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Abstract

Computation methods based on the Wiener chaos expansion have been developed to

study the behaviors of the aeroelastic system with randomparameters. It is proven

that the discrete wavelet transformation is one ofthe most accurate and efficient nu-

merical schemes for this uncertainty quantizationproblem. In this thesis, we propose

the stochastic collocation methods(SCM), whichis a type of sampling method combin-

ing the strength of the MonteCarlo simulation and the stochastic Galerkin method.

The convergence with respect to the number of the nodal points is investigated, and

simulation results to aeroelastic models in the presence of uncertainty in the system

parameter and due to the initial condition are reported. It is demonstrated that the

accuracy of the SCM is comparable to those achieved by using the wavelet chaos ex-

pansion. However, the SCM is more straightforward, efficient and easy to implement.
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Chapter 1

Introduction

The ultimate purpose of mathematical models is to describe and predict the future

behaviors of physical systems. Although differential equations have been successfully

used to explain and predict the responses of physical events, the accuracy of the pre-

dictions usually relies on the correct estimation or the measurement of the values of

system parameters, initial values or boundary conditions. It is well known that for

dynamical systems, especially the nonlinear systems, a small uncertainty in input data

may trigger non-negligible changes in the system output. For example, introducing a

small perturbation on the left boundary condition of the Burgers’ equation, the loca-

tion of the transition can change significantly [21]. Such changes can not be captured

by simulations based on the deterministic differential equation.

The study of the uncertainty quantification (UQ) is to investigate the impact due to

errors in parameters and models, and subsequently, it provides more reliable predictions

for practical problems [21]. This topic has received an increasing amount of attention in

recent years, especially in the context of complex systems where mathematical models

can serve only as simplified and reduced representation of the true system. Thus

in order to fully understand the impact of uncertain parameters, it is imperative to

incorporate the uncertainty into the models and other system parameters. Due to the

’uncertain’ nature of the uncertainty, the most common approach is to regard the data

uncertainty as random variables and transform the deterministic dynamical system

into the random dynamical system.

Notice that, the random differential equation (RDE) is different with the stochastic

differential equation (SDE). To illustrate the difference, we consider a deterministic
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differential equation (1.1):

u′(t) = −αu, t > 0

u(0) = u0,
(1.1)

where the coefficient α and initial condition u0 are constants.

The SDE is a Ito or Stratonovich differential equation with respect to the Brownian

motion. e.g. the dynamic system (1.1) with ’noise’:

u′ = −αu + σ(u, t)Ẇt, t > 0

u(0) = u0.
(1.2)

We can also consider the Brownian motion introduced to the parameter α,

u′ = −(α0 + σ(u, t)Ẇt)u, t > 0

u(0) = u0,
(1.3)

where Wt is the Brownian motion and other coefficients are constants. For the SDE,

some analysis and numerical tools, such as the stochastic calculus, have been reported.

However, developing efficient computational methods for SDE is still an active research

topic[10].

Unlike SDE, RDE focuses on dynamical systems with random parameters which do

not vary in the time domain. The RDE model resulting from the dynamical system

(1.1) with random coefficient α(ξ) is given by

u′ = −α(ξ)u, t > 0

u(0) = u0,
(1.4)

where the coefficient α is a function of the random variable ξ with the probability

density function ρ.

In this thesis, we study the solutions of the differential equation with random input.

However, not only a one dimensional UQ problem with uncertainty in system parameter
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is investigated, but we will also consider two dimensional UQ problems including cases

with a random variables in the system parameter and in the initial condition. Similar

with (1.4), a typical differential equation with two random inputs is defined as an

example of a two dimensional UQ problem:

u′(t) = −α(ξ1)u, t > 0

u(0) = β(ξ2),
(1.5)

where ξ1 and ξ2 are independent real random variables with the probability density

functions ρ1 and ρ2 on [a1, b1] and [a2, b2], respectively. Here the coefficient α(ξ1) is

assumed to be a function of ξ1, and the initial value β(ξ2) is a function of ξ2.

It should be noted that the problems being investigated in this thesis include dy-

namical systems represented by a coupled system of nonlinear differential equations,

and an aeroelastic system modeling an oscillating airfoil in pitch and plunge motions.

Here, we particularly focus on efficient and robust computational techniques for solving

dynamical systems in the presence of uncertainty.

The Monte Carlo simulation (MCS) is one of the most popular numerical methods

to solve differential equations with random input. The idea of MCS is to sample the

randomness in RDEs, and solve the differential equation on each realizations. For

each realization of randomness, it becomes a deterministic problem in which regular

numerical methods can be employed. MCS is easy to apply to practical problems and

has been widely used in the engineering community. The major drawback of the MCS

is the slow convergence, where the convergent rate with K realizations is asymptotically

around 1/
√

K. Hence, it is important to develop efficient numerical methods which

are capable of dealing with the UQ problems.

In the recent years, there was a growing interest in the polynomial chaos expansion

for solving RDEs. According to the Cameron-Martin theorem, the polynomial chaos

expansion can be applied to any stochastic process with finite second moment. By in-

corporating the polynomial chaos expansion with the finite element method, Ghanem
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and Spanos [13] developed the Stochastic Galerkin method (SGM). In SGM, the ran-

dom parameters or initial values and the solution of RDE are represented in a finite

truncated form of the expansion. Using the Galerkin projection to the RDE on each

orthogonal polynomial function, we have the equations within the framework of the fi-

nite element method and they can be solved numerically. The method has been verified

to be very efficient for many problems, e.g., [16], [17].

However, for long-term integration or problems with discontinuity in the random

space, the SGM method fails to converge after a short time, and increasing the poly-

nomial order provides only small improvement in the convergence [19]. Hence the use

of the local chaos expansion, namely the Wiener-Haar wavelet expansion, is proposed,

and it is proven to be more accurate and efficient than the global chaos expansion [8].

Moreover, the discrete wavelet transform (DWT) was introduced by Pettit et al. [11] to

replace the Galerkin projection, because it is difficult to generate the equation within

the framework of the finite element method for practical problems. DWT with Mallat’s

pyramid algorithm is easy to implement and computationally efficient in generating the

coefficients of wavelet basis.

In the present study, we focus on the stochastic collocation method (SCM). In

SCM, we seek to satisfy the differential equations at a discrete set of points, called

the ’nodes’, in the corresponding random space, and utilize the Lagrange polynomial

interpolation to approach the solution of SDE. The SGM is developed and has been

tested to problems under investigation in this thesis. It has been demonstrated that

accuracy of results with the SCM is comparable to those resulted using the DWT,

when the same number of realizations is used by the two methods. On the other hand,

it is a simple task to generate the Lagrange interpolation polynomial. Therefore, from

the computational point of view, the SCM is more efficient and requires less computing

time compared to the DWT.

For a deterministic problem, let uh(t) denote the numerical solution of a dynamic
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system. Then the error ε(t) is defined by:

ε(t) =| u(t)− uh(t) | (1.6)

where u(t) is the exact solution. However, in RDE, it is not suitable to define the error

by the difference of the realizations of the exact solution and the numerical one. In

stochastic analysis, one definition of the error is given by:

ε(t) = E[(u(t, ξ)− uh(t, ξ))
2] =

∫
(u(t, ξ)− uh(t, ξ))

2ρ(ξ)dξ (1.7)

where ξ is a random variable with the density function ρ, u(t, ξ) is the exact solution

and uh(t, ξ) is the numerical solution.

The thesis is organized as follows. In Chapter 2, we discuss computational methods

for UQ problems, namely the MCS, Wiener chaos expansion and SGM. Chapter 3

presents numerical simulations for nonlinear dynamical systems in the presence of

uncertainty. The simulation results clearly demonstrate the power and the effectness

of the SCM method. Finally, concluding remarks are reported in Chapter 4.
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Chapter 2

Computational Methods

In the beginning, we will adopt a probability framework to model the uncertainty of

the coefficients in the differential equations. Suppose that the random variable ξ has

the distribution function F : R→ [0, 1] defined by

F (x) = P (ξ ≤ x). x ∈ R (2.1)

If F (x) is continuous and strictly increasing, then there exists a function ρ : R →
[0,∞) such that F (x) =

∫ x

−∞ ρ(y)dy for every x ∈ R, and ξ is said to be continuous

random variable with probability density function ρ. Based on the assumed properties

of F (x), it follows that for all y ∈ [0, 1] there is a unique x ∈ [a, b] such that F (x) = y,

Consequently, we can define the one-to-one mapping

y ∈ [0, 1] → x ≡ F−1(y) ∈ [a, b] (2.2)

For the multi-dimensional UQ problems, we assume that the parameters (ξ1, ξ2, . . . , ξn) ∈
Rn, n > 1 are independent random variables. We follow the notation of [21] and adopt

a probability framework to model ξ = (ξ1, ξ2, . . . , ξn) as a n-variate random vector.

Similar as above, we will also focus on continuous random variables.

Let ρi : Γi → R+ be the probability density function of the random variable ξi,

where Γi ⊂ R is the support of the random variable ξi for i = 1, . . . , n. Then we have

the joint probability density function of the random vector ξ = (ξ1, ξ2, . . . , ξn):

ρ(ξ) =
n∏

i=1

ρi(ξi), (2.3)

The support of the random vector is

Γ ,
n∏

i=1

Γi ⊂ RN , (2.4)

6



We can do numerical approximations in the finite dimensional (n-dimensional) ran-

dom space Γ. Naturally, the solution of random differential equation should be a

stochastic process u(t, ξ) : D × Γ → R, where D is the domain of t.

To describe the behavior of the stochastic process u(t, ξ), some important statistical

characteristic are introduced.

1. the expected value of the stochastic process, u(t, ξ).

E[u(t, ξ)] =

∫ ∞

−∞
u(t, y)ρt(y)dy (2.5)

2. the variance of the stochastic process.

V ar(u(t, ξ)) = E[(u(t, ξ)− E[u(t, ξ)])2] (2.6)

In the next three section, we will discuss the Monte Carlo Simulation, the Wiener

chaos expansion and the stochastic collocation method, for this type of random differ-

ential equations.

2.1 Monte Carlo Method

One of the most common method to solve differential equations with random input is

the Monte Carlo simulation (MCS). The idea of the MCS is to sample the random input

based on its probability distribution function. For each realization, the random differ-

ential equation becomes deterministic and is easy to solve it using regular numerical

methods, such as the Runge-Kutta scheme or the finite element method.

2.1.1 Numerical Simulation

In the one dimension case (1.4), let ξ(1), ξ(2), . . . ξ(N) be the sequence of the realization

of the random input based on their probability distribution function, where N is the

number of realizations.
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For each realization of the random variables, the random differential equation be-

came deterministic:

u′(t) = −α(ξ(i))u, t > 0

u(0) = u0.
(2.7)

Solving the differential equation, we have the deterministic solution u(t; ξ(i)) for each

sample.

For the two dimensional case (1.5), N coupled random variable (ξ
(1)
1 , ξ

(1)
2 ), (ξ

(2)
1 , ξ

(2)
2 ),

. . ., (ξ
(N)
1 , ξ

(N)
2 ), are required.

Similar with the process in the one dimensional case, we have N deterministic

differential equations

u′(t) = −α(ξ
(i)
1 )u, t > 0

u(0) = β(ξ
(i)
2 ),

(2.8)

The deterministic solution is u(t; ξ
(i)
1 , ξ

(i)
2 )

After the simulation, we can estimate the statistical characteristic of the solution.

For example, in the one dimensional problem we have:

1. the expected value of the random solution

E[u(t, ξ)] ≈ 1

N

N∑
i=1

u(t; ξ(i)) (2.9)

2. the variance of the random solution

V ar(u(t, ξ)) = E[(u(t, ξ)− E[u(t, ξ)])2]

≈ 1

N

N∑
i=1

(u(t; ξ(i))− 1

N

N∑
i=1

u(t; ξ(i)))2
(2.10)

MCS is easy to apply to different problems as it only requires the corresponding

deterministic solver. However, from the central limit theorem it is well know that the

convergent rate of MCS with N realizations is asymptotically around 1/
√

N .
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Theorem 2.1 (Central Limit Theorem) Let (Ω, Σ,P) be a probability space and ξ(1),

ξ(2), . . ., ξ(n) be independent random variable defined on Ω. Assume the ξ(i) have a

common distribution with finite expectation m and finite nonzero variance σ2. Define

Sn =
∑n

i=1 ξ(i), then

lim
n→∞

P (
Sn − E[Sn]√

V ar(Sn)
≤ x) = lim

n→∞
P (

Sn − nm

σ
√

n
≤ x)

= φ0,1(x)

(2.11)

for each x ∈ R, where φ0,1 is the distribution function of N(0, 1) [14].

The theorem can be expresses in other two natural versions, one for sums and

another for averages.

Theorem 2.2 For each x ∈ R

lim
n→∞

(P (Sn ≤ x)− φnm,σ
√

n(x)) = 0 (2.12)

and

lim
n→∞

(P (
Sn

n
≤ x)− φm, σ√

n
(x)) = 0 (2.13)

The central limit theorem guarantees the convergence of MCS and provide the

following approximation for the error:

E[(
Sn

n
−m)2] ≈ σ√

n
. (2.14)

More precise, the convergence rate of MCS is 1/
√

N log log N by the law of the

iterated logarithm [10], which is quite slow and typically a large number of realizations

are required.

Some techniques have been developed to improve the speed of convergence of the

MCS, e.g. latin hypercube sampling, quasi Monte Carlo, etc. But the usage of these

methods is restricted by additional requirements, and the applications are often limited,

[21]. Consequently other type of algorithms were developed by engineers and mathe-

maticians. It has been proved that the stochastic Galerkin method, which is based on

the global chaos expansion, is more efficient than the MCS for many problems.
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2.2 Wiener chaos expansion

The Wiener chaos expansion was first introduced by Wiener, to approximate a Gaus-

sian process with Hermite polynomial functionals. According to the Cameron-Martin

theorem, any square integrable functional is the limit of a Hermite series [22]. Thus any

process with finite second-order moments can be represented by a Hermite polynomials

chaos expansion [22].

The Hermite chaos expansion can be used for the uncertainty quantification prob-

lems in practical applications. For example, inspired by the theory of the chaos expan-

sion, Ghanem and Spanos combined the Hermite chaos expansion with a finite element

method [13]. Mathematicians and engineers applied successfully the technique to many

uncertainty quantification problems, e.g.,[16],[17], etc.

2.2.1 Hermite chaos expansion

Consider the random variable ξ on the real axis R with Gaussian density function,

ρ(x) =
1√
2π

e−
x2

2 (2.15)

We can denote the Hilbert space of the square integrable function as

L2(R) = {f(x) :

∫ +∞

−∞
f 2(x)ρ(x)dx < ∞} (2.16)

The inner product of the Hilbert space is defined as

(f, g) =

∫ +∞

−∞
f(x)g(x)ρ(x)dx (2.17)

As ξ is a standard Gaussian random variable N(0, 1), then

E[f(ξ)g(ξ)] = (f, g) =

∫ +∞

−∞
f(x)g(x)ρ(x)dx (2.18)

Now we can construct the Hermite orthogonal polynomial in the Hilbert functional

space L2(R):

Pn(x) = (−1)ne
x2

2
dn

dxn
(e−

x2

2 ), n = 0, 1, 2, . . . (2.19)
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Pn are orthogonal polynomials with respect to the Gaussian density.

(Pn, Pm) =

∫ +∞

−∞
Pn(x)Pm(x)ρ(x)dx =





0 if n 6= m

n! if n = m

(2.20)

with normalization factors
√

n!. Therefore the normalized orthogonal polynomials are

defined as

Hn(x) =
(−1)n

√
n!

e
x2

2
dn

dxn
(e−

x2

2 ), n = 0, 1, 2, . . . (2.21)

Because H0 = 1, from (2.18), we have

E[Hn(ξ)] = (Hn, 1) =

∫ +∞

−∞
Hn(x)ρ(x)dx = 0 n 6= 0 (2.22)

This means that the expected value of the Hermite polynomials of a standard Gaussian

random variable is zero, when the order of the polynomial is nonzero.

Without proof, we provide the recurrence relation of the non-normalized Hermite

polynomials [22]:

P0(x) = 1; P1(x) = x; Pn(x) = xPn−1(x)− (n− 1)Pn−2(x) (2.23)

From the recurrence relation, the non-normalized Hermite polynomials can be gener-

ated as follows:

P0(x) = 1;

P1(x) = x;

P2(x) = x2 − 1;

P3(x) = x3 − 3x;

. . .

(2.24)

Moreover, we can construct a subspace using a finite number M of orthogonal

polynomials.

WM , {v : v ∈ span{Pj(x)}M
j=0} (2.25)

11



It is well known [2] that {Hn(x)}∞0 is a complete orthogonal basis in the Hilbert space

L2(R), which means that the sequence of subspaces will converge to L2(R) as the

number of the orthogonal polynomials go to infinity:

WM → L2(R) as M →∞. (2.26)

Consequently, for a practical problem, the Hermite orthogonal polynomial can be used

to represent any square-integrable function of a standard Gaussian random variable in

a truncated form.

In the multiple variable case, we assume that ξ is the standard normal random

variable vector with zero mean and unit variance, where the random variable vector

ξ = (ξ1, ξ2, . . . , ξn) consists of n independent Gaussian random variables. We can

construct the Hilbert functional space L2(Rn) with respect to the random variable

vector.

L2(Rn) = {f(x) :

∫

Rn

f 2(x)ρ(x)dx < ∞} (2.27)

where x = (x1, x2, . . . , xn) and

ρ(x) = ρ(x1, x2, . . . , xn) = (
1√
2π

)nexp(−x2
1 + x2

2 + · · ·+ x2
n

2
) (2.28)

is the n-dimensional Gaussian density function with zero mean and unit variance.

The inner product of the functional space is defined as before,

(f, g) =

∫

Rn

f(x)g(x)ρ(x)dx (2.29)

Then the expressions of the Hermite polynomials are given by

Pk(x1, x2, . . . , xn) = (−1)ne
1
2
xT x dk

dx1 · · · dxk

e−
1
2
xT x, k = 0, 1, 2, . . . (2.30)

Because the Hermite polynomials are a complete orthogonal basis of L2(Rn) [22], any

12



square integrable function χ(ξ), can be represented in the form

χ(ξ) =a0P0

+
∞∑

i1=1

ai1P1(ξi1)

+
∞∑

i1=1

i1∑
i2=1

ai1,i2P2(ξi1 , ξi2)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1,i2,i3P3(ξi1 , ξi2 , ξi3)

. . .

(2.31)

For convenience, we can rewrite (2.31) as

χ(ξ) =
∞∑

j=0

âjΨj(ξ), (2.32)

where there is a one-to-one correspondence between Pn(ξ1, ξ2, . . . , ξn) and Ψj(ξ).

To apply the Hermite chaos expansion into a practical problem, we need to truncate

the expansion (2.32) in the form of finite summation. We define the polynomial space

in Rn as

W P
n ,

⊗
m1+···+mn≤P

Wmi (2.33)

The tensor product is over all possible combinations of subspace Wmi satisfying m1 +

· · ·+ mn ≤ P . Hence, the total degree of the n-variate orthogonal polynomial basis in

W P
n is not over P .

Let {Ψj(ξ)} be the orthogonal polynomial basis of W P
n . Then Ψj(ξ) is constructed

as the product of the polynomial basis in each dimension, i.e.,

Ψj(ξ) = Pk1(ξ1) · · ·Pkn(ξn), k1 + · · ·+ kn ≤ P, (2.34)

where {Pki
(ξi)} is a Hermite polynomial basis of Wmi with order ki for 1 ≤ i ≤ n. Thus,

Ψj(ξ) corresponds one-to-one to the combination of product of Hermite polynomial in

(2.34), and the dimension of W P
n [21] is

dim(W P
n ) =

(
n + P

P

)
(2.35)
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Actually, we can construct a product polynomial space with the degree of the

polynomial for each variable ξi being at most P. However, it will trigger (P + 1)n basis

functions, too many in practical computation, especially in a large dimensional case.

So we will only focus on the space (2.33), which is used most widely in the stochastic

computations [22].

As previous mentioned, a stochastic process with finite second moment, denoted

u(t, ξ), can be represented by the Hermite polynomials, and approximated by a finite

summation, denoted as uM(t, ξ), i.e., for any t ∈ D

u(t, ξ) =
∞∑
i=0

ûi(t)Ψi(ξ) ≈ uM(t, ξ) =
M∑
i=0

ûi(t)Ψi(ξ), M =

(
n + P

P

)
, (2.36)

where D is the domain of t and {ûi} are the Fourier coefficients defined as

ûi(t) =

∫
u(t, ξ)Ψi(ξ)ρ(ξ)dξ = E[u(t, ξ)Ψi(ξ)], 0 ≤ i ≤ M (2.37)

The truncation in (2.36) can be considered as the orthogonal projection of u(t, ξ)

from L2(Rn) onto W P
n . The error can be defined as

ε(t) ,‖ u(t, ξ)− uM(t, ξ) ‖L2(Rn)

=

√∫
(u(t, ξ)− uM(t, ξ)2ρ(ξ))dξ

=
√

E[(u(t, ξ)− uM(t, ξ))2],

(2.38)

and it will converge to zero as the order of approximation P goes to infinity [2].

Moreover, it can be proved that the projection uM(t, ξ) has the smallest error in

the functional space W P
n [3]. In other words, uM(t, ξ) is the best approximation with

polynomials of degree up to P , i.e., for any t ∈ D and u(t, ξ) ∈ L2(Rn),

‖ u(t, ξ)− uM(t, ξ) ‖L2(Rn)= inf
Φ∈W P

n

‖ u(t, ξ)− Φ ‖L2(Rn) (2.39)

Since when the number of the terms M is sufficiently large the stochastic process

u(t, ξ) can be expressed in the truncated form uM(t, ξ), the statistical characteristic

can be retrieved from the truncated expansion, uM(t, ξ).

14



1. Following (2.22) and (2.34), the expected value of u(t,x) is estimated as:

E[u(t, ξ)] ≈ E[uM(t, ξ)] =

∫
(

M∑
i=0

ûi(t)Ψi(ξ))ρ(ξ)dξ

=
M∑
i=0

ûi(t)

∫
Ψi(ξ))ρ(ξ)dξ

=
M∑
i=0

ûi(t)E[Ψi(ξ))]

= û0(t)

(2.40)

2. Using the orthogonality of the functional basis, the variance of the solution can

be approximated as

V ar[u(t, ξ)] = E[(u(t, ξ)− E[u(t, ξ)])2]

≈ E[(uM(t, ξ)− E[uM(t, ξ)])2]

= E[(uM(t, ξ)− u0(t, ξ))
2]

= E[(
M∑
i=1

ûi(t)Ψi(ξ))
2]

=
M∑
i=1

û2
i (t)E[Ψ2

i (ξ)].

(2.41)

If the polynomial basis Ψi(ξ) is normalized and orthogonal, the estimation of variance

of u(t, ξ) can be further simplified as
∑M

i=1 û2
i (t), as

(Ψi(ξ), Ψi(ξ)) =

∫
Ψ2

i (ξ)ρ(ξ)dξ = E[Ψ2
i (ξ)] = 1 (2.42)

2.2.2 Global chaos expansion

It has been proved that the Hermite polynomial expansion can converge to any arbi-

trary stochastic processes with finite second moment, and has the optimal convergence

rate for Gaussian processes [22]. However, for non-Gaussian processes, the conver-

gence rate of the Hermite polynomial expansion substantially drops. Subsequently, the

general polynomial chaos is constructed to recover the convergence rate.
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Consider a set of polynomials {Ψi(x)} and suppose that {Ψi(x)} satisfy the follow-

ing orthogonality condition with respect to the probability density function ρ of the

random variable ξ with support Γ.

(Ψi, Ψj) =

∫

Γ

Ψi(x)Ψj(x)ρ(x)dx =





0 if n 6= m

h2
i if i = j

(2.43)

where h2
i =

∫
Γ
Ψ2

i (x)ρ(x)dx is the normalization factor.

The probability density function ρ in the orthogonality relation (2.43) defines the

type of the orthogonal polynomials {Ψi(x)}. In other words, there is one-to-one cor-

respondence between the probability density function ρ and the type of chaos polyno-

mials. For example, the uniform random variable, whose probability density function

is constant, and (2.43) defines Legendre polynomials [22]; the Gaussian distribution

density function corresponds to the Hermite polynomials, which were shown in the

previous subsection.

If ξ is a discrete random variable on Γ with the weight function

w(x) = P (x = ξ) ξ ∈ Γ, (2.44)

the inner product definition will become

(Ψi, Ψj) =
∑
x∈Γ

Ψi(x)Ψj(x)w(x) =





0 if n 6= m

h2
i if i = j,

(2.45)

where the normalization factor is h2
i =

∑
x∈Γ Ψi(x)Ψi(x)w(x).

So we can define orthogonal polynomials for discrete random variable, for example,

the Poisson distribution corresponds to the Charlier polynomials; and the binomial

distribution corresponds to Krawtchouk polynomials [22].

In Table 1, we have linked orthogonal polynomials to well known distributions.

Moreover, an important class of general polynomial chaos, which guarantees the opti-

mal convergence rate for different kinds of random input, can be expressed using the

Askey scheme of hypergeometric polynomials [22].
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Table 1: Table 1: Correspondence between the type of general polynomial chaos and
the probability distribution [21]

Distribution General PC basis polynomial Support
Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)
Beta Jacobi [a, b]

Uniform Legendre [a, b]
Discrete Poisson Charlier {0, 1, 2, . . .}

Binomial Krawtchouk {0, 1, 2, . . . , N}
Negative Binomial Meixner {0, 1, 2, . . .}

Hypergeometric Hahn {0, 1, 2, . . . , N}

The construction of the global chaos expansion is not restricted to polynomials.

Any type of complete functional basis can be used to represent stochastic processes.

Recently, various global chaos expansion were developed, such as the Fourier chaos

expansion [12], multi-element polynomial expansion [18], etc., for specific application

problems.

2.2.3 Stochastic Galerkin Method

The global polynomial expansion provides an efficient way to express stochastic pro-

cesses. Furthermore, based on the Hermite chaos expansion, the stochastic Galerkin

method (SGM) was developed by Ghanem and Spanos. Because of many successful

applications (e.g., [16] and [17]), the SGM became one of the most important numerical

method in the uncertainty quantification problem. As an illustration, without strug-

gling in the detailed explanation on the process, we use SGM to solve the previous

ODE (1.4).

Applying the chaos expansion to the solution u and the parameter α, we get

u(t, ξ) =
M∑
i=1

ûi(t)Ψi(ξ), α(ξ) =
M∑
i=1

α̂iΨi(ξ), (2.46)

where {Ψi(ξ)} are normalized orthogonal functions that form a basis of the space WM .
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Substituting these expansion into the Eq.(1.4), we obtain

M∑
i=1

û′i(t)Ψi = −
M∑
i=1

M∑
j=1

ΨiΨjα̂iûj(t). (2.47)

A Galerkin projection onto each function in the basis produces a set of coupled

ordinary differential equation:

û′i(t) = −
M∑
i=1

M∑
j=1

eijα̂iûj(t), i = 1, · · · ,M, (2.48)

where eij = E[ΨiΨiΨj]. To solve this system of coupled ODEs, a standard ODE

solver, such as the Runge-Kutta scheme, can be employed. The convergence rate of

polynomial chaos and the impact of non-optimal global polynomial chaos was studied

in [22].

We can not apply the previous process to the random differential equation (1.5)

directly because the initial value of the governing equation is random. First we apply

the chaos expansion to α and β, and we get

α(ξ1) =
M∑

l=0

α̂lΨl(ξ1), and β(ξ2) =
M∑

k=0

β̂kΨk(ξ2). (2.49)

The solution u(t, ξ1, ξ2) is expressed in the finite truncated form:

u(t, ξ1, ξ2) =
M∑
i=0

i∑
j=0

ui,j(t)Ψi−j(ξ1)Ψj(ξ2). (2.50)

Here {Ψi(ξ1)} and {Ψj(ξ2)} are normalized orthogonal bases.

From the initial condition in Eq. (1.5), combining (2.49) and (2.50), we have

M∑

k=0

β̂kΨk(ξ2) =
M∑
i=0

i∑
j=0

ui,j(0)Ψi−j(ξ1)Ψj(ξ2). (2.51)

Then we can do the Galerkin projection on each orthogonal function {Ψk(ξ2)}, and

get

β̂k =
M∑

i=k

ui,k(0)Ψi−k(ξ1) for each k = 0, . . . , M. (2.52)
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Doing Galerkin projection on each orthogonal function {Ψi−k(ξ1)},k ≤ i ≤ M , we

have

β̂k < Ψi−k, 1 >=< Ψi−k, β̂k >= ui,k(0). (2.53)

Using (2.22), we have the following set of initial condition.

ui,k(0) =





β̂k if i = k

0 if i 6= k.

(2.54)

On the other hand, substituting (2.49) and (2.50) into the differential equation

(1.5), we have

M∑
i=0

i∑
j=0

u′i,j(t)Ψi−j(ξ1)Ψj(ξ2) = −
M∑

l=0

M∑
i=0

i∑
j=0

α̂lui,j(t)Ψi−j(ξ1)Ψl(ξ1)Ψj(ξ2). (2.55)

The Galerkin projection on each orthogonal function {Ψk(ξ2)} implies,

M∑

i=k

u′i,k(t)Ψi−k(ξ1) = −
M∑

l=0

M∑

i=k

α̂lui,k(t)Ψi−k(ξ1)Ψl(ξ1) for each k = 0, . . . , M.

(2.56)

Doing Galerkin projection on each orthogonal function {Ψi−k(ξ1)} for i = k, . . . ,M ,

we get

u′i,k(t) =
M∑

l=0

M∑

i=k

α̂leilkui,k(t) for each k = 0, . . . ,M, (2.57)

where eilk = E[Ψi−kΨi−kΨl].

Thus, the UQ problem is transformed in the coupled deterministic equations (2.57)

with initial condition (2.54).

2.2.4 Wiener-Haar wavelet expansion

It has been verified that the stochastic Galerkin method, which is based on the global

chaos expansion, is more efficient than the MCS for many problems. However, when

the problem involves long-term integration or discontinuity in the random space, this

method fails to converge after a short time, and increasing the polynomial order helps
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little the convergence [19]. Hence, the use of the local chaos expansion, Wiener-Haar

wavelet expansion, was proposed, and it was proved to be more accurate and efficient

than the global chaos expansion ([8])

The Haar scaling function is defined as

φ(v) = I[0,1)(v) =





1 if 0 ≤ v < 1,

0 otherwise,

(2.58)

where I[0,1) is the indicator function of [0, 1). We can also define the scaled function

with the scaling factor j and the sliding factor k:

φj,k = 2j/2φ(2jv − k), (2.59)

where the scaling factor j is a positive integer and the sliding factor k = 0, . . . , 2j − 1.

Consider the functional space Vj = span{φj,k, k ∈ [0, 2j − 1]} and denote the pro-

jection of the square-integrable function f ∈ L2 onto the space Vj as P jf . Hence we

have

P jf(v) =
2j−1∑

k=0

fj,kφj,k(v), (2.60)

where the coefficients are given by the inner product

fj,k =

∫ 1

0

f(v)φj,k(v)dv. (2.61)

The detail function gj−1 ∈ Vj is defined as the difference between two resolution

levels:

gj−1 = P jf − P j−1f. (2.62)

To express the detail function, the Haar function Φ(v) is defined as:

Φ(v) , 1√
2
(φ1,0(v)− φ1,1(v)) =





1 if 0 ≤ v < 1
2
,

−1 if 1
2
≤ v < 1,

0 otherwise.

(2.63)
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Similar with (2.59), shifting and scaling the Haar function, we have

Φj,k(v) = 2j/2Φ(2jv − k), j = 1, 2, . . . , and k = 0, . . . , 2j − 1 (2.64)

We have the following properties of the functions {Φj,k}
∫ 1

0

Φj,k(v)dv = 0 and

∫ 1

0

Φ2
j,k(v)dv = 1

∫ 1

0

Φj,k(v)Φl,m(v)dv = 0 if j 6= l or k 6= m

(2.65)

Consequently, {Φj,k} is a set of normalized orthogonal functions. Any square-

integrable function f ∈ L2([0, 1]) can be expanded as

f =
∑

j,k

dj,kΦj,k, with dj,k =

∫ 1

0

f(v)Φj,k(v)dv. (2.66)

Hence, the detail function gj−1 can be expressed as

gj−1 =
2j−1−1∑

k=0

dj−1,kΦj−1,k(v). (2.67)

From (2.62), we have

P jf = P j−1f +
2j−1−1∑

k=0

dj−1,kΦj−1,k(v)

= P j−2f +
2j−2−1∑

k=0

dj−2,kΦj−2,k(v) +
2j−1∑

k=0

dj−1,kΦj−1,k(v)

· · ·

= P 0f +

j∑
i=1

2i−1−1∑

k=0

di,kΦi,k(v)

= c0φ(v) +

j−1∑
i=0

2i−1∑

k=0

di,kΦi,k(v).

(2.68)

For the stochastic analysis, let ξ be a continuous random variable on the finite

interval [a, b]. On the assumption that the probability distribution function F (ξ) is
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continuous and strictly increasing, there exists the density function ρ(x) for ξ and the

inverse function of F (x) such that y ∈ [0, 1] → x ≡ F−1(y) ∈ [a, b].

The stochastic process with finite second moment u(t, ξ) can be represented in the

form of the wavelet expansion

u(t, ξ) = u0(t) +
∞∑

j=0

2j−1∑

k=0

uj,k(t)wj,k(ξ), (2.69)

where uj,k(t) are the coefficients of the wavelet approximation of u(t, ξ), and wj,k(ξ) =

Φj,k(F (ξ)). Hence we can rewrite (2.69) as

u(t, ξ) = u0(t) +
∞∑

j=0

2j−1∑

k=0

uj,k(t)Φj,k(F (ξ)). (2.70)

Moreover, the Haar wavelet has the orthogonal properties for the density function ρ,

∫ b

a

wj,k(ξ)wl,m(ξ)ρ(ξ)dξ =

∫ 1

0

Φj,k(y)Φl,m(y)d(y) = δj,lδk,m, (2.71)

where δj,l is the Kronecker delta function

δj,l =





1 if j = l

0 if j 6= l.

(2.72)

This means that the wavelet functions {wj,k, j = 1, 2, . . . , and k = 0, . . . , 2j − 1, }
form an orthogonal system with respect to the inner product

(f, g) =

∫ b

a

f(ξ)g(ξ)ρ(ξ)dξ. (2.73)

In fact, {wj,k, j = 1, 2, . . . , and k = 0, . . . , 2j − 1, } is a complete orthogonal basis of

L2([a, b]), and it can represent any stochastic processes with finite-second moment [9].

2.2.5 Multidimensional Wavelet Basis

Following the notation in [8], we use a positive integer λ as the resolution level to

combine the scaling factor j and the sliding factor k: λ = 2j + k. Let O be the set of
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the resolution indexes, and let rewrite (2.70) as

u(t, ξ) = u0(t) +
∑

λ∈O
ut,λwλ(ξ). (2.74)

We denote the functional subspace {g : g ∈ span{wλ}µ
λ=0} with finite resolution level

by Wµ.

Let ξ be the random vector formed with the independent random variables ξ =

(ξ1, ξ2, . . . , ξn). The multi-dimensional wavelet subspace is constructed as [8]

WN ,
⊗

µ1+···+µn≤N

Wµi
(2.75)

Then the stochastic processes u(t, ξ) is expressed by the truncated form of the wavelet

basis as

u(t, ξ) = u0(t) +
N∑

i1=1

ui1(t)W1(ξi)

+
N∑

i1=1

i1∑
i2=1

ui1,i2(t)W2(ξi1 , ξi2)

+
N∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1,i2,i3(t)W3(ξi1 , ξi2 , ξi3) + · · · ,

(2.76)

where Wi is the product of the functions in the wavelet basis on each dimension, i.e.,

Wi ∈ {
i∏

k=1

wµk
:

i∑

k=1

µk ≤ N}, (2.77)

and ui1,i2,...(t) are the coefficients of the expansion.

2.2.6 Discrete Wavelet Transform

In practice, the series (2.70) is truncated to a resolution level j = J :

u(t, ξ) ≈ u0(t) +
J∑

j=0

2j−1∑

k=0

uj,k(t)Φj,k(F (ξ)). (2.78)

As the stochastic processes u(t, ξ) is expressed in the truncated expansion given in

(2.78), one way to determine the wavelet coefficients uj,k(t) is the Galerkin projection.
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However, generating the explicit equations of the stochastic Galerkin projection is not

a simple task for many practical problems.

An alternative is to evaluate the wavelet coefficients uj,k(t) using the Discrete

Wavelet Transform (DWT). Because of the orthogonality of the wavelet basis (see

(2.71)), the coefficients can be calculated as follows:

uj,k(t) =

∫ b

a

u(t, ξ)Φj,k(F (ξ))ρ(ξ)dξ =

∫ 1

0

u(t, F−1(y))Φj,k(y)dy. (2.79)

Instead of MCS or numerical integration, Mallat’s pyramid algorithm for the DWT

can be employed to compute the 2J+1 wavelet expansion coefficients [1]. This algo-

rithm is much more computationally efficient and yields Wiener-Haar coefficients with

significantly greater accuracy than MCS or numerical integration.

To determine the 2J+1 wavelet coefficient, Mallat’s pyramid algorithm requires at

least 2J+1 realization. Therefore the DWT can be considered as a type of ’sampling’

method, and used to replace the Galerkin projection in order to overcome the difficulty

of generating the explicit equations of the stochastic Galerkin projection.

2.3 Stochastic collocation method

In this thesis we propose to study the random dynamics using an approach based on

the stochastic collocation method (SCM). Collocation method is a way to predict the

behavior of the system at a fixed time by interpolation. Using interpolation instead of

the DWT makes the SCM much more straightforward to implement and save the com-

putational time for estimating the coefficients of the wavelet basis. Thus the selection

of the interpolation methods is the essential part of the design of SCM.

2.3.1 Lagrange interpolation polynomial

Let us consider the sequence of the powers of x: 1, x, x2, . . . , xn, . . ., and then form

linear combinations of the first n + 1 elements {xi, i = 0, . . . , n} with real coefficients
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ci:

g(x) = c0 + c1x + c2x
2 + . . . + cnxn. (2.80)

In the theory of interpolation, a certain finite number n + 1 of points x0 < x1 <

. . . < xn belonging to the interval [a, b] are selected, and for any real valued function

f , a function g(x) as in (2.80) is constructed such that it passes through the points

(xi, f(xi)). In other words, we seek the coefficients ci such that we have the following

equalities:

f(xi) = g(xi) = c0 + c1xi + c2x
2
i + . . . + cnx

n
i i = 0, 1, 2, . . . , n (2.81)

Equation (2.81) can be seen as a linear system of n+1 equation with n+1 variables,

c0, . . . , cn. The determinant of the system is

A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

1 xn x2
n . . . xn

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This is a Vandermond determinant, and equals to
∏

i>j(xi−xj) [4]. Therefore, based

on the assumption that xi 6= xj(i 6= j), the determinant is not zero, which implies that

the solution {ci} of the system (2.81) is unique for i = 1, . . . , n. Consequently the

interpolation polynomial is determinated uniquely.

To determine the interpolation polynomial g(x), we can express the interpolation

function in the form:

g(x) = f(x0)δ0(x) + f(x1)δ1(x) + · · ·+ f(xn)δn(x), (2.82)

where δi(x) is called the Lagrange polynomial and determined by [4]

δi(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
. (2.83)
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Notice that δi(xj) is a linear combination of 1, x, x2, . . . , xn satisfying

δi(xj) =





1 if i = j

0 if i 6= j,

(2.84)

Hence equation (2.82) can be expressed as

g(x) =f(x0)
(x− x1) . . . (x− xn)

(x0 − x1) . . . (x0 − xn)

+ f(x1)
(x− x0)(x− x2) . . . (x− xn)

(x1 − x0)(x1 − x2) . . . (x1 − xn)
+ . . .

+ f(xn)
(x− x1) . . . (x− xn−1)

(xn − x0)(xn − x1) . . . (xn − xn−1)

(2.85)

This polynomial is called the Lagrange interpolation polynomial, and denoted by Ln(x),

where n is the degree of the polynomial.

Next we apply the interpolation on the equidistant points

x1 − x0 = x2 − x1 = . . . = xn − xn−1 = h. (2.86)

Let x−x0

h
= t, and replacing in (2.83) we have

δi(t) =
(−1)n−it(t− 1) . . . (t− i + 1)(t− i− 1) . . . (t− n)

i!(n− i)!

=





(−1)n−i
(

n
i

) t(t−1)...(t−n)
(t−i)n!

, if t 6= i

1, if t = i

(2.87)

Thus the Lagrange interpolation polynomial becomes

Ln(x0 + th) =





t(t−1)...(t−n)
n!

∑n
i=0(−1)n−i

(
n
i

)
f(xi)
(t−i)

, if t 6= 1, 2, . . . , n

f(xi), if t = 1, 2, . . . , n.

(2.88)

Notice that the coefficients of f(xi) are independent of both fi(x) and h, and they can

be used for any equidistant nodes.

Although the interpolation polynomial g(x) coincides with the function f at the

points x0, x1, . . . , xn, the polynomial g(x) generally differs from the function f(x) at
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other points, except in the case when f(x) is a polynomial of degree less than n + 1.

We call this kind of difference | f(x)− Ln(x) | the error of the method [4].

To study the error of the method, we have to assume that the f(x) is n + 1 differ-

entiable on the interval [a, b]. The error of the method is given by: [4]

f(x)− Ln(x) =
f (n+1)(η)

(n + 1)!
(x− x0)(x− x1) . . . (x− xn), (2.89)

where η ∈ (a, b). If f (n+1)(x) is bounded, i.e., Mn+1 = supx∈[a,b] | f (n+1)(x) |< ∞, then

| f(x)− Ln(x) |≤ Mn+1

(n + 1)!
(x− x0)(x− x0) . . . (x− xn). (2.90)

Due to the following theorem of Weierstrass, any continuous function can be ap-

proximated by a polynomial:

Theorem 2.3 For any function f ∈ C[a, b] and any ε > 0, there exists a polynomial

P such that

| P (x)− f(x) |≤ ε for all x ∈ [a, b]. (2.91)

This might lead us to believe that error of the method can be reduced by increasing the

number of nodes and the degree of the interpolation polynomial. However, a famous

counter example was given by Runge:

f(x) =
1

1 + 25x2
. (2.92)

Even though this function is infinitely differentiable on [−1, 1], the sequence of the

interpolation polynomial Ln(x) with equidistant nodes is divergent on this domain

[15]. Hence the interpolation with equidistant nodes may fail to converge for a very

smooth function. The nodes given by the Chebyshev abscissas can help to improve the

convergence of the interpolation polynomials with high degree[15].

An alternative to interpolating with polynomials on selected nodes is to use piece-

wise polynomial functions on the interval [a,b]. Suppose that the selected nodes a =

x0 < x1 < · · · < xn = b are allocated to some subintervals [x0, xi1 ], [xi1 , xi2 ], . . . , [xik , xn],
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where i1, i2, . . . , ik are positive integers and 0 < i1 < i2 < · · · < ik < n. Then the piece-

wise polynomial interpolation will be

g(x) =





Ln1(x), x ∈ [x0, xi1)

Ln2(x), x ∈ [xi1 , xi2)

...

Lnk
(x), x ∈ [xik , xn],

(2.93)

where Lnj
(x) is the interpolation polynomial with degree nj on the interval [xij , xij+1

).

If the subintervals are arranged as [x0, x1], [x1, x2], . . . , [xn−1, xn] (i.e., only two nodes

in each subinterval), the degree of the interpolation polynomial reduces to one, and a

piecewise linear function is used in the interpolation:

g(x) = f(xi)
x− xi+1

xi − xi+1

+ f(xi+1)
x− xi

xi+1 − xi

, if x ∈ [xi, xi+1]

for i = 0, . . . , n− 1.

(2.94)

Therefore the piecewise linear function can be expressed as

g(x) =
n∑

i=0

f(xi)wi(x) (2.95)

where

w1(x) =





x−x1

x0−x1
, x ∈ [x0, x1]

0 otherwise,

wn(x) =





x−xn−1

xn−xn−1
x ∈ [xn−1, xn]

0 otherwise

(2.96)

and

wi(x) =





x−xi−1

xi−xi−1
x ∈ [xi−1, xi]

x−xi+1

xi−xi+1
, x ∈ [xi, xi+1]

0 otherwise

for i = 2, . . . , n− 1. (2.97)

The assumptions about the continuity of predicted function f may be not suitable

in the UQ problem because of jump phenomena in the bifurcation of the governing

equations. The discontinuity of f can make the convergence of high degree interpolation
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polynomials very slow, or even impossible (e.g. because of the Gibbs’ phenomenon [15]).

Consequently, in our implementation of the SCM we use the piecewise interpolation

with polynomial of degree 1.

2.3.2 Tensor products

To extend the one-dimensional interpolation to the multidimensional space, a natural

way is to use the tensor products of one dimensional interpolations. For a real value

function f : [a, b]n → R, we can construct an one dimensional interpolation in each

dimension by using the technique presented in the previous subsection:

I if =

mi∑

k=1

f(x
(i)
k )δk(x

(i)). (2.98)

Here the nodal sets are Θi = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
mi) ⊂ [a, b], and I i is the interpolation

operator of f on the i − th dimension. The tensor product for the multidimensional

space is constructed as

If ≡
n⊗

i=1

(I i(f)) (2.99)

on the nodal set Θ =
⊗n

i=1 Θi. Thus the tensor product formula becomes the product

of the one dimensional interpolation formula (2.98),

If =

m1∑

k1=1

· · ·
mn∑

kn=1

f(x
(1)
k1

, . . . , x
(n)
kn

)δk1(x
(1)) · · · · · δkn(x(n)). (2.100)

The computational complexity of SCM is N times that of the deterministic problem,

where N is the number of nodal points. Therefore the total number of collocation points

is one of the most important factor on the computational complexity of SCM.

In the tensor products, the number of nodes is | Θ |= m1 · · · · ·mn. If the number

of nodes in each dimension is the same, m1 = m2 = · · · = mn ≡ m, the total number

of nodes become N = mn. This number will grow exponentially with the increasing of

dimension n. Because of the rapid growth of the number of nodes in high dimensions,

the tensor product approach is mostly used at lower dimensions, for n ≤ 5. In the
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recent years, some technique of selecting nodes, such as sparse grids and Stroud’s

cubature [20] were developed to reduce the number of nodes in high dimensions and

to improve the efficiency of SCM.

The problem studied here is restricted to the 2 dimensional random space. The

’curse of dimension’ is still not obvious, and the number of the collocation points is

acceptable in the practical computation. So we will focus on the tensor products for

the 2 dimensional problem.

2.3.3 Numerical Implementation

Let Θ = {ξ(i)}N

i=1 ∈ [a, b] be a set of nodes selected on the interval [a, b], where N is the

number of nodes. By requiring that (1.4) is satisfied in each nodes for any k = 1, . . . , N ,

we obtain:

u′(t) = −α(ξ(k))u, t > 0

u(0) = u0.
(2.101)

We can estimate the solution u(t, ξ) by a piecewise linear function (2.95):

Iu(t, ξ) =
N∑

k=0

ũk(t)wk(ξ), for all t > 0, (2.102)

where

ũk(t) , u(t; ξ(k)), k = 1, . . . , N, (2.103)

is the value of the solution u at the given node ξ(k) ∈ Θ.

Thus the SCM is equivalent to solving N deterministic problems in each ’realization’

of the random variables ξ(k) for k = 1, . . . , N [21].

We also present the SCM for Eq.(1.5). We select the nodes Θ = (ξ
(1)
1 , ξ

(2)
1 , . . . , ξ

(N1)
1 )×

(ξ
(1)
2 , ξ

(2)
2 , . . . , ξ

(N2)
2 ) ∈ [a1, b1] × [a2, b2]. Since the equation (1.5) should be satisfied at

the nodes Θ, we have

u′(t) = −α(ξ
(i)
1 )u, t > 0

u(0) = β(ξ
(j)
2 ).

(2.104)
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The solution u is approximated by the tensor product interpolation polynomial

Iu(t, ξ1, ξ2) =

N1∑
i=1

N2∑
j=1

ũij(t)wi(ξ1)wj(ξ2), for all t > 0. (2.105)

Here

ũij(t) , u(t; ξ
(i)
1 , ξ

(j)
2 ), 1 ≤ i, j ≤ N. (2.106)

Once we obtain the numerical solution of (1.4) or (1.5) at all collocation points, the

expectation and variance can be evaluated to estimate the behavior of the system.

1. Using the estimation of the solution, Iu(t, ξ), we can evaluate the expectation:

E[u(t, ξ)] ≈ E[Iu(t, ξ)] =
N∑

k=1

u(t; ξ(k))

∫ b

a

wk(ξ)ρ(ξ)dξ. (2.107)

2. The variance of u(t, ξ) is estimated as

E[(u(t, ξ)− E[u(t, ξ)])2] ≈ E[(Iu(t, ξ)− E[Iu(t, ξ)])2]. (2.108)
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Chapter 3

Numerical Simulations

In this chapter, we evaluate the developed SCM and report simulation results using

the SCM to study nonlinear dynamical systems with uncertainty due to the system

parameters and the initial conditions. First, we consider two test models which were

investigated in detail by Pettit and Beran [11], in which the Polynominal Chaos (PC)

with Wiener Hermite expansion and Wiener Haar expansion were used to study the

stochastic problems with oscillatory behaviors. Once the performance of the SCM

is verified, we apply the SCM to investigate the Hopf bifurcation and the secondary

bifurcation in an aeroelastic system.

3.1 Test Models

3.1.1 Sinusoidal model

Consider a sinusoidal stochastic process [11]

u(t, ξ) = sin(ω(ξ)t), (3.1)

where the random frequency ω = ω0 + σω(ξ − 0.5), ξ is a uniform random variable on

Γ = [0, 1], ω0 = 2π, σω/ω0 = 0.60, and t = [0,10]. In order to test the convergence of

the SCM, in our experiments, we applied 32 and 64 collocation nodes respectively.

In Fig. 1, we compare the expected values resulting from the SCM with 32, 64

nodes and those using the MCS with 10000 samples. In theory, the absolute value of
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Figure 1: The evolution of E[u(t, ξ)]: Red - : MCS; Blue -. : SCM with 64 nodes;
Black .. : SCM with 32 nodes

the expectation is bounded by 2
σωt

:

| E[u(t, ξ)] | =| E[sin((ω0 + σω(ξ − 0.5))t)] |
=| E[sin(ω0t)cos(σω(ξ − 0.5)t)] + E[cos(ω0t)sin(σω(ξ − 0.5)t)] |
=| sin(ω0t)E[cos(σω(ξ − 0.5)t)] + cos(ω0t)E[sin(σω(ξ − 0.5)t)] |

=| 2sin(ω0t)sin(σωt
2

)

σωt
|≤ 2

σωt
,

(3.2)

since sin(x) is an odd function on [−σωt
2

, σωt
2

].

Clearly, the SCM produces a good approximation to the oscillatory dynamics. In

Fig. 2, we illustrate the plots showing x(t) versus ξ at t = 1, 2, ..., 10. From the

results shown in Figs 2, we observe that the SCM give excellent agreements for the

model u(t, ξ) = sin(ω(ξ)t) for a fixed t. Thus, the piecewise linear interpolation on the

nodal points is sufficient to provide a good estimation for the sinusoidal process. The

accuracy of the realization for SCM depends on the collocation nodes. Fig. 3 shows

the realization for SCM in the random space. A slight decay is observed for the SCM

with 32 nodes.

The same sinusoidal model was used in [11] to study the performance of the poly-

nomial chaos (PC) with Wiener-Hermite expansion. It was noted that the accuracy

of the approximation is very sensitive to the order of the truncated PC expansion.

Generally speaking, the order of the PC expansion should increase rapidly in order to
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Figure 2: Estimated value of u(t) versus ξ at t = 1, . . . , 10 from (a) to (j). Red -:
exact; Blue -.: SCM with 64 nodes

keep pace with the increasing frequency (see Fig. 2). Otherwise, the PC expansion

fails to capture the correct oscillatory response after some time. The realizations of the

sinusoidal random process based on the 10th-order Wiener Legendre expansions were

reported in [11] and the problems were clearly noted for t > 5 (see Fig. 8 in [11]).

Therefore, by comparing the realizations from SCM (Fig. 3) and the PC expansion

(Fig. 8 in [11]), we conclude that the SCM is superior to the PC expansion for long

time integration for the sinusoidal model. However, due to the increasing frequency in

the random space, the estimated expected value using SCM with 32 nodes fails at the

later time t > 40 (see Fig. 4). To overcome the difficulty, more nodal points can be

used in the SCM. Fig. 4 shows an excellent agreement for the SCM with 64 nodes and

the MCS for time t = [0, 70].

34



(a) 0 2 4 6 8 10
−1

−0.5

0

0.5

1

time

u(t)

(b) 0 2 4 6 8 10
−1

−0.5

0

0.5

1

time

u(t)

(c) 0 2 4 6 8 10
−1

−0.5

0

0.5

1

time

u(t)

Figure 3: Three sample realizations for the SCM: Red - : exact ; Blue -. : SCM with
64 nodes; Black .. : SCM with 32 nodes; (a) for ξ = 0.01; (b) for ξ = 0.56; (c) for
ξ = 0.995

3.1.2 Nonlinear dynamical system

The second test model is given by a nonlinear dynamical system with the following

governing equations:

x′ = c1x + c2y + c3xy2 + c4x
5

y′ = c5x + c6y + c7y
3 + c8y

5
(3.3)

where c1 = c6 = −0.2, c2 = −1, c3 = 1, c4 = c8 = −0.25, c5 = 1 and c7 = 0.5 + 0.5ξ.

The initial conditions are x(0) = y(0) = 0.6, and ξ is a uniform random variable on

[0,1]. This system was studied in [11] to evaluate the performance of the PC with

the Wiener Harr expansion in which the Hermite polynominal is replaced by the Haar

wavelet series. Here, we employ the ode45 algorithm in Matlab 6.5, (which is the

adaptive 4th/5th-order Runge-Kutta scheme with error checking as our deterministic

solver in the SCM). If the estimated error is larger than the tolerance, the algotithm

will refine the time step to retain the accuracy. The relative tolerance and absolute
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Figure 4: The loss of accuracy for the approximation to the expected value: Red - :
MCS; Blue -. : SCM with 64 nodes; Black .. : SCM with 32 nodes

tolerance is set to 10−3.
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Figure 5: The limit cycles for c7 = 0.75, solid line: stable limit cycle; dashed line:
unstable limit cycle

In the dynamical system, there exists a stable limit cycle oscillation (LCO) and

an unstable LCO (Fig. 5). When the initial point is inside the unstable LCO, the

dynamic system converges to the equilibrium, namely zero. If the dynamic system

starts with an initial point outside the unstable limit cycle, the system converges to

the stable LCO. Numerical simulation shows that the occurrence and the amplitude

of LCO is sensitive to the parameter c7 [11]. Thus, it is of interest to investigate the

system response with the uncertainty due to the coefficient c7.
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Figure 6: Simulation of x(t) at t = 90, red dot: deterministic; blue dashed line: SCM
with 32 nodes in (a) and 64 nodes in (b)

The random dynamical system under consideration exhibits a subcritical Hopf bifur-

cation, and it admits a discontinuity in the random space. Fig. 6 shows the simulation

of x(t) at t = 90.00, a time that is sufficiently large to allow the system to converges to

LCO or zero. The discontinuity is detected at around ξ∗ = 0.3. When ξ is less than ξ∗,

the system converges to zero implying the initial point (0.6, 0.6) is inside the unstable

LCO. On the other hand, when ξ is greater than ξ∗, the system produces a LCO, and

the initial point is outside the unstable LCO.
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Figure 7: Maximum value of |x(t)| for t ≥ 80, red dot: deterministic; blue dashed line:
SCM with 128 nodes in (a) and 256 nodes in (b)
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When ξ is greater than the discontinuity ξ∗, some errors in the estimated peak value

of x(t = 90, ξ) are observed in Fig. 6. It means that the interpolation underestimates

the peak value of the LCO. The error due to the interpolation on different time steps

yields the decay of the amplitude of realization from the SCM (see Fig. 7), where the

amplitude is defined by the maximum value of |x| for t ∈ [80, 100], which was chosen to

allow the system to have sufficient time to converge to LCO or zero. However, from the

plots presented in Fig. 6 and Fig. 7, more accurate results are obtained by introducing

more nodal points in the SCM.

In Fig. 8, we estimate the probability density function of x(t) at t = 90.00 by MCS

with 10,000 simulations. It clearly shows that the SCM has an excellent agreement

with the result based on the MCS. Moreover, the peak of the estimated probability

density function represents well the probability that the dynamic system converges to

zero.
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Figure 8: The density function of x(t) at t = 90.00

For the dynamic system with random LCO, we also investigate the realization from

SCM with 64 nodes for time t = [0, 100]. Fig. 9 and 10 display the realizations

generated for ξ = 0.682 and ξ = 0.780, respectively, for which the system converges

to the stable LCO. Using the same definition as introduced in [11]. the error of the
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Figure 9: Comparision of full model and SCM with 64 nodes for ξ = 0.682: (a) phase plane
plot of limit cycle, (b) realization, (c) detail on [90, 100], when red - : deterministic in (a-c),
blue -. : SCM in (a,b), and blue: error ε in (c)

realization is defined as

ε(t, ξ) = xapprox(t, ξ)− x(t, ξ) (3.4)

where xapprox(t, ξ) is the realization, and x(t, ξ) is the solution from the deterministic

system. The phase plane plots show that realizations from SCM accurately capture the

LCO of the dynamic system. However, a small decay of the amplitude for ξ = 0.780

can be observed in Fig. 10 (a). It should be clear that the collocation nodes used in

the SCM are uniformly selected, and do not include ξ = 0.682 and ξ = 0.780.

In [11], the realizations based on the Wiener-Haar (WHa) expansion for the stochas-

tic model with ξ = 0.682 and ξ = 0.780 were reported (Figs.19 and 20 in [11]). The

resolution level of the wavelet basis is 5, and 64 samples are included. The simulation

results in [11] illustrated that the local wavelet expansion represents the oscillation on

the stable LCO. However, when ξ = 0.780, there exists a time delay on the realization,

consequently it yields a large error as defined as in (3.4). Therefore, we conclude that

the performance of SCM shown in Fig 9 is as good as the local wavelet expansion for

39



(a)
−2 −1 0 1 2

−2

−1

0

1

2

y

x (b)
0 20 40 60 80 100

−2

−1

0

1

2

time

x 
( t

 )
(c)

90 92 94 96 98 100
−2

−1

0

1

2

time

x(
t) 

\ ε
(t)

Figure 10: Comparision of full model and SCM with 64 nodes for ξ = 0.780: (a) phase plane
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ξ = 0.682, but a much smaller error of the realization is achieved using the SCM for

ξ = 0.780.

3.2 Aeroelastic system

3.2.1 Model

With the success of the SCM in the above test models, we now consider applications of

SCM for an aeroelastic system. The two-degree-of-freedom dynamic model simulating

an airfoil oscillating in pitch and plunge can be expressed as a coupled system of two

second-order nonlinear ordinary differential equations, and the detail description can

be found in [6]:
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η
′′

+ xαα
′′

+ 2ζη
ω̃

U∗η
′
+

(
ω̃

U∗

)2

G(η) = − 1

πµ
CL(τ)

xα

r2
α

η
′′

+ α
′′

+ 2
ζα

U∗α
′
+

1

U∗2M(α) =
2

πµr2
α

CM(τ).

(3.5)

The variable η denotes the non-dimensional plunge displacement, and α is the pitch

angle of an airfoil. This is a fluid - structure interaction problem, where the structural

terms are given by M(α) and G(η), CL(τ) and CM(τ) represent the aerodynamic terms

which are expressed by integral formulations.

Following the procedure proposed in Lee et. al. [6], the integro-differential sys-

tem (3.5) is transformed into the following eighth-order ODEs. The details of the

transformation are given in the Appendix.

x′1 = x2

x′2 = (c0A− d0B)/(d0c1 − c0d1)

x′3 = x4

x′4 = (c1A + d1B)/(d0c1 − c0d1)

x′5 = x1 − ε1x5

x′6 = x1 − ε2x6

x′7 = x3 − ε1x7

x′8 = x3 − ε2x8

(3.6)

where

A = d3x1 + d2x2 + d5x3 + d4x4 + d6x5 + d7x6 + d8x7 + d9x8

+ (
1

U∗ )
2M(x1)− g(τ)

B = c5x1 + c3x2 + c4x3 + c2x4 + c6x5 + c7x6 + c8x7 + c9x8

+ (
ω̃

U∗ )
2G(x3)− f(τ)

(3.7)
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f(τ) =
2

µ
((

1

2
− ah)α(0) + η(0))(ψ1ε1e

−ε1τ + ψ2ε2e
−ε2τ ),

g(τ) = −(1 + 2ah)f(τ)

2r2
α

(3.8)

The nonlinear pitch stiffness term M(α) is defined as a polynomial model, and a

linear plunge stiffness term is employed where G(η) = η. The constants c0, . . . , c9 and

d0, . . . , d9 are given in the Appendix. For numerical simulations, the system parameters

are specified as follow:

µ = 100, ah = −0.5, xα = 0.25, ω̃ = 0.2 and rα = −0.5 (3.9)

In the present study, the solutions of the eighth-order ODEs are solved by the

fourth-order Runge-Kutta integration scheme.
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Figure 11: Hopf-bifurcation in the aeroelastic system: solid line: stable branch; dashed
line: unstable branch; (a) supercritical bifurcation for k3 = 3; (b) subcritical bifurcation
for k3 = −3

If the pitch stiffness term M(α) is given by a cubic polynomial model M(x1) =

x1 + k3x
3
1, the aeroelastic system undergoes a Hopf-bifurcation at the U∗ = U∗

L, where

U∗
L(≈ 6.285) is called the linear flutter speed. Here, positive values of k3 yields a

supercritical Hopf bifurcation (see Fig. 11(a)) for which the stable LCO exists for

U∗ > U∗
L; negative values yields a subcritical bifurcation (see Fig. 11(b)) leading to

unstable LCO for U∗ < U∗
L.
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In the recent study of Beran et. al.[1], a fifth-order polynomial

M(x1) = x1 + k3x
3
1 + k5x

5 (3.10)

is employed to model the pitch restoring force. In the situation when k3 < 0 and k5 > 0,

there exists a bifurcation point ULCO such that stable LCO exists for ULCO < U∗, where

ULCO ≈ 5.908 [1]. Therefore, for ULCO < U∗ < U∗
L, the aeroelastic system exhibits a

stable LCO and an unstable LCO (see Fig. 12). However, for U∗ > U∗
L, the unstable

LCO is fold and only the stable LCO exists in the dynamical system.

3.2.2 LCO I

Consider a fifth-order polynomial (Eq. (3.10)) is used to model the pitch with the

coefficient k5 taken as k5 = 20. The randomness of the aeroelastic system is introduced

though uncertainty of the coefficient associated with the cubic term, which is given by

k3(ξ) = [k3]0 + [k3]1ξ, (3.11)

where [k3]0 = −3, [k3]1 = 0.2, and ξ is a uniform random variable on [-4,4]. As the

function f(τ) and g(τ) can be very close to zero for large values of τ , we set the functions
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g(τ) and f(τ) to zero. Also the initial condition is first considered as deterministic,

where: x(0) = (0.0147, 0, 0, 0, 0, 0, 0, 0).
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Figure 13: Simulation of maximum plunge values for U∗ = 6.5:(a,c)1500 ≤ t ≤ 2000,
(b,d)17500 ≤ t ≤ 18000 red dots: deterministic; blue dashed lines: SCM with 128 nodes in
(a,b), 256 nodes in (c,d)

In order to carry out a reasonable comparison with the results presented in [1], we

consider the time domain t = [0, 18000]. The time is sufficiently large such that the

realization has converged to LCO for t much less than 18000, (actually, the realization

converged to LCO at t < 2000). Fig.13(a,c) shows the simulations of the maximum

plunge values (x3(t)) with respect to ξ when 1, 500 < t < 2, 000. Here, the difference

of the plunge computed in 2-norm between the SCM and MCS with 4000 samples

is only 0.0037 (Fig.13(a) for 128 nodes) and 0.0036 (Fig.13(c) for 256 nodes), which

demonstrates that the SCM reproduces the correct LCO for t < 2000. To investigate

the SCM performance for long-term computations, we compare the plots presented in

Fig.13(a) with (b) and (c) with (d). We observe that the error resulting in the decay of

the estimated LCO amplitude increase to 0.0306 (Fig.13(b) for SCM with 128 nodes)

and 0.0156 (Fig.13(d) for SCM with 256 nodes). Thus, introducing more nodes will

enhance the performance of the SCM.

In Fig. 14, we show that the variation of the pitch angle with respect to the random

variable ξ for U∗ = 6.5 (where U∗ > U∗
L) and U∗ = 6.284 (where ULCO < U∗ < U∗

L).
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Figure 14: Pitch angle w.r.t the random variable ξ for (a)&(b) U∗ = 6.5, and (c)&(d)
U∗ = 6.284; with deterministic (red dots) and SCM (blue dashed line) with 128 (in
(a,c)) and 256 (in (b,d)) nodes

For the latter case ULCO < U∗ = 6.284 < U∗
L, an unstable LCO and a stable LCO

co-exist, we note that the LCO disappeares at around ξ = 0.4 as k3 increases. The

SCM simulations are in good agreement with those deterministic results.

The success of the SCM can also be demonstrated from the probability density

function(PDF) of the LCO amplitude. Fig.15 compares the PDF based on the MCS

and those using the SCM with 128 and 256 nodes. The stochastic characteristic is

well captured by the SCM. When U∗ = 6.284, we have a bi-modal probability density

function as shown in Fig. 15(b). The peak of the density function at zero represents

the probability that the system converging to zero, i.e., the probability that the initial

point is inside the random unstable LCO; the other peak of the PDF represents the

probability that the aeroelastic system converges to a stable LCO.

It is important to note that while the SCM reproduces excellent agreement with

the simulation results based on MCS, the SCM is a highly efficient tool to study the

stochastic characteristics of the aeroelastic system. The computing time of the SCM
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Figure 15: PDFs of amplitude for (a) U∗ = 6.5, and (b) U∗ = 6.284

Table 2: CPU time for LCO I t = 18,000
Nodes 4000 128 256
MCS 46849 – –
SCM – 1284 2393

is due to the realization on the nodal points. Thus, the computing time for the SCM

with 256 nodes is about twice of that needed for the SCM with 128 nodes. However,

from Table 1, the computing time for SCM with 256 nodes is only about 5.1% (≈ 2393
46849

)

of that required by the MCS with 4000 samples.

3.2.3 LCO II

In the LCO I, we investigate the nonlinear response of the aeroelastic system in the

presence of uncertainty in the coefficient of the cubic term in the pitch restoring force.

We now extend our study so that the random variables are introduced in the pitch

stiffness term and the initial pitch angle. Here, we follow the setting reported in [12],

the initial pitch angle α0 = α(0) and the pitch stiffness term . Notice that, the fifth-

order term in pitch restoring force (Eq. (3.10)) k5 = 0. Consider

k3(ξ1) = [k3]0 + [k3]1ξ1

α0(ξ2) = [α0]0 + [α0]1ξ2

(3.12)

46



where [k3]0 = 3.0 for the hard spring, [k3]1 = 0.3; [α0]0 = 0.0, [α0]1 = 0.2, and ξ1 and

ξ2 are two independent standard Gaussian random variables. Although the support

of the Gaussian distribution is unbounded, we select the nodal points on the interval

[-4,4] to include almost all the random input, because for the gaussian density function,

we have

(
1√
2π

)2

∫ 4

−4

∫ 4

−4

e−1/2(ξ2
1+ξ2

2) dξ1dξ2 ≈ 0.9999. (3.13)
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Here if the initial pitch angle α(0) is not zero, the functions f(τ) and g(τ) are reset

to (3.8):

The non-dimensional velocity U∗ is specified at 6.5. The aeroelastic system is

started randomly with the initial point x(0) = (α0, 0, 0, 0, 0, 0, 0, 0). The time interval

t = [0, 2000] is sufficiently large for the system to converge to LCO. The peak α in

the last 10% of the time interval is taken as the amplitude of the system. In [12],

global polynomial expansion and global Fourier expansion were employed to solve the

random differential equation numerically. In this subsection, we will compare the result

using the SCM with those based on global polynomial expansion and global Fourier

expansion.

The amplitude response surface is shown in Fig. 16. At ξ2 = 0, the system is inac-

tive and there is a concave line on the amplitude response surface. Fig. 17 illustrates

the PDF of the LCO amplitude. Notice that the tail of the estimated PDF implies the

decay of the amplitude in the SCM simulation. By comparing the results of the SCM

with those using the global polynomial expansion and the global Fourier expansion

(Fig.6 in [12]), we note that the polynomial chaos expansion fails to capture the range

of LCO, and only a slight improvement is observed by increasing the order of the poly-

nomial. We also observe that the peak of the estimated PDF from a tenth-order Fourier

chaos expansion is lower than that of SCM, and the tail of the estimated PDF from

Fourier chaos expansion is larger than the result from SCM. Therefore, the application

of the SCM provides a better prediction to the PDF than the Fourier chaos expansion.

In addition, it should be noted that the tenth-order Fourier chaos expansion requires

more computing time than the MCS with 10, 000 samples (see Table 2 in [12])

In Fig. 18, we simulate the conditional expected value of ξ1, E(x1(2000, ξ1, ξ2)|ξ2),

by the MCS with 5000 samples at different fixed values of ξ2 and by the SCM with

21 × 65 nodes. The results show the SCM is in excellent agreement with the MCS

even near the discontinuity at ξ2 = 0. In contrast, the pitch angle amplitudes for the

eighth-order polynomial chaos expansion and the eighth-order Fourier chaos expansion
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Figure 18: E[x1(T ; ξ1, ξ2)] at T = 2000 vs ξ2

Table 3: CPU time for LCO II t=2000
Nodes 10000 11by51 21by65
MCS 10644 – –
SCM – 562 1185

are smaller than the MCS in the range of −1.5 < ξ2 < 1.5. In particular, a large tail

of the prediction on the PDF of the LCO amplitude is observed for the polynomial

chaos expansion [12]. Hence, the discontinuity at ξ2 = 0 causes a serious decay of the

simulations for the polynomial chaos expansion and the Fourier chaos expansion.

In Table 2, we display the computing time for LCO II. Even though the number

of the nodal points using the SCM increases with the dimension of the random space,

significant saving in computing time compared to that required by the MCS is achieved

using the SCM.

To study a more complicated case, we consider a fifth-order model for M(x1) (Eq.

(3.10), and let k5 = 20. Moreover the randomness of k3(ξ1) and α0(ξ2) is as same as

that in the previous study. Fig. 19 shows the PDF of the amplitude generated for the

hard spring (k3 > 0) and the soft spring (k3 < 0), respectively. Comparing the PDF

generated by the SCM with 21 × 65 nodes (see Fig. 19) with those using the Fourier
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Figure 19: PDFs for (a) U∗ = 6.9,hard spring and (b) U∗ = 6.3 hard spring (c) U∗ = 6.6
soft spring (d) U∗ = 6.0 soft spring

chaos expansion (see Fig. 8 in [12]), we notice that the SCM has a better prediction

of the amplitude. Moreover, it has been reported in Fig. 9 and 11 in [12] that for the

soft spring case, the Fourier expansion fails to predict the location of the peak value of

the PDF when U∗ ≤ 6. In Fig. 20, we display the location of the peak value of PDF

of the LCO amplitude (not including the equilibrium, zero). The estimations from the

SCM are in a good agreement with the MCS.

3.2.4 Secondary bifurcation

In the previous subsections (LCO I and LCO II), we studied the Hopf bifurcation and

LCO when uncertainty is introduced to an aeroelastic system. We now investigate

more complicated cases, namely the secondary bifurcation and the jump phenomenon

between the Hopf and secondary bifurcations. The Hopf bifurcation occurs when the

flow velocity U∗ reaches the linear flutter speed U∗
L. By increasing U∗ to about 2U∗

L, the

secondary bifurcation behavior may exist under certain conditions, and this has been

investigated by Lee et. al. [5] and Liu et. al. [7]. To study the secondary bifurcation,

a strong cubic nonlinearity in the pitch DOF, M(x1) = x1 + k3x
3
1 is usually considered

where k3 = 80. Here, the functions given in (3.8)are non-zero.
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Figure 21: The extreme pitch with different initial pitch:(a) α(0) = 1.0◦; (b) α(0) =
10.0◦

Fig. 21 (a) and (b) show the pitch extreme values versus U∗/U∗
L for the initial

pitch angle α(0) = 1.0◦ and 10.0◦, respectively. From the plot displayed in (a), we

observe that the Hopf bifurcation begins at U∗/U∗
L = 1, and the secondary bifurcations

appears when U∗/U∗
L = 2. However, unlike the Hopf bifurcation, the starting point for

the secondary bifurcation depends on the initial conditions. When α(0) is 10.0◦, the

secondary bifurcation occurs near U∗/U∗
L = 2.1.

Liu et. al. ([7]) also note that jump phenomenon in the LCO may exists in which

the the pitch motion changes from one positive extreme in the Hopf bifurcation to

three positive extremes in the secondary bifurcation. In this thesis, we demonstrate
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that similar phenomena exist when a random variable is introduced to the stiffness

term in the pitch restoring force. So we will focus on the cases that U∗/U∗
L ≈ 1.98 in

the following studying.
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Figure 22: Numerical solution of ode45 for k3 = 74 and U∗/U∗
L = 1.9803, the relative

and the absolute error tolerance is (a) 10−3; (b)10−6; (c)10−11; (d)10−13

In stochastic analysis, the cubic nonlinearity is used to model M(x1) = x1 + k3x
3
1,

and the coefficient for the strong nonlinear term is set as the random variable, where

k3(ξ) = [k3]0 + [k3]1ξ, where [k3]0 = 80, [k3]1 = 8 and ξ is the uniform random variable

on [−1, 1]. Here, the initial condition is deterministic, α(0) = 1.0◦ with other initial

values set to zero. Near U∗/U∗
L ≈ 1.98, we observe a jump phenomenon in the pitch

motion similar to that reported by Liu et. al. ([7]). However, it is noted that to

capture the correct aeroelastic behaviors, a very accurate solver must be employed for

the deterministic aeroelastic system. Fig. 22 illustrates the pitch motions using the

same ode45 solver, but with different absolute and relative error tolerances. When
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the relative and the absolute error tolerence is nongreater than 10−11, the numerical

results in Fig. 22 (c,d) is the same. Thus, we consider 10−11 is the appropriate value for

tolerence and set the relative and the absolute error tolerence to 10−11 in the following

study.
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Figure 23: The amplitude response for (a,b) U∗/UL = 1.985; (c,d) U∗/UL = 1.975 and
(e,f) U∗/UL = 1.9803; red dots: deterministic, blue dashed lines: SCM with 101 nodes
in (a,c,e) and SCM with 201 nodes in (b,d,f)

Fig. 23 shows the LCO amplitude response at different flow velocities. When

U∗/U∗
L = 1.975 and 1.985 (Fig. 23(a)-(d)), the jump phenomenon of the LCO am-

plitude does not occur, and the pitch motion is restricted in one type of bifurcation.

Notice that, the amplitude for U∗/U∗
L = 1.985 (i.e., in the secondary bifurcation) is

higher than the amplitude for U∗/U∗
L = 1.975 (i.e., in the Hopf bifurcation). However,

increasing the flow U∗/U∗
L to 1.9803 (Fig. 23(e,f)), we observe the occurrence of a

jump phenomenon in the LCO amplitudes. In Fig. 23(e,f), the LCO amplitude is

consists of two discontinuous parts, in which the lower parts corresponds to the Hopf

bifurcation and the upper parts corresponds to the secondary bifurcation. It should
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Figure 24: Pitch motion(rad) w.r.t. k3 for (a,b) U∗/UL = 1.985; (c,d) U∗/UL = 1.975
and (e,f) U∗/UL = 1.9803; red dots: deterministic, blue dashed lines: SCM with 101
nodes in (a,c,e) and SCM with 201 nodes in (b,d,f)

be noted that in this study, the initial condition is fixed, and the jump phenomenon

at U∗/U∗
L = 1.9803 occurs near k3 = 75.

The simulation results using the SCM at U∗/U∗
L = 1.9803 are displayed in Fig. 23

(e,f). It clearly shows that there are significant decay of the amplitudes near k3 =

75, at which the jump phenomenon between the bifurcations occurred. The jump

phenomenon between the bifurcation increases the difficulty for the SCM to simulate

the LCO amplitude of the aeroelastic system. However, the serious decay around the

discontinuity can be reduced by including more nodes in the SCM. In Fig. 23 (a-d),

we also observe that no decay in the amplitudes are noticed for U∗/U∗
L = 1.975 and

1.985, in which the pitch motion is entirely in Hopf or the secondary bifurcation.

As discussed above, the decay of amplitude is produced due to the error of the

interpolation in the random space. The simulated pitch motion at x1(t = 2000, k3)

for the three flow velocities are shown in Fig. 24. Here, we notice that the significant
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delay of the amplitude simulation happens around the particular value of k3 in which

the pitch motion is discontinuous in the random space. The results presented in Fig.

24 reconfirm the simulation reported in Fig. 23.

It would be of interest to investigated the jump phenomenon when considering that

random variables are present not only in the pitch restoring force, but also in the initial

condition and the flow velocity.
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Chapter 4

Conclusions

Stochastic collocation method is an algorithm in which the estimation is based on the

interpolation at different time steps. In this thesis, the SCM is developed for dynamical

systems with random parameters. Numerical simulations have been carried out to

demonstrate the SCM is much more efficient than the MCS. Moreover, by investigating

the UQ problems dealing with a long time simulation or with a discontinuity in the

random space as reported in [1] - [12], and comparing the results obtained by the

global chaos expansion, the SCM has consistently shown a better performance than

the global chaos expansion, such as Polynomial chaos expansion and Fourier chaos

expansion. We also compare the SCM with the DWT, and the performance of SCM

is at least as good as that of DWT. However, it should be pointed out that the SCM

requires less computing time that the DWT since the coefficients are not generated from

the wavelet basis. Another attractive feature of the SCM is that it is straightforward

and easy to implement to various UQ problems.

However, the SCM can not completely overcome difficulties of the UQ problems with

long time integration. The estimated expectation from SCM suffers loss of accuracy

after a long time simulation, and more nodes are required to retain the accuracy. In

our current study, the nodal points are selected at the beginning of the computation

and remain unchanged in the time domain. Therefore, it would be desirable to develop

an adaptive algorithm, so that the number of nodes and their selection are adjusted

at different time steps. The difficulty with this approach is that the coefficients of

the Lagrange polynomial is hard to evolve in multidimensional cases. Even though

the tensor product can be used to construct SCM in multidimensional UQ problems,
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the number of nodes will increase exponentially in order to retain the accuracy as the

dimension of the random space increases. Consequently, it makes the computational

time unacceptable large in multidimensional cases. Thus, the SCM is mostly preferred

for UQ problems in the lower dimensions.

In this thesis, we focused on the the random differential equations, and the results

clearly demonstrate that the SCM is an efficient numerical tool to study RDEs. How-

ever, the usage of the SCM is restricted to RDE, and it is not applicable to stochastic

differential equations.
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Appendix A

Transformation of aeroelastic

system

The 2 DOF oscillating in pitch and plunge aeroelastic system is expressed as [6]:

η
′′

+ xαα
′′

+ 2ζη
ω̃

U∗η
′
+

(
ω̃

U∗

)2

G(η) = − 1

πµ
CL(τ)

xα

r2
α

η
′′

+ α
′′

+ 2
ζα

U∗α
′
+

1

U∗2M(α) =
2

πµr2
α

CM(τ),

(A.1)

where η is the non-dimensional plunge displacement of the elastic axis; α is the pitch

angle of an airfoil; rα is the radius of gyration about the elastic axis; µ is the mass

ratio given by

µ = m/πρb2, (A.2)

where m is the mass of the airfoil; ρ is the freestream density and b is the airfoil

semi-chord.

U∗ is the non-dimensional velocity and ω̃ is the frequency ratio defined as

U∗ = U/bωα (A.3)

ω̃ = ωη/ωα, (A.4)

where U is the free-stream velocity and ωα and ωη are the uncoupled plunging and

pitching modes natural frequencies. The differentiation is with respect to the non-

dimensional time τ defined as

τ = Ut/b (A.5)
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CL(τ) and CM(τ) in (3.5) are the lift and pitching moment coefficients, respectively.

They are expressed as:

CL(τ) =π(η′′ − ahα
′′ + α′) + 2π{α(0) + η′(0) + [

1

2
− ah]α

′(0)}φ(τ)

+ 2π

∫ τ

0

φ(τ − σ)[α′(σ) + η′′(σ) + (
1

2
− ah)α

′′(σ)]dσ,
(A.6)

CM(τ) =π(
1

2
+ ah){α(0) + η′(0) + [

1

2
− ah]α

′(0)}φ(τ)

+ π(
1

2
+ ah)

∫ τ

0

φ(τ − σ)[α′(σ) + η′′(σ) + (
1

2
− ah)α

′′(σ)]dσ

+
π

2
ah(η

′′ − ahα
′′)− (

1

2
− ah)

π

2
α′ − π

16
α′′

(A.7)

where the Wagner’s function φ(τ) is given by

φ(τ) = 1− ψ1e
−ε1τψ2e

−ε2τ (A.8)

and the constants are ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3.

By introducing four new variables w1, w2, w3, w4:

w1(τ) =

∫ τ

0

e−ε1(τ−σ)α(σ)dσ

w2(τ) =

∫ τ

0

e−ε2(τ−σ)α(σ)dσ

w3(τ) =

∫ τ

0

e−ε1(τ−σ)η(σ)dσ

w4(τ) =

∫ τ

0

e−ε2(τ−σ)η(σ)dσ

, (A.1) can be rewritten as:

c0η
′′ + c1α

′′ + c2η
′ + c3α

′ + c4η + c5α + c6w1 + c7w2 + c8w3 + c9w4

+ (
ω̃

U∗ )
2G(η) = f(τ)

d0η
′′ + d1α

′′ + d2η
′ + d3α

′ + d4η + d5α + d6w1 + d7w2 + d8w3 + d9w4

+ (
1

U∗ )
2M(α) = g(τ).

(A.9)
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The coefficients of equation (A.9) are as follows:

c0 = 1 +
1

µ
, c1 = xα − ah

µ
, c2 = 2ζη

ω̃

U∗ +
2

µ
(1− ψ1 − ψ2),

c3 =
1 + (1− 2ah)(1− ψ1 − ψ2)

µ
, c4 =

2

µ
(ψ1ε1 + ψ2ε2),

c5 =
2

µ
[(1− ψ1 − ψ2) + (1/2− ah)(ψ1ε1 + ψ2ε2)],

c6 =
2

µ
ψ1ε1[1− (1/2− ah)ε1], c7 =

2

µ
ψ2ε2[1− (1/2− ah)ε2],

c8 = − 2

µ
ψ1ε

2
1, c9 = − 2

µ
ψ2ε

2
2,

d0 =
xα

r2
α

− ah

µr2
α

, d1 = 1 +
1 + 8a2

h

8µr2
α

,

d2 = 2
ζη

U∗ +
1− 2ah

2µr2
α

− (1 + 2ah)(1− 2ah)(1− ψ1 − ψ2)

2µr2
α

,

d3 = −(1 + 2ah)(1− ψ1 − ψ2)

µr2
α

− (1 + 2ah)(1− 2ah)(ψ1ε1 + ψ2ε2)

2µr2
α

,

d4 = −(1 + 2ah)(1− ψ1 − ψ2)

µr2
α

, d5 =
(1 + 2ah)(1− 2ah)(ψ1ε1 + ψ2ε2)

2µr2
α

,

d6 = −(1 + 2ah)ψ1ε1[1− (1/2− ah)ε1]

µr2
α

d7 = −(1 + 2ah)ψ2ε2[1− (1/2− ah)ε2]

µr2
α

,

d8 = −(1 + 2ah)ψ1ε
2
1

µr2
α

, d9 = −(1 + 2ah)ψ2ε
2
2

µr2
α

,
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where M(α) is the nonlinear pitch stiffness term, G(η) = η is the linearity plunge

stiffness term.

Let x1 = α, x2 = α′, x3 = η, x4 = η′, x5 = w1, x6 = w2, x7 = w3, and x8 = w4. we

can rewrite (A.9) as the following eight-order ODE.

x′1 = x2

x′2 = (c0A− d0B)/(d0c1 − c0d1)

x′3 = x4

x′4 = (c1A + d1B)/(d0c1 − c0d1)

x′5 = x1 − ε1x5

x′6 = x1 − ε2x6

x′7 = x3 − ε1x7

x′8 = x3 − ε2x8,

(A.10)

where

A = d3x1 + d2x2 + d5x3 + d4x4 + d6x5 + d7x6 + d8x7 + d9x8

+ (
1

U∗ )
2M(x1)− g(τ),

B = c5x1 + c3x2 + c4x3 + c2x4 + c6x5 + c7x6 + c8x7 + c9x8

+ (
ω̃

U∗ )
2G(x3)− f(τ).

(A.11)

61



Bibliography

[1] P.S. Beran, C.L. Pettit, and D.R. Millman. Uncertainty quantification of limit-

cycle oscillations. Journal of Computational Physics, 217(1):217–244, 2006.
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