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Abstract

Cooperative system is a promising concept to improve thipeance of the com-
munication in wireless networks. This new paradigm of vassl communication
imposes new challenges to traditional problems such asresallocation. To

model the behaviors of selfish and autonomous nodes in a EM@system, game
theory is an appropriate tool. This thesis focuses on poll@cadion in wireless

cooperative systems based on game theory, with three cbssamponents.

First, we study the power allocation in multi-user relaywaks with altruis-
tic relays. We propose an asymmetric Nash bargaining soltidased relay power
allocation scheme, which can achieve a balance betweemlghawork perfor-
mance and user fairness. We also give a distributed implt&tien of the proposed
scheme. Second, we consider the power allocation and relayecation stimu-
lation problem in multi-user relay networks. We use Stdokr} game to analyze
the interaction between the relays and the users. Baseceqrdposed fair relay
power allocation rule, the optimal relay power price is dedi analytically. Third,
we study the power allocation and user cooperation stinugdroblem in multi-
user cooperative networks. We propose an iterative douldéam-based power
allocation algorithm. We show that this algorithm achiegkbal optimality in the

sense of weighted sum-signal-to-noise ratio.
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Chapter 1

Introduction

It is not rare that in certain period of history, a technolaipanged humans’ life
in such a fundamental way that it became indispensable instlevery walk of
people’s life. One of such technologies that dominate teedacades i8Vireless
CommunicationWe do not need to trace back far in order to sense the fundaimen
changes brought by wireless communication to our daily Eeerything nowadays
is Wireless We can watch Netflix live-streaming directly from our mahilevices;
we can use Google Maps to navigate anywhere we go; we can d&ype Svith
friends while traveling on a high-speed bullet train. Albg® marvelous conve-
nience are enabled by the tremendous advancement of vgiasmunication.

Although wireless communication has become increasingtispensable in
our daily life, its further advancement is impeded by theergmt fading effect of
wireless channels. In wireless networks, channel fading Ineadue to shadowing
when there are physical obstacles between the transcdiverto path loss that is
the signal strength loss from a line-of-sight (LOS) patlotiyh the air, or due to
multipath fading where the receiver sees the superposfianultiple copies of the
transmitted signal resulting from numerous reflectors énghvironment.

Many efforts have been invested to tackle this prominenblera. One of such

is the multi-input-multi-output, or MIMO system, which lities multiple antennas



at both the transmitter and the receiver. In MIMO systemdfipie copies of the
signal arrive at the receiver using different paths, andhgeth may experience a
different and independent interference environment.&ctilely such a system can
provide a reliable communication link.

Although the instalment of multiple antennas is clearly attegeous, it may
not be practical for some scenarios. To get independensriresion channels,
the distance between antennas on a device should be in tke a@irdthe carrier
signal’s wavelength. For example, the antenna distanaddbe larger than 15 cm
when the carrier frequency is 1 GHz. Thus, due to size andNasdlimitations, a
wireless agent, e.g., a smart handset, may not be able toduppltiple transmit
antennas.

To help single-antenna mobile users reap the benefits of Miyi€®ems, the
concept of cooperative communication is proposed. Thechdsa of cooperative
communication is to have multiple nodes in the network helgheother’s trans-
mission. Specifically, the signals are transmitted alorfgidint paths composed
by the multiple nodes to generate spatial diversity and fecafely combat the
deleterious effects of fading. Cooperative communicatan provide substantial
benefits to wireless networks, e.g., enhancing system tgpacreasing network
coverage, and improving power efficiency. These are of g/aate in many appli-
cations, including ad-hoc networks, mesh networks, and gemeration wireless
local area networks.

There are two options to deploy cooperative communicatiowireless net-
works, supportive relaying and user cooperation. For stmaaelaying, dedicated
relays are installed to assist the communication betweersuand their destina-
tions. This type of networks is usually referred toraky networks The second

way to use cooperative communication in wireless netwakkrough user coop-



eration. Here, a user can transmit its own information wais® acting as a relay
for other users. In this thesis, we call a user “relay” whes ielaying other users’
information. Networks employing user cooperation are ligualled cooperative
networks In this thesis, we collectively call relay networks and perative net-
works ascooperative systemsn the remaining of this chapter, we first survey the
basics of wireless relay networks, and then those of wisetesperative networks.
After that, we study the power allocation problem in the tvedworks. At last, we

give the contributions and outline of this thesis.

1.1 Wireless Relay Networks

An example of relay networks is shown in Figlre]1.1, where hiteaser is com-

Relay

Q'
3 =

sg
User Destination

QGO

Figure 1.1: A single-user single-relay network.

municating with its destination with the assistance of ayeln this network, when
the user transmits its signal, due to the broadcast natwéeless media, both the

relay and its destination can hear this signal. The relaytlvam resend a processed



version of the signal to the destination following some c@agion protocol. The
destination can combine the signals received from the useétlze relay. When
the fading paths from the user and the relay are statisticadlependent, spatial

diversity is generated during this process.

1.1.1 Single-User Relay Networks

The first study of relay channels dates back to the 1970s imtbemation theory
community. Early works in this area are on performance amlgf single-user
single-relay networks. In_[3], Meulen studies three-terahinetworks with one
user, one relay, and one destination. The upper and lowerdsoof their channel
capacity are given in this paper! [4] analyzes the capa€#ingle-user single-relay
networks. It is shown that the network can be decomposeaibtoadcast channel
from the user and a multiple access channel at the destind8®] have set the
theoretical basis for subsequent research work in coapesatstems.

Since the early 2000s, cooperative communication has exmped rapid de-
velopment to meet the high data-rate demands of next-gimenaireless com-
munication. Various cooperative protocols have been desidor wireless relay
networks [5-14, 16]. In 2004, Laneman et al. provide the gaif@erformance of
single-user single-relay networks i [6]. Two basic coagien protocols amplify-
and-forward (AF) and decode-and-forward (DF) are proposethe AF strategy,
the relays simply forward an amplified version of the recegigegnal to the des-
tinations. For DF, the relays decode the received signa fitee users and then
retransmit the decoded signal to their destinations. Mermecplized single-user
multi-relay networks have been studied in[[7H12[14, 16219—In [7-+11], relay
selection schemes are developed to realize cooperatigesdivin multi-relay net-

works. [12] proposes the distributed space-time codingsehthen analyzes its

4



performance in multi-relay networks. 10 [14], distributeglay beamforming is

proposed and analytical solution is found for the relay bieamer design.

1.1.2 Multi-User Relay Networks

The number of mobile devices that are accessing wirelesgonet worldwide is
dramatically increasing. In one research conducted byodiEg], it is forecasted
that by 2017, there will be 8.6 billion handsets and 1.7 dmllmachine-to-machine
connections. To meet the demands of networks with such a taugber of users,
research on relay networks has shifted its focus towardsrttierstanding afnulti-
user relay networksn which transmissions of multiple users are supportedeby r
lays. Potential applications of the results are in futun@cwnication systems such
as next generation relay-assisted cellular networks, aredess ad-hoc, sensor, and
mesh networks where users are well supported by relay sgatio

For multi-user relay networks, one model is thmilti-user single-relay net-
works(also referred as multiple-access relay networks in sorpers® where one
relay assists communications between multiple users addestinations. An ap-
plication of such networks is the cooperative high-speéetinet access and media
sharing in a vehicle-to-vehicle scenario, where a roadsacpeint (AP) acts as a re-
lay and helps users forward packets in vehicular networksemthere are multiple
relays available, the networks are calladlti-user multi-relay network€Examples
are wireless sensor and ad-hoc networks in which multigkrnmediate relays are
added to assist the communication from wireless users todbstinations. In this
thesis, we consider both single-relay and multi-relay oeks.

In the literature, there are many streams of research oni-osét relay net-
works. One stream studies cooperative schemes in netwdrkseweach user is

helped by a predetermined relay, thus relay selection iscansidered. Exam-



ples of such works aré [28, 29], where different relayingteigies are proposed to
maximize the sum-rate [28] and weighted sum-raté [29] igdency/time-division
multiple access (F/TDMA) relay networks. It should be notieak, as in[[28, 29],
FDMA and TDMA have been widely adopted in multi-user relaywark designs
to avoid user interference. Another stream of study on rugléir relay networks ex-
ploit cooperative diversity in combination with multiusgiversity, where the user
with the best channel is chosen to transmit at each instdA38d. In this thesis,
we focus on a more general case where each relay can helprtbarcent transmis-
sions of multiple users, and relay resources are allocatexhg these users. The
resource allocation problem, especially the power alloogtroblem in multi-user

relay networks will be discussed in Sectfon]1.3.

1.2 Wireless Cooperative Networks

In Section_1.1l, we have introduced the first way to deploy eoaiive communi-
cation in wireless networks: supportive relaying. In trestson, we will introduce
the second way: user cooperation. User cooperation candaeenas an extension
from supportive relaying, where at least two users are etiwr’s respective relays
to boost the other’s communication links.

Figure[1.2 shows a cooperative network where two wirelesssuiselp each
other by propagating each other’s information to their inesion. In Figurd 1.2,
the two users first exchange their information, and therljrelay the information
following some cooperation protocols. With the data exggaamong themselves,
the cooperative users form a distributed antenna arrayghwtan be viewed as a
virtual MIMO system.

A seminal work in cooperative networks is proposed by Seadsret al. in



Figure 1.2: A two-user cooperative network.

1998 [18]. In this work, the authors propose a user coopmratiotocol in order
to increase network capacity in mobile uplink networks. e 2003, the same
authors extend the cooperative protocol to more sophisticechemes [6,17]. Dis-
tributed space-time coding in wireless cooperative ndta/tias been analyzed by
Laneman in[[18]. They show that spatially adjacent usersfoem distributed
antenna arrays to yield full diversity. Note that([5,[13,18], focus on cooperative
scheme design with equal resource allocation. In recemsytgere have been more
and more research efforts on resource allocation among teskrrther improve the
performance of cooperative networks. In the next sectiewil discuss the re-
source allocation problem, especially the power allocagimblem in cooperative

networks and give a literature review in this area.



1.3 Power Allocation in Wireless Cooperative Systems

In wireless cooperative systems, resources include thepofithe relaying nodes
(supportive relays or cooperative users), and the frequgmectrum of the network.
Frequency spectrum has been considered as a scarce resecacese of the dra-
matically increasing number of users and their demandsifir Hata-rates. The
bandwidth scarcity problem has been studied in[50-52].

Power is also a scarce resource. This is because unlike tw&mns, users
and relays in cooperative systems usually are less exgensdbile devises and
have limited power (One example is wireless sensor netweHere most sensor
devices have limited battery supply). Thus, it is import@ntlesign schemes for
the allocation of the limited power resource among the cditiype users in the
network. On the other hand, optimal power allocation hasi\h@eved to be an
effective method to cancel the interference, improve thaityuof the signal trans-
mission, thus increasing the coverage and capacity of tamtwnetwork [46=49].
Therefore, power allocation is an important issue that a¢ede addressed in co-
operative system design.

In this thesis, we focus on power allocation problem in coafpie systems. In
the following, we first give a literature review of researabriss on power allocation

in multi-user relay networks, and then those on cooperai@re/orks.

1.3.1 Power Allocation in Multi-User Relay Networks

In the literature, the major objectives of power allocatiommulti-user relay net-
works fall into two categories: achieving optimal netwoegdformance and achiev-
ing user fairness. We will first give a literature review orppes focusing on net-

work performance and then those on user fairness.



In [53], the joint power and subchannel allocation problerstudied to maxi-
mize the sum-rate in AF multi-user multi-relay networks.sBd on the dual com-
position method, a distributed power allocation algorittnproposed. In[[54],
the optimal relay power allocation problem is considereth&ximize the network
throughput in AF multi-user two-way single-relay netwarkée problem is solved
based on Lagrange dual decomposition approach/ _In [55]pdoieer allocation
problem is investigated to maximize the received signaidise ratio (SNR) at the
destination in multi-user multi-relay networks. Considgra total power constraint
at the relay and users, the sum-rate maximization probleaddsessed ir [58] for
DF multi-user single-relay networks. In [59], the powepakltion problem is stud-
ied in wireless sensor cooperative networks. Optimal p@Necation is derived to
get the best outage performance.

Power allocation problem in relay networks with fairnesaa@rns are inves-
tigated in [52, 60—63].[61] studies the power allocationlpem in DF multi-user
multi-relay networks. A fair power allocation scheme iswsed such that the
guality-of-service requirement of each user is guarantéed52], the joint sub-
carrier pairing and power allocation in downlink multi-tieation single-relay net-
works is investigated with proportional fairness constiraln [62], the joint relay
power and subcarrier allocation problem is considered BivIR multi-user multi-
relay networks. A fair power allocation algorithm is propdssuch that all relays
have the same probability to be used. [63] studies the redagepallocation and ad-
mission control problem in multi-user multi-relay netwsrkHeuristic algorithms
are developed to get the optimal admission control and padl@cation to maxi-
mize the network throughput and to achieve two goals wittmé&ss concerns: to
maximize the minimum SNR among all users and to minimize thgimum trans-

mit power of all users.



1.3.2 Power Allocation in Cooperative Networks

In the literature, most works on power allocation problemvireless cooperative
networks aim to achieve optimal network performance [64—&8 [64], a power

allocation strategy that minimize total power consumpisgoroposed in multi-user
cooperative networks, [65] studies the power allocatimbf@m in two-user coop-
erative networks. An algorithm is proposed to minimize biberate (BER) perfor-

mance of the network. In_[66], an optimal power allocatiogaaithm is proposed
to maximize the sum-rate over all relayed links in downlirdoperative cellular
networks. Iterative implementation of the proposed athariis also given. [67]
investigates the power allocation problem in downlink cerapive code-division
multiple access networks. The authors propose a schemeniminé the power
consumption in the network. 10 [68], the power allocatiogaalthm that minimizes

BER is studied in DF cooperative networks.

1.4 Game Theoretical Solutions for Power Allocation

in Cooperative Systems

For research works discussed in Seckioh 1.3, users andmlayassumed to be al-
truistic and willing to cooperate to optimize the overaltwmerk performance. This
is true for applications where users and relays belong toglesauthority and vol-
untarily cooperate to achieve a common goal. In many comaleapplications,
however, users and relays may belong to different agentsiamtb optimize their
own benefits. In specific, relaying nodes use their power tp bely when it is
beneficial and users compete for the limited power to operthieir own data-rates
or quality-of-service. Therefore, game theory, which gmas$ the conflict and co-

operation among independent decision makers, is an ertadia to cope with this

10



problem and has been widely used in power allocation in c@bpe systems.
Game theory is a branch of applied mathematics which anslife process
of decision making of a group of individuals, where one indiial’s benefit might
depend on other individuals’ actions. Recently, there fsnlgrowing interest in
adopting game-theoretic methods to solve today’s comnatinic and networking
problems, especially to solve the power allocation probilem competitive envi-
ronment. The reasons for the general application of ganueythe power allocation

problem of cooperative systems are two-fold.

1. Wireless users are generally selfish. These users aracatas agents,
making their own decisions about transmit power, signakérding, and so
on. In such scenarios, they compete for limited resourcebenmetwork
to optimize their own performance, resulting in competingrarios. Game
theory provides us sufficient theoretical tools to analyzehsbehaviors and

actions.

2. Relaying nodes in the networks are usually autonomoussgead they relay
users’ information only when it is beneficial. Game theorgyides us with
cooperation stimulation schemes (e.g. the pricing scheimerevrelaying
nodes can sell their power to users) to analyze such belsaamat stimulate

them for cooperation, which potentially improves netwoekfprmance.

Research in cooperative network designs using game themmgniee increas-
ingly popular in recent years. Many papers have appearatemture, e.g., [73—
[75/77+93]. Research on game theoretical modeling of theepallocation prob-
lem in multi-user cooperative systems can be generallyld/into two categories.
The first category focuses on modeling and solving the usepetition and coop-

eration problem. The second category is on providing cadjmer stimulation for

11



relaying nodes to share their power.

1.4.1 User Competition and Cooperation

For user competition and cooperation, two game theoreticadels are usually
used. In the first one, users are modeled as independentplayé aim to opti-
mize their own utilities. Since each user has no knowledgib®finformation of
all other users, iterative algorithms are often needed heese Nash equilibrium
(NE). Examples of this modeling method arel[[73-75]. [#BE relay power
allocation problem in the downlink of multi-user multi-egl cellular networks is
studied. Non-cooperative game theory is used to model thgpettion for re-
lay power among users. An iterative scheme is proposed el users reach
NE. [74] investigates the distributed power allocationljemn in relay-assisted cel-
lular networks. Non-cooperative game theory is used toeaehspectral efficiency
with spatial reuse of the relaying slot. In [75], for DF siegklay networks with
two users, each user’s achievable rate is optimized witteaative power allocation
algorithm. The algorithm is proved to converges to NE.

Another popular model to resolve the conflicts among usexgrass that users
cooperate to improve their performance, elg.] [81-84]] f8ddies the power al-
location and admission control problem in multi-user mrélay networks. Two
kinds of users are considered: variable-rate users fortwiioimum rates are re-
qguired and constant-rate users who need constant trangmiases. A distributed
method is proposed to implement fair power allocation basedlash bargaining
solution (NBS). The work in[[82, 83] are on two-user coopeehetworks. They
consider the scenario where the users are willing to cotpeasalong as coopera-
tion is beneficial, and they use cooperative game theory efwow the sources

negotiate to address their conflicting objectives. By elyiplp a two-source bar-

12



gaining game, fair bandwidth allocatidn [82] and power ediiion [83] are found
using NBS. In[[84], power allocation problem is studied inlthuser cooperative
networks, in which users can form coalitions and share giirer resource to form
virtual multi-antenna systems. A merge-and-split aldgwniis proposed to construct

coalitions among users to maximize their transmissiorsrate

1.4.2 Cooperation Stimulation

For cooperation stimulation, the primary mechanism desigo provide incentives
for relaying nodes are the payment-based mechanism. Imibihanism, the re-
laying nodes get paid if they forward users’ messages ang psg for the relaying
service. In the literature, the payment-based mechanisnbedormulated as ei-
ther a pricing game or an auction game. Examples of researdhan cooperation
stimulation in cooperative systems drel[85-90].

In the pricing game formulation, each relaying node allesgtower accord-
ing to network environment and power prices; while the usier®iand power re-
source based on their network conditions and power priceamigles of this kind
of game formulation are [85-90]. 10 [B5], for single-userltiatelay networks, the
relay selection and relay power control problems are ingattd using a two-level
Stackelberg game. In this game, the relays compete to mr®éddsice to the user
to gain revenue/ [86] studies the user power allocation atay pricing problems
in multi-user single-relay networks. In the game theoretaxlel, the relay sets the
price to maximize its revenue, while a non-cooperative gamused to model the
user behavior, in which each user adjusts its transmit peeveelfishly maximize
its own utility. For two-hop multi-user ad hoc networks, quensation frameworks
are proposed in_[87] and [88] for power allocation, in whictle user sets price

and receives revenue if it cooperatively helps others’simaissions. For two-hop
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multi-user relay networks, based on the simplification trextsmission of a frame
is either successful or unsuccessful/[90] uses a pricinghar@sm and Stackelberg
game to encourage relay for sharing their power. The autisssme that the users
set the payment rates and the payment is shared among reiaysalp the users.
In the auction game formulation, the relaying nodes are eoldis auctioneers
and users are modeled as bidders. In an auction processysacbubmits its bids
to all the relays and the relays independently announcehehéo sell, to which
bidders to sell, and how much to sell. Examples of coopearationulation based
on auction frameworks are [92] arid [93]. [n [92], the powéo@dtion problem in
single-user multi-relay networks is considered. The augtlpwopose two auction
mechanisms, SNR auction and power auction. Sufficient tondiare given for
the existence and uniqueness of NEIn [93], the authorddenthe power alloca-
tion problem in multi-user relay networks. An double-sidedttion mechanism is

designed to achieve maximum network throughput.

1.5 Thesis Contributions and Outline

In this thesis, we focus on the power allocation problem intikuser cooperative
systems based on game theory. While numerous research tavksbeen done
in this area, there are many issues that remain to be addreBgst, in practical
networks, different applications may have different gpalg., some applications
prefer fairness among the users, some applications destier hlobal network per-
formance, while others require a balance between the twos,Tihis important to
study the impact of user interaction on system performaacalyze the interplay
between user fairness and global network performance, avide guidelines on

cooperative system design for different applications wlifferent goals. Second,
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as the scale of cooperative systems expands and the numiszrsfincreases, the
centralized control mechanism almost becomes intractdblerder to effectively
utilize limited power in cooperative systems to serve margt@mers, it is thus im-
portant to invent new techniques to exploit the distributature inherent in such
networks. Finally, nodes in cooperative systems are ussathple devises and
lack powerful computational capability. Thus it is impartdo design power al-
location solutions with low implementation complexity.dSed-form solutions are
suitable to meet this demand since they do not require ibemiand are easy to
obtain. However, in cooperative systems with many terrsipakticipating in each
transmission, the power allocation issue becomes very boagd, and closed-
form solutions are impossible for most of the time. In suckesanumerical power
allocation solutions with low implementation complexitgalesirable.

In this thesis, we focus on these challenging issues in degigpower allocation
schemes for cooperative systems. The contributions othlesis are summarized

as follows.

e The first work focuses on power allocation strategy amongifiees in multi-
user relay networks. We propose an NBS-based relay poveeasiibn scheme,
which can achieve a balance between global network perfacenand user
fairness. To improve the scalability of the proposed schewmeealso propose
a distributed implementation of our solution, which onlguées local CSI

at the users.

¢ In the second work, we study the power allocation problem uttiruser re-
lay networks with cooperation stimulation. We propose ay@&ooperation
stimulation and power allocation scheme based on bargpiial Stackel-

berg game models. Based on the proposed fair relay powexadibo rule,
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we derive the closed-form solution for the optimal relay powricing prob-

lem.

e The last work focuses on power allocation in multi-user @vafive net-
works. We use iterative double auction (IDA) game to modelittieraction
among the users and the destination. We propose a disttibigerithm for
the implementation of the IDA-based power allocation. Waahow that

the proposed algorithm achieves weighted sum-SNR optiotatisn.

The thesis is organized as follows. Chapler 2 presents ttiggh@und knowl-
edge related to this thesis, including wireless channeletsoghd game theory. In
Chaptef B, we investigate the power allocation strategyuhiraser relay networks
through bargaining. The power allocation and pricing peablin multi-user re-
lay networks is studied in Chaptier 4 using bargaining andk&therg games. In
Chaptefb, we study the power allocation problem in cooperatetworks based

on double auction theory. Chaplér 6 presents the conclasidriuture research.
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Chapter 2

Background Knowledge

This thesis focuses on the power allocation in multi-usepeoative systems with
game theoretical modeling. The basis background knowlesigeviewed in this

chapter including two parts: wireless channel models amaegtheory.

2.1 Wireless Channel Models

The wireless channel models are fundamental for the asabjiooperative sys-
tems. As introduced in Chapter 1, there are three phenonhenaffect wireless

transmission: pathloss, shadowing, and multi-path fading

2.1.1 Pathloss

Pathloss measures the attenuation of wireless signalsaogertain transmission

distance from the LOS path. The free space model is formafyessed as

A 2
Pr - PthGr (m) ’ (21)

wherePF; is the transmit power?. is the received power of the free-space model at

the distancel, GG, is the transmitter antenna gai#, is the receiver antenna gain,
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is the wavelength[(2]1) is only valid in the far field, a moragtical model can be
defined as

do

P.=PP, (E)a, (2.2)

whered, is the reference distancé} is the pathloss at the reference distatige

anda is the pathloss exponent in the rangeab 6.

2.1.2 Shadowing

Shadowing occurs when objects block the LOS between trdatesnand receiver.
The received power change caused by shadowing is often swdesing a log-
normal distribution with a standard deviation accordinghe log-distance path
loss model. The log-distance path loss model generaliziéslpss to predict the
mean signal strength for an arbitrary transmitter-regeseparation distance, which

is given by
d [e%
P.(dB) = Py(dB) + P,(dB) + 101log;, (EO) + Xo, (2.3)

whereX, is a zero-mean Gaussian random variable with variancedijpi@anging

from 3 to 12.

2.1.3 Multi-Path Fading

In the wireless transmission environment, there are nuasaeflectors surrounding
the transmitter and the receiver, which create multiplag#tat a transmitted signal
can traverse. For each path, the signal will experiencerdifft attenuation, delay
and phase shift. This phenomenon is called multi-path tadim the literature,

there are many fading models that describe the distribudfagignal attenuation.

We give two as examples.
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Rayleigh Fading

In Rayleigh fading channel, it is assumed that the LOS israbstd and the re-
ceiver obtains only scattered waves from the surroundingctdin the environ-
ment. When there is a sufficiently large number of scatterspraing to central
limit theory, two quadrature components of the receivedaigre Gaussian ran-
dom process. If there is no dominant component to the sc#tieeenvelope of the

received signal will be Rayleigh distributed with probdlgibensity function
frlz) = —=e 222, x>0, (2.4)

and the phase of the received signal will be evenly distetldetweer) and 27
radians. Often, Rayleigh fading is represented by a complexrber, which is

circularly-symmetric complex Gaussian with distributi@i (0, o2).

Rician Fading

Rician fading occurs when there is a dominant path, typida@S, and other scat-
tered waves from the surrounding objects. In Rician fadihg,amplitude gain is

characterized by a Rician distribution, which is expressed

T _a?4a? Ax
fr(z) = —e 2t g <?) , x>0, (2.5)

o
where A is the peak amplitude of the dominant signal, &\ is the zeroth-order
modified Bessel function of the first kind [134]. Rayleighifaglis a special case

of Rician fading whemA = 0.

2.2 Game Theory

In this section, we give some background knowledge of garaeryh The three

major components in a game model are a set of players, a setiohs of the
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players, and a set of utilities that represent the playeiative satisfaction of the

outcome of the game. Formally, a/+player game can be modeled as
¢ ={Q,{Sii € O}, {uili € Q}}, (2.6)

whereQ) = {1,2,---, N} is the player set and; is the strategy set of User
including all strategies that it can use in the gamds the utility of Player.

In a noncooperative game with selfish players, each playes & maximize
its own utility by choosing an optimal strategy. Equilibmus the strategy out-
come of a game that is the best response of each player gieedettisions of
others. The most famous equilibrium is NE. An NE is defined agrategy pro-
file where Player’s strategy is the best response to all other players’ sfiege
Let & = (sf,s5,---,sy), Wheres; € S; is the strategy of Playerat NE. Let
Sr= (8], ,8i_1,85, -+, Sy), which is composed of all players’ strategy at

NE except Playei. NE satisfies the following condition
ui(si, ") > wi(sh, ), foranys! € S;. (2.7)

(2.2) says that at NE, Playécannot increase its utility by unilaterally changing its
own strategy. Thus no player has the incentive to deviata fte current strategy
at an NE.

A famous example in game theory is the prisoner’s dilemm&][13n this
example, a policeman caught two suspects (A and B), but ddvana# sufficient
evidence to accuse them. So the police separate them inedhiffglaces, and offer
both of them the following options:

If one of them confesses their sins, while the other is silém@ one who con-
fesses obtains release, while the other will be in prisord@years;

If both of them are silent, both of them will be in prison forfreyear;

If both of them confess their sins, both of them will be in pridor 2 years.
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Table 2.1: Payoff matrix of prisoner’s dilemma

A silent | A confesses

Bsilent | (0.50.5)| (0 10)

B confesses (10 0) (22

This game has two players A and B. Each of them has two actgilesit or
confesses. The preference of the two players can be iltadtia Tabld Z.11. (m n)
means A will be prison for m years and B will be in prison for raye

The NE of this game is the (2 2) point, that is, both of them eesaf Suppose
that they are at this point, and A changes its status fromessnto silent, then the
payoff will be (0 10), so he has to stay 8 more years in prisdnckvis much worse
than 2 years. Itis the same story for B. Thus (2 2) is the gyatieat both of them
are unlikely to change.

From the prisoner’s dilemma, we can see that game theonjida®ws tools
to analyze the behaviors of selfish players where each of thakes their own
decisions independently. And we can also see from this ebathpt left to their
own decisions, the selfish players usually behave ineffilgiethe optimal solution
of TableZ.1 should be (0.5 0.5) instead of (2 2). In later tévap we will show that
game theory provides other ways for us to obtain better ooésoin cooperative
systems. For instance, it is possible for users in the nétwwake agreements
among each other to increase their utilities.

In the following, we give four game theoretic models and 8ohs which are

especially useful for our research work.
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2.2.1 Stackelberg Game

In the prisoner’s dilemma, both players take actions inddpat of each other si-
multaneously. They do not have any knowledge of the dediaken by the other
player. Such games are callgtlategic-form gamesdn practice, players do not nec-
essarily take actions at the same time dgdamic gamean be used to model such
behavior. In dynamic games, players take actions in ordetsreake their decisions
sequentially. Thus, players have some information abath e¢her’s strategy and
they can take actions more than once.

An example of a dynamic game is the Stackelberg game. In &8bsrg game,
one player acts as a leader who takes action first, and the pldngers are fol-
lowers who observe the leader’s action and act accordiriglg subgame perfect
Nash equilibrium of a Stackelberg game can be found usindpélckward induc-
tion method. It first studies the followers’ game: for eaclsgible action of the
leader, find the optimal followers’ response that maximithesfollowers’ payoff.
Then given the optimal followers’ response strategy, itl&s the leader’s action
and chooses the one that maximizes the leader’s utility. CcHosen strategy set is
the subgame perfect Nash equilibriuml[71].

Figure[2.1 shows an example of a Stackelberg game with oderead one
follower. The player seti$A, B}, whereA is the leader and is the follower. A
takes action first and its strategy sebis = {x,y, z}. After observingA’s action,
B selects its strategy from its strategy Set = {m, n}. Their payoffs are listed at
the bottom of this figure.

To find the subgame perfect Nash equilibrium, we use the backmduction
method. We first find3’s optimal strategy for each possible actionAfin Figure
2.1, if A selectsz, B’s optimal strategy is: and its payoff is4. Similarly, if A

chooseg,, B’s optimal strategy isn; and if A chooses:, B’s optimal strategy is
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Figure 2.1: An example of Stackelberg game with two players.

Player B

n. After studyingB’ optimal response strategy, we studys action and chooses
the one that maximizes its utility. From the above analytig, chooses:, B will
choosen, which givesA a utility of 1. Similarly, if A choosegy, its utility will be
2; and if A chooses, its utility will be 4. Thus, A’s optimal strategy is and the

subgame perfect Nash equilibrium of this gamézisn }.

2.2.2 Auction Game

Auction theory is the branch of game theory dealing with hewpgde behave in auc-
tion markets, and aims to find out their game theoretical gntogs. In traditional

auctions, there is one seller and many buyers willing to theyductioned item.
This is a one-to-many market structure and is called onedsadiction. Four pop-
ular one-sided auction models are: ascending-bid audescending-bid auction,
first-price sealed-bid auction, and second-price seal@@Mickrey) auction. In the

ascending auction, the price is successively raised inatihighest bidder wins the
object. In the descending auction the auctioneer startsextyehigh price, and then
lowers the price continuously until one bidder claims thgob In the first-price

sealed-bid auction, each bidder independently submitsglesbid without seeing

others’ bids, and the object is sold to the bidder who makesitphest bid. Differ-
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ent from the first-price, in the second-price sealed-bidiancthe winning bidder
pays the second highest bidders’ bid|[70].

In contrast with one-sided auctions, several buyers andrsedubmit bids and
offers simultaneously in double auctions, so the markettire is many-to-many.
In wireless network designs, the following two double amictmodels have been

adopted.

1. Preston-McAfee Double Auction (PMDA). This double aantimodel was
developed by Preston and McAfee [120]. In this type of augteach seller
independently announces its trading price and how muchlteasd each
buyer decides its bidding price and how much to buy. An extleainctioneer
collects all asks and bids. The supply function is definechag¢lationship
between the ask prices of the sellers and the quality of thgiply; the de-
mand function is defined as the relationship between bicmfdhe buyers
and the quantity they need. The supply and demand functiendescribed
in Figure[2.2. The clearing prigeis reached at the competitive equilibrium
where quantity buyers willing to buy is equal to quantitylesed willing to
sell. At competitive equilibrium, all the sellers who ashkesls tharp sell and

all buyers who bid more thambuy at pricep.

2. IDA. Compared with PMDA which is a static model, IDA consid repeated
double auction. Figure 2.3 illustrates an IDA game. In thigife, buyers
submit bids for buying from others, and sellers submit asksstlling to
others. The auctioneer determines the resource allodadieed on these bids
and asks. The auctioneers and the players interact in ativieway until the

market reaches the efficient market clearing point.
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Figure 2.2: lllustration of supply and demand functions.

2.2.3 Asymmetric Nash Bargaining Solution

Now we discuss the bargaining problem. Its basic setting felfows: there aréV
players with utility functions:, u, - - - , uy and bargaining powers, 5, - - - , By,

where

Zﬁ,- =1. (2.8)

2

An utility vectoru = (uy us -+ uy) is called feasible if it is possible to find a

N
=1

strategy set that gives thth player utility«; forall: = 1,--- | N. LetS denote
the set including all feasible utility vectors, which is assed to be convex and
compact[[71]. The disagreement point, denotedi@s= (u1 uspo -..unpo), IS
the vector of the minimal utility that each player expectthigy do not reach an
agreement and play non-cooperatively. It is the guaranigkty for the players in

the bargaining game.

Definition 2.1 Asymmetric NBS is a bargaining solutidn(S, ug) = (1, 4, - - - , un)

which satisfies the following axioms. °
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Seller 1 Seller i Seller M

Auctionner

Figure 2.3: lllustration of an IDA game.

Axiom 1 Invariance to Equivalent Utility Functions. Define a new gaining
problem, wheref (u;) = a;u; + X\; and f (u;,) = ayuy, + A, then®(f(S), f(ug)) =

f(ﬁhﬂ%”' ’,U“N)'

Axiom 2 Independence of irrelevant alternatives. fete S, and7 be a feasible

set. If®(S,up) € T, thend(S, ug) = P(T, up).

Axiom 3 Pareto optimality. If(uy, us, -, uy) € S, and (uy, ug, -+ ,uy) >

(’al,’ﬁg,' .. ,ﬂN), then(ul,ug, cee ,UN) = (’al,ﬂg, cee ,ﬂN).

Remark: Axiom 1 and 2 above guarantee the fairness of the solutionet®a
optimum in Axiom 3 means that there is no point in the feassigliethat is superior
to the bargaining solution.

Given the previous definition of NBS, the following theoresnproved [[115],

which provides a method to find NBS through optimization.

Theorem 2.1 If there is any pointu such thatu > ug, then asymmetric NBS

maximizes] [, (u; — us,)%.
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2.2.4 Kailai-Smorodinsky Bargaining Solution

Compared with NBS, Kailai-Smorodinsky bargaining solntigSBS) is also a
popular solution to the bargaining game but does not regteefeasible set
to be convex. To get KSBS, we need to define the ideal point. idé& point
u! = (vl ul ... k) (‘I' stands for ideal) is the vector of the maximum achievable
utilities of the players i5. We thus have.! > u, ,. Note that for players with! =
u; 0, cooperation does not increase their utilities and they/vat enter the game.
For the rest of the players, > w;,, and they will participate in the bargaining
process.

Givens, the disagreement point, and the ideal point!, KSBS is the solution

to the optimization problem [72]

maxk st U0 _ (2.9)

ul —
for all players withu! > w; q.
KSBS is an equilibrium point that guarantees fairness inswese of equal
penalty, which can be derived from the constrain{inl(2.9tide that(u! — u, )
and (u; — u;0) are Player’s maximum and actual net utility gains, respectively.

Taking logarithm on both sides of the constrainfin2.9),hage
log (u! — ui0) — log (u; — u;0) = —log k. (2.10)

As log k is a constant independent of the players, the constraifd.®) forces all
participating players to suffer the same utility penaltghe logarithmic scale, and
thus ensures fairness in this sense. It is worth mentiortiag KSBS is neither
individual utility optimal nor global optimal in generalt is an equilibrium point

that balances the proposed utility measure and fairnesaguosers.
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Chapter 3

Power Allocation in Multi-User

Relay Networks through Bargaining

In this chapter, we study the power allocation strategy amasers in multi-user

relay networks. We use bargaining theory to model the natjoti among users on
relay power allocation. By assigning a bargaining powelattheuser to indicate its
priority, we propose an asymmetric NBS-based relay powecaition scheme. We
analytically investigate the impact of the bargaining pmsaen the relay power al-
location and show that via proper selection of the barggipowers, the proposed
power allocation can achieve a balance between the netwarkrate and the user
fairness. Since centralized control is impossible in soetevarks as mentioned in
Sectiori 1B, we propose a distributed implementation oNB&-based power allo-
cation, where each user only requires its local CSI. Sinanaesults are shown to
compare the proposed NBS-based power allocation with stesaptimal power

allocation and rate-fair power allocation. The impact af targaining power se-

lection on relay power allocation is also demonstrated vraukation

1A version of this chapter has been published in IEEE Tranisaston Wireless Communications,

12: 2870 - 2882 (2013).
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3.1 Introduction

As introduced in Sectioh 1.1.2, power allocation problenmigortant in multi-
user relay networks to harvest the potential benefit of cadpe communication.
From the literature review in Sectign 1.3, we can see thaprédr papers in this
area focused exclusively on either global performancewmity, e.qg., [54, 57, 58]
or user fairness, e.gl, [62,160,)82] 83]. However, in prattietworks, different ap-
plications may require different balances between fagaesl global performance,
e.g., some applications prefer fairness among the usele wtiiers desire better
global network performance. Even for the same network apptin, the desired
balance between global performance and fairness may ctieorgdime to time.
Motivated by this, in this chapter we use bargaining game@ong@ose an asym-
metric NBS-based power allocation solution, which cantjgiaddress these two
issues. In addition, most previous works assume that thesesea trusted central
controller who collects all the required CSI and who has sieffit computation ca-
pability to derive the proposed solutions. This is impreadtin distributed systems
such as ad hoc networks and sensor networks, where ceatratintrollers do not
exist. Such systems therefore require a distributed catigerprotocol. To use our
scheme for such scenarios, we provide a distributed impiéatien of the NBS-
based power allocation scheme in which users with locatiétion only are able
to independently decide how to cooperate with other usetselays.

In this chapter, we consider a multi-user single-relay Atvwoek, and use game
theory to analyze the relay power allocation among the u¥éesnodel the interac-
tion among the users as a bargaining problem, where theyiaegwaith each other
on relay power allocation. We propose a nasymmetridNBS-based relay power

allocation scheme, which can achieve a balance betweemlgh@twork perfor-
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mance and user fairness. We provide centralized implermentaf the proposed
power allocation. More importantly, to improve the scali&piof the proposed
scheme, we propose a distributed implementation of outtisoluwhich only re-
quires local CSI at the users. Convergence conditions areded for this dis-
tributed algorithm. We then investigate the effect of baryg power selection on
network performance. We show analytically that via appiedprbargaining power
selection, the proposed scheme can achieve the sum-riateabpolution for best
global performance and even power allocation for bestésisn\We also generalize
the proposed NBS-based power allocation scheme and itsbdistd implemen-
tation to multi-user multi-relay networks. Simulationg aronducted to compare
the proposed NBS-based power allocation with the sumeaptenal power allo-
cation, the even power allocation, and the rate-fair poWlecation, to show that
the proposed scheme can balance network sum-rate and usesfa Via simu-
lation, we also demonstrate the impact of the bargaininggpewn the proposed
relay power allocation solution. The results show the pidéonf using the pro-
posed relay power allocation to address different netwegkiirements in different
applications, through proper selection of the bargainimgers.

The rest of this chapter is organized as follows. SedtioleBBorates the net-
work model and the relay power allocation problem. The NBSdd relay power
allocation scheme is proposed and studied in Se€fidn 3.Settior 3.4, we pro-
pose a centralized and a distributed schemes to implemeptdiposed relay power
allocation. Discussions on bargaining power selectiontawd it can balance dif-
ferent network requirements are given in Seclion 3.5. Irti&e.8, we show the
simulation results. The proposed NBS-based power allmcattheme is extended
to multi-user multi-relay networks in Sectién B.7. In SenfB.8, we give the con-

clusion of this chapter.
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3.2 System Model
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Figure 3.1: A multi-user single-relay network.

Consider a wireless network witN users communicating with their destina-
tions with the help of one relay as shown in Figlre 3.1. Detimtechannel from
Useri to the relay ag;, the channel from Userto Destination (the direct link) as
h;, and the channel from the relay to Destinatias g;. We consider two channel
models in this work, Rayleigh flat-fading channel and patssichannel. We denote
the transmit power of Uséras(); and the maximum transmit power of the relay as
P. We also denote the power the relay uses in helping UasP;.

We assume a block-fading (or quasi-static) model: the ablamamain invariant
over a time interval, called the coherence time of the chianbat vary across suc-
cessive coherence intervals according to a stationary eyudlie random process.
The block-fading model is well justified for vehicular commecation for rush-hour
traffic scenarios (e.g., cooperative high-speed interoetss and media sharing in
a vehicle-to-vehicle scenario, where a road access pdistagca relay and helps

users forward packets).
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FDMA is used, so transmissions of different users are odhatand interferen-
ce-free. Without loss of generality, we consider the trassian of Useri’s mes-
sage on Channél To send one symbol from Useéro Destination;, we use the
popular half-duplex two-step AF protocol. In the first stejger: transmits/Q);s;,
wheres; is the information symbol normalized &|s;|>) = 1. The signals re-

ceived by the relay and Destinatioare

Yir = \/ QiSifi + Nir, (3.1)

and
yip = / Qisihi +nip, (3.2)

respectively, where;r andn;, are additive noises at the relay and Destination

the first step, respectively. They are assumed to be indepe@hussian following
the distributionCA/ (0, 1). In the second step, the relay amplifigg and forwards
it with power P, on Channel. The signal received at Destinatiom the second

step can be shown to be

| Qb b
i =\ AT 5% T\ AT e 7 9i"R T TiRD, 3.3
Yr OilfiE+ 1 fig QilfiE+ 1 JiliR RD (3.3)

wheren;rp is the additive noise at Destinatiomn Step 2, which is assumed to be
independent to other noises with the same distributiovi(0, 1).

To simplify the presentation, we introduce two variablesyely thenoise for-
warding rateand thesignal forwarding rate We define
|2

= OIfETT (3.4)

which is the power of the second term at the right hand sid8&) (whenP; =
1. We call¢; the noise forwarding rate corresponding to Ussimce its physical

meaning is the noise power that the relay forwards to Desbima if unit relay
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power is used. Intuitively, a large noise forwarding rateanmelow quality in the
user’s relay-path. Similarly, we define the signal forwagdiate of Usef as

i = Qilfigi”
CoQilfiP+1

(3.5)
It is the power of the first term at the right hand side[of(3.3)ewP; = 1. Its
physical meaning is the signal power that the relay forwéwd3estination if unit
relay power is used. A large signal forwarding rate int@ljvmeans high quality
in the user’s relay-path.

After maximum ratio-combining of both the direct and relatis, the effective

received SNR of Usei's transmission can be shown straightforwardly to be

pi P

SNRinp = 5

+ Qilhil*. (3.6)

If Useri’s transmission is not helped by the relay and only the diractsmis-

sion is active, its received SNR becomes

3.3 NBS-Based Power Allocation

We can see froni (3.6) that all users desire the relay to dloams much power as
possible to help their own transmissions so they can achievBighest SNRs. But
the relay power is limited, so allocating more relay poweomne user means less
power available for the rest. To address this conflict amaseys) we model the
interaction among the users as a bargaining game, and defaie relay power

allocation scheme based on the NBS of the game.
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3.3.1 Bargaining Game Model

In this section, we use bargaining game model to analyzedh#ict and interac-

tion among independent users. As defined_in [122], barggitiinory studies the
situation “in which two (or more) players can mutually behitm reaching a cer-
tain agreement but have conflicting interests on the terntiseohgreement”. This
fits our problem where the users have conflicting interesttherallocation of the

relay power: each user tries to maximize its allocated rptayer, and they have
an interest in agreeing on the share, so they can all bendfingmrove their SNR

(achievable rate). The first step to formulate the powercation problem as a bar-
gaining game is to design the utility function. We define U&eutility function to

be the effective received SNR of Useagiven in [3.6), that is,

pi P

FAY . —
uz(B) - SNRZRD glpl + 1

+ Qilhil*. (3.8)

It represents the received quality-of-service, and isatliyerelated to the perfor-
mance of the communication. It can be seen thaP,) is an increasing function
of ;. Given theN users in our relay network, we define the utility vectonas
(ug ug -+ uy). We denote the disagreement pointgs= (u10 u2o .. Unyo),
which is the vector of the minimal utility that each user estgeaf they do not reach

an agreement and play non-cooperatively. Thus,
A 2
Ui 0 = SNRip = Qi|hi| ) (3-9)

which is the utility of Useri when it does not get any power from the relay and uses
the direct transmission only, i.é2 = 0. Note that this is a natural choice since if
the users do not agree on the relay power allocation, thg valanot allocate any
power to any user. Similar disagreement point setting iptatbin [83[ 94-98].

Given the above definitions of the utility function and theatireement point, a

utility vectoru = (u; us - - - uy) is called feasible if there exists a power allocation
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strategy( P, P, --- Py) whereP;, > 0 andZZ,N:1 P, < P that gives Usetf utility u;

foralli =1,---, N. LetS be the set of all feasible utility vectors. Thus

Sé{(ul---uN)

N
ZBSRBEO}. (3.10)

=1

The first inequality in I:(Z:’)_.TIJO)EZ].V:1 P, < P, is from the relay power constraint.
Power allocations that do not satisfy this constraint afeasible. The second in-
equality,P; > 0, says that each user has to be allocated non-negative i@srm
natural condition from practical point of view. This inedjiaalso guarantees that
when cooperates, each user gets no less utility compareé tase that it does not
cooperate and only the direct link is used for communicatibnis is a necessary
condition for the game theory formulation of feasible set.

In our relay power bargaining game among the users, we camntid scenario
where different users may have different priorities in abtay the relay power. To
model this, users are assigned bargaining powers, denstad-a- , Sy, that they
agree upon before transmission [115]. The bargaining power normalized as
Zf\il B; = 1, which is defined in[(218). In Sectidn 3.5, we will investigahe
effect of bargaining power selection on the proposed NB&taower allocation
and provide bargaining power allocation schemes that calgdbetween global

network performance and user fairness.

3.3.2 Nash Bargaining Solution

In our bargaining game model for the relay power allocatiginegn the feasible
setS and the disagreement point,, the users negotiate and select one feasible
utility vector in S and the corresponding power allocation strategy. Depgnaiin
how they define “fairness”, the users may choose differehitisns inS. In this

work, we choose the asymmetric NBS [115] as the bargainimgegsolution for
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the following reasons. First, it has been proved in [122] NBS is Pareto optimal,
where no user can further improve its utility without desieg others’. Thus NBS
ensures that all relay power is efficiently utilized by thenss which is preferred on
system design perspective. Second, NBS achieves propairfaarness by dividing
the additional utility among users in a ratio that is equalh® rate at which this
utility can be transferred [115]. Third, as will be discusse Section 3.6, NBS
has flexibility in bargaining power selection, which proesdus a way to balance
between global network performance and user fairnessidmibrk, we look for the
NBS-based relay power allocation. For this purpose, we ffirste the following

two lemmas.

Lemma 3.1 Given the utility functionu;(P;) in (3.8), the feasible sef defined in

(310) is convex.

Proof: From (3.8) and[(319),

pil;
u;(F) &P+ 1 + Uip ( )
It is a strictly increasing function aP; and
lim U; = & -+ Ui 0 = Qz|fz|2 + Us;,0- (312)
Also, we can show that
o R R (3.13)

pi — (wi — ui0)&;

SoS can be rewritten as

gz{u

ui,Ogui<Qi|fi|2+ui,07i:17'” 7N}7 (314)
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where the last constraint ensures that P, < oo for all 7’s.

Define

Sl < {u|ul Z ui,Oai = 17 e 7N} (315)

and

82 = {U|¢(U) S P7 u; < Ql|fl|2 +ui,07i - ]-7 ot 7N} (316)

We thus haveS = §; N S,. S; is a convex set by definition. To prove thais

convex, we only need to show thi is also convex.

We first prove that(u) is a convex function. From the definition ¢fin (3.14),

the Hessian or the second-order derivative@f) is

'82;;(%11) 0 . 0 T
0 82¢(211) . 0
V()= | o . e (3.17)
, o . aw
| 0 0 - T

which is a diagonal matrix whoséh diagonal element is

02 2 i) 2
f: Qilfi 5 (3.18)
Qi & [Qil fil®> — (ui — wip)]
For any finite P, , we haveQ;|f:|* — (u; — u;o) > 0, SO 226~ 0 for all

2
ou;

i =1,---,N. Thus,V?¢(u) is positive definite, which shows thatu) is a
convex function. Consequently, from the definition/df1), S, is convex[116],

and this completes the proof. [ |

Lemma 3.2 There is at least one point $iwith u; > w;o foralli =1,--- | N.

Proof: We show this lemma by construction. Consider the even pali@sation
whereP, = P/N foralli = 1,--- , N. Sinceu; is an increasing function a?;,

we haveu; > u;oforalli =1, N. n
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With the results in Lemmb_3.1 and Lemimal3.2, the asymmetri& NBthe
solution to the following optimization problem [1115]
N N
arg max [ [(ui—wio)”, st.P>0Y P <P, (3.19)
whereg; is Useri's barga;;ilng power. This problemZ:;n be simplified by the fol
lowing lemma.
Lemma 3.3 The optimization problem in (3.19) is equivalent to thedaling prob-

lem:

N 0. P,
Zl 151
oy, s (g 1)

N
st. ,>0, Y P=P (3.20)
i=1

Proof: As the logarithm function is monotonically increasing, van take the
logarithm of the objective function i (3.119) without chamgyits solution. Thus
the objective function in[(3.20) is obtained using the dé&bnis in (3.8) and

B9).

Furthermore, notice that wheR, = 0 for somei, the objective function of
(3.20) becomes-cc. This is obviously non-optimal since any feasible power
allocation with non-zerd; for all i’'s (e.g., P, = P/N) will result in a higher
objective function. Thus, we can replaBe> 0 by P, > 0. This ensures that all

users will enter the bargaining game.

Next, we show by contradiction that the optimal solutionnated asP* =

(P} -+ PX) satisfiesZiN:1 Pr = P. Assume that the optimal solutid* gives

the utility vectoru* = (u%,u3, - - - ,u’y) and satisfie§ "~ | P¥ < P. Let
N
Ap=P-> P (3.21)
=1
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We consider another power allocation strategy
P' & (P} +Ap, Py, PY), (3.22)

which gives the utility vecton’ = (v} u}, - -- u/y). Itis straightforward to show
thatu’ is in the feasible se$, v} > uj, andu = u} fori =2,.-- , N. Thus this
new solution results in a higher objective function tianh which contradicts

the assumption th@* is optimal. This completes the proof. [ |

Thus, to find the NBS-based relay power allocation, we shealde [3.20).
Define
P£[ P - Py]. (3.23)
We write the Lagrangian function for Problem (3.20) as

pil;
&P+ 1

N N
=Y APi+a (P— sz)- (3.24)
=1 1=1

Here)\; anda are Lagrangian multipliers associated with the inequalitgt equal-

N
L(P,a)2) " Bilog
=1

ity constraints. In[(3.20), the objective function can bewh straightforwardly to

be concave, its inequality constraint functions are conaes its equality constraint
function is affine. Thus[(3.20) is a convex optimization peob. Its first-order

Karush-Kuhn-Tucker (KKT) conditions, which are necessaryg sufficient for the

solution of [3.2D) (see (5.49) on Page 243in[116]) are

8£(P,Oé) o 5@ o
o, &P+ 1P A —a=0, (3.25)

N
~P <0, Y P=P XA2>0, \R=0, (3.26)

i=1

fori=1,---,N.As P, > 0, we have\; = 0 and thus

—1 N
465
(\/1+ - +1> and ;PZ-:P. (3.27)
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Using [3.2Y), we have

2 & 1E.5, b
E;@(’/H . +1> — P (3.28)

It can be shown that when changes from 0 teo, the left-hand-side of(3.28)

monotonically decreases from to 0. Thus,[(3.28) has a unique positive solution
and the solution can be found using bisection megh@hce the optimal satis-

fying (3.28) is found, the NBS-based relay power allocasohution can be found
using [3.27).

3.4 Implementation of NBS-Based Relay Power Al-

location

In this section, we give possible implementations of theoppeed NBS-based relay
power allocation. First, we propose a centralized impletatgn, which requires
no iterations and no computation at the users. But it req@labal and perfect CSI
at the relay. Also, the centralized implementation is basethe assumption that
all computation is placed at the relay and the relay is tragtwy. We then propose
a distributed implementation, which requires only locall @8each user and no

computation is required at the relay.

3.4.1 Centralized Implementation

For the centralized implementation of the proposed relaygo@llocation, the re-

lay, assumed to have global and perfect CSI, computes thebdB&d power allo-

2The range ofx can be set a$0, %). The upper bound oft can be derived as follows. Since

9 —1
& = ¥ > 0andB; > 0, from (19), we have? = 2 o7, 5, <\/1 + LB g 1) <
252N B = L which givesa < L. For the lower bound of, we can set it td) sincea is

nonnegative.
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cation solution proposed in Section13.3 and uses the camelspg power values to
help the users. To get the NBS-based relay power allocatioian, the relay first
finds thea that satisfies (3.28) using bisection method, then finds tA8-Nased
relay power allocation solution using_(3127). For the refayknow the channel
gains from the users to itself;, - - - , fn, training and channel estimations can be
performed. For the relay to know the channel ggifrom itself to Destination,
Destinatior first estimateg;, then feeds the coefficient back to the relay.

With this implementation, we actually assume that the redayustworthy. All
users believe that 1) the relay will not change the paramatees (e.g., the bargain-
ing powers and the CSI) to favor any user, and 2) the relapvalthe NBS-based

power allocation results to help all users in their transimiss.

3.4.2 Distributed Implementation

In practical wireless networks, especially for network#wei large number of users,
it may be impractical to implement the aforementioned NBSda power alloca-
tion in a centralized way at the relay. The reasons are thickeFirst, the central-
ized scheme assumes accurate and complete CSI at the rieiely,lwings overhead
for training, channel estimation, and CSI feedback fromdéstinations to the re-
lay. Second, in the centralized scheme, all computatiaaal Is at the relay, which
may not have high computational capability for many realoek applications or
may not be willing to conduct such computations. Third, imsaapplications, the
users may distrust the relay and are unwilling to have thagyreéing the controller
in power allocation.

To overcome these problems, we propose a distributed gigoto solve[(3.218)
at the users, each having local CSI only, i.e., Usknows f; andg;. Similarly,

the CSI can be obtained via training and feedback channetilé8ito [99/100],
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we implement the distributed algorithm based on the graghiemection of the dual
problem associated with the original probldm (3.20).
The dual problem of (3.20) is:

min D(a), (3.29)

a>0

whereD(«) is the dual function defined as follows:
D(oz)émgx L(P,«a)

N
- ' pil; _ '
~max {Z (5, log N o aR) + aP} . (3.30)

i=1

L(P,«) is the Lagrangian function defined (n(3124). We have showahth= 0,
so the term with\; is omitted.

Note that the summation term P, «) is separable irP;. Define

%%
Fi(P)= max (@ log 57 aa) .

Hence, we have froni (3.80)

N

i P
D(a):; [mlgx <5i log &g . _ aR) + QP}
N
:Z [F;(FP;) + aP]. (3.31)
i=1

Since Probleni(3.20) is a convex optimization problem, balithutheory, if o* is
the optimal solution of the dual problem [n (3120F; (a*), - - - , Py (a*)) calculated
from (3.27) is the optimal solution of (3.20). Therefore, wan focus on the dual
problem [3:2D).

The gradient ofD(«) can be calculated to be:

0D(«)
Oa

N
=P ZB(@). (3.32)



We can now solve the dual problem with the gradient projectizethod [[117]

whereq is adjusted in the opposite directioni%? as:
a(t+ 1) =max {O, a(t) — vaa—D(a(t))}
:maX{O o P— ZP ” (3.33)

wherey > 0 is the step-size.

The gradient projection method generates a sequenceaties:«(0), - - - , a(t),
a(t+1),--- that approaches the optimal solutieh With a constraint on the step
size~, the convergence of the gradient projection method can beagteed, which

is stated in the following theorem.

Theorem 3.1 Let By, = min{3y, - -- By} and|gmax| = max{|gi], -, |gn|}. If
the step-size satisfi@s< v < W for any initiala(0) > 0, the gradient

projection method will converge to the primal and dual ogtipoint, i.e.,

lim a(t) = ", lim P(a(t)) = P (3.34)

t—o00 t—o00 v

Proof: To prove Theorern 311, we first prove the following lemma:

Lemma 3.4 Functions©;(P;) = f;log £ 1 = 1,---, N are increasing,

& P +1 )
strictly concave and twice continuously differentiabléeTcurvatures o®,(P;)

are bounded away from zero on feasibleSet

Proof: To prove Lemma_3]4, we first show that

, B Bi
%) = pernsn "
e!(P) G2+ 0,and continuous

PE&D; + 1)
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&P
Then smcem > 0, we have

Bi(26P+1)  Bil+ ghy)
P2(&P+1)2 PAEP +1)
. B

PP+ 1)

~6(P)=

This completes the proof. [ |

From Lemma 3}, we get that the dual objective function izegnlower bounded,
and continuously differentiable. To optimigg(F;), the equatior®,(F;) = «
must be satisfied. Thug = max{0,©, "'(a)}, where®’ " is the inverse func-
tion of ©,. Then we getag;ff) = max{O,m} From (3.32), we get

9b@) — p SV P(a), and hence

Oa
82D
Z @//
By using Taylor theorem, there exists & [0, 1], such that

9D(0) _aD(B) _ D)
O op %1

(a - 6)7

wherey = ta + (1 — t) . Thus,

‘aD(a) oD () ‘
oo 0B

82D w

Now, from Lemma3.4,

N

‘ Z Z P2( SZP + 1
|@//

=1

AsQi|fi>+1>1,& < |gi]*. We have

Z P glP +1) NP2(|gmam|2P+ 1)
o Bmzn

=1

From the analysis above, we conclude tﬁ%&‘ﬁ is Lipschitz [101] and the Lip-

schitz constant i = NP?(|gmaz|*P + 1)/Bmin- Lety be the step-size. If
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v € (0,2), then any accumulation point* generated by sequenagt) is dual
optimal. We can then follow the same proof statements in][1®&how that

P;(a(t)) will converge to the unique primal optimal poify. [

We now comment on the convergence speed of the distributeiree Using

Tylor’s theorem to% at the optimak*, it can be readily shown that

_aD(a(t) (0°D(a(1)
o) =" = 50 ( o)

-1
) +o(a” — a(t)). (3.35)
Combining thetth and(t + 1)th iterations, we get that around,

ot + 1) N

where$"Y is non-positive (as can be seen from the proof of Lernmha 3.4

i=1 9”(P (@)
in Appendix A). Note thatS determines the convergence speed [101] and a larger

S means a higher convergence speed. So whenny Zi 1 iS positive,

W
a larger step size gives a higher convergence speed. \l\/lae'ﬂziz1 m is
negative, however, oscillation of the gradient projectisethod might occur, which
impedes the convergence speed of our distributed algarithm

We have shown how to get the NBS-based power allocation basgdadient
projection method of the dual problem. Now, we discuss ttstriduted imple-
mentation of the proposed NBS-based power allocation setsed on the above
results.

Assume that each user has local CSl only. In each iteratidgheotlistributed
scheme, Userindividually calculates?;(«) according tol(3.27) and broadcasts this
information to all other users. Then each user updatascording to[(3.33). We

assume that user updates are synchronized. This cycletsap#d convergence.

The distributed implementation is written as Algorithml.3.1
To guarantee convergence, as specified in Thebrdm 3.1ggisige in updating

a needs to satisfy the conditigdn< v < Npguzfl% Thus the users need to
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Algorithm 3.1 Distributed NBS-Based Relay Power Allocation

. itiah _ 1 — Bmin
1: Initialize « and~, e.g.,a = 5 andy = gz, sy -

2: Each user calculateB;(«) according to[(3.27) and broadcasts it to all other
users.

3: Each user updatesaccording to[(3.33). Go to Step 2 until convergence.

KNow f,in @and|gmax| t0 agree on a step siz8,,;, is the smallest bargaining power,

which is pre-determined and known to all users. For the uBRIS10W |gax

a distributed scheme based on timer [102] can be used: eaclstasts a timer
whose value is an increasing function bf|g;|. The timer of the user with the

smallestl/|g;| stops first, then it broadcasts itg

, Which is also|gn.x|- Other
users will hear this signalling and glet..<|- Then the users decide on a step size
inside the interval for convergence, eg+ W.

This distributed scheme based on updatirig) can be seen as “price-based”
power allocation. The parametercan be interpreted as the price per unit power
charged by the relay depending on the requested power fremsiérs, and’;(P;)
defined in [[3.311) represents the maximum benefit that Wsan receive at price
a. Equation[3.38) says that at timeif the total demand_~ | P,(a(t)) is larger
than the available relay powét, the price should be raised; otherwise it should be
reduced.

For the broadcasting af;(«), we can adopt a scheme similar to thatlin|[95]:
For each channel assigned to the users, a portion of thednegband is used as
the guard channel. Since the guard channels are orthogm®ak can broadcast
their power demands simultaneously on these channels. Tageahe error ac-

cumulation problem, we can use error-correcting codes|][b&n broadcasting

Pi(a).
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3.5 Investigation on Bargaining Power Selection

In this section, we discuss the impact of the bargaining pswa the relay power
allocation and show that by proper selection of the bargagipowers, the proposed
NBS-based power allocation can bridge the even power d@iotavhich has the

best fairness, and the sum-rate-optimal power allocatihich has the best global

performance.

3.5.1 Impact of Bargaining Power Selection on Power Alloca-
tion
First, we investigate the effect of bargaining power sé®obn the proposed NBS-

based power allocation. In the following proposition, wewstthat a user’'s bar-

gaining power determines its priority and thus its allodatday power.

Proposition 3.1 If User k’s bargaining powers, is increased while other users’
bargaining powers are either decreased or remain unchanmged power will be

allocated to Usek. °

Proof: We use contradiction to prove this proposition. For a giseiof bargain-

ing powers3y, - - - , By, let (P, -+ Py) be the solution td(3.20), which satisfies
(3.258)-[3.27). From((3.25) and the fact that= 0, we have

b(P) 2 (&P + 1) P, = Ba~t, foralli. (3.37)
Therefore,
V(P B
o) B 39

Now consider another set of bargaining powgfs: - - , 8y with (P] --- Py)
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being the solution td (3.20). For the same reason, we have

V() _ B
= —. 3.39
W) 8 (539
Assume that;, > g, andj; < 3; for all j # k but P, < P,.. We have
B _ Br
= > — 3.40
B B (3.40)

and thus

OB OB o all j # k. (3.41)

(P~ p(P)
Note thaty)(P;) is a strictly increasing function af;,. Sov(P]) < ¢ (P;) due

to the assumption that; < P;. Consequently, froni(3.41), we havéP)) <
Y(P;), and thusP; < P; for all j # k, sincey(-) is monotonically increasing.
Thus,>" N, P/ < SV, P, = Pand(P, --- P}) cannot be a solution t6 (3.20).

This completes the proof. [ |

In this work, we assume that the bargaining powers of usergetermined by
the service provider and they are initiated before the baimggprocess. Proposi-
tion[3.1 implies that we can adjust the NBS-based relay pallecation solution
via adjusting the user bargaining powers. Priorities offsi®an be materialized
with this adjustment. For example, in scenarios where tindcgeprovider aims
to receive the most monetary revenue, larger bargainingepowean be assigned to
users who pay higher price for higher priority. In this wagcarding to Proposition

[3.1, these users will receive more relay power.

3.5.2 Bridging between Global Sum-Rate Optimum and Fair-
ness

In this subsection, we connect the proposed NBS-basedpelagr allocation with

even power allocation, which has the best fairness, anddalgsum-rate-optimal
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power allocation, which has the best global performance. siMav that via ap-
propriate bargaining power selection, the proposed NBdbaolution provides a
balance between fairness and global performance.

In the even power allocation, the amount of power the relfpcates to each
user isP/N. The following proposition is proved.

Proposition 3.2 If
N + P¢;

= N 5
N2+P2j:1§j

the proposed NBS-based power allocation is the same as ewar pllocation. e

Bi (3.42)

Proof: It is shown in the proof of Propositidn 3.1 that with givenrdpgining
powersf;, - - - , v, the NBS-based power allocation satisfies (8.37). With the

value of3; in (3.42), we have

(&P DP 5 N4 PG
&P+ )P, 5, NiPg (3.43)

By observation, we can see that this is true if and onlf,it= P, = P/N for

any, j, which shows that the NSB-based power allocation coincidés the

even power allocation whefy is selected as il (3.42). [ |

Recall that; defined in [[3.4) is the noise forwarding rate of User From
(3.42) we can see that to achieve even power allocation, ranigea larger noise
forwarding rate (whose relay-path has a lower quality) shbe assigned a larger
bargaining power.

The sum-rate-optimal power allocation is the power all@rathat maximizes

the sum-rate of all users in the network. The sum-rate opétian problem of the
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network is as follows

arg mPE}X(ClRD + -+ CnNrp)

N
pil;

N
st. Y B<P. (3.44)
i=1

Using the same techniques as[in (3.25)-(B.28), we can steivtté solution of
(B:42) satisfies,

Qilfi? Qilfil? 2 Qilfi? oi
- (Qi\m|2+1 * 2) N \/(Qiham * 2) +4 (Qi\hiﬁﬂ * 1) (m(QilhiPH) B 1)

Qilfil?
26 (Qi|hi\2+1 + 1)

—Pi:

N
and Y P, =P, (3.45)
1=1

whereq; is the Lagrangian multiplier associated with the equaldgstraint. The
solution to [(3.4b), denoted &% (the superscript ‘0’ stands for sum-rate-optimal),
can be found by first using bisection method to solve the agitim using the
second equation il (3.45), then using the value pin the first equation iN(3.45)
to obtain theP;’s.

OnceP? is found, we can find the bargaining powers that equate the-bizgd
power allocation with the sum-rate-optimal solution as
()

S (P
where is defined in[(3.37). The proof of this result is similar to {@of of

B (3.46)

Propositiod 3.2, thus is omitted.

We would like to note that the representation of the bargaimpiower in [(3.46)
is not in a closed-form but in an implicit form. To find the valy a numerical
bisection method as explain above is required. The purpbdgealiscussion is to
show that through proper selection of the bargaining powees proposed NBS-

based power allocation can achieve the global sum-raiexapt
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In order to better understand how to select the bargainingepofor global
performance, in the following, we use a high SNR approxiorafor further in-
vestigations. One of the widely-used high SNR approxinmetis to neglect the
noise term that is forwarded by the relay, i.%gnm. This approximation
has shown to be sulfficiently tight [73], especially in meditaigh SNR regions,
e.g., when the users are transmitting with a high power, errélay is close to
users. In the following proposition, we give the bargaingoyvers that equate the

NBS-based power allocation with the sum-rate-optimal paallecation.

Proposition 3.3 Let

N
5 = 1. Qilh;> +1  Qilh* +1
N4 piNP piP

(3.47)

For high SNR, if the relay noise is neglected, the propose&Bsed power allo-

cation maximizes the network sum-rate. °

Proof: When the noise at the relay is neglected, the utility of Ussrapproxi-

mated as

SNRipp = piPi + Qilhil*. (3.48)

The disagreement point of Useis the same as ifi (3.9). So NBS is the solution

to the following optimization problem:
N
arg Plrp%v;ﬁ og (piP;)
N
st. ,>0, Y P=P (3.49)
i=1

Using the same optimization techniques[in (8.25)-(3.2&) can show straight-
forwardly that the solution td (3.49) is

PNBS = 3P, (3.50)
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For sum-rate-optimal solution, with the high-SNR approaiion, [3.44) is equiv-

alent to the following problem:

N
arg max 3 log (piF;+ Qilhil* +1)

i=1

N
st. P,>0, Y P=P (3.51)
i=1

Again by using the KKT conditions, the solution is

N
P Qilhi>+1  Qilh> +1

P’=—+ (3.52)
N =1 PjN Pi
When3; is defined as in(3.47), we have
PNES — po, (3.53)
[ |

We can see that the first two terms [n_(3.52) are the same farsells. So
the last term is the dominant factor in the bargaining poveégction in achieving
global sum-rate-optimal. Recall that defined in [(3.b) is the signal forwarding
rate of Useri. (3.47) shows that for global optimum, a user with a larggnai
forwarding rate (whose relay-path has a higher qualityushbe assigned a larger
bargaining power. This has the opposite trend as the eveerpalocation case.
The other coefficientQ;|h;|* + 1) in the last terms relates to the direct link and is
independent of the relay link.

Based on the above discussions, for networks with differequirements, we
can adjust the NBS-based relay power allocation toward éljairements by ad-
justing the bargaining powers. For example, in a networkgmesf the global
sum-rate-optimal power allocation is desired, users whelsg-paths have higher
guality should be allocated more relay power. With the pegaoNBS-based power
allocation, we can obtain good network sum-rate by assgglarger bargaining
powers to such users. On the other hand, if fairness is thermaicern, we can as-

sign larger bargaining powers to users whose relay-patresibever quality. Those
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users can thus obtain more relay powers to ensure a cert@inotequality, which
helps the fairness consideration of the network. But thigrovied fairness is at the

cost of lower network sum-rate.

3.6 Simulation Results

In this section, we show the performance of our NBS-basedep@aflocation so-
lution and compatre it with the sum-rate-optimal solutidre even power solution,
and the rate-fair solution. The sum-rate-optimal soluigthe relay power allo-
cation that maximizes the network sum-rate while fairnessot considered. With
the even power solution, the relay power assigned to eachug¥N. It has the
best fairness in the sense of power. The rate-fair soludhe relay power allo-
cation that makes all users in the network have the samevatiigerate. It has the
best fairness in the sense of achievable rate. It is not alywagsible, depending
on the values of the channel coefficients. We compare fowanpeters: network
sum-rate, individual achievable raig the normalized-rate-difference, which is de-
fined ask{[max;(vy;) —min;(v;)|/maz;(7;)}, and the normalized-power-difference
E{[maz;(P;) — min;(P;)|/max;(P;)}. A smaller normalized-rate-difference (or
normalized-power-difference) indicates a fairer solutidOther fairness metrics,
e.g. Jain’s fairness indekx [104], show the same performamcal. Two chan-
nel models are considered: Rayleigh flat-fading channedsséatic channels with

path-loss only.

3.6.1 Rayleigh Flat-Fading Channels

For the Rayleigh flat-fading model, the channel gaifish;, andg, are modeled
as independent and identically distributed (i.i.d.) ramdeariables following the
distributionCA/(0,1). We consider a three-user network and all users have the

same bargaining powef}; = g, = 3 = 1/3. The transmit power of each user is
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Figure 3.2: Sum-rate, normalized-rate-difference, andmatized-power-

difference of a three-user relay network with Rayleigh fgdchannels.

set to bel0 dB. The relay power constraift s in the range of to 30 dB. Since for
this channel mode, rate-fair solution is not always possithie proposed solution
is only compared with the sum-rate-optimal and the even psa@tions.
Figure[3.2 compares the average sum-rate, normalizedifééecnce, and nor-
malized-power-difference of the sum-rate-optimal solutieven power allocation,
and the NBS-based power allocation. For even power allmtats the relay al-
locates the same power to all three users, the normalizegpdifference i),
thus is not shown in Figuifle 3.2. It can be seen that in the sitedlpower range,
the sum-rate difference between the proposed NBS-baseth@sdm-rate-optimal

solutions is withind%, while it is within 14% between the sum-rate-optimal and
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the even power solutions. The proposed solution is aldodB superior to the
even power solution in global sum-rate performance. Froenntirmalized-rate-
difference, we find that our NBS-based solution has simige-fairness to the
even power solution and is fairer than the sum-rate-optsoéition. From the
normalized-power-difference, we find that our NBS-basddtem is fairer in the

sense of power than the sum-rate-optimal solution.

3.6.2 Static Channels With Path-Loss Only

In this section, we consider a static network whose chararelgnly related to the
path-loss, which is inverse proportional to the distanaeased. The network has
two users, one relay, and two destinations. The relativéipos of the nodes are
shown in Figur€ 313, where the coordinates of UséJser2, the relay, Destination
1, and Destinatior2 are (-9, 0), (-3, 0), (0, 0), (7, 12), and (13, 0), respectivel
Thus, User has a better relay channel. The transmission power of beits @se
20 dB, and the relay power constraiftranges fron20 dB to 30 dB.

To investigate the global network sum-rate, the fairnesd, the effect of the
bargaining powers on network performance, we show the iddal achievable
rates of the users (in Figure 8.4), network sum-rate, anddh@alized-rate-differe-
nce (in Figuré_3)5) under the proposed solutions with twedéht sets of bargain-
ing powers: 3, = 0.3,8, = 0.7andp; = 0.7, 5, = 0.3. For comparison, the
individual achievable rates under the sum-rate-optimiatsm and the rate-fair so-
lution are also shown. As the achievable rates of the two asethe same for
the rate-fair solution, the normalized-rate-differense for this scheme and is not
shown in Figuré 3J5.

Comparing the two NBS-based power allocation schemes ifiterent bar-
gaining powers, we can see from the two figures that a useesha higher rate
with a larger bargaining power, and the bargaining powerbEmatuned to gain the

desired balance between the global network sum-rate amddndl rate-fairness.
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Figure 3.3: A two-user relay network with static channels.

When User, who has a better channel, is assigned a higher bargainimgrpthe
NBS-based solution emphasizes more on the network sunamdtallocates more
relay power to Use?. In Figure[3.4 and 315, the sum-rate performance of the NBS-
based solution witl#; = 0.3, 3 = 0.7 is very close to that of the sum-rate-optimal
solution. In this case, Usdr, with a worse channel, experiences low achievable
rate, which is37% to 50% of the achievable rate of Usr On the contrary, when a
larger bargaining power 0.7 is assigned to Usehe NBS-base solution allocates
more power to Uset, and the performance is closer to the rate-fair solution. In
this case, the network sum-rate is reduced% of that of the sum-rate-optimal
solution whenP is small and3% whenP is large. The normalized-rate-difference
justifies the above-mentioned analysis, which shows tha&@4dBsed solution with
B1 = 0.7, By = 0.3 is fairer in the sense of rate than the other two schemes.

To further illustrate the effect of the bargaining powersietwork performance,

we show the network sum-rate, normalized-rate-differeand normalized-power-
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Figure 3.4: Achievable rates of a two-user relay networkwstatic channels.

difference in Figuré 316 under the proposed solution with llargaining power
of User1 changing from0 to 1. We consider three relay powergs dB, 30 dB,
and35 dB. Other network conditions are the same as the static metsimwn in
Figure[3.B. Whens;, = 0 or 5, = 1, all relay power is allocated to Usé@ror
Userl, so the normalized-rate-differencelisFor the three different relay powers,
network sum-rate is maximized at approximatgly= 0.25. After that, we can see
a reduction in the network sum-rate@sncreases, which verifies the conclusion in
Sectiorf 3.5.2: by assigning a larger bargaining power ta Pséhich has a higher
signal forwarding power, the solution approaches the sateroptimal solution.
For fairness in the sense of both rate and power, the noretatiate-difference and

the normalized-power-difference decreasesasicreases until rate-fair or power-
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Figure 3.5: Sum-rate and normalized-rate-difference af@user relay network

with static channels.

fair is achieved. For® = 25,30, and35 dB, whens, = 0.6,0.64, and0.675,
the proposed NBS-based power allocation becomes even @abweation. These
values off3; are the same as been calculated with Propoditidn 3.2. Thiseseour
claim in Sectiom 3.5]2 that on the contrary to sum-rate optmpower fairness can
be approached by assigning higher bargaining power to Usdrich has a larger
noise forwarding rate, and thus lower quality in the relathp&imilar to power-
fairness, for rate-fairness, the user with a higher noisedading rate should be
assigned a higher bargaining power. For= 25,30, and35 dB, rate-fair power
allocation can be achieved using the proposed NBS-basedrmdiecation when

B1 =0.9,0.95, and0.97, respectively.
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Figure[3.7 illustrates the convergence of the distribuédalyrpower allocation.
In this simulation, the relay power is set to &dB, the bargaining powers of the
two users areg; = 0.7, 5, = 0.3, and all other network settings are the same as the
network in Figuré 313« is initialized as).1. We can see from Figufe 3.7 that the
proposed distributed scheme converges &ftearations and similar performance is
verified with different initial values of.

To further illustrate the convergence performance of trappsed distributed
relay power allocation, we show the network sum-rate of g-figer single-relay
network in Figurd_3J8. In this simulation, the relay powesé&t to be30 dB, the

bargaining powers of all users are the sarig). The transmit power of all users
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Figure 3.7: Convergence of the distributed NBS-based pal@cation algorithm

in a two-user relay network.

are10 dB. We generate one realization of the Rayleigh flat-fadimngnoels.« is
initialized as0.01. We can see from Figufe 3.8 that the proposed distributezhseh

converges after( iterations.

3.7 Extension to Multi-User Multi-Relay Networks

In this section, we discuss the extension of our work to ruger multi-relay net-
works where users can receive help from multiple relaysuAesthat there aré/
users and? relays as shown in Figufe 3.9.

Assume that the relays also use orthogonal channels. Démotdhannel gain
from User: to Relayr asf;., and the channel gain from Relayo Destination as
gir. Denote the power constraint of Relayas P") and Relay- uses power’;, to
help Useri. So the power allocation for all users from all relays can &eaded as
a matrix{ P, }, where the row index is the user index and the column indexds t

relay index. Denote the vector that contains the power afioo from all relays for
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User: as

PZ' = [—Pib —P7;27 T 7~P7;R]T7 (354)

and the vector that contains power allocation of Relégr all users as
P" =[Py, Py, -+, Pn,]". (3.55)

Define the noise forwarding rate of Usieait Relayr as

6 Y ‘gir|2 (3 56)
TQilfuP+
and the signal forwarding rate of Useat Relayr as
£ g2
é Qz‘fzrgzr‘ (3.57)

Pir 7 o . -
Qilfirl? + 1

Other assumptions and notation are the same as the sitayecese.
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Figure 3.9: A multi-user multi-relay network.
With maximum ratio-combining, the received SNR of Useitransmission is
SNR;rp = Z Z P + -+ Qilh 2. (3.58)
Similarly, define the utility of User as:
u;(P;) £ SNRigp. (3.59)
Denote the minimum utility that Useérexpects as
U0 = Qz‘|hz‘|2-

Similar to the single-relay case, to use the NBS-based paligration, we first

need to prove that the feasible set

81\/[ é { (Ul

iS convex.

V|2 >0, ZPZT<P 7’:1~-~R} (3.60)

Lemma 3.5 Given the utility function; (P;) in (359), the feasible s& in (3.60)

iS convex.
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Proof: Given{z;.} as a feasible power allocation matrix whetg is the power
allocation from Relay to Useri, denote the power allocation vector at Retay
for all users as

x(M) — [xn .. -er]T,

and the power allocation vector for Usdrom all relays as

Xi = [%1 e 'IL”z'R]T-

Similarly, we define another power allocation matgix. The corresponding
power allocation vector at Relay for all users will bey™ and the corre-
sponding power allocation vector for Useffrom all relays will bey;. To
prove thatS™ is convex, we need to show that given two arbitrary power al-
location matrices{x;.} and{y;.} and the corresponding utility vectors =
[u1(x1), ua(x2), -+, un(xy)]" andv = [ui(y1), ua(y2), - ,un(yn)]” in the

feasible ses™, we havedu + (1 — 0)v € SM forany0 < 6 < 1.

Note that
P11T11 . PIRT1R
g (Xl) &11x11+1 + + §1irT1r+1 + U1,0
pP21T21 . P2RT2R
u= U2<X2> — §a1w21+1 + + &arxar+1 T 42,0 (3 61)
_PNITN1 ... 4 _PNRINR
_UN(XN>_ RIGEIS R + + ENRTNRT1 - UN,O_
P11T11 PirPIR
&r1w11+1 &1rP1R+1 U1,0
p21%21 p2rP2R
S —— P U2.0
_ §21m‘21+1 bt 521P?R+1 + ‘ (3.62)
PN1ZTN1 PNRPNR U
_§N1:(:N1+1_ _£N1PNR+1_ L N’O_
=f' (xV) + £ (x@) + - + £7 (x7) + u,, (3.63)
where
T
£ (P(r)) 2 Pirir - PNrLNr , (3.64)

glrxlr + 1 gerNr + 1
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forr =1,---, R. Similarly, given the power allocation matrdy;, }, the corre-

sponding utility vector is
v="f(yO)+ £ (y?) + -+ £ () 4 u,. (3.65)
Therefore, we have

fu+ (1 —O)v =[of* (x) + (1 — O)F" (y")]
o+ [QfR (XR) + (1 — )" (yR)] +u,. (3.66)

Note that{f" (P™)) + ug| P, > 0, SN, P, < PU } is the feasible set of a
network with a single relay, Relay. It is proved to be convex from Lemma
[B.1. Therefore, for any Relayand any) < 6 < 1, we can find another power

allocation vector ™ with z;,. > 0 andzl L Zir < P) such that
7 (z) = of" (x")) + (1 — O)f (y). (3.67)

Combining the power allocation vectofg™} for all relays, we can find the

feasible power allocation matri;, } such that
fu+ (1 —0)v=Ff" (z1) + £ (z) + .- + 7 (27) + uo € SM. (3.68)
This completes the proof. [ |

In addition, Lemma&3]2 is also valid for the multi-relay cabat is, there is at least
one point inSM with u; > wu; foralli = 1,--- , N. This can also be shown by
construction. Consider the even power allocation = P /N. Sinceu; is an
increasing function of’,., we haveu; > u; o under even power allocation.
Therefore, the asymmetric NBS for the multi-relay netwarkhe solution of

the following optimization problem:

arg | max Zﬁllog (Zg JZ +1>

st. P, >0, ZPM = P, (3.69)

i=1
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This is a convex optimization problem and can be solved efiity using stan-
dard convex optimization techniqués [116] when centrdlingplementation is pos-
sible.

To implement the distributed NBS-based power allocatioa,can follow the
same technique in Sectién 34.2. First, we write the Lageamfyinction for [3.6D)

as

pzrpzr
{PZT} Z 5Z log ( =1 SZ,»PZT + 1)
i=1 r=1 =1

Here)\;, anda= [y - - - ag| are Lagrangian multipliers associated with the inequal-
ity and equality constraints. Same as the analysis of thglesielay networks in
Sectiod3.32, we have, = Oforalli=1,--- ,Nandr =1,---RasP, > 0.

Then, similar to the analysis of the single relay network @ct®n[3.4.2, the
dual problem of[(3.69) isming>o D (&), where D (&) is the dual function de-

fined as

DM(a )—I{r]gg>}<£({1%r} a)

R N
‘E%i}f{z@ e (Z g,réirﬁ) 2o (ZPW—P“”’)}

+3 ", PM 3 (3.71)

\ SR (P;) J
As explained in the single-relay case, the equalityin (Bhtllds since the sum-
mation term inC({ P, }, @) is separable if;.

The gradient oD (a) is

aDM (&)

N
_ pl) _ (= ...
T P ; P.(@), r=1,--- R, (3.72)
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where{P,.(a@)}, is the maximizer of";(P;) in (3.71) for a givenw. SinceF;(P;)
is a convex function{ P, (@)}, can be calculated with standard convex optimiza-
tion techniques.

The dual problem can be solved with the gradient project otettherex, can

be adjusted in the opposite directionﬁ%ﬁf—&) as:

a,(t + 1)=max {0, a,(t) —

=max {0, a(t) —

} . (3.73)

Similar to Theorem 1, we can show that the gradient projaati@thod con-

verges to the primal and dual optimal point for all relay$# step-size satisfies

2Bmin

0< < . (3.74)
NP> (|gi|2P0) + 1)
Here,
|gr(r7;2)mx| = max{|glr|> ) |gN7”|}' (375)

Assume that each user has local CSl only. In each iteratigheoflistributed
scheme, Uset individually calculatesP,. (@) (for » = 1,-- -, R) and broadcasts
this information to all other users. Then each user updatexcording to[(3.73).
This cycle repeats until convergence. The distributed @mantation of the NBS-
based power power allocation for multi-relay networks cansbmmarized as in
Algorithm[3.2.

Figure[3.10 and Figuife 3.111 show the performance of the gegpsolutions in
two-user three-relay networks with Rayleigh flat-fadinguchels and static chan-
nels, respectively. We also compare the proposed solutigtiisthe sum-rate-
optimal solution and the even power solution. We assumetlieatiwo users have
the same bargaining powet; = 5, = 1/2.

For the Rayleigh flat-fading model, the channel gaifas,h;, andg;,., are mod-

eled as i.i.d. random variables following the distributi@N (0, 1). The transmit
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Algorithm 3.2 Distributed NBS-Based Relay Power Allocation for Multi{Re

Networks
. itiah _ L — Bmin —
1: Initialize o, and~,, €.9.,c, = 557 andy, = NP o) EPOTD) for r =
1,--,R.
2: Each user calculateB, (o) (for » = 1,---, R) that maximizesF,(P;) in

(3.71) and broadcasts this information to all other users.

3: Each user updatés according to[(3.73). Go to Step 2 until convergence.

power of each user is set to e dB. The power constraints at all relays are the
same and are in the range @to 30 dB. Figure[3.ID compares the average sum-
rate and normalized-rate-difference of the sum-ratenugitisolution, even power
allocation, and the NBS-based power allocation. It can lea $leat the proposed
solution is abou? dB superior to the even power solution in global sum-ratégper
mance. From the normalized-rate-difference, we find thalNBS-based solution
has similar rate-fairness to the even power solution andgiisrfthan the sum-rate-
optimal solution. This verifies our conclusion for the smgélay case in Figure
B.2.

For static channels with path-loss only, we add two moreyeeta the system
setup in Figuré_3]3 at (0, 1) and (0, -1), respectively. Thadmit power of both
users is set to b&) dB. The power constraints at all relays are the same and in the
range of0 to 30 dB. Figure[3.1ll compares the network sum-rate and norntalize
rate-difference of the sum-rate-optimal solution, evewgoallocation, and the
NBS-based power allocation. From Figlre 3.11, we can sadhbaum-rate per-
formance of the NBS-based solution is very close to that@stim-rate-optimal so-
lution. The normalized-rate-difference of NBS-based sofuis fairer in the sense
of rate than sum-rate-optimal solution and has similarggarance as even power

allocation.
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3.8 Conclusion

In this chapter, we consider a multi-user single-relay l&ge network, and con-
duct the game-theoretic analysis of relay power allocatioong the users. We
propose an asymmetric NBS-based power allocation solutwere each user is
assigned a bargaining power indicating its transmissiaripy. We first proposed
a centralized algorithm to implement the NBS-based powecation at the relay.
Then, to improve the scalability of the proposed scheme, noeige a distributed
algorithm for the NBS-based power allocation and its cogeece conditions are
provided. We show that bargaining powers can be adjustecctanamodate differ-
ent requirements in different applications. After that,gemeralize our NBS-based
power allocation solution and its distributed implemeiotato multi-user multi-
relay networks. Simulations are conducted to compare tbpgsed NBS-based
power allocation with the sum-rate-optimal power allocafithe even power allo-
cation, and the rate-fair power allocation. We find that theppsed NBS-based
scheme has better sum-rate than even and rate-fair powentdin and is fairer
than the sum-rate-optimal solution. Via simulation, weasmonstrate the impact
of the bargaining powers on the proposed relay power allmtablution. We show
that the proposed scheme can bridge the sum-rate-optimar@dlocation, which
has the best global performance and the even power allo¢atitich has the best

fairness, by proper selection of bargaining powers.

68



™~
&

\l

o
a1

Network sum-rate (b/s/Hz)

6 —O6— Sum-rate-optimal| |
. —+— NBS |
' —A— Even
k 1 1 1
= 0 5 10 15 20 25 30
<0.14 - - - - -
% 5 —O— Sum-rate-optimal
£ 01 —A— Even
@
[
L1006
Qo
= D
£ 002 ' ' ' ' ' .
270 5 10 15 20 25 30

Relay Power (dB)

Figure 3.10: Sum-rate and normalized-rate-differencetafoauser three-relay net-

work with Rayleigh fading channels.
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Chapter 4

Power Allocation and Pricing in
Multi-User Relay Networks Using

Bargaining and Stackelberg Games

In this chapter, we study the power allocation problem intiruder relay networks
with relay cooperation stimulation. We aim at finding theiot relay pricing
strategy and a fair power allocation corresponding to it. (W&e the Stackelberg
game to model the interaction among the users and the rel&tackelberg game
formulation, followers are normally modeled as non-coagiee players[[122]. In
this chapter, to get a fair relay power allocation among #$&rs; we use bargaining
theory to model the negotiation among them and use KSBS fay mower allo-
cation. Based on the proposed fair relay power allocatide, the optimal relay
power price that maximizes the relay revenue is derivedysinally. Simulation
shows that the proposed power allocation scheme achiegegsrinetwork sum-
rate and relay revenue than the even power allocation. &umtbre, compared with
the sum-rate-optimal solution, simulation shows that tteppsed scheme achieves
better fairness with comparable network sum-rate for a \naage of network sce-

narios. The proposed pricing and power allocation solgtime also shown to be
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consistent with the laws of supply and deand.

4.1 Introduction

As introduced in Sectioh 1.4.2, the payment-based schertie iprimary mech-
anism for cooperation stimulation in multi-user relay netks. In this chapter,
we consider an AF multi-user single-relay network. We usepghicing mecha-
nism where the relay gets paid for signal forwarding and gexsipay for the relay
service. We model the interaction between the relay and $kesuas a two-level
Stackelberg game, in which the relay is the leader and setsrti power price for
the relay service, and users are the followers where eachdesales how much
power to purchase from the relay. This work is different frf88,[87+91] in the
network and channel models. Compared with [86], this wonksaders the relay
power allocation among users, instead of the user powerapand also the relay
power competition among users is modeled as a cooperatigaibhang game. For
the relay power allocation, KSBS is used for fairness. Thegvallocation prob-
lem is transformed into a convex optimization problem. Witk KSBS-based relay
power allocation, We analytically find the optimal relaygarithat maximizes the
relay revenue. From our simulations, compared with the sateroptimal power
allocation, the proposed KSBS-based power allocationierfand achieves close-
to-optimal sum-rate for a wide range of network scenari@sn@ared with the even
power allocation, the proposed KSBS-based power allacatihieves higher relay
revenue and network sum-rate. It is also shown via simulattbat the proposed
relay pricing and power allocation solutions are consistgth the laws of supply
and demand.

The rest of this chapter is organized as follows. Se¢fioidszribes the Stack-

A version of this chapter has been published in IEEE Transaston Vehicular Technology, 61:

3177 - 3190 (2012).
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elberg game and bargaining game models for the relay priantrelay power
allocation problems. In Sectidn 4.3, we analyze the relaygogricing and power
allocation problems. The optimal relay price is solved wtiedlly, while the re-

lay power allocation is transformed into a convex optimaatproblem. Section
[4.4 discusses the properties of the proposed solutionshairdbssible implemen-
tation. We discuss the applications of the proposed sl its extensions to
multi-user multi-relay networks in Sectidn #.5. Simulaticesults are shown in

Sectior4.6. In Sectidn 4.7, we give the conclusion of thigtér.

4.2 Game Models for Relay Pricing and Relay Power

Allocation

We consider the same system model as described in Séctionh@&i2 N users
communicate with their destinations with the help of onayelWe use the same
notations and transmission protocols as in Se¢tioh 3.2 effkeetive received SNR
of Useri’s transmission with and without the help of the relay aresgiin (3.6) and
3.1) respectively.

In the remaining of this section, we elaborate the relay pgweing and re-
lay power allocation problems, and propose the game thealehodels for the
problems using a Stackelberg game and a bargaining game.

For the game theocratical modeling of the selfish behavith@tsers and the
relay, our goal is to find a fair power allocation among theasis@d the optimal re-
lay pricing strategy. We use the Stackelberg game to modehtkraction between
the users and the relay, and the bargaining game to model&yepower allocation

among the users, which, as explained in Sedtioh 2.2, is aaldit
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4.2.1 Stackelberg Game Model for Relay Pricing

We consider the relay as the leader of the Stackelberg gamaetk the price of its
power in helping the users. The key point of the relay prigage is for the relay
to set the price to gain the maximum revenue. The relay reyatenoted asy, is
the total payment from the users. We use a simple pricing imdassuming that
the relay revenue is linear in the amount of power it seks, i.

N

up =) AP, (4.)

i=1
where\ is the normalized unit price of the relay power afds the power the relay
uses to help User We consider the users as followers of the Stackelberg gaate t

react in a rational way given the unit price of the relay power

4.2.2 Bargaining Game Model for Relay Power Allocation amog

Users

We use the bargaining game to model the cooperative iniensatnong users. That
is, we assume that users make agreements to cooperatieety thie relay power.
A key point of formulating the users as selfish players in gydaing game is to
design the utility function, which should reflect both theality-of-service and the
payment-for-service of users. Its physical meaning carhbééenefits received by
the users. In this work, we seek to design an appropriatgydtihction that is not
only physically meaningful, but also mathematically attiee to ensure tractability
and convergence.
We define the utility of Usei, fori =1--- N, as

w2 QiP|figil”
" PlglP+Qilfi?+1

+ Qilhl* = AP, (4.2)

which, for a given network scenario, is a functionff the power the relay uses to

help Useri. The first two terms of (4]2) correspond to the effective neak SNR
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of User: given in (3.6). The last term P, represents the user’s normalized cost in
purchasing the relay service. If Usedoes not buy any power from the relay and
uses the direct transmission only, i.8,,= 0, its utility is the minimum utility that

Useri expects. Thus

Ui 0 = Qz|hz|2 (4-3)

4.3 Relay Power Allocation and Pricing Solutions

In this section, we analyze the above Stackelberg game agdibang game models
to find the optimal relay power pricing and a fair power alkbmaamong the users.
We solve the power allocation and pricing problems jointgmng the backward
induction method [71]. That is, we first solve the user ganee, the relay power
allocation among the users for a given price of the relay potien solve the
relay game, i.e., the optimal price of the relay power, bamedhe derived user
bargaining strategy. The user game and the relay game anelftted and analyzed

in the following two subsections, respectively.

4.3.1 Relay Power Allocation Based on KSBS

The user game is to find the relay power allocation among thesdsr a given unit
power pricex. We use the bargaining game as described in Selction 4.2a2fér
power allocation. Specifically, we look for the KSBS of thedmaning game, the
background of which is provided in Section 212.4.

We first calculate Usei's ideal utility u! of a given\. To maximize its utility,
Useri’s goal is

mI?JX’UJi S.t. U; 2 Us,0, 0 S PZ S P. (44)

7

The first constraint i (414) ensures that Usgets no less utility than;, o, which is
its utility when it receives no help from the relay, i.€;,= 0. The second constraint

ensures that the power demand of Usdoes not exceed the total power budget
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of the relay. Given a relay power price, this optimizatioolem can be solved

analytically and the result is given in Leminal4.1.

Lemma 4.1 Define
Qi|fi9i|2
Qilfil? +1

Giventhe unit relay power pricg the ideal power demand of Usghat maximizes

its utility u; in (@.2) is:

b 2 (4.5)

0 it A >b
]2 -2
P/(\) = %%4%—;wufb>A>b@UP+Q (4.6)
-2
P it A<b (e +1)

The ideal utility of Useri is

-2
W) = QAR = A +use Th > A>b (B 1) (@47)
-2
b; P ,
@t — At uio ”A<b<QUP+Q

Proof: From (4.2), we have

o7 =" (airr “)_2” o
2 2\—172
o = G T -
Thus
gg<07 (4.10)

which means that; is a concave function aFf;.

When\ > b;, S5 < 0 forall P, > 0 as[(Qlfil*)~'b:P + 1] > 1. Sou;

is a non-increasing function df; and its maximum is reached & ()\) = 0.

-2
When\ < b; <Q ek 1) , g;g% > 0 forall P, < P. Sou; is a non-decreasing
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-2
function of P, andP/()\) = P in this case. Wheh; > \ > b; <% + 1) ,

u; reaches its maximum wheg = 0, i.e.,

Qs 1l
h==r (\/X \/b—i)-

This proves the ideal power solution [n_(4.6). The result§lifl) shows thab;
is the price above which Useémwill not purchase any relay power. Using this

solution and the equalitiels (4.2) and (4.3), we can obtandbal utility for User
iin (4.2). [ |

From Lemmd4]1, we see th& ()\) is independent of Usefs direct link h;.
Intuitively, this is because the contribution of the dirkkck to User:’s receive SNR
and utility is fixed and keeps unchanged for any amount of/rptaver that Usei
obtains.

Lemmal4.1 also shows that when the price is too high, Casel[dL@), User:
will not buy any relay service. When the price is too low, Case (4.6), User
wants to purchase all relay power to maximize its utilityr #e price range shown
in Case 2 in[(4)6), Userasks for part of the relay power that gives the ideal balance
between its SNR and its payment to maximize its utility. Téheal power demand
of User: depends not only on the relay power price, but also on its poasstraint
Q; and the quality of its local channefs andg;. Theb; defined in[(4.5), whose
value depends on Usés condition only, is an important parameter. As shown
in (4.8), it is the price above which Uséwill not purchase any relay power. In
addition, it also affects how much power a user asks for igesVe can seé; as
a quality measure for Userto some extent. For any two users, Usemnd User
J, assume tha; > b,. We can see that if Uséris not allocated any relay power,
which happens wheb, < A, User; will not be allocated any relay power either
because it$; is smaller. Also, for a given pricg, increasing the&); and|f;|? of
Useri will increaseb;, which then results in higher or the same relay power demand

from User:. This is shown in the following lemma.
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Lemma 4.2 Given a relay power pricg, P/()) is a non-decreasing function 6%,

and| f;|*.

)
Proof: From [4.6), we get, whely > \ > b; (Q?T;ZIQ + 1) ’
Qil fil? b
PI()\) = ~ 1
i ()\) bi A

@im\m\/ o
|9i[? AL+ 1/(Qil fil?)] 7

which is a non-decreasing function @f and|f;|* for a given\. For the other

-2
two price ranges, wheh > b; P/(\) = 0; and when\ < b; <% + 1) :

PI()\) = P. So, in all price ranges,

I(\) = max |0, min Qilfil’ +1 l9:[* -
Pl()\) = [0, < 192 {\/)\[1+1/(Qi|fi|2)] 1}7P>

max andmin are also non-decreasing functions. So we concluderthgt) is

a non-decreasing function 6f; and| f;|?. [

To find the KSBS of the user bargaining game, without loss okegality, we

assume that the users are sorted in descending order obthelues, that is
by > by >--->by. (4.11)

With the given price), for users satisfying;, < ), as shown in Lemma 4.1, their
ideal power demand is 0, thus do not enter the game.
Let L(\) be the number of users satisfying> \. That is, with the ordering in
@.11), assume that
by > A > broy4a- (4.12)

The first L(\) users will participate in the bargaining game and purchiaseelay

service. Given\, to find the KSBS-based power allocation of theé\) users is
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equivalent to solving the following optimization problei#?]:

max k
Py
bi P
ST — AP
st (Qilfil?) Ib@PL+1 — K,
Ui — ui,O
L\ ] 1
and P<P 0<P<Qlfil’l=—=), 4.13
; < Qilfi ( 3 bﬁ_) (4.13)

whereu! andu; o are the ideal and minimal utilities of Usér Their values are
given in [4.T) and[{4]3) respectively. The second constinif@.13) is due to the
total power constraint of the relay, and the last constiaitd ensure the feasibility
of the solution and is derived from rewriting > v, o.

In the proof of Lemma 4]1, we have shown thatis a concave function of
P,. Also,u; = u;o whenP, = 0 or P, = Q;|f;|*(1/X\ —1/b;), andu; reaches
its maximumu!(\) when P, = P/()\). An example ofu; as a function ofP;
is given in Figurd_4]1. It can be shown from the definition[irj4that for each

u € (uio,ul(N)), there are two possible choicesBfthat satisfyu; () = w in the

(o (1-1)).

One is in the rang¢0, P/(\)], and the other is in the range

[Pf(M,Qim-P (% _ bl))

Thus we can shrink the feasible regionfffrom (0, Q;|fi|* (1/X — 1/b;)) to either

range

one of the smaller regions. We choose the first region for easons. First, for the
sameu; value, this choice results in a smallérthan choosing the second region,
and the users prefer to buy less power to gain the same utigcond, smaller

power consumption for each user saves relay power, so mers 0an be helped.
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=P
Figure 4.1: Concavity of the utility function.
With this choice,[(4.113) becomes
max k
Py
b: P;
e — AL
st (Qilfi?) Ibsz+1 — K,
UZ- — Ui,o
L(X)
and Y B <P 0<PF <P (4.14)
i=1

To solve this optimization problem, we prove the followiregima.

Lemma 4.3 The relay power allocation problem in(4114) is equivalentte fol-

lowing max-min problem:

b P; —\P
: il fil?) "1 P v
maXmln{ (AR 1 },

1

P; i U; — U0
L)
st. > PB<P 0<P <P\ (4.15)
=1

Proof: First we use the notation

ilfil?) "1 Py ¢
du(Py) & B (4.16)
i 7,0
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To prove this lemma, it is sufficient to show that the powews@kion solution in

(@.15), denoted &Py, - - - , P},,,), satisfies

PL(Pr) = =Yy (Proy)- (4.17)

We prove this by contradiction. Without loss of generaktysume that

YL (Pr) < aba(Py) < min{yz(Py), -+ Yoy (Proy)}- (4.18)

Thus,
max min ¢;(F;’) = 11 (P7). (4.19)

[3

Sinceyy (P1), o (Py) are increasing and continuous functionsiaf P in the
feasible region given in_(4.15), there exists a small enquagitivee such that

Py + €, Py — e are still in the feasible region and
Di(PY) < u(P 4 €) < ha(Py =€) < 1a(Fy).

The new power allocatio + €, P53 — €, Py, .-+, P} ,)) satisfies all power
constraints in[(4.15). Its max-min valueds(P; + €) which is larger than the
max-min value of the solutio’;, - - -, P’} ). This contradicts the assumption

that(Pr, -+, Pj,,) is optimal, thus completes the proof. [

(@.18) is a convex optimization problem and can be solvedieffily using
standard convex optimization techniques [116]. We callsthietion of [4.1b) the
KSBS-based power allocation. Recall thafin (4.15), ong/th\) users whoseé;’s
are larger than the relay priceparticipate in the game. The remaining— L(\)
users request no relay power.

In the game theoretical model inh_(4115), the power condtratirthe relay is
taken into consideration. For any relay pricef4.13) will result in a feasible power
allocation among users, i.e., the total power demandedeoygbrs does not exceed
the relay power constraint. Without the game theoreticalehaf, for example, for

a given price, the users request their ideal relay powersatonmze their individual
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utilities, it may happen that the total power demand of thersigxceeds the relay
power constraint, which is infeasible. With the proposed&hased relay power
allocation, when the sum of the ideal power demands of alisudees not exceed
the relay power constraint, the users will be allocatedrtigkeial powers, in which
case/ in (4.14) reaches its maximum 1; when the sum of the ideal pdemands
of all users exceeds the relay power constraint, the prapSBS-based power
allocation will allocate all relay power to the users fairlyhis is shown in the

following lemma.

Lemma 4.4 For afixed), let the ideal power allocation of Usébe P/ (), which
is given in [4.6); and let the KSBS-based power allocatio®f¢\) (K stands for
KSBS). Wheny_“V PI()\) < P, we have

PE() = PV, (4.20)

2

when> X pI()) > P, we have

L))
> PN =P (4.21)

Proof: Again, we use the notation; (P;) in (4.18). With the new feasible region
of P, in (4.18),«;(P;)’s are increasing functions and reach their maximum 1
whenP; = P!(\). Thusk € [0, 1] and achieves the maximuin= 1 if and only

if S/ PI()\) < P, that is, when all users can reach their ideal utilities with

feasible relay power allocation. In this cagd{ (\) = P/(\).

If Zf:(i) PI(X\) > P, not all users can reach their ideal utilities and thus 1.

From the equivalent forni (4.14), actually no user can reecideéal utility. That
is, PX(\) < P/(\). Suppose thaf X" PX(\) < P. Definec as

Py PEA) K I K
{ ZL()\) ) yPr(A) — PN, - - >PL(,\)()\)—PL()\)()\)}.

A .
€ = min
3
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e is a positive number. Now consider the power allocation
P(\) & PE(\) +e. (4.22)

First, this new power allocation satisfies all power constsadue to its construc-
tion. Also, asy;’s are increasing functions, the new power allocation tssal

a higher minimum value, that is
min ¢; (F,(A)) > min ¢ (PF()), (4.23)

which contradicts the assumption thaf ()\) is optimal. This completes the

proof. [ |

4.3.2 Optimal Relay Power Price

Now we investigate the relay pricing problem. The price of tklay power is
crucial to the relay revenue and the relay power allocationray the users. If the
relay sets the price too high, no user will buy any power, &ed¢lay revenue will
be zero. If the relay sets the price too low, all users will fiskas much power as
possible; and even though all relay power can be sold, thg relvenue will not be
maximized.

With the unit price of the relay powex, from Sectiof 4.2, and by using the
KSBS-based relay power allocation in Section 4.3.1, themae of the relay is
SV APE()), where PE()) is the relay power allocated to Usebased on the
KSBS for the given priceé. The relay pricing problem can be formulated as:

N
max ; APE(N). (4.24)
Note that the relay power constra@f\i  PE()\) < P is always guaranteed by
the KSBS-based power allocation, thus needs not to appeéicidy in the relay
revenue maximization.

To solve the relay pricing problem, we first prove the follogjilemma.
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Lemma 4.5 The optimal price is inside the intervgl,, b, ), whereb,, satisfies the

following equation:

N
AN ax Qilfi|2<1 _1)}:
(b ; a {o, 5\ P (4.25)

b P -
by > mlax{bi (Qi|fi|2 + 1) } . (4.26)

Proof: First we can see that(b;) monotonically decreases from to 0 asby,

and

increases from 0 td;. Thus, Equation[(4.25) has a unique positive solution

inside(0, by).

Then we provel(4.26) by contradiction. Assume that
b P )‘2
by <b | =—— +1 : 4.27
v (g @4.27)

Thus,

Qi 1 1
¢<blb>2max{0’ Vor (@‘m)}”’

which conflicts [4.25). So

b P -2
by, > by (m + 1) . (4.28)

Similarly, we can show that

b; P 2 or
blbzbi m‘l—l or 222,"',N. (429)
Thus [4.26) is proved.

Now we show that the optimal price is no less tthgnUsing the result in (4.26)
and from [4.6), when the relay power pricéis i.e.,\ = by, we have

N

Z Pl (by) = ¢(by) = P. (4.30)

i=1
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Also from (4.6), P/()\) is a continuous and non-increasing function)of So
SV, PI()\) is a continuous and non-increasing functionofinside the price
range[0, by, i.e., A < by, we haved ") PI(\) > P based on{4.30). With the
KSBS-based power allocation, according to Lenima 4.4, allggof the relay
will be allocated to the users, i.e.,

L(\)

Z PE(A (4.31)

The relay revenue maximization when the price is witbirb;,] becomes:

max Y PX(A) = byP, (4.32)

0<A<byy,
which is reached at = by,. So the optimal price in the rand@ by, is bys.

To prove the upper bound on the relay price, note that whenb,, from (4.8),
PI(X\) = 0 for all i, i.e., no user will buy any power from the relay and the relay
revenue will bed. So any price in the rangé,, +oc) is not optimal, and the

optimal price must be in the rangfg;, b;). [ |

The value oft;, can be obtained by solving the equation[in_(#.25). This is a
generalized waterfilling problem [105], whetg+/)\ is the water-levell//b; is
the ground level of Usei, and Q,|f:|*/v/b; are the weights that can be visually
interpreted as the width of each patch. In this work, we caa tive value ofty,
analytically. Notice thaty(by,) is a decreasing function @f, andb;’s are in non-
increasing order. We can first find tiié such that(b,,) < P and¢(by1) > P.

Thus,by, € [bar, bars1]. Within this interval,

Qil fil? 1Y (S QlAP) 1 Qzlfz|2
Z NGO (m‘m)‘(i; m) (Z )

Thus, from¢(by,,) = P, we have

Moo\ Moo\
blb:< Qi‘/&‘) <P+ZQ’[LL|> . (4.33)
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In what follows, we solve the optimal relay power price atiablly. First,
several notation are introduced. Recall the ordering ofusers based on theiy

values in[(4.I111) and/ is the index such that
by > by > by (4.34)

That is, the;’s of the first A/ users are no less thap, while theb;’s of the remain-
ing users are no larger thap. We have shown in Lemnia 4.5 that only the price
range[by, by) needs to be considered for the optimal price. For the siritylof

notation, we consider the randig,, b;]. Define

A

Vi:biu for Zzla 7M7 (435)

and

YM+1 £ bip. (4-36)

Further define the price range whengsers purchase the relay service as
Ui 2 [yig1, ], for i=1,--- M. (4.37)
We thus can divide the price ran@i®,, b;] into the following}/ intervals:

[bip, b1 ]=[bip, bar] U [bar, bar—1] U - - - U [bs, ba] U [ba, by]

Al Ul U U Ty, (4.38)

Inside the price rangy,, b,], becaus& " | P!()\) is a non-increasing function of
A and [4.25), we have
> Ply<p (4.39)

Thus, from Lemm&4l4,
PX(X\) = PI(\). (4.40)

2

We can thus rewrite the price optimization problemin (#.i24)

max max Z )\le()\). (4.41)

i=1,2,-M XeT; 4
J=1
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In (4.41), we have decomposed the optimization problem Mtsubproblems,

where theith subproblem is to find the optimal price within the rarigewhere
User 1 to; purchase non-zero power from the relay:
- . I

Sub-problem : r&%le AP!(N). (4.42)

j=

The following proposition is proved to solve the sub-proble

Proposition 4.1 Fori = 1,2,--- , M, define

.2 (Z;:il Qj|fj|2/\/[7j> | (4.43)
235, Qjlfi12/b;

The solution to[(4.42) is

Yigr I ¢ < viga,
A = Yi if c; >, (4.44)

& if v < <

Proof: When\ € T, for 1 < j < i, from (4.8), the power that Userwill ask

foris

Qilfil? <i e )
Vi \VX Vb))’
and User(i + 1) to UserM will ask for zero relay power. Subproblein (4.42)
can be rewritten as

max )\Xi:Qim'? <L—L) = max dp; () (4.45)
A€, — /b, \VN Vb xer, TPRAD '

Jj=1

where 4 4
—~ Qilf;l* — Q;lfil?
dri(\) 2 (Zi Va— [ > (4.46)
j=1 Vb j=1 bi
In (4.48), or.i()) is the relay revenue given the prigec I';. It can be shown

through straightforward calculation that wh&n= ¢;, as defined in Proposition

4.1,
dori(A)
dA

=0, (4.47)
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and when\ € T;,
d?ori(N)
d\?

Therefore, ife; > v;, ¢r.(\) reaches its maximum at; if ¢; < 7,41, it reaches

<0. (4.48)

its maximum aty;.1; and ify;, .1 < ¢; <, it reaches its maximum aj. [ |

With the subproblems solved, we are ready to find the optielaympower price.

The result is given in the following theorem.

Theorem 4.1 The optimal relay power price, denoted s is

A* :a@m&x{(i 7Qj|fj|2> ﬂ-iLjVjP)\i}, (4.49)
As j=1 \/bj =1 b;
where)\; is defined in Proposition 4.1.
Proof: This is a natural result of Propositibn %.1 ahd (4.41). [ |

With Theoreni 411, we can find the optimal price for the relawgoby solving
the M subproblems in[(4.41) analytically using Proposifion 4hkn find the op-
timal price among thé/ sub-problem solutions that results in the maximum relay

revenue. This is written as Algorithim 4.1.

Algorithm 4.1 Optimal Relay Power Price for the Relay Pricing Problem with

Stackelberg Game Formulation.
1: Calculateb;’s using [4.5). Order thé/ users such thdt > by > -+ > by.

2: Find M thenby, using [4.3B).

3: Initialize v;: v; = b; fori = 1,--- | M and~yy; 1 = by.
4: Calculatec;'s fori =1,--- , M using [4.4B).

5: Fori=1,---, M, find \; using [4.44).

- Find the optimal price\* using [4.49).

(o2}

We also would like to clarify that in this work, an analyticakult is found for
the optimal relay power price, and our proposed Algorithd does not require

any iteration or numerical calculation. After ordering (v#le average complexity
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is Nlog N), its complexity is linear in the number of users in the networhus
our proposed scheme has very low computational complesitst,is suitable for
networks with a large number of users and large or moderdtereace intervals.
Previously, we have shown that is an important factor for the ideal relay
power. Here we can see that it is also important for the optrelay price. We

prove the following lemma, which further reflects the impaoite ofb;.

Lemma 4.6 If b; < 4by, the optimal price for the relay fs,,.

Proof: First recall thath; > --- > by—1 > by > by. Whenb, < 4by, for

i=1,---,Mandj=1,---,7, we have
bj < by <4yme1 < 4igr (4.50)

Therefore,

QilfI? _ Qi1 fil? o Qilfil? _ 2051 fil* /i

VB /b Vi b;
and
Ja = Z;':il leijQ/Z\/ZTj _ 2\/%—+1i23':1 Qj|2fj|2/bj _
2 521 Q41 f512/b; 2 521 Q41 f512/b;
fori = 1,---, M. From Proposition 1, within the randé&, the optimal price

iS v:+1, the lower bound of’;. So the optimal price in the randey;1, 7] is

YM+1, which iSblb. [

Lemma[4.6 says that when the difference betwigeand;, is small, that is, the
conditions of the users are not too separate apart, the sélayld set its price to
be low so all users can gain some benefits. On the contrary) sdr@e users have
a much higheb; than others, the price will be higher thap and those users with
lowerb;’s may not purchase the relay service because the price lsgb@ompared

to the SNR gain they may receive.
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4.4 Discussion on the Proposed Solutions

In this section, we discuss possible implementation of tlup@sed relay power
allocation and pricing solutions and properties of the paallecation solution.

It is assumed in this work that the users employ orthogonahohls to avoid
interference. In reality, there may be more users than alammd medium access
control (MAC) is needed. We can use a straightforward TDNVe&sdd channel
assignment scheme as follows. Suppose that theré@ ateannels available (for
example, the IEEE 802.11G standard specifies 3 orthogoaahes, thug™ = 3)
and a total ofV > T users in the network. In the MAC layer, theé users are
divided into [ %] groups. We use the round robin method with shared wireless
channels, where each group of nodes transmit in consecativels. In each round,
users in the current group use the proposed power allocatidrpricing strategy
in Section 4.8 to decide the relay power allocation. Moreaesh on bandwidth
allocation, user scheduling, and joint bandwidth and paillecation can be found
in [106-+108, 114].

Next we discuss the implementation of the proposed relayepailocation and
power pricing solutions. As discussed in Secfiod 3.2, weirassa block-fading
channel model. Within each time slot, a training procesgss onducted for the
relay to obtain global CSI. Research on efficient channéhitrg and estimation
can be found in([110-112]. For the relay to know the channelsgmom the users
to itself, training and channel estimation should be penfedt at the relay. For the
relay to know the channel gains from itself to the destimatjdeedback from the
destinations to the relay is required. Then, the relay pqwiee and power allo-
cation are updated using Algoritim #.1. The proposed alyoris a centralized
one instead of distributed. With this optimal price, theayelinds the KSBS-based
solution for the relay power allocation problem given[inI@&). With this imple-

mentation, we actually assume that the relay is trustworitilyusers believe that
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the relay will not change the parameter values (e.qg., th¢ lii8uses the aforemen-
tioned procedure to set the price and determine the KSB&dhaswer allocation,
and follows the results to help all users in their transmissi
Now we discuss robustness of the proposed KSBS-based pdlovegiton to

CSI error. When the relay sets its price to be the optimainftbe analysis in
Section 4.3, all users will be allocated their ideal rgbayvers, P/()\), and the
individual utilities of the users are maximized. This is ttleal case and requires
the relay to have perfect CSI. However, in reality, CSl atray is subject to error
and delay, in which case, the relay may set a price differenbhé optimal one.
Sometimes, the relay may want to set its price different éodptimal one due to
other reasons such as marketing considerations. Our bargagame model and
KSBS-based power allocation is robust to the relay pricedliton in the sense
that a “fair” relay power allocation among the users cailséilmade. Specifically,
if the relay power price is set to be higher than or equal;fodefined in[(4.25),
with the KSBS-based power allocation, each user gets itd paver demand (see
Lemmal4.4); if the relay power price is set to be lower tlhgnno user can get
its ideal relay power but the relay power will be fairly aléded to the users based
on Lemmd 4.8, where the utility losses of the users are the sathe logarithmic

scale; and all relay power will be allocated (see Lerimh 4.4).

4.5 Applications and Extension to Multi-User Multi-
Relay Networks

In this section, we discuss the applications of the propssédtion to two special
network scenarios and its extensions to multi-user malayr networks.

One application of the proposed solution is the multi-usergle-relay, and
single-destination networks, also addressed as mulassaelay networks (MARNS)

[25,[27]57, 123,124,129, 130]. The proposed scheme canréetlgiapplied to
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MARNSs by settingg; = --- = gy in all network formulation. From Lemnia 4.2,
P!()\) is a non-decreasing functions @f and f;. Thus, with the relay to destina-
tion channel the same for all users, users with better @day-channels or higher
transmit powers will be allocated more relay power.

Another popular network scenario is the multi-user sirrgleyy networks with
no direct links. Our solutions again can be applied stréaghiardly as the solutions
are independent of the direct link. And we can apply our tsedol such networks
by settingh; = --- = hy = 0.

Last, we discuss possible extensions of our work to mukusulti-relay net-
works. A straightforward extension to multiple-relay netwis to divide the net-
work into several independent clusters, where each clostgains one relay. Then,
our result can be directly applied to each cluster. This isrgke but sub-optimal
solution. There are of course other ways to generalize auittseto multi-relay net-
works that allow a user to receive help from multiple relagd/ar a relay to help
multiple users. One possibility is as follows.

For multi-relay networks where all relays belong to the sagent and a total
power constraint is assumed, the relays should have the gaat@f maximizing
the total revenue of all relays, and we assume a fixed pricalffoglays.

Assume that there ar® users andR relays as shown in Figure 3.8, and the
relays use orthogonal channels. Denote the channel gam fleer: to Relayr
as f;,, and the channel gain from Relayto Destination asg,.. Denote the total
power constraint of all relays &. Relayr uses powep;, to help Useri. Define

by, — Qi|firgir|2 . (4.51)
Qi fir|* +1
Other assumptions and notation are the same as the sita@yecese.

For the relay power allocation problem, define the utilityusier: as:

R

é QiPir|firgir|2
r—1 Pir|gir|2 + Qz‘fu‘|2 + 1

U;

R
+Qilhil> = > APy (4.52)
r=1
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The first two terms 0f(4.52) correspond to the effective ek SNR of User and
the last term represents the user’s total normalized cqatiichasing service from
the relays. Also let

Ui,o = Qz‘h2‘2> (453)

which is the minimum utility that Userexpects when it does not buy power from
the relays.
Similar to the single-relay case, Uses goal is to maximize its utility. The
problem can be formulated as follows.
R
maxu; Stow; >, 0< Y P <P (4.54)
" r=1
This is a convex optimization problem and can be solved efiity using standard
convex optimization techniques [116]. The ideal utilitylderi can be calculated
correspondingly.
For the relay power pricing problem, similar to the singiay case, we can
find a priceb,, such that the total ideal power demands of the userg’ard any
price belowbdy, is not optimal. When the price is larger thgp, the KSBS-based

power allocation for User at Relayr is

Py()\) = N <\/X \/b_) (4.55)

The optimal relay price problem is equivalent to that of ayrrelay network with
N x R users purchasing power from one relay with power constraiand can be

solved using Algorithri4]1.

4.6 Simulation Results

In this section, we show the simulated performance of thpgsed relay power al-

location and pricing solutions, and compare them with thre-sate-optimal power
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allocation and the even power allocation. Sum-rate-ogtpower allocation solu-
tion is the relay power allocation among the users that mix@sthe network sum-
rate. For the even power allocation, the relay allocaf@é of its total power to each
of the NV users, and each user decides how much power to buy from gyetoahax-
imize its utility. That is, the relay power allocated to Usés min{P/(\), P/N}.
Two channel models are considered: the Rayleigh flat-faclagnel and the static

channel with path-loss only.

4.6.1 Rayleigh Flat-Fading Channels

In the first numerical experiment, the channels are modedad.d. Rayleigh flat-
fading, i.e., f;, h;, andg; are generated as i.i.d. random variables following the
distributionCA/ (0, 1). We consider a network with three users. The transmit powers
of the users are set to B8 dB. The simulation results follow the same trend for
other values of user powers.

We first investigate the network performance when the retaygp ranges from
10 dB to40 dB. We set the relay power price to be the optimal accordifighorem
[4.1. Figurd 4.2 shows the optimal relay power price, theyrptaver actually sold,
and the corresponding relay revenue. We can see that wharlthehas more
power to sell, the optimal relay power price is lower, moiaygower is sold, and
the relay receives more revenue. This complies with oneefa¥s of supply and
demand([118], which says that if supply increases and dem@amdins unchanged,
then it leads to lower equilibrium price and higher quantity

Figure[4.8 compares the network sum-rate and fairness grtposed KSBS-
based power allocation with those of the sum-rate-optiroalgy allocation and the
even power allocation. We set the relay power price to be gienal according
to Theoreni 4l1. It can be seen that for the sum-rate, therelifte between our
algorithm and the sum-rate-optimal solutions is withis%, while it is within 13%

between the sum-rate-optimal and the even power solutidresproposed solution
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Figure 4.2: Optimal relay power price, total relay powerdsaind relay revenue in
a three-user relay network with Rayleigh fading channetsdifierent relay power
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is abouts dB superior to the even power allocation. To quantify theness, we use
the average value of the normalized differenpeax;(r;) — min;(r;)]/ max;(r;),
wherer; is the achievable rate of Usér A smaller difference indicates a fairer
solution. We can see that our solution achieves similanésis to the even power
solution and is fairer than the sum-rate-optimal one.

Next, we examine the trend of the optimal relay price with meréasing de-
mand. From Lemm&4.2?/()\) is a non-decreasing function of;|>. So, we can
use an increasingyf;|* to simulate increasing user demand. In this numerical ex-
periment, we again consider a three-user network and mddsgiannels as inde-
pendent circularly symmetric complex Gaussian randonatses with zero-mean.
The variances of al;’s andh;’s are 1, while the variance of afl’s ranges from
1 to 20. A larger variance means a higher average valyi§ |8f which on average
means a higher power demand from the users. The transmitré\lee users is
set to bel0 dB and relay power is set to B dB. Figure[4.4 shows the optimal
relay power price, the actual relay power sold, and the spording relay revenue
with different variances of;. We can see that as the variancefpincreases, the
optimal relay price increases, more relay power is sold,thedelay revenue in-
creases. This fits one of the laws of supply and demand, whigh & the supply is
unchanged and demand increases, it leads to higher equitilprice and quantity.

In the third numerical experiment, we examine the relatigmbetween the
optimal relay price and the number of users. The relay powdixed to be20
dB. The user power is fixed a$) dB but the number of users vary frohnto 15.
All channels are generated following the distributi@ (0, 1). Figure[4.5 shows
the optimal relay power price, the total relay power sold] éme corresponding
relay revenue with different numbers of users. We can sdeathéhe number of
users increases, the optimal relay power price increalsegetay power actually
sold increases, and the relay revenue increases. Higlvedfigs the same law as

Figure[4.4, which says, if the supply is unchanged and derramdases, it leads
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Figure 4.6: A three-user relay network with static channels

to higher equilibrium price and quantity.

4.6.2 Static Channels with Path-Loss Only

In this subsection, we study a static network whose chararelsleterministic in-
stead of random. The network has three users, one relayhaeel destinations.
The relative positions of the nodes are shown in Figurk 4t@revthe coordinates
of Usersl — 3, the relay, and Destinatioris— 3 are(—15, 3), (—10,0), (=5, —3),
(0,0), and(5,3), (5,0), (5, —3), respectively. We consider the path-loss effect of
wireless channels only by assuming that the channel gasm#eaersely propor-
tional to the distance squared. In Figlrel4.6, Uses the farthest from its desti-
nation thus has the worst channel; while U3és the closest to its destination and
has the best channel. The power of the users is set10 4B and the power of the
relay is set to bé5 dB.

In Figurel4.7, the total power sold to the three users, thaynelvenue, and the
network sum-rate are shown as the relay power price vartegelpower allocation
solutions are presented: the proposed KSBS-based poweatdin, the sum-rate-
optimal power allocation, and the even power allocationteNbat the sum-rate-
optimal allocation solution aims to maximize the networknstate, is independent

of the relay power price, and allocates all the relay poRéo the three users. We
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can observe from Figute 4.7 that, when the price is highéh the KSBS-based and
the even power allocation schemes, the users purchaselessfpom the relay and
the total power demand is smaller. For example, using the3B&sed allocation
scheme, the total power demand is less tRamhen the price is higher than0023.
Now let us look at different price ranges separately. Fing,can see that in the
price rang€0, 0.0007], both KSBS-based and the even power allocation schemes
sell all relay power to the users. This is because in thiemdnge, P/ (\) > P/3
for i = 1,2, 3, thus with the even power allocation, each user will @43, and

all relay power will be sold; for the KSBS-based power altima, >, P/(\) >

P, so all power of the relay will be purchased by the users basedemmd 4.4.
Second, wherk > 0.0047, the even power and the KSBS-based schemes give the
same power allocation results. This is because in this pacge, all three users’
ideal power demands are no more thafs, that is,P/(\) < P/3fori = 1,2,3
and>?  P/()\) < P. In this scenario, from Lemnia3.4, both the even power
allocation and the KSBS-based schemes assign the ideal peweand?/ () to
Useri, and the two schemes have the same performance. Andwis@mthe range
[0.0007,0.0047], the KSBS-based power allocation demands more relay pbaer t
the even power allocation, and thus the relay receives a&hrglrenue in this range.
This is because with the even power allocation, a user caegaest more thah/3

of the total relay power, while the KSBS-based scheme dodsawve this constraint
and thus enables users to request more power. Furthermioge, \ws 0.0027, the
KSBS-based scheme demarid$s of the relay power to be sold to the users and
the relay revenue is maximized. At this relay power price, tletwork sum-rate
difference between the proposed KSBS-based solution andum-rate-optimal
one is only abouf%. The relay revenue is maximized at= 0.0047 under the
even power allocation. However, at this price, the sum-dédference between the
even power and the sum-rate-optimal schem@s‘s For any relay price, the sum-

rate difference between the even power and the sum-rat@aEchemes is no less
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Table 4.1: Achievable rates, normalized rate-differeaoel the system sum-rate in

a three-user relay network with static channels

r1 ro r3 Rate-difference Sum-rate

Sum-rate-optimal 0.0356| 0.0838| 0.2802 0.8729 0.3997

0 Even | 0.0498| 0.1017| 0.2127 0.7658 0.3641

KSBS | 0.0499| 0.0994| 0.2169 0.7701 0.3662

0.0013| Even | 0.0356| 0.1017| 0.2127 0.8325 0.3500

KSBS | 0.0356| 0.0991| 0.2643 0.8652 0.3989

0.0027| Even | 0.0356| 0.0823| 0.2127 0.8325 0.3306

KSBS | 0.0356| 0.0823| 0.2727 0.8694 0.3907

0.0047| Even | 0.0356| 0.0627| 0.1992 0.8211 0.2975

KSBS | 0.0356| 0.0627| 0.1992 0.8211 0.2975

0.0053| Even | 0.0356| 0.0627| 0.1777 0.7995 0.2760

KSBS | 0.0356| 0.0627| 0.1777 0.7995 0.2760
than9%.

To further compare the performance of the three schemede shows
user’s individual achievable rate, the normalized ratéedince, and the network
sum-rate with the three power allocation schemes at the pelaer price$), 0.0013,
0.0027, 0.0047, and0.0053. As can be seen from Taklle #.1, the proposed KSBS-
based scheme achieves a smaller normalized rate diffetbacethe sum-rate-
optimal solution for all relay prices, while the sum-ratéaetience between these
two is small. This shows that the proposed solution is fdihan the sum-rate-
optimal one with comparable network sum-rate. In sum, g7 and Table
4.1 show that for the simulated network, the proposed KS&s4b power allo-
cation and relay pricing solutions achieve close-to-optisum-rate, at the same
time maximize the relay revenue and achieve fairness amserg u

To compare the sum-rates of the proposed solutions and theae-optimal
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solution, we show in Figurle 4.8 the network sum-rate of ttoppsed relay pricing
and power allocation solutions as the relay power congtraivaries. We can see
that whenP is small, indicating high demand and low supply, the sure-adtthe
proposed solution is almost the same as the maximum sunofdte network.

As P increases, indicating low demand and high supply, the saatmdifference
between the proposed solutions and the sum-rate-optirhdi@oincreases. When
the relay power i25 dB, the difference is abo’%. The optimal relay price, on
the other hand, decreases /Asncreases. These verifies the same law of supply
and demand as Figufe #.2, which says, if supply increaseslam@énd remains

unchanged, then it leads to lower equilibrium price.

4.7 Conclusion

In this chapter, we study the relay power allocation probilei@ multi-user single-
relay network. By introducing a relay power price, we taki®iconsideration the
incentives for cooperation at the relay. Stackelberg gameéd to model the inter-
action between the relay and the users, in which the relayeadhe leader who sets
the price of its power to gain the maximum revenue and thesusgras followers
who pay for the relay service. To model the competition amasers, a bargain-
ing game and its KSBS are used for a fair power allocation. kéygically solve
the optimal relay price, while the problem of relay powepedition among users
is transformed into a convex optimization problem and casdbeed with efficient
numerical methods. Simulation results show that our smhstreflect the laws of
supply and demand, give better user utilities and relaymeeehan even power al-
location, and approach the sum-rate-optimal power aliocah terms of network

sum-rate for a wide range of network scenarios.
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Chapter 5

Power Allocation in Multi-User
Cooperative Networks Using Double

Auction Theory

In this chapter, we study the power allocation problem in dtirugser coopera-
tive network. We use IDA to model the interaction among thersimand the AP.
In each iteration of this game, the users first submit bidsforing other users’
power and asks for selling its own power, and then the AP deibes the power
allocation based on users’ bids and asks. We propose abdistti algorithm for
the implementation of the IDA-based power allocation. V®ahow that the pro-
posed algorithm achieves weighted sum-SNR optimal saiut8®imulation results

are conducted to verify the performance of the proposedighgo,

5.1 Introduction

As introduced in Sectioh 1.3, the efficient allocation ofialzle power resource

is a critical issue in cooperative networks. In Secfion2,.8ve give a literature

LA version of this chapter has been submitted to IEEE Traimasbn Vehicular Technology, (2013).
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review of works in this area. In these works, nodes in a ndivaoe assumed to
be altruistic and willing to cooperate to optimize the oUenatwork performance.
However, as introduced in Sectibn1l.4, nodes are selfish iamtbaoptimize their

own benefits or quality-of-service in many practical apgiicns. To model and
analyze these behaviors, game theory is a appropriateToele are a handful of
works that are on game theoretical solutions for power atioa in cooperative
networks, e.g.,[[82—84]. In these networks, the authorsifamn user behavior
analysis, but optimal network performance cannot be aekiiev

[125]128] develop game theoretical frameworks that camigessystem-level
optimization. In[125, 128], the authors study the resowlt@cation problem for
mobile data offloading and in autonomous networks. They ukmible-sided auc-
tion market framework to model the interactions among thaesol hey show that
their game theoretical solutions maximize sum-utilititalbnodes. In this chapter,
we study power allocation problem in cooperative networkh thhe double-auction
framework.

We study an AF cooperative network where multiple users kalgh other’s
transmission to an AP. We assume that each user has a fixed pomgtraint. As
introduced in Sectiop 11.5, two natural questions ariseemistwork: 1) How much
power should a user reserve for itself and provide for otlsersf? 2) How to pro-
vide user incentives for cooperation while maintainingdjaetwork performance?
In this work, we use an IDA[125] game to model the selfish usdraviors and
answer the aforementioned questions. We assume that eacplags two roles:
a buyer and a seller. The user announces bids for buying adegs’ power and
asks for selling its own power. The AP collects the bids ang &m the users,
then determines the power allocation. The interaction betvthe users and the AP
is in a iterative way until the network reaches global optitpaWe also propose
a distributed algorithm for the implementation of the IDAded power allocation

where each user only needs its local CSlI for bid and ask update
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5.2 System Model

Consider a wireless network witki users and one AP as shown in Figurg 5.1. The
AP is the destination of all user information. Each user cdas a source as well as
arelay for other users. Denote the channel from UseiUser; as f;;, the channel
from User: to the AP (the direct link) as,;.We denote the maximum transmit power

of User: asF;. We also denote the power Usauses in helping Useras P;;.

Userl
-
N
N
N
N
%, \
\\ hl

// / ~
/i h. Access Point
Useri - >
————————— _ -7
// /7
7

Figure 5.1: A multi-user cooperative network.

FDMA is used, so transmissions of different users are odhaband interference-
free. Without loss of generality, we elaborate the transmoisof Useri’s message
on Channel. We use the popular half-duplex two-step AF relaying prototet
s; be the information symbol of Usér It is normalized a%(|s;|?) = 1. In the first

step, Usei transmitsy/ P;s;. The signals received by Usgand the AP are
Yij = V Pusifij +ny; and y;4 = \/ Pisih; +nja, (5.1)
respectively, where,; andn;4 are the additive noises at Useand the AP in the
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first step, respectively. They are assumed to be indeper@mnssian following
the distributionCA/(0, 1). In the second step, all users other than Usamplify
their received signals and forward them to the AP on Chanimeturn [126]. For
example, Usey amplifiesy;; and forwards it with powe#’;, on Channel. The

signal received at the AP in the second step can be shown to be

P Pj; P
A = | =5 fiihi + 1 | =——te——hini; + Nja, 5.2
Vit S\ B 100 T g e (5:2)

wheren;, is the additive noise at the AP in the second step, which isnasd to
be independent to other noises with the same distribufidf0, 1).
The effective received SNR of Usés transmission with Usej’s help can be

shown to be

PPyl fishy|?
Pjilhi|? + Pyl fij|* + 1
To make the analysis tractable, we use a high SNR approximafi(5.3) as

SNR;; = i # . (5.3)

P;i Py fijh;|? _
Pji|h;[* + Pyl fij]?

This approximation is widely used in literature and has bsieown to be suffi-

ciently tight [127].
The received SNR of the AP from the direct link is

After maximume-ratio combining of both the direct path and tklay path signals,

the total effective SNR of Useis transmission can be calculated as

SNR _iSNR ~ i Pabullulil e (s6)
. VT e PulhP 4 Pl fg2 T |
]:1 ]:17j752

5.3 IDA-Based Power Allocation

We can see from_(5.6) that each user desires all users in t®nke including

itself, to allocate as much power as possible to help its samsimission, so it can
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achieve the highest SNR. If the users independently deh&le power allocation,
each of them would use full power for its own transmissioniclvhs not optimal

from the global performance point of view and the potentexidfit of cooperative
communication is lost. Therefore, it is important to find dewe that provides
incentives for user cooperation as well as ensures goodonefperformance. To
achieve this goal, we design an IDA mechanism to model tlegantion among the
users and the AP, where users try to maximize its own utiliti V@cal information

only. We show that, with the proposed IDA-based power atioosscheme, we can
achieve the globally optimal power allocation that maxiesizveighted sum-SNR

of the network.

5.3.1 IDA Game Design

In the IDA game, each user submits its bids for buying powanfother users, and
asks for selling its own power. The AP is the auctioneer wherd@nes the power
allocation based on these bids and asks. The AP and the nsenact iteratively
until the market reaches the efficient market clearing paimthis work, we design
an IDA game such that the market clearing point is the glgbafitimal power
allocation which maximizes the weighted sum-SNR of the oeikw

Before introducing the IDA mechanism, we define the auctives for the users
as follows: User submits bidb;; to User; for each unit of power that Uséris
willing to buy from User;j. With P;; being the power that User uses to help
Useri, Useri’'s expected payment to Usgris b;; P;;. User: submits aska;; to
Userj for each square unit of power that Useas willing to sell to Userj, and its
expected payoff from Useris aiij-. Note that we will design a game frame work
to guarantee global optimality, which will be shown in Sen{6.3.3. To achieve
this, we assume that the AP uses different pricing rulesdgnpent and payoff.

In each iteration of the IDA mechanism, there are two stalyethe first stage,
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the AP first determines the power allocation with collectetsland asks as

2(bij — Mz‘)T)

aij

P, = [ (5.7)

where[z]T = max{0, z}. In (&14),; > 0 is theith reserve bid, which is a design
parameter. We will show shortly how the AP adjugisn each iteration to ensure
that IDA-based power allocation achieves global optirgal¥Vith the design in
(G.1), P; is increasing with bich;; and decreasing with respect to ask. This
is intuitive: when Userj places a higher bid for Useis power, or when User
announces a lower ask for Usgrthen Uset should allocate more power to User

4. Similar allocation rules have been adoptedin [125] 128].
} ; (5.8)

where~; is a small constant step-sizé._(5.8) is designed to ensertDiy-based

The AP then updates the reserve bid as follows

N
P— Y Py

J=1j#i

pi(t + 1) = max {0>Mi(t) — Vi

power allocation is the same as the globally optimal sotutidhe intuition be-
hind (5.8) is that, at time, if the total power aIIocatioEjil’#i P;; is larger than

the power constrain;, the reserve bid should be raised; otherwise it should be
reduced.

Now we look at the biding process. We define Uggutility function as

N N
u; = w;SNR; + Z aijPZ%»— Z bji Py, (5.9)

j=1j#i j=1,j#i
wherew; is Useri’s weight andy_~  w; = 1. It is suitable for scenarios where
users have different priorities and QoS differentiatios teebe performed for them.
In (5.9),SNR,; is the effective received SNR of Usegiven in [5.6) and represents
the quality-of-service of the user. It is directly relatediie performance of User

e.g., its achievable rat@j.v: Lt aing- represents the expected payment received

N
=1,

users. Note that, for Userto maximizeSNR;, the transmit power of its own signal

from all other users any’ b;; P;; represents the payment of Useo all other
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should be
Pi=PF— Y Py (5.10)

User finds its optimal bids and asks by solving the following usestem
(UP):
UP:  maxuy,, (5.11)

Qij,05i
By evaluating the Hessian matrix af with respect toe;; andb;;, it can be
proved thaty; is jointly concave inu;; andb;;. Thus, the optimal asks and bids that

maximize usei’s utility satisfy the following equations

OSNR,

OSNR,
w; P,

+Pi=0 and w,———
+ a;j w P,

+ U; — 2bj2' = 0, (512)

With straightforward calculationd, (5.12) is equivalemt t

pye WOSNR_ i (o B
YRy 0k Py \ A (Bl + Bl fl?)? 0 T )
and bj;=— O5NR + a2 Liril 5+ % (5.13)

2 0P 2 2 (Pulhy 2+ Pl f5?)

5.3.2 Implementation of IDA-Based Power Allocation

In this subsection, we propose the distributed implemantaif the IDA mecha-
nism proposed in Sectidn 5.8.1. With distributed impleragah, we mean that
each user has local CSI only and there is no central controikl full CSI of

all users in the network. IDA is executed in successive reauad summarized in

Algorithm[5.1.

5.3.3 Global Optimality

In this section, we show that the proposed IDA-based powecation achieves

optimal network performance in the sense of weighted surR-8Nthe network.
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Algorithm 5.1 Distributed Implementation of IDA-Based Power Allocation
1: The AP initializesP;; andy,; and broadcasts this information to users.

2: Each user individually calculates its optimal bid and askoading to [5.18)

and broadcasts this information to the AP.
3: The AP collects all bids and asks, determines power allogdtased orl (517),

and updates the reserve bid based od (5.8). Then the AP lastadloe updated

power allocation and reserve bid to users. Go to Step 2 wrilergence.

With w; as the weight factor of Usér the weighted sum-SNR maximization prob-
lem (GO) can be posed as:
N
GO: max Z w;SNR;

Bijyizts =5

N
S.t. lDij,i;éj > O, Z F)ij < jjiu
J=1,j#i
Before introducing the relationship between the IDA-bapeder allocation

and the globally optimal solution, we first prove the follogilemma.

Lemmab5.1 GOis a convex optimization problem.

Proof: The constraints oGO are convex by definition. Thus, to prove Lemma
[5.7, we only need to show that the objective functio®@i is concave. From the
definition (5.6), we can see that the objective function iseigivted summation
of SNR;; and S/I\\Tf{ij. Thus, we only need to show th8NR,; is a concave
function of P,;, and S/NT{,-J» is a concave function of;;, and P;;, wherek =

1,---, N andk # « [116].

From [5.10), we can see thaNR,; is a linear combination of;, thus it is

concave inPy,. Forgﬁf{ij, its Hessian matrix with respect 19, and P;; is

1 —2P%|hy|* 2P Pyl fijhy)?

VQS/NRU' - 2 2)3
(Bl + Pal fsl*)° | oy fhyl? —2P21 £l

, (5.14)
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which is a negative semidefinite matrix. Thus, it is a condawnetion of P;; and
Pj;. As S/Nf{ij is non-decreasing i%’;; and P;; and P;; is a linear combination
of Py, we get that it is a concave function &, and P;;. This completes the

proof. [ |

Now we show the relationship between the IDA-based powecatlon and the

globally optimal solution in Theorem35.1.

Theorem 5.1 The IDA-based power allocation achieves the weighted siMR-S

maximization.

Proof: We write the Lagrangian function @O as

N N N
=1 =1 j=1

Here \; are Lagrangian multipliers associated with the inequaldgstraints.
The first-order KKT conditions &0, which are necessary and sufficient for its

solution are

oL(P;)  OSNR,  OSNR,

g i . —)\Z: ; 5.16
ap, w oD, + w; o5, 0 ( )
N
P;>0, A >0, AZ-( 3 Rj—B>:o. (5.17)
j=1,j#i

The optimal solution oGO should satisfy equations (5]16-5.17).

If we check the IDA-based power allocation solution, and {heta;; andb;;
solutions in [[(5.IB) into[(5]17), we find that the resulted [5s7equivalent as
(5.18). Thus, Algorithni 51 is equivalent to solvi@P by gradient projection
method with constraint(5.17) . The convergence of this wetias been proved
in [125]. After convergence, the power constraintsa® are satisfied. There-
fore, the IDA-based power allocation and the optimal solutf GO are the

same. [ |
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5.3.4 Discussion

In this section, we compare the proposed IDA-based powecatilon algorithm
and the centralized implementation of the globally optisalution in three per-
spectives: overhead, computational load at the AP, andog$evior modeling.

First, for centralized implementation of the globally opél solution, a cen-
tralized controller, e.g., the AP, is required to have aataiand complete CSI,
which brings significant overhead for training, channeineation, and CSI feed-
back among users and the AP, especially for networks wittga laumber of users.
However, for the proposed IDA-based power allocation, éodal CSl is required
at each user.

Second, for the centralized implementation of the globafitimal solution, all
computational load is placed at the AP. However, APs may agt thigh com-
putational capability for many practical network applioas. For the proposed
IDA-based power allocation algorithm, the AP only calcatathe power allocation
based on(517) and updates the reserve bids baséd on (5u8).thk burden on the
AP is reduced.

Third, the centralized implementation of the globally omdi solution assumes
that the users are altruistic and willing to cooperate ténoige the overall network
performance. In many practical applications, howevensigee rational and selfish
and they aim to maximize their own benefits. In the proposea-based power
allocation algorithm, we model the selfish behaviors of teers so that they can
maximize their utilities. Our solution also guaranteesdglaptimality in the sense

of weighted sum-SNR.

5.4 Simulation Results

In this section, we show simulation results. We considem#chetwork whose

channels are only related to the path-loss, which is inversportional to the dis-
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Figure 5.2: Convergence of the double auction-based padieeation algorithm in

a two-user cooperative network.

tance squared. The network has two users and one AP. Theirates of Usel,
User2, and the AP are (-2, 0), (-0.5, 0.5), and (0, 0), respectivitys, UseR has
a better channel to the AP. We assume that the two users resartie transmission
power which ranges fror20 to 30 dB.

Figure[5.2 illustrates the convergence of the double andimsed power allo-
cation algorithm with user weights, = w, = 0.5 and transmit powe20 dB. P;;
is initialized as50, y; is initialized ad).1, and~; is set to be).01. We use the same
initialization for all simulations. We can see from Figlr@ Fhat the proposed dis-
tributed algorithm converges aftgiterations. Similar performance is verified with
different initial values selections. After convergendes achievable rate of User
who has a better direct path, has a larger value.

In Figure[5.8, we show the network sum-rates with sum-raté¥al solution
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and with the proposed double auction-based solutions umaedifferent sets of
user weightsaw, = 0.3, wy, = 0.7 andw; = 0.7, w, = 0.3. From this figure, we
can see that when Us2rwho has a better direct path, is assigned a higher weight,
the sum-rate of the proposed solution is very close to th#tesum-rate-optimal
solution. This is because with; = 0.3, w, = 0.7, more emphasis is placed on
User2’s achievable rate which increases network sum-rate. Ondhgrary, when

a larger weight).7 is assigned to Usel, the network sum-rate is reduced®%

of that of the sum-rate-optimal solution whéhis small and84% whenP is large.

In Figure[5.4, we show the network sum-rate and U&eachievable rate under
the proposed solution with Uséts weight changing fron?).1 to 0.9. User2’s
achievable rate is the difference between the sum-rate aadld achievable rate.
We consider two user power constrain®8:dB and25 dB. For these two different
transmission powers, network sum-rate is maximized when= 0.2. After that,
we can see a reduction in the network sum-ratevasncreases, which verifies
the conclusion in Figure 8.3: by assigning a larger weigHt/$er2, the solution

approaches the sum-rate-optimal solution.

5.5 Conclusion

In this chapter, we consider a multi-user cooperative ngtvamd conduct the
game-theoretic analysis of power allocation among thesus&e propose a double
auction-based power allocation algorithm, where users@amee bids and asks to
optimize their utility. Then the AP collects all the bids aesks and determines the
power allocation. We show that the proposed algorithm aelsieveighted sum-
SNR optimal solution. Simulation results are conductedetafy the convergence
performance of the proposed algorithm. The impact of useght® on network

sum-rate is also demonstrated via simulation.
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Figure 5.3: Sum-rate of a two-user cooperative network witferent user power
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Figure 5.4: User achievable rate and sum-rate of a two-usmverative network
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Chapter 6

Conclusion and Future Works

This chapter summarizes the contributions of this thesiddiscusses future works.

6.1 Conclusion

Future wireless applications demand high date rates age tmverage area, which
can be achieved by cooperative systems. The limited poweuree in cooperative
systems can lead autonomous network nodes to be selfish ranat aiptimizing
their own benefits. Game theory has been proved to be anieffé¢obl to model
such behaviors of the autonomous nodes. In this thesis, guesfon power allo-
cation in cooperative systems based on game theory. We gga@ome theoretical
power allocation schemes that can address different remeints for different ap-
plications. Moreover, we provide distributed algorithmishwow implementation
complexity for the proposed schemes, which can be easilleimmgnted in real co-
operative systems. The proposed research fill the void oéntstudies. Moreover,
the proposed models, methodologies, and results can bel fgebther wireless
research problems as well, for example, spectrum allat&ticognitive radio net-
works and resource allocation in wireless ad hoc networks.

The detailed contributions contributions of the thesissamamarized as follows.
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e In Chapte B, an NBS-based scheme is derived for relay poliaration
among users in multi-user relay networks. It is shown thatliargaining
powers of users can be adjusted to accommodate differenireegents in
different applications. Considering the scalability of foroposed scheme, a
distributed algorithm for the NBS-based power allocat®prioposed and its

convergence conditions are provided.

e In Chaptei’#1, the power allocation and cooperation stinadgbroblem is
studied in multi-user relay networks. Stackelberg gameexiio model the
interaction between the relays and the users and a bargagaime and its
KSBS are used for a fair power allocation among the users. oftienal
relay power price is derived analytically, while the prahlef relay power
allocation among users is transformed into a convex opétiaa problem

which can be solved with efficient numerical methods.

e In Chaptef b, an IDA-based power allocation scheme is peghas multi-
user cooperative networks. It is also shown that the prapsskeme achie-
ves weighted sum-SNR optimal solution. A distributed aildpon is proposed
for the implementation of the IDA-based power allocatiomeTeasy imple-

mentation of the distributed algorithm is of interest ingadtal applications.

6.2 Future Research Directions

In this thesis, we use FDMA to avoid user interference. Feftiture work, we may
consider the transmission in an interference environmieninterference channel
scenarios, the proposed solutions in this thesis may nénpemwell. One popu-
lar solution to this suboptimality in recent years is thrbulge use of competitive
strategies in repeated games [140]. We may also tackle tbidgm by changing
the pricing rules([141].
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For game theoretical formulation of the power allocatiooljpem, we define
the utility function of a user as the gain minus the cost. Tam gs the received
SNR and the cost is its payment to the rla‘yrhere are two possible extensions
to our utility function design. First, in the wireless scenaa user might have
other preferences for gains, e.g., achievable rate [73paep efficiency [87]. In
such applications, how to generalize the proposed metbhgoks and algorithms
are of interest. Furthermore, nailing down a single utifityiction that represents
the preferences of all users is not appropriate in somegaijuns, since different
users will have different preferences. In these applioatiave can design game
theoretical power allocation schemes with different tytifunctions for different
users.

In this thesis, we limit our game theoretic models to ideahseio that the relays
or users have perfect knowledge of CSI through training aedlback. But in real-
ity, CSI at the users or relays is generally imperfect duéhtamael fluctuations and
channel estimation errors [137, 138], resulting in suboptiperformance of the
proposed algorithm. Hence, future research could invaigiore practical net-
work setting with imperfect or limited channel informatiamailable. In this case,
Bayesian game can be used to analyze the power allocatibfepro In Bayesian
game, players have beliefs about the types of other playdrste a belief is the
probability distribution of the possible types of otherydes. Each user tries to
maximize its expected benefit based on his beliefs, and thiesonding equilib-
rium is the Bayesian Nash equilibrium, which is the strategpfile that maximizes
each player’s expected payoff given their beliefs and giherstrategies played by
the other players [71].

Finally, in our game theoretic models, it is assumed thatisdlrs are unmali-

cious. In practical applications, however, due to the becaatinature of the wireless

In the NBS-based power allocation scheme, we assume thadltheis unselfish and the payment

is 0.

122



channel, cooperative systems face security threats swedwvasdropping (the mali-
cious nodes listen to the signal between the legitimateingiters and receivers) or
jamming (the malicious nodes degrade the quality of the¢ilegie communication
through broadcasting interference in the network). Oneoitigmt future direction
is to study game theoretical power allocation schemes iptégence of malicious
nodes. The presence of malicious nodes would strongly itrtpaaiser strategies,
as they would be required to learn the trust value of each p$er to making a
decision on the power allocation. In this regards, it wolddbinterest to combine
the proposed power allocation schemes with a learning idihgoithat can help in
identifying malicious nodes. One possible design of suties® is to use adaptive
Q-learning RL algorithms that allow each node to interac¢iroglly against a vari-

ety of known and unknown opponents and maximize their exyladtilities [139].
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