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Abstract

Radiology reports are the primary medium through which physicians commu-

nicate findings and diagnoses from patients’ medical scans. Examples include

radiology reports for chest radiographs, CT scans of the brain, medical re-

ports of retinal images, and more. However, the process of writing medical

reports is tedious, error-prone, and time-consuming, even for experienced ra-

diologists. Moreover, a Covid-19 or similar pandemic could exacerbate the

existing problems to all health care systems worldwide. Therefore, this thesis

explores the ability to automate diagnosing diseases and accurately generate

radiology reports to alleviate the burdens of medical doctors.

This thesis describes a new fully end-to-end differentiable paradigm that

consists of three major complementary modules: Classifier, Generator, and In-

terpreter. Particularly, taking the chest radiographs and related information

as inputs, the classifier module produces state-aware disease embeddings by

polarizing visual disease features into different directions, referred to as disease

states (e.g., positive, negative, uncertain, or unmentioned). With the aware-

ness of the disease states, a semantic version of the disease representation is

formed, referred to as EnricheD DIsease Embeddings (EDDIE), and passed to

a transformer-based generator to produce meaningful medical reports. The

generated reports are fed to the interpreter to ensure consistency with respect

to the disease classification checklist. This three-step approach ensures that

the visual information is always semantic enough to generate medical reports.

Meanwhile, the generated reports must exactly describe the detected diseases,
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avoiding overfitting to any dominant class (e.g., due to imbalanced datasets)

or language metric (i.e., by cheating the generation process).

The proposed model is evaluated on different datasets with commonly-used

metrics concerning language fluency, clinical accuracy, and human evaluation.

Empirical evaluations demonstrate that the proposed model can make more

accurate diagnoses and generate more fluent and precise reports than existing

baselines. Moreover, noticeable performance gains are consistently observed

when additional contextual information is available, such as the patients’ clin-

ical background documents and extra scans from different views.
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Preface

Some of the research conducted for this thesis forms part of an international

research collaboration, led by Prof. Li Cheng at the University of Alberta,

with Dr. Dong Nie being the lead collaborator at the University of North

Carolina at Chapel Hill, and Prof. Yingying Zhu at the University of Texas at

Arlington. The methods in Chapter 3 and Chapter 4 were designed by myself,

with the assistance of Dr. Dong Nie. The data analysis in Chapter 3 and

Chapter 4 and concluding analysis in Chapter 5 are my original work, as well

as the literature review in Chapter 2. The human evaluation in Chapter 3

and Chapter 4 are done by Dr. Yujie Liu at Guangzhou University of Chinese

Medicine.

Chapter 3 of this thesis is under review at The IEEE International Sym-

posium on Biomedical Imaging (ISBI 2022).

Chapter 4 of this thesis has been published as Hoang Nguyen, Dong Nie,

Taivanbat Badamdorj, Yujie Liu, Yingying Zhu, Jason Truong, and Li Cheng.

“Automated Generation of Accurate & Fluent Medical X-ray Reports.” In

Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, pp. 3552-3569. 2021.

This research study was conducted using human subject data made avail-

able in open access [9], [10], [29], [67]. Ethical approval was not required, as

confirmed by the license attached with the open-access data.
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If the hand be held between the discharge-tube and the screen, the darker

shadow of the bones is seen within the slightly dark shadow-image of the hand

itself. . . For brevity’s sake I shall use the expression “rays”; and to

distinguish them from others of this name I shall call them “X-rays”.

– Wilhelm Röntgen, German physicist, 1895.
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Chapter 1

Introduction

Radiology reports play a pivotal role in the clinical environment. It covers

some background information of patients and disease findings written by ra-

diologists. It evaluates conditions of patients based on visual observation and

serves as a medium to communicate between doctors and patients for medical

treatment discussions [70].

However, to write an excellent medical report [20], it usually requires a

considerable amount of time to review patients’ clinical history, understand

the doctor’s indications [48], and investigate medical scans to identify abnor-

malities. After that, radiologists write down their findings into the reports

describing diseases with condensed sentences [70] (see Figure 1.1). Notably,

although some diseases exist in medical scans, radiologists have to prioritize

crucial diseases that address the current concerns of medical doctors [45]. It

can be thought of as a question answering problem where only the needed

information is displayed in the final radiology reports. Therefore, the whole

process becomes tedious and time-consuming for experienced radiologists and

error-prone for junior ones.

Meanwhile, the Covid-19 pandemic has been putting enormous pressure

on hospital systems worldwide. Physicians are working excessively to treat

Covid-19 patients leading to labor shortage [12] to treat other diseases. Al-

though the Covid-19 rapid antigen test kits can detect new cases quickly and

reliably, they cannot determine the severity or be able to guide treatment and

assess treatment response [6]. So far, screening infected patients with radiology

1



Figure 1.1: An example of a radiology report study.

examinations using chest radiography has been the most effective approach,

emphasizing its crucial role in modern clinical systems. However, it also ex-

poses another bottleneck issue where all available resources are prioritized to

fight this disease leading to a longer waiting time for other treatments [62].

These challenges indicate that an effective clinical system must resolve the

labor shortage problem and reduce the time needed to diagnose or assess dis-

eases using radiography. It has led to a surging need for automated generation

of medical reports to assist radiologists and physicians in making rapid and

meaningful diagnoses [27], [28], [33], [34]. Its potential efficiency and benefits

could be enormous, especially during critical situations.

This thesis focuses on developing an automated system that can quickly

and accurately diagnose diseases and generate meaningful radiology reports to

alleviate the burdens of physicians and radiologists.

2



1.1 Challenges

Although having an automated medical report generating system is essen-

tial, developing a robust system is highly challenging with a growing number

of related research works. Notably, many existing efforts primarily focus on

image-based captioning problems by summarizing visual information in images

or videos with a sentence or a topic-related paragraph [15], [17], [24], [51], [55],

[61], [65], [73]. Based on these works, many other works have been adjusted to

meet the specific needs for medical report generation [16], [23], [27], [28], [33],

[34], [40], [47], [58], [59], [68], [74]–[76], [78], [81]. Compared to regular image

captioning problems where there is no need for expert knowledge, medical re-

port generation is much more difficult [28] because medical images usually lack

rich contextual information and are more difficult to understand [56]. More-

over, each radiology study is domain-specific and precise, where each report

typically consists of many long sentences describing different disease findings.

Thus, the main challenges associated with radiology report generation lie in:

• Accurately recognizing diseases from medical scans (factual correctness).

• Describing the disease findings with correct medical terminology (lan-

guage fluency).

• Handling potential inconsistencies between the detected diseases and

generated reports due to long-range dependency issues (clinical coher-

ence).

1.2 Contributions

The aforementioned observations motivate us to propose a categorize-generate-

interpret framework that places specific emphasis on clinical accuracy while

maintaining adequate language fluency of the generated reports. The main

contributions of this work are:

• In Chapter 3, we present an EnricheD DIsease Embedding based Trans-

former (Eddie-Transformer) model, which jointly performs disease de-
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tection and medical report generation. This is done by decoupling the

latent visual features into semantic disease embeddings and disease states

via our state-aware mechanism. Then, our model entangles the learned

diseases and their states, enabling explicit and precise disease represen-

tations.

• Based on Chapter 3, in Chapter 4, we propose a fully differentiable and

end-to-end paradigm that contains three complementary modules: tak-

ing the chest X-ray images and clinical history documents of patients

as inputs, our classification module produces an internal checklist of

disease-related topics, referred to as enriched disease embedding; the

embedding representation is then passed to our transformer-based gen-

erator, to produce medical reports; meanwhile, our generator also creates

a weighted embedding representation, which is fed to our interpreter to

ensure consistency with respect to disease-related topics.

1.3 Thesis Overview

In Chapter 2, we review existing efforts, their limitations, and other related

works. In Chapter 3, we present a new method to detect diseases and enhance

disease feature representations to facilitate the radiology report generation

task. In Chapter 4, we consider a broader range of inputs and propose a

robust model to diagnose, generate, and fine-tune medical reports. Finally, in

Chapter 5, we summarize and conclude this thesis and discuss possible future

research directions.
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Chapter 2

Related Work

This chapter discusses the works of medical report generations by first re-

viewing existing efforts in the image-captioning problem and their limitations.

After that, this chapter focuses on some radiology report methods and their

advantages and disadvantages. Moreover, this chapter introduces some related

techniques involving the natural language processing area. Finally, this chap-

ter summarizes and outlines the limitations and research gaps and how report

generation approaches can be improved.

2.1 The Image Captioning Task

The image-based captioning task aims at generating realistic sentences or

topic-related paragraphs to summarize visual contents from images (see Fig-

ure 2.1) or videos. It is similar to the medical report generation task in that

both receive images and generate descriptive sentences explaining the images.

Hence, it is reasonable to assume that solving the image captioning problem

can help the medical report generation task later. This section starts with

how an image captioning problem can be solved, discusses the limitations of

the current approaches, and finally how a new model can replace the existing

methods in resolving the limitations.

2.1.1 The Recurrent Neural Network Models

The work of [65], [73] are among the earliest and most influential approaches

that can, for the first time, address the image captioning problem in an end-
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Figure 2.1: Example images with captions obtained from the MSCOCO cap-
tion dataset [8].

to-end manner. Particularly, [65] used a CNN image encoder to encode images

into latent visual features. These latent visual features are then used as initial

inputs for the RNN/LSTM models to generate words (see Figure 2.2). Based

on the work of [65], [73] tries to learn the relationship between a generated

word and the spatial pixel features from an image via an attention mechanism.

Thus, it enables the ability to visualize how deep neural networks describe

images and increase the quality of generated captions.

Their experiments evaluated on the MSCOCO dataset [37], which consists

of more than 100,000 images, indicate that the proposed CNN-RNN architec-

ture [65] (scoring 27.7 in BLEU-4 metric) can closely match with real human

annotators (scoring 21.7 in BLEU-4 metric). The results are even better with
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Figure 2.2: An illustration of how CNN-RNNs image captioning model works.

attention mechanism [73] where it outperforms the work of [65] consistently

across all language metrics with 2-5% improvement. As a result, they set a

strong foundation for many other related works such as visual question an-

swering [17], improving the existing image captioning LSTM models [24], [55],

unsupervised image captioning [15], video captioning [51], or medical report

generation [28].

2.1.2 The Existing Problems

Despite the enormous successes of [65], [73], most works in this area share the

same recurrent neural networks with a widely known long-range dependency

issue [14]. For instance, [31] shows that the RNN-based architecture has a

bottle-neck issue by modeling all generated words and image features with a

single high dimensional embedding. This embedding is then used as input

to generate the next word. When the generated sentence is too long, the

gradient flows through this network is either too small (vanishing gradient)

to significantly impact the learning process or too large (exploding gradient)

that can ruin the entire learning process [21]. Although the LSTM model was

introduced to bypass this problem by forgetting unrelated words and retaining

only the most relevant words, in practice, it is still struggling to generate long

paragraphs or documents.

To mitigate this problem, in 1996, [14] proposed a hierarchical recurrent

network that transforms a time-series sequence into multiple summarized parts

such as a stream of words forming a sentence or multiple sentences forming a
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paragraph. Almost ten years later, [31] came up with a similar solution, de-

signed specifically for the image captioning task. It is done by generating sen-

tence embeddings from images with a sentence-level RNN module, then gen-

erating words for each sentence using a word-level RNN. Experiments of [31]

show that their model can match a real human in describing images with

complex paragraphs, achieving 41.9 in BLEU-1 score compared to the human

ability with a score of 42.88. Unarguably, the recent progresses in medical re-

port generation [27], [28], [33], [68], [74], [75], [78], [81] have been particularly

influenced by the work of [31].

It is clear that hierarchical RNNs [14], [31] can solve the long-range depen-

dency limitation, which helps generate paragraph-level contents. However, as

more and more data becomes available, training the hierarchical RNN model

can be extremely slow [63] where the time complexity to go through the entire

sequence is O(n). It is because the RNN itself is a sequential model. It has to

wait for the previous output to be used as input to generate the subsequent

output, thus, limiting the parallelism. Apparently, if parallelism is the top

requirement, RNN architectures should be avoided in the first place due to

their sequential nature.

2.1.3 The Transformer Model

The existing problems discussed in the previous part suggest that a new model

must be proposed to solve the long-range dependency and parallelism simul-

taneously. As it seems impossible because all prior works [14], [31], [44], [65],

[73] are based entirely on the RNNs, [73] left a crucial piece in solving this

problem – the attention mechanism [44].

The Transformer model [63] is firstly introduced in the context of machine

translation (sequence-to-sequence) to expedite training and improve long-range

dependency modeling (see Table 2.1). It processes sequential data in paral-

lel with an attention mechanism, consisting of a multi-head attention mod-

ule and a feed-forward layer. With the proposed Transformer model, recent

transformer-based models have shown considerable advancement in many dif-

ficult tasks, such as a graph attention network [64], image generation [7], story
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Methods Sequential operations Maximum path length Complexity per layer
Transformer [63] O(1) O(1) O(N2 ∗D)
RNNs O(N) O(N) O(N ∗D2)

Table 2.1: The complexity summary of the Transformer model [63], where N
is the sequence length and D is the embedding dimension

generation [52], question answering, or language inference [11].

Although the Transformer model has been proved to efficiently resolve most

limitations of the RNN/LSTM architectures with faster training time [79],

very few works [61] have successfully utilized it for the image captioning task,

leaving a potential research gap for future works. It is even more interesting

to see how the Transformer can be applied to solve real-world problems such

as medical report generation, which requires absolute correctness. Therefore,

this thesis explores the feasibility of developing such models for medical report

generation.

2.2 The Medical Report Generation Task

Despite sharing some similarities with the image captioning task, the medi-

cal report generation task is usually more difficult [28] since medical images

usually lack rich contextual information and are more difficult to understand.

Moreover, each medical report is very domain-specific, precise, and typically

consists of many long sentences describing exactly the severity and details of

diseases [70]. For these reasons, some research works [28], [33] find that reg-

ular image captioning approaches cannot be applied directly to this problem.

There are many studies [27], [28], [33], [68], [74], [75], [78], [81] have been

proposed to adapt to this specific type of problem, which can be divided into

two groups:

• Image-based report generation: The nature of these methods is very

similar to the image captioning task of [31]. It receives medical images

and generates medical reports hierarchically.

• Template retrieval and paraphrasing: These methods often leverage hu-

man knowledge to preprocess information, group medical sentences or
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reports into categories. Then, they treat the problem as a template

retrieval task and paraphrase the retrieved templates where necessary.

This section discusses common assumptions of these approaches, limitations

of existing efforts and introduces an automated evaluation tool to evaluate the

generated reports.

2.2.1 The common assumptions

Almost all early medical report generation approaches [27], [28], [38], [68], [75]

are entirely based on the assumption that writing good medical reports only

needs single-view or frontal-view images, which are captured front-to-back

or back-to-front. This assumption is aligned with the common assumption

made by physicians in some studies [4], [49]. It has the benefit of reducing

the amount of radiation on patients. However, other groups of physicians

[2], [26], [30] find that using other view positions such as lateral view has a

complementary effect on detecting certain diseases that are often missed out

with frontal view images. This thesis agrees on the views of both sides in a

way that deep learning models must be flexible enough to handle not only

single-view images but also multi-view images when available.

In reality, having images alone may not be good enough to write good

medical reports. Human radiologists are much more flexible and often require

more contextual information to make precise diagnoses. For example, [5] sug-

gests that the clinical information of patients can help improve the accuracy of

diagnoses. In particular, clinical history contains personal information, such

as age, gender, and relevant medical information. It may also include previous

clinical studies of patients, known diseases, and symptoms the patients may be

feeling. Although it is a crucial piece of information for radiologists to focus

the report on unique conditions, to our knowledge, none of the prior works

has utilized this piece of information. Notably, this information is abundantly

provided in most X-ray datasets such as [10], [29].

This thesis (see Chapter 4) shows that deep learning models are flexible

enough to handle both cases efficiently with consistent improvements. Thus,
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it proves the necessity of having more contextual data in diagnosing diseases.

2.2.2 Image-based Report Generation

The work of [65], [73] are among the early baselines that researchers [28],

[33], [38] apply in the medical report generation task. The visual features are

extracted by convolution neural networks (CNNs); then, they are subsequently

fed into recurrent neural networks (RNNs) to generate textual descriptions.

By using these models, researchers imply that visual disease patterns can be

learned implicitly via the image captioning process. However, these standard

approaches have two major drawbacks.

One is the long-range dependency issue, where each medical report is a

paragraph, as discussed earlier. Thus, [27], [28], [33], [68], [74], [75], [78], [81]

adopt the hierarchical RNN architecture [31] in their models to deal with this

issue by generating one sentence at a time. The only issue with this strategy

is the lack of parallelism, affecting the training time [79].

The other one is the inaccurate textual descriptions [33], [38]. One of

the reasons behind this is the imbalanced X-ray datasets [10], [67], where the

normal study cases dominate the abnormal cases by a ratio of at least 10:1.

Therefore, the deep learning models can cheat the learning process by only

generating healthy sentences with a high language metric scores. To remedy

this issue, some researchers [28], [59] introduce a secondary classification task

to detect diseases in conjunction with adjusting the learning weight towards

the positive cases [53], enhancing the quality of the visual features. This

approach can be thought of as an explicit disease diagnosis process with clear

predictions, forcing the report generator to generate what the visual extractor

sees. The methods of [27], [33], on the other hand, consider a reinforcement

learning process to promote generating reports with correct contents. The

downside of reinforcement learning is the notorious convergence difficulty and

hard to train.
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2.2.3 Template Retrieval & Paraphrasing

Instead of generating medical reports from images, another exciting direction

is trying to query or retrieve medical templates and paraphrasing them into a

complete medical report [33], [34]. It is achieved by leveraging human knowl-

edge and manual effort to group sentences or medical reports into different

categories, such as grouping by similar meaning or diseases [33], [34].

Compared to the approaches in the previous part, this solution can re-

duce the need for RNN/LSTM models to generate long sequences, thus avoid-

ing the long-range dependency issue. Moreover, using medical templates has

transformed this approach into sequence-to-sequence modeling where recur-

rent models can do their job efficiently by paraphrasing a template sequence

into a complete sentence based on visual information.

Although [34] is currently one of the state-of-the-art approaches, it has

several noticeable limitations. Firstly, it requires human efforts [33], [34] to es-

tablish a database of templates manually. It leads to the second limitation; it

is not scalable to other related problems. Each medical dataset would require

human effort to scan through the entire dataset and extract templates. For

small-scale datasets such as Open-I [10] with less than 4000 studies, it is fea-

sible. Still, with enormous datasets such as MIMIC-CXR [29] with more than

100,000 studies, it is very challenging. Moreover, if a particular template for

a specific disease is missing, the model may not generate a desirable medical

report. This is not to mention that each institution or country may have its

convention or style regarding how to write medical reports [70].

2.2.4 CheXpert Labeler

The CheXpert labeler [25] is a rule-based system that extracts and classifies

medical reports into 14 common diseases. Each disease label is either posi-

tive, negative, uncertain, or unmentioned. This is a crucial part of building

large-scale chest X-ray datasets, such as [25], [29], where an alternative man-

ual labeling process may take years of effort. It can also be used to evaluate

the clinical accuracy of a generated medical report [38]. Another important
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use of the CheXpert labeler is to facilitate the generation of medical reports.

Since the rule-based CheXpert labeler is not differentiable, it is regarded as

a score function estimator for reinforcement learning models [38] to fine-tune

the generated texts. However, the reinforcement learning methods are often

computationally expensive and practically difficult to convergence. As an al-

ternative, Lovelace et al. [40] propose an attention LSTM model and fine-tune

the generated report via a differentiable Gumbel random sampling trick, with

promising results.

2.3 Multi-label Classification

Unlike multi-class classification problems where each input sample can have

one and only one output class, multi-label classification (MLC) assigns each

sample a set of target labels. For example, most real-world images contain

multiple labels, which could correspond to different objects, scenes, actions,

and attributes in an image. The most straightforward MLC approach is trans-

forming the problem into independent binary classification tasks where the

final layer consists of independent logistics activation. Then, cross-entropy

loss or ranking loss [35], [69] can be applied to train neural network models.

Additionally, to capture the relationships between different labels, [66] pro-

posed to learn semantic relevance between images and labels by joining both

image embedding and label embedding into a joint embedding space through

recurrent neural networks.

Inspired by the work of [66], our model learns to cluster input images into

one of the predefined states where each state is an embedded vector. However,

unlike existing clustering techniques that form groups of data points, our model

clusters visual features into different directions.

2.4 Natural Language Processing Techniques

Natural Language Processing (NLP) is a branch of computer science and ma-

chine learning that process, understand, and respond to textual information.

In recent years, NLP has been one of the most fast-growing fields with many
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Figure 2.3: An example of word embedding. Image Source: (Embeddings:
Translating to a Lower-Dimensional Space) by Google.

exciting applications such as language translation (sequence-to-sequence mod-

eling), image captioning (image-to-sequence modeling), text prediction (time-

series forecasting). Since this thesis involves the NLP research areas, this

section provides some background knowledge and recent NLP techniques.

2.4.1 Word Embedding & Positional Encoding

The first and most crucial step in processing textual information is transform-

ing a word into a continuous space vector representation [46] which is known as

word embedding (see Figure 2.3). It is used to input a human-readable word

such as English or French into a machine learning model that it can under-

stand. Word embedding can be used to visualize words in a high-dimensional

embedding space where similar words such as “beautiful”, “stunning”, “awe-

some” tend to cluster together to form certain relationships.

Another interesting embedding that recently gained popularity is positional

encoding. Positional encoding is used to insert time-series information in the

Transformer model [63]. This is because the Transformer does not have the

sequential characteristic that recurrent models such as LSTM have. For exam-

ple, the sentence “cat eats fish” without ordering has an equivalent meaning

as “fish eats cat”. Fortunately, there are many ways to encode positional in-

formation such as sinusoid [63], learnable positional encoding [11], or relative

positional encoding [71].
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2.4.2 Tokenizers

In the previous part, we discussed word embedding, which turns a word into

a vector representation. In this part, we discuss tokenization which is an

important process that turns a sentence into words [18] or sub-words [57]

before transforming words into word embedding. Particularly, a sentence often

contains many words, and each word can be associated with punctuations or

special characters. For example, a sentence “Washington isn’t in the U.K.” can

be tokenized into “Washington”, “isn’t”, “in”, “the”, and “U.K.”. However,

the word “isn’t” can be further tokenized into “is” and “n’t”, whereas “U.K”

cannot be broken down further.

Word Tokenizer with Spacy

Spacy is a library that is introduced to facilitate the tokenization task. It first

split raw text with whitespace characters. On each substring, it performs two

checks:

• Predefined exception rules: there are special rules in English that can

be tokenized further, such as the word “don’t” should be split into two

tokens, “do” and “n’t”, while “U.S.” should remain one token.

• Punctuation check: punctuation such as commas, periods, hyphens, or

quotes can be used to split a word into prefix, postfix, and infix, where

each of them will be checked. For example, “Eddie-transformer” can be

split further into “Eddie”,“-”, and “transformer”.

In Chapter 3, we use Spacy for word tokenization. Moreover, we also use Spacy

to split sentences into noun phrases to get more additional labels to increase

the difficulty of the image classification task.

Other Tokenizers

Although word tokenization is frequently used, it may run into the “out-of-

vocabulary” situation where a new word is not in the predefined vocabulary

set. Therefore, some other tokenization techniques are introduced, which break
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a word into subwords such as Byte Pair Encoding (BPE) [57], Unigram, or

WordPiece. These techniques surely avoid the “out-of-vocabulary”; however,

the input sentence length may increase significantly. It would be extremely

challenging to tackle a paragraph-level problem such as medical report gener-

ation, especially for RNN-based architectures, as discussed previously.

In Chapter 4, we use a hybrid approach that keeps a high-frequency word

list while reserving a small portion of the vocabulary size for sub-word level

tokenizers. With this technique, we balance the sequence length and avoid the

out-of-vocabulary situation. To do this, we use SentencePiece library [32].

2.4.3 Multi-head Attention

The multi-head attention (MHA) mechanism was introduced in the Trans-

former model [63]. Since then, it has been widely applied to many tasks such

as graph attention networks (GAT) [64] or image feature extraction via split

attention (ResNeSt) [80]. The multi-head attention is based on the informa-

tion theory with three technical terms: query, key, and value. The query is

a learnable embedding that queries information from an input text sequence

(database) such that it matches with specific keys or words that share similar

meanings. The matching score is computed by a vector similarity dot product

between the query embedding and any available key embeddings. Unlike in

database query, where only the matched value is returned, the returned value

in MHA is a weighted average of all value embeddings. For example, in the

sentence “the patient has cough and shortness of breath”, the words “cough”

and “shortness of breath” are two keywords that may match the “fever” query.

Therefore, the word embedding of “cough” and “shortness of breath” are re-

turned by averaging all word embedding in the sentence where “cough” and

“shortness of breath” receive the highest weight. This ensures that the outputs

only retain the most relevant words. This thesis uses the attention mechanism

in many tasks, such as summarizing medical reports based on different diseases

where each disease is a query.
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2.4.4 Language Evaluation Metrics

BLEU Scores

BLEU (BiLingual Evaluation Understudy) [50] metric was developed with a

purpose of automatically evaluating machine-translated text. The BLEU score

is a number between zero (no overlap/low quality) and one (perfect over-

lap/high quality) that measures the similarity of the machine-translated text

(i.e., candidate) to a set of high quality reference translations (i.e., references).

The BLEU scores can be computed using the following formula:

BLEU = min(1, exp(1− r

c
))× exp(ΣN

i=1wilog(pi)) (2.1)

pi =
ΣC∈canΣgramn∈CCountclip(gramn)

ΣC′∈canΣgram′
n∈C′Count(gram′

n)
(2.2)

where r and c are the length of the reference and candidate sequences, respec-

tively; wi is the weight.

ROUGE Scores

Similar to BLEU scores, ROUGE (Recall-Oriented Understudy for Gisting

Evaluation) [36] metric is another metric used to evaluate a generated text.

It is developed with a purpose of evaluating automatic summarization and

machine translation. ROUGE score can be computed as follow:

ROUGE =
ΣS∈refΣgramn∈SCountmatch(gramn)

ΣS∈refΣgramn∈SCount(gramn)
(2.3)

2.5 Conclusion

In summary, although the regular image captioning problem shares some simi-

larities with the medical report generation task, it is much more challenging to

tackle the report generation without any modification. Despite having different

solutions ranging from detecting diseases, fine-tuning generated reports, and

paraphrasing available templates, each approach has its disadvantages, includ-

ing the imbalanced datasets, parallelism limitation, convergence difficulties of

reinforcement learning, and scalability across different datasets. Moreover,

the assumptions made by prior works excluding the necessity of having more
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contextual data also restrict them from practical usage and do not reflect the

actual clinical environment.

From the limitations and research gaps mentioned above, this thesis aims

at resolving the long-range dependency issue and parallelism with the Trans-

former model. This thesis also designs modules such as multi-view image en-

coders and text encoders to adapt to different scenarios where various clinical

information is available such as single-view versus multi-view images, clinical

history, or indications. It also improves the quality of the generated reports

in terms of clinical correctness by enhancing the visual input features and

fine-tuning the generated reports with the proposed differentiable evaluation

network called the interpreter.
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Chapter 3

Eddie-Transformer: EnricheD
DIsease Embedding
Transformer for X-ray Report
Generation

3.1 Introduction

Physicians primarily communicate findings and diagnoses from patients’ med-

ical scans through radiology reports. However, the process is laborious and

error-prone, where typing out a medical report typically takes five to ten min-

utes [28]. In COVID-19 or similar pandemics, a rapidly soaring number of

patients could bring enormous pressure to the healthcare system, a devas-

tating setting that calls for automation to lessen healthcare workers’ burden.

More specifically, we look at the problem of automated generation of medical

reports that facilitate rapid and meaningful diagnoses and save time during a

critical situation.

Although many medical report generation approaches [16], [27], [28], [33],

[34], [47], [58], [59], [68], [74]–[76], [78], [81] have been proposed, many existing

works are based on the CNN-RNN paradigm that suffers from poor long-range

dependency modeling capability. It also recurrently processes the sequential

information limiting the training process and thus leading to sub-optimal re-

sults for the sequential description generation. The Transformer [63], which

is developed to beat the drawbacks of RNN architectures, has achieved great
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success in natural language processing tasks because of its parallelization and

attention mechanisms. However, very few works have used Transformer-based

models for the medical report generation task. The nice characteristics of

the Transformer motivate us to explore the feasibility of developing a new

paradigm for image description generation to overcome the restrictions of the

CNN-RNN paradigms.

This chapter introduces a simple end-to-end medical report generation

framework, EnricheD Disease Embedding Transformer (Eddie-Transformer).

The model consists of three modules: a visual feature extractor CNN, an en-

riched disease embedding block (Eddie), and a report generation transformer.

The visual feature extractor module extracts global information of the images,

which outputs the visual features. The enriched disease embedding module de-

couples the visual features to disease query embedding and disease-state (e.g.,

positive, negative, uncertain), then learns a state-aware disease embedding via

a self-attention mechanism. Finally, the report generation module generates

reports via the Transformer model based on the enriched disease embedding.

The main findings in this chapter are:

• We propose an Enriched Disease Embedding module that has the ability

to polarize visual disease features; thus, it encodes informative disease

features via the self-attention mechanism, improving the quality of med-

ical reports.

• As a by-product of this polarization process, Eddie has the ability to

perform classification tasks.

• The Transformer model can be used to generate medical reports, thus

reducing memory consumption compared to LSTM models and faster

training time (see Table.3.4).

3.2 Our Approach

Our model first extracts the latent visual features from the last layer of a

CNN image encoder. The latent features are then transformed into differ-
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ent disease/topic queries. This is followed by the EDDIE block that returns

the corresponding state-aware disease embedding for each query. Finally, the

language model generates medical reports based on the enriched disease em-

beddings as visualized in Fig. 3.1.

3.2.1 Enriched Disease Embedding

Naive Disease Query Embedding

Denote N the total number of disease representations, and E the embedding

dimension. Fig. 3.1 presents the global visual features I extracted from the

CNN backbone. Disease query representations are subsequently obtained by

transforming the image feature I ∈ RF into multiple low dimensional feature

vectors. They are regarded here as the disease queries : {dq,i}Ni=1 ∈ RE, by a

linear form of I (ϕi(I)),

dq,i = ϕi(I) = W T
i I + bi, (3.1)

Here Wi ∈ RF×E and bi ∈ RE are learnable parameters of the i-th disease

representation, respectively.

Intuitively, this set-up decouples the high-dimensional image features I ∈

RF into different low-dimensional disease space {dq,i}Ni=1 ∈ RE, which facili-

tates the diversity and fluency of the follow-up generated reports, as empiri-

cally shown in Table 3.1. Meanwhile, as is also suggested by the ablation study

in Table 3.6, the disease representation alone is insufficient for generating ac-

curate medical reports. It is mainly due to a plain mingling of heterogeneous

sources of information such as disease type (i.e., disease name) and disease

state (e.g., positive or negative) in such a representation, which leads us to

conceive a state-aware representation below.

State-aware Disease Embedding

As a remedy, a polarization module (self-attention) is incorporated to encode

informative attributes by polarizing the visual features into different direc-

tions (states). For instance, these states may include “positive”, “negative”,

“uncertain”, or “unmentioned”. Formally, let K be the number of states
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and {sj}Kj=1 ∈ RE the state embeddings. The state-aware disease embedding

ŝi ∈ RE for the disease query dq,i ∈ RE is

ŝi =
K∑
j=1

αijsj, (3.2)

where αij denotes the self-attention of dq,i and sj:

αij =

(
ed

T
q,i·sj

)
∑K

l=1 e
(dTq,i·sl)

. (3.3)

Clearly, if the disease query dq,i has a large inner product with the state

embedding sj, sj will be given more weight in the summation. An example

is illustrated in Fig. 3.1 (Polarization via Self-attention). We called this self-

attention, as the state embedding sj is randomly initialized and is learned by

maximizing the vector similarity between the disease query dq,i and the state

embedding sj, to minimize the multi-label classification loss.

Eddie as a Multi-label Classifier

To control how vector dq,i is similar to vector sj, we treat this problem as a

multi-label classification problem. In particular, let αij be the probability that

the disease i-th has the state j-th (e.g., pneumonia disease i = 5 is positive

j = 1). We can minimize the multi-label classification loss:

LC = − 1

N

N∑
i=1

K∑
j=1

yij log(αij), (3.4)

where yij and αij are the ground-truth and predicted states (e.g., positive or

negative) for the disease i-th correspondingly. For example, when yij = 1 and

αij = 0, the classification loss is maximum and the vector similarity between

dq,i and sj is very small. Therefore, the network is optimized to increase the

similarity between dq,i and sj such that αij → 1. Hence, the state-aware

disease embedding {ŝi}Ni=1 directly contains the disease state information as

well as the visual information from the disease queries.
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3.2.2 Report Generation

Enriched Disease Embedding

The disease embeddings {di}Ni=1 ∈ RE (i.e., disease types / names / topics) and

the state-aware disease embeddings {ŝi}Ni=1 are entangled to form the enriched

disease embeddings X = {xi}Ni=1,

xi = di + ŝi, (3.5)

with xi ∈ RE. Hence, the enriched disease embeddings contain a rich reper-

toire of information including the disease topic di to be described (i.e., what

disease), the predicted state ŝi of that disease (i.e., good or bad), and the

disease visual features dq,i (i.e., severity/details) through vector similarity of

dq,i and sj. A list of such enriched embedding is served as inputs to the Trans-

former encoder [63] for contextualization (i.e., how disease topics correlate to

others),

x̂i = Encoder(xi|x1, x2, ..., xi−1, xi+1, ..., xN). (3.6)

Report Generation Model

The Transformer decoder [63] is used to generate our medical reports, given

the attended encoder sequence {x̂i}Ni=1 and the previous ground-truth word

embeddings {yj}t−1
j=1, by

{ŷt,k}Sk=1 = Decoder(y1, y2, ..., yt−1, x̂1, x̂2, ..., x̂N), (3.7)

where ŷt,k is the probability of selecting the k-th word at the time-step t-th

in the vocabulary set of S words. Intuitively, the Transformer model learns

a mapping from the source sequence {xi}Ni=1 to the target medical sentences

{yj}Lj=1, where L is the sequence length, similar to the way any language

translation model learns, for example, to translate from German to English.

Finally, the loss function for the text generation task is just a cross-entropy

loss over all L time-steps, as

LT = − 1

L

L∑
t=1

S∑
k=1

yt,k log(ŷt,k), (3.8)
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Table 3.1: An ablation study on the number of additional disease topics other
than the 14 common diseases for the Open-I dataset.
Number of Topics BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

14+0 0.214 0.128 0.082 0.055 0.238
14+50 0.461 0.308 0.218 0.157 0.357
14+100 0.466 0.307 0.218 0.158 0.358
14+200 0.439 0.295 0.210 0.153 0.367

where yt,k is the one-hot ground-truth value of selecting the k-th word.

Therefore, the overall loss function for both the disease detection task and the

report generation task with a balancing term α ∈ [0, 1] is

L = αLC + (1− α)LT . (3.9)

3.3 Experiments

3.3.1 Datasets

We evaluate the disease detection and medical report generation tasks of our

approach using three benchmark datasets: Chest X-ray 14 [67], Open-I [10],

and Covid-19 [9]. On the Chest X-ray 14 dataset [67], for a fair comparison,

we adopt the official train and test splits 1 and use 10% of the training set

for validation. For the report generation task, Open-I [10] and Covid-19 [9]

datasets are used to evaluate the language performance. Particularly, we use

80% of the dataset for training and validation, and the rest 20% for testing.

Similarly, 10% of the training set is for validation.

Moreover, to enhance the medical report generation performance, we use

Spacy 2 to extract the top-100 frequent noun phrases from each dataset as

additional keywords or topics for the multi-label classification task.

1The chest X-ray 14 dataset with official train and test splits:
https://nihcc.app.box.com/v/ChestXray-NIHCC

2Spacy, the industrial natural language processing tool: https://spacy.io
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3.3.2 Quantitative Experiments

Disease Detection Task

In terms of the disease detection task, to be consistent with the prior works [67],

[68], the commonly-used evaluation metric AUC score is adopted. As sum-

marized in Table 3.2, both CNN-backbones obtain promising results, while

our ResNeSt-50 [80] (ours-2) produces the best results. This empirical ev-

idence suggests that the proposed polarization/state-aware mechanism can

perform well in the disease detection task under different CNN backbones,

which is the foundation for generating high-quality reports. Moreover, un-

der the same ResNet-50 backbone, we compare our EDDIE method with the

standard binary multi-label classification method that uses a fully connected

layer (CNN+FC). Table 3.5 shows that our approach performs better than the

CNN+FC.

Note that some methods have different experiment setups (e.g., non-official

dataset splits [53] or training on extra datasets [19]) or require significant

architecture changes [42], [43], [54] such as fine-tuning the detection networks

via evolutionary algorithms. We exclude these works from our comparison and

only focus on the works that share simple and widely-used CNN backbones

such as ResNet-50 to avoid biases.

Medical Report Generation Task

The report generation task is evaluated on two benchmarks, Open-I and

COVID-19. The widely-used language evaluation metrics are adopted, in-

cluding BLEU-1 to BLEU-4 scores, ROUGE score. As for the Hit score, two

board-certified radiologists are asked to evaluate the generated medical re-

ports of 100 randomly-chosen test images. They manually mark true (1) if a

generated report accurately describes the corresponding image, or mark false

(0) if a generated report misses something or mistakenly predicts something.

The total number of accurate reports in percentage, or Hit, is then reported.

Hit% = #AgreedReports
#TotalReports

× 100% is used to quantify the feedback of user studies.

As demonstrated in Table 3.3, our approach outperforms the compari-
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Table 3.2: Disease detection performance (Ours-1: ResNet-50 and Ours-2:
ResNeSt-50) on the Chest X-ray 14 benchmark.
Disease Samples Chest-8 [67] TieNet [68] Ours-1 Ours-2

Atelectasis 3,255 0.700 0.732 0.769 0.765
Cardiomegaly 1,065 0.810 0.844 0.878 0.877
Effusion 4,648 0.759 0.793 0.825 0.825
Infiltration 6,088 0.661 0.666 0.698 0.703
Mass 1,712 0.693 0.725 0.812 0.805
Nodule 1,615 0.668 0.685 0.757 0.760
Pneumonia 477 0.658 0.720 0.711 0.725
Pneumothorax 2,661 0.799 0.847 0.843 0.852
Consolidation 1,815 0.703 0.701 0.741 0.745
Edema 925 0.805 0.829 0.831 0.834
Emphysema 1,093 0.833 0.865 0.894 0.909
Fibrosis 435 0.786 0.796 0.792 0.822
Pleural Thickening 1,143 0.684 0.735 0.752 0.767
Hernia 86 0.871 0.876 0.853 0.862
No Finding 9,912 - 0.701 0.727 0.731

Average - 0.745 0.772 0.797 0.804

son methods in almost all language metrics at the benchmarks (COVID-19

& Open-I). Moreover, our approach achieves the highest Hit score, manifest-

ing its ability of generating fluent and more importantly, clinically-accurate

medical reports when compared to others.

Moreover, we also disable the disease classification task and remove that

state-attention module. Hence, the model only learns to generate medical

reports from the implicitly learned disease representations mixed with state

embedding. Table 3.6 shows that without the proposed state-aware embed-

ding module, the performance is significantly lower than our full model. It

highlights the importance of explicitly decoupling the disease features and the

disease states in the ensuing the task of medical report generation.

3.4 Summary

We propose an Eddie-Transformer model to jointly tackle the tasks of robust

chest X-ray disease detection and medical report generation. The proposed

Eddie model decouples visual features into different states to enhance the
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Table 3.3: Report generation performance with human evaluation (Hit per-
centage) for Open-I & COVID-19 datasets.
Dataset Methods BLEU1 BLEU2 BLEU3 BLEU4 ROUGE Hit

Open-I S&T [65] 0.224 0.136 0.095 0.072 0.300 54%
SA&T [73] 0.256 0.156 0.109 0.081 0.303 61%
TieNet [68] 0.330 0.194 0.124 0.081 0.311 -
AoA [24] 0.180 0.112 0.077 0.058 0.294 51%
CoAtt [28] 0.442 0.290 0.205 0.148 0.387 74%
HRNN [75] 0.445 0.292 0.201 0.154 0.344 -
HRGR-Agent [33] 0.438 0.298 0.208 0.151 0.322 -
HRG-Transformer [59] 0.464 0.301 0.212 0.158 - -
Ours 0.466 0.307 0.218 0.158 0.358 77%

COVID-19 S&T [65] 0.179 0.082 0.040 0.020 0.155 24%
SA&T [73] 0.159 0.074 0.038 0.020 0.155 33%
CoAtt [28] 0.214 0.081 0.019 0.000 0.158 37%
AoA [24] 0.055 0.027 0.014 0.008 0.099 16%
Ours 0.269 0.134 0.073 0.042 0.176 41%

Table 3.4: Computation cost comparison. Lower is better.
Methods MACs Params

Ours (Eddie-Transformer) 230.2 billion 56 million
CoAtt(Hierarchical LSTM) 582.5 billion 342.6 million

Table 3.5: Comparison of the traditional multi-label classifier and our approach
on the Chest X-ray 14 dataset (the AUC score is the average of all 14 common
diseases).

Detection CNN+FC Ours

No Finding 0.714 0.727

Avg Finding 0.778 0.797

Table 3.6: The ablation study of our approach w/ vs. w/o the EDDIE module,
evaluated on the Open-I dataset.

Methods B-1 B-2 B-3 B-4 ROUGE

No EDDIE 0.399 0.254 0.177 0.131 0.338
W/ EDDIE 0.466 0.307 0.218 0.158 0.358
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visual feature representations and increase the report’s quality. Besides, the

disease-state aware mechanism can also be used as a disease detection model.

Our empirical evaluations demonstrate our approach’s effectiveness on disease

detection and medical report generation tasks on three different benchmarks:

Chest X-ray 14, Open-I, and COVID-19. Thanks to the good performance,

our proposed model plays as the core framework for further improvements in

the next chapter.
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Chapter 4

Automated Generation of
Accurate & Fluent Medical
X-ray Reports

4.1 Introduction

A successful medical report generation process is expected to possess two key

properties:

• Clinical accuracy: properly and correctly describing the disease and re-

lated symptoms.

• Language fluency: producing realistic and human-readable text.

Many recent progresses in the medical report generation [27], [28], [33], [34],

[40], [59], [68], [74], [75], [78] often perform reasonably well in addressing the

language fluency aspect. On the other hand, as is also evidenced in our em-

pirical evaluation, their results are notably less satisfactory in terms of clinical

accuracy.

This we attribute to several reasons: one is closely tied to the textual char-

acteristic of medical reports, which typically consists of many long sentences

describing various disease-related symptoms and related topics in precise and

domain-specific terms. Moreover, the disease patterns are not semantic for

medical report generators to generate meaningful descriptions. Another rea-

son is related to the lack of full use of rich contextual information that encodes

prior knowledge. This information includes, for example, the patient’s clinical
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Figure 4.1: Our approach consists of three modules: a classifier that reads
chest X-ray images and clinical history to produce an internal checklist of
disease-related topics, a transformer-based generator to generate fluent text,
and an interpreter to examine and fine-tune the generated text to be consistent
with the disease-related topics.

document describing the key clinical history and indication from doctors, and

multiple scans from distinct 3D views – information that is typically existed in

abundance in practical scenarios, as, e.g., in the standard X-ray benchmarks

of Open-I [10] and MIMIC-CXR [29]. Last but not least, the report generation

module may cheat the learning process, ignore the outputs of the classification

task, and bias towards maximizing language evaluation metrics.

For these reasons, we propose a categorize-generate-interpret framework

that places specific emphasis on clinical accuracy while maintaining adequate

language fluency of the generated reports. It consists of a classifier module that

reads chest X-ray images (e.g., either single-view or multi-view images) and

related documents to detect diseases and output enriched disease embedding;

a transformer-based medical report generator to robustly generate long para-

graphs; and a differentiable interpreter to evaluate and fine-tune the generated

reports for factual correctness. The main contributions are two-fold:

31



• A differentiable end-to-end approach is proposed, consisting of three

modules (classifier-generator-interpreter): the classifier module learns

the disease feature representation via context modeling (section 4.2.1)

and disease-state aware mechanism (section 4.2.1); the generator mod-

ule transforms the disease embedding to medical report; the interpreter

module reads and fine-tunes the generated reports, enhancing the con-

sistency of the generated reports and the classifier’s outputs.

• Empirically, our approach is shown to outperform against many strong

baselines over two widely-used benchmarks on an equal footing (i.e.,

without access to additional information). Moreover, empirical evidence

demonstrates that clinical patient history and additional scans may play

a vital role in improving the quality of the generated reports.

4.2 Our Approach

Our framework consists of a classification module, a generation module, and

an interpretation module, as illustrated in Fig. 4.1. The classification mod-

ule reads multiple chest X-ray images and extracts the global visual feature

representation via a multi-view image encoder. They are then disentangled

into multiple low-dimensional visual embedding. Meanwhile, the text encoder

reads clinical documents, including, e.g., doctor indication, and summarizes

the content into text-summarized embedding. The visual and text-summarized

embeddings are entangled via an “add & layerNorm” operation to form con-

textualized embedding in terms of disease-related topics. The generation mod-

ule takes our enriched disease embedding as initial input and generates text

word-by-word, as shown in Fig. 4.2. Finally, the generated text is fed to the

interpretation module for fine-tuning to align to the checklist of disease-related

topics from the classification module. In what follows, we are to elaborate on

these three modules in detail.
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4.2.1 The Classification Module

Multi-view Image Encoder

For each medical study which consists of m chest X-ray images {Xi}mi=1, we

extract the corresponding latent features {xi}mi=1 ∈ Rc, where c is the number

of features, via a shared DenseNet-121 image encoder [22]. Then, the multi-

view latent features x ∈ Rc can be obtained by max-pooling across the set of

m latent features {xi}mi=1, as proposed in [60]. When m = 1, the multi-view

encoder boils down to a single-image encoder.

Text Encoder

Let T be a text document with length l consisting of word embeddings {w1, w2, ..., wl},

where wi ∈ Re embodies the i-th word in the text and e is the embedding di-

mension. We use the transformer encoder [63] as our text feature extractor

to retrieve a set of hidden states H = {h1, h2, ..., hl}, where hi ∈ Re is the

attended features of the i-th word to other words in the text,

hi = Encoder(wi|w1, w2, ..., wl). (4.1)

The entire document T is then summarized by Q = {q1, q2, ..., qn}, repre-

senting n disease-related topics (e.g., pneumonia or atelectasis) to be queried

from the document. We refer to this retrieval process as text-summarized

embedding Dtxt ∈ Rn×e,

Dtxt = Softmax (QH⊺)H. (4.2)

Here matrix Q ∈ Rn×e is formed by stacking the set of vectors {q1, q2, ..., qn}

where qi ∈ Re is randomly initialized, then learned via the attention process.

Similarly, the matrix H ∈ Rl×e is formed by {h1, h2, ..., hl} from Eq. (4.1). The

term Softmax(QH⊺) is the word attention heat-map for the n queried diseases

in the document. The intuition here is for each disease (e.g., pneumonia) to

be queried from the text document T . We only pay attention to the most

relevant words (e.g., cough or shortness of breath) in the text that associates

with that disease, also known as a vector similarity dot product. This way, the
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weighted sum of these words by Eq. (4.2) gives the feature that summarizes

the document w.r.t. the queried disease.

Contextualized Disease Embedding

The latent visual features x ∈ Rc are subsequently decoupled into low-dimensional

disease representations, as illustrated in Fig. 4.1. They are regarded as the

visual embedding Dimg ∈ Rn×e, where each row is a vector ϕj(x) ∈ Re, j =

1, . . . , n defined as follows:

ϕj(x) = A⊺
jx+ bj. (4.3)

Here Aj ∈ Rc×e and bj ∈ Re are learnable parameters of the j-th disease repre-

sentation. n is the number of disease representations, and e is the embedding

dimension. Now, together with the available clinical documents, the visual

embedding Dimg and the text-summarized embedding Dtxt are entangled to

form contextualized disease representations Dfused ∈ Rn×e as

Dfused = LayerNorm(Dimg +Dtxt). (4.4)

Intuitively, the entanglement of visual and textual information allows our

model to mimic the hospital workflow, to screen the disease’s visual repre-

sentations conditioned on the patients’ clinical history or doctors’ indication.

For example, the doctor’s indication in Fig. 4.1 shows cough and shortness of

breath symptoms. It is reasonable for a medical doctor to request a follow-up

check of the pneumonia disease. As for the radiologists receiving the doctors’

indication, they may prioritize diagnosing the presence of pneumonia and re-

lated diseases based on X-ray scans and look for specific abnormalities. As

empirically shown in Table 4.5, the proposed contextualized disease represen-

tations bring a significant performance boost in the medical report generation

task. Meanwhile, our current embedding is basically a plain mingling of het-

erogeneous sources of information such as disease type (i.e., disease name)

and disease state (e.g., positive or negative). As shown by the ablation study

in Table 4.5, this embedding by itself is insufficient for generating accurate

medical reports. This leads us to conceive a follow-up enriched representation

below.
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Enriched Disease Embedding

The main idea behind enriched disease embedding is to further encode infor-

mative attributes about disease states, such as positive, negative, uncertain, or

unmentioned. Formally, let k be the number of states and S ∈ Rk×e the state

embedding. Then the confidence of classifying each disease into one of the k

disease states is

p = Softmax(DfusedS
⊺). (4.5)

S ∈ Rk×e is randomly initialized, then learned via the classification of Dfused.

Dfused acts as features for the multi-label classification, and the classification

loss is computed as

LC = − 1

n

n∑
i=1

k∑
j=1

yij log(pij), (4.6)

where yij ∈ {0, 1} and pij ∈ (0, 1) are the j-th ground-truth and predicted

values for the disease i-th, respectively. The state-aware embedding Dstates ∈

Rn×e are then computed as

Dstates =

{
yS, if training phase
pS, otherwise.

(4.7)

y ∈ {0, 1}n×k is the one-hot ground-truth labels about the disease-related

topics, whereas p ∈ (0, 1)n×k is the predicted values. During training, the

ground-truth disease states facilitate our generator in describing the diseases

& related symptoms based on accurate information (teacher forcing). At test

time, our generator then furnishes its recount based on the predicted states.

Finally, the enriched disease embedding Denriched ∈ Rn×e is the composition

of state-aware disease embedding Dstates (i.e., good or bad), disease names

Dtopics (i.e., which disease/topic), and the disease representations Dfused (i.e.,

severity and details of the diseases),

Denriched = Dstates +Dtopics +Dfused. (4.8)

Like the disease queries Q, Dtopics ∈ Rn×e is randomly initialized, representing

diseases or topics to be generated. It is then learned in training through the

medical report generation pipeline. The enriched disease embedding provides
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explicit and precise disease descriptions, and endows our follow-up generation

module with a powerful data representation.

4.2.2 The Generation Module

Our report generator is derived from the transformer encoder of [63]. The net-

work is formed by sandwiching & stacking a masked multi-head self-attention

component and a feed-forward layer being on top of each other for N times,

as illustrated in Fig. 4.2. The hidden state for each word position hi ∈ Re

in the medical report is then computed based on previous words and disease

embedding, as Denriched = {di}ni=1,

hi = Encoder(wi|w1, w2, ..., wi−1, d1, d2, ..., dn). (4.9)

This is followed by predicting future words based on the hidden states H =

{hi}li=1 ∈ Rl×e, as

pword = Softmax(HW ⊺). (4.10)

Here W ∈ Rv×e is the entire vocabulary embedding, v the vocabulary size,

and l the document length. Let pword,ij denote the confidence of selecting the

j-th word in the vocabulary W for the i-th position in the generated medical

report. The generator loss is defined as a cross entropy of the ground-truth

words yword and predicted words pword,

LG = −1

l

l∑
i=1

v∑
j=1

yword,ij log(pword,ij). (4.11)

Finally, the weighted word embedding Ŵ ∈ Rl×e, also known as the gener-

ated report, are:

Ŵ = pwordW. (4.12)

It is worth noting that this set-up facilitate the back-propagation of errors

from the follow-up interpretation module.

4.2.3 The Interpretation Module

It is observed from empirical evaluations that the generated reports are often

distorted in the process, such that they become inconsistent with the original
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output of the classification module – the enriched disease embedding that

encodes the disease and symptom related topics. Inspired by the CycleGAN

idea of [82], we consider a fully differentiable network module to estimate

the checklist of disease-related topics based on the generator’s output, and to

compare with the original output of the classification module. This provides a

meaningful feedback loop to regulate the generated reports, which is used to

fine-tune the generated report through the word representation outputs Ŵ .

Specifically, we build on top of the proposed text encoder (described in

section 4.2.1) a classification network that classifies disease-related topics, as

follows. First, the text encoder summarizes the current medical report Ŵ , and

outputs the report-summarized embedding of the queried diseases Q,

D̂txt = Softmax(QĤ⊺)Ĥ ∈ Rn×e. (4.13)

Here Ĥ is computed from the generated medical reports Ŵ using Eq. (4.1).

Second, each of the report-summarized embedding d̂i ∈ Re (i.e., each row of

the matrix D̂txt ∈ Rn×e) is classified into one of the k disease-related states

(i.e., positive or negative), as

pint = Softmax(D̂txtS
⊺) ∈ Rn×k. (4.14)

Finally, the interpreter is trained to minimize the subsequent multi-label clas-

sification loss,

LI = − 1

n

n∑
i=1

k∑
j=1

yij log(pint,ij). (4.15)

here yij ∈ {0, 1} is the ground-truth disease label and pint,ij ∈ (0, 1) is the

predicted disease label of the interpreter.

In fine-tuning the generated medical reports Ŵ , all interpreter parame-

ters are frozen, which acts as a guide to force the word representations Ŵ

being close to what the interpreter has learned from the ground-truth medical

reports. If the weighted word embedding Ŵ is different from the learned rep-

resentation – which leads to incorrect classification – a large loss value will be

imposed in the interpretation module. This thus forces the generator to move

toward producing a correct word representation.
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Datasets Methods B-1 B-2 B-3 B-4 MTR RG-L SV MV AI FT

Open-I

S&T [65] 0.316 0.211 0.140 0.095 0.159 0.267 x
LRCN [13] 0.369 0.229 0.149 0.099 0.155 0.278 x
SA&T [73] 0.399 0.251 0.168 0.118 0.167 0.323 x
Att-RK [77] 0.369 0.226 0.151 0.108 0.171 0.323 x
HRNN [76] 0.445 0.292 0.201 0.154 0.175 0.344 x
1-NN [3] 0.232 0.116 0.051 0.018 N/A 0.201 x
TieNet [68] 0.330 0.194 0.124 0.081 N/A 0.311 x
Liu et. al. [38] 0.359 0.237 0.164 0.113 N/A 0.354 x x
CoAtt [28] 0.455 0.288 0.205 0.154 N/A 0.369 x
HRGR-Agent [33] 0.438 0.298 0.208 0.151 N/A 0.322 x x
KERP [34] 0.482 0.325 0.226 0.162 N/A 0.339 x x
ReinforcedTransformer [72] 0.350 0.234 0.143 0.096 N/A N/A x x
HRG-Transformer [59] 0.464 0.301 0.212 0.158 N/A N/A x
SD&C [27] 0.464 0.301 0.210 0.154 N/A 0.362 x x
Ours (SV) 0.463 0.310 0.215 0.151 0.186 0.377 x
Ours (MV) 0.476 0.324 0.228 0.164 0.192 0.379 x
Ours (MV+T) 0.485 0.355 0.273 0.217 0.205 0.422 x x
Ours (MV+T+I) 0.515 0.378 0.293 0.235 0.219 0.436 x x x

MIMIC

1-NN [3] 0.367 0.215 0.138 0.095 0.139 0.228 x
SA&T [73] 0.370 0.240 0.170 0.128 0.141 0.310 x
AdpAtt [41] 0.384 0.251 0.178 0.134 0.148 0.314 x
Liu et. al. [38] 0.313 0.206 0.146 0.103 N/A 0.306 x x
Transformer [63] 0.409 0.268 0.191 0.144 0.157 0.318 x
GumbelTransformer [40] 0.415 0.272 0.193 0.146 0.159 0.318 x x
Ours (SV) 0.447 0.290 0.200 0.144 0.186 0.317 x
Ours (MV) 0.451 0.292 0.201 0.144 0.185 0.320 x
Ours (MV+T) 0.491 0.357 0.276 0.223 0.213 0.389 x x
Ours (MV+T+I) 0.495 0.360 0.278 0.224 0.222 0.390 x x x

Table 4.1: Quantitative comparison of our approach and a number of recent
works. Since these works are evaluated under different setups of Single-view
(SV), Multi-view (MV), w/ clinical text (T), and interpreter (I), for a fair
comparison, all methods are categorized based on the following four aspects:
Single-View (SV), Multi-view (MV), Additional Information (AI), and Fine-
tuning of the generated reports (FT). Best results are highlighted in bold
face. Different language metrics are employed, including BLEU-1 to BLEU-4
(B-1 to B-4), METEOR (MTR), and ROUGE-L (RG-L).

Collectively our model is trained in an end-to-end manner by jointly min-

imizing the total loss,

Ltotal = LC + LG + LI . (4.16)

4.3 Experiments

This section evaluates the medical report generation task on two fronts: the

language performance and the clinical accuracy performance. Empirical eval-

uations are carried out on two widely-used chest X-ray datasets, MIMIC-

CXR [29] and Open-I [10].

4.3.1 Datasets

MIMIC-CXR Dataset

The MIMIC-CXR dataset [29] is a large-scale dataset with 227,835 medical

reports of 65,379 patients, associated with 377,110 images from multiple views:
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anterior-posterior (AP), posterior-anterior (PA), lateral (LA). Each study com-

prises multiple sections, including comparison, clinical history, indication, rea-

sons for examination, impressions, and findings. Here we utilize the multi-

view images of AP/PA/LA views, and adopt as contextual information the

concatenation of the clinical history, reason for examination, and indication

sections. For consistency, we follow the experimental set-up of [40] to focus on

generating text in the “findings” section as the corresponding medical report.

Open-I Dataset

The Open-I dataset [10] collected by the Indiana University hospital network

contains 3,955 radiology studies that correspond to 7,470 frontal and lateral

chest X-rays. Some radiology studies are associated with more than one chest

X-ray image. Each study typically consists of impression, findings, comparison,

and indication sections. Similar to the MIMIC-CXR dataset, we utilized both

the multi-view chest X-ray images (frontal and lateral) and the indication

section as our contextual inputs. For generating medical reports, we follow the

existing literature [28], [59] by concatenating the impression and the findings

sections as the target output.

An important note: the implementation details, dataset splits, prepro-

cessing steps, generated examples, and qualitative analysis are described in

the supplementary materials.

4.3.2 Experimental Results

Language Generation Performance

A comprehensive quantitative comparison of our approach and many base-

lines as shown in Table 4.1 on the two benchmarks using the widely-used

language evaluation metrics: BLEU-1 to BLEU-4 [50], ROUGE-L [36], and

METEOR [1] scores. Since all comparison methods have their own experi-

ment setups, for a fair comparison, we further categorize these methods into

four aspects: single-view (SV), multi-view (MV), accessing to additional infor-

mation (AI) such as clinical document, and applying fine-tuning (FT) to the
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Symbol Meaning Size

n Num. of disease-related topics 114
e Embedding dimension 256
c Num. of visual features 1024
k Num. of states 2
l Max document length 1000
m Num. of multi-view images 2
v Vocabulary size 1000

wi Word embedding Re

hi Attended features Re

si The i-th state embedding Re

ϕi(x) Visual transformation Re

xi Visual features of the i-th view Rc

x Multi-view visual features Rc

S State embedding Rk×e

H Hidden states (attended features) Rl×e

Ĥ Hidden states of gen. reports Rl×e

W Vocabulary embedding Rv×e

Ŵ Weighted word embedding Rl×e

T The input text document Rl×e

Xi View i-th chest X-ray image R256×256

Q Disease query embedding Rn×e

Dimg Visual embedding Rn×e

Dtxt Text-summarized embedding Rn×e

D̂txt Report-summarized embedding Rn×e

Dfused Contextualized disease emb. Rn×e

Dtopics Topic embedding Rn×e

Dstates State-aware embedding Rn×e

Denriched Enriched disease embedding Rn×e

pij Predicted outputs (0, 1)
yij One-hot ground-truth outputs {0, 1}
L Loss functions R

Table 4.2: The summary of our notation and symbols.
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Macro scores Micro scores
Datasets Methods Acc. AUC F-1 Prec. Rec. AUC F-1 Prec. Rec.

Open-I

1-NN [3] 0.911 N/A N/A N/A N/A N/A N/A N/A N/A
S&T [65] 0.915 N/A N/A N/A N/A N/A N/A N/A N/A
SA&T [73] 0.908 N/A N/A N/A N/A N/A N/A N/A N/A
TieNet [68] 0.902 N/A N/A N/A N/A N/A N/A N/A N/A
Liu et. al. [38] 0.918 N/A N/A N/A N/A N/A N/A N/A N/A
Ours (SV) 0.944 0.595 0.118 0.125 0.136 0.857 0.657 0.651 0.663
Ours (MV) 0.943 0.626 0.144 0.149 0.150 0.878 0.648 0.647 0.649
Ours (MV+T) 0.947 0.671 0.130 0.192 0.124 0.873 0.659 0.687 0.634
Ours (MV+T+I) 0.937 0.702 0.152 0.142 0.173 0.877 0.626 0.604 0.649

MIMIC

1-NN [3] N/A N/A 0.206 0.213 0.200 N/A 0.335 0.346 0.324
SA&T [73] N/A N/A 0.101 0.247 0.119 N/A 0.282 0.364 0.230
AdpAtt [41] N/A N/A 0.163 0.341 0.166 N/A 0.347 0.417 0.298
Liu et. al. [38] 0.867 N/A N/A 0.309 0.134 N/A N/A 0.586 0.237
Transformer [63] N/A N/A 0.214 0.327 0.204 N/A 0.398 0.461 0.350
GumbelTransformer [40] N/A N/A 0.228 0.333 0.217 N/A 0.411 0.475 0.361
Ours (SV) 0.877 0.743 0.342 0.357 0.347 0.857 0.530 0.533 0.528
Ours (MV) 0.880 0.752 0.347 0.385 0.347 0.862 0.533 0.545 0.522
Ours (MV+T) 0.890 0.778 0.407 0.448 0.399 0.872 0.578 0.583 0.574
Ours (MV+T+I) 0.887 0.784 0.412 0.432 0.418 0.874 0.576 0.567 0.585

Table 4.3: Quantitative comparison of clinical accuracy from the generated
reports of a number of recent methods, evaluated on the 14 common CheX-
pert’s diseases. The best results are highlighted in bold face.

generated medical reports. Experiments in Table 4.1 show that our models

outperform the baselines in most language metrics.

With a single input X-ray image as the sole input, ours (SV) outperforms

by a noticeable margin the best SOTA methods of CoAtt on Open-I and Trans-

former on MIMIC, respectively. This we mainly attribute to the utilization of

the enriched disease embedding that explicitly incorporates the disease-related

topics. With multiple X-ray images as input, Ours (MV) again outperforms

the best comparison methods of HRG-Transformer on Open-I. With multi-

ple X-ray images and additional clinical document information as input, ours

(MV+T) outperforms the comparison methods of KERP on Open-I. Finally,

with the complete contextual information available as input, ours (MV+T+I)

outperforms all the comparison methods available in both Open-I and MIMIC

datasets.

Clinical Accuracy Performance

To evaluate the clinical accuracy of the generated reports, we use the LSTM

CheXpert labeler [40] as a universal measurement. We compare different meth-

ods based on accuracy, F-1, precision (prec.), and recall (rec.) metrics on 14

common diseases. Since there are 14 independent diseases, we also report the

macro and micro scores. Intuitively, a high macro score means the detection

of all 14 diseases is improved. Meanwhile, a high micro score implies the
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dominant diseases are improved (i.e., some diseases appear more frequently

than others). As observed in Table 4.3, our clinical performance increased

significantly compared to the baselines in both macro and micro scores.

Among our ablation models in Table 4.3, the precision and accuracy scores

of our contextualized variant (MV+T) tend to be higher, whereas other scores

are lower than the one with the interpreter (MV+T+I). This opposite behavior

is due to the interpreter, which encourages detecting diseases, thus increases

False Positives (FP). Note in the medical context, it is usually critically im-

portant to lower the False Negatives (FN) rate, thus a high recall score with

a slight decrease in precision is more preferred.

Human Evaluation

In addition to the automated evaluations, we ask an experienced medical doc-

tor to evaluate our generated medical reports. Specifically, the chest X-ray

images and ground-truth medical reports are given to the doctor. Then, the

doctor evaluates the quality of the generated reports by assigning a score from

0 (totally disagree) to 10 (totally agree). The final score for each model is

computed by averaging all scores (97 test samples for each proposed model).

It can be inferred from Table. 4.4 that the MV+T+I gives more accurate

medical reports and using the interpreter to fine-tune the outputs is indeed

improving the reports’ quality. Additionally, it is also clear from the human

evaluation that incorporating clinical history information positively affects the

final performance. Moreover, the human evaluation shows that most gener-

ated examples are good (8.031 on average), indicating the proposed model’s

effectiveness in terms of clinical accuracy.

Qualitative Analysis

Figure. 4.3 showcases the generated examples when engaging our full-fledged

approach. It is clear that our approach is capable of generating closely matched

descriptions for both healthy cases (the first 3 examples) and disease cases (the

last 3 examples). From the last 3 examples, our generated reports correctly

detect diseases including pleural effusions, atelectasis, as well as surgical and
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Methods Average Min Max Median Q1 Q3
Ours (SV) 7.000 3 10 7 6 8
Ours (MV) 7.237 3 10 7 7 8
Ours (MV+T) 7.794 3 10 8 7 9
Ours (MV+T+I) 8.031 3 10 8 7 9

Table 4.4: The human evaluation scores for the generated reports from an
experienced medical doctor. For each model, we take the average, min, max,
median, first, and the third quartile of all ratings given by the doctor. The
score is in the range of 0 (totally disagree) to 10 (totally agree).

supporting devices such as wires and clips.

In terms of failure cases, our results still contain False Positive cases at

times: one is in detecting atelectasis in the last example, which could not

match up with anything in the ground-truth report; In the second last example,

our report confuses between left and right atelectasis. This is because our

extracted visual features do not explicitly account for orientation and direction.

Similarly, our interpreter is only used to promote disease detection (i.e., the

presence or absence of diseases).

Previously, we mentioned that the proposed model with the interpreter

(MV+T+I) tends to produce more accurate and fluent reports than the model

without the interpreter (MV+T). In this part, we provide some generated ex-

amples to support our claim. We use the same six examples shown in Fig-

ure. 4.3; the chest X-ray images are omitted for clarity. As can be seen in Fig-

ure. 4.4, the contents produced from the interpreter model are more similar to

the ground-truth reports than without having the interpreter. For instance, in

the second last example, we highlighted some sentences about “tubes” which

do not mention in the ground-truth reports. Moreover, the text does not men-

tion “pulmonary edema” disease. In the last example, it can be seen that

without the interpreter, the generated report is missing some topics such as

“right pleural effusion” or “lobe opacity”. These examples lead us to believe

that the interpreter is indeed making the generated reports more accurate or

“on-point” than the conventional “image-to-text” models.
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Methods B-1 B-2 B-3 B-4 MTR RG-L
R w/o Dstates 0.400 0.253 0.175 0.127 0.166 0.362
R w/o Dtopics 0.453 0.300 0.206 0.142 0.183 0.366
R w/o Dfused 0.468 0.310 0.215 0.151 0.189 0.373
R with Denriched 0.463 0.310 0.215 0.151 0.186 0.377
R + Interpreter 0.470 0.314 0.220 0.158 0.192 0.375
C w/o Dstates 0.404 0.286 0.215 0.169 0.183 0.396
C w/o Dtopics 0.474 0.329 0.244 0.187 0.194 0.401
C w/o Dfused 0.470 0.337 0.257 0.204 0.212 0.408
C with Denriched 0.485 0.355 0.273 0.217 0.205 0.422
C + Interpreter 0.515 0.378 0.293 0.235 0.219 0.436

Table 4.5: The table compares a regular image-to-text version (R) and a con-
textualized version (C) of our proposed method that utilizes clinical history
on the Open-I dataset. For each version, we evaluate the importance of each
component Dstates, Dtopics, and Dfused in the proposed enriched disease embed-
ding Denriched by removing one component at a time.

4.3.3 Ablation studies

Enriched disease embedding

We observe that the latent features Dfused extracted from the classifier are

insufficient to generate robust medical reports, as shown in Table 4.5. Based

on our human languages, a meaningful story needs three factors: the topic

(i.e., what disease), the tone (i.e., is it negative or positive), and the details

(i.e., the severity). However, there is no guarantee that the learned latent

features Dfused has all three required elements. On the other hand, with the

the explicit representations (i.e., Dfused, Dtopics, and Dstates), all three factors

are preserved. Therefore, the enriched disease embedding Denriched can gen-

erate precise and complete medical reports, leading to the language metrics’

substantial improvement.

Contextualized embedding

Table 4.5 also shows that our proposed “contextualized” version can improve

the language scores over the “regular” version, which reads only images. No-

tably, the contextualized version is the entanglement of the chest X-ray im-

ages and the clinical history, which is crucial to improve the generated report’s

quality and accommodate doctors’ practical needs. It mimics how radiologists
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receive requests from medical doctors and write reports to answer their ques-

tions. Hence, the generated reports are believed to be more “on point” and

receives higher language scores than the regular “image-to-text” setting.

4.4 Limitations and Future Work

Our work has several limitations that future works can take into consideration

for further improvement. Firstly, our model does not explicitly consider disease

orientation or direction (e.g., left or right, top or bottom). For example, future

works can include visual-semantic embedding (direction/orientation/location)

to learn and localize diseases during generating medical reports. Secondly, our

work does not support time-series relationships between different studies of a

patient. This information is vital to analyze existing diseases by comparing

their size or structure to determine if a disease is getting worse or not. If these

limitations can be addressed, the medical report system can be much more

reliable for real-world applications.

Noticeably, we observe some hallucination facts (False Positives) where

some diseases are mistakenly described as positive in the medical reports.

For example, some images with “pneumonia” are wrongly described as “pul-

monary edema”. In fact, human radiologists often mistakenly classify some

diseases [56]. For example, [56] shows that human radiologists or physicians

can accurately detect normal lung X-ray images almost all of the time; but,

for abnormal lung X-ray images, the correctness of diagnosis drops to only

50% [56]. For this reason, it is challenging to generate accurate medical re-

ports even for experienced radiologists.

In the future, we will expand our work to related medical applications such

as retinal and brain medical report generation on X-ray/MRI/CT scans. We

believe that our model can be generalized to a wide range of medical report

generation problems where common symptoms or disease labels and medical

reports are available in most medical scan datasets. Moreover, extending the

current work to incorporate tabular data inputs could be another exciting

direction because some clinical information is in the form of tabular struc-
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ture such as patient’s age, heart pressure, or temperature [9]. In some cases,

physicians must include this information in medical reports, which cannot be

inferred from only reading medical scans.

4.5 Summary

This section introduces a novel three-module approach for generating med-

ical reports from X-ray scans. Superior performance of our approach over

state-of-the-art methods has been empirically demonstrated on widely-used

benchmarks with a range of evaluation metrics. Our approach is also flexible

and can work with additional input information, where consistent performance

gains are observed.
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pa and lateral views of the chest 
provided . there is no focal 
consolidation , effusion , or 
pneumothorax . the 
cardiomediastinal silhouette is 
normal . imaged osseous structures
are intact . no free air below the right 
hemidiaphragm is seen . 

pa and lateral views of the chest 
provided . the lungs are clear . there is 
no focal consolidation , effusion , or 
pneumothorax . the cardiomediastinal
silhouette is within normal limits . 
imaged osseous structures are intact . 
no free air below the right 
hemidiaphragm is seen . 

frontal and lateral radiographs of the 
chest demonstrate normal heart size 
and normal cardiomediastinal
contours . the lungs are clear without 
consolidation . no pleural effusion or 
pneumothorax . no radiopaque 
foreign body . 

the lungs are well expanded and 
clear . the cardiomediastinal
silhouette , hilar contours and pleural 
surfaces appear normal . there is no 
pneumothorax or pleural effusion . 
the visualized bony structures are 
unremarkable . 

the heart is normal in size . the hilar
and mediastinal contours are within 
normal limits . the lungs are clear . 
there is no focal consolidation , 
pleural effusion or pneumothorax . 
visualized ossesous structures are 
grossly intact . 

the lungs are well expanded and 
clear . no focal consolidation is seen . 
heart is normal in size . hilar contours
are unremarkable . there is no 
pleural effusion or pneumothorax . 

p16496770 s52125882

p18496288 s55604437

p10013643 s53841005
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compared with the prior radiograph , there is a 
persistent left pleural effusion with over lying 
left basilar atelectasis and a newly identified 
right pleural effusion , evidenced by blunting 
of the costophrenic angles on the lateral view . 
there is no focal consolidation concerning for 
pneumonia or pneumothorax . unchanged 
median sternotomy wires , mediastinal clips , 
and right ij sheath . 

compared with the prior radiograph , there 
has been interval removal of the right ij central 
venous catheter . there are small bilateral 
pleural effusions with adjacent atelectasis . no
pneumothorax , focal consolidation , or 
pulmonary edema . heart size is normal . 
cardiomediastinal silhouette is unchanged . 
median sternotomy wires are intact . surgical 
clips are noted in the left upper quadrant . 

in comparison with the study of <unk> , 
the monitoring and support devices
remain in place . continued enlargement 
of the cardiac silhouette with mild 
vascular congestion . opacification at the 
right base is consistent with pleural 
effusion and compressive atelectasis . the 
left base is essentially clear .

in comparison with the study of <unk> , there 
is little interval change . again there is 
substantial enlargement of the cardiac 
silhouette with some elevation of pulmonary 
venous pressure . opacification at the right 
base is consistent with volume loss in the 
lower lung and pleural effusion . mild 
atelectatic changes persist at the left base . 
monitoring and support devices remain in 
good position .

assessment is limited due to anteroposterior projection and 
positioning . allowing for these limitations : compared with the 
previous exam there appears to be worsening cardiomegaly , 
which now is moderate to severe allowing for limitations of 
this ap view . minimal interstitial edema is present . there is 
also a new right middle lobe opacity the , confirmed in the 
lateral view . no other focal opacities are identified . bilateral 
pleural effusions , left worse than right is present . there is no
evidence of pneumothorax . left - sided two - lead pacemaker
is reidentified , with one lead terminating in the right atrium
and the other in the right ventricle . the aortic valve prosthesis 
appears unchanged . severe degenerative changes of the ac 
<unk>oints is again seen . 

the lungs are well expanded . there is a small left 
pleural effusion with adjacent atelectasis . there is 
also a retrocardiac opacity which is likely atelectasis . 
there is also a small right pleural effusion . there is no
pneumothorax . there is mild interstitial pulmonary 
edema . moderate cardiomegaly is unchanged . 
mediastinal and hilar contours are unremarkable . a 
left pectoral pacemaker is seen with leads in
unchanged position in the right atrium and right 
ventricle . a left chest wall pacemaker is seen with 
leads in the expected positions of the right atrium
and right ventricle . 

Ground-truth Reports Generated ReportsView 1 View 2

Figure 4.3: Exemplar generated medical reports of our approach for normal
and disease cases. The matched normal phrases are highlighted in green-color,
whereas the cyan-colored phrases are for matched diseases.
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the lungs are well - expanded and 
clear . no focal consolidation . the 
cardiomediastinal silhouette and 
hilar contours are normal . heart is 
normal in size . there is no pleural 
effusion or pneumothorax . no acute 
osseous abnormalities identified .

pa and lateral views of the chest 
provided . the lungs are clear . there is 
no focal consolidation , effusion , or 
pneumothorax . the cardiomediastinal
silhouette is within normal limits . 
imaged osseous structures are intact . 
no free air below the right 
hemidiaphragm is seen . 

frontal and lateral radiographs of the 
chest demonstrate normal heart size 
and normal cardiomediastinal
contours . the lungs are clear without 
consolidation . no pleural effusion or 
pneumothorax . no radiopaque 
foreign body . 

frontal and lateral views of the chest 
were obtained . the lungs are well 
expanded and clear . there is no focal 
consolidation . no pleural effusion or 
pneumothorax . the heart is top 
normal in size with normal 
mediastinal and hilar contours . no 
radiopaque foreign body .
pa and lateral views of the chest . the 
lungs are clear without focal 
consolidation . no pleural effusion or 
pneumothorax . the 
cardiomediastinal silhouette is 
unremarkable . heart is normal in size 
. the hilar contours are within normal 
limits .

the lungs are well expanded and 
clear . no focal consolidation is seen . 
heart is normal in size . hilar contours 
are unremarkable . there is no 
pleural effusion or pneumothorax . 

the right ij central line tip is in the low svc . 
there is no pneumothorax . there are small 
bilateral pleural effusions , slightly increased 
from <unk> . there is atelectasis at the left 
base . there is no pneumothorax . the cardiac 
size is normal .

compared with the prior radiograph , there 
has been interval removal of the right ij central 
venous catheter . there are small bilateral 
pleural effusions with adjacent atelectasis . no 
pneumothorax , focal consolidation , or 
pulmonary edema . heart size is normal . 
cardiomediastinal silhouette is unchanged . 
median sternotomy wires are intact . surgical 
clips are noted in the left upper quadrant . 

in comparison with the study of <unk> , 
the monitoring and support devices 
remain in place . continued enlargement 
of the cardiac silhouette with mild 
vascular congestion . opacification at the 
right base is consistent with pleural 
effusion and compressive atelectasis . the 
left base is essentially clear .

comparison is made to previous study from <unk> . 
there is an endotracheal tube whose distal tip is 
<num> cm above the carina , appropriately sited . 
there is a right ij central line with distal lead tip in the 
distal svc . there is a nasogastric tube whose tip and 
side port are below the ge junction . there is 
unchanged enlargement of cardiac silhouette . there 
is prominence of the pulmonary interstitial markings 
suggestive of pulmonary edema . there is a right 
basilar opacity which is likely due to atelectasis and 
pleural effusion . there is no pneumothorax . there 
are no pneumothoraces .
ap and lateral views of the chest provided . left chest 
wall pacer device is again seen with leads extending 
to the region of the right atrium and right ventricle . 
midline sternotomy wires are again noted . lung 
volumes are low . there is a small left pleural effusion 
with associated compressive atelectasis . there is 
mild interstitial pulmonary edema . no 
pneumothorax . cardiac silhouette is enlarged . no 
definite signs of congestion . degenerative changes at 
the right shoulder are noted .
Missing: right middle lobe opacity, right pleural 
effusion

the lungs are well expanded . there is a small left 
pleural effusion with adjacent atelectasis . there is 
also a retrocardiac opacity which is likely atelectasis . 
there is also a small right pleural effusion . there is no 
pneumothorax . there is mild interstitial pulmonary 
edema . moderate cardiomegaly is unchanged . 
mediastinal and hilar contours are unremarkable . a 
left pectoral pacemaker is seen with leads in 
unchanged position in the right atrium and right 
ventricle . a left chest wall pacemaker is seen with 
leads in the expected positions of the right atrium 
and right ventricle . 

w/o Interpreter (MV+T) w/ Interpreter (MV+T+I)

pa and lateral views of the chest 
provided . there is no focal 
consolidation , effusion , or 
pneumothorax . the 
cardiomediastinal silhouette is 
normal . imaged osseous structures 
are intact . no free air below the right 
hemidiaphragm is seen . 

the lungs are well expanded and 
clear . the cardiomediastinal
silhouette , hilar contours and pleural 
surfaces appear normal . there is no 
pneumothorax or pleural effusion . 
the visualized bony structures are 
unremarkable . 

the heart is normal in size . the hilar 
and mediastinal contours are within 
normal limits . the lungs are clear . 
there is no focal consolidation , 
pleural effusion or pneumothorax . 
visualized ossesous structures are 
grossly intact . 

compared with the prior radiograph , there is a 
persistent left pleural effusion with over lying 
left basilar atelectasis and a newly identified 
right pleural effusion , evidenced by blunting 
of the costophrenic angles on the lateral view . 
there is no focal consolidation concerning for 
pneumonia or pneumothorax . unchanged 
median sternotomy wires , mediastinal clips , 
and right ij sheath . 

in comparison with the study of <unk> , there 
is little interval change . again there is 
substantial enlargement of the cardiac 
silhouette with some elevation of pulmonary 
venous pressure . opacification at the right 
base is consistent with volume loss in the 
lower lung and pleural effusion . mild 
atelectatic changes persist at the left base . 
monitoring and support devices remain in 
good position .

assessment is limited due to anteroposterior projection and 
positioning . allowing for these limitations : compared with the 
previous exam there appears to be worsening cardiomegaly , 
which now is moderate to severe allowing for limitations of 
this ap view . minimal interstitial edema is present . there is 
also a new right middle lobe opacity the , confirmed in the 
lateral view . no other focal opacities are identified . bilateral 
pleural effusions , left worse than right is present . there is no 
evidence of pneumothorax . left - sided two - lead pacemaker 
is reidentified , with one lead terminating in the right atrium 
and the other in the right ventricle . the aortic valve prosthesis 
appears unchanged . severe degenerative changes of the ac 
<unk>oints is again seen . 

Ground-truth Reports

Figure 4.4: Exemplar generated medical reports of our approaches (w/ and
w/o Interpreter) for normal and disease cases. We highlighted the text that
does not exist in the ground-truth report with pink and yellow colors. The
highlighted pink-colored text indicates the topic exists in the chest X-ray im-
ages but does not mention in the ground-truth reports. In contrast, the high-
lighted yellow-colored text shows inaccurate information or cannot be con-
firmed from both chest X-ray images and ground-truth reports. For missing
disease cases, we explicitly list them out in red-colored text.
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Chapter 5

Conclusion and Outlook

Radiology report generation aims to detect abnormality in medical scans and

write its findings with condensed sentences describing the diseases. It plays a

crucial role in modern hospital systems and serves as the medium to communi-

cate between doctors and patients. Overall, this research aimed to develop an

end-to-end model that accurately diagnoses diseases and generates meaningful

medical reports to assist physicians or radiologists. Based on the quantitative

and qualitative analysis of the generated reports, it can be concluded that the

proposed model can increase the quality of the generated reports compared to

existing methods.

Particularly, in Chapter 2, we discussed the existing efforts in image cap-

tioning, report generation, and other related areas. From our observation, the

existing efforts come with some advantages; however, they also have certain

limitations, including difficulties in generating long documents, no parallelism,

scalability issue, limited clinical accuracy. These limitations clearly put a bar-

rier in bringing such models into production. Therefore, new medical report

generation systems must address these challenges efficiently.

To address the parallelism and clinical accuracy issue, in Chapter 3, we

presented an enriched disease embedding module that can polarize visual fea-

tures into different directions called states. This allows the visual features to

be semantic and serves as meaningful inputs for the report generation task.

By transforming visual features into different states, we find that the EDDIE

block can perform disease classification similar to a multi-label classifier with
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comparable disease detection performance. Also, in this chapter, we propose

to use the Transformer model to replace the existing hierarchical LSTM archi-

tectures for the medical report generation task. This comes with the benefit of

parallelism and resolves long-range dependency issues in long documents. Our

experimental results show that the Eddie-Transformer model reduces mem-

ory consumption and generates more fluent reports compared to RNN-based

counterparts.

While Chapter 3 resolves the parallelism with an increase in clinical ac-

curacy, it leaves some potential clinical inconsistencies between the detected

diseases from medical images and the content of the generated reports. More-

over, as addressed in Chapter 2, our work only focuses on using a single input

image, leaving other vital factors unchecked, such as the clinical history of pa-

tients. Therefore, in Chapter 4, we expand the previous chapter by proposing

a complete model that works with different settings such as multi-view images

or patients’ clinical information. Furthermore, we propose a novel interpreter

module that acts as a guidance network to fine-tune the generated reports to

enhance the consistency of the classifier outputs and the generated reports.

More importantly, the proposed interpreter is fully differentiable, eliminating

the need for reinforcement learning when fine-tuning the reports. Our exper-

iments, including human evaluation, show that the proposed approach can

generate more accurate medical reports than other works by a large margin.

This result emphasizes the possibility of designing an accurate medical report

generation system.

With the promising results tested across different datasets from Chapter 3

and 4, we believe that the model can be applied to a wide range of related

problems such as CT scans or brain imaging. We also believe that the pro-

posed Interpreter module can help improve the quality of the generated text in

other problems such as image captioning by enhancing factual information in

generated captions. For future works, researchers may consider integrating dis-

ease locations into the framework to explicitly localize diseases better, further

improving the quality of medical reports. Since our contextual information is

limited to clinical indications provided by medical doctors, researchers can also
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develop a time-series module to link previous radiology studies to the patient’s

current study to understand disease development better.

We hope that the methods presented in our work can inspire future methods

in image captioning, medical report generation, and disease detection. We also

hope that the proposed research can help future research take one step closer

to real-world usage and assist physicians worldwide in their jobs.
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Appendix A

Supplementary Material

A.1 Implementation Details

A.1.1 Dataset Preprocess and Splits

As a preprocessing step, all tokens in the medical reports are converted to

lowercase. We split both MIMIC-CXR and Open-I datasets with a standard

ratio of 70:10:20% for training, validation, and testing purposes, respectively.

For the MIMIC-CXR dataset, in addition to the 14 disease labels extracted

from the CheXpert labeler [25], we also obtain the top-100 high-frequency

noun-phrases of the dataset as our additional disease-related topics using

Spacy1. In total, a list of 114 disease-related topics are acquired as the bi-

nary targets of the induced classification task. Each disease label is either

positive (including uncertain or exist) or negative (including unmentioned or

non-exist). We also ensure no patient overlap across the train and test sets to

avoid data leakage.

For the Open-I dataset, since this dataset does not have any ground-truth

disease labels, the 14 diseases extracted from the MIMIC-CXR dataset is used

here, together with the top-100 high-frequency noun-phrases obtained in the

Open-I dataset. This again forms the 114 disease-related topics as binary

classification targets.

1Spacy is an NLP industrial open-source project: https://spacy.io

60



A.1.2 Optimizer

Adam with decoupled Weight decay regularization - AdamW [39] is used

throughout our experiments. Specifically, the initial learning rates are set

to η = 3 × 10−4 and β = (0.9, 0.999), respectively; L2 regularization weight

decay is set to λ = 10−2. Models are trained for 50 epochs, with a learning

rate schedule η = 3× 10−5 after the 25-th epoch.

A.1.3 Data Input and Augmentation

Input images are rescaled to 256 × 256 pixels; the following image transfor-

mations are randomly applied to account for overfitting: image rotating, color

jittering, and horizontal flipping. At the end of the image encoder, we set a

dropout rate to 0.1. For the text inputs, we construct a vocabulary containing

the top 900 high-frequency words and 100 byte-pair-encoding tokens2 or BPE,

to avoid the out-of-vocabulary scenario. It gives rise to a vocabulary of 1,000

words and tokens covering approximately 99% of the total words and tokens

in the datasets.

A.1.4 Text Encoder and Interpreter

The transformer encoder of [63] is used as our text encoder, which consists of

a multi-head self-attention layer and a feed-forward layer. We set the number

of heads NumHeads = 8, and the number of neurons in the feed-forward layer

FwdDim = 256. The embedding dimension is set to e = 256. Finally, a

dropout rate of 0.1 is applied here to avoid overfitting.

A.1.5 Generator

The configuration of the generation module is slightly different from the text

encoder module. It consists of 12 masked multi-head self-attention layers and

feed-forward layers, which allows a large receptive field in generating medical

reports. The number of heads is set to NumHeads = 1. The number of neurons

2SentencePiece is a vocabulary builder open-source project developed by Google to fa-
cilitate BPE tokenization, at https://github.com/google/sentencepiece
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in the feed-forward layer is FwdDim = 256. The embedding dimension is set

to e = 256. Similar to the text encoder, a dropout rate of 0.1 is applied to

avoid overfitting.

A.1.6 Classifier

It is observed that both chest X-ray datasets are highly imbalanced w.r.t.

the disease-related topics: positive cases are often significantly lower than the

negative cases [40]. Therefore, the classification network often has a very low

confidence score p and favors a negative prediction. It may increase the false

negative cases that could be very costly in the medical context. To account

for this issue, a threshold is adopted to the Eq. 5 (in the main text), as

p =

{
1, p > threshold
0, otherwise

(A.1)

The threshold value is determined using grid-search on the validation dataset.

The search range is from 0.1 to 0.5. The grid size is 0.05. In the full version

(MV+T+I) of our approach, it is set to threshold = 0.25 for the MIMIC-CXR

dataset and threshold = 0.15 for the Open-I dataset. See Table A.1 and A.2

for more detail.

A.2 The top noun-phrases

This section lists the top-100 high-frequency noun phrases as our additional

disease-related topics for both the MIMIC-CXR and the Open-I dataset. Since

the noun-phrases are automatically extracted using Spacy, some noun-phrases

may overlap and repeat several times. The top noun phrases separated by

semicolons are listed below.

A.2.1 Top-100 noun-phrases of MIMIC-CXR dataset

pneumothorax; the lungs; no pleural effusion; the chest; no pneumothorax;

pleural effusion; no focal consolidation; the cardiomediastinal silhouette; nor-

mal limits; ¡unk; heart size; atelectasis; lungs; the cardiac silhouette; pa; no

evidence; pneumonia; focal consolidation; the heart; effusion; lateral views;
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Method Threshold 0.05 0.1 0.15 0.2 0.25 0.3

Ours (SV)

BLEU-1 0.355 0.470 0.449 0.427 0.389 0.370
BLEU-2 0.229 0.320 0.315 0.294 0.266 0.251
BLEU-3 0.156 0.227 0.226 0.209 0.187 0.177
BLEU-4 0.107 0.162 0.164 0.150 0.133 0.127
METEOR 0.200 0.190 0.187 0.181 0.174 0.169
ROUGE-L 0.343 0.382 0.395 0.381 0.384 0.378

Ours (MV)

BLEU-1 0.344 0.433 0.476 0.464 0.433 0.405
BLEU-2 0.225 0.297 0.329 0.321 0.296 0.273
BLEU-3 0.152 0.213 0.235 0.230 0.210 0.194
BLEU-4 0.104 0.156 0.171 0.168 0.152 0.142
METEOR 0.204 0.199 0.198 0.193 0.182 0.176
ROUGE-L 0.338 0.377 0.386 0.391 0.382 0.374

Ours (MV+T)

BLEU-1 0.364 0.449 0.500 0.498 0.481 0.436
BLEU-2 0.251 0.323 0.371 0.375 0.363 0.331
BLEU-3 0.181 0.245 0.292 0.299 0.290 0.267
BLEU-4 0.133 0.190 0.236 0.245 0.239 0.222
METEOR 0.209 0.212 0.213 0.213 0.209 0.199
ROUGE-L 0.361 0.408 0.437 0.446 0.451 0.448

Ours (MV+T+I)

BLEU-1 0.401 0.473 0.523 0.507 0.484 0.464
BLEU-2 0.280 0.346 0.393 0.384 0.370 0.353
BLEU-3 0.207 0.268 0.313 0.311 0.301 0.286
BLEU-4 0.157 0.215 0.257 0.260 0.252 0.241
METEOR 0.222 0.226 0.227 0.221 0.217 0.212
ROUGE-L 0.390 0.432 0.453 0.454 0.458 0.453

Table A.1: Optimal threshold search on the Open-I validation dataset.
Bounded columns indicate our choice for the optimal threshold.
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Method Threshold 0.1 0.15 0.2 0.25 0.3 0.35

Ours (SV)

BLEU-1 0.310 0.363 0.408 0.445 0.407 0.353
BLEU-2 0.208 0.242 0.267 0.289 0.260 0.226
BLEU-3 0.145 0.170 0.187 0.200 0.179 0.156
BLEU-4 0.105 0.123 0.136 0.144 0.128 0.112
METEOR 0.217 0.212 0.199 0.186 0.170 0.156
ROUGE-L 0.297 0.312 0.319 0.318 0.312 0.309

Ours (MV)

BLEU-1 0.316 0.366 0.416 0.451 0.406 0.360
BLEU-2 0.213 0.245 0.274 0.292 0.261 0.229
BLEU-3 0.150 0.172 0.192 0.201 0.178 0.157
BLEU-4 0.109 0.125 0.139 0.144 0.127 0.112
METEOR 0.218 0.211 0.200 0.187 0.171 0.156
ROUGE-L 0.301 0.314 0.321 0.321 0.314 0.307

Ours (MV+T)

BLEU-1 0.370 0.418 0.462 0.495 0.496 0.465
BLEU-2 0.268 0.304 0.337 0.362 0.361 0.338
BLEU-3 0.203 0.232 0.260 0.280 0.281 0.263
BLEU-4 0.159 0.184 0.207 0.225 0.226 0.213
METEOR 0.243 0.240 0.234 0.224 0.216 0.206
ROUGE-L 0.355 0.376 0.385 0.390 0.391 0.388

Ours (MV+T+I)

BLEU-1 0.371 0.423 0.466 0.497 0.494 0.463
BLEU-2 0.267 0.307 0.340 0.364 0.362 0.338
BLEU-3 0.202 0.235 0.262 0.282 0.281 0.264
BLEU-4 0.157 0.186 0.210 0.227 0.227 0.214
METEOR 0.240 0.238 0.233 0.224 0.216 0.206
ROUGE-L 0.356 0.376 0.389 0.391 0.391 0.390

Table A.2: Optimal threshold search on the MIMIC validation sub-dataset
(1000 random validation samples). Bounded columns indicate our choice for
the optimal threshold.
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comparison; no acute osseous abnormalities; pulmonary edema; size; cardio-

mediastinal silhouette; the right hemidiaphragm; lung volumes; the mediasti-

nal and hilar contours; the heart size; the previous radiograph; the patient;

the carina; no free air; low lung volumes; consolidation; the pulmonary vas-

culature; frontal and lateral views; the cardiac and mediastinal silhouettes;

the stomach; the prior study; bony structures; the aorta; mediastinal and hi-

lar contours; no pulmonary edema; no pleural effusions; evidence; the right;

the tip; the study; the right atrium; the left; the right lung; the thoracic

spine; moderate cardiomegaly; pulmonary vasculature; the left lung; posi-

tion; edema; the right lung base; the cardiomediastinal and hilar contours;

no acute osseous abnormality; cardiac silhouette; the lung bases; patient; the

left lung base; mediastinal contours; place; the lung volumes; imaged osseous

structures; cardiomediastinal contours; pulmonary vascular congestion; mild

cardiomegaly; unchanged position; appearance; the level; the lateral view; ¿;

hilar contours; small bilateral pleural effusions; no large pleural effusion; nor-

mal size; infection; the thoracic aorta; vascular congestion; it; mild pulmonary

edema; the diaphragm; heart; bibasilar atelectasis; tip; aspiration; the cardiac,

mediastinal and hilar contours; no relevant change; the left lower lobe; the left

hemidiaphragm; the mediastinal contours; the mid svc; mediastinal contour;

study.

A.2.2 Top-100 noun-phrases of Open-I dataset

pneumothorax; normal limits; the lungs; pleural effusion; no pneumothorax;

heart size; the heart; lungs; size; no pleural effusion; the cardiomediastinal

silhouette; xxxx; mediastinum; no focal consolidation; pulmonary vascular-

ity; contour; focal airspace disease; the thoracic spine; the heart size; heart;

large pleural effusion; pulmonary vasculature; mediastinal contours; the medi-

astinum; focal consolidation; the spine; cardiomediastinal silhouette; degenera-

tive changes; no pleural effusions; normal heart size; effusion; pneumothoraces;

no focal airspace consolidation; visualized osseous structures; evidence; pul-

monary xxxx; xxxx xxxx; the xxxx; low lung volumes; no evidence; consolida-

tion; both lungs; mediastinal contour; bony structures; the chest; appearance;
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effusions; osseous structures; masses; normal size; no acute bony abnormality;

the thorax; no focal areas; acute abnormality; the interval; specifically, no evi-

dence; the aorta; mild degenerative changes; the cardiac silhouette; pulmonary

edema; the thoracic aorta; atelectasis; the skeletal structures; cardiac and me-

diastinal contours; cardio mediastinal silhouette; soft tissues; no large pleural

effusion; infiltrate; no definite pleural effusion; the trachea; no focal airspace

disease; no acute bony findings; pleural spaces; no focal air space opacity; no

focal alveolar consolidation; edema; adenopathy; no acute bony abnormalities;

no effusion; the cardiomediastinal contours; lung volumes; no typical findings;

no visible pneumothorax; no pneumonia; the diaphragm; nodules; a pneumo-

nia; suspicious pulmonary opacity; no focal infiltrate; clear lungs; thoracic

spondylosis; configuration; no acute abnormality; surgical clips; upper lim-

its; the xxxx examination; bony thorax; stable cardiomediastinal silhouette;

bronchovascular crowding; the left lung base;

A.3 Discussion on the Classifier module

From Table A.3, we can observe that the classifier performance improves with

additional input data (SV,MV,MV+T). With the Interpreter module, the re-

call score increases, which is encouraging in the medical context as being dis-

cussed in the main text. Additionally, it is clear from Table A.3 that the

performance of the generator relies on the performance of the classifier mod-

ule. In other words, the generator can only generate high-quality medical

reports when the classifier can detect diseases accurately.

Note that the scores showed in Table A.3 is the commonly used image clas-

sification metrics. In contrast, the scores shown in the main paper are obtained

by reading the generated text, classifying it into disease labels (multi-label text

classifier) via the CheXpert labeler, then comparing them with the ground-

truth disease labels. Therefore, the scores of the classifier (measuring the

ability to classify diseases from images) shown in Table A.3 and the scores of

the generator (measuring the quality of the generated medical reports) shown

in the main paper are different.
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Dataset Methods Accuracy AUC F1 Precision Recall

Open-I

Ours (SV) 0.929 0.740 0.176 0.146 0.232
Ours (MV) 0.932 0.795 0.214 0.253 0.252
Ours (MV+T) 0.934 0.777 0.217 0.284 0.233
Ours (MV+T+ I) 0.925 0.784 0.236 0.236 0.290

MIMIC

Ours (SV) 0.873 0.822 0.389 0.392 0.451
Ours (MV) 0.875 0.829 0.399 0.397 0.465
Ours (MV+T) 0.890 0.865 0.464 0.458 0.502
Ours (MV+T+ I) 0.880 0.863 0.475 0.431 0.551

Table A.3: This table shows the classifier module’s performance of our pro-
posed model on the 14 common diseases. The improvement of our classifier’s
module is consistent with the reported performance from the automated met-
rics (fluency and accuracy) obtained from the generated reports.
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