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Abstract

A diffuse interface model to simulate a system of two immiscible liquids with surfac-

tants is proposed. This model is based on a modified Ginzburg-Landau free energy

functional to account for non-ionic soluble surfactants and couples the Navier-Stokes

equations with two Cahn-Hilliard equations representing the transport of immiscible

liquids and surfactant concentration. The governing equations are solved using a

free-energy-based lattice Boltzmann framework.

The proposed model is validated for Langmuir and Frumkin adsorption isotherms

when applied to simulate a planar interface and a spherical drop equilibration. The

model ensures numerical stability and accurate results for low and high surfactant

concentrations, and the diffuse interface thickness remains constant even for high

surfactant loads.

The methodology is suggested to correlate the strength of the nonlinear surfactant

coupling with the packing of surfactant molecules in the interfacial region. The pro-

posed model allows for a reduction in surface tension of 45-50% compared to the clean

system at low surfactant concentrations for the Langmuir isotherm, which follows the

experimental results observed for liquid-liquid systems. The appropriate surfactant

mobility and solubility values are recommended for different values of the strength of

nonlinear surfactant coupling.
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Chapter 1

Introduction

1.1 Background and motivation

An emulsion is a system of two or more immiscible liquids, for example, oil and

water. Emulsions can be categorized into three types: coarse emulsions, mini- or na-

noemulsions, and microemulsions [1]. These emulsion types differ from each other in

various aspects, such as their formation process, the drop size of a dispersed phase in

a continuous phase, physio-chemical properties, and their appearance [1]. Coarse and

nanoemulsions are thermodynamically unstable, meaning the free energy of emulsion

formation, ∆Gformation is positive [2]. This energy level indicates the requirement

for external energy in the form of mechanical stirring or shearing to maintain the

stability of the emulsion [1]. Due to the spontaneous trend toward a minimal inter-

facial area between the dispersed phase and the continuous phase [3], the emulsion

will naturally break into separate phases, i.e., a state of lowest free energy. To slow

down conversion from the state of a colloidal dispersion to the state of separated

phases or increase its kinetic stability, a surfactant is used as an emulsifier to ensure

the stability of the emulsions from seconds to years, depending on the application [1].

Microemulsions, consisting of two immiscible liquids and a surfactant, form sponta-

neously (∆Gformation ≤ 0) [2]. Microemulsions are thermodynamically stable because

their interfacial tension is lower compared to that of coarse and nanoemulsions, mak-

ing the interfacial energy comparable to or lower than the entropy of dispersion and
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favors the spontaneous formation of microemulsions [1].

Surfactant molecules are amphiphilic in nature, which means that the chemical

structure of a surfactant molecule consists of a hydrophilic head and a hydrophobic

tail [4], increasing its affinity for adsorbing at the water-fluid interfaces. As a result,

the surfactant facilitates the emulsification of two immiscible liquids by decreasing

the free energy formation of emulsion (∆Gformation) or reducing the interfacial tension

between two immiscible liquids and promotes thermodynamic stability of the system

[1]. Due to these properties, surfactants are used in various applications, ranging from

improving detergent foaming capacity [5], preventing drops from coalescence in drop-

based microfluidic systems [6], emulsifying cosmetic products such as sunscreens [7],

and separating minerals in the froth flotation process [8] to altering rock wettability

to more water-wet states for enhanced oil recovery [9].

The design or prediction of the surfactant-induced phenomena, such as the ad-

sorption of surfactant molecules at the fluid interface, reduction of surface tension,

micelle formation above the critical micelle concentration (CMC), and the appear-

ance of Marangoni stresses is a challenging task. For example, estimating surface

tension reduction based on surfactant adsorption on a water-hydrocarbon interface

is of great importance for surfactant flooding applications [10]. There are several

experimental/laboratory methods to measure the surface tension between water and

hydrocarbons in the presence of surfactants, such as the weight of drop method [11],

[12], pendant drop [13]–[15], and spinning drop [16]–[18]. These laboratory techniques

are costly when factoring in the time spent, the expense of chemicals used to perform

a test, and the cost of conducting tests [10]. In addition, experimental measurements

of surface tension become difficult at very low surfactant concentrations (below 10

ppm in water) due to a significant increase in equilibration time for a typical mea-

surement [19]. For this case, numerical modelling becomes critically important for the

prediction of surface tension reduction. Considering the advances in numerical mod-

elling of surfactant-laden systems, from studying the spontaneous emulsification of
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the oil-water mixture by surfactant [20] to analyzing the role of surfactant in promot-

ing drop breakup and preventing drop coalescence in turbulent flow [21], numerical

simulations have shown great potential to study the system of two immiscible liquids

with surfactant.

In the present study, we focus on developing a numerical model for a microemulsion

to study the adsorption dynamics of non-ionic soluble surfactants on the interface of

two immiscible liquids and to investigate surface tension reduction at low and high

surfactant concentrations. Here, a non-ionic soluble surfactant is a type of surfactant

that does not have an electric charge [10] and can dissolve in the liquid below the

interface [4].

In the following sections, we explore various interface modelling approaches and

justify the choice of a suitable interface model and a numerical method for simulating

microemulsions. Based on the choice of the interface model, we discuss the existing

numerical models of microemulsions in detail and outline the objectives of the present

study.

1.2 Interface modeling approaches

When we consider modelling of a ternary system comprising two immiscible liquids

and a non-ionic soluble surfactant, the initial step involves the selection of a suitable

model for investigating the nature of the interface between two immiscible liquids.

Subsequently, the second step entails the incorporation of the relevant physics per-

taining to the behaviour of the non-ionic soluble surfactant into the chosen model.

Modelling of the interfacial flows is often classified into two categories based on a

representation of the interface: sharp interface and diffuse interface approaches. The

sharp interface approach assumes the interface between two immiscible fluids as a

surface of zero thickness [22]. This means that the fluid properties, such as density,

velocity, and viscosity at the interface, are discontinuous. The interface is treated

as a free boundary that deforms and moves in time, resulting in a free boundary
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problem [23]–[27], where the interfacial boundary condition upon applying the stress

balance at the interface relates the jump in stress across the interface to the interfacial

curvature [22]. The phase transition from one phase to another is sharp. For example,

in a stair-step method [28], the interface between two immiscible fluids is represented

as a vertical surface in a computational domain by modelling the interface as a Dirac

delta function (δ).

Several numerical methods have been developed using the sharp interface approach

to model incompressible immiscible two-phase flows. One group among these meth-

ods, such as the front-tracking method [29] and the Marker in Cell method [30] tracks

the interface explicitly using Lagrangian markers, while in another group, the inter-

face is represented implicitly by a phase indicator function discretized on an Eulerian

mesh, and this function is updated to capture the position of the interface. Examples

of these methods include the volume of fluid method [31], the level set method [32],

the coupled level set and volume of fluid methods [33], and the ghost fluid method

[34].

On the other hand, the formulation of a diffuse interface assumes that the interface

has a non-zero thickness, where the fluid properties change continuously. This idea

was developed based on gradient theories proposed by Lord Rayleigh [35] and van der

Waals [36]. Based on these gradient theories, Kortweg [37] proposed a capillary stress

tensor in terms of density and spatial gradients for the diffuse interface model. Later,

Cahn and Hilliard [38] showed the use of local mass fraction as an order parameter

(i.e., phase indicator function) to represent a smooth change of material properties

and physical quantities from one phase to another. The non-zero thickness of the

interface is represented by regularizing the Dirac delta function [28] or the nascent

delta function. The diffuse interface approach was implemented in the continuum

surface force model [39] and the phase field model [40] to study surface tension and

internal waves in a near-critical fluid, respectively.

In diffuse interface models, the models based on surface tension forces, such as
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Brackbill et al.’s model [39] are difficult to implement for topological changes, for

example, the breakup of a liquid drop, and these models have instability as well as

convergence issues [41]; whereas, the phase field model is based on the fluid free energy

and provides numerical stability for the flows with large topological changes [42].

In the phase field model, the physical quantities, such as the chemical potentials

and surface tension force, are derived from the free energy functional, representing

the thermodynamics of the system. In addition, the continuous transition from one

phase to another phase is represented by introducing a phase field variable or an

order parameter with distinct constant values in each bulk phase [22]. The local

difference in the densities of binary liquids is taken as the order parameter [43]. The

dynamics of immiscible two-phase flows are represented by either the Cahn-Hilliard or

Allen-Cahn equations based on the Gingburg-Landau-Wilson free energy functional

[44]. Due to the lack of conservation of mass in the Allen-Chan equation, the Cahn-

Hilliard equation is typically used to study the two-phase flows [44]. Normally, the

scale of the interface thickness is observed to be in the range of a few nanometers

for multiphase flow problems [45], which makes the implementation of the diffuse

interface computationally difficult. For this reason, the interface width is diffused by

the length scale of the numerical spatial step size [22].

The difference between the sharp and diffuse interface formulations is shown in

Figure 1.1. In the sharp interface, the change in the field variable representing two

immiscible fluids from Fluid 1 to Fluid 2 is discontinuous, resembling a step-like

change. In contrast, in the diffuse interface, the transition occurs smoothly over a

finite thickness, creating an interfacial region.

Sharp interface models have shown the potential to simulate immiscible two-phase

flows. The study conducted by Shaikh et al. [46] shows that the sharp interface-based

level set method significantly reduces spurious velocity near the interface compared

to the diffuse interface-based level set method, thus, leading to accurate results for

capillary-induced flow. However, there are some limitations of the sharp interface
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Figure 1.1: Change of the field variable representing two immiscible fluids for sharp
and diffuse interface methods.

models:

• The assumption of a surface of zero thickness is not applicable for a near-critical

fluid [22] because the interface thickness diverges at a critical point [47].

• The influence of the interface thickness on the bulk fluid needs to be accounted

for when the length scale of any bulk fluid at two sides of the interface is

comparable to the realistic interface thickness [22], [48].

• The numerical methods based on the free boundary problem are difficult to

implement for interfacial flows where the free boundary shape or the sharp

interface becomes self-intersecting or complicated [22].

• Sharp interface models are prone to numerical instability for the flows with

large topological changes such as the drop breakup and coalescence [42], where

the length scale of these physical mechanisms is comparable to the interface

thickness [22].
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• The interface reconstruction processes in the sharp interface-based models are

complex [49] and computationally expensive.

Unlike sharp interface models, the description of a narrow interface thickness allows

the phase field model to study the near-critical fluid [40] and the topological changes

of the interface, such as drop coalescence [50]. Furthermore, the free energy governed

diffuse interface model/phase field model provides a physical basis [42]. The interface

dynamics captured by the evolution of the phase field variable makes the computations

of the phase field model easier compared to the sharp interface models [49]. Therefore,

we will adopt the phase field model for the investigation of surfactant-laden systems.

In the next section, we will explain the choice of a numerical method to simulate

the binary fluid-soluble surfactant system.

1.3 Choice of a numerical method to solve govern-

ing equations for multiphase flows

For multiphase flows, the governing equations include the continuity equation, the

momentum equation, and any additional convention or convection-diffusion equations,

such as the Cahn-Hilliard equations for the present study.

The set of governing equations can be solved by two methods: the macroscopic and

particle-based discrete methods. The macroscopic methods involve the conventional

computational fluid dynamics (CFD) methods such as finite difference, finite volume,

and finite element methods. In these methods, the governing equations are directly

discretized and solved on a finite number of nodes, volumes, or elements, respectively,

that make up a physical space or domain of interest for numerical simulations [51].

There are several examples of the use of these methods for binary fluid-surfactant

systems, for instance, the finite difference-based front tracking method [52] to study

axisymmetric flow with soluble surfactants, finite volume [53], [54] and finite element

methods [55] to solve surfactant transport equations. However, these methods fall
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short when applied to model complex fluid phenomena involving multiphase flows

such as drop formation, breakup, and coalescence [56], where the characteristic length

scale of the problem is of the same order of magnitude as the interface thickness.

In addition, the continuum assumption of these methods becomes inadequate for

studying the physical phenomena occurring at micro- and meso-scales [57].

On the other hand, particle-based discrete methods such as molecular dynam-

ics (MD), lattice gas models, dissipative particle dynamics (DPD), direct simulation

Monte Carlo (DSMC), and lattice Boltzmann method (LBM) do not solve the govern-

ing equations directly, but they represent the fluid as particles, which themselves can

represent atoms, molecules, collections or distributions of molecules, or portions of

the macroscopic fluid [51]. Contrary to the macroscopic view of the conventional CFD

methods, the microscopic or mesoscopic view of the particle-based discrete methods

benefits them in handling physical mechanisms involving large interfacial topological

changes. However, the higher computational cost involved in MD, DPD, and DSMC

simulations and the problem of statistical noise in lattice gas models [51] make these

methods an impractical choice for solving the governing equations.

Unlike other particle-based discrete methods, the LBM is a mesoscopic method

that represents the entire fluid using the collection of particles and tracks the particle

distribution function [51] instead of the particles themselves. The particle distribu-

tion function is governed by the discretized Boltzmann equation or lattice Boltzmann

equation. Considering the fact that the LBM is developed from lattice gas models, the

LBM can recover hydrodynamic behaviour at the macroscopic scale by preserving mi-

croscopic kinetic principles [58]. For example, macroscopic properties such as density

and velocity can be obtained from the moments of the particle distribution function.

In addition, the governing equations can be recovered from the lattice Boltzmann

equations formulated for the problem of interest by the Chapman-Enskog analysis

[51]. The LBM method is described in detail in Section 2.7.

The LBM is comparatively better than macroscopic methods in dealing with com-
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plex geometries for multiphase flows involving interfacial topological changes [59]. In

addition, the linear convective term in the lattice Boltzmann equation makes its im-

plementation easier, in contrast to the non-linear convective terms of Navier-Stokes

equations, which are difficult to discretize [57]. The mesoscopic characteristics of the

LBM allow it to eliminate the problem of statistical noise that existed in the lat-

tice gas models [51]. Furthermore, it makes the lattice Boltzmann algorithm simple

and amenable for parallelization compared to other particle-based discrete methods

[51], [60]. The capability of the LBM to incorporate the microscopic physics (i.e.,

intermolecular interactions) without surrendering the computational efficiency of the

macroscopic methods [56] makes it a promising candidate for simulating multiphase

flows. At the same time, the LBM is not well suited for certain applications, such as

simulating strong compressible flows. It is memory-intensive as significant memory

is required to store and update the particle populations. Moreover, it suffers from

spurious currents near fluid-fluid interfaces because of its lattice-based formulation

[51].

In conclusion, it can be said that LBM is not suitable for all possible applications,

but it has matured into a powerful and efficient alternative to other methods in recent

years, particularly for multiphase flow simulations, for instance, the study of phase

separation in non-ideal two-component fluids [61], the investigation of incompressible

two-phase flows with large density differences [62], [63], the emulsion drop deformation

and breakup study [64], and the simulation of binary fluid-soluble surfactant systems

[20], [42], [60], [65], [66]. Therefore, we select the LBM for the present study of the

ternary system consisting of two immiscible liquids with soluble surfactants.

In the next section, we will discuss a detailed literature review of the existing phase

field models for microemulsions.
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1.4 Literature review on the modeling of microemul-

sions

Before we delve into the discussion of existing phase field models for the system

involving two immiscible liquids with soluble surfactants, it is important to highlight

the advancements made in sharp interface models for simulating the same system.

For the sharp interface model, Stone and Leal [67] formulated the equation of state

(EOS) to describe the effect of surfactant on the reduction of surface tension. Later,

Milliken and Leal [68] coupled fluid mechanics and surfactant mass transfer to study

the effect of surfactant solubility on drop breakup and deformation using the bound-

ary integral method based on a sharp interface model. Following the work of Stone

and Leal [67] and Milliken and Leal [68], different numerical methods such as front

tracking methods [52], [69], [70], ghost-cell immersed boundary method [71], [72],

volume of fluid method [73], and the hybrid numerical method combining boundary

integral method with a fixed grid solution of the bulk surfactant equation [74] have

been developed in the sharp interface framework to study the topological changes of

the interface in the presence of surfactants for two-dimensional and three-dimensional

multiphase flows. The recent progress of sharp interface methods shows that it has

overcome some of the limitations mentioned in Section 1.2 such as the modelling of

interface topological changes. Still, the phase field models are more physical than the

sharp interface models, for example, the interface is artificially reconstructed in the

sharp interface model; whereas, the interface evolves according to the chemical poten-

tial gradients derived from the fluid’s free energy functional in the phase field model

[65]. Second, to account for the mass transfer of a soluble surfactant between the in-

terface and the bulk fluids, the sharp interface models require an external boundary

condition that cannot arise uniquely from the model itself [42], [75].

In the phase field model, Laradji et al. [43] modified the Gingburg-Landau free

energy functional describing the Cahn-Hilliard theory of an immiscible binary fluid
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mixture [38] by incorporating the additional free energy terms associated with the

physics of soluble surfactant. These additional terms in the free energy functional

represent the adsorption of the surfactant at the binary fluid interface, the solubility of

the surfactant in bulk phases, the diffusion of the surfactant, and the self-interaction

strength between surfactant molecules. In addition to the Cahn-Hilliard equation

for the order parameter representing two immiscible liquids, another Cahn-Hilliard

equation for the soluble surfactant was introduced to account for the surfactant mass

transfer. A local surfactant concentration is used to represent the soluble surfactant

[43].

Later, Theissen and Gompper [20], Teramoto and Yonezawa [76], van der Sman

and van der Graaf [65], and Teng et al. [77] proposed notable modifications to the free

energy functional terms proposed by Laradji et al. [43] to study the surfactant effects

on the spontaneous emulsification, drop growth dynamics, and adsorption dynamics.

Li and Kim [78] compared these four models and modified the surfactant term that

describes the diffusion of the surfactant, which allows a larger time step compared to

these four models with severe time step constraints due to nonlinear coupling of the

order parameters. During the comparison of these four models along with the Li and

Kim [78]’s model for the case of a planar interface between two immiscible fluids in

the presence of surfactant, it was found that the models suggested by Theissen and

Gompper [20], Teramoto and Yonezawa [76], and Li and Kim [78] suffer from negative

values of the surfactant volume fraction during the calculation of the equilibrium

profile of surfactant for a certain set of numerical parameters that is unphysical and

clearly outside of the range of surfactant volume fraction (i.e., [0, 1]). Similarly, the

model of van der Sman and van der Graaf [65] and Teng et al. [77] also suffer from

unphysical oscillations in the equilibrium profile of the surfactant volume fraction.

However, the logarithmic free energy term inducing a Fickian-type diffusion for the

surfactant in the van der Sman and van der Graaf [65]’s model restricts the value of

surfactant volume fraction to be in the range [0, 1] and ensures the physical results
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for the surfactant profile.

The phase field model proposed by van der Sman and van der Graaf [65] is the most

widely adopted model for binary fluid-surfactant systems. The free energy functional

of this model is partly formulated based on the free-energy-based, sharp interface

models of Diamant and Andelman [75] and Diamant et al. [79]. Specifically, in these

models, the Dirac delta function used in the free energy term to account for surfactant

adsorption at the interface was modified by regularizing it as a squared gradient of

the order parameter representing two immiscible liquids for the phase field model.

This allows the model of van der Sman and van der Graaf [65] to possess a realistic

Langmuir adsorption isotherm. In addition, this model captures the expected relation

between surface tension reduction and surfactant concentration. It also couples the

surfactant adsorption with hydrodynamics to study the correct drop dynamics in the

presence of surfactant.

Several modifications have been made to the van der Sman and van der Graaf [65]’s

model, improving its stability and extending its capability to capture the adsorption

dynamics for high surfactant concentrations. Liu and Zhang [42] extended this model

to account for the Frumkin isotherm and different surfactant solubility in the bulk

phases. In addition, they demonstrated the capability of their phase field model

by investigating the drop dynamics with large topological changes in a shear flow.

The model of Liu and Zhang [42] exhibits both Langmuir and Frumkin isotherms,

which are the well-developed adsorption isotherms for non-ionic surfactants under the

thermodynamic equilibrium state with a bulk surfactant concentration below CMC.

However, their model works only for low concentrations of surfactants.

Yun et al. [80] investigated the van der Sman and van der Graaf [65]’s model for

high surfactant concentrations. They observed that the equilibrium profile of the

binary fluid becomes sharp, indicating the decrease of the interface thickness with

an increase in the surfactant load. This phenomenon occurs due to the presence of

surfactant in the chemical potential of the binary fluid system and the effect imposed
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by the regularized Dirac delta function/nascent delta function. For instance, as the

surfactant load increases, the squared gradient representation suggested in the van

der Sman and van der Graaf [65]’s model mathematically leads to the decrease of the

interface thickness. To overcome this problem, they suggested removing the surfactant

terms from the chemical potential of the binary fluid system to keep the thickness

constant regardless of the surfactant concentration. This modification makes the

equilibrium profile of the binary fluid independent of the surfactant concentration.

We categorize this description of the interface thickness as non-variational, where the

interface thickness remains unaffected by the surfactant load.

Engblom et al. [81] performed the stability analysis of the van der Sman and

van der Graaf [65]’s model considering the “frozen” coefficient formulation. It was re-

ported that the use of the squared-gradient nascent delta function or squared-gradient

nonlocal coupling between the surfactant and binary fluid makes the model mathe-

matically ill-posed under a large set of physically relevant parameters. In addition,

they suggested that the natural requirement that the interface sharpness be inde-

pendent of the surfactant loading is sacrificed to improve the stability of the phase

field model for binary fluid-surfactant systems. To improve the well-posedness of

the squared-gradient based phase field models, they proposed three different mod-

els namely Model 1 - where a complete logarithmic free energy term is considered

instead of the partial one used in the model of van der Sman and van der Graaf

[65], Model 2 - where a square hyperbolic secant function in terms of the order pa-

rameter representing the binary fluid is suggested as the nascent delta function, and

Model 3 - where a quartic hyperbolic secant function in terms of the order parameter

representing the binary fluid is suggested as the nascent delta function. Note that

the nascent delta functions used in Model 2 and Model 3 are the gradient-free rep-

resentations of the nascent delta function. In addition, the authors did not neglect

the presence of surfactant terms from the chemical potential of binary fluid. Hence,

we define this description of the thickness of the interface as variational, where the
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interface thickness depends on the concentration of the surfactant. They compared

these models and determined that Model 1 does not theoretically possess a natural

adsorption isotherm. Model 2 and Model 3 are stable and possess realistic adsorption

isotherms. The results of Model 2 match the analytical predictions, but it produces

slightly more diffuse results compared to Model 3. The model 3 has been shown to

be the most reliable among these three models. From hereafter, whenever we men-

tion the gradient-free nascent delta function, it means that we refer to the quartic

hyperbolic secant function of Model 3 proposed by Engblom et al. [81].

Toth and Kvamme [82] observed that the gradient-free nascent delta function ap-

pears to increase the thickness of the interface with increasing surfactant concen-

tration. They combined the squared-gradient and gradient-free representations of

the nascent delta function to avoid interface-related problems, such as sharpening

and broadening of the interface thickness at high concentrations of surfactant. Con-

sequently, this formulation prompted the phenomenon of no phase separation, i.e.,

perfect miscibility at the critical surfactant concentration, the concentration at which

the bulk phase order parameter representing the binary fluid becomes zero. The

concept of a critical surfactant concentration can be thought of as similar to that

of the theory of liquid-vapor critical point. Van der Sman and Meinders [83] also

analyzed the squared-gradient and gradient-free surfactant couplings and concluded

that the squared-gradient coupling leads to numerical instability for high surfactant

concentrations. Furthermore, they questioned the physical meaning of the interface

broadening when gradient-free surfactant coupling is used.

Shi et al. [66] adopted the strategy of Yun et al. [80] to resolve the interface

sharpening phenomenon that occurred when using the squared-gradient representa-

tion of the surfactant coupling. Similarly, Soligo et al. [21] and Zong et al. [60] have

successfully kept the thickness of the interface stable and addressed the Marangoni

effect on the dynamics of the drop following the suggestions of Engblom et al. [81]

and Yun et al. [80].
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From the literature review, it is clear that the definition of interface thickness

changes in the phase field model when investigating the binary fluid-surfactant sys-

tems at high surfactant concentrations. For example, one group of researchers in-

cluding Shi et al. [66] has followed the non-variational description of the interface

thickness, but this type of models still suffers from numerical instability at high surfac-

tant concentrations and cannot attain the surfactant volume fraction at the interface

near 1; whereas, another group of researchers such as Toth and Kvamme [82] have

resolved interface-related problems by adopting the variational description of the in-

terface thickness. Similarly to the former group of researchers, the interface thickness

becomes unstable when the surfactant volume fraction converges to 1 at the interface

[84].

Both descriptions of the interface thickness resolve the interface-related problems

and keep the interface thickness stable and constant to some extent for high surfactant

concentrations. These descriptions of the interface thickness are formulated because

the change in the interface thickness is unphysical from macroscopic point of view.

Moreover, the interface thickness should remain constant since the chemical structure

of the surfactant molecule is not considered in the free energy functional. This implies

that the phase field model is limited to the general non-ionic soluble surfactants.

Considering these observations, we would like to pose three questions:

• From the variational and non-variational descriptions of the interface thickness,

which one to use to model surfactant-laden systems and obtain physically real-

istic results that capture experimental observations?

• How can we promote the stability of the model for high surfactant concentra-

tions and avoid the occurrence of perfect miscibility?

• How can we extend the potential of the phase field model to account for the

effect of different non-ionic soluble surfactants on surface tension reduction?
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In the next section, we will outline the objectives of the present study along with

a summary of the subsequent chapters.

1.5 Objectives

By addressing the three questions mentioned at the end of Section 1.4, our goal is

to propose a phase field model that has a variational description of the interface

thickness in a free-energy-based lattice Boltzmann framework that remains numeri-

cally stable and provides accurate results at high surfactant concentrations, i.e., when

the local surfactant concentration at the interface approaches the maximum allowed

value of one, allows controlled reduction of surface tension based on the strength of

the nonlocal surfactant coupling or nascent delta function, and can replicate the effect

of different surfactants on the reduction of surface tension.

In Chapter 2, we introduce the macroscopic governing equations for the ternary

system of two immiscible liquids with non-ionic soluble surfactants. In addition, we

provide a derivation of the general phase field model, the phase field models proposed

by van der Sman and van der Graaf [65], Engblom et al. [81], Shi et al. [66], and

the proposed phase field model followed by the analytical solutions of these models

for a benchmark case of the planar interface, the brief description of the surface

tension, and the formulation of the free-energy lattice Boltzmann method for solving

the governing equations.

In Chapter 3, we validate the ability of the proposed model to simulate two bench-

mark cases named a planar interface and a spherical drop equilibration. The planar

interface between two immiscible liquids in the presence of surfactant was investigated

for low as well as high surfactant loads. In addition, the results of the proposed model

were compared with the models of van der Sman and van der Graaf [65], Engblom et

al. [81], and Shi et al. [66] at high surfactant concentrations. Similarly, the proposed

model was applied to study the adsorption dynamics of soluble surfactant over the

spherical drop interface for low and high surfactant concentrations. Furthermore, we
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introduce the methodology to demonstrate the effect of different surfactants on surface

tension reduction using the strength of nonlocal coupling between the surfactant and

binary liquids. The simulation parameters were also explored to obtain numerically

stable simulations for different strengths of the nonlocal surfactant couplings.

In Chapter 4, we summarize the findings of the present study and discuss the scope

of future work. In addition, there are two appendices describing the Chapman-Enskog

expansions of the lattice Boltzmann equations of particle populations to recover gov-

erning equations and the formulation of the chosen collision operator for the particle

population representing the density of the binary fluid-surfactant system.
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Chapter 2

Methodology

In this chapter, the governing equations for an incompressible multiphase system con-

sisting of two immiscible liquids and a non-ionic soluble surfactant are introduced.

It is followed by the formulation of the free energy functional describing the thermo-

dynamics of the ternary system. From this, we derive the general model equations

for the chemical potentials of binary fluid and the soluble surfactant, as well as the

thermodynamic pressure tensor. The equations of the general phase field model are

used to recover the equations of the phase field model proposed by van der Sman

and van der Graaf [65], Engblom et al. [81], Shi et al. [66]. Following the discussion

of these models, we propose the equations of our phase field model. For all models,

analytical equations of binary fluid and the soluble surfactant are developed for the

case of a planar interface between two immiscible fluids contaminated by a non-ionic

soluble surfactant. The EOS is formulated to account for the effect of the soluble

surfactant on surface tension reduction in the phase field model. Then, the procedure

for solving the governing equations of the ternary system in the free-energy lattice

Boltzmann framework is presented.

2.1 Governing equations

The system of two immiscible liquids and a non-ionic soluble surfactant is represented

by the order parameter ϕ that describes the immiscible liquids and the order param-
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eter ψ that captures the concentration of soluble surfactant. The parameter ϕ is the

difference between the densities of two immiscible liquids [20] and the parameter ψ is

the volume fraction of the surfactant [65].

Four equations govern the hydrodynamics of the surfactant-laden system: the con-

tinuity equation, the momentum equation, and two Cahn-Hilliard equations describ-

ing the transport of ϕ and ψ:

∂tρ+ ∂α(ρuα) = 0 (2.1a)

∂t(ρuα) + ∂β(ρuαuβ) = −∂βP th
αβ + ∂βν(ρ∂αuβ + ρ∂βuα) (2.1b)

∂tϕ+ ∂α(ϕuα) =Mϕ∂
2
ααµϕ (2.1c)

∂tψ + ∂α(ψuα) =Mψ∂
2
ααµψ (2.1d)

The equations are written in the Einstein notation, where α and β represent the

spatial coordinates x, y, and z; t stands for time; ρ and ν are the fluid density and

kinematic viscosity, respectively; uα is the fluid velocity; Mϕ and Mψ represent the

mobility of ϕ and ψ, respectively; P th
αβ is the thermodynamic pressure tensor; µϕ and

µψ are the chemical potentials for ϕ and ψ, respectively.

2.2 Free energy functional

The Ginzburg-Landau free energy functional, Ftotal, describing the thermodynamics

of the ternary system, is represented as follows [42]:

Ftotal(ρ, ϕ, ψ) =

∫︂
FtotaldV =

∫︂ [︃
Fϕ + Fψ + F0 + Fex − Eϕψ + ρT lnρ

]︃
dV (2.2)

where

• Fϕ is the Ginzburg-Landau free energy density functional describing the Cahn-

Hilliard theory of a binary fluid mixture [38]. It is defined as follows:

Fϕ =
A

2
ϕ2 +

B

4
ϕ4 +

κint
2

(∂βϕ)
2 (2.3)
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The first two terms represent the double-well potential with two minima for

two pure bulk phases: ϕ0 = ±
√︁
−A/B. Here, A is negative and κint & B are

positive constants. Assuming that −A = B gives ϕ0 = ±1, where ϕ0 = +1

and ϕ0 = −1 refer to the dispersed and continuous phases, respectively. From

hereafter, we assume −A = B. The last term accounts for the free energy

density excess of the interfacial region [38] and is interpreted as the interfacial

free energy density between liquids due to the diffuse interface approximation.

• Fψ is the free energy density associated with the surfactant expressed as follows:

Fψ = kBT [ψln(ψ) + (1− ψ)ln(1− ψ)]− C

2
ψ2 (2.4)

The term in square brackets represents the ideal entropy of mixing of surfactant

with the immiscible binary fluid mixture [65]. This term restricts the value of ψ

to be in the [0, 1] range. The coefficient kBT represents the thermal energy. The

second term accounts for the free energy density related to the self-interaction

strength between neighbouring surfactant molecules, C [75].

• F0 is the free energy density contribution due to the adsorption of the surfactant

at the interface. F0 suggested by Toth and Kvamme [82] is adopted, which is the

combination of the squared-gradient nascent delta function, δ̂SQ(x), proposed

in [65] and the gradient-free nascent delta function, δ̂E3(x), (Model 3 in ref.

[81]). It reads as follows:

F0 = −D
2
ψ

[︃
λ1δ̂SQ(x) + λ2δ̂E3(x)

]︃
(2.5)

Here, δ̂(x), is the nascent delta function or the approximation of the Dirac delta

function, δ(x), used in the sharp interface models suggested by Diamant and

Andelman [75] and Diamant et al. [79]; λ1 and λ2 are coefficients incorporating

the different combinations of δ̂(x). The squared-gradient and the gradient-free

nascent delta functions are defined as follows:

δ̂SQ(x) = (∂βϕ)
2 δ̂E3(x) =

1

ξ20

(ϕ2
0 − ϕ2)2

ϕ2
0

(2.6)
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where the interface thickness of the pure system [85] reads:

ξ0 =

√︃
−2κint
A

(2.7)

After substituting Eqs. (2.6) in Eq. 2.5, assuming D = κint, and taking ϕ2
0 = 1,

the simplified form of F0 is obtained:

F0 = −ψ
[︃
λ1

(︃
D

2
(∂βϕ)

2

)︃
− λ2

(︃
A

4
(1− ϕ2)2

)︃]︃
(2.8)

• The term Fex penalizes the presence of free surfactant in bulk phases [81]. The

expression for Fex proposed by Theissen and Gompper [20] is used in the present

study:

Fex =
W

2
ψϕ2 (2.9)

Furthermore, the solubility of surfactant in the bulk phases can be controlled

by dimensionless number Ex:

Ex =
D

Wξ20
(2.10)

We set the value of Ex and then calculate the corresponding value of W .

• The term −Eϕψ accounts for the different solubility of the surfactant in the

bulk phases [42] and the parameter E describes the difference in the solubility

strength of the surfactant in two bulk phases.

• The term ρT lnρ ensures the incompressibility of the fluid in the lattice Boltz-

mann (LB) algorithm and T = 1
3
is recommended to reduce compressibility

errors within the acceptable numerical tolerances [85]. This term does not in-

fluence the phase behaviour. [20].

2.3 Derivation of chemical potentials and thermo-

dynamic pressure tensor

The key quantities, P th
αβ, µϕ, and µψ are derived from the total free energy density

functional of the binary fluid-surfactant system.

21



The chemical potentials µϕ and µψ are derived by taking the functional derivative

of the total free energy density functional, Ftotal, the integrand of Eq. (2.2), with

respect to ϕ and ψ as follows:

µϕ =
δFtotal

δϕ
= A(ϕ− ϕ3)(1− λ2ψ)− (κint −Dλ1ψ)∂

2
ββϕ+Dλ1(∂βϕ)(∂βψ)

+Wϕψ − Eψ (2.11a)

µψ =
δFtotal

δψ
= kBT ln

(︃
ψ

1− ψ

)︃
− Cψ − D

2
λ1(∂βϕ)

2 +
A

4
λ2(1− ϕ2)2 +

W

2
ϕ2 − Eϕ

(2.11b)

In addition to the chemical potentials of the order parameters, the expression for

the thermodynamic pressure tensor P th
αβ is necessary to solve the system (2.1). The

challenge is that there is no explicit expression for P th
αβ that follows directly from

the total free energy density functional. However, the divergence of this tensor must

satisfy the mechanical equilibrium [20] represented by the Gibbs-Duhem relation at

a constant temperature:

∂βP
th
αβ = [ρ(∂βµρ) + ϕ(∂βµϕ) + ψ(∂βµψ)]δαβ (2.12)

Following the explanation of the meaning of ∂βP
th
αβ given by Kendon et al. [85] for the

pure system, it can be said that the divergence of thermodynamic pressure tensor for

the surfactant-laden systems represents the thermodynamic force density acting at

each point in the binary fluid-surfactant mixture which is caused by the non-uniform

compositions of binary liquids and surfactant in terms of excess chemical potential

gradients. After inserting Eq. (2.11a) and Eq. (2.11b) in Eq. (2.12), the expression
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for ∂βP
th
αβ can be simplified as follows:

∂βP
th
αβ = [ρ(∂βµρ) + ϕ(∂βµϕ) + ψ(∂βµψ)]δαβ

= ϕ(∂αµϕ) + ψ(∂αµψ)

= ϕ

(︃
A[(ϕ− ϕ3)(−λ2∂αψ) + (∂αϕ− 3ϕ2∂αϕ)(1− λ2ψ)]− κint∂α(∂

2
ββϕ)

+Dλ1ψ∂α(∂
2
ββϕ) +Dλ1(∂αψ)∂

2
ββϕ+Dλ1∂α(∂βϕ)(∂βψ)

+Dλ1∂α(∂βψ)(∂βϕ) +W (∂αϕ)ψ +Wϕ(∂αψ)− E(∂αψ)

)︃
+ ψ

(︃
(∂αψ)

kBT

ψ(1− ψ)
− C(∂αψ)−Dλ1(∂βϕ)∂α(∂βϕ)− Aλ2ϕ(1− ϕ2)(∂αϕ)

+Wϕ(∂αϕ)− E(∂αϕ)

)︃
= Aϕ(∂αϕ)− 3Aϕ3(∂αϕ)− 2Aλ2ψ(ϕ− 2ϕ3)(∂αϕ)− Aλ2ϕ(ϕ− ϕ3)(∂αψ)

− κintϕ∂α(∂
2
ββϕ) +Dλ1ϕψ∂α(∂

2
ββϕ) +Dλ1ϕ(∂αψ)∂

2
ββϕ+Dλ1ϕ∂α(∂βϕ)(∂βψ)

+Dλ1ϕ∂α(∂βψ)(∂βϕ) +Wϕψ(∂αϕ) +Wϕ2(∂αψ)− Eϕ(∂αψ)

+ (∂αψ)
kBT

(1− ψ)
− Cψ(∂αψ)−Dλ1ψ(∂βϕ)∂α(∂βϕ) +Wϕψ(∂αϕ)

− Eψ(∂αϕ) (2.13)

To develop an expression for P th
αβ, we will follow the suggestion of Theissen and

Gompper [20] and decompose this tensor into the isotropic and non-isotropic parts

as follows:

P th
αβ = pδαβ + P chem

αβ (2.14)

Taking the divergence of Eq. (2.14) gives:

∂βP
th
αβ = ∂β(pδαβ) + ∂βP

chem
αβ (2.15)

The thermodynamic pressure p is the scalar part of the thermodynamic pressure

tensor that can be derived using the following thermodynamic relation [20]:

p = ρµρ + ϕµϕ + ψµψ −Ftotal (2.16)

Using Eq. (2.11a), Eq. (2.11b), and Eq. (2.2), the simplified expression for p can be
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written as:

p = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − Aλ2ψ(ϕ

2 − ϕ4)− κintϕ(∂
2
ββϕ) +Dλ1ϕψ(∂

2
ββϕ)

+Dλ1ϕ(∂βϕ)(∂βψ)− kBT ln(1− ψ)− C

2
ψ2 − κint

2
(∂βϕ)

2 +Wψϕ2 − Eϕψ (2.17)

From Eq. (2.17), the divergence of pδαβ can be obtained as follows:

∂β(pδαβ) = Aϕ(∂αϕ)− 3Aϕ3(∂αϕ)− 2Aλ2ψ(ϕ− 2ϕ3)(∂αϕ)− Aλ2ϕ(ϕ− ϕ3)(∂αψ)

− κint(∂αϕ)∂
2
ββϕ− κintϕ∂α(∂

2
ββϕ) +Dλ1(∂αϕ)ψ∂

2
ββϕ+Dλ1ϕ(∂αψ)∂

2
ββϕ

+Dλ1ϕψ∂α(∂
2
ββϕ) +Dλ1(∂αϕ)(∂βϕ)(∂βψ) +Dλ1ϕ∂α(∂βϕ)(∂βψ)

+Dλ1ϕ(∂βϕ)∂α(∂βψ) + (∂αψ)
kBT

(1− ψ)
− Cψ(∂αψ)− κint(∂βϕ)∂α(∂βϕ)

+W (∂αψ)ϕ
2 + 2Wϕ(∂αϕ)ψ − E(∂αϕ)ψ − Eϕ(∂αψ) (2.18)

Now we have the expression for the divergence of P th
αβ which is Eq. (2.13) and we

know the expression for ∂β(pδαβ) which is Eq. (2.18). What remains is the unknown

expression for ∂βP
chem
αβ . We will adopt the similar form of P chem

αβ that has been used

in references [65], [42], and [66] which satisfies the Gibbs-Duhem equation (2.12) and

reads as follows:

P chem
αβ = (κint −Dλ1ψ)(∂αϕ)(∂βϕ) (2.19)

The divergence of Eq. (2.19) gives:

∂βP
chem
αβ = ∂β[(κint −Dλ1ψ)(∂αϕ)(∂βϕ)]

= κint∂β(∂αϕ)(∂βϕ) + κint(∂αϕ)∂
2
ββϕ−Dλ1(∂βψ)(∂αϕ)(∂βϕ)

−Dλ1ψ∂β(∂αϕ)(∂βϕ)−Dλ1ψ(∂αϕ)∂
2
ββϕ (2.20)

Combining Eq. (2.18) and Eq. (2.20) gives us exact terms as in Eq. (2.13) confirming

the correctness of the choice to represent the thermodynamic pressure tensor P th
αβ.

We will call this derived set of equations mathematically consistent, meaning that

the expressions for the chemical potentials and the divergence of the thermodynamic
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pressure tensor are obtained directly from the free energy functional, the divergence

of the pressure tensor satisfies the Gibbs-Duhem relation, and no terms are neglected.

The last quantity that we need is the expression for the bulk pressure in the phases.

It can be obtained from Eq. (2.17) assuming there are no gradients of the order

parameters:

pb = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − kBT ln(1− ψ)− C

2
ψ2 − Aλ2ψ(ϕ

2 − ϕ4) +Wψϕ2 − Eϕψ

(2.21)

We will estimate the Laplace pressure using Eq. (2.21).

The equations (2.11a), (2.11b), (2.17), (2.19), and (2.21) represent the key equa-

tions of the general model to simulate a system of two immiscible liquids with soluble

non-ionic surfactant.

2.4 Variations of the free energy models

In this section, we describe four phase field models that capture the behaviour of

binary fluid systems with soluble surfactant: the squared-gradient model [65], the

gradient-free model [81], the non-variational squared-gradient model [66] and the

proposed model.

From the general model described in Section 2.1, we can recover the equations

of chemical potentials, the scalar part of the thermodynamic pressure tensor, the

chemical pressure tensor, and the bulk pressure that represent the models developed

by van der Sman and van der Graaf [65], Engblom et al. [81], and Shi et al. [66].

Case A: Squared-gradient model [65]

Setting λ1 = 1 & λ2 = 0 in equations (2.8) – (2.21) gives the model equations based

on the squared-gradient approximation of δ̂(x) in F0 proposed by van der Sman and
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van der Graaf [65]. Then, the model equations read:

µϕ = A(ϕ− ϕ3)− (κint −Dψ)∂2ββϕ+D(∂βϕ)(∂βψ) +Wϕψ − Eψ (2.22a)

µψ = kBT ln

(︃
ψ

1− ψ

)︃
− Cψ − D

2
(∂βϕ)

2 +
W

2
ϕ2 − Eϕ (2.22b)

p = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − κintϕ(∂

2
ββϕ) +Dϕψ(∂2ββϕ) +Dϕ(∂βϕ)(∂βψ)

− kBT ln(1− ψ)− C

2
ψ2 − κint

2
(∂βϕ)

2 +Wψϕ2 − Eϕψ (2.22c)

P chem
αβ = (κint −Dψ)(∂αϕ)(∂βϕ) (2.22d)

pb = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − kBT ln(1− ψ)− C

2
ψ2 +Wψϕ2 − Eϕψ (2.22e)

This model is mathematically consistent. The drawback of the model reported by Yun

et al. [80] is that the thickness of the interface decreases with increasing surfactant

load at high surfactant concentrations. As indicated by Yun et al. [80], this numerical

effect occurs due to the presence of the term I = Dλ1ψ∂
2
ββϕ+Dλ1(∂βϕ)(∂βψ)+Wϕψ

in the expression for the chemical potential µϕ. In addition, Engblom et al. [81] noted

the ill-posedness of this model, meaning that physical solutions do not exist under a

large set of model parameters and raised questions related to the model stability.

Case B: Gradient-free model (Model 3 in [81])

The model equations based on the gradient-free approximation of δ̂(x) in F0 pro-

posed by Engblom et al. [81] are recovered by setting λ1 = 0 & λ2 = 1:

µϕ = A(ϕ− ϕ3)(1− ψ)− κint∂
2
ββϕ+Wϕψ − Eψ (2.23a)

µψ = kBT ln

(︃
ψ

1− ψ

)︃
− Cψ +

A

4
(1− ϕ2)2 +

W

2
ϕ2 − Eϕ (2.23b)

p = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − Aψ(ϕ2 − ϕ4)− κintϕ(∂

2
ββϕ)− kBT ln(1− ψ)− C

2
ψ2

− κint
2

(∂βϕ)
2 +Wψϕ2 − Eϕψ (2.23c)

P chem
αβ = κint(∂αϕ)(∂βϕ) (2.23d)

pb = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − kBT ln(1− ψ)− C

2
ψ2 − Aψ(ϕ2 − ϕ4) +Wψϕ2 − Eϕψ

(2.23e)

This model is also mathematically consistent. The gradient-free nascent delta func-

tion suggested by Engblom et al. [81] solves the instability problem. However, it
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brings another effect: the interface thickness increases with the increase in the sur-

factant concentration, as observed by Toth and Kvamme [82] and van der Sman and

Meinders [83].

Case C: Non-variational squared-gradient model [66]

Following the suggestion of removing the term I = Dλ1ψ∂
2
ββϕ+Dλ1(∂βϕ)(∂βψ)+

Wϕψ from µϕ [80] and setting λ1 = 1 & λ2 = 0, the model equations studied by Shi

et al. [66] are obtained:

µϕ = A(ϕ− ϕ3)− κint∂
2
ββϕ− Eψ (2.24a)

µψ = kBT ln

(︃
ψ

1− ψ

)︃
− Cψ − D

2
(∂βϕ)

2 +
W

2
ϕ2 − Eϕ (2.24b)

p = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − κintϕ(∂

2
ββϕ)− kBT ln(1− ψ)− C

2
ψ2

− κint
2

(∂βϕ)
2 − Eϕψ (2.24c)

P chem
αβ = (κint −Dψ)(∂αϕ)(∂βϕ) (2.24d)

pb = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − kBT ln(1− ψ)− C

2
ψ2 − Eϕψ (2.24e)

Here, the modified µϕ, Eq. (2.24a), is used to simplify the isotropic pressure p, but the

expression of P chem
αβ is still the same as implemented in refs. [65] and [42]. This modi-

fication in µϕ introduces the non-variational description of the interface thickness, i.e.,

no effect of the coupling between the surfactant and the binary fluid in µϕ, ensuring

no change in the interface thickness regardless of the surfactant concentration. How-

ever, this modification of the equations makes the model mathematically inconsistent.

Furthermore, the simulations become unstable for high surfactant concentrations, as

mentioned by Shi et al. [66] and Zong et al. [60].

Proposed model

Before we introduce the proposed model, we want to stress the importance of the

effects related to the change in the thickness of the interface when the surfactant is

adsorbed. Van der Sman and Meinders [83] raised the question about the physical

significance of the interface broadening phenomenon; however, there is still no clarity
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if the thickness of the interface should depend on the surfactant load. In their mod-

els, Yun et al. [80], Shi et al. [66], Soligo et al. [21], and Zong et al. [60] assume

that the adsorption of the surfactant at the interface does not affect the thickness of

the interface. At the same time, MD) [86] and DPD simulations [87] of surfactant-

laden systems indicate that certain surfactants adsorbed at the liquid-liquid interface

increase the interface thickness due to the chemical structure or orientation of the sur-

factant. If so, then the thickness of the interface must be a function of the surfactant

concentration.

Considering that we apply a diffuse interface method, meaning that the thickness

of the interface is substantially enlarged compared to the physical interface thickness,

we believe that the interface thickness should not noticeably change as the surfactant

is adsorbed; however, to follow the observations of MD and DPD simulations, we

want to retain the ability of the interface thickness to depend on the surfactant load.

Therefore, we make the interface thickness a function of the surfactant concentration,

as done in refs. [81], [82], and [83]. In addition to this assumption, we make the

following modifications to the general model described in Section 2.1 with the primary

intention of improving the numerical stability of the model and accuracy of the results

at high surfactant concentrations:

• We neglect the term Dλ1(∂βϕ)(∂βψ) in µϕ, Eq. (2.11a), to improve the stability

of numerical simulations for high surfactant concentrations. The discretization

error in the calculation of the gradient of ψ increases with the increase in sur-

factant concentration [42] and the presence of this term in µϕ causes unphysical

behaviour (i.e., decrease in the interface thickness) in ϕ-profile [80] or leads to

instability.

• We neglect the termWϕψ in µϕ, Eq. (2.11a). This term introduces the concept

of perfect miscibility of the binary fluid mixture as the surfactant concentra-

tion reaches the critical surfactant concentration [82]. Since we aim to model
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immiscible fluids only, we remove this term.

• Even though two terms are neglected from µϕ, the expression for P chem
αβ remains

unchanged (as these two terms have not been neglected), following the strategy

adopted by Shi et al. [66].

Following these considerations, our proposed model equations read as follows:

µϕ = A(ϕ− ϕ3)(1− λ2ψ)− (κint −Dλ1ψ)∂
2
ββϕ− Eψ (2.25a)

µψ = kBT ln

(︃
ψ

1− ψ

)︃
− Cψ − D

2
λ1(∂βϕ)

2 +
A

4
λ2(1− ϕ2)2 +

W

2
ϕ2 − Eϕ

(2.25b)

p = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − Aλ2ψ(ϕ

2 − ϕ4)− κintϕ(∂
2
ββϕ) +Dλ1ϕψ(∂

2
ββϕ)

− kBT ln(1− ψ)− C

2
ψ2 − κint

2
(∂βϕ)

2 − Eϕψ (2.25c)

P chem
αβ = (κint −Dλ1ψ)(∂αϕ)(∂βϕ) (2.25d)

pb = ρT +
A

2
ϕ2 − 3A

4
ϕ4 − kBT ln(1− ψ)− C

2
ψ2 − Aλ2ψ(ϕ

2 − ϕ4)− Eϕψ

(2.25e)

The proposed model is mathematically inconsistent. We gave up mathematical

consistency to gain the essential advantage of keeping the interface thickness con-

stant while still letting it be a function of the surfactant load for high surfactant

concentrations.

2.5 Analytical solutions for a planar interface and

stability of the models

In this section, we derive analytical solutions for ϕ and ψ profiles in the case of a

planar interface for the general model described in Section 2.1, three models outlined

in Section 2.4 (Cases A-C), and the proposed model. The derivation is accompanied

by a discussion of the stability conditions for each model, the choice of the numerical

parameters, and the physical quantities. We consider a planar interface between two

immiscible fluids contaminated by a non-ionic surfactant with the same solubility in

both fluids (E = 0).
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Analytical solution for the order parameter representing binary fluid

In thermodynamic equilibrium, the chemical potential of ϕ is the same at every point

in the system. Comparing µϕ, Eq. (2.25a), at any arbitrary location ‘x’ with the same

at the interface ‘x = 0’ and keeping ψ constant at the bulk surfactant concentration

ψb (i.e., constant surfactant field approximation), we have:

µϕ,x = µϕ,0

A(ϕ− ϕ3)(1− λ2ψb)− κint(1− λ1ψb)d
2
xxϕ+Wϕψb = 0 (2.26)

Assuming D = κint, using the definition of Ex that characterizes the surfactant

solubility, Eq. (2.10), replacing W with A and Ex in Eq. (2.26) and dividing it by

−A(1− λ2ψb), we get the following equation:

−ϕ2
bϕ+ ϕ3 +

κint
A

(1− λ1ψb)

(1− λ2ψb)
d2xxϕ = 0 (2.27)

where the coefficient of the first term in Eq. (2.27) represents the bulk phase order

parameter in the presence of surfactant (i.e., ϕb) which is:

ϕ2
b = ϕ2

0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
(1− λ2ψb)

(2.28)

After factoring out ϕ3
b from Eq. (2.27) and using Eq. (2.28), we obtain a differential

equation that should be integrated to obtain the analytical expression for ϕ:

∫︂
d2xx

(︃
ϕ

ϕb

)︃
dx = −

Aϕ2
0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

∫︂ [︃(︃
ϕ

ϕb

)︃3

− ϕ

ϕb

]︃
dx (2.29)

We can rewrite the term on the right side of Eq. (2.29) as follows:

d2xx

(︃
ϕ

ϕb

)︃
= dx

(︃
1

2

[︃
dx

(︃
ϕ

ϕb

)︃]︃2)︃
(2.30)

After inserting Eq. (2.30) in Eq. (2.29) and assuming

(︃
ϕ

ϕb

)︃
= ω to simplify this

derivation, Eq. (2.29) can be rewritten as:

∫︂
dx

(︃
1

2
[dx(ω)]

2

)︃
dx = −

Aϕ2
0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

∫︂
[ω3 − ω]dx (2.31)
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Taking the integration on both sides of Eq. (2.31) gives the following expression:

(︃
1

2
[dx(ω)]

2

)︃
+ c1 = −

Aϕ2
0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

[︃(︃
ω4

4

)︃
−

(︃
ω2

2

)︃]︃
+ c2

(︃
1

2
[dx(ω)]

2

)︃
= −

Aϕ2
0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

[︃(︃
ω4

4

)︃
−

(︃
ω2

2

)︃]︃
+ c (2.32)

Here, the constants of integration c1 and c2 are combined as a single constant of

integration c = c2 − c1 in Eq. (2.32). As we know behavior of ϕ in the interfacial

region and bulk phases, we can determine c by evaluating Eq. (2.32) at a very far

distance from the origin such as x = ±∞ (i.e., the bulk phases), where ω(±∞) = ±1

and ∂x(w)(x=±∞) = 0. After evaluating Eq. (2.32) at x = ±∞, the value of c can be

obtained as:

(︃
1

2
[dx(ω)]

2

)︃
x=±∞

= −
Aϕ2

0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

[︃(︃
ω4

4

)︃
−
(︃
ω2

2

)︃]︃
x=±∞

+ c

0 = −
Aϕ2

0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

[︃(︃
1

4

)︃
−

(︃
1

2

)︃]︃
+ c

c = −
Aϕ2

0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

(2.33)

Eq. (2.32) can be simplified after putting the value of c back into it as follows:

(︃
1

2
[dx(ω)]

2

)︃
= −

Aϕ2
0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)

[︃(︃
ω4

4

)︃
−
(︃
ω2

2

)︃]︃
−
Aϕ2

0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
κint(1− λ1ψb)(︃

1

2
[dx(ω)]

2

)︃
= −

Aϕ2
0

[︃
1−

(︃
λ2 +

1
2Ex

)︃
ψb

]︃
4κint(1− λ1ψb)

[ω4 − 2ω2 + 1]

[dx(ω)]
2 =

(ω2 − 1)2

ξ2
(2.34)
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Here, ξ represents the interface thickness in the presence of surfactant and it is ex-

pressed in terms of ξ0 as:

ξ = ξ0

⌜⃓⃓⃓
⎷ (1− λ1ψb)[︃

1−
(︃
λ2 +

1
2Ex

)︃
ψb

]︃ (2.35)

We know that ϕ varies from −1 to +1 and using this argument, it can be stated that

the term (ω2 − 1) is negative throughout the interfacial region except in the bulk

phases, where it is zero. Now, taking the square root on both sides of Eq. (2.34), it

can be represented as follows:

dx(ω) = −(ω2 − 1)

ξ
(2.36)

Integrating Eq. (2.36) by the method of separation of variables as:∫︂
dω

(1− ω2)
=

∫︂
dx

ξ
(2.37)

The term on the left side of Eq. (2.36) can be decomposed into partial fractions for

the integration as follows:

1

(1− ω2)
=

A

(1 + ω)
+

B

(1− ω)
(2.38)

Now, we need to find the values of A and B such that Eq. (2.36) holds true for any

ω. This can be done by equating the numerators on both sides of Eq. (2.36) as:

1 = A(1− ω) +B(1 + ω) (2.39)

For ω = −1, A = 1
2
and for ω = 1, B = 1

2
. With these values, we can integrate Eq.

(2.36) as follows:

1

2

∫︂
1

(1 + ω)
dω +

1

2

∫︂
1

(1− ω)
dω =

∫︂
1

ξ
dx

1

2
ln|(1 + ω)| − 1

2
ln|(1− ω)|+ c1 =

x

ξ
+ c2

1

2
ln

⃓⃓⃓⃓
(1 + ω)

(1− ω)

⃓⃓⃓⃓
=
x

ξ
+ c (2.40)
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By evaluating Eq. (2.40) at the interface x = 0, where ω(0) = 0, gives the constant of

integration c = 0. After that, the analytical solution for ϕ is obtained by simplifying

Eq. (2.40) as follows:

1

2
ln

⃓⃓⃓⃓
(1 + ω)

(1− ω)

⃓⃓⃓⃓
=
x

ξ

(ω + 1)

(ω − 1)
=

− exp

(︃
2x

ξ

)︃
1

(ω + 1) + (ω − 1)

(ω + 1)− (ω − 1)
=

− exp

(︃
2x

ξ

)︃
+ 1

− exp

(︃
2x

ξ

)︃
− 1

ω = ��
����

− exp

(︃
x

ξ

)︃[︃
exp

(︃
x

ξ

)︃
− exp

(︃ − x

ξ

)︃]︃

���
���

− exp

(︃
x

ξ

)︃[︃
exp

(︃
x

ξ

)︃
+ exp

(︃ − x

ξ

)︃]︃
ϕ(x)

ϕb
= ω = tanh

(︃
x

ξ

)︃
(2.41)

For Eqs. (2.28) and (2.35), the following necessary conditions proposed by [82]

must be satisfied to keep constant ξ and ϕ2
b ≈ 1 for the general model:

λ2 ≫
1

2Ex
(2.42a)

λ1 = λ2 +
1

2Ex
(2.42b)

We discuss the numerical challenges these conditions impose on selecting Ex and λ2

values later in the section 3.1.

We also present analytical solutions for the ϕ profiles for other models using the

general analytical solution for a planar interface. Note that the expression for ϕ

described by Eq. (2.41) is the same for all models; only the definitions of ϕb and ξ

are different.

Case A: Squared-gradient model

Assuming λ1 = 1 and λ2 = 0 in equations (2.28) and (2.35) gives the bulk order

parameter and the interface thickness for the model proposed by van der Sman and
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van der Graaf [65] as follows:

ϕ2
b = ϕ2

0

(︃
1− 1

2Ex
ψb

)︃
(2.43a)

ξ = ξ0

⌜⃓⃓⃓
⎷ (1− ψb)(︃

1− 1
2Ex

ψb

)︃ (2.43b)

Van der Sman and van der Graaf [65] assumed ψb ≪ 1, which means ϕ2
b and ξ become

independent of ψb & Ex. As a result, this model gives stable and accurate results for

low ψb values, as shown by Liu and Zhang [42]. When the assumption of ψb ≪ 1 is

not made, the condition Ex ≫ 0.5 ensures that Ex has a negligible effect on ϕ2
b and

ξ. However, the thickness of the interface ξ decreases with increasing ψb. In addition,

a combination of Ex ≤ 0.5 and high ψb values leads to physically unrealistic results.

Case B: Gradient-free model

The equations of ϕ2
b and ξ for the model suggested by Engblom et al. [81] can be

obtained by setting λ1 = 0 and λ2 = 1 in equations (2.28) and (2.35) as follows:

ϕ2
b = ϕ2

0

[︃
1−

(︃
1 + 1

2Ex

)︃
ψb

]︃
(1− ψb)

(2.44a)

ξ = ξ0

⌜⃓⃓⃓
⎷ 1[︃

1−
(︃
1 + 1

2Ex

)︃
ψb

]︃ (2.44b)

Similarly, setting Ex ≫ 0.5 is required to keep ϕ2
b ≈ 1. Then, the thickness of the

interface depends only on ψb, and increases with increasing ψb.

Case C: Non-variational squared-gradient model

After removing the term I = Dλ1ψ∂
2
ββϕ + Dλ1(∂βϕ)(∂βψ) +Wϕψ from µϕ, Eq.

(2.11a), and setting λ1 = 1 & λ2 = 0, the equations of ϕ2
b and ξ of the model proposed

by Shi et al. [66] are obtained:

ϕ2
b = ϕ2

0 (2.45a)

ξ = ξ0 (2.45b)
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Here, ϕ2
b and ξ are independent of the surfactant concentration and Ex. This model

is still susceptible to numerical instability at high surfactant concentrations, probably

due to the use of a squared-gradient delta function, as noticed by Engblom et al. [81].

Proposed model

Following the modifications outlined in Section (2.4) and keeping both λ1 & λ2,

the expressions of ϕ2
b and ξ for our model read as follows:

ϕ2
b = ϕ2

0

(1− λ2ψb)

(1− λ2ψb)
(2.46a)

ξ = ξ0

√︄
(1− λ1ψb)

(1− λ2ψb)
(2.46b)

Different combinations of λ1 and λ2 define the behaviour of the interface thickness,

ξ, given by Eq. (2.46b) as a function of surfactant concentration. When λ1 = λ2 the

thickness of the interface remains constant regardless of the value of ψb; whereas λ2 >

λ1 and λ2 < λ1 refer to the increase and decrease of the thickness with the increase

in the bulk surfactant concentration, respectively. For the rest of the discussion and

simulations, we consider the case of a constant interface thickness setting λ1 = λ2.

Neither ϕb nor ξ depend on Ex values. In Eq. (2.46a), we did not cancel the

numerator and denominator even though they are the same to explicitly show the

case when ϕ2
b becomes indeterminate, i.e., (1 − λ2ψb) = 0 and leads to numerical

instability. To derive the additional condition of numerical stability, we examine

the thermodynamic equilibrium where the chemical potential for ϕ is defined by Eq.

(2.25a) reads as follows:

µϕ = (1− λ2ψ)[A(ϕ− ϕ3)− κint∂
2
ααϕ] = 0 (2.47)

The term (1 − λ2ψ) should not be zero because it makes the definition of interface

thickness ξ and bulk order parameter ϕb indeterminate. To promote numerical sta-

bility, we must have the term (1 − λ2ψ) positive, which means that the following
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condition must be satisfied:

λ2 <
1

ψ
(2.48)

To get a quantitative limit for λ2, we need to approximate ψ at either bulk value,

ψ = ψb or ψ = ψ0 = ψ(0), i.e., the surfactant concentration at the interface. Fol-

lowing the literature, the constant surfactant field (i.e., bulk value) is typically used

to approximate ψ; however, λ2 should be chosen based on ψ0, which is the maxi-

mum value of ψ in equilibrium, ensuring that the term (1−λ2ψ) never becomes zero.

Hence, the condition of numerical stability can be rewritten as follows:

λ2 <
1

ψ0

(2.49)

Considering that ψ0 must be in the range between 0 and 1, λ2 must be equal to or

greater than 1 (λ2 ≥ 1) to achieve physically realistic results.

Analytical solution for the order parameter representing surfactant

At the thermodynamic equilibrium, a steady state profile of ψ(x) for the general

model can be obtained by comparing µψ (2.11b) at any arbitrary location, x, with

the value at the bulk phase location, b, as follows:

µψ,x = µψ,b

kBT ln

(︃
ψ

1− ψ

)︃
− Cψ − κint

2
λ1(dxϕ)

2+
A

4
λ2(1− ϕ2)2 +

W

2
ϕ2 = kBT ln

(︃
ψb

1− ψb

)︃
− Cψb +

A

4
λ2(1− ϕ2

b)
2 +

W

2
ϕ2
b (2.50)

After dividing Eq. (2.50) by kBT and then taking the exponential on both sides, the

equilibrium profile of ψ reads as follows:

ψ(x) =
ψb

ψb + (1− ψb)Ψc(x)
(2.51)

Where, Ψc(x) is given by:

Ψc(x) = exp

(︃
− 1

kBT

[︃
C(ψ − ψb)−

A

4
λ2[(1− ϕ2)2 − (1− ϕ2

b)
2] +

κint
2
λ1(dxϕ)

2 − W

2
(ϕ2 − ϕ2

b)

]︃)︃
(2.52)
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The surfactant concentration at the interface (i.e., x = 0) can be defined from Eq.

(2.51) as:

ψ0 = ψ(0) =
ψb

ψb + (1− ψb)Ψc(0)
(2.53)

Ψc(0) is the adsorption constant that depends on the model parameters. At the

interface x = 0, Ψc(0) is obtained by using the definition of ξ0 & Ex and Eq. (2.41)

giving ϕ(0) = 0 & (∂xϕ)x=0 =
ϕb
ξ
as follows:

Ψc(0) = exp

(︃
− 1

kBT

[︃
A

4
ϕ2
b

(︃
λ2[ϕ

2
b − 2]− ξ20

ξ2
λ1 −

1

Ex

)︃]︃)︃
exp

(︃
− 1

kBT
[C(ψ0 − ψb)]

)︃
= ψc(0) exp

(︃
− 1

kBT
[C(ψ0 − ψb)]

)︃
(2.54)

Here, ψc(0) is the adsorption constant for the Langmuir isotherm and Ψc(0) becomes

ψc(0) at C = 0.

The analytical solutions for ψ for different models differ in the Ψc(x) expression.

The equation of Ψc(x) is the same for the models proposed by van der Sman and van

der Graaf [65] and Shi et al. [66]. It is obtained by setting λ1 = 1 & λ2 = 0 in Eq.

(2.52). For the model proposed by Engblom et al. [81], the expression of Ψc(x) is

recovered by setting λ1 = 0 & λ2 = 1 in Eq. (2.52). For our model, the equation of

Ψc(x) is exactly the same as Eq. (2.52) because of the way we modified µϕ not µψ.

Note that the analytical equations for the pure system (i.e., no surfactant) can be

recovered from equations (2.41) and (2.51) by putting ψb = 0.

In addition, we define the limiting value of ψ0 from the condition of numerical

stability (2.49) as follows:

(ψ0)lim =
1

λ2
(2.55)

For a given λ2 and ψc(0), this relation is used to determine the limiting value of ψ0,

which is the value of ψ0 at which ϕb and ξ become indeterminate for the case of

constant thickness. From (ψ0)lim, (ψb)lim is calculated analytically for the Langmuir

isotherm (C = 0) or numerically for the Frumkin isotherm (C ̸= 0) using Eq. (2.53)
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to devise a range of ψb values until (ψb)lim (i.e., ψb < (ψb)lim). This range of ψb values

satisfies the stability condition, Eq. (2.49), and ensures the stability of numerical

simulations.

2.6 Surface tension

There are two approaches to account for the surface tension in the diffuse interface

models: geometric and thermodynamic. In the geometric approach, the surface ten-

sion force is based on the interface curvature and is represented as a sum of the

normal and tangential (i.e., Marangoni) components [88], where the EOS describing

the effect of surfactant on surface tension is explicitly present in the surface tension

force. This approach is used in refs. [88], [80], [21], and [60].

In the thermodynamic approach, the surface tension force is implemented as the

divergence of the thermodynamic pressure tensor, P th
αβ, using the Gibbs-Duhem rela-

tion, where the EOS is implicit and is derived from the Gibbs adsorption equation

that relates the surface tension to the surface excess quantity and chemical poten-

tial of ψ. Following the references [65], [42], and [66], we adopt the thermodynamic

approach to incorporate the surface tension force into the system, Eq. (2.1).

Using the Gibbs adsorption equation at constant temperature, the variation of

surface tension is expressed in terms of surface excess quantities [89] as follows:

dσ = −ψxsdµψ (2.56)

Here, ψxs is the excess surfactant concentration accounting for the local variation of

ψ in the interfacial region (i.e., diffuse interface) and the integration of ψ (i.e., Eq.

(2.51)) over the diffuse interface can not be analytically obtained. As suggested in

[65] and [42], we assume that the excess surfactant concentration ψxs is proportional

to ψ0 (i.e., ψxs = αψ0) with the proportionality coefficient α. Then, taking µψ = µψ0

(i.e., µψ at the interface obtained using equations (2.51) and (2.41)) at the equilibrium
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in Eq. (2.56) and integrating it with respect to ψ0 give the EOS as follows:

dσ = −ψxsdµψ

= −αψ0dµψ0∫︂
dσ = −α

∫︂
ψ0d

[︃
kBT ln

(︃
ψ0

1− ψ

)︃
− Cψ0 −

κint
2
λ1
ϕ2
b

ξ2
+
A

4
λ2

]︃
σ(ψ0)− σ0 = α

[︃
kBT ln(1− ψ0) +

C

2
ψ2
0

]︃
(2.57)

Where, σ0 = 4κintϕ
2
0/3ξ0 represents the surface tension of the pure system. After

specifying the thickness of the interface ξ, the fitting coefficient α depends on λ2 and

Ex. In addition, kBT increases with an increase in λ2 or a decrease in Ex, resulting

in a reduction in σ. The coefficient α is less than or greater than unity depending on

the combination of λ2 and Ex.

2.7 Free-energy lattice Boltzmann method

The set of governing equations (2.1) representing the binary fluid-surfactant system

is solved numerically using a free-energy LBM proposed by Swift et al. [61]. This

method is extended to accommodate the presence of surfactant following the work

of Theissen and Gompper [20] and Lamura et al. [90]. Three particle distribution

functions fq(xα, t), gq(xα, t), and hq(xα, t) are used to solve continuity, the Navier-

Stokes equations, and two Cahn-Hilliard equations for ϕ and ψ. The total number

of discrete velocity directions (i.e., Q) required to represent the continuous particle

velocity space depends on the consistent approximations of the governing equations

with minimum computational resources. In the present study, the D3Q19 velocity set

is selected for the three populations f , g, and h.

The lattice structure of the D3Q19 velocity set is represented in Figure 2.1. The

lattice velocity directions of the D3Q19 velocity set are split into two groups. The
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Figure 2.1: Lattice structure of the D3Q19 velocity set

directions c⃗1−6 point in the nearest neighbour directions:⎡⎢⎢⎢⎣
cx1−6

cy1−6

cz1−6

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

⎤⎥⎥⎥⎦ (2.58)

and c⃗7−18 point into 12 square diagonal directions⎡⎢⎢⎢⎣
cx7−18

cy7−18

cz7−18

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 −1 1 −1 0 0 0 0 1 −1 1 −1

1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1 1 1 −1 −1

⎤⎥⎥⎥⎦ (2.59)
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The weights suggested in [91] are considered for the D3Q19 velocity set:

w1−6 =
1

6
, w7−18 =

1

12
,

wxx1−2 = wyy3−4 = wzz5−6 =
5

12
, wxx3−6 = wyy1−2,5−6 = wzz1−4 = −1

3
,

wxx7−10 = wxx15−18 = wyy7−14 = wzz11−18 = − 1

24
,

wxx11−14 = wyy15−18 = wzz7−10 =
1

12
, (2.60a)

wxy1−6 = wyz1−6 = wzx1−6 = 0, wxy7,10 = wyz11,14 = wzx15,18 =
1

4
,

wxy8,9 = wyz12,13 = wzx16,17 = −1

4
, wxy11−18 = wyz7−10 = wzx7−14 = 0

The discretized Boltzmann equations describe the evolution of particle distribution

functions with respect to time, space, and velocity as follows:

fq(xα + cqα∆t, t+∆t) = fq(xα, t) + Ωf
q (xα, t) (2.61a)

gq(xα + cqα∆t, t+∆t) = gq(xα, t) + Ωf
q (xα, t) (2.61b)

hq(xα + cqα∆t, t+∆t) = hq(xα, t) + Ωf
q (xα, t) (2.61c)

Where xα and cqα represent the position and the discrete velocity vectors, respectively,

and q represents the discrete velocity number. These equations describe the discrete

particle populations travelling from the initial lattice position xα to the neighbouring

lattice position xα + cqα∆t with a velocity cqα = (cqx, cqy, cqz) during the time step

∆t. This leads to particle collision, which is incorporated by a collision operator Ωq,

i.e., the last term on the right side of the equations. The grid spacing ∆x and the

time step ∆t are scaled in lattice units so that ∆x = 1 and ∆t = 1. The conversion

from lattice units to SI base units is achieved by scaling the physical parameters,

analyzing relevant dimensionless numbers, and using the law of similarity (see [92]

for more details). The system of governing equations (2.1) can be obtained from the

set of equations (2.61) by the Chapman-Enskog expansion. The Chapman-Enskog

expansions of the lattice Boltzmann equations (LBE) for particle populations f , g,

and h are provided in Appendix A.
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The collision operator Ωq accounts for the relaxation of the particle populations

towards the equilibrium distributions after collisions between them. The selection of a

collision operator affects the stability and accuracy of numerical results. In the present

study, the Bhatnagar-Gross-Crook (BGK) collision operator (i.e. single-relaxation-

time (SRT) collision operator) [93] is considered for the particle populations g and h.

The collision operators Ωg
q and Ωh

q in eq. (2.61b) and eq. (2.61c) can be written as

follows:

Ωg
q = −

gq − geqq
τg

∆t (2.62a)

Ωh
q = −

hq − heqq
τh

∆t (2.62b)

where τg and τh are the relaxation times representing the time which the particle

populations g and h take to reach their equilibrium distributions geqq and heqq , respec-

tively.

For the particle population f , the multiple-relaxation-time (MRT) collision opera-

tor is used, improving the accuracy and stability of the solution of the Navier-Stokes

equations [94]. The MRT collision operator relaxes the collision of particles in the

moment space instead of the population space with individual collision rates for q =

0:18. The collision operator Ωf
q in eq. (2.61a) can be represented as follows:

Ωf
q = −M−1SM(fq − f eqq )∆t (2.63)

where f eqq represents the equilibrium distribution of particle population f . The trans-

formation from the population space to moment space and implementation of different

relaxation rates are performed by the transformation matrix M and relaxation ma-

trix S, respectively. Then, the multiplication by M−1 refers to the mapping from

moment to population space after relaxation. These matrices are constructed for the

D3Q19 velocity set from the guidelines suggested in ref. [94]. The MRT collision op-

erator is incorporated into the free-energy-based LB algorithm using Ref. [95]. The

matrix representation of the transformation and relaxation matrices are provided in
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Appendix B.

Local macroscopic variables such as density, momentum density, and order param-

eters at any lattice site are calculated by the moments of the particle distribution

functions. The moments are defined as the summation or weighted summation of

particle populations over the discretized velocity space:

∑︂
q

fq = ρ
∑︂
q

fqcqα = ρuα (2.64a)∑︂
q

gq = ϕ
∑︂
q

hq = ψ (2.64b)

The moments of the equilibrium distribution functions f eqq , geqq , and heqq represent

the set of equations which is the same as the set (2.64). In addition, the higher-

order moments of these functions are related to the thermodynamic pressure tensor,

the coefficient of mobilities, and the chemical potentials according to the free-energy

LBM schemes suggested in refs. [61], [90], and [20] as follows:

∑︂
q

f eqq cqαcqβ = P th
αβ + ρuαuβ (2.65a)∑︂

q

geqq cqαcqβ = Γϕµϕδαβ + ϕuαuβ (2.65b)∑︂
q

heqq cqαcqβ = Γψµψδαβ + ψuαuβ (2.65c)

The equilibrium distributions of particle populations f eqq , geqq , and heqq for directions

q = (1− 18) are calculated as follows [96]:

f eqq = wq

(︃
pb − κintϕ(∂

2
xxϕ+ ∂2yyϕ+ ∂2zzϕ) + cqαρuα +

3

2

[︃
cqαcqβ −

1

3
δαβ

]︃
ρuαuβ

)︃
+ (κint −Dλ1ψ)

(︃
wxxq ∂xϕ∂xϕ+ wyyq ∂yϕ∂yϕ+ wzzq ∂zϕ∂zϕ+ wxyq ∂xϕ∂yϕ

+ wxzq ∂xϕ∂zϕ+ wyzq ∂yϕ∂zϕ

)︃
(2.66)

geqq = wq

(︃
Γϕµϕ + cqαϕuα +

3

2

[︃
cqαcqβ −

1

3
δαβ

]︃
ϕuαuβ

)︃
(2.67)
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heqq = wq

(︃
Γψµψ + cqαψuα +

3

2

[︃
cqαcqβ −

1

3
δαβ

]︃
ψuαuβ

)︃
(2.68)

The populations for q = 0 are calculated as

f eq0 = ρ−
18∑︂
q=1

f eqq (2.69a)

geq0 = ϕ−
18∑︂
q=1

geqq (2.69b)

heq0 = ψ −
18∑︂
q=1

heqq (2.69c)

Note that the expressions of f eqq , geqq , and heqq for the free energy models discussed in

Section 2.4 differ from each other based on the selection of λ1 and λ2 values mentioned

in Section 2.4.

The stencils for the calculation of gradients and Laplacian in the pressure tensor

and chemical potential are given by Pooley and Furtado [91]

∂x =
1

12

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

0 0 0

−1 0 1

0 0 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
−1 0 1

−2 0 2

−1 0 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 0 0

−1 0 1

0 0 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (2.70)

∇2 =
1

6

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

0 1 0

1 2 1

0 1 0

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
1 2 1

2 −24 2

1 2 1

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0 1 0

1 2 1

0 1 0

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (2.71)

where left, middle, and right matrices show slices of the stencil when czq = 1, 0, and

−1, respectively.

Macroscopic properties, such as the kinematic viscosity and mobility, are described

in terms of the speed of sound and the relaxation time via the Chapman-Enskog

expansion. The kinematic viscosity ν of the system is defined as:

ν = c2s

(︃
τf −

1

2

)︃
∆t (2.72)
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where τf is the relaxation time of particle population f . The mobilities Mϕ and Mψ

are calculated as follows:

Mϕ = Γϕ

(︃
τg −

1

2

)︃
∆t (2.73a)

Mψ = Γψ

(︃
τh −

1

2

)︃
∆t (2.73b)

Here, Γϕ and Γψ represent the mobility coefficients of ϕ and ψ, respectively.

For all the simulations conducted in the present study, the periodic boundary con-

dition (BC) is implemented. In the periodic BC, the unknown incoming populations

entering the domain on the one side are given by those leaving the domain on the

opposite side. We consider the opposing periodic edges of the flow domain as if they

were attached together. The periodic BCs are implemented during the streaming

process, where post-streaming populations that enter the domain on one side are re-

placed by post-collision populations that leave the domain on the opposite side. The

detailed procedure of the periodic BC implementation is provided in Ref. [51].

In the present study, a computer code is developed using Fortran 90 to implement

the free-energy-based LB algorithm. We have developed serial and parallel versions

of the code. Parallelization of the code is important to save simulation time and allow

us to study larger simulation domains. The message-passing interface (MPI) is used

for parallelization. In the parallel version of the code, we decompose the simulation

domain into equal-sized sub-domains in three directions x, y, and z. Each CPU is

assigned one sub-domain. The communication between the sub-domains is based on

a receive-sent scheme, and it is established using a command MPI SENDRECV.

The steps of the free-energy-based LB algorithm are described as follows:

1. We assign the values of model parameters such as κint and Ex and then the

fields of macroscopic quantities, for example, ρ, ϕ, ψ, and uα are initialized for

a validation case at each lattice site. Note that ρ = 1 and uα = {ux, uy, uz} =

{0, 0, 0} are considered for all simulations.
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2. The equilibrium distribution functions f eqq , geqq , and heqq at each lattice site are

calculated using the following equations from the initialized values of macro-

scopic quantities as follows:

f eqq = ρwq

(︃
c2s + cqαuα +

3

2

[︃
cqαcqβ −

1

3
δαβ

]︃
uαuβ

)︃
(2.74a)

geqq = ϕwq

(︃
cqαuα +

3

2

[︃
cqαcqβ −

1

3
δαβ

]︃
uαuβ

)︃
(2.74b)

heqq = ψwq

(︃
cqαuα +

3

2

[︃
cqαcqβ −

1

3
δαβ

]︃
uαuβ

)︃
(2.74c)

After that, the particle populations f , g, and h are initialized as their respective

equilibrium distribution functions.

3. Using the moments (2.64), ρ, ϕ, ψ, and uα are calculated at each lattice site.

4. The gradient and Laplace operators are calculated using Eqs. (2.70) and (2.71)

to determine the bulk pressure pb and chemical potentials µϕ & µψ. Then, we

calculate the equilibrium distributions f eqq , geqq , and heqq by using Eqs. (2.66),

(2.67), (2.68) for directions q = (1 − 18) and the set of equations (2.69) for

q = 0.

5. The collision operators for f , g, and h are calculated using Eqs. (2.63), (2.62a),

and (2.62a), respectively. For example, the discretized Boltzmann equation for

the particle population g is represented as:

g∗q (xα, t) = gq(xα, t)−
gq(xα, t)− geqq (xα, t)

τg
∆t (2.75)

Here, g∗q (xα, t) is the state of the particle distribution function after the collision

process.

6. The post-collision distribution functions are then propagated to neighbouring

lattice sites. For example, the streaming process for the particle population

g from the initial position of xα to the neighbouring position xα + cqα∆t is
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represented as:

gq(xα + cqα∆t, t+∆t) = g∗q (xα, t) (2.76)

During one time step, both collision and streaming processes are completed.

7. Based on the particle populations obtained after the streaming process, ρ, ϕ,

ψ, and uα are updated using the moments (2.64).

8. The cycle from step 4 to step 7 resumes for the next time step, and it continues

untill the last time step or the system reaches equilibrium.
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Chapter 3

Results and discussion

To demonstrate the capability of the proposed model and compare its performance

with the models of van der Sman and van der Graaf [65], Engblom et al. [81], Shi et

al. [66], and the general model, we apply these models to simulate two benchmark

problems: a surfactant-laden planar interface between two immiscible liquids and

the equilibration of a spherical drop in a quiescent medium. First, we show our

model performance at low and high surfactant concentrations for a planar interface

for Langmuir and Frumkin isotherms. We compare the numerical profiles of the order

parameters obtained with different models, confirming the enhanced capability of the

proposed model to accurately capture the stable profiles of the order parameters for

high surfactant concentrations.

Then, we apply the proposed model to study the equilibration of a spherical drop.

We discuss the equilibrium fields and profiles of ϕ & ψ, the effect of the surfactant

mobility Mψ on the stability of numerical results, the reduction of surface tension,

and the spurious velocity for different λ2 values.

For all simulations, several numerical parameters were fixed. The relaxation times

of the particle populations g and h are set τg = τh = 1/(3−
√
3) following the sugges-

tion in Ref. [97] to obtain accurate and stable numerical results for the convection-

diffusion type equations of ϕ and ψ. The constant mobilities Mϕ & Mψ and the

coefficient D = κint are assumed for convenience. Note that all the quantities defined
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for the simulations are in lattice units [lu].

When selecting numerical parameters and physical quantities, it is necessary to

satisfy the condition of numerical stability, Eq. (2.49). We use the following procedure

to set the simulations. First, the value of ψc(0) is selected from the typical range

ψc(0) = [0.002 − 0.2]. Subsequently, we fix λ2 from the range [0.5 − 10] to calculate

(ψ0)lim using Eq. (2.55). Then, using Eq. (2.53), we calculate (ψb)lim analytically for

the Langmuir isotherm (C = 0) or numerically for the Frumkin isotherm (C ̸= 0) to

construct a range of ψb values until (ψb)lim that lead to stable numerical simulations.

Finally, we select a single value of ψb representing a low or high bulk surfactant

concentration to run the desired simulation.

3.1 Planar interface

We begin by presenting the results of the planar interface obtained with the proposed

numerical model governed by a set of equations (2.25) where C = 0 is set for the

Langmuir and C = 2kBT for the Frumkin isotherms, respectively. Simulations are

carried out in the fully periodic domain of size 130×130×130 [lu], where the dispersed

phase is initially positioned at 34 ≤ x ≤ 97 [lu], and the interface locations are

fixed at x01 = 33 [lu] and x02 = 98 [lu]. The simulation parameters were selected

as follows: interfacial tension σ0 = 0.02 [lu], dimensionless initial thickness of the

interface ξ0/∆x = 2 [lu], mobility for ϕ parameterMϕ = 0.2, mobility for ψ parameter

Mψ = 0.02, bulk surfactant concentration ψb = {0.005, 0.01}, Langmuir adsorption

constant ψc(0) = 0.02, Ex = 0.17, λ2 = 1, and λ1 = λ2. Note that the profiles of ϕ

and ψ in all planar interface simulations were initialized using the analytical solutions

presented in Section (2.5).

The equilibrium profiles of ϕ and ψ at low surfactant concentrations ψb = {0.005, 0.01}

for Langmuir and Frumkin isotherms are shown in Figure 3.1. The numerical profiles

of ϕ and ψ accurately follow the analytical solutions (2.41) and (2.51). In addition,

the comparison of ψ-profiles (Figure 3.1(b) and (d)) between Langmuir and Frumkin

49



-4 -3 -2 -1 0 1 2 3 4
Normalized distance from the interface

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

?

Ab = 0:005
Ab = 0:01

-4 -3 -2 -1 0 1 2 3 4
Normalized distance from the interface

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A

A
b
=0.005

A
b
=0.01

(a) ϕ-profile for Langmuir isotherm (b) ψ-profile for Langmuir isotherm

-4 -3 -2 -1 0 1 2 3 4
Normalized distance from the interface

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

?

Ab = 0:005
Ab = 0:01

-4 -3 -2 -1 0 1 2 3 4
Normalized distance from the interface

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A

A
b
=0.005

A
b
=0.01

(c) ϕ-profile for Frumkin isotherm (d) ψ-profile for Frumkin isotherm

Figure 3.1: Planar interface results of the different isotherms for low surfactant con-
centrations, ψb = {0.005, 0.01}, Ex = 0.17, λ1 = λ2 = 1. The solid lines and markers
represent the analytical and numerical solutions, respectively.

isotherms shows the significant difference in the value of surfactant concentration at

the interface for a given bulk surfactant concentration.

Next, we show the results of the proposed model when applied to high concentra-

tions of surfactants. Bulk surfactant concentrations were set as ψb = 0.5 and ψb = 0.2

for the Langmuir (C = 0) and Frumkin (C = 2kBT ) isotherms, respectively. The

rest of the settings are the same as for the case of low surfactant concentration. The
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profiles of ϕ and ψ are given in Figures 3.2(a) and (b), respectively. Our results show

that following proper selection of λ2 from the stability condition (2.49), the proposed

model gives physical results for high values of ψb. The key outcome here is that the

ϕ profile is not affected by the high surfactant load at the interface and follows the

analytical prediction for both isotherms.
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Figure 3.2: Planar interface results for high surfactant concentrations: Langmuir
isotherm (C = 0) & ψb = 0.5 and Frumkin isotherm (C = 2kBT ) & ψb = 0.2,
Ex = 0.17, λ1 = λ2 = 1. The solid curves and markers represent the analytical and
numerical solutions, respectively.

To compare the performance of our model with the performance of the models

proposed in Refs. [65], [81] & [66], we set λ2 = 0.5 in our model. This case makes the

comparison of the surfactant profile consistent by ensuring the same mathematical

expression of Ψc(x) for all models. Following Eq. (2.55), λ2 = 0.5 gives (ψ0)lim = 2

(i.e., (ψ0)lim > 1), indicating that this choice of λ2 does not affect the stability of

simulations for high concentrations of surfactants.

We consider the Langmuir isotherm with the bulk surfactant concentration ψb =

0.03. The rest of the settings are selected as follows: σ0 = 0.02 [lu], ξ0/∆x = 2 [lu],

Mϕ = 0.2,Mψ = 0.03, ψc(0) = 0.02, and Ex = 1. The ϕ and ψ profiles obtained using

different models are represented in Figures 3.3(a) and (b), respectively. From Figure
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3.3(a), we see that the interface thickness decreases and increases with increasing

surfactant concentration for the models proposed by van der Sman and van der Graaf

[65] and Engblom et al. [81], respectively. The interface thickness behaves as expected

from the definition of ξ for these models after ensuring ϕ2
b ≈ 1. Change in ξ due

to surfactant concentration is considered a numerical artifact because the chemical

structure or orientation of the surfactant is not considered in diffuse interface models.

As a result, most research groups have removed the presence of ψ-terms from µϕ to

keep ξ constant. This is the case for the model proposed by Shi et al. [66], which

demonstrates no change in ξ at high surfactant loads. In Figure 3.3(b), the significant

difference in the prediction of the surfactant concentration at the interface between

the model of van der Sman and van der Graaf [65] and other models is mainly due to

the discretization error in the calculation of (∂βψ). Removal of the term D(∂βϕ)(∂βψ)

from µϕ, Eq. (2.22a), resolves the issue of overpredicting ψ0 but the remaining term

Dψ∂2ββϕ still leads to the interface sharpening phenomenon as shown in Ref. [83].

It is also necessary to discuss the numerical stability of different models. Models

based on squared-gradients, including the models of van der Sman and van der Graaf

[65] and Liu and Zhang [42], are susceptible to instability at high concentrations

of surfactant and restrict the choice of simulation parameters [81]. The model of

Engblom et al. [81] is more stable than the models of van der Sman and van der

Graaf [65] and Shi et al. [66] for a wide range of simulation parameters due to the use

of the gradient-free nascent delta function. Considering the same set of parameters

as above, we confirmed that the results of the van der Sman and van der Graaf [65]

and Shi et al. [66] become unstable for Ex = 1 and high ψb values. The model of

Shi et al. [66] gives accurate and physical results for high values of ψb (ψb = 0.3) and

low values of Ex (Ex = 0.17). The advantage of our model is that it retains the ψ

terms in µϕ as opposed to the suggestion of Yun et al. [80] to neglect these terms,

and it gives a stable interfacial profile without exhibiting the interface sharpening

phenomenon as observed in the model of van der Sman and van der Graaf [65] and
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the interface broadening phenomenon as observed in the model of Engblom et al. [81]

for high surfactant concentrations.
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Figure 3.3: Planar interface results of the different models discussed in Section 2.4
considering the Langmuir isotherm for ψb = 0.03 with the common parameter set:
σ0 = 0.02 [lu], ξ0/∆x = 2 [lu], Mϕ = 0.2, Mψ = 0.03, ψc(0) = 0.02 & Ex = 1.

Finally, we discuss the performance of the general model for high concentrations

of surfactants with λ2 = {1, 5}, Ex = 0.17, and the remaining set of parameters

as the same as for the previous case. The necessary conditions proposed by Toth

and Kvamme [82] to keep ϕ2
b ≈ 1 and ξ constant as mentioned in Section 2.5 are

also satisfied. The presence of the term Dλ1(∂βϕ)(∂βψ) in µϕ, Eq. (2.11a), causes

instability or unphysical results due to discretization errors in the gradient calculations

for high ψb values. Simulations of low surfactant concentrations are also carried out

for λ2 = 0.5 and Ex = 1, which means that the presence of ψ terms should not affect

µϕ. However, we obtained inaccurate results and noticed the interface-sharpening

phenomenon. For more accurate results, we recommend improving the finite difference

stencils used for the Laplacian and gradient calculations and/or increasing the initial

interface thickness (ξ0/∆x).

Overall, the removal of the ψ-terms from µϕ suggested by Yun et al. [80], the

conditions of Toth and Kvamme [82] for a general model, and the case of constant
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thickness of our model, all lead to constant thickness of the interface for high values

of ψb. The advantage of our model is that it inherits a physically consistent definition

of ξ as a function of the surfactant concentration. In addition, the conditions of our

model to keep ξ constant and ϕ2
b = 1 are not as stringent as the conditions suggested

by Toth and Kvamme [82] for the general model. Furthermore, our model produces

stable and accurate results for high concentrations of surfactants at the interface (that

is, ψ0 ≈ 1).

3.2 Drop in equilibrium

We proceed with the results of a single spherical drop equilibration in a quiescent

immiscible liquid obtained with the proposed model. The drop of radius R = 32 [lu]

is placed in the centre of a fully periodic domain of 128× 128× 128 [lu]. Similar to a

planar interface initialization, we use analytical solutions to initialize the profiles of ϕ

and ψ for drop simulations. We consider the following set of simulation parameters:

σ0 = 0.02 [lu], ξ0/∆x = 2 [lu], Mϕ = 0.2, Mψ = 0.03, ψc(0) = 0.02, Ex = 0.17, C = 0

(that is, Langmuir isotherm), λ2 = 1 and λ1 = λ2.

The equilibrium fields of ϕ and ψ for ψb = {0.005, 0.5} on a two-dimensional cross-

section xy plane at z = 64 [lu] are presented in Figure 3.4. The ϕ-fields, as shown

in Figure 3.4(a) and (c) are stable and do not exhibit any interface-related problems

for both low and high surfactant concentrations. The surfactant distribution over the

interface is more uniform for higher bulk surfactant concentration ψb = 0.5 (Figure

3.4(d)) vs Figure 3.4(b)).

To quantify the accuracy of the results, we plot the order parameter profiles for the

Langmuir isotherm with ψb = {0.005, 0.5} and for the Frumkin isotherm (C = 2kBT )

with ψb = {0.005, 0.2} along a line segment starting from x = 24 [lu] to x = 40 [lu]

for the fixed planes y = 64 & z = 64 [lu]. Profiles of ϕ and ψ for the Langmuir and

Frumkin isotherms are shown in Figure 3.5.

As seen in Figures 3.5(a) and (c), the profiles of ϕ at ψb = 0.005 are shifted
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(a) ϕ-field for ψb = 0.005 (b) ψ-field for ψb = 0.005

(c) ϕ-field for ψb = 0.5 (d) ψ-field for ψb = 0.5

Figure 3.4: Fields of the solvent composition and surfactant concentration considering
the Langmuir isotherm on the xy-plane for ψb = {0.005, 0.5}.

from the expected location of x = 32 [lu] due to the shrinkage of the drop volume

caused by the use of the double well potential [98]. The presence of surfactant at

low concentrations does not inhibit this phenomenon. However, at high surfactant

concentrations, ϕ profiles are not significantly affected by the shrinkage effect and the

location of the interface is close to x = 32 [lu]. In addition, the numerically predicted

profiles of ϕ for high surfactant concentrations agree well with analytical solutions

compared. To mitigate the drop dissolution effect, we recommend incorporating the

penalty flux in the Cahn-Hilliard equation for ϕ, as suggested by Li et al. [99].
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Figure 3.5: Profiles of the solvent composition and surfactant concentration on the
line segment considering Langmuir and Frumkin isotherms for ψb = {0.005, 0.5}.
The black solid lines and markers represent the analytical and numerical solutions,
respectively.

In addition, the discretization errors in the ψ profiles for ψb = 0.005 as shown

in Figures 3.5 (b) and (d) are more apparent due to ψb ≪ ψc(0), which makes the

approximation of ψ values in the interfacial region for low surfactant concentrations

less accurate with ξ0/∆x = 2 [lu]. Consequently, the surfactant value at the interface

and ψ profile over different line segments for the low surfactant concentrations vary
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more than the high surfactant concentrations.

To explore the equilibrium drop shape and uniformity of the drop coverage by

surfactant, we calculated the mean and standard deviation of the order parameters

and their gradients for the Langmuir isotherm at the different radii values starting

from the droplet centre in the same way as suggested by Kendon et al. [85]. The

mean and standard deviation of ϕ & ∇ϕ and ψ & ∇ψ at different radii values are

represented in Figure 3.6.

The gap between the profiles of ϕ and ∇ϕ for ψb = {0.005, 0.5} (Figure 3.6(a)

and (b)) indicates the apparent decrease in drop volume for ψb = 0.005 compared

to ψb = 0.5. Furthermore, the error bars, that is, standard deviations, are higher

for ψb = 0.005 in the profiles of ψ and ∇ψ that denote the high discretization errors

in the interfacial region for low surfactant concentrations (Figure 3.6 (b) and (d)).

The discretization errors in the profile of ψ for low surfactant concentrations can be

decreased by taking the large values of ξ0/∆x.

Understanding the effect of λ2 on the surfactant concentration profile is important

and discussed here. Simulations are performed for λ2 = {1, 2, 5} and ψb = 0.003 with

the remaining parameters the same as above for the Langmuir isotherm. Note that

ψb = 0.003 is taken for λ2 = {1, 2, 5} using the stability criterion (2.49). The profiles

of ϕ and ψ along the line segment starting from x = 24 [lu] to x = 40 [lu] for fixed

planes y = 64 & z = 64 are shown in Figure 3.7(a) and Figure 3.7(b), respectively.

Here, the analytical solutions of ϕ and ψ are not shown in the comparison, as the

purpose of this discussion is to demonstrate the significance of λ2 on the results. Due

to the shrinkage effect, the shift in ϕ profiles for λ2 = {1, 2, 5} occurs as seen in

Figure 3.7(a); otherwise, the profile of ϕ is not affected by the presence of λ2 because

of the condition λ1 = λ2. In Figure 3.7(b), the visible difference in the profile of

surfactant for different λ2 values can be correlated with the packing of surfactant

molecules along the interfacial region, and the packing or arrangement of surfactant

molecules varies based on the chemical structure of the surfactant. The large value of
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Figure 3.6: Mean and standard deviation of order parameters and their gradients at
different radii values considering Langmuir isotherm for ψb = {0.005, 0.5}. Mean and
standard deviation values are depicted as markers and error bars, respectively.

λ2 can be considered to mimic the type of surfactant with dense packing of surfactant

molecules compared to the small value of λ2 exhibiting the loosely packed arrangement

of surfactant molecules. It is demonstrated in Figure 3.7(b) describing the narrow

thickness, which means the compact packing for λ2 = 5 compared to the same for

λ2 = {1, 2}. Note that the difference in the ψ profile for different λ2 values is not due

to numerical errors. The interpretation of λ2 is different from Ex, i.e., W , because
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Figure 3.7: Profiles of the solvent composition and surfactant concentration on the
line segment considering the Langmuir isotherm for λ2 = {1, 2, 5} & ψb = 0.003.

Ex is introduced in the free energy functional to numerically stabilize the diffuse-

interface models [20]; whereas λ2 has the potential to represent the nature of different

surfactants and their effects on the surface tension reduction for the case of constant

thickness.

3.3 Surface tension

In this section, we assess the proposed model’s capability to capture a surface tension

reduction. We compare the numerical predictions of the surface tension reduction to

the analytical solution derived based on the thermodynamic approach as mentioned

in Section 2.6. The numerical results of the surface tension are calculated using the

Laplace pressure:

∆pb =
2σ

R
(3.1)

Here, pb is the bulk pressure defined by Eq. (2.25e), and σ is the surface tension. The

numerical results of the surface tension obtained from Eq. (3.1) are compared to the

results of the analytical equation (2.57) by fitting the value of the parameter α.
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We set ψc(0) = 0.02 for the Langmuir (C = 0) and Frumkin (C = 2kBT ) isotherms.

The values of λ2 for the Langmuir and Frumkin isotherms are λ2 = {1, 2, 5, 10}

and λ2 = {1, 2, 5}, respectively. From Eq. (2.55), the limiting values of ψ0 for

λ2 = {1, 2, 5, 10} are (ψ0)lim = {1, 0.5, 0.2, 0.1}. For both isotherms, the ranges of ψb

values are determined based on their corresponding (ψb)lim values obtained using Eq.

(2.53).

The next step is to specify the values of the surfactant mobility Mψ and the sur-

factant solubility Ex that give stable simulations and accurate results for selected λ2

values. We deem simulations accurate when the relative error in the numerical predic-

tion of ψ0 compared to the analytical estimate, (ψ0)RE = |((ψ0)a−(ψ0)n)/(ψ0)a|·100%,

is less than 5%, and the maximum magnitude of spurious velocity, umax, is at the order

of or less than 10−4.

To identify the appropriate values ofMψ and Ex, we performed the sensitivity anal-

ysis of drop equilibration with respect toMψ = {0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1}

and Ex = {0.05, 0.1, 0.17, 0.25}. We simulated a drop of radius R = 32 [lu] with

σ0 = 0.02 [lu], ξ0/∆x = 2 [lu], Mϕ = 0.2, and ψc(0) = 0.02 in the domain size of

128 × 128 × 128 [lu]. We found that low Mψ values (Mψ < 0.01) give stable results

for low surfactant concentrations (ψb < 0.002) for a given combination of λ2 and

Ex ≥ 0.1 but our criterion of accuracy is not satisfied. The relative error, (ψ0)RE,

exceeds 5% because ψb ≪ ψc(0) leads to high discretization errors in gradient calcula-

tion that are amplified even more with increasing λ2. At the same time, the decrease

in Ex promotes the diffusion of surfactants that smooths the gradients of surfactant

concentration and, as a result, improves the accuracy of numerical results for high λ2

values. Furthermore, the simulations become unstable for high surfactant concentra-

tions (ψb > 0.3) with low Mψ values. Based on this analysis, we selected Mψ = 0.005

for λ2 = {1, 2, 5} and Mψ = 0.001 for λ2 = 10 with a fixed value of Ex = 0.05 for

considered λ2 values.

With the selected surfactant mobility and solubility values, we estimate the reduc-
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tion of surface tension as the surfactant accumulates at the interface of the equili-

brating drop. The relation between the reduction of the surface tension compared to

the surface tension of the pure system, σ0,

(︃
i.e.

∆σ

σ0
=
σ(ψ0)− σ0

σ0

)︃
and ψ0 for the

Langmuir and Frumkin isotherms are represented in Figure 3.8.
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Figure 3.8: The reduction of surface tension as a function of ψ0 for different values
of λ2 for the Langmuir (a) and Frumkin (b) isotherms. The solid curves and markers
represent the analytical and numerical solutions, respectively.

The numerical results are compared to the analytical solutions until (ψ0)lim-values

because exceeding (ψ0)lim for a given λ2 results in the unstable simulations according

to Eq. (2.49). The quantitative comparison is achieved by calculating the relative

deviation between the numerically predicted value of the surface tension reduction and

the corresponding value calculated using the equation of state Eq. (2.57): (σ)RE =⃓⃓⃓⃓
∆σ − (∆σ)EOS

(∆σ)EOS

⃓⃓⃓⃓
· 100%.

As shown in Figure 3.8(a) for the Langmuir isotherm, the numerical results for

λ2 = {1, 2, 5, 10} agree with their analytical solutions with (σ)RE < 10% up to ψ0 =

{0.5, 0.49, 0.19, 0.09}, respectively. As expected, the numerical results at λ2 = 1 do

not follow the analytical solutions for high surfactant concentrations (i.e., ψ0 > 0.5).

This confirms that this isotherm should not be used for high surfactant concentrations.
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Compared to most existing free energy models, our model demonstrates a higher

surface tension reduction at lower surfactant concentrations, which is highly desirable

for comparing the surface tension results with the experimental findings. The surface

tension reduction for the Langmuir isotherm follows the experimental results observed

in Refs. [100] and [101], where the range of surface tension reduction for the liquid-

liquid system is between 30 − 60% of σ0. Furthermore, by varying λ2, our model

replicates the effect of different surfactants on the reduction of surface tension without

accounting for their chemical structures.

For the Frumkin isotherm, the numerical results for λ2 = 1 follow the analytical

solutions for the high concentrations of surfactants, and it is consistent up to ψ0 ≤ 0.8

as shown in Figure 3.8(b). For low surfactant concentrations, the Frumkin isotherm

reduces to the Langmuir isotherm, as the numerical results of both isotherms at low

surfactant concentrations (i.e. ψ0 ≤ 0.15) become similar.

The proposed model decreases surface tension by increasing the strength of non-

linear surfactant couplings, i.e., λ2 & λ1, and enhancing the diffusion of surfactant,

i.e., increasing W or decreasing Ex. In most existing models, decreasing Ex is the

only way to reduce surface tension, which may be the reason behind the inability of

these models to obtain a significant reduction in σ at low surfactant concentrations.

In the free energy models discussed in this study, the relation between Ex and the

change in α is investigated for several cases and it can be concluded that the surface

tension reduction increases with the decrease in Ex but these models do not have λ1

and λ2 terms. So, it is important to explain the change in α due to λ2 for a given

value of Ex. α varies depending on the increase in kBT caused by the combination Ex

and λ2. The analytical prediction of surface tension reduction is significant compared

to the numerical reduction for low Ex values (i.e., Ex = 0.05) that makes α < 1

for small values of λ2. However, this disparity between the analytical and numerical

results can be compensated by increasing the value of λ2 for a given Ex. For this

case, the analytical as well as numerical results of surface tension are substantial at
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low surfactant concentrations making α > 1 for large values of λ2.

Overall, the increase in λ2 decreases the surface tension more significantly than

the reduction of the same due to the decrease in Ex. Moreover, the increase in the

value of α due to the increase in Ex is higher for large values of λ2 compared to small

values of λ2.

Taking into account the simulation results of the Langmuir isotherm shown in

Figure 3.8(a), the comparison of analytical & numerical values of ψ0 and the variation

in the maximum magnitude of the spurious velocity umax over a range of ψ0 for

λ2 = {1, 2, 5, 10} are represented in Figure 3.9(a) and (b), respectively. Similar to
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Figure 3.9: (a) Analytical & numerical results of ψ0 as a function of ψb and (b) the
magnitude of maximum spurious velocity as a function ψ0 for the Langmuir isotherm,
λ2 = {1, 2, 5, 10}, and Ex = 0.05. The solid curves and markers correspond to the
analytical and numerical solutions, respectively.

Ex, λ2 does not affect the surfactant concentration at the interface. The numerical

results of ψ0 accurately follow the analytical solutions for low and high surfactant

concentrations as shown in Figure 3.9(a), despite the considerable discretization error

in the results of low surfactant concentrations due to ψb ≪ ψc(0) that magnifies the

value of umax as shown in Figure 3.9(b).
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As ψ0 ≥ (ψ0)lim, the simulation becomes unstable due to the stability criterion

(2.49) that triggers the sudden increase in umax for λ2 = {2, 5, 10}. The increase

in umax for high values of λ2 is due to ψ0 ≈ (ψ0)lim and the discretization errors

caused by low ψb values. For these extreme cases, the numerical results of the order

parameters are stable and physical. Increasing the thickness of the clear interface

thickness (ξ0/∆x) or improving the finite difference stencils for gradient calculations

can decrease the magnitude of spurious velocities.
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Chapter 4

Conclusions and future work

4.1 Conclusions

We proposed a diffuse interface free energy model based on a modification of the

Ginzburg-Landau free energy functional to simulate the system of immiscible liquids

with non-ionic soluble surfactants. We made the free energy density contribution

due to the adsorption of the surfactant at the interface to be a combination of the

nonlocal squared-gradient and gradient-free surfactant couplings controlled by two

coefficients, λ1 and λ2, respectively.

In the present study, we set λ1 = λ2 which means that the thickness of the inter-

face, while being a function of the surfactant concentration, remains constant as the

surfactant load increases: no interface-sharpening or interface-broadening is observed.

We also neglected two terms in the expression of the chemical potential of the phase

field order parameter to improve numerical stability at high surfactant concentrations

and avoid perfect miscibility.

We implemented the proposed model in the free-energy-based lattice Boltzmann

framework where the Navier-Stokes equations were coupled with the solution of two

Cahn-Hilliard transport equations to capture the behaviour of two order parameters

representing the immiscible liquids and surfactant concentration. We also derived the

conditions to ensure the numerical stability of the model at high surfactant loads and

outlined the procedure for selecting numerical parameters and physical quantities.
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The free-energy-based LB algorithm developed in Fortran 90 was used to verify

and validate the proposed model for the Langmuir and Frumkin isotherms. Two

benchmark problems were simulated at low and high surfactant concentrations: a

planar interface and the equilibration of a spherical drop in a quiescent medium.

The proposed model accurately predicts the order parameter profiles at high sur-

factant concentrations (i.e., ψ0 > 0.5) with the relative deviation in capturing the

maximum surfactant concentration at the interface less than 1.1%. The maximum

magnitude of spurious velocity is at the order of 10−4 in the case of the spherical drop

in equilibrium.

The typical way to promote the reduction of surface tension as the surfactant accu-

mulates at the interface is by decreasing the surfactant solubility Ex. In our model,

the increase of λ2 & λ1 introduces an alternative robust way to reduce the surface

tension. Consequently, the reduction of surface tension based on the simultaneous

decrease of Ex and increase of λ2 enables the proposed model to achieve a signif-

icant reduction of surface tension (i.e., 45 − 50%) at low surfactant concentrations

(0.085 < ψ0 < 0.2). Furthermore, varying the parameter λ2 paves the way to mimic

the effect of different types of surfactant molecules on the reduction of surface tension.

The surfactant solubility Ex plays a pivotal role in establishing the numerical

accuracy. We recommend selecting Ex within the range of 0.05 ≤ Ex ≤ 0.25 for

λ2 = {0.5, 1, 2}. For high λ2 values such as λ2 = {5, 10}, it is recommended to set

low Ex values (i.e., Ex = 0.05) to enhance accuracy. In addition, it is necessary

to carefully select the value of the surfactant mobility Mψ. We recommend 0.001 ≤

Mψ ≤ 0.005 for λ2 = {5, 10} and 0.001 ≤Mψ ≤ 0.03 for λ2 = {0.5, 1, 2}.

4.2 Future work

Taking into account the advantages mentioned above and the availability of the pro-

posed model, the following studies can be conducted to extend the usability and

potential of the proposed model:
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• The assumption of a constant Mψ does not always provide a regular diffusional

equation for ψ in the bulk phase [82] that sometimes leads to unrealistic results

of the surfactant profile. The implementation of variable surfactant mobility

Mψ = ψ(1 − ψ) as a function ψ ensures rigorous solutions of ψ between 0 and

1 [81]. The procedure to incorporate the variable surfactant mobility into the

free-energy LBM is needed to recover the Cahn-Hilliard equation for ψ with the

variable Mψ.

• The penalty flux term needs to be included in the Cahn-Hilliard equation for

ϕ to conserve the interfacial profile and to overcome the drop dissolution effect

leading to the shift of the equilibrium profile of ϕ from its expected location as

shown in Figures 3.5(a) and 3.5(b).

• Only the case of constant interface thickness is analyzed, but the phenomenon

of interface-broadening based on the chemical structure of the surfactant as

observed in MD [86] and DPD [87] simulations is not explored in the present

study. It is crucial to first address the question regarding the physical relevance

of showing this behaviour from a macroscopic point of view. Second, a method-

ology needs to be constructed to correlate the parameters λ1 and λ2 regulating

the behaviour of the interface thickness with the chemical structure of differ-

ent surfactant molecules in the free-energy lattice Boltzmann framework for the

comparison with the results of MD [86] and DPD [87] simulations. The sug-

gested modification could help to demonstrate the constant behaviour of surface

tension after the formation of micelles by correlating (ψ0)lim with CMC.

• The study of the surfactant-laden drop in shear flows is needed to further vali-

date the usability of the proposed model and to analyze the effect of viscosity

and surfactant concentration on topological changes such as drop deformation

and drop breakage.

67



Bibliography

[1] J. L. Burguera and M. Burguera, “Analytical applications of emulsions and
microemulsions,” Talanta, vol. 96, pp. 11–20, 2012.

[2] D. J. McClements, “Nanoemulsions versus microemulsions: Terminology, dif-
ferences, and similarities,” Soft Matter, vol. 8, pp. 1719–1729, 2012.

[3] I. Capek, “Degradation of kinetically-stable o/w emulsions,” Advances in Col-
loid and Interface Science, vol. 107, pp. 125–155, 2004.

[4] H. Manikantan and T. M. Squires, “Surfactant dynamics: hidden variables
controlling fluid flows,” Journal of Fluid Mechanics, vol. 892, P1, 2020.

[5] B. Babajanzadeh, S. Sherizadeh, and H. Ranji, “Detergents and surfactants:
a brief review,” Open Access Journal of Science, vol. 3, pp. 94–99, 2019.

[6] J. C. Baret, “Surfactants in droplet-based microfluidics,” Lab on a Chip,
vol. 12, pp. 422–433, 2012.

[7] D. Myers, “An Overview of Surfactant Science and Technology,” in Surfactant
Science and Technology. John Wiley & Sons, Ltd, 2005, ch. 1, pp. 1–28.

[8] A. Pattanaik and R. Venugopal, “Role of Surfactants in Mineral Processing:
An Overview,” in Surfactants and Detergents, A. K. Dutta, Ed., IntechOpen,
2019, ch. 2, pp. 1–17.

[9] O. Massarweh and A. S. Abushaikha, “The use of surfactants in enhanced oil
recovery: A review of recent advances,” Energy Reports, vol. 6, pp. 3150–3178,
2020.

[10] A. Rashidi-Khaniabadi, E. Rashidi-Khaniabadi, B. Amiri-Ramsheh, M. R.
Mohammadi, and A. Hemmati-Sarapardeh, “Modeling interfacial tension of
surfactant–hydrocarbon systems using robust tree-based machine learning al-
gorithms,” Scientific Reports, vol. 13, no. 026705, pp. 1–19, 2023.

[11] B.-B. Lee, P. Ravindra, and E.-S. Chan, “A critical review: Surface and d
interfacial tension measurement by the drop weight method,” Chemical Engi-
neering Communications, vol. 195, no. 8, pp. 889–924, 2008.

[12] O. E. Yildirim, Q. Xu, and O. A. Basaran, “Analysis of the drop weight
method,” Physics of Fluids, vol. 17, pp. 1–13, 2005.

[13] J. P. Garandet, B. Vinet, and P. Gros, “Considerations on the Pendant Drop
Method: A New Look at Tate’s Law and Harkins’ Correction Factor,” Journal
of Colloid and Interface Science, vol. 165, pp. 351–354, 1994.

68



[14] Y. Touhami, G. H. Neale, V. Hornof, and H. Khalfalah, “A modified pen-
dant drop method for transient and dynamic interfacial tension measurement,”
Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 112,
pp. 31–41, 1996.

[15] J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. Chan, and R. F. Tabor,
“Measurement of surface and interfacial tension using pendant drop tensiom-
etry,” Journal of Colloid and Interface Science, vol. 454, pp. 226–237, 2015.

[16] J. L. Cayias, R. S. Schechter, and W. H. Wade, “The Measurement of Low
Interfacial Tension via the Spinning Drop Technique,” ACS Symposium Series,
vol. 8, pp. 234–247, 1975.

[17] D. Joseph, M. Arney, G. Gillberg, et al., “A Spinning Drop Tensioextensiome-
ter,” Journal of Rheology, vol. 36, pp. 621–662, 1992.

[18] J. Viades-Trejo and J. Gracia-Fadrique, “Spinning drop method: From Young–Laplace
to Vonnegut,” Colloids and Surfaces A: Physicochemical and Engineering As-
pects, vol. 302, pp. 549–552, 2007.

[19] V. V. Ginzburg, K. Chang, P. K. Jog, A. B. Argenton, and L. Rakesh, “Mod-
eling the Interfacial Tension in Oil-Water-Nonionic Surfactant Mixtures Using
Dissipative Particle Dynamics and Self-Consistent Field Theory,” The Journal
of Physical Chemistry B, vol. 115, pp. 4654–4661, 2011.

[20] O. Theissen and G. Gompper, “Lattice-Boltzmann study of spontaneous emul-
sification,” European Physical Journal B, vol. 11, pp. 91–100, 1999.

[21] G. Soligo, A. Roccon, and A. Soldati, “Breakage, coalescence and size distri-
bution of surfactant-laden droplets in turbulent flow,” Journal of Fluid Me-
chanics, vol. 881, pp. 244–282, 2019.

[22] D. M. Anderson, G. B. McFadden, and A. A. Wheeler, “DIFFUSE-INTERFACE
METHODS IN FLUID MECHANICS,” Annual Review of Fluid Mechanics,
vol. 30, pp. 139–165, 1998.

[23] H. Lamb, in Hydrodynamics. Cambridge University Press, 1932.

[24] G. K. Batchelor, in An Introduction to Fluid Dynamics. Cambridge University
Press, 1967.

[25] J. Lighthill, in Waves in Fluids. Cambridge University Press, 1978.

[26] P. G. Drazin and W. H. Reid, in Hydrodynamic Stability. Cambridge University
Press, 1981.

[27] S. H. Davis, “Contact-Line Problems in Fluid Mechanics,” Journal of Applied
Mechanics, vol. 50, pp. 977–982, 1983.

[28] H. Montazeri, S. H. Zandavi, and A. Bazylak, “Sharp interface models for two-
phase flows: Insights towards new approaches,” Computer Methods in Applied
Mechanics and Engineering, vol. 322, pp. 238–261, 2017.

69



[29] S. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, in-
compressible, multi-fluid flows,” Journal of Computational Physics, vol. 100,
pp. 25–37, 1992.
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Appendix A: Chapman-Enskog
expansions of the LBEs to recover
governing equations

The Chapman-Enskong analysis is the perturbation analysis of a particle distribution

function around its equilibrium distribution with Knudsen number (i.e. Kn) in terms

of ϵ as the expansion parameter to find the non-equilibrium part of the particle

distribution function that is necessary to recover macroscopic equations beyond the

Euler equations.

Note that all equations in this chapter are written in the Einstein notation, where

α, β, and γ represent the spatial coordinates x, y, and z.

A.1 The Chapman-Enskong expansions of the LBEs

for the order parameters representing two im-

miscible liquids and soluble surfactant

First, we will recover the Cahn-Hilliard equation for ϕ from the Chapman-Enskog

expansion of the LBE of the particle population g. The Cahn-Hilliard equation for ϕ

(i.e., Eq. (2.1c)) can be written as follows:

∂tϕ+ ∂α(ϕuα) =Mϕ∂
2
ααµϕ (A.1)

The Lattice Boltzmann equation (i.e. LBE) for the population g representing ϕ can

be expressed as:

gq(xα + gqα∆t, t+∆t)− gq(xα, t) = −
(︃
gq(xα, t)− geqq (xα, t)

τg

)︃
(A.2)
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Where xα and cqα represent the position and the discrete velocity vectors; respectively;

t and ∆t refer to time and time-step; respectively; gq and geqq represent the particle

distribution and the equilibrium distribution functions, respectively; τg is the dimen-

sionless relaxation time of the particle distribution function gq. Ωg
q = −

(︃
gq − geqq
τg

)︃
is the BGK collision operator [93]. From hereafter, we use the convention gq and g

eq
q

instead of gq(xα, t) and g
eq
q (xα, t), respectively.

The equilibrium distribution function and the source term can be represented as:

geqq =

⎧⎨⎩wq
(︃
Γϕµϕ + ϕcqαuα +

3
2

[︃
cqαcqβ − 1

3
δαβ

]︃
ϕuαuβ

)︃
, for q ̸= 0

ϕ−
∑︁q=Q−1

q=1 geqq , for q = 0
(A.3)

Here, wq refers to the weights associated with the chosen discrete velocity set; cs is the

speed of sound and it is represented as c2s = (1/3)∆x2/∆t2; uα is the fluid velocity; Γϕ

is the mobility coefficient of ϕ controlling Mϕ. Eq. (A.3) must satisfy the moments

of geqq defined as follows:

∑︂
q

geqq = ϕ (A.4a)∑︂
q

cqαg
eq
q = ϕuα (A.4b)∑︂

q

cqαcqβg
eq
q = Γϕµϕδαβ + ϕuαuβ (A.4c)

After Taylor expansion of the left side of Eq. (A.2) up to a second order (i.e.

the derivatives of order higher than three do not significantly affect the macroscopic

behaviour [51]), the LBE for the population g (A.2) can be written as follows:

∆t(∂t + cqα∂α)gq +
(∆t)2

2
(∂t + cqα∂α)

2gq = −
(︃
gq − geqq
τg

)︃
(A.5)

After cancelling ∆t from both sides of the above equation, eq. (A.5) can be rewritten

as:

(∂t + cqα∂α)gq +
∆t

2
(∂t + cqα∂α)

2gq = −
(︃
gq − geqq
τg∆t

)︃
(A.6)

The expansions of gq around g
(0)
q (i.e. geqq ), ∂t, and ∂α in terms of ϵ as the expansion
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parameter can be represented as:

gq = g(0)q + ϵg(1)q + ϵ2g(2)q (A.7a)

∂t = ϵ∂
(1)
t + ϵ2∂

(2)
t (A.7b)

∂α = ϵ∂(1)α (A.7c)

Please note that the expansions of gq and ∂t are considered only up to a second order

in ϵ, as we are interested in the second order analysis (i.e. O(ϵ2)) of the LBE (A.6) to

recover Eq. (2.1c). Considering this simplification, the spatial derivative ∂α is labelled

without any expansion in terms of ϵ to be consistent with the remaining terms in eq.

(A.6) [51]. In Eq. (A.7b), t(1) and t(2) represent the convective and diffusive time

scales, respectively.

The solvability conditions obtained based on the conservation of phase field pa-

rameter (i.e. ϕ) can be written as follows:∑︂
q

g(n)q = 0 (A.8)

Inserting all the expansions represented by the set of equations (A.7) in Eq. (A.6)

as follows:

(ϵ∂
(1)
t + ϵ2∂

(2)
t + cqαϵ∂

(1)
α )(g(0)q + ϵg(1)q + ϵ2g(2)q )

+
∆t

2
(ϵ∂

(1)
t + ϵ2∂

(2)
t + cqαϵ∂

(1)
α )2(g(0)q + ϵg(1)q + ϵ2g(2)q )

= −
(︃
(
�
�g
(0)
q + ϵg

(1)
q + ϵ2g

(2)
q )−

�
�g
(0)
q

τg∆t

)︃
(A.9)

From the above equation, compare the coefficients of ϵ and ϵ2 on both sides as follows:

O(ϵ) : ∂
(1)
t (g(0)q ) + cqα∂

(1)
α (g(0)q ) = − g

(1)
q

τg∆t
(A.10a)

O(ϵ2) : ∂
(2)
t (g(0)q ) + ∂

(1)
t (g(1)q ) + cqα∂

(1)
α (g(1)q ) +

∆t

2
(∂

(1)
t + cqα∂

(1)
α )2g(0)q

= − g
(2)
q

τg∆t
(A.10b)
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The term ∆t
2
(∂

(1)
t + cqα∂

(1)
α )2g

(0)
q in Eq. (A.10b) can be simplified as:

∆t

2
(∂

(1)
t + cqα∂

(1)
α )2g(0)q =

∆t

2
(∂

(1)
t + cqα∂

(1)
α )(∂

(1)
t + cqα∂

(1)
α )g(0)q

The term (∂
(1)
t +cqα∂

(1)
α )g

(0)
q in the above equation can be substituted from eq. (A.10a)

as follows:

∆t

2
(∂

(1)
t + cqα∂

(1)
α )2g(0)q =

∆t

2
(∂

(1)
t + cqα∂

(1)
α )

(︃
− g

(1)
q

τg∆t

)︃
= − 1

2τg
(∂

(1)
t + cqα∂

(1)
α )g(1)q

Following this simplification, Eq. (A.10b) can be rewritten as follows:

∂
(2)
t (g(0)q ) +

(︃
1− 1

2τg

)︃[︃
∂
(1)
t (g(1)q ) + cqα∂

(1)
α (g(1)q )

]︃
= − g

(2)
q

τg∆t
(A.11)

Taking the zeroth moment (i.e. multiplying by 1 and then summing over q) of

Eq. (A.10a) and using the solvability conditions (A.8) along with the moments of g
(0)
q

(A.4), Eq. (A.10a) can be simplified as:

∂
(1)
t (

∑︂
q

g(0)q ) + ∂(1)α (
∑︂
q

cqαg
(0)
q ) = −

(
��

���⌃ 0∑︁
q g

(1)
q )

τg∆t

∂
(1)
t (ϕ) + ∂(1)α (ϕuα) = 0 (A.12)

Similarly, Eq. (A.11) can be simplified as follows:

∂
(2)
t (

∑︂
q

g(0)q ) +

(︃
1− 1

2τg

)︃[︃
∂
(1)
t (

�
�

�
��>
0∑︂

q

g(1)q ) + ∂(1)α (
∑︂
q

cqαg
(1)
q )

]︃

= −
(
���

��⌃ 0∑︁
q g

(2)
q )

τg∆t

∂
(2)
t (ϕ) +

(︃
1− 1

2τg

)︃
∂(1)α (

∑︂
q

cqαg
(1)
q ) = 0 (A.13)

The only unknown variable in Eq. (A.13) is g
(1)
q . g

(1)
q can be obtained from Eq.

(A.10a) as:

g(1)q = −τg∆t
[︃
∂
(1)
t (g(0)q ) + cqα∂

(1)
α (g(0)q )

]︃
(A.14)
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Substituting Eq. (A.14) in Eq. (A.13) and again using the moments (A.4), Eq. (A.13)

can be further simplified as follows:

∂
(2)
t (ϕ) +

(︃
1− 1

2τg

)︃
(−τg∆t)∂(1)α

[︃
∂
(1)
t (

∑︂
q

cqαg
(0)
q ) + ∂

(1)
β (

∑︂
q

cqαcqβg
(0)
q )

]︃
= 0

∂
(2)
t (ϕ) +

(︃
1− 1

2τg

)︃
(−τg∆t)∂(1)α

[︃
∂
(1)
t (

∑︂
q

cqαg
(0)
q ) + ∂

(1)
β (

∑︂
q

cqαcqβg
(0)
q )

]︃
= 0

∂
(2)
t (ϕ) +

(︃
1− 1

2τg

)︃
(−τg∆t)∂(1)α

[︃
∂
(1)
t (ϕuα) + ∂

(1)
β (Γϕµϕδαβ + ϕuαuβ)

]︃
= 0 (A.15)

In Eq. (A.15), assume I = ∂
(1)
t (ϕuα) + ∂

(1)
β (ϕuαuβ) and II = ∂

(1)
β (Γϕµϕδαβ).

The term I can be simplified as:

I = uα∂
(1)
t (ϕ) + ϕ∂

(1)
t (uα) + ∂

(1)
β (ϕuαuβ) (A.16)

During the Chapman-Enskog analysis of the Navier-Stokes equation in our case, the

coefficient obtained by taking the first moment of O(ϵ) terms can be simplified for

the incompressible flow as follows [51]:

∂
(1)
t (ρuα) + ∂

(1)
β (P th

αβ + ρuαuβ) = 0

ρ∂
(1)
t (uα) + uα∂

(1)
t (ρ) + ∂

(1)
β (P th

αβ) + uαuβ�
�
�>
0

∂
(1)
β ρ+ ρuβ∂

(1)
β uα + ρuα��

��⌃
0

∂
(1)
β uβ = 0 (A.17)

Now, using the coefficient obtained by taking the zeroth moment of O(ϵ) terms, the

term ∂
(1)
t (ρ) in Eq. (A.17) can be simplified as:

∂
(1)
t (ρ) = −∂(1)α (ρuα)

= ρ�����⁓0
∂(1)α (uα) + uα)����⌃0

∂(1)α (ρ)

= 0 (A.18)

Following this simplification, Eq. (A.17) can be further resolved as follows:

∂
(1)
t (uα) = −

(︃
∂
(1)
β (P th

αβ)

ρ
+ uβ∂

(1)
β uα

)︃
(A.19)
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Substituting Eq. (A.19) in Eq. (A.16), the final expression for I can be obtained as:

I = uα∂
(1)
t (ϕ)− ϕ

ρ
∂
(1)
β (P th

αβ)−������
ϕuβ∂

(1)
β uα + uαuβ∂

(1)
β ψ +������

ϕuβ∂
(1)
β uα

+ϕuα����⌃
0

∂
(1)
β uβ (A.20)

Here, the value of ∂
(1)
t (ϕ) can be obtained from Eq. (A.12) as follows:

∂
(1)
t (ϕ) = −∂(1)β (ϕuβ)

= −(ϕ����⌃
0

∂
(1)
β uβ + uβ∂

(1)
β ϕ)

= −uβ∂(1)β ϕ

Using this identity, Eq. (A.20) can be rewritten as:

I = −������
uαuβ∂

(1)
β ϕ− ϕ

ρ
∂
(1)
β (P th

αβ) +������
uαuβ∂

(1)
β ϕ

= −ϕ
ρ
∂
(1)
β (P th

αβ) (A.21)

Here, P th
αβ is the thermodynamic pressure tensor and it can be represented as ∂βP

th
αβ =

[ρ(∂βµρ) + ϕ(∂βµϕ) + ψ(∂βµψ)]δαβ.

We assume that the mobility coefficient of ϕ is constant because of the constant

Mϕ. The simplification of the term II can be represented as follows:

II = ∂
(1)
β (Γϕµϕδαβ)

= ∂(1)α (Γϕµϕ)

= Γϕ∂
(1)
α (µϕ) (A.22)

Please note that throughout the simplification of terms I and II, the time derivative

expansions of quantities are replaced by the space derivative expansions as these

time derivative expansions are not the time derivative itself and the space derivative

expansions are used as the space derivative itself because these are simply labelled

without any expansion in terms of ϵ to be consistent with the simplification of terms
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in the LBE (A.2). Putting the final expressions Eq. (A.21) and Eq. (A.22) of I and

II in Eq. (A.15) and then it can be simplified as:

∂
(2)
t (ϕ)−

(︃
τg −

1

2

)︃
∆t∂(1)α

[︃
− ϕ

ρ
∂
(1)
β (P th

αβ) + Γϕ∂
(1)
α (µϕ)

]︃
= 0

∂
(2)
t (ϕ) =

(︃
τg −

1

2

)︃
∆t

[︃
∂(1)α

(︃
− ϕ

ρ
∂
(1)
β (P th

αβ)

)︃
+ Γϕ∂

2(1)
αα (µϕ)

]︃
(A.23)

Rewriting the equations (A.12) and (A.23) with the common factors ϵ and ϵ2,

respectively, as:

ϵ∂
(1)
t (ϕ) + ϵ∂(1)α (ϕuα) = 0 (A.24)

ϵ2∂
(2)
t (ϕ) =

(︃
τg −

1

2

)︃
∆t

[︃
ϵ∂(1)α

(︃
− ϕ

ρ
ϵ∂

(1)
β (P th

αβ)

)︃
+ Γϕϵ∂

(1)
α (ϵ∂(1)α (µϕ))

]︃
(A.25)

Combining Eq. (A.24) and Eq. (A.25) and reversing the derivative expansions rep-

resented by Eq. (A.7b) as well as Eq. (A.7c), the Cahn-Hilliard equation for ϕ can

be recovered as follows:

(ϵ∂
(1)
t + ϵ2∂

(2)
t )(ϕ) + (ϵ∂(1)α )(ϕuα) =

[︃(︃
τg −

1

2

)︃
∆tϵ∂(1)α

(︃
− ϕ

ρ
ϵ∂

(1)
β (P th

αβ)

)︃
+

(︃
τg −

1

2

)︃
∆tΓϕϵ∂

(1)
α (ϵ∂(1)α (µϕ))

]︃
∂t(ϕ) + ∂α(ϕuα) =

[︃(︃
τg −

1

2

)︃
∆t∂α

(︃
− ϕ

ρ
∂β(P

th
αβ)

)︃
+Mϕ∂

2
αα(µϕ)

]︃
(A.26)

Where the mobility of ϕ can be represented as Mϕ = Γϕ

(︃
τg − 1

2

)︃
∆t.

In Eq. (A.26), the extra term ∂α

(︃
− ϕ

ρ
∂β(P

th
αβ)

)︃
is considered as the spurious

term and this term is Galilean-invariant; however it has no relation with the fluid

velocity at all [85]. In addition, this term arises due to the way the non-ideality of

the fluid is introduced and it has the second order derivative of P th
αβ (i.e. ∂α(∂β(P

th
αβ)))

than ∂β(P
th
αβ), which is in the Navier-Stokes equation. During the linear perturbation

analysis of hydrodynamic modes in Fourier space for a quiescent fluid, Kendon et

al. [85] showed that the coupling between ϕ and ρ can be neglected in the limit of
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incompressibility of fluid. Considering this observation, we can ignore the effect of

this extra term and write the recovered Cahn-Hilliard equation for ϕ as follows:

∂t(ϕ) + ∂α(ϕuα) =Mϕ∂
2
αα(µϕ) (A.27)

Following the procedure described for the Chapman-Enskog expansion of the LBE

for the population g representing ϕ, we can recover the Cahn-Hilliard equation for

ψ (2.1d) by doing the Chapman-Enskog expansion of the LBE for the population h

representing ψ within the limit of incompressibility of fluid.

A.2 The Chapman-Enskong expansion of the LBE

for the order parameter representing the den-

sity of fluid mixture

Here, we do not represent the derivation of the Champman-Enskog expansion of the

LBE of the population f representing ρ to obtain the continuity and the Navier-Stokes

equations in the present study, as the reference of this derivation for the BGK collision

operator [93] considering the pure system can be found in Chapter 9: Multiphase and

Multicomponent Flows [51].

Similarly, one can find the simplification of the Champman-Enskog expansion of

the LBE of the population f given by Kendon et al. [85] for the pure system. The

differences between the surfactant-laden system in our case and the pure system

studied in [85] are the formulation of the divergence of P th
αβ and the use of the MRT

collision operator for the population f , which do not introduce any new terms and the

Chapman-Enskog expansion of the LBE of the population f will recover the similar

expression of the Navier-Stokes equations in the present study, as derived by Kendon
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et al. [85]:

∂t(ρuα) + ∂β(ρuαuβ) = −∂βP th
αβ + ∂β

[︃
ρν

(︃
∂αuβ + ∂βuα −

2

3
∂γuγδαβ

)︃
+ ρνB∂γuγδαβ

]︃
− 3ν

ρ
∂β(uα∂γP

chem
βγ + uβ∂γP

chem
αγ + uγ∂γP

chem
αβ )

− 3ν

ρ
∂β∂γ(ρuαuβuγ) (A.28)

Here, νB is the bulk viscosity and assumed as νB = (2ν/3) [85]. Also, the similar

Navier-Stokes equations with additional terms were obtained during the derivation

for the pure system by [51] as well.

The terms on the second and third lines of Eq. (A.28) are the additional terms in

the original Navier-Stokes equation. The term on the third line of Eq. (A.28) is a non-

Galilean-invariant term and is related to the fluid velocity. This term can be neglected

because uα ≪ cs is usually the case for the multiphase flows [51]. The term on the

second line of eq. (A.28) is not Galilean-invariant but according to [85], this term can

be decomposed into the Galilean-invariant and non-Galilean-invariant terms. The

Galilean-invariant term is the product of gradients of the chemical pressure tensor

and the velocity, these product terms are small compared to the linear product terms

present in the first line of eq. (A.28). When these product terms become weak,

both Galilean-invariant and non-Galilean-invariant terms can be neglected under the

condition that all hydrodynamic fields vary smoothly on the lattice scale. Following

these considerations, the Navier-stokes equations (2.1b) can be recovered.
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Appendix B: MRT matrices

The transformation matrix M derived following Ref. [94] reads:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 −1 0 0 0 1 −1 −1 1 1 −1 −1 1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 1 0 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 −1 1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 2 −4 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The relaxation matrix S is diagonal in the moment space

S = diag(0, se, sε, 0, sq, 0, sq, sν , sπ, sν , sπ, sν , sν , sν , sm, sm, sm) (B.1)

where the relaxation rates other than sν are chosen as follows: se = 1.19, sε = sπ =

1.4, sq = 1.2 and sm = 1.98. These values were obtained by Lallemand and Luo [102]

using linear analysis to achieve optimized stability of the model.

The kinematic viscosity ν of the system which is calculated using Eq. (2.72) defines

the relaxation rate sv as follows:

ν =
1

3

(︃
1

sv
− 1

2

)︃
(B.2)
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