline, so the increase in pressure loss for each incremental increase in flow rate
gets smaller and smaller. Eventually, the effect of retaining temperature on the
viscosity outweighs the increased velocity, and the pressure loss actually
decreases with increased flow rate. When the flow rates get even higher, the

pipeline will not be able to retain more temperature for an increase in flow rate

500
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(i.e., the temperature is nearly constant throughout the pipeline, and increasing the
flow rate further will not change this), and once again the increase in velocity

becomes dominant and the pressure loss increases with flow rate.

It should be noted that these calculations do not take into account the limits of any
pumping equipment or the pipeline itself. No company would actually install a
pipeline or pump in a heavy oil gathering system which had an operating limit of
over 35000 kPa (the maximum pressure in Figure 2.6. This particular size of pipe
would be applicable up to 20,000-30,000 kPa when pumping heavy oil in rural
areas, according to the calculations mandated by CSA Z183 [22], assuming a
grade of steel with a yield stress in the 40-60 ksi range, and not considering any
corrosion or erosion allowances. Most oil companies, however, would not
normally be willing in such an application to install a transfer pump with a rating
of over 1000 psi (6900 kPa), due to the high capital and operating costs. This

pressure limit is marked on Figure 2.6

It is very important that a pipeline be designed so that its intended operating point
is somewhere to the right of the local minimum value of pressure loss. The slope
to the left of this point is extreme—a slight reduction in flow rate will lead to a

large increase in pressure loss.

Variations in the other parameters will also have an effect in the results. One way
to look at the effect of these is to vary one parameter at a time from the base
values in the table above and look at the results in the form of a tornado chart. A
tornado chart is a useful way of visualizing which parameters, when changed, can
have a large or small effect on the overall results of a calculation. Two tornado
charts are shown below, one using a base flow rate of 200 m¥d and the other
using a base flow rate of 20 m¥d. From Figure 2.6 above, it can be seen that

these two flow rates will result in a very similar pressure loss, but that they are on



opposite sides of the local minimum. The tornado charts are organized so the
parameters with the greatest effect are at the top. The labels beside each level of
the chart describe the parameter and the range of values used. The format
[x...y...2] is used, where x is the value of the parameter which resulted in the
minimum pressure loss, y is the base value (used when any other parameter is

being varied), and z is the value which produced the largest pressure loss.
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Figure 2.7 Tornado chart for base flow rate of 200 m¥d

It can be seen from Figure 2.7 that the pipeline length, pipe diameter, inlet
temperature and oil gravity are the most significant parameters when the flow rate
is on the right side of the local minimum in the chart in Figure 2.6 Longer

pipelines, smaller pipes and denser (i.e. more viscous) oil all lead to larger

pressure losses.

It is worth briefly discussing the effect of pipe wall thickness. This appears to
have a significant effect (about the same as insulation thickness), which is

contrary to intuitive reasoning, which indicates that since the pipe has such a high
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conductivity, a change in its thickness should not have a large effect on the
results. This reasoning is supported by the very small effect of pipe conductivity
on pressure loss (so small that the line is not visible in the figure). The reason that
the wall thickness has a significant effect on pressure loss is that the pipe’s inside
diameter is calculated from the pipe’s OD and the wall thickness. The pipe’s ID
is very important (raised to a factor of 4 in the pressure loss equation) in

calculating flow loss.

It might be expected from these graphs that the solution to extreme pressure loss
is simply to use larger pipe. It is true that in most cases, larger pipes could reduce
the steady state flow losses. Unfortunately, they cost much more to purchase,
insulate and install, so the economics will usually support smaller pipes—just one
more case in engineering where physical and economic constraints work in
opposite directions. There are also questions as to what happens in transient
conditions (start-ups and shutdowns) with larger pipes. Even in steady state
conditions. in some cases the larger pipes could actually cause larger pressure
losses. depending on how the local minimum point on the pressure loss graph is

affected by the change in pipe size.

Clearly the inlet temperature is very important. Economic factors come into play
here as well. It may not be economical to heat a tank to 80°C—it may actually

cost less to heat a tank to 70°C and pump at a greater pressure.
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Figure 2.8 Tornado chart for base flow rate of 20 m¥/d

In Figure 2.8 it can be seen that changes in more parameters lead to significant
changes in the pressure loss, and that the changes are larger than in the 200 m¥d
case. This is not surprising, remembering the slope of the pressure loss versus
flow rate graph at 20 m%d as compared to the slope at 200 m¥d. In this region
(flow rates below the flow rate which gives a minimum pressure loss—around
55 m¥d in this case), it may become economical to spend the extra money during
construction to reduce the pressure loss during operation. For example a larger

diameter pipe, or thicker insulation may be justified.

2.3.5 Transient Effects
Effects of thermal transients have not been considered to this point. Calculating

thermal transients requires the calculation of the thermal history of the ground
around the entire pipeline over the history of the pipeline. This requires a

numerical solution: a method of calculating this will be described in Chapter 4.
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Transients which are of interest to the operation of viscous oil pipelines include

the following:

Initial start-up of the pipeline. The ground is cold but the fluid is warm.
It will take a period of time for the temperatures to stabilize.

Seasonal temperature variations. In Alberta, there is approximately a
40°C temperature difference between average winter and summer
temperatures. Pipelines are not buried deeply enough to be unaffected by
this. Start-ups and shutdowns will therefore be affected by the time of the
year in which they take place. It should be noted, however, that in the
tornado charts above, the pressure loss was not greatly affected by changes
in the surface temperature. This may indicate that the seasonal
temperature variations may not have a large effect on the pressure loss
when in continuous operation. No hypothesis regarding the effects of
season on start-ups and shutdowns can be supported with this data.
however.

Shutdowns. These can be planned (e.g., for pump or pipeline
maintenance) or unplanned (e.g., due to power failure). The oil’s
temperature is very important—the cooler it is permitted to get before
reaching the end of the pipeline, the higher the pressure loss will be. If
flow is stopped, the oil will cool off and when the operator attempts to
restart flow, it may not be possible to achieve the same flow rate. The line
may even need to be flushed with water before restarting flow of oil. In
some cases an expensive intervention involving steam injection through

coiled tubing may be required.

None of these is considered in the steady state calculation shown earlier in this
section.



3. Ground Temperature Effects

Before attempting to calculate the effect of a pipeline in the ground, one should
understand how the temperature in the ground changes as the seasons change.
Because soil is a fairly poor conductor of heat, there will be a difference in

temperature between the temperature at the surface and at any depth.

The mean daily temperatures (by month) at Elk Point, Alberta [24] are shown in

Figure 3.1. These are air temperatures, as recorded by Environment Canada.
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Figure 3.1 Mean Daily Temperature at Elk Point

The temperature at the surface can be assumed to be a sine wave with a period of
one year, as an approximation. The rest of the analysis here assumes that one
zero point of the sine wave (i.c., where the temperature is an average) occurs
close to May |, the maximum temperature near August 1, and the minimum

temperature near February 1. This is shown in Figure 3.2 in Section 3.1.1, where
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day O is assumed to be May 1. A more rigorous approach would consider solar
radiation and convection effects (as was done in the work of Kazemi and

Perkins(25]), but this simple approach should be adequate in most cases.

When considering the surface temperature as a sine wave in this way, the
temperature at any depth is also a sine wave, but with a reduced amplitude, and a

phase delay relative to the surface temperature.

3.1 One-Dimensional Heat Conduction Equation
To determine the temperature in a uniform, semi-infinite medium, the following
differential equation [21, 26] is relevant:
9'T _aT
F e (€N D)
Where:
x is thermal diffusivity
T is temperature
tis time

X is depth

Note that in the previous chapter, thermal conductivity was used in the heat
transfer equations, and here thermal diffusivity is used. Thermal diffusivity is
related to thermal conductivity as:
K= L 3.2)
pc
In steady state calculations, the density and specific heat are not used: when the

effects of time are considered, however, these are important.

The boundary condition at the surface can be represented by:
r=T.,+T,, sin(w-r) 3.3)
Where:
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T, is the temperature at the surface

Tavg is the average annual temperature

Tamp is the variation from the average of the annual minimum and
maximum temperatures

wis the angular frequency of seasonal variations
Since time is in seconds, the frequency of seasonal variations, @, is given by:

27
w=—
86400 x 365

In determining an analytical solution, there are two different options which could

3.4)

be used for the second required boundary condition. The first assumes that the
temperature an infinite distance below the surface is the average surface
temperature. The second assumes that there is a thermal gradient in the ground,
and specifies that a certain distance below the surface (below the deepest point
where seasonal variations are noticeable) is a constant temperature which is

somewhat different from the average surface temperature.

3.1.1 Analytical Solutions
In solving this differential equation (Eq. 3.1), the initial conditions are not

relevant—desired is a solution that is applicable a very long time after the initial

condition has passed. The two variations have solutions [26, 27] as follows:

T=T,, + Bexp[- .t‘/ﬂJsin[wt —x"ﬂ] 3.5)
' 2x 2x

[ . N
sm[(xl —x)"z—
X K
T=T, +=@-T, )-Im B

exp(-ixr)
£ . N
sin| x,, /i —
X

and

(3.6)

In the second variation, x; is some depth at which there are no noticeable seasonal
variations in temperature, and T, is the constant temperature at that depth. These

have been derived analytically, although the derivations are not given by the
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references. These were verified to be correct by comparing with a numerical

solution.

Figure 3.2, below, shows a comparison between the surface temperature
(Tavg=2°C and B = 20°C) and the ground temperature at a depth of 1.2 m in a soil
with a thermal diffusivity of 1.413x10”7 m¥s for both boundary conditions (this
value is based on data from [21], and is a reference to dry soil). In the second
boundary condition, the temperature was set to be 2.55°C at 15 m. which
corresponds to a typical thermal gradient in Alberta and a 2°C average surface
temperature. The two curves for the different boundary conditions differ only by
the difference in the average temperature of the ground at 1.2 m (0.044°C) with

the two different boundary conditions. These two curves are indistinguishable

from one another in the figure.
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Figure 3.2 Surface and ground temperatures through one year.
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For the purposes of the present work it should be irrelevant which of the two
boundary conditions is used. This one dimensional formulation will be used in
establishing boundary conditions for the two-dimensional model used in the
calculation of the temperature of the ground surrounding the pipeline. As such, it
will be recalculated for several depths at each time step used in the final model.
Since it makes essentially no difference in terms of results which of the two
boundary conditions is used, it makes sense to use the one which results in fewer
computations being done. The assumption being made here is that the thermal

gradient in the ground is not extreme.

From Figure 3.2, it is immediately obvious that there are two significant
differences between the temperature at surface and the temperature below the
ground. Firstly, the amplitude of the periodic (seasonal) variations in temperature
is attenuated. The degree of attenuation decreases as the thermal diffusivity of the
ground increases and increases with the depth. Secondly, there is a phase delay.
The phase delay increases as the thermal diffusivity of the ground decreases and
the depth increases. This means that the ground at depth is coldest not when the
air temperature is the coldest, but sometime after that. The delay could be two or
three months (or more in some cases). Practically speaking this means that a
pipeline operator who wishes to start the pipeline or perform a planned shutdown
(e.g. for maintenance) when the ground is as warm as possible should not do so in
the hot days of summer, but wait until fall, as this is when the ground at depth is

warmest.

The effects of day and night are not considered. Using the principle of
superposition, the effects of day and night can be considered using Eq. 3.5. If the
period of the sine wave is set to be one day, the diffusivity is the same as was
used in Figure 3.2, and the difference between the hottest and coldest

temperatures in a day is 10°C, then the difference between the minimum and
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maximum daily temperatures at 1 metre of depth is 4.4x10® °C. The difference
decreases exponentially with depth. At any reasonable pipeline depth, the error

introduced by not considering the daily fluctuations in temperature will be

negligible.

3.1.2 Numerical Solutions
In some cases, an analytical solution may not be available. This could be the case

if the ground properties were not constant, or if the boundary or initial conditions
were changed, for example. A finite difference model of the above case can be
easily assembled. In these cases, a numerical solution is necessary. There are
two ways to derive a finite difference model for such a case. The first is to apply
a discretization to the differential equation, and the second is to do an energy
balance on a node. (These methods are described briefly below, and in more
detail in Section 4.2.) These two methods will result in the same equation,
depending on the time difference discretization in the first method. The

differential equation is:

9°T 9T
K—=— 3.7
ox~ ot (3.7)
This is discretized at node i as [21]:
¢ 5 ade . t+dr et
K 1:-1 -1; 1+ T;ol = T.: 1: (3.8)
(Ax)y’ At

Where terms with an asterisk “*” on them can be referenced to time ¢ (explicit) or
t+At (implicit). The advantage of the explicit formulation is that the temperature
of each node can be determined based on data which is already known (i.e. the
temperature of the node and surrounding nodes at the previous time step). Its
disadvantage is that it has a stability criterion, which limits the size of the time
step. The implicit method requires that a system of equations be solved
simultaneously, but does not have a limit on the time step to ensure numerical

stability. Because of the inherent stability of the implicit method, it is preferred
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here. Arranging the equation into a form suitable for solving a system of

simultaneous equations:

TH'I - KAt

i (At):

(T‘:l _ 27-'”1 + Tu»l )= T.l

1+l

Rearranging:

. 2
[— oy }'a:‘ { 1+——E:Af)r,"' +[- . )T,::' =T/
X X X

(3.9)

(3.10)

Implementing this scheme over a 15 metre depth, with the bottom boundary set to

the average annual temperature, and the top boundary being the periodic surface

temperature, and using a spatial discretization (Ax) of 0.2 m, and a time step of a

half-day, with the initial temperature set to be the average annual temperature

throughout, gives the results shown in Figure 3.3 (as compared to the analytical

solution in Section 3.1.1 above):
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Figure 3.3 Comparison of analytical and numerical solutions
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After approximately 10,000 iterations (i.e. 5000 days, or about 14 years), the error
settles down to a periodic value, oscillating around 0.04°C. The first 14 years of
simulated time are required for the initial condition to become irrelevant to the
numerical solution (remembering that the analytical solution already removed the
effects of the initial condition). Figure 3.2 only showed one year of calculation
because the effect of the initial condition was considered to have completely died
out; the temperature at any depth then has a period of one year. Figure 3.3 shows
a much longer time period because the effects of the initial condition are

considered; the longer time shows how these effects die out with time.

A smaller time step or a smaller spatial discretization would reduce the value
around which the error oscillates after the initial condition is no longer relevant.
Using the analytical solution at time 0 as an initial condition would remove the

error shown in the first 10,000 iterations of the plot.

3.2 Effects of Different Boundary Conditions
The results shown above specified the temperature at the surface as a boundary

condition. The properties of the ground were uniform and constant throughout

time. Some variations on this can also be considered.

3.2.1 Convection at the Surface
Convection is easily considered at the surface using a finite difference scheme.
All the nodes below the ground use exactly the same nodal equation as before;
only the surface node changes. A new node must be added to the grid, however,
to account for the temperature of the air at the surface. The implicit formulation
is shown below:

A

(Axy

2hAr
T —T”l =Tt+l_Tl 3'11
repcl-~T)=1" -, (3.11)

Rearranging:




p) 2 2 2
_2RAL [ 2xAr, 200 0, KM i (a2
Axpc (Ax) Axpc (Ax)y

For sufficiently high values of the convective coefficient (h), there is very little
difference between the results for this case and for the case where the surface

temperature was set equal to the air temperature.

Any covering on the ground will likely have an effect on the heat transfer between
the air and the ground. Grain fields on the surface of the ground could reduce the
convective coefficient by breaking up the air flow, although it is unlikely that
stubble on the fields in spring and autumn would have a significant effect on the
heat transfer. Pipelines buiit through bushy or forested areas would certainly have
a reduced convective coefficient because there is less wind at ground level in
these areas. While the bush is cleared for the installation of the pipeline, not only
will it grow back (to some extent: pipeline corridors are kept reasonably clear),
but its presence a few metres away will almost certainly break up the wind,
reducing the value of the convective coefficient. Figure 3.5 in Section 3.2.2
shows a comparison of some different values of the convective coefficient. It can
be seen that decreasing the convective coefficient will reduce the amplitude of the
temperature oscillations at depth and increase the phase difference between the
oscillations and those at surface. Depending on the expected value of the
convective coefficient it may or may not be reasonable to neglect the effect of
convection (i.e., use the specified surface temperature formulations above). For
comparison, [25] uses 2.5-5 BTU/hr-ft>-°F (14-28 W/m2-K) for a convection
coefficient in Alaska. In Figure 3.5, it can be seen that there is very little
difference in ground temperature when a convection coefficient is 25 W/m2K on

bare ground as when it is infinite on bare ground.

3.2.2 Insulating Layer at Surface

The next issue regarding ground cover is snow. Snow acts as a good insulator,

especially when it is light, dry snow, as is typically found in cold regions such as
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Western Canada. In [21], the thermal conductivity of snow is listed as 0.049 for a
density of 110 kg/m? (loose) and 0.19 for a density of 500 kg/m? (packed). The
presence of a significant snow layer could significantly effect the temperature of
the ground below the surface. This could easily be modelled with a finite

difference scheme, using a layer of nodes with different thermal properties.

To account for a new layer in the finite difference model, the node at the interface
must be considered specially. Note that the nodes within the two regions are
considered exactly the same way as before, except that the values of k and Ax will
be (or could be) different in each of the regions. The interface node. and the node

immediately on each side of it are shown in Figure 3.4.

®
i+1
Py S Ky Ax,
i
L4
Py €, ks Ax,
i-1
+

Figure 3.4 Finite difference model on boundary of two regions

The equation at the interface node is:



2k At 2k, At
/ll (7':34 — T;lvl )+ A.t (T:l:l»l _ 7:!0[)
t 3 >
1 1 =7:ll_7:t (3.13)
picAx, + p,c, Ax,
Rearranged:
_2klAl ZklAl+2k:Al 2k, At
Ax, z,:ll 1+ Ax, Ax, T+ Ax, T‘I_-ll =T
£ A + pyc,Ax, P A + p,CyAx, P Ax + p.c,Ax,
3.14)

Clearly if the physical properties and the discretization is the same in both
regions, this reduces to the simple nodal equation above, noting that:
K= * (3.15)
pc
Figure 3.5 shows a comparison of five different conditions. The data plotted is

the temperature at a depth of 1.2 metres below the surface over a period of one
year.
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Figure 3.5 Effect of convective coefficient and insulating surface layer.

The insulation represents snow, although it is considered to be on the ground all
year, even above 0°C—this plot is simply an illustration of the effect of an
insulating layer on the ground. The depth of the insulation layer was 15 cm; the
thermal conductivity, density and specific heat were 0.049 W/m-K, 110 kg/m3 and
2040 J/kg'K, respectively. It is immediately evident that either reducing the
convective coefficient or adding an insulating layer (e.g. of snow) will serve both
to increase the attenuation of the change in temperature at depth and to increase

the phase delay.

3.2.3 Radiation
Heat can be lost from the ground by radiation as well as by convection. If

radiation is considered rigorously, the difference between ni ght and day needs to
be considered, along with the angle of the sun and lengths of the day at different
times of the year. A less rigorous approach was used by [25], who applied a sine
wave formulation of the sun’s radiant energy as incident on the ground in their
area of interest (the Alaskan north slope). Radiation effects are neglected in the

current work.

3.2.4 Moisture in the Ground
In real soil there will almost always be some degree of moisture. As the ground

temperature drops to the freezing point it is incapable of dropping lower until the
water freezes, regardless of the surface temperature. Likewise, when the ground
starts to warm up, the temperature cannot rise above the freezing point until all
the ice has melted. Because the latent energy of the ice-water phase change is so
high, this effect can cause a large phase delay and attenuation of the seasonal

temperature variations below the surface of the ground.

A simple finite difference scheme can represent this behaviour. The ground

within each node contains a certain amount of moisture, which must freeze (or
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melt) before the temperature of the node can go below (or above) the freezing

point. The equation for the energy balance [26] at a node is:

pciAx (T”' )+ Lm,

k
~T')=—(T,_ -2T +T
JEEAR

t+]

(3.16)

The latent heat of fusion, L, for water is approximately 333,000 J/kg. Note that
m, is the mass of water per unit volume to change phase during the time step

(positive for freezing, negative for melting).

This is more easily solved using an explicit scheme, unlike the previous
formulations which could be solved with an implicit scheme. This is because the
mass of water to change phase is unknown and must be calculated for each layer
at each time step. As described earlier, the biggest disadvantage of using an
explicit scheme is the limit placed on the time step by the need for stability. The

explicit form of the equation is:

T =T+ KO _ore e ) e £ G.17)
(Ax)' pcAx
At the surface node it is:
T = -KAt (T‘ ) 2hAr (T T )+ T + Lm, (.18)
Axpc pciAx

To implement this in a model, the program will have to keep track of the
proportion of the water contained within each node which is liquid and solid. If
this value at any node is not O or 1 (i.e., all water is solid or liquid, respectively),
then the nodal temperature must be 0°C. The calculations will have to be iterative
in some cases—for each time step, the program will have to calculate a new
temperature at each node, assuming m,, = 0, and ensure that node did not cross
the 0°C barrier. If the nodal temperature changes sign. a value for m,, will have to
be calculated, and a new proportion of frozen water will be calculated. The initial
version of the model will assume that the thermal properties of the ground are the

same, regardless of whether the water is in a liquid or solid phase—if the moisture
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content of the ground is very low, this assumption is reasonable. When the

moisture content is higher, however, the change in properties must be considered.

In an explicit formulation, there is a stability criterion to consider. If the effect of
the phase change is not considered, and the case has a convective boundary, then
the stability criterion [21] is based on the Fourier number (Fo) and the Biot
number (Bi):

Fo(l+Bi)< 1 (3.19)
Where:
Fo=XAL (3.20)
(Axy
gi =12 3.21)

The maximum time step that can be used for a given case is then:

19—

Ar < (3.22)

K +Kh
(Acy  Axk

The results can be seen in Figure 3.6.
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Figure 3.6 Seasonal ground temperature variation for dry and moist ground.

This plot shows a one year period after the conditions have had time to stabilize
from the initial condition. As might be expected, there is attenuation of the
temperature variation, since the latent heat of the water acts as a buffer. There is
clearly a change in the behaviour of the curve as it crosses 0°C in each direction.
This is because the ground is not permitted by the calculation algorithm to be at
any temperature other than 0°C while there is both liquid and solid water present.
It should be noted that this is an approximation: [26] states that liquid water can

exist below 0°C and solid water can exist above 0°C while in the porous medium

of the ground.

While not plotted, it is evident that increasing the water content in the ground will
increase the attenuation. At what point this becomes a significant issue to the
calculation of the temperatures in a buried pipeline is undetermined at this time.

Figure 3.6, above, is for soil with 50 kg of water per cubic metre of soil. Even at
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this very low water content (about 2.5% by mass), it can be seen that there is a
significant effect. For any higher water content, as would be expected in moist
ground, the assumption that freezing and thawing have an insignificant effect on
the total rate of heat transfer to and from any buried pipeline will most likely be

invalid.



4. Transient Heat Loss Calculations

In order to determine the heat loss from a pipeline at any moment in time, in the
midst of transient conditions, the temperature distribution in the ground
surrounding the pipeline must be known. This requires that the thermal history of

the ground be calculated.

4.1 Transient Heat Conduction Equation
The differential equation governing two-dimensional transient heat transfer in

Cartesian coordinates [21, 26] is:

Py

This assumes a constant value of K throughout the domain. This assumption is
carried through the rest of this work unless otherwise specified. There is only a
very limited range of applications for which this equation can be solved

analytically. Most cases will require a numerical solution.

4.2 Finite Difference Method

In a finite difference model, the domain of interest is divided into regions, each of
which is centred around a node. The results are calculated at the nodes. A nodal
temperature at a given time is based on the temperature of the nodes around it,
and its own temperature at an earlier time. There are two ways of deriving a finite
difference equation for a given problem. The first is to simply apply numerical
derivative equations to the known differential equation, and the second s to take a
step further back and apply physical principles. Numerical derivatives [21] which
can be applied to the above equation are:

or _T"™™ -T'

* A and ox* (Aax)y

Other formulations are available, some of which may increase accuracy, but these

O°T T -2T +T,, (4.2,4.3)

are simple and are adequate for most cases.
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Applying these to the two dimensional transient heat transfer differential equation

gives the following results:
~ _
l T” - T‘ = T(-_\l' - 2Tr +T\'-‘.\t + 7..\’—'-\.\' 2T‘ + T.v

K M (Axy @yy

The problem remaining is that in each of the three terms. the temperature is

= 4.4)

referred to only one of the two dimensions, and the terms on the right hand side
are not referred to a time. Consider a node (i), where a change in the first
parameter refers to a change in the x direction and a change in the second

parameter refers to a change in the y direction. The equation is now:

LT -T), T,

i+l

—27:./ +7:-l.] + T

.yl

-21;./ +1:.1—l (4.5)

K A (Axy (avy

The terms on the right hand side are still not referred to a time. There are two

choices: r and t+Ar. If r is chosen then it is possible to solve for each T**¥
independently of the others (this is called the explicit method). This is easily
implemented in a computer program. Unfortunately, this simplicity comes at a
cost. If the size of the time step (Ar) is too large, the calculation becomes
numerically unstable (i.e., the error increases at each step). The maximum value
of the time step depends on the values of Ax, Ay, and k& If r+Ar is chosen,
however, the calculation is inherently stable, regardless of the size of the time
step, but the result at any node cannot be calculated independently from the
results at the other nodes (this is called the implicit method). Note that
oscillations in the solution can still occur (especially at larger time steps), but
these are damped out with increasing time. Smaller time steps will also lead to
increased accuracy. Because of the inherent stability of the implicit method. it

will be used exclusively in this work.

In an implicit formulation, the difference equation is:

(S T o v 1+ t+ A M A+ t+ A
l 1;.] T:.j 7:+l.j 27: 7 +1:—l.j T;.jﬂ "T: ] +T

il = . _ . . i.j-1 4.6
PR 7 A @0




There is such an equation for every node in the system. This results in a system
of equations which must be solved simultaneously. Written in a matrix-vector

form, this is:

[alr—~}={r)} @.7)

[A] is a nxn matrix, and the {T} terms are nxl column vectors. The value of [A]
must be determined from the finite difference equation. At a given node, the
equation can be rewritten as:

TMA: Tt - KAI ( 1+ 27—::;.&1 +T’:.\Il) (TMN _77‘:«.\: +T:¢.y)

[N iy ( )_ i+l A .-

22 K At I+ r+ [ K At -+ r [4d
1:.;-\‘ —(Ax)_ (7:*-151‘_21’:.;3*'7-:-!.-‘;) ( ).(T:;:-\l‘ 77‘:,-\! T:/-\l‘) Tx/
Finally:
KAt KA KAI XAt KAt KA
— T - Ty 142 22 Y e Ty ST Ty =T
@y " [ ) ey @Ay " (ayy
4.8)

This is now in a form that can be easily converted to a matrix-vector form as
above. All that remains is a bookkeeping issue, since there are two dimensions of

nodes which must be stored in a one-dimensional vector.

The second method of deriving the finite difference equation is based on physical
principles. Consider node (i, j), surrounded by nodes (i-1, J) G+, ), 4, j-1), and

(i, j+1), as shown below.
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Figure 4.1 Node numbering

At any instant in time the heat flowing from node (i-1, J) into node (i, j) is given
by:
kA
q=—AT 4.9)
g Ax
If the two dimensional domain is assumed to have a depth of L in the third

dimension, then this is:

Y, -T,) (4.10)

N

Ax
If the time step is short enough so that the temperatures of the two nodes do not

change significantly, the total amount of energy to flow between the nodes is:
=l —1‘11) (4’11)

Similar equations can be written for the heat flow from the other nodes during the

time step. The change in temperature of node (i) is given by:

AT =T ¥ -1/ =—L -__4 4.12)
pVc pAxAyLc

This can be combined into one equation for the node:

v GRURT A DLt WL L WLTE T A
Y LT = X Av Ay Ay
w T N PACAY Lo

4.13)
Simplifying:




A A Al A
kAI Av (1: -y 11)+ v(xvl/ )+ t(r/—l :. )+A—;(T:.J—l—1:.;)

pc Ax A}

ey _ ol _ 1
T:A] -7:./ s KAI[ (AI)! (7:-1.1 7:./)+ (AV): (T:—I./ x. ) (1 -1 L ) (: IO :A )}
Finally:

TH».\I TI K At

v T Ay

)+KAI

™3

— ., -2T +T

tg ivl.j

(T -1 "T +Tx j*l)

4.14)

This is the same result as was obtained above.

This formulation of the finite difference method is in the Cartesian coordinate
system. It is therefore best applied in situations which have straight lines at right
angles to one another. A pipeline buried in ground (considering a cross-section
only) is essentially a circle in a semi-infinite plane. The circle is actually
comprised of one or two hollow annuli (the pipe wall and possibly a layer of
insulation). These regions were illustrated in Figure 2.1. Representing this in a
Cartesian coordinate system would require a very large number of nodes.
Alternatively, the heat conduction equation can be transformed to other

coordinate systems.

4.2.1 Derivation of Radial Coordinate System Equations
The transient heat conduction equation in a radial coordinate system is the

following [21]:

10T 10T 9°T
—— e .1
Ko rar ot (4.13)

In the same way as for the Cartesian version. there are more than one way to

derive a finite difference approximation to this equation.
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4.2.1.1 Method Using Assumption of Small Discretization
The simplest method of creating a finite difference equation is to apply the

numerical derivative formulae as was done above for the Cartesian version of the

equation. In this case, the formulae are:

aT _ Tr‘.;m - Tr’.G

aT _ 4.16
ot Ar .
aT Tr+'.\r 0 7""-\’ o
ar _T., : a.17
ar 2Ar ( )
alf _Tvo- 21,,,,1 +Tso (4.18)
or’ @ry

As before, the terms in the two spatial derivatives can be evaluated at time ¢
(explicit method) or at time r+Ar (implicit method). Again, there are different
formulations for these derivatives which can be used. Using these ones will give
the same result as for a physical derivation. under an assumption of small

discretization.

Consider a node (r,6) with neighbours (r+Ar.6), (r-Ar.0), (r,6+A8), and (r,6-A0),

as illustrated in Figure 4.2.
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Figure 4.2 Nodal geometry in radial system

Temperature is considered to vary only in two dimensions: in order to ensure that

the units are correct, however, a third dimension must be considered. The

thickness of the two dimensional domain in this third dimension is L. The surface

area between nodes (r,0) and (r+Ar,0) is A,, between nodes (r,0) and (r-Ar.0) is

Az, and between nodes (r,0) and (r.68+A80) or (r,8-A0) is As.
represented by node (r,0) is V. These quantities are:
V=LA6rAr
A =LA6 (r + %)

A, = LAH(r—-A?—r)

A, =LAr

The heat transfer between any two nodes in the radial direction in

period is:

The volume

4.19)

(4.20)

4.21)

4.22)

a given time
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_kAAT

At 4.23
Ar ¢ )
Between two nodes in the angular direction the heat transfer is:
_kAar At 4.24)
rA@

There is an assumption in these formulae that the radial discretization (Ar) is

small relative to the radius, and that the temperatures do not change significantly

during the time step. The change in temperature of the node in this time is:

AT =4 (4.25)
pVece

If these terms are all put together and expressed in an implicit form, the following

expression is obtained:

Ly G AR T N, B+ T 1+ A+ 2B+ C)+ T, (- B)+ TY (- C) =T,

redr

(4.26)
Where:

K At( r— % )

A=—r_— 2 «.27)
r(Ar)'
L. (4.28)
r- (A0)'

K At( r+ g)

C=—\__ =/ “4.29)

r(Ar)2
This is exactly the same equation as would be obtained using the numerical

derivative method with the formulations shown above.

4.2.1.2 Method Without Using Assumption of Small Discretization
The above method assumed that the radial discretization was smail relative to the

radius. This assumption can be avoided if the heat transfer in the radial direction

is expressed as follows [21] for the inner and outer nodes, respectively:
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_KkLA6AT _ kLA6AT

_ or g=————-
r r+Ar
In In
r—Ar r

Using this formulation, the equation obtained is:

Lo CART G CB)+ T (14 A+ 2B+ C)+ T2, (- B+ T, (-C)=T},

r+ar.

At (4.30,4.31)

4.32)
Where:
A= k Ar (4.33)
rAr ln( r )
r—Ar
L (4.34)
r- (AB)'
C= K Af < (4.35)
rAr ln[ rrar J
.

4.2.1.3 Comparison
Both of these methods give satisfactory results when the discretization is small.

Figure 4.3 shows the maximum error at any point in the domain in each, as
compared to an analytical solution from [28]. The physical situation is that of a
steel pipe, forced to a temperature of 70°C on the inside surface and 5°C on the
outside surface. The large error at the start is due to a finite number of terms used
in the analytical solution (which is the sum of an infinite series); i.e., the bulk of
the error at the start is actually in the computation of the analytical solution, not

the finite difference solution.
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Figure 4.3 Error in radial finite differences

For the first period of time, there is very little difference between the two
methods. It is only as a steady state is approached that a difference becomes
obvious. In fact, it is easily verified that the second method approaches the
analytical steady state solution (which can easily be obtained) exactly, while the
first does not. As discretization increases, the difference between the two
methods decrease. (This makes sense, since as discretization increases. the
assumption used in deriving the first method becomes more and more valid.)

Since there is no good reason not to use the second method, it should be used.

4.2.1.4 Symmetry Boundary Condition
The system that is being considered in this work (i.e. a pipe buried in the ground)

has a line of symmetry which is a vertical line passing through the centre of the
cylinder. This means that only half of the cylinder needs to be considered in any

finite difference calculation scheme. The nodal equation is:
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T C AT B+ T A+ A+ 2B+ O+ T2, (- B)+ T2 (- C) =T,

rear.

(4.36)
The cylinder now has nodes in the angular (8) direction only from -/2 to n/2
(assuming the right hand side of the line of symmetry is being considered),
instead of over a full circle. This means that the node at the top (1/2) position
does not have a corresponding 8+ A@node as required in the equation. However.
because of symmetry, the temperature at any given radius will be the same at

nodes /2 + A@and 1/2 - A@. Therefore the nodal equation for nodes at 8= 1/2 is:

T (CA)+T Y, (-2B)+ T (1 + A+ 2B + CI+T ¥, (-C)=T/,

reAr

(4.37)

Similarly, at the bottom (-n/2) position. the nodal equation is:

Lo CANT U+ A+2B+C)+ T/, 2B)+ T8, (- C)=T,,

r+ir

(4.38)

4.2.1.5 Connection of Two Radial Systems
The above methods work if there is a homogeneous cylindrical system. If two

different cylindrical regions are connected (e.g., a pipe and insulation around it),
the boundary between these two regions must be specially considered. Note that
the above formulations will still work at nodes other than those on the boundary.

(This and the following derivation requires that there be nodes on the boundary
itself.)

Figure 4.4 illustrates a node on the boundary between two different cylindrical
regions. These regions may have different properties and different radial

discretization. (The angular discretization must be the same in both regions.)
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A *(r,6-40)

Figure 4.4 A node at the intersection of two cylindrical regions

As before, the thickness of the two dimensional domain is L. The surface area
between nodes (r,6) and (r+Ar»,0) is A, between nodes (r.0) and (r-Ar,0) is A,
and between nodes (r,6) and (r,68+A6) or (r,8-A0) is A3, on the first side of the
boundary and As> on the second side . The volume represented by node (r,8) is V,

which is comprised of V, and V>. These quantities are:

V=V, +V1=LA0[(r—A:]A;' +(r+A4")A2'Z] (4.39)
A = LAO(r-——AziJ (4.40)

A, =LA0(r+A2'1) (4.41)

A, =L% (4.42)



Ar,
2

A, =L (4.43)

Using the small discretization assumption, the following equations are the same as

in the above case.

The heat transfer between any two nodes in the radial direction in a given time

period is:
_kAaT At (4.44)
Ar
Between two nodes in the angular direction the heat transfer is:
_kAAT At (4.45)
rA@

Considering that the thermal conductivity, density and specific heat in the two

regions may be different, the change in temperature of the node in this time is:

AT = 1 (4.46)
Ve +p,V,c,

The following result is obtained:

(TN.\( - T,t.g }(l’[ V[ cl + p: V1 C: )= kZ Al (Tro.\r:.o - Tr.0 )+ kl Al (Tr—.\rl.ﬂ - Tr.(l )

r.o

Ar Ar, Ar,
+ kl ASI (Tr.o-_\a —Tr.ﬂ )+ k: As: (Tr.a-.\o -Tr.ﬂ)
r-Ad r-A@
+ kl A3x (Tr.9¢50 ‘Tr.o ) + k: Aaz (Tr.o..\o - Tr.o)
rA@ rA@

(4.47)
This can be simplified to the following:

T aCART BT U+ A+ 2B+ C)+THY, (- B)+ T Y ,(-C)=T7,

rear,
(4.48)
Where:
_k A At
Ar, (pVie,+p,V.c,)

A (4.49)
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= (kl ASl + k2 ASZ) At

B 4.50
rA@ (plvlcl+plvlcl) ( )
C= £, 4, At 4.51)
Ar, (pV, o +p,V,c,)
Substituting where possible, and further simplifying:
k, (r - %)At
A= - (4.52)
A _An \Ar, + + Ar, \Ar,
A Y E RS e e
B= (Zl Ar,A-i- k, Ar, At — (4.53)
? _2han 2 |12
r(AO)‘(pl(r " J : cl+p:(r+ n ) : Cl)
k, (r + %’i)m
C = = 4.54)

A _An A + + Ar, \Ar,
AT FEER P r FEERE

Preferably, the assumption of small discretization should not be used. The
alternative derivation uses the following equations for heat flow between two

radially adjacent nodes:
= MAI or q= .5’_[‘.A6—ATAI (4'55’ 4_56)
r r+Ar
ln( ) ln[ ]
r—Ar r
The following resuit is obtained:

(T,.._y _T, \(p; V[ C[ + pz Vz C;) _ k! LA6 (Tr».\r:.{) —Tr.ﬂ )+ kl LA6 (Tr-.\r,.s —Tr.ﬂ)
r.8 ro/ -

In = In
r r-Ar

+ kl A}l (Tr.ﬂ—Ao - Tr.9 ) + k: Az: (Tr.o-._\o - T.—_o)

rA@ rA@
+ kl ASI (Tr.m._\o _Tr.s ) + k: A3: (Tr.9~A8 —Tr.O)
rAf@ rA6

4.57)
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As above, this can be simplified into:

TrI:::, 0 (" A)+ Tr'.;‘—v«.w (— B)+ Tr‘.;N (l +A+2B+ C)+ Tr'.:)f.w (‘ B)+ T, .0 (— C)= Tr"o

r+Ar,

(4.58)
Where:
k
A=t LAO ar (4.59)
Inl —" (plvlcl+pzvlcl)
r—Ar
B = (kl ASI + kl A32) At (4'60)
rAg (o, Vie, +p.V,¢,)
_ k, LAG At A.61)
In r+Aarn (plvlcl""pzvzcz)
r
Substituting where possible, and further simplifying:

= k ar 4.62)

r Ar \Ar, Ar, YAr,

In A | r—T TCI'*'p, r+ 5 2

1 2 2

B= (:l Ar,A+ k, Ar, )At — 4.63)
> r, \Ar, r, \Ar,
r(AB)‘[pl (r—T‘)T'-cl + 0, [r-f- n ) > C:]

= £, A1 (4.64)

In r+Ar, _An\Ar . +Ar: Ar,
S Y R N e

4.2.1.6 Convective Boundary Conditions
The inside surface of the inner radial system (representing the pipe wall) is

exposed to the fluid within the pipe. In the present case, the fluid would normally
be warmer than the surroundings, and therefore heat is transferred from the fluid
to the pipe wall. The convective heat loss equation is described in Section 2.2.
This equation removes the assumption that the fluid temperature doesn’t change

over the segment length. The traditional finite difference methods for convective
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boundaries also use this assumption, so they will have to be rewritten to remove

the assumption, as was done for the basic equation in Section 2.2.

The formulation described in Section 2.2 makes an assumption of the existence of
a steady state. This will frequently not be acceptable in a transient heat transfer
calculation. At some points in a calculation, a quasi steady state may exist, and at
these times, the steady state formulation may be acceptable. At other times, a

different formulation will be required. The steady state formulation presented in

g={, -, {l—exp[— L ]]m ¢ (4.65)
' Rmc

The transient formulation that will be used is derived in a similar way to this. It

Section 2.2 is;

considers a fixed element of fluid mass as it travels from one point in the pipeline

to another. The change in temperature of this element in the time period {21] is:

dT =-4_ 4 (4.66)
mc

The heat flow (considering that the surroundings have a constant temperature) is:

L) (4.67)
q = .
1 R
These terms can be combined as:
T-T,
dT =- dt (4.68)
Rmc
a4 .. = (4.69)
T-T, Rmc
Integrate:
In(T-T,)=—"-+C
‘ mc
4.70)




To solve for the arbitrary constant (k), a boundary condition is applied. The

temperature of the fluid at the start of the time period (+ = 0) is known to be Ty.

Therefore, the following is true:
Tf —T.c =k

This is now inserted into the equation to arrive at:

r-1, =, -, )ew[ & )

Rmc

To determine the heat flow, the following equation is applied:

=, -T)™E
‘l—(Tf T)At

Substituting the temperature at the end of the time period:

otz

Rmc Ar
=T, -T,) 1-exp| =2 || ™
Rmc )| At

So the two formulations for heat loss are now:

Rmc

Transient g= (T, ~T, )[l —exp [ - At H mc

Rmc E

Quasi steady state q= (Tf -T, {l —exp(-— = L J]n’zc

@71

«.72)

«.73)

(4.74)

«.75)

(4.76)

The form of these two equations are very similar, as could be expected. They are

also dimensionally equivalent, as required. Note that the transient equation can

also be used to calculate heat flow in a steady state case. The case where the two

forms are equivalent is when the time step (Ar) is the time for the fluid to travel

the length of the segment (L). In this case, the following equations are true

(where D is the inside diameter of the pipe):
n .
1=Lp—D-

[ ol n

m=Qp

.77

(4.78)
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A1=L”D:

4.79
10 (4.79)
R'=RL (4.80)
The steady state equation then reduces to:
L
1=, -T, ) 1 -exp| -————
q (f e{ p( RLQpcDQpC
(4.81)
1
=\, -T,) |—exp| - :
(f ‘{ XP( RQch]Qpc
The transient equation is:
Lz D’ T .
- Lp—D ¢
q:(T,.—T‘, 1 -exp 40 4 =
RLPZDZC LIZD-
=(T ~T, ) 1-exp —1 -poc

In this case, the two equations are identical. In practise, there will be times when
it is more appropriate to use one or the other. This will be discussed further in

Section 5.1.

These two heat flow equations must now be expressed in appropriate form for use

in a finite difference equation. First they will be expressed slightly differently:

L
Steady State g=0,-T,) 1-exp| -— Qpc (4.83)
.
- L
Transient g=@T, -T, ) 1-exp At PRl ¢ (4.84)
‘ Rprmr Lc At

In both cases, the thermal resistance is only the resistance to the next node, and so

will only encompass the convection portion, or:
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R= R = (4.85a, 4.85b)

2hrmr L 2hrr,

So the heat flow equations are then:
2

Steady State g= (Tf ~-T,f 1-exp _2Lhxr Qpc (4.86)

' Qpc

-2 2

Transient q= (T, -T, )[l —exp( 24tk )J prr L 4.87)

' prc At
The system to be resolved is shown in Figure 4.5.

N o (r+Ar,0)
\xq.,eme) B Y (f
N //
~ : o1
AN E .
NS
*(r;:9)
N e
\\,\’ . A3
\\\\
‘a(r.,8-A6)

Figure 4.5 Nodes used in convective boundary with finite difference method

The depth of the two dimensional domain in the third dimension is L. The surface

area between nodes (r,0) and (r+Ar.0) is A;, and between nodes (r,0 and

(r,6+A0) or (r,8-A6) is A;. The volume represented by node (r,0) is V. These

quantities are:

V= LAaﬂ[r, +ﬂ)
2 4

(4.88)
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A = LAB(r;. +%) (4.89)
a =L f’ (4.90)

The heat transfer between any two nodes in the radial direction in a given time

period is:
Ar
Between two nodes in the angular direction the heat transfer is:
k
_AAAT (4.92)
r A@

There is an assumption in these terms that the radial discretization (Ar) is small

relative to the radius, and that the temperatures do not change significantly during

the time step.

The change in temperature of the node in this time is:

AT =4 (4.93)
pPVe

The fluid temperature at the start of the segment (steady state) or at the start of the
time step (transient) is Tx. Note that the heat transfer equations above for
convection are for the heat transfer over the entire inside surface of the pipe. This
must be scaled by a factor to account for the proportion of this heat entering each
node. Assuming the heat transfer is evenly distributed over the inside surface of
the pipe, the above convective equations can be multiplied by a factor as follows:
Drodat = Q'g_ft (4.94)

The equation for the steady state method can be built as:
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h2rr,
e ) [ =ik | PYNE
. - 2 4 pfﬁ' d

LAr
AB’

+(T..0s —T,“,,)Zk-LAO(H‘ﬂ)AI
r

+(, pso =27, , +T

r.8+18

(4.95)
This can be expressed in an implicit form as:

T, (AT B+ T 1+ A+ 2B+C)+ T/, (- B)+ T2 (- C)=T/,

9.\r0
( [ Lh2rxr, )
l-ex At
QOp,c
A= rtr

o0
a0 )
o

Lh’zr
l—exp
_ Qp, ¢,

LArm| r+—
petarn{re§)

(4.96)
Where:

4.97)
]Q p;c, At

k LAr
rA@ 2

chABﬂ(rﬁ-éfJ

(4.98)
KAt

" aoy (*AT)
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LS AO( A’]A:
Ar 2

pc LAB-A—r(r-i—H-)
2 4
2x(r+£)m
_ 2
(Ar)z(r-i-%)

Alternatively, the form of the transient version of the equation results in a change

C=

(4.99)

only to the A parameter:

Ath?2 )
| —exp| - r"Lp,c,
A= nP;Cy

pc LAr(r-f— %)

(4.100)

To derive these forms without assuming a small discretization, once again the

radial heat flow must be expressed as:

_ kLA6AT

- ( r+ Ar)
In
’
The nodal equation is then:

2
(T:;M T,'o)chAB ( ) (T Tn.g{l—exp[—[éh’%”i)]Qp, ¢ Atﬂ

Y
I Cf <

-

(4.101)

( Atk LAr
r0 KV I rﬂ rﬂ*.\g A0 2

+ (Tr; varg Tn .8 )M

(r+Ar]
In
,

(4.102)

This can be expressed in an implicit form as:

T, (AT B+ T 1+ A+ 2B+ C)+TE, (- B)+ T2 (- C)=T,

r+arO\

(4.103)



Where:

Lh2rr
l—exp| ———— | |Qp, c, At
A—L ( 20, ¢ J] T

4.104)
chArzz[H-ﬂ)
4
B= kA (4.105)
> Ar '
AB) rlr+—
( )r[ 4)
C= KAl (4.106)

Ar+r\Ar Ar
in —| r+—
r 2 4
Only the C term has changed from the previous formulation. For the transient

convective case, the A term is the same as when the small discretization

assumption was used.

4.2.2 Derivation of Ground Coordinate System Equations
The coordinate system used to describe the heat transfer in the ground is an

adaptation of the methods described by Archer and O’Sullivan [29], Martin and
Sadhal [30], and Chung et al [31]. The heat transfer from the outside edge of the
cylindrical system (i.e.. the outside of the pipe or insulation) to the surface of the

ground is considered.

4.2.2.1 Transformation of Variables
The transformation of variables which is used to describe the new coordinate

system is [30]:

X+iy =ccolh( a*g'ﬂ ] (4.107)
Where:
o= Z (4.108)
r()
a, =cosh™(p) (4.109)
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c =r,sinh(a, ) (4.110)
The half domain (symmetry applies for the other half) is defined by the range:
O0<a<a,
0<p<n

It can be shown (see Appendix A) that the transformation reduces to:

x=c|—Snha @.111)
| cosha —cos B |

y=c|—Sn# 4.112)
| cosha —cos B |

This is referred to as a bipolar or bicylindrical coordinate system by Martin and
Sadhal [30].

In the Cartesian coordinate system, x represents the vertical distance below the
ground, and -y represents the horizontal distance from the plane of symmetry (y is
negative). For example, the pipe centreline is at x = Z, v = 0. In the transformed
coordinate system, @ =a, represents the boundary of the pipe surface, a =0
represents the surface of the ground, 6 =0 is the plane of symmetry below the
pipe, and 5 =2 represents the plane of symmetry above the pipe. This is shown
in Figure 4.6, where solid lines represent lines of constant o and dashed lines

represent lines of constant 3.
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Figure 4.6 Coordinate system used in the ground

There is one node not shown in the plot. Looking at the result of the hyperbolic
cotangent function over the range of possible a and S, it is evident that a problem
occurs when ¢ and f are both equal to zero, since coth(0) is undefined. More
accurately:

I‘i_r’rol[coth(x)]= oo 4.113)
This means there is a node at infinity which is not plotted in the above figure.
This point is considered to lie both on the a =0 line, which runs along the
surface. and the 6 =0 line, which runs down into the ground from the bottom of

the pipe.

4.2.2.2 Transformation of Conduction Equation
The heat conduction equation in the x-y plane is transformed into the -8 plane:

10T _(cosha—cosp :x 62T+31T
K ot c da® 9p*

(4.114)
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(See Appendix B for a derivation of this.)

The steady state solution to this equation, with constant temperature boundary

conditions applied at the surface of the ground (7,) and the surface of the pipe (T,)

18:

T=T,+@, -T, )% 4.115)

1]
The transformed heat equation can easily be implemented in a finite difference
scheme. It is aiso easily verified that after a long period of time, the finite
difference model approaches the steady state solution shown above. However, it
should be noted that the further away a node is from the pipe, the longer it takes

for it to reach the steady state result.

4.2.2.3 Finite Difference Model
The finite difference equation, set up into an implicit format is:

L s CA TG, CAN T+ 24+ 20)+ T, (CC)+ TN -c)=1;,

a. p+A8
4.116)
Where:
An I(At’ cosha-cos BY 4.117)
aay c
c- KAt’(cosha—cosﬂJ' (4.118)
08y

Special consideration is required at the symmetry boundaries. At these nodes,
either the (@, 6 +Ap) or (a,f —Af) node will not exist (depending on whether it
is the =0 or f =72 boundary under consideration). Due to symmetry,

however it is known that at these boundaries:

Ta.ﬂ—-.\ﬂ = Ta.ﬂ+Aﬂ (4-1 19)
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Which can be used to fill the necessary terms of the finite difference equations for
those nodes.

This scheme was tested with a fairly small discretization (five nodes in the «
direction and four nodes in the B direction). The thermal diffusivity was
1.4x107 m?s, and the cylinder had a diameter of 15 cm. The temperature of the

surface of the cylinder was 70°C and the temperature of the surface of the ground
was 5°C. The maximum error (where error is defined as difference relative to

steady state value as described above) is plotted in Figure 4.7.

10° .

Maximum Error, °C

0O 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Reration

Figure 4.7 Convergence of finite difference calculation

It is evident that the results do converge towards the theoretical steady state value,
as expected.
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4.2.3 Connection of Ground System to Radial System
The pipe and insulation are based in a cylindrical coordinate system, and the

ground uses a bipolar coordinate system. These two systems do not match up to
one another perfectly. It can be seen that although the bipolar coordinate system
gives a perfect circle on the boundary between the two systems, the nodes are not

evenly spaced on this circle, as they are in the cylindrical system. This is showin

in Figure 4.8.
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Figure 4.8 Connection of radial and bicylindrical coordinate systems

The figure shows the outer nodes on the insulation (solid circles), including the
boundary, and the first two layers of nodes in the ground (hollow circles). It can
be seen that the two coordinate systems do not line up with one another at the
boundary. Therefore, the finite difference method used to connect the two

systems must consist of an approximation.
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The finite difference equation in an implicit form is:

T"*(+A+B+2C)+ T ¥ (- A+ T (- B)+ T (- C)+ oo (- C)=T'

Where:

krr—§Aq)
A= Ar,
o, CanG+ian)+p o Gar (r=-1ar)

(Small discretization assumption)

2A:

2Ark,

r

r—Ar,

A=
p,c, A (r+1ar )+ p, ¢ Car (r-1ar)

(No small discretization assumption)
s | Kilr+1ar)
B= ar
P GAL G +ian )+ p.c. Car, (F-Lar))

5 p | & 347, +k 3ar)
r(agy

" 0,¢, Can r+1An ) p.c. Car (—tar )

C

Where:

Subscript ¢ represents the radial (cylindrical) region (the insulation)

Subscript ¢ represents the transformed region (the ground)

1 . . .
;Ar; is the distance from a node on the border to a point at

transformed node

(4.120)

4.121)

(4.122)

(4.123)

(4.129)

Aa
- to the next

1 . A
—;Al;' is half the distance from the node on the border to the next transformed

node.



This approximation becomes more and more accurate as the discretization
increases (i.e. the space between nodes becomes smaller). More important,
however, is the ratio of the outside diameter of the pipe and the burial depth of the
pipe. As this ratio decreases (i.e., smaller pipe or deeper burial), the accuracy of
the approximation increases. Unfortunately, this ratio is controlled by the
physical geometry of the problem and cannot be adjusted in the same way that
discretization can be. A finite element method removes this approximation, but
adds others (e.g., the representation of curved lines by multiple straight line
segments). Whether a finite element method can improve the accuracy of the

calculation will be examined in Chapter 8.



S. Calculation Algorithm

S.1 Construction of Model
Chapter 2 covered issues relating to flow losses; Chapter 3 discussed the issues

surrounding ground temperature in undisturbed ground; and Chapter 4 described
the two dimensional finite difference model for calculating transient temperature
distributions in the geometry of interest. In order to calculate the pressure losses
in a viscous oil pipeline over time, these issues must all be combined into a

comprehensive calculation model.

An initial condition must be assumed, both in the fluid and in the ground
temperature distribution. The ground temperature distribution could be assigned
based on the results of a previous calculation, or it could be assumed simply to be
the temperature of undisturbed ground, which can be obtained from the analytical
solutions shown in Section 3.1.1. The fluid present in the pipeline at start-up
(time zero) can also be determined from the result of a previous calculation if it is
not a first-time use of the pipeline. Otherwise, it can be assumed that the fluid is
water (left in the pipeline from the hydrostatic pressure test required by law), and

is at the temperature of the ground around it.

Unless the calculation is to be continued from a previous calculation with no
discontinuity added in the fluid, it should be assumed that there is a discontinuity
introduced into the pipeline at time zero. In the case of a pipeline pre-filled with
cold water, when heated oil starts to flow into the pipeline, there will be a sharp
discontinuity both in fluid type (and flow regime) and in temperature. Chapter 4
described two methods of calculating the convective heat transfer: transient and
(quast) steady state. The transient method must be used if there is any fluid
discontinuity in the pipeline. Fluid discontinuities are caused by events such as

the following:
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® start-up or shut down
e change in flow regime (e.g., transition from water-in-oil emulsion to
oil-in-water emulsion)

¢ sharp change in inlet temperature

e sharp change in flow rate

e sharp change in water fraction
For the last three, the determination of what is a “sharp change” is subjective.
When written into a computer program, this would ideally be left to the user to
specify. In some cases, the user may want any change in these conditions to be
considered a discontinuity, and in other cases a 5% or 10% instantaneous change

could be acceptable, depending on the accuracy required.

The length of the pipeline is divided into segments; each segment is the same
length. This is done because when there is a discontinuity in the pipeline,
“blocks™ of fluid are tracked as they move through the pipeline. It would be very
difficult to account for blocks of different sizes moving through the pipeline. If it
was known that there would never be discontinuities in the pipeline, then the
segments could be different lengths—this would actually be computationally
more efficient because the segment size could reflect the expected thermal
gradient. Normally, the thermal gradient will be higher at the start of the pipeline,
where the oil is hottest. As it cools off through the length of the pipe, the
temperature difference between the oil and the surface of the ground decreases,
and so the amount of temperature lost in the oil decreases over a unit length. For
maximum computational efficiency, the segment length would be shortest where
the thermal gradient is the highest. Unfortunately, the possibility of the presence
of discontinuities means that a generic algorithm is limited to equal segment

lengths.



In the calculation algorithm it is assumed that the temperature along the length of
each segment is constant (although it changes from segment to segment). Note
that there are two dimensional temperature variations within each segment; only
the dimension along the length is not allowed to vary. The shorter each segment
is, the more accurate this assumption will be (but the more memory and
computational time will be required). No heat transfer is considered from one

segment to the next, other than through the fluid.

In the transient case, the discontinuities must be tracked as they move through the
pipeline. The time step is specified to be exactly the time for a fluid boundary to
move one segment length through the pipeline. In theory, the time step could be
the time for a fluid boundary to move an integer number of segment lengths
through the pipeline. In this method, the heat transfer through each fluid block
passing through the segment in the time step would be summed, and the result
applied to the ground temperature calculation. It was found, however. that this
method produced severe oscillations at times when there was a steep thermal
gradient in the fluid (e.g. at the start of hot oil flowing into a cold pipeline).
While these oscillations were found to be stable (i.c., they would dissipate in
time), they were quite severe in some cases. It was determined that the shorter
time step (and therefore a longer calculation time) would be preferable to the

possibility of having severe numerical oscillations in the results.

There is one problem with forcing the time step to be equal to the time it takes for
a fluid boundary to move one segment length. If the flow rate is very low, this
time can be quite long. The ground surface temperature, liquid flow rate and
water fraction are evaluated only at the start of the time step. If the time step is
very long, these could change significantly during the time step, causing
erroneous results. For this reason, it is best to force a limit on the time step—the

algorithm will not proceed if it is determined that the time step would exceed a
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predetermined maximum. In this case, a higher flow rate or shorter segment

length would have to be used.

In the quasi steady state case, there is no restriction on the time step or on the
segment length. It is not convenient, however, to change the segment length once
established. The time step can be easily changed when the steady state
convection calculation is used. Just as in the transient case, it is unwise to make
the time step too long, as the ground surface temperature, liquid flow rate and
water fraction are evaluated only at the start of the time step. The maximum time
step allowed can be the same in both the transient and steady state methods. (This
would be determined based on factors such as the maximum expected rate of

change of the flow rate, water fraction or ground surface temperature.)

While there is probably no reason that the maximum time step could not be used
immediately after it is determined that there are no discontinuities in the pipeline,
it is thought that a gradual increase in the time step would be more appropriate. A
starting point is the last time step size used by the transient method while the
discontinuity was present. Once the discontinuity leaves the pipeline, the time
step size is increased somewhat at each step until the maximum allowed size is

reached.

A typical calculation will start with cold ground and a pipeline filled with water.
In this case, the calculation algorithm is as follows:
1. Initialize ground temperatures. This is done based on the time of year and

the depth of each node below the surface, assuming undisturbed ground.

9

Note that the pipeline is entirely filled with water at the start.

3. Determine initial flow rate from production data. The initial time step is
then the length of time for a fluid boundary to travel the length of one
segment.
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10.

1.

If the calculated time step is above the maximum allowed, abort the
calculation.

Calculate effective density and specific heat of the fluid in each segment.
Perform internal calculation (see below) for each segment.

Record outputs for the time step.

Determine if there is a discontinuity in the pipe (either a new one entering
the pipe, or an old one still in the pipe).

Determine flow rates at next point in time.

If there is a discontinuity in the pipe, then the time step length is
determined based on the flow rate; otherwise it can be set arbitrarily.
(Normally it should start at the value of the last time step before the
discontinuity left the pipe, and be increased at each step until either a new
discontinuity enters the line or the maximum value for the time step is
reached.)

Calculate pipe fluid temperatures and pressure losses based on the

temperatures

- Recalculate positions of any discontinuities (if present)
13.

Return to step 4, until the desired final time has been reached.

The internal calculation algorithm (step 6, above) has the following form:

1.

2

Set temperature boundary conditions (surface nodes, and pipe/fluid
boundary nodes).
Determine if previously stored coefficient matrix (see Section 5.2) is still
valid. It will not be valid if the present calculation is the first one, or if
any of the following have changed:

a. Type of convection calculation (transient or steady state)

b. Water fraction

c. Flow rate

d. Time step
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e. Convective coefficient
3. If the matrix is not valid, rebuild it and perform an LU decomposition
factoring step (see Section 5.3) on it.
4. Perform an LU decomposition backsubstitution step on the matrix to

calculate the ground temperatures.

This calculation algorithm, when used with the transient convection method, can
also be used when the flow in the pipeline is stopped. In this case. the fluid
blocks cool off in place in the pipeline (i.e., they are not advanced at each time
step). The effects of stopping and restarting flow can then be analysed: this is a
matter of high importance to an oil company considering installing a heavy oil

pipeline.

The flow calculations can be based on any of the flow regimes discussed in
Chapter 2, without changing the main calculation algorithm at all. This is because
the segmented method of calculating the pressure loss is used (as opposed to the
integration method, which is only applicable to laminar flow). The coefficient
matrix, as described below changes, and then only the rows of the matrix referring
to the convective boundary change, and the equation used to calculate the change
in temperature also changes. Neither of these two changes affects the overall

algorithm.

5.2 Coefficient Matrix
In calculating the temperature of the ground in one segment of the pipeline, the

finite difference method is used, as described in Chapter 4. There are a number of
regions within the two-dimensional section of ground which need to be
considered:

¢ fluid/pipe boundary

® pipe

® pipe/insulation boundary
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¢ insulation

® insulation/ground boundary

e ground

¢ surface (boundary)
Each of the boundaries has one layer of nodes; the other regions can have any
number of layers. Each layer must, however, have exactly the same number of

nodes in it. The basic form of the equation at each layer is:

t~1.; (R t+l.g

This can be written in matrix form as:

[alr~}=1r] (5.2)

There is a two dimensional domain being solved. The temperatures of all of the
nodes in these two dimensions must be stored in a one-dimensional vector. The
two-dimensional temperature matrix is wrapped into a one dimensional form.
The nodes in each layer are kept together, with each subsequent layer added on to
the vector after each other. The i-1, j node is always the element before the i. j
node in the vector and the i+1, j node is always the element after the i, Jj node. The
I, j-1 node is located M elements before the i, j node in the vector and the i, j+1

node is always M elements after the i, j node, where there are M elements in each

layer of nodes.

This is translated into the coefficient matrix as well. Each row represents one
node and its relationship with itself and all the other nodes in the domain over one
time step. In each row, there are five non-zero elements (corresponding to one
node and its immediate neighbours)—exactly five nodes are referred to in the
finite difference equation for each layer. The only exception to this is at the
symmetry boundary conditions, where one node is not used: at which point there

are four non-zero nodes in the row.
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The coefficients in each row are determined based on in which region (from the
above list) the node corresponding to the row is located. The coefficients are

calculated from one of the sets of coefficients listed in Chapter 4, as appropriate.

The first layer of nodes and the last layer of nodes are used as inputs. These are
the boundary conditions referring to the temperature at the surface of the ground,
and the temperature of the fluid entering the segment. In the coefficient matrix.
the rows referring to these nodes (the first M rows and the last M rows of the
matrix, where M is the number of nodes in each layer) contain a one on the
diagonal and zeros elsewhere. Therefore, the elements in the temperature vector
referring to these nodes will not change in the matrix calculation, but will have an
effect on other nodes in the system. The temperatures of these nodes are changed

outside the matrix calculation.

5.3 Matrix Solutions
The coefficient matrix is a square matrix of size NxN, and the two temperature

vectors (old-known and new-unknown) are column vectors of length N. In order

to determine the temperature at the end of the time step, the following equation is

solved:

[alfr~}={r] (5.3)

Where A is the vector of coefficients as described in Section 5.2.

5.3.1 Gaussian Elimination
The standard way solving an equation like this is by Gaussian elimination. The

simplest method of Gaussian elimination. as found in many introductory
numerical methods textbooks [e.g., 32] is not a very efficient method, however.
In this, a large number of computations are required at each time step, and no
benefit can be derived from the fact that the coefficient matrix may not change at

any given time.
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5.3.2 Iterative Methods
Iterative methods of matrix solution can often be faster than other methods. The

compromise is that they give approximate answers. These methods require the
user to specify a tolerance—the algorithm will iterate until the results fall within
the tolerance. In cases where an initial estimate is close to the desired solution,
iterative methods can be very fast. This may be applicable to the present problem,
as the temperature vector should normally change very little over any given time
step. The temperature vector at the start of the time step is then used as the initial

estimate in determining the temperature vector at the end of the time step.

5.3.3 LU Decomposition
LU decomposition is essentially a form of Gaussian elimination. [ts advantage is

that it divides the computation into two steps: factoring and decomposition. The
factoring step is where the bulk of the computational effort lies, and it depends
only upon the coefficient matrix and not upon the temperature vectors. This
means that if the coefficient matrix does not change from calculation to
calculation, there is no need to repeat the largest part of the computation each
time. This can amount to a huge savings in computation time if the coefficient
matrix does not frequently change. When the coefficient matrix does change,
there is no penalty for having to perform the factoring step, as compared to the
computation time required for straight Gaussian elimination. For this reason,
most codes available in the public domain use LU decomposition for their
standard routines for solving systems of linear equations. Because this method is
so popular, a large amount of effort has been invested in optimizing these
calculations as much as possible. The difference between the simplest calculation
algorithm for Gaussian elimination in an introductory textbook and a highly
optimized calculation algorithm in the public domain [33] was seen to be two to

three orders of magnitude!
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LU decomposition was used in the calculations for which the results are discussed
in Chapter 6. This is for several reasons:
e There are highly optimized codes available in the public domain,
which can easily be used.
® The coefficient matrix does not change between time steps: the major
part of the calculation is only done once. At each time step. only a
simple backsubstitution step needs to be carried out.
® The results are accurate to machine precision, even when the thermal

profile in the ground is changing rapidly (i.e., at start-up).

5.3.4 Banded Solution Methods
The coefficient matrix for this problem will always be banded. This means that

the only non-zero values in the matrix are on or near the diagonal. Algorithms are
available which can use this to advantage. Generally, these are best at optimizing
memory space (since the zero values which comprise the bulk of the matrix do not
need to be stored), but some can improve on calculation time as well. Note that
these may not be as efficient in the present case because the band width is quite
wide and there are many zeros located within the band. (In each row, there will
be non-zero values on the diagonal, the values immediately to the left and right of
the diagonal, and at some spacing, M, to the left and right of the diagonal. All
other values are zeros; see Section 5.2.) This means that the banded algorithm
will still require the storage and manipulation of a large number of zeros: the

algorithm will therefore lose some of its efficiency.

5.3.5 Sparse Solution Methods

A sparse matrix is one which contains mostly zeros. Algorithms are available
which use this to advantage in the same way that banded solution methods do.
Much less memory space is generally required than for methods which assume the

matrix is full of non-zeros. Again, these methods generally optimize for memory
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space, but in some cases can be faster than full matrix solutions. Sparse LU
decomposition solution methods are available and may be the best option for the
present application, if one can be found which runs faster than the full matrix LU
decomposition algorithms. (In the present application, speed will normally be of

greater concern than memory.)
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6. Results

6.1 Parametric Studies in Constant Flow
The main purpose of the present work is to link the effects of temperature and

viscosity in heavy oil pipelines. Other factors, such as diluent addition or core-
annular flow, also affect the pressure loss of the flow of heavy oil. In these cases,
temperature is not a significant factor in determining the pressure loss. The
temperature of the ground can still be calculated using the techniques described
earlier. This can be used if the flow regime reverts to a heavy oil flow. Because
pressure loss is not a significant issue in these cases, they will not be examined in

detail in the parametric studies presented here.

The effect of viscous heating, as described in Section 2.3.3 is not considered in
these calculations. The results will therefore be conservative--the pressures
reported will be higher than the actual pressures experienced in the given cases.
This helps to ensure that if the program reports that a particular design will not
exceed a given pressure, that pressure will not be exceeded in the field, even if
some assumptions or estimates of fluid or ground physical properties are not

accurate.

In order to gauge the effect of a change in a condition, a range of parameters will
be varied, one at a time. The base parameters are as listed in Table 6.1 below.

Where applicable, these are the same as were in Table 2.1; the new values are

shown in italics.



Table 6.1 Base case parameters

Pipe outer diameter, in. 35
Pipe wall thickness, in. 0.216
Insulation thickness. in. 1.5
Pipe depth, ft. 4
Pipeline length, km 2
Flow rate, m¥d 20
Production start date May 1
Inlet temperature. °C 70
Mean surface temperature, °C 2
Seasonal temperature variation, °C | 20
Oil density, kg/m? 950
Oil conductivity, W/m-K 0.11
Oil specific heat, J/kg-K 2000
Oil test temperature 1. °C 30
Oil viscosity at test 1. cp 25000
Oil test temperature 2. °C 70
Oil viscosity at test 2. cp 800
Pipe conductivity, W/m-K 60
I[nsulation conductivity, W/m-K 0.04
Ground conductivity, W/m-K 0.5
Pipe density, kg/m? 7800
Insulation density. kg/m? 190
Ground density, kg/m? 2000
Pipe specific heat, J/kg-K 400
Insulation specific heat. J/kg-K 1000

[n the following sections, the more important of these parameters will be varied
through a range to determine the effect on the temperature and pressure loss
throughout a two year cycle of seasons. The surface temperature is approximated

by a sine wave which starts at the mean annual temperature on May 1.
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6.1.1 Flow Rate
The flow rate was varied from 5 to 350 m¥d. The maximum pressure, and the

maximum pressure for each flow rate after the first 25 days are tabulated in Table
6.2.

Table 6.2 Flow rates and pressures

Flow Rate, Maximum Max. Pressure After

m¥d Pressure, kPa 25 Days, kPa

5 91,513 74,296

10 61,928 26.184

15 30,070 11,330

20 16,976 6728

25 11,135 4753

30 8254 3988

35 6659 3424

50 4838 3096
100 4357 3450
150 5062 4318
200 5963 5260
250 6919 6269
300 7905 7238
350 8902 8252

The maximum (i.e. start-up) pressure is plotted in Figure 6.1.
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Figure 6.1 Effect of flow rate on pressure loss

At any flow rate in this range. the pressure and temperature responses essentially
have the same characteristics: there is a transient period in the first few days
when the temperatures of the pipeline and the surrounding ground stabilize, and
then there is a sinusoidal region where the pipeline is responding to the seasonal
temperature changes. Prior to start-up. the ground is cold and the pipeline is filled
with water. During the start-up transient, the hot oil flows into the pipeline,
displacing the water, and cooling off as its heat is lost to the ground. As the oil
front advances into the pipeline, the pressure loss grows from a very small value
(representing the flow losses of water alone). Eventually, the entire pipeline is
filled with oil, but this oil has lost much of its heat to the surrounding ground.
This point in time will typically be when the highest pressure loss is experienced

(for a pipeline with a constant flow rate of oil). After this, the ground warms up
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fairly quickly, and as it does, the oil loses less and less heat to the ground. This in
turn results in lower pressure losses. The temperature of the ground changes with
the seasons and this is what dominates the long term behaviour of the pipeline.
As the flow rates increase, proportionately less heat can be lost to the ground in
winter or during the start-up transient, or gained from the ground in summer. The
higher the flow rate, the less extreme the start-up transient will be, and the less

effect the change in the seasons will have.

Two pressures are given in the table above (and those below). These indicate the
pressure loss during the start-up transient (which is the overall maximum pressure
loss), and the pressure loss during a typical winter after the start-up transient has
died out. The smallest value of maximum transient pressure loss occurs
somewhere between 50 and 150 m¥%d, while the smallest value of maximum
seasonal pressure loss occurs somewhere between 35 and 100 m¥d. As was
discussed in Chapter 2, the heat loss effects, combined with the high dependence
of viscosity on temperature, cause low flow rates to have high pressure losses: the
pressure loss versus flow rate curve is non-monotonic, unlike for a fluid in which

the viscosity does not change.

All these effects can be seen in the figures below. Figure 6.2 shows two years
worth of flow at each of the flow rates in Table 6.2, while Figure 6.3 shows only
the first two days of each of these simulations. Figure 6.4 shows start-up for
those cases in which the maximum pressure does not exceed 10 MPa, and Figure
6.5 shows a two years of operation of the same cases. The dashed line in Figure

6.2 and subsequent figures in this chapter represents the base case described in
Table 6.1.
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Figure 6.2(a) Pressure loss with varying flow rate
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Figure 6.2(b) Temperature with varying flow rate
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Figure 6.3(b) Temperature with varying flow rate
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Figure 6.4 Start-up pressures
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Pressure Loss, MPa
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Figure 6.5 Operating pressures

Figure 6.2(a) and Figure 6.5 show the behaviour that is evident in Table 6.1 and
Figure 2.6; the pressure loss decreases substantially with increasing flow rate,
until a critical point is reached, at which point further increases in flow rate lead
to slight increases in pressure loss. It can be seen in Figure 6.3(b), however, that
the outlet temperature always increases with increasing flow rate. At higher flow

rates, the increase is less: clearly there is an asymptotic limit at the inlet

temperature (70°C in this case).

Figures 6.3(a) and (b), and Figure 6.4 show the start-up behaviour described
earlier. As the pipeline is filled with hot oil, the cold water is displaced. This
causes an increase in pressure as more and more of the pipeline is filled with

higher viscosity oil. The temperature at the end of the pipeline cannot change at
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all until the oil-water interface arrives at the outlet of the pipeline. Clearly this
happens faster with higher flow rates. Once the pipeline is completely filled with

oil, the pressure tends to decrease somewhat as the ground surrounding the

pipeline tends to warm up.

6.1.2 Pipe Size
In both cases, the pipe size will be varied from 1.5” to 6" nominal (1.9007-6.625"

actual), with the pipe wall thickness being adjusted according to commonly used

pipes of the appropriate size.

Table 6.3 Pressure losses with varying pipe sizes

Nominal | Actual Wall Maximum | Max. Pressure
Pipe Size. | Outside Thickness, | Pressure, | After 25
in. Diameter, in. | in. kPa Days, kPa

1.5 1.900 0.145 242048 35744

2 2.375 0.154 70379 18717

3 3.5 0.216 16976 6728

4 4.5 0.237 6188 3267

5 5.563 0.258 3795 1794

6 6.625 0.280 2293 1149

Figure 6.6 shows the maximum (i.e. start-up) pressures.
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Figure 6.6. Effect of pipe size on pressure loss

Figure 6.7 shows two years worth of flow at each of the pipe sizes in Table 6.3.
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Figure 6.7(a) Pressure loss with varying pipe size
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Figure 6.7(b) Temperature with varying pipe size
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Decreasing the pipe size in this case leads to increase in both the maximum
pressure loss and the maximum pressure loss after 25 days. This will normally be
the case. There could be cases, however, in which the situation could be such that

a small increase in pipe size could lead to an increase in pressure loss, because of

the reduced velocity.

Note that the pressure scale in Figure 6.7(a) has been adjusted to cut off the
pressure spikes at start-up for the two smallest pipe sizes. These spikes were
indistinguishable from the axis line on the figure. The velocity is higher in the

smaller pipes (for the same flow rate), so the duration of any pressure spike at

start-up is smaller.

6.1.3 Pipeline Length

Pipeline length was adjusted from 0.5 km to 10 km. The maximum pressure loss

(i.. during the start-up transient) and the maximum pressure loss after 25 days are
in Table 6.4.

Table 6.4 Pressure losses with varying pipeline lengths

Pipeline Maximum Max. Pressure After
Length, km Pressure, kPa 25 Days, kPa

0.5 272 197

1 1433 800

2 16,976 6728

3 84,582 32,463

4 236,731 104,737

6 759,648 497,483

8 1,464,410 1,188,740

10 2,232,240 2,098,600

Figure 6.8 shows the maximum (i.e., start-up) pressure in this table.
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Figure 6.8 Effect of pipeline length on maximum pressure

Pressure increases exponentially with length at smaller lengths, as the increasing
heat loss is dominant. After a certain length is reached, the fluid has essentially
cooled to ground temperature and further increases in length lead to a linear

increase in temperature.

Figure 6.9 shows two years worth of flow at each of the pipeline lengths in Table
6.9.

115



2500,

10 km
N\
2000 N\
. A) e
{ j ,
\\ /,/ i j
g \\ /I ‘V\ “"'
) ; s /
< 1500% | / )
- i
§ \ ; \.‘
\ i Y ;
- l.‘ / 8 km J
® , / PN Y / TN
5 LY / VRN . / ,
2 1000+, /o 3\ : ;
m 1 i ‘~\ \ j ; \ \\ / /v‘
g 1 A\ / / Ay R ’ K
a AR / A\ \

400 500 600 700
Time, days

Figure 6.9(a) Pressure loss with varying pipeline length

Outlet Temperature, °C

Figure 6.9(b) Temperature with varying pipeline length

116



Figure 6.10 shows the same data, but only for those lengths with an operating

pressure less than 10 MPa.
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Figure 6.10 Effect of length on pressure

In pumping a hot, viscous oil through a buried pipeline, the shorter the distance.
the better. Even when the viscosity is constant, the pressure loss increases in
proportion to the length. This is combined here with further cooling of the fluid
and the associated increase in viscosity. With this particular configuration,
lengths over approximately two kilometres will result in pressure losses that are
very high (over 1000 psi). Even at two kilometres, a special start-up procedure

may be required to reduce the maximum pressure loss during the start-up

transient.
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6.1.4 Burial Depth
The pipeline burial depth was adjusted from 1 ft to 9 ft. The maximum pressure

loss (i.e. during the start-up transient) and the maximum pressure loss after 100
days are in Table 6.5. 100 days is used in this case, because at deeper depths, the
start-up transient lasts longer than at shallow depths, and has not died out after the
25 days used in the other examples in this section.

Table 6.5 Pressure losses with varying burial depths

Burial Maximum Max. Pressure After
Depth, ft | Pressure, kPa | 100 Days, kPa

| 14,227 14,054

3 17,317 7961

4 16,976 6728

5 15913 5948

7 13,597 5120

9 11,930 4891

The maximum pressure (i.e. start-up) data from this table is plotted in Figure 6.11.
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Figure 6.11 Effect of depth on start-up pressure.
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While the start-up pressure is less for a 1 ft. burial depth than for a 3 ft. depth, this

is due to the seasonal effects; the operating pressure decreases monotonically with
increasing depth.

Figure 6.12 shows two years worth of flow at each of the burial depths in Table
6.12.
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Figure 6.12(a) Pressure loss with varying pipeline depth
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Outlet Temperature, °C
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Figure 6.12(b) Temperature with varying pipeline depth

It is evident that the performance of the pipeline is less sensitive to depth than the
other parameters examined so far. A heated viscous oil pipeline designer would
have to consider other factors when deciding upon a burial depth. It is unlikely
that anyone would install a pipeline less than three to four feet below the surface
of the ground: at those shallow depths a pipeline is much more susceptible to
mechanical damage from activity (e.g. farming) on the surface. Economic factors

will also determine how deep a pipeline would be buried.

Evident in Figure 6.12 is the phase difference between the temperature and
pressure plots for pipelines of different depths. This is the same phase delay
discussed in Section 3.1.1 and is related to the time it takes for effects of surface
temperature to be felt at a given depth below the ground—the deeper the location

of interest, the more time it takes for a change in surface temperature to be felt.
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6.1.5 Insulation Thickness

The insulation thickness was adjusted from 0” to 3”. The maximum pressure loss

(i.e. during the start-up transient) and the maximum pressure loss after 25 days are
in Table 6.6.

Table 6.6 Pressure losses with varying insulation thicknesses

Insulation Maximum Max. Pressure After
Thickness, in. | Pressure, kPa | 25 Days, kPa

0 276,814 84,342

0.5 64,853 25.823

1 24,883 11,564

1.5 16,976 6728

2 13,970 4592

2.5 12,578 3430

3 11,861 2729

The maximum pressure data is plotted in Figure 6.13.

10° -

@
P

10" - \ -

Maximum Pressure, kPa

10 : :
0 0.5 1 1.5 2 2.5 3
Insulation Thickness, in.

Figure 6.13 Effect of insulation thickness on start-up pressure



Figure 6.14 shows two years worth of flow at each of the insulation thicknesses in
Table 6.6.
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Figure 6.14(a) Pressure loss with varying insulation thickness
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Figure 6.14(b) Temperature with varying insulation thickness

Figure 6.15 shows the pressures of those cases with operating pressures below 10
MPa.
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Figure 6.15 Pressure with varying insulation thickness

Insulating a heated viscous oil pipeline is clearly advisable, in that it significantly
decreases both the maximum pressure loss during the start-up transient and during
regular operation. The principle of diminishing returns applies—adding more and

more insulation tends to have less and less further advantage.

6.1.6 Flow Start Date
It is expected that the start date will only affect the pressure over the first few

days. It was clearly seen in the above parametric studies that a quasi-steady state
is reached quite quickly, at which time only the seasonal temperature variations
have any significant effect on the pipeline pressure and temperature. The
following examinations of start date will therefore only cover one year of
production. The following start dates were used: May 1 (base case), Sept. 30

(when the base case exhibits the lowest pressure drop), March 2 (when the base
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case exhibits the highest pressure drop), and July 15 and December 30 (mid way

points). Table 6.7 shows the maximum pressure drop for each of these cases.

Table 6.7. Effect of start date on pressure loss

Start Date (Day #) Maximum Pressure
Loss, kPa

May 1 (0) 16,976

July 15 (75) 9354

September 30 (152) | 7135

December 30 (243) | 10,785

March 30 (333) 18,455

Pressure and Temperature are plotted in Figure 6.16.
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Figure 6.16(a) Effect of start date on pressure loss
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Figure 6.16(b) Effect of start date on temperature

In this case, it is best to start the pipeline in late September, as this is the time
when the ground at the pipeline depth is the warmest (because of the phase delay
mentioned earlier—note that the warmest time at surface is late July). The

maximum pressure during start-up is less than half that of the base case (start-up
May 1).

6.1.7 Inlet Temperature

The inlet temperature was varied from 40 to 90°C. The maximum pressure loss

(i.e. during the start-up transient) and the maximum pressure loss after 25 days are
in Table 6.8.
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Table 6.8 Effect of inlet temperature on pressure loss

Inlet Maximum Max. Pressure After
Temperature, °C | Pressure, kPa 25 Days, kPa

40 60,220 35,483

50 38,281 19,636

60 25,153 11,301

70 16,976 6728

80 11,714 4162

90 8238 2682

The maximum pressures are plotted in Figure 6.17.
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Figure 6.17 Effect of inlet temperature on start-up pressure.
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Figure 6.18 shows one year of flow at each of the inlet temperatures in Table 6.8.
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The outlet temperature essentiaily has a linear relationship with inlet temperature
(except at the start-up transient). This was expected since the heat transfer
equations are linear (except for radiation, which is not considered in this work).
Note that the Nusselt number is constant so long as the flow is laminar, so the
effect of temperature on viscosity does not have an effect on the rate of heat
transfer. None of the other important properties (specific heat, thermal
conductivity, density) are considered to change with temperature (this is an
approximation). Therefore, the heat transfer coefficients are not a function of
temperature, so no non-linearities are introduced through them. The pressure loss
is not linear with inlet temperature, however, because the pressure loss is

dependent upon viscosity, and viscosity is highly non-linear with temperature.

As expected, the higher the inlet temperature, the lower the pressure loss, both
during the start-up transient and regular operation. There are obviously economic
issues at play here, as it could cost much more to heat up the fluid to a higher

temperature than to pump against a higher pressure. This must be compared

against the reduced pumping costs.

6.1.8 Fluid Properties

The critical fluid property is viscosity. In Section 2.3.1, a correlation was
presented between viscosity, and API gravity and temperature. This was based on
Western Canadian heavy crude oils with API gravities ranging from 9-13.3°APL
It is generally unwise to use a correlation of this type with heavy oil as heavy oils
with the same API gravity can have a wide range of viscosity, even when the oils
come from the same field. This correlation will be used here, however, for a
parametric study on the effects of fluid properties. Table 6.9 lists the different
API gravities tested, with their density (considered to be constant with

temperature, although this is a rough approximation) and viscosities at 30°C and
70°C
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Table 6.9 Fluid properties
API Density, | Viscosity at | Viscosity at
Gravity | kg/m? 30°, cp 70°C, cp
9 1005 62,465 1407
10 998 24,518 762
11 991 11,267 457
12 984 5838 297
13 977 3322 205

The base case used in the other parametric studies is not used here: all input
parameters are the same as in that case, with the exception of oil density and

viscosity. The pressures are displayed for each of these cases in Table 6.10.

Table 6.10 Effect of API | gravity on pressure

APl Maximum Max. Pressure After
Gravity | Pressure, kPa | 25 Days, kPa

9 36,204 13,810

10 13,683 5655

11l 6105 2714

12 3069 1470

13 1714 865

One year of flow is shown in Figure 6.19.
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Figure 6.19(a) Effect of API gravity on pressure
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Figure 6.19(b) Effect of API gravity on temperature
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Clearly, API gravity can have a significant effect on pressure loss. There is less
than 3% difference in density in this range of API gravity, but there is more than
an order of magnitude difference in pressure loss. Virtually none of the difference
in pressure loss is caused by differences in temperature, though. It is obvious in
Figure 6.19(b) that there is very little difference in temperature (and heat transfer)

between these different oils.

6.1.9 Preheat Time
One possible means to mitigate the effect of the start-up transient is to preheat the

line with hot water. This will heat up the ground surrounding the pipeline without
incurring a very high pressure loss. If done for sufficiently long, this could
prevent the start-up pressure transient from exceeding the maximum pressure

expected after the start-up transient.

This parametric study examines the base case with varying lengths of preheat.
The flow rate of water during the preheat is 20 m¥d. and the inlet temperature of
the water is 70°C. The oil will still start to flow at time 0 (midnight on May 1) in
each case; the preheat occurs before this. Table 6.11 shows the preheat lengths
that were tested, and the maximum pressures (both during the start-up transient
and regular vperation) experienced.

Table 6.11 Effect of preheat length on pressure

Preheat Maximum Max. Pressure After
Length, hours | Pressure, kPa 25 Days, kPa

0 16,976 6728

3 10,499 6728

6 10,242 6728

12 9870 6728

24 9341 6727

36 9007 6726

48 8727 6726

Figure 6.20 shows the first day of operation (from the start of oil flow) for each of

these cases.
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It is immediately evident from Table 6.11 that preheat has essentially no effect on
the long term operation of the pipeline, but can have a substantial effect on the
maximum pressure during the start-up transient. Figure 6.20 shows that the large
spike of pressure evident in the no-preheat case is removed even with a very short
preheat. The longer the preheat, the less pressure is experienced during the start-
up transient. While not tested explicitly here, other factors which could improve
the preheat are a higher flow rate or a higher temperature, either (or both) of
which would lead to a greater amount of heat transferred to the ground over a

given period of time.

6.1.10 Effect of Ground Conductivity
All the calculations presented in this chapter use a value of ground conductivity of

0.5 W/m'K. This and the density and specific heat are based on the values for
“soil” found in tabies in an introductory heat transfer text [21]. This value is for
dry soil—no water content. Thermal conductivity for sandy soils, silt and clay
soils, and peat, can go as high as 3.0. 1.9, and 0.6 W/mK, respectively, in
unfrozen ground, and as high as 4.0, 2.2, and 1.2 W/mK, respectively, in frozen
ground, depending on bulk density and water content of the ground [26]. Clearly,
the effect of a change in this property must be considered. The current work is
concerned with heat transfer in dry ground: the effects of the latent heat of the
water-ice phase change will be significant, and are not addressed here. Therefore.
any significant water content could cause the results to be erroneous. It should be
noted however, that this is only the case if the pipeline being simulated is in a
region where the temperature regularly drops below freezing—in tropical regions

the current work should be applicable in wet or dry ground.

Table 6.12 shows the maximum pressure experienced in each case.
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Table 6.12 Effect of ground thermal conductivity on pressure

Ground Thermal | Maximum Max. Pressure After
Conductivity, W/m-K Pressure, kPa 25 Days, kPa

0.2 14040 4219

0.5 16976 6728

0.7 17470 8818

1.0 17609 11358

1.5 17380 14479

2.0 17045 16749

3.0 20015 20015

4.0 22472 22472

Figure 6.21 shows the pressure loss and temperature over one year of operation

for each of the cases shown in Table 6.12.
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Figure 6.21(a) Effect of ground thermal conductivity on pressure loss
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Figure 6.21(b) Effect of ground thermal conductivity on temperature

Clearly, the thermal conductivity of the ground has a significant effect on the

temperature and pressure loss in a buried pipeline.

6.2 Parametric Studies in Shutdowns
One of the most important concerns that companies contemplating the use of

pipelines to transport heavy oil is the possibility of an unplanned shutdown.
Shutdowns could be caused by many factors, including power failure or
equipment problems. A pipeline transporting oil that has been heated to reduce its
viscosity is very susceptible to problems in the event of a shutdown. When flow
stops, the oil in the pipeline will lose heat to the surrounding ground. Viscous oil
could increase in viscosity substantially during the flow stoppage, to the point
where it may be difficult or impossible to restart the flow when power is restored
without an expensive intervention. Pipeline operators would need to know how
long they can remain shut down for without causing problems. Procedures would

be developed for planned shutdowns as well; these can be simply flushing the oil

136



out of the pipe with water prior to shutdown. They would also need to establish
procedures for dealing with unplanned shutdowns that are longer than acceptable.
These procedures would likely be more complicated, and could range from slowly
flushing the viscous oil from the line with water, to using a coiled tubing steam

injection system to remove oil that is too viscous to flow on its own.

6.2.1 Shutdown Date
In Section 6.1.6, the effect of start-up date was considered. It was shown that

starting the pipeline at certain times of the year could result in a smaller pressure
transient than at other times in the year. The same thing is true for a shutdown.
Here, a one hour shutdown is simulated at each of the five dates used in Section
6.1.6. The flow is run for at least two years prior to the shutdown in each case, to
establish that the initial transient has died out. The flow is restarted for two days
after the shutdown, at the same flow rate that was used before. All other

parameters are as per the base case described in Table 6.1.

The maximum pressure experienced during the restart for each case is plotted in
Table 6.13.

Table 6.13 Effect of shutdown date on maximum restart pressure

Shutdown Date Maximum Pressure Loss
During Restart, kPa

May 1 8287

July 15 5216

September 30 3928

December 30 5802

March 30 8832

The pressure and temperature from one day before the shutdown to two days after

it are plotted in Figure 6.22.
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Figure 6.22(b) Effect of shutdown date on temperature
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During the shutdown, the pressure loss is clearly zero, as there is no flow. The
temperature in the pipeline drops quite quickly (only shown is the temperature at
the end of the pipeline—the temperature throughout the pipeline will also drop).
The plateau in outlet temperature in each case (and the associated decrease in
pressure loss) corresponds to the period in which the hot oil entering the pipeline
after the restart is displacing the oil which had cooled off in the pipeline. In each
case, there is a spike in pressure after the restart. The increase in restart pressure
above the regular operating pressure increases as the regular operating pressure
increases (which is due only to the ambient temperature—i.e., related to the time
of year). In late September, the restart pressure is only 0.75 MPa above the
operating pressure, while in late March, the restart pressure is 2.14 MPa above the

operating pressure.

6.2.2 Shutdown Length
As flow is stopped in the pipeline, the oil within it will cool off. If left

indefinitely, it will cool to the temperature of undisturbed ground of the same
depth. Shutdown lengths from a half hour to 12 hours were modelled. The
maximum pressures during restart are shown in Table 6.14.

Table 6.14_Effect of shutdown length on restart pressure

Shutdown Maximum Restart
Length (hours) | Pressure, kPa
0.5 7271
1 8287
2 10,598
4 16,417
6 24,210
12 57.812
The pressure and outlet temperature from 12 hours before to two days after the

start of the shut down are plotted in Figure 6.23.
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As expected, the longer the shutdown lasts, the colder the oil in the pipeline, and
the higher the restart pressure. It can be seen from Figure 6.23(b) that the
temperature at the end of the pipeline drops throughout the length of the
shutdown. If the shutdown were to last longer, this temperature would
asymptotically approach approximately —4°C, the temperature of the ground far
from the pipeline, at the pipeline depth, at this time of year. It is unlikely that a
pipeline would be designed for a pressure of more than 10-20 MPa, so there
would clearly be a problem with this pipeline if a shutdown were to last more than

a couple of hours. This is when special restart procedures must be devised.

6.3 Parametric Studies in Varying Flow Rates
In each of the cases examined so far, the flow rate has been constant (with no

water). In this section, cases will be examined which have varying flow rates of
oil and water. It is assumed that the oil and water mix in an emulsion. as

described in Section 2.1.3, with an inversion point of 60% water.

6.3.1 Increasing Oil Flow, No Water
A simulation was performed with the oil rate increasing from 10 m%d to 40 m¥d

over a two year period. with no water flow. The start date was May 1. The

pressure loss, outlet temperature and flow rate are shown in Figure 6.24.

141



80 .60
s | | o
a | | o
=60 R EETEEE -=40 2
g [ 3
4 40[ Temperature =20 é
0 B L -
5 % 2
320L =0 .=
] } . 2
a ; Pressure , 3

0 20°

0 100 200 300 400 500 600 700
Time, days

Flow Rate, m%/d

0 100 200 300 400 500 600 700
Time, days

Figure 6.24. Pressure and temperature response to increasing oil rate

The start-up transient is extreme at the low flow rate (over 60 MPa). At low flow
rates, even after the transient dies out, the pressure loss is still very high, but
comes down as the flow rate increases. In the second year (when the flow rate is

over 25 m¥d, the seasonal changes in outlet temperature and pressure loss become

less severe.

6.3.2 Decreasing Oil Flow, No Water
The opposite case was also tested, where the oil flow decreased from 40 m¥d to

L0 m¥%d over two years, with no water flow. The start date was again May 1. The

pressure loss, outlet temperature and flow rate are shown in Figure 6.25.
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Figure 6.25 Pressure and temperature response to decreasing oil rate

At the higher flow rate, the pressure during the start-up transient is quite small
(5800 kPa—compare this to the pressure at the same flow rate and time of year,
but after the ground has warmed in the previous case: 3100 kPa), but as the flow
rate decreases, the temperature decreases and the pressure increases (although
there are still seasonal variations). At the end of the two year cycle, the pressure
is 21.9 MPa (as compared to the pressure at the same flow rate and the same time

of year in the previous case, but at start-up: 61.6 MPa).

6.3.3 Constant Flow Rate, Increasing Water Fraction
This case also was run for two years starting on May 1. The total flow rate was

kept constant at 40 m*¥d, but the water fraction was increased from O to 100%.
Figure 6.26 shows the pressure loss, outlet temperature. and flow rates of water

and oil over this period.
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Figure 6.26. Response of pressure loss and temperature to changing water
fraction

Due to the high flow rate at the start, the initial pressure transient is quite small
(5700 kPa). While the pressure decreases somewhat as the start-up transient dies
out and the ground warms up from seasonal effects, the pressure loss starts to
increase significantly after about 65 days. This is not due to any temperature
effect, but due to the effective viscosity of the emulsion increasing as the water
fraction increases. This continues until the water fraction reaches the inversion
point of 60%, at which time the emulsion becomes water-continuous, and the
pressure loss is insignificant as compared to the oii-continuous emulsion (or even
pure oil). There is a change in the thermal conditions at this point as well, since
the heat transfer now occurs directly into water instead of into oil, and the flow
becomes turbulent. This change causes a small transient in the outlet temperature,

but the large thermal mass of the ground damps this out quite quickly.
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6.3.4 Constant Flow Rate, Decreasing Water Fraction
This case also was run for two years starting on May 1. The total flow rate was

kept constant at 40 m3/d, but the water fraction was decreased from 100% to 0%.

Figure 6.27 shows the pressure loss, outlet temperature, and flow rates of water

and oil over this period.

15,
s ©
s g
| -~ 3
a 105" Temperature ®
L 2
e _ 5
2 °° =
g g
a 3
0: -50 C
0 100 200 300 400 500 600 700
Time, days
4°,~~-~_ —=
- Water "-- . _ /
=
= 30- -
E el /
[} ; Taa —
< 20- <7 .
£ ' /'/‘/~~ -
z el
g 10- . :
. Qil Sl
o‘ S
0 100 200 300 400 500 600 700
Time, days

Figure 6.27 Response of pressure loss and temperature to changing water
fraction

In this case the temperature very rapidly increases from the initial ground
temperature to a near steady state value. There is no change in pressure. however,
since the viscosity of the water is not considered to change with temperature in
this model. The pressure loss is so low that it is not necessary to consider such
small changes in viscosity. The pressure loss does increase slightly in the first
period as the discrete phase (0il) increases in concentration. This is not evident in
the figure, as the scale is set to show the large pressure losses when the oil is the

continuous phase. After the inversion point is reached, the pressure becomes very
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large due to the very high viscosity of the water-in-oil emulsion. The temperature
changes during the seasons are of less importance to the overall pressure loss than

the change in emulsion concentration and viscosity.

It should be recognized that heavy oils will often not tend to form emulsions with
water. This is especially true if they are pumped with progressing cavity pumps.
which have an inherently low intemal shear rate. Therefore the pressure losses
shown in Figures 6.26 and 6.27 are likely overly pessimistic. The oil and water
would more likely flow in large droplets; the pressure losses for these flows are

less well understood.
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7. Discretization in Finite Difference Model

The finite difference model described previously contains the following regions,
as was shown in Figure 2.1.:

e Pipe

¢ [Insulation

e Ground
Each of these regions is discretized into a group of nodes. The nodes are arranged
in layers. Each layer, in each region, must have the same number of nodes.
Furthermore, the time domain is also discretized. The discretization of the spatial

and time domains are described by the following parameters:

e Nmp The number of layers of nodes in the pipe

e Nri The number of layers of nodes in the insulation
e Nalf The number of layers of nodes in the ground

e Nang The number of nodes in each layer

o At The length of the time step

The accuracy of the model is in part determined by these parameters. Increasing
the number of nodes and decreasing the size of the time step, is expected to, in
general, increase the accuracy of the model at the expense of increasing the
amount of storage space required and the amount of time required to perform a

stimulation.

An analytical model for the full system does not exist, so it is not possible to
compare the results obtained with this model to a known correct solution. It is
possible. however, to develop a steady state analytical solution. The results
obtained below were obtained by running a simulation of five years of pipeline
operation. Only one segment of pipeline was used (at the inlet, where the
temperature gradients are the most severe). The surface temperature is kept

constant—no seasonal variations, as these are not considered in the steady state
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solution. For the purposes of this comparison, the fluid is considered not to
change in temperature. This assumption is not used in the full model, but is
necessary here so that the steady state case is not a function of the size of the time

step.

The properties used are listed in Table 7.1.
Table 7.1 Properties used in steady state comparison

Pipe Density 7800 kg/m?
Pipe Thermal Conductivity 60 W/m-K
Pipe Specific Heat 400 J/kg'K
Insulation Density 190 kg/m?
Insulation Thermal Conductivity | 0.04 W/m-K
Insulation Specific Heat 1000 J/kg'K
Ground Density 2000 kg/m?*
Ground Thermal Conductivity 0.5 Wm-K
Ground Specific Heat 1800 J/kg'K
Fluid Convective Coefficient 4m

Pipe ID 0.08 m

Pipe OD 0.l m

Pipe Burial Depth 1.2m
Insulation OD 0.2 m
Surface Temperature 2°C

Fluid Inlet Temperature 70 °C

It would be expected that if this type of simulation is run for a sufficiently long
time, the temperature profiles in the ground should approach those in a steady
state case, which can be calculated analytically. Five years was estimated to

represent a sufficient length of time.

Figure 7.1 shows the standard error of the result over a period of time for a case
where Nrp = 10, Nri = 10, Nalf = 10, Nang = 10, and Ar = 0.1 days. The standard

error (here and elsewhere in this chapter, and in Chapter 8) was calculated as

follows:
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StdErr = (7.1)

Where:

T; is the temperature at each node
T,; is the steady state temperature at each node

n is the number of nodes
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Figure 7.1 Error over time

The figure clearly shows that the changes in temperature have levelled off by
about three years of simulation: the use of five years as a comparison time is

therefore justified. In this case, the standard error starts at 20.3°C, and is 0.31°C

after five years.
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7.1 Effects of Varying Spatial Discretization
In each of the calculations represented by the figures in this section, one of the

discretization parameters (Nrp, Nri, Nalf, Nang) was varied. The other
parameters were all set to either N=5, N=10, or N=15, depending on the case (as

illustrated in the figures). The time step in all cases was 0.1 days.

Figure 7.2 shows the effect of varying the number of layers of nodes in the pipe

wall.
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Figure 7.2 Effect of varying the number of layers of nodes in the pipe wall

As the both the overall discretization (N=5 to N=15) and the number of layers in

the pipe increase, the accuracy of the model improves.

Figure 7.3 shows the effect of varying the discretization in the insulation.
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Figure 7.3 Effect of varying the number of layers of nodes in the insulation

A similar behaviour is evident in the insulation: in general, as the number of

nodes increases the accuracy increases.

Figure 7.4 shows the effect of varying the discretization in the ground.
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Figure 7.4 Effect of varying the number of layers of nodes in the ground

Again, in general, the accuracy increases with the number of nodes. The variation
in this for very low and very high numbers of nodes is due to the way the
discretization of the transformed coordinate system works. As o and B tend
toward zero, the corresponding node location in the Cartesian plane tends towards
infinity. As more discretization is used, the smallest non-zero values of ¢ and B
get smaller, and the corresponding node gets further and further from the pipe.
The error shown is simply due to the fact that five years of simulation was
insufficient to reach a steady state for a node that far from the pipe. (The reduced
error for three layers of nodes is because the five years of simulation time allowed

the furthest node to get closer to a steady state.)



Figure 7.5 shows the effect of varying the number of nodes in each layer (in the
pipe wall, insulation, and ground—all of which must have the same number of

nodes in each layer).

06 @ — N=5 :
P C N=10
| « N=15
0.5 r
0.4-
. ) 7 ) ’3
0.3- “ = -

|

Standard Error After 5 Years, °C
(

(=]
-

i
i

0 2 4 6 8 10 12 14 16 18 20
Nang

Figure 7.5 Effect of varying the number of nodes in each layer

The evident decrease in accuracy with increased numbers of nodes in each layer is
due solely to the effect described above for the discretization in the ground. Ina
true steady state, there would be no gradients within any of the layers of nodes,
and the number of nodes in each layer would therefore be irrelevant. The effect in
the figure above is simply due to the fact that a true steady state is not reached:
the higher the level of discretization, the less close the solution approaches to a

steady state.

The evident inaccuracies with increasing discretization in the ground, as evident

in Figures 7.4 and 7.5 should not be construed to imply that a small number of
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nodes should be used. These represented steady state or near steady state
solutions; the thermal gradients in a transient simulation would be more severe

(particularly within each layer of nodes), and increased numbers of nodes would

be required to capture these.

7.2 Effects of Varying Time Step
The simulation over five years was performed using a number of different time

steps. This was done with all the spatial discretization parameters at either N=5,
N=10, or N=15.

Figure 7.6 shows the effect of changing the time step.
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Figure 7.6 Effect of varying the time step.

The size of the time step has essentially no effect on the results after five years.
The maximum range in the standard error for any of the three levels of
discretization covers 0.00028°C over the range of time steps tested. This is not

surprising—it should be expected that the time step will be irrelevant in arriving
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at a steady state solution. Like the number of nodes per layer, discussed above,

the time step will be significant in affecting the accuracy of a transient solution.

7.3 Effect of Time Step in a Transient Calculation
No analytical solution is available for the complete case. It is assumed that the

most accurate solution is the one with the smallest time step. Results with other
time steps were compared to it. The system is described by the properties listed in
Table 7.1. The spatial discretization were: Nrp=4; Nri=15; Nalf= 10:
Nang =8. The time steps used were: 0.005, 0.1, 0.25, 1, S, 10, 15 days. The
simulation will cover the first six months, when the temperatures are making the
most significant changes. Figure 7.7a shows the results over six months. while
Figure 7.7b shows the results in the first 2 days. The error is plotted for the time

steps greater than 0.005 days relative to the results obtained using a time step of
0.005 days.
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Figure 7.7(a) Effect of time step (in days) in transient calculation
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Figure 7.7(b) Effect of time step (in days) in transient calculation

As the time step decreases toward 0.005 days, the results appear to converge. As
expected, the error relative to result at a time step of 0.005 day decreases with
time (with one exception very early in the 0.01 day time step case). After five
years of simulation, the results for all time steps would converge to essentially the
same result, as was shown previously. In general, it seems that the error
decreases by two orders of magnitude in the first day of simulation for time steps
smaller than one day. For larger time steps, the decrease in error is more gradual.
For the given case, a time step of five days gives reasonable results except for the
first 40-50 days of operation, after which the standard error is less than 0.1°C.
Earlier, however, it is important to have a smaller time step to capture the rapidly
changing thermal conditions in the ground. This is especially true if it is
considered important to know the maximum pressure during start-up if no special
procedures (e.g., preheat) are used. A variable time step would be of great value

in achieving both the goals of high accuracy and fast computation.
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8. Finite Element Modelling of Transient Heat Transfer
in Two Dimensions

The prime advantage of a finite element model over a finite difference model is its
adaptability to complex geometries and regions with different physical properties.
In the buried pipe problem, the pipe and insulation can be represented well using
finite differences, as can the ground, but the interface between these two regions
cannot be represented as well, as the two coordinate systems do not match up
exactly. Also, the node structure used in the finite difference model in the ground
cannot represent the frost depth very accurately (if a more advanced model—
considering phase change of moisture within the ground—is used). It is also
difficult to represent ground of different properties (e.g. backfill around a
pipeline), or alternative configurations, such as two pipes in the same trench. One
company even tried placing a layer of flat, rigid insulation a short distance above
an uninsulated pipe. A finite element model could be used to calculate neat losses

in such a geometry. For these reasons, a finite element model is investigated here.

The goal of the work presented here is to establish that the finite element method
can be used to calculate the rate of heat transfer from a buried pipe, and to some
extent to show that the finite difference solution derived in Chapter 4 gives results
that can be verified by a different method. There are certainly more accurate
methods of implementing the finite element method (e.g. by using higher order

elements) which are not covered here.

8.1 Description of Finite Element Method for Calculating Heat
Conduction

All the finite elements used in this model are linear triangular elements (which
obviously have three nodes each). Linear triangular elements were chosen for
their simplicity. It is recognized, however, that other element types, such as linear
quadrilaterals, or quadratic (or even cubic) triangles or quadrilaterals, would

provide increased accuracy with the same number of nodes. (The calculation time
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at each time step is highly dependent on the number of nodes, not the number of

elements, in general.)

All the work in this chapter assumes that the thermal conductivity is isotropic, and

that the nodes are arranged in a counter clockwise fashion in each element. The

element matrix for this type of element [34, 35} is:

Where:

Kll KIZ Kl3
K*=k|K, K. K,
KSl KS! K33

|
K.=K, ‘a[("s V~Xf1 - "3)"’("* ."3X.V3 -y )]
1
—A[(rl -ts) +()’3 Vl)‘]
|
K,; =k, =a[(-"3 - X—r: - )'*' (.V: -y X.Vx "_V:)]

1
Ko=Ke=ga

[(tl 4 Xx: - )"' (,"3 -V X,"l -y )]
[(r, 5V +( -v. )]

(8.1)

8.2)

(8.3)

8.4)

8.5)

(8.6)

The global matrix is assembled from the element matrices for each element.

There is one row and column for each node in the system.

To solve a steady-state system, the equation to be solved is:

[kKr}={F}

(8.7

Where T represents the temperatures at each node, and F represents flux at each

node.

158



In transient analysis, one more matrix is required to represent the heat capacity of

the material. For linear triangular elements [34, 35], this is:

M =pcA
12

2
1 (8.8)
1

_— N e
NS m=

The system matrix for M is assembled in the same way as for K. The equation to

be solved at each time step is now:

M1} + Ik KrY ={F} (8.9)
There are several ways of calculating this, depending on how the time derivative
is calculated. Three simple ways of calculating this derivative are forward
difference, backward difference, and Crank-Nicholson. If the forward difference
is used, the time step must be below a certain value, or the system will be
numerically unstable. Both the other methods are unconditionally stable. The

backward and forward difference methods have a global truncation error of order

O(Ar), while the global truncation error of the Crank-Nicholson method is of

order O(Atz). Since the Crank-Nicholson method is of a higher order than the

others (and therefore can be expected to result in greater accuracy for the same
time step) and is unconditionally stable. its use is preferable. The equation to

solve [34] is then:

CMI+ak Wy =aclfFY +{FY> M- [k DY 8.10)
Note that in cases where the boundary conditions are all of the first kind (i.e.,
specified temperature), the F vector is irrelevant. Its values are 0 away from the
boundaries, and while its values are unknown at the boundaries, these rows of the

calculation matrix are overridden by the fixed temperature boundary conditions.
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8.1.1 Steady State Conduction with only Fixed Temperature or
Adiabatic Boundaries

The simplest case is calculating a steady state temperature distribution, where all
the boundaries are either adiabatic (no heat transfer at ail), or held at a constant

temperature. In this case, the solution is:

[k }r}={F} (8.11)
The F vector is zero for all internal nodes and any nodes on the adiabatic
boundaries. It is one for all constant temperature nodes. The K matrix is
modified: rows representing nodes with constant temperature boundaries are

filled with zeros, except for a one on the diagonal.

8.1.2 Steady State Conduction with Fixed Temperature, Adiabatic or
Convective Boundaries

The addition of a convective boundary adds some complications. The basic

equation to be solved is very similar:

[k [r}={F} (8.12)

Where:
k’)=[k]+[k,] (8.13)
The K, matrix is constructed from elemental matrices [35] of the form:
210 0 0O 2 |
. =%’1 2 0| or [K,,]-%IO 2 1| or [K,,]=%IO 0 0
0 0O 01 2 1 0 2

(8.14a, 8.14b, 8.14¢)
Depending on which side of the element is exposed to convection, and where [ is

the length of that side. Additionally, the F vector is comprised from elemental

vectors(35] of the form:

| 0 1

hT.l hT 1 hT .l
FrI=20 0L o Fl==C010 or Fl=—L"o
~lo ot T

(8.15a, 8.15b, 8.15¢)
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Once the K matrix and F vector have been built to consider the convective
boundaries, as described here, the constant temperature nodes are considered.
The rows of the K matrix corresponding to these nodes are filled with zeros.
except for a one on the diagonal, and the F vector is set to the specified surface

temperature for those nodes.

8.1.3 Transient Conduction with only Fixed Temperature or Adiabatic
Boundaries

When there are only adiabatic and constant temperature boundaries, the basic

equation to solve is:

CMI+ar[kMry™ =M]-a[k )T} (8.16)

This can be rewritten as:

My ={} (8.17)

Where:
[M]=2[M]+Ar[k] (8.18)

Vi=@M]-ar[kDfr} (8.19)
Note that the M’ matrix is constant. while the V vector changes at every time step
by multiplying the temperature vector by a constant matrix. The constant
temperature boundary conditions are set by filling the corresponding rows of the
M’ matrix with zeros, except for a one on the diagonal. Additionally, after the V
vector is constructed at each step, its values corresponding to the constant
temperature nodes must be set to the temperature at those nodes. No further

action is necessary for adiabatic boundaries.

8.1.4 Transient Conduction with Fixed Temperature, Adiabatic or
Convective Boundaries

The basic equation to be solved in this case, assuming the temperature of any
convective fluids and the corresponding convective coefficients do not change

over the time step, is:

@M+ A [k D} =280 fF 1+ M ]-ac [T} (8.20)
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This can be rewritten as:

My~ =§} (8.21)

Where:
M)=2[M]+ A [K’] (8.22

Visoa{fF}+IM]-a [k’ DT} (8.23)
The K’ matrix and F vector are constructed as described above in Section 8.1.2.

Once again, the M’ is constant (if the convective coefficients do not change), and

the V vector changes at each time step.

8.2 Verifying Validity of Finite Element Model
In verifying that the finite element method described above gives accurate results,

it was necessary to compare results with cases for which the results are known
analytically. This was done with two geometries. The first was a rectangular bar,
on which two opposite edges were insulated, and the other two were either kept at
a fixed temperature or exposed to convection (depending on the case. as described
below). The second was a hollow cylinder, on which the two exposed surfaces
were either kept at a fixed temperature or exposed to convection. Note that both
of these cases are actually one-dimensional. although they were solved in two
dimensions using the finite element model. Examples of the grids used each case

are shown in Figure 8.1.

//

_—

/

Figure 8.1(a) Sample grid on rectangular bar



Figure 8.1(b) Sample grid on hollow cylinder

The top and bottom edges of the rectangle are considered to be insulated in all test
cases below: the constant temperature or convective boundaries are on the left and
right edges. The flat surfaces on the bottom of the half-cylinder are a plane of
symmetry, and are therefore considered to be adiabatic. The constant temperature

or convective boundary conditions are applied on the inner and outer radial

surfaces.

8.2.1 Steady State, Constant Properties, Constant Temperature
Boundaries

In this case, the two geometries (bar and hollow cylinder) were given constant

temperature boundary conditions, and the steady state problem was solved.

The error in the FEM results for the bar, as compared to analytical results, was
zero (within machine precision). This is because the temperature distribution in
that case is linear; the linear triangular elements can capture this exactly, even
when there are very few elements. The results for a test case are illustrated in
Figure 8.2. The test case here was a bar 5 metres long (x direction) and 2 metres

wide (y direction), with a thermal conductivity of 5 W/m-K. At x = 0. it is forced
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to 5°C and at x = 5, it is forced to 20°C. When the number of nodes in one

direction was varied, there were 8 nodes in the other direction.
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Figure 8.2. Effect of varying number of nodes on steady state calculation of
steady state temperature in a bar

The error is not exactly zero, due to the constraints of performing numerical
calculations with finite precision. It is, however, fourteen orders of magnitude

less than the temperature values in the bar.

The temperature distribution in the cylinder, however, follows a logarithmic
distribution with radius [21, so linear elements do not capture it exactly. The
more elements in the radial direction, the higher the accuracy. The number of
elements in the angular direction, however, has no effect on the accuracy of the
results (within the constraints of machine precision). This is shown in Figure 8.3.

The test case here is a hollow cylinder with an inner radius of 2 metres, an outer
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radius of 5 metres and a thermal conductivity of 5 W/m-K, forced to 5°C on the
inner surface and 20°C on the outer surface. When the number of nodes in one

direction was varied, there were 8 nodes in the other direction.
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Figure 8.3 Effect of varying number of nodes on steady state calculation of
steady state temperature in a hollow cylinder

The effect of element aspect ratio was also investigated. To test this, the solid bar
case above was used. A constant number of nodes (eight in each direction) was
used, and the length width of the bar were both changed from 0.005 metres to
5000 metres. While one dimension was changed, the other was constant at 5

metres. The results are plotted in Figure 8.4.
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Figure 8.4 Effect of element aspect ratio
There are two points for each aspect ratio because, for example, when the length
is 5000 and the width is 5, the aspect ratio is the same as when the length is 5 and
the width is 0.005. All the error in these cases is due to numerical precision, but
the effect of precision (e.g. truncation error) is dependent on factors such as the
size of the elements. The minimum truncation error occurs at an aspect ratio of 1.
As the aspect ratio increases in the X direction (the direction in which the
temperature changes), the numerical error increases. While this indicates that it is
desirable to avoid having elements with skewed shape (especially with the long
direction in the direction of the change in temperature), it should be noted that
even with an aspect ratio of 1000 to 1, the error is still ten orders of magnitude
smaller than the temperature values in the bar. As the aspect ratio increases in a

direction in which there is no thermal gradient, there is no effect on the accuracy.
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8.2.2 Steady State, Constant Properties, Constant Temperature and
Convective Boundaries

In this case, the two geometries are exposed to a constant temperature boundary at

one surface and a convective boundary at the other. In the cylinder, it is the inner

surface which is exposed to convection.

Once again, the temperature distribution in the bar is linear, so the number of
linear elements has no effect on the accuracy beyond the constraints of machine
precision. This is illustrated in Figure 8.5. This is the same test case used for the
bar in Section 8.2.1, except that the boundary that was forced to 20°C is now

exposed to a fluid at that temperature, with a convective coefficient of 3 W/m2-K.
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Figure 8.5 Effect of varying number of nodes on steady state calculation of
steady state temperature in a bar

In the cylinder in this case, both the radial and angular discretization are
important. The test case here was the same as was used for the hollow cylinder in

Section 8.2.1, with the boundary that was forced to 20°C now exposed to a fluid
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at that temperature, with a convective coefficient of 3 W/mzK. The results are

illustrated in Figure 8.6.
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Figure 8.6 Effect of varying number of nodes on steady state calculation of
steady state temperature in a hollow cylinder

As in the previous case, the more elements in the radial direction, the closer the
linear elements can represent the logarithmic temperature distribution. The
change in the error as the number of nodes is increased is about the same as the
change exhibited with a constant temperature boundary condition. Unlike the
previous case, the number of elements in the angular direction is now important
(significantly more so than the number of nodes in the radial direction)—this is
because the convection acts over an area, and when there are very few elements,
the straight line approximation of the shape gives a poor estimate of the actual

area on which the convection acts.

168



8.2.3 Steady State, Different Properties
Both the cylinder and bar were tested in cases where they were made up of two

regions comprised of different materials. Both constant temperature and
convective boundary conditions were used. The analytical steady state results
were matched exactly in the bar case (within each region the temperature
distribution is linear), and were matched as well in the cylindrical case as they
were in the constant properties cases above. This implies that the finite element
method can be successfully used to calculate the temperature distributions in
composite materials. The assumption is that the boundaries between the different
materials are modelled by the boundaries between different elements, so that each

individual element represents only one material.

8.24 Transient, Constant Properties, Constant Temperature
Boundaries

Analytical solutions are available for both the bar and hollow cylinder for the
transient case. Both of these solutions are comprised of infinite series [28, 36].
Computers have inherent limitations in computing such series beyond a certain
level of precision. For this reason, the accuracy of the analytical solution. as
calculated by a computer, may not be as high as desired. This is especially true
very early in the time scale of each case, when there are very extreme thermal
gradients. A finite difference method was also compared to the analytical result
in these cases, so that a benchmark would be available to help determine if the
accuracy of the finite element model was acceptable. A sample case is illustrated

in Figure 8.7.
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Figure 8.7 Accuracy of transient temperature calculation in bar

Early on, the finite difference model is somewhat closer to the analytical solution.
Note that it is possible that the high error in both cases very early in the
simulation is due to the computer’s inability to calculate enough terms of the
infinite series to a high enough level of precision—the analytical solution may
actually be a significant source of error. As expected, as the temperature

converges toward steady state the error gets smaller.

Figure 8.8 shows the accuracy for a sample case in the hollow cylinder.
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Figure 8.8 Accuracy of transient temperature calculation in hollow cylinder

Again, both solutions are reasonably accurate, and get more accurate as time
increases (since the thermal gradients are reduced with time). The finite
difference method, when derived without assuming very small discretization
(Section 4.2.1.2), is capable of representing the exact steady state solution to this
problem, so as time progresses, the error in the finite difference solution will
decrease to the magnitude of machine precision (normally in the range 10"° to
10"°). The linear elements in the finite element method, as described above,
cannot represent the exact steady state solution, however. In this case, the finite
element method is actually more accurate than the finite difference method in the
transient solution. This conclusion assumes that the error in these methods is
significantly larger than the error in the calculation of the analytical solution. The

validity of this assumption is not addressed here.
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8.2.5 Transient, Constant Properties, Convective and Constant
Temperature Boundaries

This case is done only with the bar, and not with the cylinder. A constant
temperature is applied at one end of the bar, and the other is exposed to
convection. The accuracy of each of the finite difference and finite element

methods are shown for a sample case in Figure 8.9.
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Figure 8.9 Accuracy of transient temperature calculation in bar with
convection

Again, both methods give reasonable results. It is worth noting that the maximum

error is not as high in this case as it was in the fixed temperature case. This is

because the gradients are less severe in this case.

8.2.6 Discussion of Test Cases
The purpose of these test cases was to validate the finite element method for use

in transient heat conduction problems with constant temperature and convective

boundary conditions. In complicated cases, analytical solutions may not be



available. For this reason, certain cases were performed in steady state only.
Other (simpler) cases were performed both steady state and transient. Two
different geometries were tested, as well as regions with different properties. In

every case, reasonable accuracy was achieved using the finite element method.

The results of these tests, as described above, give sufficient confidence to move

on to testing the case of an insulated pipe buried in ground.

8.3 Finite Element Method Applied To Buried, Insulated Pipe
There are two significant problems with the finite difference method of

calculating the temperature profile in the ground. First, it is inflexible. It does not
allow for variations in geometry (e.g. a second pipe) or in ground properties (e.g.
backfill, or freezing of moisture). Secondly, an approximation is applied in
connecting the radial and transformed grid systems together. The finite element

method can alleviate both these problems.

8.3.1 Grid Construction
Two simple grid structures were investigated. A more advanced method would

use complicated grid generation schemes, perhaps even using grid refinement to
more accurately capture areas with high thermal gradients, while ensuring that

aspect ratios are as close to 1 as possible. This is beyond the scope of the present

work.

8.3.1.1 Grid Type #1
The first grid type was based on the same grid used in the finite difference

method. The cylindrical pipe and insulation are divided into nodes with equal
angular and radial spacing. (The angular spacing is equal for both regions, but
each region can have different radial spacing.) The nodes are connected into
triangular elements. The nodes in the ground are generated using the transformed
(bicylindrical) coordinate system, and are also connected into triangular elements.

An example is shown in Figure 8.10. The numbers within the elements refer to
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the pipe (1), insulation (2), and ground (3). The geometry in this example is
atypical—the ratio of pipe size to depth is larger than would be expected in a

gathering system—it was chosen to be able to see the three regions more clearly.

/ |

Figure 8.10 First grid type

The main drawback with this type of grid is that the boundaries of the domain in
Cartesian space are defined by the calculation algorithm. The advantage of this
grid is that the nodes in the ground are selected to lie on isotherms of the steady
state case. In this way, they can well capture the thermal gradients. Note that the
node at the bottom right comer of the figure above should actually be located at
infinity; it is placed instead at a position corresponding the maximum distance in

each Cartesian direction from the origin (which is at the top left corner) of any

other node.
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8.3.1.2 Grid Type #2.
In the second grid type, the cylindrical regions (pipe and insulation) are defined in

exactly the same way; it is only the ground which is different. A rectangular
domain is specified by the user. The radial lines on which the nodes in the
cylindrical regions lie are extended to the boundaries of the domain, and the nodes
in the ground are placed equally spaced along these lines. An example is shown
in Figure 8.11. This grid uses all the same settings as the previous example,
except that a rectangular domain is specified (whereas in the previous case, the
grid generation algorithm determined the domain limits).
\ )
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Figure 8.11 Second grid type

The advantage of this grid type is that the user has control over the size of the
domain, and it is a simpler grid. The disadvantage is that it does not capture
gradients in the ground near the pipe very well, and has more nodes than

necessary in the ground far from the pipe. In order to place more nodes in the
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ground near the pipe, more nodes are also placed far from the pipe, leading to

drastically increased calculation times.

8.3.2 Steady State Case with Constant Temperature Boundaries
Both grids were used to calculate the steady state temperature distribution. The

physical problem is described as follows:

Pipe inside radius, 0.03 m

Pipe outside radius. 0.04 m

Insulation outside radius, 0.08 m

Pipe centreline burial depth, 1.5 m

Pipe thermal conductivity, 60 W/m-K
Insulation thermal conductivity, 0.04 W/m-K
Ground thermal conductivity, 0.5 W/m-K
Pipe inside surface temperature, 50°C
Ambient surface temperature, 5°C

In using the two grids defined above, with the same number of nodes in each
region, the standard error, as compared to the analytical solution, with the first
grid was 0.48°C, and with the second grid was 1.15°C. Clearly, the first grid,
defined with consideration of the physics of the situation, is more accurate when
used to calculate the steady state temperature distribution in and around a buried,
insulated pipe. It is assumed that it will also be more accurate in a transient

calculation, and it will therefore be used in the following comparisons

8.3.3 Transient Comparison to Finite Difference Results
No analytical transient solution is available for this problem. (If one were, the

present work would be unnecessary.) It is therefore difficult to determine which
of the finite element or finite difference methods is more accurate in this
application. The following test cases use the data specified in Section 8.3.2, with
the addition of the following (needed for transient analysis, but not for steady

state):
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Pipe Density, 7800 kg/m?3

Pipe Specific Heat, 400 J/kg-K
Insulation Density, 190 kg/m3
Insulation Specific Heat, 1000 J/kg'K
Ground Density, 2000 kg/m3

Ground Specific Heat, 1800 J/kg'K

In addition, a convective boundary condition was applied on the inside surface of
the pipe, instead of a constant temperature boundary. The convective coefficient

was 3 W/m?K and the fluid temperature was 50°C.

This simulation was run using both the finite difference and finite element
methods, with the nodes in the same locations in both methods. Two separate
discretizations were used; one with about four times the nodes of the other. The
same time step was used in all cases. The results from each were compared to the
steady state result. Clearly, the error relative to the steady state would be

expected to decrease with time. The results are shown in Figure 8.7.
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Figure 8.12 Results of transient comparison

In the legend, the subscript O refers to the case with fewer (96) nodes, while the
subscript | refers to the case with more (341) nodes. If it assumed that more
nodes lead to higher accuracy in both the finite element and finite difference
methods, then the results of this comparison would imply that the finite difference
method is more accurate than the finite element method for this application. The
finite difference case with fewer nodes gives very similar results to both cases
with more nodes, while there is a large difference between the finite element case

with more nodes and all the other cases.

For this straight-forward application, the finite difference method, as developed in
Chapter 4, is the best suited for the application. Fewer nodes are needed to
achieve a reasonable accuracy. This method may not be appropriate for use in

special cases, however, as described in Section 8.3. In these cases, the finite
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element method must be used. The above results indicate that more nodes should

be used in such an case, to ensure sufficient accuracy.

8.4 Other Issues with FEM

8.4.1 Phase Changes
When there is moisture in the ground, it will act as a buffer to the changes in

seasonal temperature in regions where the air temperature goes above and below
0°C on a seasonal basis. This was discussed in Section 3.2.4. There are several
methods of incorporating this effect into a finite element method [37}.
Unfortunately, these will significantly add to the complication of the model, and
can cause calculation times to increase drastically. This is outside the scope of
the present work. Care must be used when extrapolating the present work for use
in conditions where there is a significant moisture content, and in which there are
seasonal freeze-thaw cycles. If the present model is to be improved upon,

addressing this limitation should be made a high priority.

8.4.2 Revised Convective Coefficients
The work in this chapter in comparing finite element and finite difference

methods and in comparing the finite element method to analytical results, in cases
with convective boundaries, used a simple convective coefficient. This assumes
that the temperature of the convective fluid does not change as it passes the
boundary in question. In Section 4.2.1.6, a finite difference method of
considering this was developed. In the calculation procedure described in Chapter
5, one of two methods of calculating the convection effects is used. The basic

heat transfer equation for these are:

Steady State q= (Tf =T, ) 1—exp| —= L ] mc (8.24)
’ Rmc
Transient q= (T -T, ) 1-exp A1 | me (8.25)
roe Rmc || At ~
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These are compared to the basic equation for convection inside a pipe if the

assumption described above is valid:

@ -1.)
. f 3
q=——- 8.26
1 R (8.26)
The thermal resistance, R, in the above equations is:

! l (8.27)

“hA n2zrL
Both the basic equation and the modified equations are expressed as a constant
times the temperature difference between the fluid and the surface of the pipe. It
is therefore possible to rearrange the equations to develop a corrected convective
coefficient which considers the change in temperature of the fluid while still being

expressed as a simple & value in the finite element model.
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9. Summary and Conclusions

Oil companies producing heavy oil would like to be able to use pipelines to
transport oil from wells to central gathering or processing facilities. Heavy oil is
extremely viscous at lower temperatures, while having a moderate viscosity at
higher temperatures; this causes concemn about pressure losses in pipelines,
especially in winter. Prior to the current work, no design tool existed to assist oil
companies in determining the following:
® Will the average pressure loss in a heavy oil pipeline be too high in a
given application?
® Will the pressure loss in winter be too high, even if the average pressure
loss is acceptable?
® How hot should the oil entering the pipeline be to ensure that the viscosity
throughout the pipeline remains sufficiently low?
® Can the pipeline be started up in cold ground without suffering extreme
pressure losses?
e If a shutdown in flow occurs, how soon must the flow be restarted before

it will become very difficult to restart flow?

A single buried pipe (insulated or not) can be modelled with a finite difference
method. The temperature of the ground at various segments along the length of
the pipeline is calculated from the time of start-up. The exchange of heat between
the ground and the flow in the pipeline is calculated, allowing the temperature
profile of the fluid in the pipeline to be known at any given time. The
temperature profile allows the viscosity of the fluid to be calculated, from which
the pressure loss is calculated in tum. Various situations can be modelled to
determine their effect on flow losses. For example, different flow rates, fluid
types, pipe sizes, and insulation thicknesses or types can be tested. Start-ups and

shutdowns of various lengths can be tested at different times in the year can be
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tested. Preheats of the pipeline with water, using different flow rates, preheat
times, and water temperatures can be tested. All of this testing can be done on a
computer before a pipeline is actually installed. This greatly increases the

likelihood of a successful pipeline installation and operation.

Different flow regimes can exist when oil and water flow together in a pipeline.
The worst possible case for pressure loss is a water-in-oil emulsion in which the
water fraction is just below the emulsion inversion point; the pressure loss in this
case can be much higher than for the oil alone. The best cases are high water
fraction (although this implies pumping a lot of water along with the oil) and
core-annular flow, both of which have pressure losses little higher than for water

alone. Other flow regimes lie between these extremes.

The present work showed that in general the following is true for pipelines
flowing viscous heavy oil, heated at the source, in a climate such as that in
Alberta:

e For a given pipeline, there is a flow rate which will result in a minimum
pressure loss (i.e., the relationship between pressure loss and flow rate is
not monotonic). This is due to the relationship of viscosity and
temperature for heavy oil.

® Pressure loss decreases as pipe size increases. There may be exceptions to
this due to the thermal effects.

® As the pipeline length increases, the pressure loss increases substantially.

® As the burial depth increases, up to a point, the pressure loss decreases.

® As insulation increases in thickness, the pressure loss decreases.

e Different times of year are better for starting flow in a new line or
restarting flow after a shutdown. This is not necessarily the warmest time
of the year at surface; there is a phase delay between temperatures at the

surface and at any depth.



® As the inlet temperature increases (or the average annual temperature at
surface) increases, the pressure drop decreases.

® As the viscosity of the oil increases, the pressure drop increases.

® A preheat period, in which hot water is circulated prior to the start of oil
flow, can significantly decrease the peak pressure experienced when

starting a pipeline.

A finite element model can also be used, instead of a finite difference model.
More nodes are needed, however, to achieve the same level of accuracy. This
leads to longer computation times and higher memory requirements. The
advantage of the finite element method is that different geometries can be tested.
For example, the effect of backfilling the pipeline trench, where the backfill may
have different physical properties from the undisturbed ground, can be
considered, as can the effects of running two pipelines in the same trench. While
not considered in the present work, the effects of ground moisture freezing and
thawing are more easily calculated in a finite element model. The current work

assumes a low water content in the soil surrounding the pipeline.
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10. Future Work

The following issues have been touched upon in the current work, but not

completed in sufficient detail to be included in the calculation model that was

built as part of this work:

Incorporation of multiple pipes in a common trench.

Variable ground properties (e.g. backfill).

Phase change in ground (i.e., freezing/thawing of ground moisture).
Consideration of changes in solid and fluid properties with temperature.
The consideration of the change in oil viscosity with temperature is
already considered—all other changes with temperature are very small
compared to this and were neglected in the current work. The thermal
conductivity of moist ground does change significantly between the frozen
and unfrozen states; this should be addressed along with the effects of the
phase change.

Investigation into the full effects of the region in which the thermal

boundary layer develops on the heat transfer in laminar flow of heavy oil.

A proposal for working on these aspects will be presented to the HOGS project

participants to gauge if there is sufficient support for work to proceed.

184



References

1.

9

10.

11.

13.

14.

Heavy Oil Gathering Systems—Phase 1, Final Report, C-FER
Technologies, Inc., 1999. Confidential to JIP Participants.

White, FM., Fluid Mechanics (Second Edition), McGraw-Hill, New
York, 1986.

Society of Petroleum Engineers, Petroleum Engineering Handbook,
Richardson, TX, 1987.

Ahmed, N.S., Nassar, A.M., Zaki, N.N., and Gharieb, H.K., “*Formation of

fluid heavy oil-in-water emulsions for pipeline transportation”, Fuel 78,
1999.

Nunez, G.A., Rivas, H.J., and Joesph, D.D., “Drive to Produce Heavy
Crude Prompts Variety of Transportation Methods”, Oil and Gas Journal.
Oct. 26, 1998.

Petroleo de Venezuela, S.A., http://www.pdvsa.com/orimulsion/enelish/

Nunez, G.A., Rivas, H.J., Rodriguez, D.J., and Layrisse, LA.,
“Development of a New Technology: Profiting from Temporary Setbacks
During Scale-Up”, SPE 30337, 1995.

Hasan, A.R. and C.S. Kabir, “A new Model for Two-Phase Oil/Water
Flow: Production Log Interpretation and Tubular Calculations,” SPE
18216, 1990.

Degiorgis, G.L., Maturano, S., Garay, M., Galliano, G.R., and Fomes, A.,
“0il Mixture Viscosity Behaviour: Use in Pipeline Design”, Society of
Petroleum Engineers, 69420, 2001.

Al-Besharah, J.M, Akashah, S.A, and Mumford, C.J., “Viscosities of
binary crude-oil mixtures correlated”, Oil & Gas Journal, Feb 20, 1989.

AOSTRA Technical Handbook on Oil Sands, Bitumens and Heavv Oils,
Alberta Oil Sands Technology and Research Authority, 1989.

Communication with Darryl Williams, 2001.

Amey, M.S., R. Bai, E. Guevera, D.D. Joseph and K. Liu, “Friction Factor
and Holdup Studies for Lubricated Pipelining—I,” Int. J. Multiphase Flow
(19) No. 6, pp1016-1076., 1993.

Bobok, E., Magyari, D., and Udvari, G., “Heavy Oil Transport Through
Lubricated Pipeline”, SPE 36841, 1996.

185



15.

16.

17.

18.

19.

Ooms, G., Segal, A., van der Wees, A.J., Meerhoff, R., and Oliemans,
R.V.A., “A Theoretical Model for Core-Annular Flow of a Very Viscous
Oil Core and a Water Annulus Through a Horizontal Pipe”, International
Journal of Multiphase Flow, 1984.

Bannwart, A.C., Rodriguez, O.M.H., de Carvalho, C.H.M, Wang, LS.,
and Vara, RM.O, “Flow Patternsin Heavy Crude Oil-Water Flow”,
Presented at the Engineering Technology Conference on Energy, 2001,
Houston. American Society of Mechanical Engineers.

Rivero, M., Guevara, E., Jaua, J.,, Carabano, N., and Joseph, D.,
“Preventing Oil Adhesion to Pipe Walls in Heavy Crude Transportation,”
UNITAR, 1995, Houston.

Huang, A., Christodoulou, C., and Joseph, D.D.. “Friction Factor and
Holdup Studies for Lubricated Pipelining-II", International Journal of
Multiphase Flow, 1994,

Gillies, R. Confidential communication with C-FER, 1998.

Charles, M.E.. Govier, G.W, and Hodgson, G.W. “The Horizontal
Pipeline Flow of Equal Density Oil-Water Mixtures”, The Canadian
Journal of Chemical Engineering, February, 1961.

Incropera, F.P. and D.P. DeWitt, Introduction to Heat Transfer, Second
Edition, Wiley, 1990.

Canadian Standards Association, CSA-Z183-M90, 1990.

Cengel, Y.A., and Boles, M.A., Thermodvnamics: An Engineering
Approach, McGraw-Hill, 1989.

Govermnment of Canada,
http://www.msc-smc.ec.ge.ca/climate/index_e.cfm.

Kazemi, H., and Perkins, T.K.. “A Mathematical Model of Thaw-Freeze
Cycles Beneath Drilling Rigs and Production Platforms in Cold Regions”,
Society of Petroleum Engineers, 3029, 1971.

Andersland, O.B., and Anderson, D.M., Geotechnical Engineering for
Cold Regions, McGraw-Hill, 1978.

Communication with David Goodmanson, September, 1999.
A.V. Lukov, Analytical Heat Diffusion Theory, Academic Press, 1968.

R.A. Archer and M.J. O’Sullivan , “Models for Heat Transfer from a
Buried Pipe”, SPE 36763, 1997.

186



30.

31.

33.

34.

35.

36.

37.

W.W. Martin and S.S. Sadhal, “Bounds on Transient Temperature
Distribution due to a Buried Cylindrical Heat Source”, Int. J. Heat and
Mass Transfer, Vol.21, pp. 783-789, 1978.

M. Chung, P. Jung, and R. Rangel, “Semi-analytical solution for heat
transfer from a buried pipe with convection on the exposed surface”, Int.
J. Heat and Mass Transfer, Vol. 42, pp. 783-789, 1999.

Chapra, S.C. and Canale, R.P. Numerical Methods Jor Engineers, Second
Edition, McGraw-Hill, 1988.

Pozo, R., Template Numerical Toolkit (TNT), http://math.nist.gov/tnt/,
National Institute of Standards and Technology, 2000.

Kwon, Y.W., Bang, H, The Finite Element Method Using Matlab, CRC
Press, 1996.

Moaveni, S., Finite Element Analvsis; Theory and Application with
ANSYS, Prentice-Hall, 1999.

Powers, D.L., Boundary Value Problems, Third Edition, Harcourt Brace
Jovanovich, 1987.

Goodrich, LEE., “An Introductory Review of Numerical Methods for
Ground Thermal Regime Calculations”, National Research Council of
Canada, Division of Building Research, Paper No. 1061, 1982.

187



Appendix A. Transformation of Variables for
Bicylindrical Coordinate System

The bicylindrical coordinate transform used to derive positions in the ground

is given by([30]:

. a+i
.\'+ty=ccoth( 3 'B) (A.)
While obtaining x and y values from this formula is easily done, it is sometimes
necessary to express x and y without the use of complex variables. (An example

of this is in Appendix B.) This is done as follows.

coth(z)= C?S: _:
sinh = (A2)
e te”
e —e
Let:
a
a= 3‘ (A3)
_h ,
b=t (A4)
e""" =e"(cosb+isinb) (A.5)
So:
a+ib +e-n-lb
xX+iy=
X+iy Ceaﬂb _e-n-lb
e” (cosb +isin b)+ e [cos(~b)+ isin(- b)]
=c
e”(cosb +isinb)—e™ [cos(~b)+isin(-b)] (A6)
e” (cosb +isin b)+ e (cosb —isin b) '
e’ (cosb +isinb)—e ™ (cosb —isin b)
(e +e” )cosb +zsmb(e -e )
(e —e” )cosb+zsmb(e +ej
In a general case:
X iy, =-"1xz+_"|_vz+i-‘z)’1‘-‘1."2 (A7)

Xy +iy, X3 +y3 X3+ s
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Now consider:

X = (e“ te™ )cosb =2coshacosb (A7)
X, = (e“ -e™ )cosb =2sinhacosb (A.8)
= (e“ -e™ }in b =2sinhasinb (A9)
v, =(e" +e™ kinb =2coshasinb (A.10)

So:

4coshasinhacos® b+ 4sinh acoshasin® b .
4sinh* acos’ b +4cosh’ asin’ b

x+iy=c . X (A.l1])
i4sinh' acosbsinb—4cosh” acosbhsinb
4sinh* acos’b+4cosh’ asin- b
coshasinhacos’ b +sinh acosh asin* b
x+iv=c sinh~ acos” b+cosh~ asin~ b (A.12)

'.sinhl acosbsinb ~cosh” acosbsin b
sinh” acos’ b +cosh* asin’ b

cosh asinh alcos® b +sin’ b) N
(cosh2a-1)i +Lcos2b)+ (L + Lcosh 2a )i - Lcos2b)
; (sinh * a - cosh® a)cos bsin b
(tcosh2a—1)L +4cos2b)+ (L +Lcosh 2a )L - Lcos 2b)

X+iv=c

(A.13)
4coshasinha +
h2a-1)1+ 2b )+ (1 +cosh2a )l - 2b
crivec (cosh 2a - 1)1 +cos 2b) ( cosh 2a )1 - cos 2b) (A.14)
; 4cosbsinb
(cosh 2a — 1)1 + cos 2b)+ (1 + cosh 2a Y1 — cos 2b)
2sinh 2 2sin 2
x+iy=c|——2Smh2a . 2sin2b (A.15)
2(cosh 2a—cos2b)  2(cosh 2a —cos2b)

X+iv=c sinh +i sin (A.16)
cosha~cos B cosha—cosf

=c sinha (A.17)
cosha —cos 8
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y=c[ sin } (A.18)

cosha —cos



Appendix B. Derivation of Laplacian for the
Bicylindrical Coordinate System

In order to develop a finite difference approximation of heat conduction within
the ground around a buried pipe, it is necessary to obtain the Laplacian with
respect to temperature for the bicylindrical coordinate system. The Laplacian
with respect to temperature in the Cartesian coordinate system is:

0°’T  9°T

T3t

ox°  dy’

The variable transformation (as shown in Appendix A) is:

(B.1)

sinha
| coshar—cos 8 |
sin 8

= B.3
Y C_cosha-cosﬂ_ -

Generally, the relevant partial derivatives are:
OT 9T ax) T dxdy dT(3yY T dx ITdy
da® x| da 0xdy da da v’ | dar | ox da” dy Jda*

(B.4)

T _T(axY,, 9T axdy aT(dy ’+ara=r T 3y
o axdy 9pop v’ | B ) ox 9B" ' oy of°

(B.5)
T T _¥T|(oxY (x| ,3T(oxdy oxdy) oT|(ay) (ov)
- + == |+2 + | = + =
3 op a || e 0B axdy( dxda 9B B | 3’ || da Y]
+8_T 83.t+ﬁ oT av av
ox|oa” o> | ov|oer T 3p"
(B.6)

The partial derivatives of the cartesian coordinates with respect to the transformed
coordinates are:

dx _ cosh acosf —-1
da (cosh a—cos BY

(B.7)
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ox _ sinhasin S

B~ (cosha ~cos B

3°x _ sinha{cosh acos B +cos® B - 2)

da’ (cosha —cos BY
alx _Sinh a(cosh acos f +cos* B - 7)
ap’ (cosha —cos B)

ay sinhasin 5

da  © (cosha cos BY

dy _ coshacosﬁ -1

ﬁ (cosha —cos BY

9’y sin ﬂ(cosh‘ a +coshacos f - 2)

da’ (cosha —cos BY
al_v _sin ﬂ(cosh a +coshacos B - 7)
)i (cosha —cos B)

It can be seen that the following simplifications are true:

A A
dada df I
oaxY (axY av Y [ oy :
— | ] —] = =] 4| =
Jda ap a ap
da° dB°
9y 9y _
da* 9B°

These can be used to reduce the Laplacian to:

°T T (3T 3T\ (ax) (ax)
vl et | Rl B
da®  of-: (ax- ay-){(aa) (aﬂ) J

This can be rewritten as:

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
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T T __oa® of°

ox* oy’ ox 1+ o : 520
da| | op (B.20)

_ 83T+61T cosha—cos B
da*> 9p’ c
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