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Abstract

3D reconstruction of transparent and specular objects is a very challenging topic

in computer vision. The goal is to get the 3D information of the points on the

surface of a transparent or specular object and accumulate the points to form the

reconstructed surface. For opaque objects, the structured light methods can be used

with good results. For transparent and specular objects, which have complex interior

and exterior structures that can reflect and refract light in a complex fashion, it is

difficult, if not impossible, to use the traditional structured light methods to do the

reconstruction.

In this thesis, a frequency-based 3D reconstruction method based on the frequency-

based matting method is introduced. Similar to the structured light methods, a set

of frequency-based patterns are projected to the object, and a camera captures

the scene at the same time. Each pixel of a captured image is analyzed along the

time axis and the signal is transformed to the frequency-domain using the Discrete

Fourier Transformation. Since the frequency is only determined by the source that

creates it, the frequency of the signal can uniquely identify the location of the pixel

in the patterns. In this way, the correspondences between the pixels in the captured

images and the points in the patterns can be acquired. Using a new labelling pro-

cedure developed in this research, the surface of transparent and specular objects

can be reconstructed with very encouraging results.
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Chapter 1

Introduction

1.1 Motivation

3D reconstruction is the procedure of capturing the shape or surface structure of

objects. The goal is to acquire the 3D information of each point on the surface of

an object, 3D coordinates, depth and normal. By assembling all these points, the

surface of the object can be reconstructed.

In the past few decades, 3D reconstruction has been widely used in robotics, game

design, movies and cartoon design, interior decoration, automation and so on. For

example, in movie-making, it is difficult, if not impossible, to use existing software to

draw the delicate shape of an object manually. Instead, we can use 3D reconstruction

methods to get the structure of that object first and then make some appropriate

adjustments or directly use it. Another example would be in digitization. Nowadays,

more and more objects are required to be “stored” in a digital format in a database

for ease of access over the Internet or for ease of storage. To digitize the shape and

structure of these objects, many 3D reconstruction methods have been developed.

There are two main types of methods to do 3D reconstruction, which are ac-

tive methods and passive methods. Active methods use devices such as projectors,

monitors or laser emitters to cast patterns onto objects, and use receivers, such as

camera(s), to simultaneously capture the scene. By analyzing the captured images

with information of the relative positions of the devices, the 3D information of the

points can be obtained. Passive methods usually use only camera(s) to capture the

scene from different angles and use images as their only input to do reconstruc-

tion. Since passive methods tend to have less accurate results than active methods,

nowadays, active methods have drawn more and more attentions.
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In the realm of active methods, techniques using structured light are the most

commonly used ones. Structured light methods cast a set of coded patterns onto

the object and use a camera to capture the scene simultaneously. Hence, the cor-

respondence between a pixel in the projector image and the corresponding pixel in

the captured image can be easily established. When the object is opaque and has

a Lambertian surface, which means that the surface can reflect the incoming light

uniformly, it is easy to find corresponding points between the pattern and the cap-

tured image. The camera center, the projector center and the point on the surface

form a triangle, as shown in Fig. 1.1. The procedure of triangulation is to solve this

triangle and find the 3D information of the point X . If the camera and the projector

are calibrated, the position of the camera center and the projector center are known.

The direction from the camera center to the corresponding pixel can be obtained.

As well, the direction from the projector center to the point on the pattern can also

be calculated. Hence, the intersection of these two directions, which is the point X

on the object surface, can be acquired.

Figure 1.1: An illustration of triangulation. OC is the camera center. OP is the
projector center. XC and XP are the corresponding points, respectively, on the
camera plane and the projector plane. X is the intersection point on the surface of
the object.

As we can see, the key piece of information for triangulation is to correctly find

the correspondences. For opaque objects with Lambertian surface, it is quite easy

and straightforward. Many methods [5, 6, 7, 8] can reconstruct well-defined surface

using structured light methods. However, for objects that have poor reflection or

anisotropic properties(Fig. 1.2a and Fig. 1.2b), which means that the reflection is

2



either weak or non-uniform, 3D reconstruction is still an active research topic.

(a) A transparent trophy
with weak reflection

(b) A metal cup with
anisotropic properties

(c) A vase with a complex
surface structure

Figure 1.2: Examples of objects that are difficult to be reconstructed using existing
methods.

Different from Lambertian surface, specular surface reflects light with a dominant

angle, causing a strong specular highlight. The specular highlight can make it

difficult, if not impossible, to acquire the texture of the highlight point. Hence, it is

difficult to reconstruct the objects with specular surface. Additionally, the specular

highlight is view dependent and creates a problem for passive stereo methods.

Among all types of objects, the most difficult type to do 3D reconstruction is

transparent objects. Transparent objects are very common and can be made of

many different types of materials from crystal, quartz to water. It is difficult to

reconstruct them because they are optically active, which means that they interact

with light in a complex fashion [4]. For example, Fig. 1.2c shows a vase, which

has a complex surface structure that not only can reflect but also refract light,

which results in highlight and caustic effects. Hence, when we use traditional 3D

reconstruction methods, either active or passive methods, the optical effects will

lead to erroneous results.

Not only transparent objects with complex surface are challenging to be re-

constructed, even objects that are transparent and with a smooth surface are also

optically active and hard to be reconstructed. Sometimes even a human eye cannot

discern the structure, let alone using cameras and images. Indeed, eyeglasses are

made for people to “see through” without having the structure of the eyeglasses

observed. People may walk into a glass door just because they did not see the

reflection on it and everything on the other side was clear and without distortion.

Another example would be the trophy as shown in Fig. 1.2a, which is transparent.

When we want to use a traditional method, for example, using a projector to cast
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Gray code patterns onto it, most light would transmit through the object and get

reflected by the background wall. In that case, the reflected light will interfere with

the real reflection from the object surface, making it difficult to use reflection to do

3D reconstruction.

Some existing methods [9, 10] attempt to address some of the problems related to

the transparent properties, but they all have certain shortcomings and limitations.

For example, Trifonov et al. [11] needs to suspend the object in a poisonous and

caustic solution, which is not only dangerous to the researchers doing the experi-

ments but also may damage the object. Methods by [12, 13] can only be applied well

to a small group of objects that have a simple shape, with a known refraction index.

Yeung et al. [14] needs user interactions during the process. From the viewpoint of

setup complexity, methods by [15, 16] use too many devices in their experiments.

Morris et al. [17] needs to move their setup during experiments, leading to more

errors.

Comparing the limitations and shortcomings stated above, the structured light

methods have a simple and stable setup, and the experiment is non-contact with the

object. Most importantly, they can be applied to a wider range of objects. Since

structured light methods use only reflection, any object that can reflect light can be

reconstructed by structured light methods in theory. However, as discussed before,

the real challenge is that for transparent and specular objects, the reflection is

either weak or non-uniform. Hence, it is difficult to find the correct correspondences

between points on the pattern and pixels on the image.

Although in 3D reconstruction of transparent and specular objects, finding the

correspondences is very challenging, researchers have made progress in another close-

ly related research topic called environment matting, whose main challenge is also

about finding the correct correspondences. An environment matte of a transparent

object shows how this object refracts and reflects light from the environment. Since

the foreground object is transparent, it can converge and disperse the environment

light. Hence, the main issue of environment matting is to distinguish different com-

ponents and to find the correspondence map of each pixel in the captured image to

the pixels of background image.

One of the elegant solutions to environment matting is the frequency-based envi-

ronment matting method proposed by Zhu and Yang [4]. The method was inspired
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by the fact that a time domain signal has a unique decomposition in the frequency

domain. They use that idea to successfully find the correct correspondences between

the backdrop patterns and the obtained images.

To my knowledge, none of the existing methods have incorporated the environ-

ment matting methods with 3D reconstruction methods for the purpose of finding

the correct correspondences.

1.2 Contributions

The goal of this work is to use the structured light methods incorporated with the

environment matting methods to do 3D reconstruction of transparent and specular

objects. Based on the challenges stated above, the contributions that are achieved

in this thesis are identified as follows:

First, the proposed method incorporates the 3D reconstruction method with the

environment matting method, and can find correct correspondences for transparent

and specular objects between points on projected patterns and pixels on captured

images.

Second, a new labelling method is proposed to successfully find the correct points

on the surface of the object.

Third, the proposed method is applicable to both transparent and specular ob-

jects. For transparent objects, this method obtains accurate and robust results for

objects that have complex structures as well as objects that are totally transparent

that have challenged other methods. For specular objects, this method can also

acquire accurate and robust results for objects that have anisotropic properties.

1.3 Organization of the thesis

The rest of the thesis is organized as follows.

In Chapter 2, related methods for 3D reconstruction of opaque objects, trans-

parent objects, and specular objects are presented and reviewed. Relevant methods

for environment matting are introduced. As well, concepts and background related

to the proposed method are discussed.

In Chapter 3, the frequency-based method for environment matting to obtain

the correspondences between images taken by a camera and patterns casted by a
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projector is introduced. A new labelling method to get the point of reflection, and a

triangulation method to get the 3D points on the surface of the object are presented.

Some post-processing methods are then discussed.

In Chapter 4, details of the experiments and results are presented. Experiments

with 7 objects are conducted. The results are compared with the ground truth as

well as with results using a classic method [18].

Chapter 5 gives the conclusions and a road-map for future work.
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Chapter 2

Background and Related Works

3D reconstruction was originally introduced to acquire the shape and surface struc-

ture of opaque objects with diffuse surface (Fig. 2.1). One of the representative

techniques is the structured light methods. These methods can achieve accurate re-

sults when the objects are opaque and have a diffuse surface, but may fail when the

objects are transparent or have a specular surface (Fig. 2.1). The reason is because

for transparent and specular objects, the reflection is either weak or non-uniform,

and sometimes may be interfered by other light effects, making it difficult to find

the correct correspondences between the points on the projected patterns and the

pixels in the captured images. Since the correspondences are the key information to

do accurate triangulation, inaccurate correspondences lead to wrong reconstruction

results.

Figure 2.1: Illustrations of the different types of reflectance surfaces [1].

3D reconstruction of transparent and specular objects has been an active re-

search topic for many years because it is a challenging task and has a wide range

of applications [19]. Researchers have devoted years to study this problem, aiming

to come up with a method that can efficiently acquire accurate 3D information of

points on the surface of the transparent and specular objects, but only with limited

success. In this chapter, representative methods for 3D reconstruction of transparent
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and specular objects are presented and reviewed.

When using a structured light method for transparent and specular objects, the

biggest challenge is to find the correct correspondences, and no existing method

has perfectly solved this problem. However, methods to do environment matting

have solved the correspondence problem to some extent. Since these methods can

be adapted for 3D reconstruction, in this chapter, related methods for environment

matting are also reviewed.

2.1 3D reconstruction of opaque objects

2.1.1 Passive methods versus active methods

Passive methods normally use information such as colour, edges, corners, textures,

or higher level descriptors, such as SIFT [20, 21, 22, 23], SURF [24], or DAISY [25],

to find correspondences among different images. Since the cameras from different

viewing angles have been calibrated, the triangulation can be done similar to that

shown in Fig. 1.1. One advantage of passive stereo methods is that they only

need camera(s) and no other light emitting devices. By moving the camera around

an object, the 3D reconstruction of an object can be obtained. However, when

the surface of the object is not sufficiently textured, it is difficult to find features,

and hence, correspondence. In this case, passive methods may fail in finding the

correct corresponding points. In particular, for the surface of specular or transparent

objects, the appearance of the surface depends on the environment as well as on the

viewing angle. Hence, the correspondences will not be correct. For objects with a

uniform texture, it is difficult, if not impossible, to detect the corresponding features

from different views. Hence, finding the correct correspondences is very challenging

and passive methods often fail to do accurate 3D reconstruction in these cases.

For active methods, devices such as projectors, monitors and laser emitters are

needed in addition to camera(s). Rather than passively capturing the image of an

object, active methods cast specially designed coded patterns or points onto the

object, and use camera(s) to capture the scene with the projected patterns. Using

coded patterns, each projected point on the surface of an object is unique and

can be identified. Hence, the correspondences between the pixels on the captured

images and the pixels on the projected patterns can be easily established. Using

the triangulation method shown in Fig. 1.1, the 3D information of the point on the
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surface of the object can be calculated.

The difference between passive methods versus active methods is shown in Table

2.1.

Table 2.1: Passive methods versus active methods

Passive methods Active methods
Setup Only camera(s) Camera(s) and other light

emitting devices, such as
projectors, monitors or laser
emitters

Information of
input

Images Images and information of
the patterns

The focus of this thesis is to use the structured light and coded patterns to do

3D reconstruction of static transparent and specular objects. Hence, representative

structured light methods for opaque objects are reviewed below.

2.1.2 3D reconstruction using structured light

Fig. 2.2 is an illustration of structured light. The projector casts a pattern onto an

opaque object. Since the object has a Lambertian surface, the pattern gets reflected

uniformly. The camera, which is located on the same side as the projector, captures

the scene with the projected pattern.

There are three steps in 3D reconstruction using structured light. First, the

projector emits each coded pattern sequentially onto the object, with the camera

capturing the image synchronously. Second, the captured images are analyzed and

the correspondence between the point on the pattern and the pixel on the captured

image are established. Third, the triangulation is conducted and the depth infor-

mation of the point on the surface of the object is obtained. To do triangulation,

see Fig. 1.1, XXC can be computed based on the camera center to the pixel on

the camera plane and XPX can be obtained from the projector center to the corre-

sponding point on the projector plane. Ideally, these two straight lines “intersect”

at X , which is the reconstructed point on the surface of the object. In practice,

because of measurement errors and noise, these two straight lines do not intersect,

in which case, the mid-point of their common perpendicular line segment is treated

as the intersection.
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Figure 2.2: An illustration of structured light (redrawn based on [2]).

Eq. 2.1 [2] shows the basic idea of the geometric relationship between the knowns

and the unknowns.

R = B
sin(θ)

sin(α + θ)
(2.1)

where, see Fig. 2.2, R denotes the distance between the camera center and point

P on the surface of an object. B is the base line, showing the distance between

the camera center and the projector center. θ is the angle of the direction from

the projector center to point P with the base line. Similarly, α is the angle of the

direction from the camera center to point P with the base line. The camera cen-

ter, the projector center, and point P on the surface of the object form a triangle.

With calibration, the position of the projector center can be easily calculated in the

coordinate system with the camera center as the origin. After finding the corre-

sponding points, the directions of the incoming light and the outgoing light can be

obtained, and the values of θ and α are known. With these values, Eq. 2.1 can be

solved and the value of R is computed. Since the direction of the incoming light

and the distance R are obtained, the position of P can be obtained, where P is the

reflection point on the surface of the object. With this method, all the points on the

surface of the object can be calculated, and the whole object can be reconstructed

by assembling these points.
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As stated by Geng [2], the structured light methods can be classified into two

groups. One group [18, 26, 27] is the sequential projection techniques, which use a

sequence of images to do the reconstruction. Normally, they can only be used when

the object is static, because multiple coded patterns are projected onto the object

and are decoded in order to get the correspondences. The other group [28, 29, 30]

is the single image techniques, which can be used for moving objects. Normally,

methods using multiple images are more accurate than those using a single image.

In the experiments using the proposed method in this thesis, all of the objects

are motionless, and the patterns used are the sequential ones. Hence, only related

sequential projection methods are reviewed below.

2.1.3 Sequential projection methods

One of the most fundamental sequential projection methods is the method using

the Gray code patterns. Shown in Fig. 2.3 are the Gray code patterns, which is

a kind of binary patterns. Typically two groups of patterns, the normal patterns

and their complement or commonly known as the inverse patterns, are designed

for projection. The goal of the inverse patterns is to suppress the effect of noise.

Instead of using a threshold to decide if a projected pixel is a 1 or a 0, when a

pattern is projected onto an object, its inverse is also projected. For each pixel, a

decision is made based on whether or not the intensity of this pixel in the normal

image is higher than that in the inverse image. In this way, a sequence of digits,

such as “0110001101”, is obtained for each pixel, and each sequence can uniquely

identify the one-dimensional position in the pattern. In order to uniquely identify

the two-dimensional position in the pattern, usually the patterns are designed in

two orientations, vertical and horizontal. For a projector with a resolution of n×m,

a number of log2(n×m) patterns are needed. For example, for a projector with a

resolution of 1024×768, 10 vertical patterns and 10 horizontal patterns are designed

to identify each pixel of the patterns. With the correspondences between pixels on

the captured images and pixels on the projected patterns, the triangulation can be

done, and the 3D information of the points on the surface of the object can be

obtained.

There are advantages and disadvantages of using the Gray code patterns. The

advantage is its resilience to errors and noise, since it is only needed to make a “true

11



Figure 2.3: Gray Code Patterns.

or false” decision. However, if a higher resolution is required, the number of the

patterns has to be increased, which is both time and space consuming. In addition,

since a typical camera has a much higher resolution than that of a projector, when

a pattern is projected onto an object, one projected pixel covers more than one

pixel in the captured image. Hence, interpolation is often required to compute the

corresponding point in the captured image. Moreover, the Gray code patterns tend

to fail in situations of inter-reflections, subsurface scattering, and defocus [8]. To

resolve these problems, researchers [31, 8, 18] have proposed extensions of the Gray

code projection.

Valkenburg et al. [18] include lens distortion, substripe estimation and subpixel

estimation into the models for camera and projector, and achieve a good perfor-

mance in the order of 0.3 mm [18]. Tsai et al. [5] combine the Gray code patterns

with the sub-pixel technology to increase the accuracy of the results. Aliaga et

al. [32] present a self-calibrating photogeometric reconstruction method. Since the

projector and cameras do not need to be calibrated, they can change their positions

during experiments. Gupta et al. [8, 33] use simple logical operations to increase the

resilience to errors caused by global illumination, such as inter-reflection, subsurface

scattering, and defocus.

Apart from the Gray code patterns, phase shifting [34, 35, 36, 37] is also a set

of coding methods that is commonly used by researchers. The patterns are usually

presented by Eq. 2.2 [2]

I1(x, y) = I0(x, y) + Imod(x, y)cos(φ(x, y)− θ) (2.2a)

I2(x, y) = I0(x, y) + Imod(x, y)cos(φ(x, y)) (2.2b)

I3(x, y) = I0(x, y) + Imod(x, y)cos(φ(x, y) + θ) (2.2c)

where I1(x, y), I2(x, y), and I3(x, y) are the intensities of the coded patterns, I0(x, y)

the direct component (background), Imod(x, y) the modulation signal amplitude,

12



φ(x, y) the phase, and θ the constant phase-shift angle [2]. When θ is equal to 2

3
π,

Eq. 2.2 can be solved and φ(x, y) can be obtained,

φ(x, y) = tan−1

(√
3

I0(x, y)− I2(x, y)

2I1(x, y)− I0(x, y)− I2(x, y)

)

. (2.3)

Since there is an arctangent calculation, the value of φ(x, y) is limited within

(−π+2kπ, π+2kπ), where k is an integer representing the projection period. Because

of the different values of k, the values of φ(x, y) are discontinuous. The procedure to

solve the discontinuity is called phase unwrapping. Methods [38, 39, 40] have been

proposed to do the unwrapping. The basic idea is to convert the wrapped phase

into the absolute phase [41]. The advantage of using phase shifting methods is that

only three patterns are needed for the experiment, as represented by Eq. 2.2. The

disadvantage is that phase unwrapping methods have to be introduced to resolve

the discontinuity problem. Hence, phase shifting is not an ideal method to be used

alone. Many methods are presented by combining the phase shifting methods with

the Gray code projection methods [42, 43, 44].

2.2 3D reconstruction of transparent and specu-

lar objects

3D reconstruction of transparent and specular objects is difficult to achieve because

of the active optical interaction of the objects with light, making the task very

challenging to follow different paths of the light traveling through or reflecting from

the objects. Obviously, a simple minded method, which is still used, is to cover the

surface of the objects using an opaque powder. However, if the objects are delicate

or precious, then it is not appropriate to obtain their 3D structures at the expense

of damaging their surfaces. Over the years, researchers have come up with different

ideas and methods to tackle the issues of transparency and specularity. Since it

is impossible to cover all of these methods, only closely related and representative

methods are reviewed in this section. In addition, the fundamental principles of 3D

reconstruction of transparent and specular objects are conveyed.

For the 3D reconstruction of transparent objects, the existing methods can be

roughly categorized into two groups. One group is the refraction-based methods,

which mainly utilize the information of physical geometry and normally need more
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than one viewpoint. The other group is the reflection-based methods, which gener-

ally apply to a larger range of applicable objects, because they do not have specific

requirements for the objects’ interior structures or properties. Here, the represen-

tative refraction-based methods are reviewed first.

2.2.1 Refraction-based methods

For transparent objects, most portion of the light gets refracted and transmitted

through the objects. Only a small portion gets reflected. Comparing with reflection,

refraction is much stronger. In addition, since the reflected light normally gets

interfered by the reflection from the background, it is not easy to isolate the reflected

light from the surface. Hence, many researchers measure the shape of transparent

objects based on refraction only.

One of the main applications for refraction-based methods is in fluid surface

reconstruction [45, 16]. The reason is because for transparent objects, the sur-

face normally is specular, which means that there is one dominant reflecting angle.

When the surface of the fluid varies, the dominant angle changes as well. Using

the reflection-based methods, the viewing angle of the camera need to be adjusted

accordingly, because the specular reflection is view dependent. Hence, for dynamic

fluid surface reconstruction, the refraction-based methods [45] are more appropriate

than the reflection-based ones [46].

Morris and Kutulakos [45] present a method using only two viewpoints to re-

construct a time-varying transparent fluid surface with no prior information about

the refractive index of the fluid. A checkerboard pattern is located at the bottom

of the tank. Using an optical flow estimation, a pixel-to-pattern mapping function

can be acquired, under the assumption that the surface is composed of a homoge-

nous transparent medium, and that the light gets refracted once only [45]. Using

Snell’s law, the 3D position and normal of the surface point at a certain time can

be estimated. Then, the reconstruction error of all the points during the whole

time range is computed and minimized. Through this optimization procedure, the

refractive index value, as well as the 3D positions and normals of the points can all

be obtained. Since the optical flow estimation is conducted, this method will fail

when the change in the surface of the fluid is too drastic that the light does not

arrive at the bottom (pattern) of the tank, instead, it may go to the side wall of the
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tank. The major disadvantage of this method is that it only works when the light

refracts once only, while in practice, the light has a much more complex interaction

with the fluid and with the tank. Because of these strict requirements, their method

has a very limited range of applications.

Kutulakos and Steger [47] present a theory to reconstruct the 3D shape of refrac-

tive and specular objects, which is called “Light-Path Triangulation”. They unify

the analysis of refractive and specular scenes, and enumerate all of the tractable

light-path triangulation problems and show which ones are solvable [47]. For ex-

ample, they point out that for light that undergoes two refractions or reflections,

three viewpoints are enough for the reconstruction [47]. The results of their method

rely on a pixel-to-pattern mapping function obtained by using an environment mat-

ting method. Their method also assumes the objects to have homogenous medium

(opaque or transparent) and smooth surface (no surface scattering), which limits its

applications. In addition, they have to move the cameras around the object, so as

to get good viewing angles, which also complicates the image acquisition procedure.

Ding et al. [16] present a method which has a similar setup as [45], except that

their new method requires more viewpoints. Since methods like [45] are known for

their sensitivity to fast fluid motions, Ding et al. propose a new method to track

the refracted feature points over time and across cameras, and obtain a spatial-

temporal correspondence map [16]. Their method can efficiently acquire results

with high resolution, and can track lost feature points by comparing the images from

different cameras. However, since they need a 3 × 3 camera array, the calibration

is more complex and error prone. In addition, adjusting all the cameras to focus

simultaneously is very difficult and troublesome.

Aside from the 3D reconstruction for fluid, researchers have proposed many

methods for reconstructing solid transparent objects. Trifonov et al. [11] introduce

a visible light tomographic reconstruction method. The object is suspended in a fluid

in a glass cylinder. The index of the solution is varied to match that of the object.

Once the two indices are matched, the refraction at the interface between the object

and the solution is minimized, and a tomographic technique is applied to perform 3D

reconstruction using visible light, instead of X-ray. This method performs well for

objects with an inner structure, such as a small hole in the center. However, it has

several shortcomings. First, the solution used is potassium thiocyanate (potassium
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salt) in water, which is highly poisonous. Not only is the solution dangerous for

researchers to use, but also is the disposal very difficult after the experiment. The

solution may also be corrosive or chemically active to the surface, which will damage

the object permanently. Second, since they need to match the index of the solution

with that of the object, it is not easy to find a proper solute that not only can

make transparent solution but also can match the desired refractive index. Third,

since they need to suspend the transparent object into a cylinder, the volume of the

object is limited by the physical size of the cylinder. When the object is very big,

this method will probably fail, because it is not easy to find a proper container to

hold a big object and it will also need a large amount of toxic solution. In summary,

although this method can obtain some good results, it is not practical to be widely

used.

Wetzstein et al. [48] introduce a light field distortion method, which uses only one

image to do reconstruction. The key is to develop a set of 4D spatio-angular light

distribution patterns. Similar to some of the other refraction-based methods [45],

this method assumes that the light refracts only once. They also assume that the

refractive index of the object is known a priori, and the attenuation, the scattering,

as well as the wavelength-dependency of refraction are neglected [48]. In addition,

they can reconstruct only thin transparent surfaces, such as thin solid objects or the

surface of fluids. Hence, this method also has a small range of applications.

Shan et al. [49] propose a method to obtain the refractive height fields by taking

images with single or multiple planar backgrounds, with only one viewpoint. Their

method, though can obtain accurate results, is computationally expensive.

To sum up, refraction-based methods tend to make assumptions such as the

light is “refracted only once” [48], “the refraction index is known a priori” [11], and

“the medium is homogenous” [45], to simplify their algorithms. Normally, these

methods can only be applied to objects without or with simple interior structures

and have simple interactions with light. Since these methods are fundamentally

based on Snell’s law, they either need to know the refractive index, or they need

to develop additional methods to obtain it during the experiments. According to

Kutulakos and Steger [47], for some scenarios, it is impossible to do refraction-

based reconstruction, no matter how many cameras are used. However, for some

scenarios, such as the dynamic fluid, when the reflection is too dim to capture, the
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refraction-based methods are the only available methods.

2.2.2 Reflection-based methods

For the 3D reconstruction of solid transparent objects, comparing with the refraction-

based methods, the reflection-based ones tend to apply to a larger range of objects

and have less limitations and assumptions.

Matusik et al. [15] propose a novel method to acquire and render transparent and

translucent 3D objects from arbitrary viewpoints under a novel illumination. They

first acquire an α matte for each of the viewpoints, and then create the opacity hull

accordingly, in order to accelerate the analyzing procedure of the following steps.

Second, they use the method from [50], and obtain an environment matte. Third,

they use the α and the environment matte to get a surface reflectance field, so

as to composite any novel image from arbitrary angle. While their method can

tackle both the refractive and the reflective effects, their setup is very complex. In

particular, their method requires a plasma monitor, four light sources, six cameras,

and two turntables, which not only makes their devices difficult to be mounted and

manipulated, but also complicates the procedures of camera and system calibrations.

The scatter-trace photography method [17] was introduced by Morris and Kutu-

lakos in 2007. The method can reconstruct the surface of transparent objects with

complex interior structures. The goal is to get the depth and the normal for each

point on the surface. A concept called “Scatter Trace of pixel q” is introduced and

denoted as Tq(L), which means that the incoming light at q when the light source is

at point L [17]. Morris and Kutulakos display a 2-pixel-wide vertical stripe scanning

through the monitor, and capture images of the object simultaneously. Since the

monitor alone cannot determine the direction of the emitted light, the monitor must

be moved along its screen normal to 3 ∼ 6 positions. The intensity of each point on

the captured images is mapped to the corresponding light source positions. In this

way, the highest intensities on the light source area indicate the direct component

of the incident light, i.e. the light that is reflected by the surface of the object.

After acquiring the images and mapping the intensities to the light source area,

the scatter-trace analysis for each point on the surface of the object is conduct-

ed. They first assign a hypothetical depth to the point on the object, and do the

rectification, which is a linear projective warp that maps the point on the object
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to an infinity point along the x-axis. In this way, the real scatter-traces that con-

verge to the surface will be parallel to each other and to the x-axis, whereas the

wrong ones will not be parallel to the x-axis. Based on this idea, their second step

is to estimate the direct component and eliminate the wrong scatter-traces using

a procedure called “running minimum” to remove indirect light that happens to

be on that trace. The justification is that for a proper trace, the intensity must

decrease monotonically in a radial direction away from the convergence point [17],

which is a point on the surface of the object. After the “running minimum”, if the

point is opaque and receives few inter-reflection, they can see this point as having

only direct component and only a single view is needed to do the reconstruction.

In order to find the correct depth from all the hypothetical depths, they assume

there is additive Gaussian noise and use the point-wise consistency to enhance the

direct component and accumulate the enhancements across the 2D area of light

sources. The maximization of the accumulation corresponds to the real estimated

depth for this point. For a transparent point, since the indirect component cannot

be neglected, two or more views are required to do the reconstruction. They mod-

ify the single-view method and evaluate the mutual consistency of scatter traces

at corresponding pixels from different views [1]. For their implementation, instead

of scanning a single stripe across the monitor, they use the patterned illumination

multiplexing method [51] as the light source to reduce the acquisition time.

Morris and Kutulakos’s method has a few shortcomings. For example, in their

paper [17] and Morris’s thesis [1], they fail to clearly state the method of rectification.

In the thesis [1], Morris mentions that the rectification corresponds to the standard

epipolar image rectification method, which is quite misleading, because it turns out

to be not even close to epipolar rectification. After a few correspondences with

Morris, it is clear that the rectification is actually a quadrilateral warping method.

In addition, it is quite difficult to re-implement their experiments, because there are

many requirements to meet. For example, the whole setup has to be inside a totally

dark environment because the scatter-traces are very sensitive to environment light.

That is because the reflection of a transparent object is quite dim with light sources

emitted from an LCD monitor, and can be easily interfered by other light. Even

the back-light from the LCD screen can affect the results. Second, the calibration

is very difficult and yet very critical to the results. Inaccurate calibration result
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will directly lead to bad experimental results. The camera has to be calibrated

intrinsically and extrinsically. Morris et al. use a two stage calibration phase. They

calibrate the camera to a calibration target first and then the illumination/monitor

to that same target. Third, since the monitor has to be moved during experiments,

high chances are that other part of the setup will be accidently moved too, which

increases the possibility of errors. Fourth, since the monitor is moved 3 ∼ 6 times,

the overlapped area that the light sources can cover all the times is very small.

Hence, the reconstructed area of the object is very small, unless a turntable is used.

Last but not least, this method is computationally time-consuming, because for each

point on the surface of the object, they need to search the estimated depths in a

large range in order to do maximization. However, since it is difficult to “guess” the

range of depths, manual measurement is needed to estimate the distance between the

camera and the surface of the object. Otherwise, it would be hugely time-consuming

to do the arbitrary depth estimation. In summary, although Morris et al.’s method

appears to be straightforward, the implementation is actually quite complex and

difficult and probably irreproducible.

Meriaudeau et al. [9] propose a method of using emitted structured infrared

patterns to reconstruct the nonopaque objects. They basically use a laser beam to

heat up the object and use an IR camera to capture the emitted infrared patterns.

Based on the temperature gradient at the laser intersection, they can locate the

laser pattern corresponding to image pixels. The advantage is that they identify

a new avenue to do 3D reconstruction using non-visible light spectrum emitted by

the objects. The disadvantages are as follows. First, the mechanical setup is quite

complex because they need a laser controller, a laser generator, a beam expander,

and a cylindrical lens to create the desired laser plane, and the camera must be a

special thermographic one. Second, since they need to project the laser plane and

capture the scene with the IR camera alternatively, the experiment is quite time-

consuming. Third, although this method does not contact the object physically,

it does heat up the object constantly, which will potentially melt and damage the

object. Fourth, since the IR camera has a low resolution, the results are less accurate

than a typical structured light method. Last but not least, infrared patterns are

quite sensitive to heat noise, such as the heat from the environment. Hence, special

precaution to control environment heating must be used.
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In addition to the methods reviewed above, there is another group of reflection-

based methods, which is the polarization-based methods [12, 13, 52, 53]. These

methods make use of the polarization phenomenon and by measuring the degree

of polarization, they can obtain the reflection angle and the surface normal of the

object. The challenge is to overcome the ambiguity problem of the two surface

normals. Miyazaki et al. [12, 13] propose a solution for this problem, which is to

tint the object for a small angle and capture additional images from this new view.

By comparing the images from two views, the orientation problem can be resolved.

This method uses only the sign, instead of the value of the rotation angle. Hence,

they do not need to know the actual value of rotation, nor need to do calibration.

For simple objects with a smooth surface, this method can acquire good results, but

for objects with unknown refractive index, or objects that self-occlude, this method

may fail.

Generally for polarization-based methods, since unpolarized light sources are

needed to illuminate the object from all directions, the object normally needs to be

put inside a diffuser, such as a plastic sphere. In this way, the light from the light

bulbs outside the diffuser can be modified to be the desired form. Inside the diffuser,

there are some inevitable light effects such as inter-reflection. Since the shape of the

object is unknown, it is quite complicated to deal with these inter-reflections [12].

Hence, some researchers [12] simply assume that the light caused by inter-reflection

is an uniform unpolarized light, and subtract its intensity before further analysis.

Nevertheless, even with this strategy, the errors of the results are still mainly caused

by inter-reflection, which indicates that this strategy still has problems.

Some of the methods mentioned above can also be used to reconstruct the spec-

ular objects, since many transparent objects are also specular. It is noteworthy

that most of these methods are reflection-based, because refraction-based methods

normally need to put pattern(s)/monitor(s) and camera(s) at different sides of the

objects, and light normally transmits through the object into the camera(s). Fur-

thermore, the refraction-based ones need more information about the objects, such

as the refractive index. In addition to the reflection-based methods mentioned above,

there are several methods which are designed specifically for specular objects.
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2.2.3 3D reconstruction of specular objects

Nehab et al. [54] introduce a dense 3D reconstruction method for specular objects

based on the surface normal/depth consistency. The setup consists of a monitor

displaying scanning stripes as the light sources, with two cameras capturing image

pairs at the top of the monitor. The limitation of the setup is that since the con-

sistency property is used, the object need to be located pretty close to the light

sources. Hence, the angle covered by the monitor is very small. This method can

only performs well when the surface is nearly flat, otherwise, “gaps” can be ob-

served in the reconstruction results. In addition, even after the inter-reflections are

neglected, the consistency constraint can still lead to ambiguities. In their paper,

they present a theoretical analysis of the ambiguities.

Different from Nehab et al. [54], who display scanning linear light sources on the

monitor, Francken et al. [55, 56, 57] propose a few coding methods so as to reduce

the acquisition time and to improve the accuracy of the results. Since a specularity

can be caused by only one light direction, once the point on the monitor is located

corresponding to the specularity, the local normal can be easily acquired. Francken

et al. [55, 56, 57] chose the Gray code patterns to display on the monitor, since the

Gray code patterns are very robust to noise and to errors. Apart from the Gray code

patterns, they also use the gradient illumination patterns. However, this pattern is

more sensitive to noise than to the black/white binary patterns.

2.3 Environment matting

As discussed above, the main challenge for 3D reconstruction is to find the correct

correspondences for triangulation. While existing methods for 3D reconstruction

of transparent and specular objects have certain limitations to tackle this prob-

lem, there is another research area called “environment matting”, whose goal is to

determine the interaction between a transparent object and its environment, has

made many exciting progress in finding the correct correspondences. The proposed

method of this thesis is one of the first ones to adapt a method in environment mat-

ting to 3D reconstruction. Before going into details about how the proposed method

modifies an environment matting method and uses it as the first step of the recon-

struction process, relevant background of environment matting and related methods
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are presented and reviewed below.

2.3.1 Background: matting

Environment matting is closely related to image matting. Matting and compositing

are originally invented for film production [4]. Sometimes when it is quite difficult

to shoot the film in a scene, for example, a scene which is setup on the Moon, people

would shoot the scene in front of a big blue or green screen. The blue or green screen

is the “background.” The people in front of it are the “foreground.” Using a matting

method, the foreground can be separated from the background and be composited

with a new background.

Porter and Duff [58] are the first ones who introduce the idea of alpha channel and

matting. They separate the image into different parts which can be independently

rendered. Each part has an associated matte, so that they can render the scene

separately and accumulate them into an image. In particular,

C(x, y) = α(x, y)F (x, y) + (1− α(x, y))B(x, y) (2.4)

where C(x,y) is a pixel on the image, α the alpha value. F(x,y) the foreground pixel,

and B(x,y) the background pixel. Ideally an image can be strictly separated into

the foreground region and the background region, i.e. one pixel can be either in

the background or in the foreground. However, in most cases, the image has three

parts instead of two, and that image is called a trimap. Fig. 2.4 shows a trimap.

The blue part (labelled as “1”) is the definite background, and the corresponding

alpha value is zero. The yellow part (labelled as “2”) is the definite foreground,

and the alpha equals to one for each pixel in this area. The gray area (labelled

as “3”) is the uncertain area, where the pixels can be both the foreground and

the background, and the alpha value is between 0 and 1. From the viewpoint of

the trimap, “matting” is actually a generalization of image segmentation. When

the object has a sharp edge and is totally opaque, α is either 0 or 1, and matting

becomes image segmentation. Matting is widely used when the foreground object

does not have a hard edge, such as fur or hair.

Matting is an ill-posed problem. Given that an image has RGB channels, there

are seven unknowns in Eq. 2.4. The foreground and the background pixels each

have RGB three unknowns, and the alpha value is also unknown. There are only
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Figure 2.4: Trimap.

three equations (for the three RGB channels) to solve for seven unknowns. Since

the unknowns are out-numbered, it is quite difficult to solve them and most existing

methods [59, 60, 61, 62] use optimization or user-interaction to solve this problem.

2.3.2 Environment matting and compositing

Matting can only be applied when the foreground object does not interact with

the environment, which means that the captured image is a composition of the

weighted foreground and the weighted background. When the foreground object is

transparent, translucent, shiny, glossy, or seen at a grazing angle, the environment

light can have an active interaction with the object, causing more optical effects to

be analyzed, such as reflection, refraction, attenuation, scattering, inner reflection,

inner refraction, and inter-reflection.

Since using only the theory of “matting” is not enough, Zongker et al. [63] first

introduced the concept of “environment matting” in 1999 to represent these optical

effects mentioned above. They propose the “environment matting equation” as

C = F + (1− α)B + Φ, (2.5)

where α only represents the coverage of a pixel by the foreground, while in the

original matting equation, Eq. 2.4, α represents the coverage, as well as the opacity
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of the foreground pixel [63]. Φ represents the contribution of any light from the

environment that reflects from or refracts through the foreground.

Since Φ is quite complex to represent and to calculate using the captured images,

Zongker et al. make a few assumptions to simplify and to approximate Φ, such as

“the only light reaching the foreground object is the light coming from distant parts

of the scene” [63]. Based on these assumptions, a simplified model of light transport

is presented as

C = F + (1− α)B +
m
∑

i=1

RiM(Ti, Ai) [63], (2.6)

where Ri is the ith reflectance coefficient and Ti is the corresponding texture map.

They assume that there are a set of m different texture maps, denoting contributions

of the light from m different parts of the environment, such as different angles.

M(Ti, Ai) is a texture-mapping operator that returns the average value of an axis-

aligned region Ai of the texture Ti.

The goal of environment matting is to solve the equation above. Since there are

RGB three color channels, there are three unknown foreground colors for F , three

unknown corresponding reflectance coefficients for R, four unknown area extents for

each Ai, and one unknown pixel coverage value for α, at each pixel. Using coded

patterns displayed from the background and to the sides of the object, and with a

non-linear optimization procedure, these unknowns can be solved.

This method, though is pioneering, has a couple of shortcomings. For example,

the number of images required to capture an environment matte is large, which is

space and time consuming. In addition, according to their setup, the side-drops

are actually only put to the left and right of the object, whereas in reality, the

environment light can come from everywhere around the object. Hence, their setup

does not cover the whole range of the environment. Last but not least, this method

can not handle abrupt changes in reflected and refracted ray directions.

In 2000, Chuang et al. [50] proposed a few extensions to their previous work [63].

The extensions are in two directions. One is aimed at a higher accuracy, and the

other attempts to achieve a higher efficiency. In order to obtain the results with

higher accuracy, they develop a new set of patterns. Instead of using the Gray code

patterns in structured light, they use a single scan-line to scan through the monitor.

The scan-line comes in four directions, vertical, horizontal, and two diagonal di-
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rections. In addition to their improvements, instead of using simplified rectangular

regions as weighted function, they use the sum of Gaussians as the new weighted

function, which can allow for a simulation of dispersion and also a simulation of con-

vergence. The results of this method are much better than their old ones. However,

since more patterns are used, it is more time consuming than the previous one [63].

The other direction of their extensions is higher efficiency. They simplify their

object into moving, deforming colorless ones with specularly reflective and refractive

properties and utilize only a single background image consisting of a color ramp for

real-time capturing [50]. Although their method is more efficient, because of the

assumptions of the object, it is limited to a small group of objects. However, a

road-map to simplify the environment matting is proposed, which has inspired other

researchers [3, 64, 65, 66].

2.3.3 Efficiency-based methods

Ever since Zongker et al. introduced the idea of “environment matting” and pro-

posed an inspiring method to obtain the environment matte in their paper, re-

searchers have come up with many new methods and ideas for environment mat-

ting. Similar to the work of Chuang et al. [50], these new methods can be roughly

categorized into two parts, based on their main goals. One part is efficiency-based

methods, and the other part is accuracy-based methods.

There is always a trade-off between efficiency and accuracy. Although the ul-

timate goal is to achieve both. In practice, researchers have to emphasis one over

the other when developing their own methods. Some researchers [3, 65] make a few

assumptions to simplify the environment matting model, so that their methods can

be efficient, yet can only be applied to a limited range of objects or scenarios. On

the other hand, some researchers [4, 67] develop a novel set of patterns to display on

the monitor, so that they can accommodate as many optical effects as possible into

account and obtain more accurate results, yet may take hours to do the experiments.

Here, some state-of-the-art efficiency-based methods are reviewed.

Wexler et al. propose a method to use only images with a moving background

to obtain the environment matte without calibration. In the paper of Zongker

et al. [63], one shortcoming of the method is that the acquisition process is not

accurately calibrated, which leads to inaccurate results. As well, Wexler et al. [3]
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point out that for some scenarios, for example, when the transparent object cannot

be moved to or too big to be placed inside a setup, it is quite difficult to do the

calibration. By avoiding the calibration, the experiment can be accelerated as well.

The main idea is shown in Fig. 2.5, where all the pixels of the background image

have contributions to each pixel on the composited image, though a certain number

of these contributions may equal to zero. For each pixel on the composited image,

a contribution map, which is called the “receptive field” in Fig. 2.5, is created to

record the corresponding contribution of every pixel from the background image.

The sum of the weighted background is the intensity of the pixel on the composited

image. In case of no prior information of the background, a technique is presented to

generate “a clean background” by comparing a series of images with the overlapped

background. The accuracy of this method increases as more images are available.

Figure 2.5: Formation of a single output pixel [3].

The disadvantages of this method are as follows. According to the main idea

stated above, only the contributions from the background image are considered,

whereas the method in [63], the environment light can be from anywhere, which

means that Wexler et al. simplify the “environment” to be the background only.

Hence, their results do not have reflection from the environment and only experi-

ments with optically simple objects are shown, such as a thin magnifying glass. In

addition, in the process of getting the foreground elements, they assume that the

foreground pixels have lower variance than the background ones, which may fail

when the foreground moves faster than the background. Moreover, their method

may fail when the background is non-planar.

Choudhury et al. [68] introduce a method to efficiently acquire the environment

matte using a holistic color cube as the environment. Different from the method

proposed by Wexler et al. [3], this method takes light coming from every angle into
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account. In order to find which point on the cube corresponds to a certain pixel in

the final image, instead of lighting one point at a time, they use color as a cue to

locate it. There are mainly two disadvantages of this method. First, it can only

deal with purely reflective/refractive objects, and may fail when the object has a

complex interaction with the environment. Second, since the foreground object is

in a cube, the size of the applicable objects is limited.

Inspired by the work of Chuang et al. [50], Duan et al. [64] propose a follow-up

method to remove the potential errors in the compositing results, which improves

the result of [50] in accuracy. Based on their theory [64], Chuang et al.’s method

can only remove high frequency noise, but not errors, which can be seen as the low

frequency noise. Duan et al. use a concept called “light motion vector,” which is

a vector starting from a point on the foreground to the corresponding background.

These light motion vectors form collectively a light motion field. The efficiency-

based method proposed by Chuang et al. [50] is adopted to obtain the light motion

vectors. An energy minimization method is introduced to remove the noise and

errors at the same time. This method is very efficient. However, since the method

from [50] is used, the same assumption of the object has to be made, which means

that the object has to be colorless and transparent. Although this method is fast

and has a higher accuracy than the previous method [50], it is still limited to a small

group of transparent objects with the colorless property.

In 2011, the same group of people, Duan et al., came up with a new method [65]

which adopt the compressive sensing method in signal processing, and obtain good

results. The main assumption of compressive sensing is that the input signal is

sparse. With the help of compressive sensing and group clustering, the environment

matting model is simplified and hierarchically solved. This method can obtain

accurate results very efficiently. However, since the input signal is assumed to be

sparse, this method can only acquire the environment matte of simple transparent

objects. Otherwise, when there are more optical effects, such as scattering, caustics,

inter-reflection, and attenuation, and these effects may come from many points from

the environment, the input signal may not be sparse anymore. In addition, in order

to use clustering to group the foreground pixels into a few classes, local smoothness

is assumed. Hence, this method cannot deal with objects that have abrupt changes

or complex structures.
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By far the methods reviewed in efficiency-based category have at least one thing

in common, which is the applicable objects are simple and have little complex in-

teractions with the environment light. This is quite easy to understand. Since the

goal of these methods is to achieve a higher efficiency, assumptions or limitations

have to be imposed so that the environment matting model can be simplified and

the capturing procedure can be accelerated.

However, not all of the efficiency-based methods are restricted to be applied to

simple transparent objects only. Yeung et al. [66] propose a novel method that can

accomplish matting and compositing in almost real-time, and yet the applicable

objects can be optically active and complex. In particular, their method is derived

from the traditional matting for opaque objects, instead of deriving from the envi-

ronment matting methods proposed by Zongker et al. [63]. However, the foreground

object they use is also transparent and refractive. Their method can produce real-

istic effects that previously only 3D modelling and environment matting methods

could achieve [66]. Instead of using the environment matting model, they propose a

novel model called “Attenuation-Refraction Matte,” or ARM. Taking the advantage

of our visual tolerance, and with a few reasonable assumptions, they come up with

a discrete form for the image formation equation as

CM(x) = α(x)S(x) + (1− α(x))β(x)B(G(x)), (2.7)

where x is a pixel located within object M , α the relative contribution of the specu-

larity S, β a 3-channel color transmission factor, B the appearance of the background

without an object, and G the warping function [66]. The main task of this method

is to solve for Eq. 2.7 and use the obtained M , α, β, and G to composite new images

with arbitrary backgrounds. Since using only one image to solve for Eq. 2.7 is an

ill-posed problem, they make further assumptions to simplify the acquisition of α,

β, and G, and use user-interaction to extract other unknowns.

The way to assess their results is quite unique. They ask a Photoshopr expert

to do matting and compositing using Photoshopr and ask a group of random peo-

ple to compare the results of the ARM approach with those of the Photoshopr.

According to their survey, the ARM approach generally produces more preferable

results. However, this is the only assessment available of their results, and there is

no quantitative assessment.
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The advantages of this method are that many transparent and refractive objects

can be used to extract their environment matte, even with complex structures. The

matting and compositing procedure is nearly in real-time, and visually plausible re-

sults are acquired. The disadvantages are that user-interactions are required during

the whole process. The results are only visually plausible, and no mathematical

or physical information about the surface of the object is obtained, nor the map-

ping from the background to the composited image is acquired. In addition, since

they use user-interaction during the analysis, their method cannot be applied to

environment matting from videos.

In summary, although the efficiency-based methods are quite efficient and some-

times even in real-time, they tend to make assumptions to simplify the environment

matting model and to accelerate the capturing procedure. They normally have lim-

itations for applicable objects and environment scenarios. Sometimes they can only

get visually plausible results, without getting real physical information about the

structure or optical properties of the object.

2.3.4 Accuracy-based methods

According to the previous reviews, efficiency-based methods normally can be only

applicable to simple transparent objects which have simple or unique interaction

with the environment light. These methods normally will fail when the foreground

objects have a complex interior structure or surface. Over the years, researchers have

studied and proposed many accuracy-based environment matting methods that can

be applicable to a more general group of transparent objects.

Among these accuracy-based methods, Zhu and Yang [4] introduce an elegant

method called the frequency-based environment matting method. This method is

inspired by the fact that a time domain signal has an unique decomposition in the

frequency domain. Optically complex objects incline to converge or disperse light

paths when put in front of the background. This phenomenon is quite difficult

to simulate because there are infinite ways to decompose a pixel [4], i.e. it is very

difficult to determine where the light paths start from based on the captured images.

Previous methods [50, 63] use non-linear optimization to solve this problem, but the

solution is only an approximation, which is not accurate. Since in the time domain,

the possibilities of decomposition are countless. In the method proposed by Zhu and
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Yang [4], the signal is transformed from the time domain to the frequency domain

and a unique decomposition is obtained. The advantage of this method is that it

avoids the optimization step, which cuts down the processing time. In addition, since

the mapping result shows the actual decomposition of each pixel, the compositing

result with an arbitrary background is physically correct, rather than only visually

plausible.

Since the proposed 3D reconstruction method in this thesis is derived from [4],

this method [4] is reviewed in detail here. The setup is quite typical, with the

camera in front of the transparent object and a CRT monitor in the background.

The frequency of a signal is only determined by the source that created it, and is

not affected by the medium when moving through. As shown in Fig. 2.6, the two

pixels on the pattern with different frequencies transmit and get converged into the

same point in the captured image. Although the converged point has a mixture

of signals, it actually can be decomposed into two unique signals in the frequency

domain. These two signals, respectively, correspond to the signals from the two

points on the pattern.

Since the goal is to use frequency to uniquely locate the decomposed compo-

nents, each position on the patterns should have a unique frequency. The pattern

has a 320×320 resolution. To accelerate the image acquiring procedure, two groups

of patterns, row-based and column-based, are designed. Because the signals with

low frequencies are easier to get interfered and to be mistaken as noise, the upper-

left point is not set to have a 1Hz frequency, instead, it is set to be 11Hz. Hence,

the range of frequencies on the patterns is between 11Hz and 330Hz. Based on

the Nyquist Sampling Theorem, at least 660 patterns are needed. In their experi-

ments [4], 675 row-based patterns and 675 column-based patterns are used.

The environment matting model can be represented by

C(x, y) = F +R

s=S,t=T
∑

s=1,t=1

W (s, t)B(s, t) where

s=S,t=T
∑

s=1,t=1

W (s, t) = 1, (2.8)

where C(x, y) is the pixel on the output image, F the color of the foreground object,

B(s, t) the pixel (s, t) on the background image, which has S × T pixels in total.

Similar to [3], W is the normalized weight map showing the contribution of every

background pixel to a certain output image pixel. More specifically, W shows not
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only which background pixels contribute to the output pixel, but also the proportion

of their contributions. R is the reflectance coefficient, showing the attenuation of

the light when interacting with the foreground object. The goal is to solve for F ,

R, and most importantly, W .

Figure 2.6: An illustration of the frequency-based environment matting method [4].

To acquire the environment matte, first the same method proposed in [63] is

used to get an α matte of the object. Second, the solid black pattern is displayed

on the monitor so as to get the information of the foreground color. Third, the

foreground color is used to obtain the reflectance coefficient. Fourth, the patterns

are sequentially emitted by the monitor and the camera takes the images simulta-

neously. Since the monitor, the object and the camera do not move, each pixel on

the pattern has a unique path that does not change with the patterns. When the

set of captured images are “seen” along the time axis, a sequence of intensities for

each pixel is obtained. The sequence is transformed to the frequency domain using

the Discrete Fourier Transform. In the frequency domain, the signal is analyzed,

and the dominant frequencies are acquired. Each of these frequencies corresponds

to a unique position on the pattern. The coefficient of the frequency indicates the

proportion of the contribution to the pixel on the final image. In this way, the
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weight map W can be acquired. For the compositing step, since the values of the

unknowns have all been acquired, it is easy to use Eq. 2.8 to compose a new output

image.

Since the frequency analysis is robust to noise, the frequency-based environment

matting method performs well even interfered by noise. The authors intentionally

add noise to the captured images, and still get very good results. Even after inten-

tionally eliminating a couple of captured images, their method still works well with

the rest of images. Because of the good properties of the frequency domain analysis,

the foreground object can be considered as located inside a black box, and there

is no need to know the interior structure or the surface of the object. Hence, this

method can be widely used for a large range of objects, even objects that have a

complex interaction with the environment light. However, the disadvantage of this

method is low in efficiency. Although this method can acquire accurate results, it

is very time-consuming to capture all the images. Normally about 30 minutes are

needed to do one experiment.

Peers et al. [67] also propose an accuracy-based method. Instead of using the

sinusoidal Fourier Transform patterns, they use the Haar wavelet patterns. The

advantage of the wavelet patterns is the local support in both the time domain and

the frequency domain. Hence, there is no need to do the signal transformation, but

the signal decompostion of the wavelet is needed. Since the wavelet can be decom-

posed iteratively, a hierarchical procedure is developed to save time. In addition,

an errortree is introduced to indicate which wavelet to emit next. Only the most

important one is chosen to emit. During the procedure, the contribution of the

wavelet to the illumination of the scene is calculated, and the result is stored in an

errortree. Then the next level of the wavelet is searched in the errortree and the

chosen wavelet is emitted. This procedure is conducted continuously in a loop, and

stops when the acceptable result is reached or when the number of the iterations is

exceeded.

This method can also obtain very accurate results. However, user-interaction is

needed to determine the stopping criterion, which is not reliable. In addition, in the

feedback loop, they first calculate the contribution, and based on the contribution,

they determine which wavelet pattern to emit next. Hence, it will take a long time

to finish the experiment. Normally, the image capturing procedure and processing
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procedure are separate. For example, in [4], though they have 1350 images to take,

their image processing time is very short, normally 10 minutes. Hence, Zhu et al.

need 2 hours in total to do the experiment. However, since Peers et al. do their

image capturing and processing alternately, they need 12 hours in total for each

scene and an average of 2.5GB to store all the photographs (after compression) [67].

In summary, their method gives good results but is very time and space inefficient.

Generally for the environment matting methods, the devices for displaying the

patterns are LCD, LED monitors, or plasma panels. There are some shortcomings

about these devices. First of all, since these devices are used as the light sources,

the light emitted by the devices sometimes is quite dim. Especially when the object

is far from the device or when the environment light is very strong, the quality

of the captured image will be inevitably affected. Second, using these devices can

only show the information of the corresponding points, without the directions of

the emitted light. For environment matting, since the patterns are displayed at

the background, and the camera captures the images in front of the object, most

portion of the light that emitted by the monitors or the panels goes into the camera.

Hence, the intensity of the captured image is not weak. However, when adapted to

be used for 3D reconstruction of transparent and specular objects, not only the

reflected light is only a small portion of the emitted light so that the intensity of

the captured image is very weak, but also using monitors or panels that do not

indicate the information of the emitted direction, which is much more difficult than

using a structured light system. Morris et al. [17] provide an idea, which is to

move the monitor to 3 ∼ 6 positions, and since the moving direction is vertical to

the surface of the monitor, a 2D rectangular range of stripe light sources can be

created, and the corresponding information from different positions can be used to

obtain the direction from the point on the monitor to the point on the surface of the

object. This method, however, is not practical, since moving a monitor during an

experiment can introduce systematic errors, and makes the calibration very difficult,

and sometimes even not doable. One solution to this problem is to use structured

light as the light source. The advantage is that the intensity emitted is much stronger

and the direction from the projector center to the pixel on the pattern can be easily

acquired, which is quite important for triangulation.

Out of space concern, only two accuracy-based methods are reviewed. The main
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stream of environment matting methods are the efficiency-based ones. However,

when researchers want to utilize the environment matting methods into other re-

search areas, a method that is widely applicable to various transparent objects is

more favored, because researchers tend to get good results first, and then make it to

be more efficient. That is the reason why the proposed method of this thesis modify

the frequency-based environment matting method and use it as its first step.

2.4 Conclusions

Traditionally for the 3D reconstruction of opaque objects, using structured light

is the prevailing method. Researchers have developed many coded patterns so as

to reduce the acquisition time and space, as well as to increase the accuracy and

resolution. However, for transparent objects, because of their interaction with light,

the traditional structured light methods can not produce persuasive results.

3D reconstruction of transparent and specular objects can be roughly categorized

as the refraction-based methods and the reflection-based methods. Comparing with

the reflection-based ones, the refraction-based methods normally have multiple as-

sumptions so as to simplify the reconstruction model to make it solvable. They also

need to know the properties of the object, such as the refractive index. In addi-

tion, the objects they can reconstruct normally have a very simple or no interior

structure, and have a very simple interaction with light. Hence, the refraction-based

methods normally have more limitations than the reflection-based ones. However,

for a transparent object, if a refraction-based method can be applied, the recon-

struction result is quite desirable. Generally, the reflection-based methods have a

larger range of applicable objects than the refraction-based ones.

Although transparent and specular objects have complex interactions with light,

researchers in the environment matting area have come up with some good methods

to tackle these problems. The frequency-based environment matting method can

accurately find multiple correspondences for each pixel in the image, with their

weight map denoting the percentages of the contributions. With the help of the

environment matting methods, the traditional structured light methods can be used

to do the 3D reconstruction of transparent and specular objects efficiently and ac-

curately. Hence, the frequency-based environment matting method can be modified

and used as the first step in the proposed 3D reconstruction method, so as to help
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find the correct corresponding points on the projected patterns with the pixels in

the captured images.
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Chapter 3

Frequency-Based 3D

Reconstruction of Transparent

and Specular Objects

3.1 Introduction

3D reconstruction of transparent and specular objects has been an active topic for

many years. It has been widely used in medical science [69, 70], industry [71, 72]

and entertainment [73, 74]. Because of the active interaction of the objects with

environment light, these objects are difficult to be reconstructed. Traditionally,

methods for 3D reconstruction of opaque objects use structured light with coded

patterns, but these methods may fail for transparent and specular objects because

the projected patterns may get reflected by the background and interfere the real

reflection from the surface of the object, making it difficult to find the correct

correspondences between the pixels on the projected patterns and the pixels on the

captured images. However, the frequency-based environment matting method [4]

can be adapted to accurately find the correct correspondences.

The transparent and specular objects interact with light in a complex fashion.

Since the object may have a complex interior or exterior structure, the light may

get reflected or refracted multiple times before it comes into the camera. Using

the frequency-based environment matting method, a many-to-one mapping matrix

from the pixels on the projected patterns to the pixels on captured images can be

obtained, which denotes the convergence of multiple light paths. The many-to-

one mapping matrix not only contains the points on the surface, but also contains

the points off the surface. The points on the surface are generated by the first-
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order reflections, which are reflections at the closest surface to the camera. This

is similar to the traditional 3D reconstruction of opaque objects, as shown in Fig.

3.1. The points that are off the surface are generated from triangulation shown in

Fig. 3.2. This scenario happens when the emitted light from the projector gets

refracted into the object and after multiple inner reflections and refractions, the

light gets refracted out of the object and goes into the camera. Since using the

frequency-based environment matting method can only obtain the corresponding

points from the projector plane to the camera image plane, triangulation using the

incoming direction and the outgoing direction may converge at a point that is not

on the surface, as shown in Fig. 3.2. In practice, the points off the surface are very

common because of the complex interaction of the object with light. Since the goal

is to reconstruct the surface of the object, only the points acquired from first-order

reflections are detected and preserved, whereas points off the surface are eliminated.

This procedure is done using the labelling method proposed in this thesis.

Figure 3.1: First-order reflection. Other optical effects are not illustrated here.

Once the converging points from first-order reflections are calculated using tri-

angulation, the surface of the object can be assembled. However, since a projector

normally has a lower resolution than a camera, the patterns projected onto the

object tend to cover more than one pixel in the image. Hence, the postprocessing

methods are required for refining the results.

In the next section, the main method is described step by step in details, and

the related knowledge of this method is presented as well.
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Figure 3.2: Points generated by triangulation may not exist. Other optical effects
are not illustrated here.

3.2 Frequency-based 3D reconstruction of trans-

parent and specular objects

3.2.1 Overview of the method

To clearly explain this method, a few things about the setup are needed to be

explained first. Shown in Fig. 3.3, the experimental setup is similar to the traditional

setup for 3D reconstruction of opaque objects. The projector and the camera are

located on the same side of the object. The object is put before a black cloth,

to minimize the interference from the reflected light from the background. Since

the reconstruction is based on reflection, the relative positions of the projector, the

camera and the object need to be adjusted, so that the camera can receive as much

reflected light as possible.

3.2.2 Environment matting

As mentioned in Chapter 2, the first step of the proposed method is modified from

Zhu and Yang’s frequency-based environment matting method [4].

Frequency analysis

Same as [4], in the proposed method, the intensities of each pixel position in the

captured images are “seen” along the time-axis as a sequence of signals. Since these

38



Figure 3.3: Experimental setup.

signals are a series of discrete numbers, the Discrete Fourier Transform, also known

as DFT, is used to do frequency analysis. DFT can be represented by Eq. 3.1 [75]

Xk = F{xk} =
N−1
∑

n=0

xn · e−i2πkn/N for k = 0, 1, ..., N − 1 (3.1)

where a sequence of N complex numbers x0, x1, ..., xN−1, denoting a series of discrete

signals in the time domain, is transformed into an N -periodic sequence of complex
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numbers X0, X1, ..., XN−1, denoting the signals in the frequency domain [75].

The key property of frequency, which is also the reason for using the frequency

domain analysis, is that the frequency of a signal only relies on the source that

creates it, and does not change when moving through the medium. Hence, when

the projector casts a series of patterns onto the object, the pixel in each position

of the pattern forms a “signal” and interacts with the object in a complex way.

For example, it may directly get reflected on the surface, or it may refract into the

interior and get multiple reflections, and then refracts out of the object. However,

no matter how complex the interaction may be, the frequency of this signal remains

unchanged. The signal is formed by a series of intensities, and as long as the

intensities come in a periodic way, its frequency can be easily calculated using the

Fast Fourier Transform (FFT) [76]. Fig. 3.4 is an example of using the FFT to

obtain the frequency of a signal.
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Figure 3.4: An illustration of using FFT to obtain frequency.

Fig. 3.4 shows a sinusoidal signal f(t)

f(t) = 0.3sin(2π · 50t) (3.2)

with a frequency of 50Hz. It can be transformed from the time domain into the

frequency domain and its frequency is prominently shown. However, this is not the

only advantage of frequency analysis.

According to [4], there are three additional desirable properties of frequency

analysis that can benefit the correspondence process:

1. Although a signal may be a sum of multiple signals with different frequencies,

40



transformed into the frequency domain, the frequencies of these components

clearly show up.

2. Frequency analysis is robust to noise, which means that when a signal is inter-

fered by noises, even though in the time domain, the signal is highly affected

by the noise, when transformed into the frequency domain, the frequency of

this signal is unchanged.

3. When the signal is scaled, its frequency domain form preserves the same

components of frequencies, and their power spectrum are proportional to the

square of the scaling factor [4].
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Figure 3.5: Frequency analysis.

Fig. 3.5 is an illustration of these properties of frequency analysis. Fig. 3.5(a)

is the original signal represented by

f(t) = sin(2π · 50t) + sin(2π · 80t) + sin(2π · 120t). (3.3)

Since the signal consists of three components with frequencies 50Hz, 80Hz,

and 120Hz, it is impossible to tell all the three components from its time domain

representation. However, after the Fast Fourier Transform, in Fig. 3.5(b), it is

easily to tell the three components by their frequencies. Fig. 3.5(c) shows when the
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original signal was added by zero-mean noise, the signal in time domain gets highly

corrupted, and it is difficult to tell whether Fig. 3.5(a) and Fig.3.5(c) are related

or not. However, after the FFT, in Fig. 3.5(d), the frequencies of its components

remain unchanged, though their intensities have been affected by noise. Fig. 3.5(e)

illustrates the scenario in which the three components of the signal get scaled by

different factors, as in

f(t) = 0.2 · sin(2π · 50t) + 0.3 · sin(2π · 80t) + 0.5 · sin(2π · 120t). (3.4)

In the time domain, not only it is impossible to distinguish these three compo-

nents, but also hardly to tell how much they have been scaled. However, in Fig.

3.5(f), after the FFT, the frequencies remain the same, and it is easy to tell how

much they have been scaled, since the power spectrum values of these three are

proportional to the square of the scaling factors, i.e. 0.22 : 0.32 : 0.52 = 4 : 9 : 25.

Frequency-based patterns

With these properties of frequency analysis, the frequency-based patterns can be

designed to find correspondences between the pixels on the captured images and the

pixels on the projected patterns in the frequency domain.

The patterns should meet the following requirements:

1. For each pixel position on the patterns, it should have a unique frequency, so

that the frequency can be used to uniquely locate the position on the pattern.

Basically, start from the top to the bottom, the frequency can be from 1Hz

to 320Hz, for an image with 320× 320 resolution.

2. The number of patterns has to satisfy with the Nyquist-Shannon sampling

theorem. According to this theorem, the sampling rate has to be larger than

twice of the maximum frequency. The sampling rate is actually the number

of patterns.

3. The frequency of each pixel position should be easily separated from noise.

For the positions with low frequencies, they are more easily to get interfered

and immersed into low frequency noises. Hence, the designed patterns should

not have low frequencies.
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The frequency-based patterns are divided and designed into two groups, hori-

zontal ones and vertical ones. For an image with a resolution of 320×320, a number

of 320×320 = 102400 different frequencies are needed. If the frequencies start from

1Hz, the maximum frequency will be 102400. According to the Nyquist-Shannon

sampling theorem, at least a number of 204800 patterns are needed, which will make

the capturing procedure very time-consuming. To reduce the capturing time, the

patterns are divided into vertical ones and horizontal ones, so that each group has

at least 640 images. Because of the low frequency noise problem, and Zhu et al. [4]

show that the low frequency noise are all within 5Hz, the frequency-based patterns

are designed with frequencies starting from 11Hz to 330Hz. In this way, the low

frequency components will be intentionally eliminated. Since now the maximum fre-

quency is 330Hz, at least 660 images are needed. Hence, 675 images are generated

for vertical and horizontal patterns respectively.

The patterns are designed as follows

I(i, t) = [cos(2π · (i+ 10) · t) + 1] · 120 (3.5)

where each pixel position on the patterns has an intensity I(i, t), with variation of

i and t. Here, t is the “time” index, and ranges from 0 to 1, with an interval of

1/675, denoting 675 images in total. For the horizontal patterns, the intensities are

the same for the same row, and different for different rows. In Eq. 3.5, i denotes

the row index, and varies from 1 to 320, which means that the frequencies increases

from the top row to the bottom row, and from 11Hz to 330Hz. For the vertical

patterns, it is very similar.

Since every object has a different volume, and sometimes when the object is very

big, or has very detailed surface structures that need to be accurately reconstructed,

the patterns must be redesigned with a higher resolution. Luckily, it is quite easy to

increase the resolution of the pattern and cover a larger area using a similar equation

as Eq. 3.5. In the experiments, projecting patterns with a resolution of 320× 320 is

found to be sufficient for objects reconstructed.

Fig. 3.6 illustrates some examples of the patterns.
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(a) t=4 (b) t=55

(c) t=4 (d) t=55

Figure 3.6: Examples of the patterns designed.

Preprocessing

After using the projector to cast these patterns onto an object, a series of images can

be acquired. But before analyzing the captured images, a preprocessing technique

needs to be done to simplify the following steps.

In order to approximately define the regions of interest, a freely distributed

software called GIMP2.8 [77] is used to extract the alpha matte. Here, the alpha

matte is only used to define the region of the foreground object, so the alpha matte

is a binary image. The region of interest is manually selected using the software, and

the foreground pixels are assigned to have an intensity of 255 and the background

pixels are set to be 0, as shown in Fig. 3.7.

Analyzing the captured images

After locating the region of interest, the captured images can be efficiently analyzed.

The key piece of information to utilize frequency is to convert a stack of im-
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(a) (b)

Figure 3.7: (a) The original image of a scene, (b) The binary alpha matte.

ages into the frequency domain. Intuitively, since a stack of patterns are projected

onto the object one after another, the patterns can be seen along the “time-axis.”

According to the frequency analysis description in section 3.2.2, for a certain pixel

position of the patterns, the intensity varies periodically. Hence, when “seen” along

the time-axis, these intensities can form a signal in the time domain, and the magni-

tudes of the discrete signal are the intensities. When transformed into the frequency

domain, each signal has only one frequency, which uniquely defines its position (row

or column) in the pattern.

Similarly to the frequency analysis of the patterns, the sequentially captured

images can also be transformed into the frequency domain, except that the sig-

nal normally contains more than one frequencies, indicating that the pixel receives

contributions from different positions of the patterns.

The challenge is to come up with a good data structure to “store” these captured

images to reduce the analysis time. Fig. 3.8 is an illustration of our data structure

for the captured images.
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Figure 3.8: An illustration of our data structure for the captured images.

In Fig. 3.8, the left one shows that the captured images are “read” in one at

a time and stored in a 3D matrix. Then, for each pixel position from left to right,

from top to bottom, the intensity is read along the time-axis, and stored into the

data structure shown on the right. In this way, the Discrete Fourier Transform can

be applied one row at a time.

After storing these captured images, the whole data storage can be scanned

and the DFT is conducted. For each pixel, the first step is to determine whether

it is within the region of interest. The second step is to use the Discrete Fourier

Transform to transform the signal from the time domain into the frequency domain.

Then the local maxima of the power spectrum are found in order to use the

corresponding frequencies to locate the positions from which the original light paths

originate. The reason to find the local maxima is because these peaks all have most

of the contributions to the converged point and so they are all candidates of the

first-order reflections. The reason of not choosing only the global maximum as the

first-order reflection is because most of the times, since the object is transparent,

the major portion of the light gets transmitted into the object, and only a small

portion is reflected directly from the surface. Hence, the reflected light does not

contain much energy, and so in the corresponding power spectrum, it is not the

highest globally. However, comparing to the power spectra of other pixels in the

neighbourhood, the first-order reflection can be at least locally maximum.

This is one of the main differences of the proposed method from the frequency-

based environment matting method. In Zhu and Yang’s method [4], they use a

threshold to choose the components. If the threshold is very tight, they will only
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choose frequencies with high energy. Since the monitor is used as the backdrop,

a higher energy indicates a higher contribution, and the positions that give more

contributions have a major effects to the results. However, for the proposed method,

since the goal is to do 3D reconstruction of transparent and specular objects, the

key is to find the correct correspondences, especially the correct correspondences of

first-order reflections. Since the highest portion of contribution to the final image

does not indicate that it is the first-order reflection. However, a first-order reflection

is at least locally maximum, instead of a global maximum, of the power spectrum

selected.

After finding the local maxima of the power spectrum, their frequencies can be

correspondingly acquired. These frequencies uniquely locate a group of potential

correspondences on the pattern. With the projector center, and the positions just

found, the directions of the outgoing light from the projector can be computed. With

the camera center, and the converged pixel, the direction of the incoming light to

the camera can be obtained. Using linear triangulation [78, 79], the intersections of

these light paths can be computed. These intersections are candidates for the point

on the surface of the object, but only one of them is the correct point, which is

the first-order reflection point. We select the first-order reflection point from these

candidate points using a new labelling procedure.

3.2.3 Labelling

Fig. 3.9 is an illustration of multiple intersections. The converged pixel P0 and the

camera center C can define only one direction,~i, while the projector center Pj with

the contributing pixels in the pattern can determine multiple directions, ~o1, ~o2, ~o3

and ~o4. These directions intersect along the incoming direction at P1, P2, P3, and

P4.

Among these intersections, intuitively the one nearest to the camera center

should be the first-order reflection point. However, there is an exceptional case.

Although P4 is nearer to the camera than P1, it is not the first-order reflection

point. Because as shown in Fig. 3.9, the direction ~o4 first refracts into the object,

and after a few refractions and reflections, a part of the light gets into the camera

through pixel P0. However, in reality, this scenario is quite rare, and even when

it happens, the contribution is so small that it does not satisfy the local maxi-
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Figure 3.9: An illustration of multiple intersections.

mum selection criterion. Hence, normally this point P4 is not chosen as one of the

candidates.

Now that the conclusion is drawn that the first-order reflection point should be

the nearest one to the camera center, a labelling method is used to select the point

among all the candidates. We use a method inspired by Chen et al. [80] to do

labelling.

Energy function

Generally, a labelling method is to label all the candidates, define an energy function

based on their properties, and choose the labelling that can minimize the energy

cost. Similar to [80], the energy function is defined based on Markov Random Field,

also known as MRF, in
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E(fp) =
∑

p∈P

Dp(fp) +
∑

{p,q}∈N

Vp,q(fp, fq), (3.6)

where p is the pixel within the region of interest in the captured image, fp a label of

pixel p, and fp ∈ L, where L denotes the label space. Dp(fp) denotes the data term,

showing the cost of assigning label fp to the pixel p. P is the pixel space of region

of interest. N denotes the neighbor pixels of pixel p. Vp,q(fp, fq) is the smoothness

term, denoting the cost of assigning fp to pixel p and assigning fq to pixel q, which

is the neighbor of pixel p. The details of the data term and the smoothness term

are described below.

Data term

The data term is illustrated by the distance from the triangulated point to the cam-

era center. Since the first-order reflection point is the closest triangulated point to

the camera center, the data term illustrates this property. In the proposed method,

the triangulation is first conducted and the intersections are obtained as candidates

for the first-order reflection point. Then, since the 3D coordinates of intersections

are in the camera coordinate system, it is easy to calculate the Euclidean distance

from each intersection to the camera using

Dp(fp) =

√

√

√

√

3
∑

i=1

(fpi − Ci)2, (3.7)

where fpi denotes the ith value of the 3D coordinates of the pixel p, after assigning

the label fp to it. Ci is the ith value of the 3D coordinates of the camera center.

Since the camera center is the origin of the coordinate system, the coordinates of the

camera center are actually (0,0,0). The data term for each pair of correspondences

are calculated.

Smoothness term

In Eq. 3.6, Vp,q(fp, fq) represents the smoothness term. Without loss of generality,

it is assumed that the reconstructed object does not have sudden changes in shape,

so that the smoothness property can be used. The 8-neighbors of the pixel on

the captured image are chosen, the smoothness term of the pixel with each of its

neighbor is calculated using
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Vp,q(fp, fq) = |Dp(fp)−Dq(fq)|, (3.8)

whereDp(fp) is the data term of label fp, denoting the distance from the triangulated

point to the camera center. The data term Dq(fq) is denoted for pixel q in a similar

way. The pixel q is one of the neighbors of the pixel p in the captured image.

Minimizing the energy function

The energy function is minimized using the classical graph cuts. According to the

results from [81], the expansion move algorithm introduced by [82] gives faster and

better results than other methods in general. Hence, specifically, the expansion

move algorithm of graph cuts is chosen to optimize the energy function.

3.2.4 Post-processing

After labelling, the first-order reflection points can be computed and assembled to

reconstruct the surface of the object. However, normally the camera has a higher

resolution than the projector, and the farther the pattern is cast, the wider each

pixel from the pattern covers. Hence, we not only need to find correspondences from

the camera to the projector, but also need to do the “reverse.”

The previous steps have chosen the correspondence from the pixel in the pattern

to the pixel in the captured image, but because of the resolution difference, the “one-

to-one” correspondence is actually “many-to-one.” In order to get a finer result, the

“reverse” must be done to find the “one-to-one” correspondence from the camera

plane to the projector plane. The implementation is quite easy. We just need to

find, for each pixel in the pattern, which pixel in the camera plane corresponds to it

and use the average position as the correct correspondence of the captured image.

This strategy has another advantage. After the frequency analysis, all the corre-

spondences are integers, because they denote the pixel positions on the patterns and

images. But in reality, one pixel may not be accurate to represent an exact 3D point

on the object. If the pixel on the pattern covers more than one point on the surface

of the object, and we use this pixel to do the triangulation, we may have the same

convergence point for all of these points, and that will be inaccurate. Hence, we

need floating point numbers to increase the accuracy. After the “reverse” step, the

correspondences in the camera image are floating point numbers, which are more
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accurate.

There are more strategies to do post-processing. The basic idea is to get result

from previous steps first, observe it, and find a way to refine the result.

3.2.5 Reconstructing the surface

Since the first-order reflection points are denoted as 3D coordinates, we can use the

open source system called MeshLab [83] to reconstruct the surface of an object. The

input for MeshLab is point cloud. Since our result is in the format of point cloud,

we can use MeshLab to open it and transform it into a mesh if necessary.

3.3 Summary

In this section, a novel method is introduced to do the frequency-based 3D re-

construction for transparent and specular objects. In brief, the frequency-based

environment matting method is adapted to identify the correspondences between

pixels in the captured images and pixels in the patterns. Then, the linear triangu-

lation is conducted to find the convergence points from the correspondences. Since

only one of these points can be the first-order reflection point, a labelling method is

introduced to select the real one. For labelling, the Markov Random Field is used

to define the data term and the smoothness term, based on the properties of the

object and the first-order reflection. Then the expansion move algorithm of graph

cuts is applied to minimize the energy function of the MRF, and obtain the nearest

one to the camera center as the first-order reflection point. Since the projector and

the camera have different resolutions, and also during the experiment there may

be some noise or error, a few post-processing techniques are proposed to refine the

result. In the end, MeshLab is used to illustrate the surface of the object.
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Chapter 4

Experiments and Results

In this chapter, the experimental steps are summarized and a few detailed techniques

are discussed to solve some problems that are encountered during experiments. The

experimental results are presented using different objects.

4.1 Design of experiments

The experimental setup is shown in Fig. 3.3, which is quite similar to the traditional

setup of the structured light method.

The experimental steps are quite easy. The first step is to do calibration of the

camera and the projector. We used the method introduced by Falcao et al. [84].

Their method is an extension for Bouguet’s Camera Calibration Toolbox [85]. First,

the traditional camera calibration using Bouguet’s Camera Calibration Toolbox is

conducted. Second, the projector calibration is carried out by treating the projector

as an inverse camera. After calibration, an image with a solid white pattern is

captured and the alpha matte is extracted manually. Then we sequentially project

horizontal and vertical patterns onto the object and capture the images with a

calibrated camera. With the acquired images, we use the Discrete Fourier Transform

to convert the pixel signal into the frequency domain. Then, we find the dominant

frequencies using some thresholds. The frequencies correspond to pixel positions on

the pattern. In this way, we find correspondences between pixels in the captured

images and pixels in the projected patterns. After finding the correspondences, we

use triangulation to find candidate points for first-order reflection. In order to select

the correct first-order reflection points, we use the distance from the point to the

camera center as the data term in the Markov Random Field, and use an extension

of the graph cut algorithm to minimize the energy function. The selected points
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after optimization are the first-order reflection points on the surface of the object.

Because of the differences in resolution between the camera and the projector,

some post-processing techniques are used to refine the experimental results. One

technique is to use a “window”, and get the average of the z values. If the z value

of one pixel within this window is far from the average, we regard it as an outlier

and remove it. Here, a threshold will be helpful. The reason to use only the z value,

instead of using the distance to the camera center, is because the pixels within a

small area have similar z values, and using the z value is much simpler than using the

distance value. However, when the z value does not work, we can use the distance

instead. Another technique to do post-processing is to find the correspondences

from the projector to the camera, and repeat the triangulation again. In this way,

only one corresponding point is acquired for each pixel, and this point is regarded

as the first-order reflection point.

After getting the surface points in the form of a point cloud, the surface of the

object can be reconstructed using MeshLab.

To sum up, both the capturing procedure and the image processing procedure

are accordingly described in Algorithm 1 and 2.

Algorithm 1 Pseudocode for Image Capturing Procedure

1: /*—–Images for Calibration—–*/
2: Project the checkerboard pattern onto the right side of a white board with

another checkerboard printed on its left side
3: Move the white board to different positions and at each position capture the

projected pattern along with the planar pattern on the white board at the same
time

4: /*—–Images for Preprocessing—–*/
5: Display a solid white pattern onto the object and capture the scene

6: /*—–Frequency-Based Patterns—–*/
7: Display the sequence of horizontal patterns onto the object, and for each pattern

capture the image as Hi

8: Display the sequence of vertical patterns onto the object, and for each pattern
capture the image as Vi
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Algorithm 2 Pseudocode for Image Analyzing Procedure

1: /*—–Calibration—–*/
2: Use Bouguet’s Camera Calibration Toolbox to do the camera calibration
3: Use Falcao et al.’s method to do the projector calibration

4: /*—–Preprocessing—–*/
5: Use GIMP2.8 to manually extract the regions of interest from the captured

image

6: /*—–Frequency Analysis—–*/
7: Read in all the Hi and Vi, store them in the form of a 3D matrix, and transform

it into matrix Mh and Mv, so that each row of the new matrix is a 1D array
containing the intensities of a certain pixel position through captured images

8: for every image pixel position C(x, y) do

9: if α(x, y) 6= 0 then

10: Perform the Discrete Fourier Transform to obtain Mh(x, y) and Mv(x, y)
11: Use horizontal and vertical thresholds to select dominant local maximum

ones, and find their corresponding frequencies
12: For each frequency, locate the corresponding pixel on the patterns
13: Do the linear triangulation, so that for each image pixel, find multiple

candidates on the object
14: end if

15: end for

16: /*—–Labelling—–*/
17: Use the triangulation result to get the distances from points to the camera

center, and denote them as data terms
18: Define the energy function based on the Markov Random Field formulation
19: Use the expansion move algorithm of Graph Cuts to minimize the energy func-

tion and find the optimal one as the chosen label for the first-order reflection
point

20: /*—–Post-Processing—–*/
21: Use the z value of the 3D point, and use a shifting window to refine the results

(see Section 3.2.4)
22: Convert the correspondences from “image to projector” to “projector to image”
23: Calculate the mean position of the pixels in image from the corresponding pixel

in projector
24: Do triangulation again for the new one-to-one correspondences

25: /*—–Reconstructing the Surface—–*/
26: Use the point clouds and MeshLab to reconstruct the surface of the object

There are some techniques that need to be mentioned here in order to get good

experimental results. The first one is that the relative positions between the camera,

the projector and the object need to be adjusted before projecting the solid white

pattern and the frequency-based patterns to the object. Since the method uses the
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reflection from the object to reconstruct its surface, and normally the reflection is

not strong or is interfered by other light effects, it is important for the camera to

receive as much incoming reflected light from the object as possible. For different

objects, because their shapes and surface properties vary, different relative positions

are required accordingly.

Another technique is that some thresholds are needed in order to select the

dominant frequencies. As stated in Chapter 3, the local maxima of the frequencies

denote the candidates for the first-order reflection points. However, because of the

noise and errors when capturing the images, many local maxima are actually not the

results of the reflections from different layers of the object, especially the frequencies

with very low energy, as shown in Fig. 4.1. Hence, it is important to use thresholds

to select the valid candidates. Take images with horizontal patterns as an example,

after using the Discrete Fourier Transform to convert these captured images into

the frequency domain, for each pixel in the captured images, multiple frequencies

that are local maxima can be obtained, for example, in Fig. 4.1. Because of the

symmetry property of the transform, only the first half of the frequencies, i.e. the

lower frequencies shown in Fig. 4.1, are valid for the candidate selection. Intuitively,

there are two major local maxima. Additionally, there are more local maxima with

very low energy and they are not the valid candidates. Hence, a threshold is used

to select the local maxima with a relatively higher energy. The technique to choose

the threshold is quite simple. We can randomly choose a pixel in the region of

interest from the captured images, and calculate its spectrum. Normally the first 10

local maxima can ensure to include the frequency corresponding to the first-order

reflection point. Based on the distribution of the energy of its frequencies, we can

estimate a value for the threshold that includes the first 10 local maxima. Using

the result after the frequency analysis, but before the labelling procedure, to do

the linear triangulation. If the threshold does not include the whole surface of the

reconstructed region, the value of the threshold is reduced. Since the images are

captured with horizontal and vertical patterns, two thresholds corresponding to the

two patterns are needed.

4.2 Experiments

In this section, detailed experimental results with different objects are illustrated.
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Figure 4.1: An example of frequency analysis for the trophy with multiple faces at
pixel (i=432, j=321).

As a comparison, the classical Gray code method is used to do 3D reconstruction

and the results are accordingly compared with those using the proposed method.

The reason to use the Gray code method is because it has been widely used as

a comparison with other 3D reconstruction methods using structured light. The

results of using the Gray code method are quite good for opaque objects. Another

comparison is with the ground truth. To obtain the ground truth of a transparent

object, a cosmetic face powder is mixed with water as “paint” and gently brushed

onto the object. After a few minutes, the paint will dry and the Gray code method is

used to reconstruct the “opaque” object and the result is used as the ground truth.

The reason to use cosmetic powder is that the paint needs to be opaque and can be

easily washed off, so that the experiments can be repeated. In addition, it should

have no chemical reaction with the object. However, when the object has detailed

structures, the paint may occlude such features, in which case, only the picture of

the object is used as the ground truth for qualitative evaluation.

In order to embed the Gray code method into the experiments to get results

for comparison and the ground truth results, and avoid disturbing the experimental
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setup, the whole experiment is designed as follows.

1. Adjust the setup so that the camera can receive as much reflected light as

possible.

2. Do the camera-projector calibration.

3. Put the object in the scene and adjust its, and only its, position, so that

the camera can receive enough reflection from the object. Do not touch the

camera, nor the projector, since they have been calibrated.

4. Project the solid white pattern to the scene with the object and capture the

image for alpha matte.

5. Adjust the shutter speed of the camera in FlyCap2, and project the frequency-

based patterns onto the object. Capture the scene with the camera simulta-

neously with each horizontal pattern and each vertical pattern.

6. Use Gray code patterns and get 20 vertical images and 20 horizontal images.

7. Use the solid black pattern and the solid white pattern to get reference images

for the Gray code method.

8. Brush the paint onto the object gently, without moving the object.

9. Use Gray code patterns to get 40 images of the scene, and use the black and

white patterns to get reference images.

10. Analyze all three sets of images with corresponding methods and use MeshLab

to illustrate the results.

4.2.1 Qualitative results

The objects used for the experiments include a star trophy, a cone trophy with

multiple faces, a big vase, a small vase, an anisotropic metal cup, a plastic cup with

two layers and a plastic bottle with green dishwashing liquid in it.
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Star trophy

(a) A star trophy (b) The reconstructed region

Figure 4.2: The star trophy and its reconstructed region.

As shown in Fig. 4.2a and Fig. 4.2b, the star trophy is solid and totally transparent

with no inner structure. When the patterns are projected to the object, most of the

light goes through it and gets reflected by the background. The reflection from the

surface of the object is interfered by the reflection from the back of a surface and also

by the reflection from the background. In addition, because the object has sharp

edges, the highlight is strong and cannot be avoided, and also can interfere with

selecting candidates for the first-order reflection. The traditional methods using

structured light fail because of the highly optical interactions, shown in Fig. 4.13.

However, using the proposed method, good results can be acquired (Fig. 4.11).

Fig. 4.11 shows the reconstruction results using the proposed method, compared

with the ground truth. As shown in Fig. 4.11(a)(b)(c), the surface of the object is

reconstructed smoothly. However, there are a few small holes in the results, such

as the lower right one at the “corner” of the object. The reason for these flaws is

because of the highlight. The proposed method fails when the highlight is strong.

For pixels with strong highlight, their intensities have little variations. Hence, when

transform the series of intensities into the frequency domain, the energy of the

corresponding frequency can be as low as noise. Hence, the pixels in the highlight

region may get wrong or no correspondence.

Fig. 4.12 shows the results after using frequency analysis of the proposed method,

but before the labelling procedure. Multiple “surface” layers are observed, which

correspond to the candidates for the first-order reflection points. After doing linear

triangulation with these correspondences, wrongly reconstructed surfaces, as well as
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the correct surface, are obtained. Fig. 4.12 shows the importance of the labelling

procedure. Noticing that in Fig. 4.12c, only the upper left part of the object was

wrongly reconstructed and has multiple layers. The reason is that the first-order

reflection from this part of the object is highly interfered by the reflection from

the background. However, even with these wrong initial candidates, the correct

correspondences are also selected using the labelling procedure. Hence, this result

shows that using the labelling method, the first-order reflection can be detected and

the correct surface can be reconstructed (Fig. 4.11).

Fig. 4.13 shows the reconstruction results using the structured light method with

the Gray code patterns. As discussed before, because of the optical interactions,

the first-order reflection is difficult to detect. Since the Gray code method uses the

intensities directly in the time domain, many errors occurred during the correspon-

dence process. The upper left part of the object is wrongly reconstructed, which

illustrates the wrong correspondences. Comparing with the ground truth shown in

Fig. 4.11(d)(e)(f), the proposed method can acquire much better results than the

Gray code method.

Cone trophy with multiple faces

(a) A cone trophy with multiple faces (b) The reconstructed region

Figure 4.3: The cone trophy with multiple faces and its reconstructed region.

Fig. 4.3b shows the area of the object that is reconstructed, which is the largest

face of the object. Since the top face is tilted, it refracts a large amount of light

into the object, and this portion of light, together with other lights, interacts with

the first-order reflection from the largest face, making it quite difficult to do 3D

reconstruction using the Gray code method. Shown in Fig. 4.16, the big hole in
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the middle is where the refraction from the top face refracts out of the object.

Although the proposed method is also affected by the strong refractions, shown in

Fig. 4.14(a)(b)(c), the new method turns out to be much better than directly using

the intensity. In Fig. 4.14(a)(b)(c), the holes are much smaller and the surface looks

much smoother than that using the Gray code method (Fig. 4.16).

Similar to the results of the star trophy, the frequency analysis results (Fig.

4.15) before the labelling procedure also show multiple layers of “surfaces,” which

are also because of the multiple candidates for the triangulation. Using labelling,

the first-order reflection points can be mostly acquired. Although for some parts, a

few holes can be observed, the results of reconstruction using the proposed method

are better than that using the Gray code method.

Big vase

Figure 4.4: The big vase and its reconstructed region (i.e. the ground truth).

The big vase has decorative bamboos and leaves patterns engraved all around its

surface, and these detailed structures have an active interaction with light. Strong

highlights from these structures can be observed. Because of the complex surface

structures, it is very hard to find an appropriate setup so that the camera can

receive most of the surface reflections. Hence, the lack of captured reflection is a

big challenge for the 3D reconstruction of the big vase.

Fig. 4.4 shows the big vase and its reconstructed region. Since the object has a

detailed surface structure, when using the cosmetic powder mixed with water and

brushing the “paint” onto the surface, the details are covered. Hence, the image

captured by the camera is used as the ground truth for this object. Fig. 4.17 shows
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the results using the proposed method. Although there are many holes because of

the lack of the received reflections and of the highlights, the features of bamboo and

leaves can still be observed. Although the proposed method did not reconstruct

the part around the protrusions, it did acquire some details of the patterns. Fig.

4.18 shows the results before labelling. The highlights introduced many wrong

correspondences, leading the linear triangulation results to be poor. For the Gray

code results shown in Fig. 4.19, other than the trunk of the bamboo, it fails in

reconstructing the surface.

Small vase

Figure 4.5: The small vase and its reconstructed region (i.e. the ground truth).

Fig. 4.5 shows the small vase and its reconstructed region. This small vase has

a surface like a pineapple, and every protrusion is similar to each other except for

the size. Not only highlights are easily observed, there are also dispersions, complex

reflections and complex refractions. The light paths are untractable. Using the Gray
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code method will totally fail for this object, as shown in Fig. 4.22. Because of the

complex interactions, it is difficult to acquire light-paths and to use refraction-based

methods. Because the refraction, reflection and dispersion will highly affect the

first-order reflection, making its intensity indistinguishable from other light effects.

The traditional reflection-based methods designed specifically for opaque objects,

such as the Gray code method, will most likely fail.

However, though the intensities are hard to be detected, let alone be transformed

into frequency domain, the first-order reflections invisible to the human eye can ac-

tually be transformed and the frequencies are more distinct than their corresponding

intensities. Fig. 4.20 shows the result using the proposed method. A lot of detailed

structures are reconstructed. Although there are still wrong points because of the

highlights, most of the reconstructed 3D points illustrate the expected features of

the surface of the object, such as the “pineapple” texture.

Metal cup

Figure 4.6: The metal cup and its reconstructed region (i.e. the ground truth).

The proposed method has a large range of applicable objects. Not only for tradi-

tional opaque objects, and transparent objects, but also for specular objects with

anisotropic surfaces, the method can produce quite acceptable results. Reconstruct-

ing objects with anisotropic surface is very challenging, because methods using nor-

mal Lambertian reflectance or specular reflections tend to fail on anisotropic sur-

faces. Fig. 4.6 shows a metal cup with an anisotropic surface and its reconstructed

region. Fig. 4.25 shows the results using the Gray code method, we can easily

observe the holes in the middle and at the sides. That is because the surface reflects
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light anisotropically, and the intensities of these reflections are wrongly interpreted

when finding the correspondences. That is the reason why in Fig. 4.25c, wrongly

triangulated points can be observed in the front and at the back of the reconstruct-

ed surface. Fig. 4.23 shows the reconstructed results using the proposed method.

Comparing to the results of the Gray code method, our results have much smaller

holes and smoother reconstructed surface. Fig. 4.24 shows the results before la-

belling, with all candidates for fist-order reflection. Using the labelling procedure,

most of the incorrect candidates can be detected and eliminated.

Plastic cup

Figure 4.7: The plastic cup with two layers and its reconstructed region.

The plastic cup shown in Fig. 4.7 is quite challenging to be reconstructed because

it has two layers. The second layer (the inner one) has strong reflections, and

the reflections are quite close to that from the first layer. Since the frequencies

after the Discrete Fourier Transformation are also quite similar, it is very hard

to detect the real first-order reflections. The results shown in Fig. 4.26 is not

very good. Although the reconstructed surface is smooth and the detailed “wave”

of the surface is preserved, big holes can be observed. Comparing with the results

before the labelling procedure (Fig. 4.30), the big holes come from wrongly detected

correspondences. However, comparing to Fig. 4.31, the proposed method has a much

better result.
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Bottle with dishwashing liquid

Figure 4.8: The bottle with dishwashing liquid and its reconstructed region.

Fig. 4.8 shows a plastic bottle with a green dishwashing liquid inside. The dish-

washing liquid is transparent and since it has a different refraction index from the

plastic bottle, refraction and reflection happen at the interface between the bottle

and the dishwashing liquid. Fig. 4.9 shows the reconstruction results using the pro-

posed method. The holes in the middle indicate the points there received too strong

highlight to be reconstructed. The holes on both sides of the object are due to the

high curvature on the surface and the camera did not receive enough reflections from

this part. The proposed method has a better result than that using the Gray code

method, as shown in Fig. 4.31.

4.2.2 Quantitative results

For the quantitative results, two very challenging objects are used. The first one

is the star trophy, as shown in Fig. 4.2. The second one is the cone trophy (Fig.

4.3), with multiple faces. The results are compared with the ground truth. As

a comparison, the results of the Gray code method are also compared with the

ground truth. According to Chapter 3, the pixels in the patterns correspond to

the averaged correspondences, which are in floating point format, in the captured

image. Hence, the corresponding pixels in the captured images are compared to the

same corresponding points in the patterns of our method and in the ground truth.

Eq. 4.1 defines the root mean square (RMS) error of the correspondences of

the results of the frequency-based reconstruction method. (x, y) denotes the point

in the patterns that has a corresponding pixel in the captured images, and the
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(a) Front (b) Left side

(c) Top

Figure 4.9: Reconstruction results for the plastic bottle with a green dishwashing
liquid using our method.
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(a) Front (b) Left side

(c) Top

Figure 4.10: Ground truth for the plastic bottle with a green dishwashing liquid.
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corresponding pixel is in floating point format and is within the region of interest.

CF (x, y) denotes the pixel in the captured images, which corresponds to (x, y) in

the patterns using the frequency-based reconstruction method. CT (x, y) denotes

the pixel in the captured image of the ground truth, which corresponds to (x, y)

in the patterns. NF is the number of the points (x, y) which have corresponding

pixels within the region of interest in the captured images. The root mean square

error of correspondences for the Gray code is similar to that of the frequency-based

reconstruction method and is defined in Eq. 4.2. CG(x, y) denotes the corresponding

pixel in the captured images acquired by the Gray code method, which is also in

the region of interest. NG is similar to NF , which is the number of the points (x, y)

which have corresponding pixels within the region of interest in the captured images

using the Gray code method.

According to Eq. 4.1 and Eq. 4.2, only corresponding pixels within the region of

interest are compared to the ground truth. For pixels that are outside of the region

of interest, since there is no corresponding pixel in the ground truth to be compared

with, they are simply eliminated from the comparison.

In addition to the RMS errors, another way to illustrate the quantitative results is

shown in Eq. 4.3 and Eq. 4.4, which are used to show the “score” of the frequency-

based method and the Gray code method. In Eq. 4.3, NF means the number of

the corresponding pixels within the region of interest using the frequency-based

method. Nall denotes the total number of the corresponding pixels within the region

of interest of the ground truth. NF

Nall

denotes the fraction of the correspondences

within the region of interest to be reconstructed by the frequency-based method.

The bigger the value of NF

Nall

, the higher the reconstructed resolution of the results.

CF RMS error denotes the RMS error of the correspondences within the region of

interest using the frequency-based method compared with that of the ground truth.

The smaller the value of CF RMS error, the better the result. The combination of

NF

Nall

and CF RMS error, which is ScoreF correspondences, illustrates the results of the

correspondences using our method compared with that of the ground truth, with

consideration of the resolution. The higher the value of ScoreF correspondences, the

better the result. Eq. 4.4 shows the results of the Gray code method compared with

ground truth, with consideration of the resolution of the correspondences.
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CF RMS error =

√

√

√

√

1

NF

x=1024,y=768
∑

x=1,y=1

(

CF (x, y)− CT (x, y)
)2

(4.1)

CG RMS error =

√

√

√

√

1

NG

x=1024,y=768
∑

x=1,y=1

(

CG(x, y)− CT (x, y)
)2

(4.2)

ScoreF correspondences =

NF

Nall

CF RMS error

(4.3)

ScoreG correspondences =

NG

Nall

CG RMS error
(4.4)

In addition to the comparison of the correspondences, the distances from the

reconstructed points to the camera center are also compared to illustrate the results

of the frequency-based method and the Gray code method.

Eq. 4.5 defines the root mean square error of the distances for the results of

the frequency-based reconstruction method. (x, y) denotes the point in the pattern

that has a corresponding pixel within the region of interest in the captured image.

DF (x, y) denotes the distance from the reconstructed point on the surface to the

camera center using the frequency-based reconstruction method. DT (x, y) denotes

the distance from the reconstructed point of the ground truth on the surface to

the camera center. NF is the number of the compared distances. The RMS error

of the distances for the results of the Gray code method is similar to that of the

new method and is defined in Eq. 4.6. DG(x, y) denotes the distance acquired by

the Gray code method. NG denotes the number of reconstructed points that have

corresponding pixels within the region of interest using the Gray code method.

Eq. 4.7 and Eq. 4.8 are similar to Eq. 4.3 and Eq. 4.4.

DF RMS error =

√

√

√

√

1

NF

x=1024,y=768
∑

x=1,y=1

(

DF (x, y)−DT (x, y)
)2

(4.5)

DG RMS error =

√

√

√

√

1

NG

x=1024,y=768
∑

x=1,y=1

(

DG(x, y)−DT (x, y)
)2

(4.6)

ScoreF distances =

NF

Nall

DF RMS error
(4.7)
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ScoreG distances =

NG

Nall

DG RMS error

(4.8)

Table 4.1 shows the comparison results of the star trophy reconstruction results

using the frequency-based reconstruction method and the Gray code method with

that of the ground truth. Although the Gray code method has a higher resolution

of the reconstruction result, it has a much higher RMS error than that of using

the frequency-based method. For the frequency-based method, the RMS error is

not as small as expected. The reason is because for the edge of the object, strong

highlight makes the reconstruction incorrect for this part. For the holes with no 3D

information in the reconstruction results, no comparison is made and these holes are

neglected. For the wrongly reconstructed points using the Gray code method, since

the ground truth does not have corresponding pixels for them to compare with, these

corresponding pixels are also neglected. The score based on the correspondences and

the score based on the distances show that the results of our method are much better

than that of the Gray code method.

Table 4.1: The comparison results for star trophy reconstruction using the frequency-
based reconstruction method and the Gray code method

Frequency-based
method

Gray code method

Number of reconstructed
points within the region of
interest

15580 16301

RMS error of the correspon-
dences

4.0570 17.0101

Score based on correspon-
dences

0.1130 0.0282

RMS error of the dis-
tances from the reconstruct-
ed points to the camera cen-
ter

102.1415 856.9114

Score based on distances 0.0045 5.5991× 10−4

Table 4.2 shows the quantitative results of the cone trophy reconstruction using

the frequency-based method and the Gray code method compared with the ground

truth. For the Gray code method, only a small part in the middle failed to do

the reconstruction. Hence, the RMS error of the correspondences and the distances

69



are quite close to the results of the frequency-based method. Noticing that the

new method reconstructs more points than the Gray code method for this object.

The strategies to handle the holes and errors of the reconstruction are the same

as for the star trophy reconstruction results. The score based on correspondences

and the score based on the distances show that the reconstruction results of the

frequency-based method are better than that of the Gray code method.

Table 4.2: The comparison results for cone trophy reconstruction using the
frequency-based reconstruction method and the Gray code method

Frequency-based
method

Gray code method

Number of reconstructed
points

26799 21900

The RMS error of the corre-
spondences

3.2900 4.0794

Score based on correspon-
dences

0.2683 0.1768

The RMS error of the dis-
tances from the reconstruct-
ed points to the camera cen-
ter

45.9847 43.2997

Score based on distances 0.0192 0.0167

4.3 Conclusions

In this chapter, the setup and basic steps of frequency-based 3D reconstruction

method of transparent and specular objects are presented. The algorithms are dis-

cussed and a 10-step outline is designed for doing the experiments using the proposed

method, the compared method, and the ground truth. For the experiments, seven

objects are reconstructed. Although some results are not as good as expected, the

proposed method generally has better results than that using the Gray code method.

The frequency-based reconstruction method has the following advantages.

1. It has a wide range of applicable objects. Since the proposed method is

reflection-based, it can be used generally for all opaque objects, though it

is not the most efficient method. In addition, the method can reconstruct

not only Lambertian surfaces, but also some anisotropic surfaces, which has

seldom been achieved before. Most importantly, the proposed method can
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tackle the problem of optically active interaction of object with light, and re-

construct the surface of transparent objects with complex interior and exterior

structures.

2. This method is quite robust to multiple reflections and refractions, and pre-

serves detailed structures of the surface. No matter how complex the reflec-

tions and refractions may be, in most cases, the correct correspondences can

be acquired using frequency analysis. With the labelling procedure, finding

the first-order reflection is quite easy.

3. The patterns used are quite easy to generate, and can be adjusted to have

higher or lower resolution. Hence, the method can do the reconstruction both

effectively and efficiently.

4. The setup is quite simple and cheap. Only one normal camera and one or-

dinary projector are needed. There is no need to move the setup during the

experiment. The calibration method is quite straightforward. In addition,

since no poisonous material is needed to spray or paint on the object, the

experiment is quite safe for researchers and environmentally friendly.

The shortcomings of the method are itemized as follows.

1. Since the reflection from the object is used, the relative position between the

object, the camera and the projector is very important. In each experiment,

their positions need to be adjusted so that the camera can receive as much

reflection as possible.

2. Since the camera and the projector are on the same side of the object, the

reconstructed region is limited. When the object has self-obstructions, the

region will be smaller. Hence, a turntable is needed to reconstruct the whole

object.

3. When the interior has a strong reflection structure, and the structure is too

close to the surface of the object, this method will fail because it is difficult

to distinguish two close surfaces. However, if the interior structure is a little

farther from the surface, the correct outer surface can still be reconstructed.
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4. The frequency-based reconstruction method cannot fully tackle the problem

with highlights. Although the surface with detailed structures can still be

reconstructed to some extent, with interference of the highlights, the surface

is not fully reconstructed.

5. For the surface structure with high curvatures, this method can fail because

of the limitation for the received reflections.

(a) Front (b) Left side (c) Right side

(d) Front (e) Left side (f) Right side

Figure 4.11: Reconstruction results for star trophy using our method ((a)(b)(c)),
compared with the ground truth ((d)(e)(f)).
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(a) Front

(b) Right side

(c) Left side

Figure 4.12: Reconstruction results for star trophy using our method, before la-
belling.
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(a) Front

(b) Left side

Figure 4.13: Reconstruction results for star trophy using the Gray code method.
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(a) Front (b) Left side (c) Right side

(d) Front (e) Left side (f) Right side

Figure 4.14: Reconstruction results for cone trophy with multiple faces using our
method ((a)(b)(c)), compared with the ground truth ((d)(e)(f)).
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(a) Front

(b) Left side

(c) Right side

Figure 4.15: Reconstruction results for cone trophy with multiple faces using our
method, before labelling.
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(a) Front

(b) Left side

Figure 4.16: Reconstruction results for cone trophy with multiple faces using the
Gray code method.
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(a) Front (b) Top

(c) Right side

Figure 4.17: Reconstruction results for big vase using our method.
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(a) Front

(b) Left side

Figure 4.18: Reconstruction results for the big vase using our method, before la-
belling. The colour denotes the texture of the surface of the object.
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(a) Front

(b) Top

(c) Right side

Figure 4.19: Reconstruction results for big vase using the Gray code method.
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(a) Front (b) Left side (c) Right side

Figure 4.20: Reconstruction results for the small vase using our method.
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(a) Front

(b) Left side

(c) Top

Figure 4.21: Reconstruction results for the small vase using our method, before
labelling.
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(a) Front

(b) Left side

(c) Right side

Figure 4.22: Reconstruction results for the small vase using the Gray code method.
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(a) Front (b) Left side

(c) Top

Figure 4.23: Reconstruction results for the anisotropic metal cup using our method.
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(a) Front

(b) Left side

(c) Top

Figure 4.24: Reconstruction results for the anisotropic metal cup using our method,
before labelling.
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(a) Front

(b) Left side

(c) Top

Figure 4.25: Reconstruction results for the anisotropic metal cup using the Gray
code method.
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(a) Front (b) Left side

(c) Top

Figure 4.26: Reconstruction results for the plastic cup with two layers using our
method.

87



(a) Front (b) Left side

(c) Top

Figure 4.27: Ground truth for the plastic cup with two layers.
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(a) Front

(b) Left side

(c) Top

Figure 4.28: Reconstruction results for the plastic cup with two layers using our
method, before labelling.
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(a) Front (b) Left side (c) Right side

(d) Top

Figure 4.29: Reconstruction results for the plastic cup with two layers using the
Gray code method.
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(a) Front

(b) Left side

(c) Top

Figure 4.30: Reconstruction results for the plastic bottle with a green dishwashing
liquid using our method, before labelling.
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(a) Front

(b) Left side

(c) Top

Figure 4.31: Reconstruction results for the plastic bottle with a green dishwashing
liquid using the Gray code method.

92



Chapter 5

Conclusions and Future Work

5.1 Contributions and limitations

In this thesis, a frequency-based method to reconstruct the surface of transpar-

ent and specular objects is introduced. Using frequency analysis, complex light

composition can be uniquely decomposed without optimization and multiple cor-

respondences between the camera and the projector can be established. Because

the new method is based on frequency, which is only determined by the source that

creates it and will not be changed by noise, the method is quite robust to noise.

In order to select the correct first-order reflection correspondence from the can-

didates, a new labelling method is developed. The Markov Random Field is used

to define the energy function to be minimized based on the fact that the first-order

reflection point is the closest one to the camera center. The Graph Cuts method is

used to do the minimization.

A preprocessing technique is used in order to reduce the processing time. An

alpha matte is manually extracted by the user to define the region of interest. The

processing of the pixels is within this region. A few post processing techniques are

also used to improve the final results. Since one point in the patterns corresponds to

multiple pixels in the captured images, the average position of these corresponding

pixels are used as the corresponding pixel. This strategy makes the reconstructed

surface smoother and more accurate.

Some experiments with different objects are conducted and the results are p-

resented and analyzed. For some very challenging objects that previous methods

can hardly reconstruct, the new method produces encouraging results. However, for

objects with high curvatures or highlighted points, the results of the new method
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are not as good as expected.

The main contributions of the proposed frequency-based 3D reconstruction method

are summarized as follows:

1. The frequency-based environment matting method is modified for and applied

to 3D reconstruction. To our best knowledge, no existing method has ever

adapted the frequency-based environment matting method to do 3D recon-

struction of transparent and specular objects. The goal of environment mat-

ting is to find the correct correspondences between the pixels in the captured

images and the points in the displayed patterns, and also the percentages of

the contributions, whereas for the 3D reconstruction using structured light,

only the correspondences are needed. Hence, methods used to do matting can

be adapted to do 3D reconstruction.

2. A labelling method to choose the first-order reflection is introduced and this

method is very efficient. Since the transparent and specular objects have a

complex interaction with light, multiple correspondences between points in

the patterns and pixels in the captured images are established. Hence, when

using linear triangulation to find the triangulated points, only one point is

on the surface of the object and other points are not. The correct point is

called the first-order reflection point. Since the correct point is the closest one

to the camera center, when minimizing the distances from the triangulated

points to the camera center, the first-order reflection point can be selected.

With restrictions such as the closest point and the smoothness of the surface,

a labelling method is developed to find the first-order reflection points.

3. The proposed method can not only reconstruct surfaces of transparent object-

s, but also objects with some anisotropic surfaces. For transparent objects,

although it is quite challenging to do 3D reconstruction, given that the objects

have a complex interaction with light, with the help of the frequency-based

method, candidates of the first-order reflection points can be found. After

the labelling procedure, the surface of the object can be reconstructed. For

objects with anisotropic surfaces, since the reflection is anisotropic, it is dif-

ficult to use the traditional structured light method to do 3D reconstruction.

With frequency analysis, it is easy to find the correct correspondences and
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straightforward to locate the points on the surface of the objects.

The disadvantages of this new method are listed below.

1. This new method cannot fully deal with highlight. For the point on the surface

that receives highlight, the variation of the intensity is very small and the low

frequency is difficult to detect because of noise.

2. When the surface of the object has high curvatures, it is difficult to find a

good relative position between the camera, the projector and the object. In

this case, the camera does not receive enough reflection to find the correct

correspondences.

3. For the post processing, an average of the correspondences in the captured

images are calculated corresponding to a point in the patterns. This procedure

lowers the resolution of the reconstruction result. If the averages are not

calculated, one point in the patterns will correspond to multiple pixels in the

captured images, which makes the reconstructed surface rough and “thick.”

5.2 Recommendations for future work

3D reconstruction for transparent and specular objects is an unsettled and exciting

topic in recent years. Because of its wide applications, researchers have devoted

many years in order to come up with a more accurate and more efficient method.

The proposed method is based on frequency analysis and is quite robust to noise.

However, as discussed before, the problem with highlight cannot be fully solved. One

solution is to lower the intensity of the projected patterns to minimize the area of

the highlight. This solution may only minimize the highlight, but cannot get rid of

it. Another solution is to put the object on a turntable and capture it from different

angles. Since the position of the highlight depends on the normal of the point on

the surface and the direction of the incoming light, the highlighted point is changing

as the turntable rotates. Hence, the highlighted point can be reconstructed when it

is not highlighted.

In addition, since the proposed method uses a camera to capture multiple images,

it is not quite efficient. Normally, for 1350 images captured at a rate of 1.5 seconds

per image, it takes about 33 minutes to capture all the images. One solution is
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to use a camcorder as in [4] to largely reduce the acquisition time. A camcorder

has a capturing frequency of about 60Hz [86], which means that the camcorder

captures 60 images per second. Ideally when the projector can project a video with

a frequency of 60Hz, the total image capturing procedure can be only 1350

60
= 22.5

seconds, which is much faster than the proposed method.

For objects with high curvatures, one solution is to rotate the objects for a series

of angles and reconstruct the surface one portion at a time. Since the reflection

depends on the direction of the incoming light and the normal of the surface, when

it comes to surface with high curvatures, the reflected light may be weak when it

is received by the camera, making it is difficult to do 3D reconstruction. However,

when rotating the object, the reflected light can be received by the camera at an

appropriate angle. Using the reflected light at different angles, the surface with high

curvatures can be reconstructed.

Another possible future work is to extend the idea of finding the first-order reflec-

tions to finding the second-order reflections and so forth. The first-order reflection

points consist of the surface of the object. For transparent objects with multiple

layers, reconstructing the exterior surface is not enough for the whole structure. The

inner structures of the objects are also quite important. Since the inner layers can

also reflect the light, the correspondences between the pixels in the captured images

and the points in the projected patterns can also be established. After the linear

triangulation, the triangulated points are composed of candidates of the first-order

reflection points and points on other layers. One basic strategy to find the second

and higher order reflections is like peeling an onion. With the help of the labelling

procedure, the first-order reflections can be found by the new method. Then, these

first-order reflection points are removed from the candidates. After that, the remain-

ing candidates are used as the input to do the labelling procedure again. Since the

points in the first layer, i.e. the surface, are removed, the newly calculated points

by the labelling procedure actually denote the second layer of the object. This

procedure can be done iteratively and ideally multiple layers of the object can be

reconstructed step by step. However, this strategy assumes that the reflected light

from the inner layers are not refracted before the reflection or after the reflection.

When this condition is not met, it is difficult to find the correct correspondences to

reconstruct the inner layers.
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In the experiments proposed in this thesis, only seven objects are used to do

the reconstruction. Future work can include more objects. For the seven objects

reconstructed in the experiments, materials such as crystal, plastic, glass and metal

have been tried. Structures such as solid object with parallel surfaces, solid objects

with multiple faces, objects with complex surface structures, objects with double

layers, and objects with inner substances that have different refraction index have

also been reconstructed. Although for some of the objects, the reconstruction results

are not as good as expected, they are still better than the results of the classic Gray

code method. More objects can be included for future experiments, such as the

optical disk with anisotropic surface.
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