
U niversity of A lberta

E P P d b : a D a t a b a s e f o r P r o t e o m ic A n a l y s is o f E x t r a c y t o s o l ic

P l a n t P r o t e in s

by

Yang Wang

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M aster o f Science.

Department of Computing Science

Edmonton, Alberta
Fall 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-95876-0
Our file Notre reference
ISBN: 0-612-95876-0

The author has granted a non­
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my family, for their endless love and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I have been priviledged to have had the opportunities to work with many
brilliant people during my thesis research. W ithout their help and guidance,
this thesis work would be impossible in many ways.

First and foremost, I would like to express my deepest gratitude to my
supervisors, Dr. Osmar R. Za'iane and Dr. Randy Goebel. I have benefited a
lot from their insightful guidance, inspiring support and invaluable knowledge.
I am also very grateful for their financial support and many reference letters.

I would like to thank Dr. Michael Deyholos for being my external examiner
and providing many helpful comments on my thesis.

This work could not have been done without the generous assistance of
many biologists that I have been working with, including Jennafer L. Southron,
Urmila Basu, Randy M. Whittal, Julie L. Stephens and Gregory Taylor. They
have taught me a lot about the biological background of this thesis work.

Thanks also go to Rob Lake, Maria-Luiza Antonie and Zhiyong Lu. Rob
helped me on many technical issues during the early stage of this work. Luiza
shared her work with me and provided me a lot of advices. Zhiyong helped
me with the plant dataset used in this work.

Last, but definitely not the least, I would like to thank my parents, my
sisters and my sister-in-laws for many years of unconditional love, support
and understanding. The pursuit of graduate study is partially a result of their
encouragement for advanced education since my childhood. They are what
makes all the efforts worthwhile. It is on their behalf I dedicate this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1
1.1 Motivation and B ackground ... 1
1.2 C on tribu tions... 2
1.3 Thesis Organization... 2

2 Work R elated to Protein Databases 4
2.1 In troduction .. 4
2.2 Sequence Repositories ... 5
2.3 Curated D a ta b a se s ... 5
2.4 2-DE D atabases.. 6
2.5 Summary ... 8

3 Extracytosolic P lant Protein Database 9
3.1 In troduction .. 9
3.2 System Architecture .. 10
3.3 Database C onstruction ... 13
3.4 Web Services ... 16

3.4.1 Introduction to Web Services ... 16
3.4.2 Extensible Markup Language (X M L).............................. 17
3.4.3 Simple Object Access Protocol (SO A P)........................... 19
3.4.4 Web Services Im plem entation ... 20

3.5 Data Analysis Tools .. 20
3.6 S u m m a ry ... 22

4 Work R elated to Extracellular P rotein Prediction 23
4.1 Introduction to Biological B ac k g ro u n d .. 23
4.2 Work Related to Protein Subcellular Localization Prediction . 26

4.2.1 Prediction Based on N-terminal Sorting Signals 26
4.2.2 Prediction Based on Amino Acid C om position.............. 29
4.2.3 Prediction Based on Lexical A n a ly s is 30
4.2.4 Prediction Based on Integrative A pproaches................. 32
4.2.5 Challenges and Limitations of Existing Methods 34

4.3 Work Related to Mining Sequential D a t a 35
4.3.1 Mining Sequential Patterns .. 35
4.3.2 Sequential Pattern Mining with C o n s tra in ts 41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Mining Frequent E p iso d e s .. 43
4.4 Summary .. 46

5 Extracellular Protein Prediction 48
5.1 Feature E x tra c tio n ... 48
5.2 Support Vector M a c h in e .. 51
5.3 B oosting .. 54
5.4 Frequent Subsequence Pattern (FSP) M e th o d 56
5.5 S u m m a ry .. 60

6 Experim ents 63
6.1 Dataset and Evaluation... 63
6.2 Experiment Result of SV M ... 65
6.3 Experiment Result of Boosting ... 65
6.4 Experiment Result of the FSP M e th o d 66
6.5 Comparison with Other M e th o d s ... 66
6.6 Combining Frequent Subsequences and Amino Acid Composition 68
6.7 Effects of M in L en ... 70

7 Conclusion and Future Work 72
7.1 Conclusion.. 72
7.2 Future W ork .. 73

Bibliography 74

A Glossary 81

B Sample Code 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 Overall architecture of E P P d b .. 11
3.2 An example of a database e n t r y .. 12
3.3 An example of a 2D map showing the locations of proteins iden­

tified in a gel .. 12
3.4 EPPdb database sch em a ... 15
3.5 Quick text s e a rc h .. 15
3.6 Architecture of Web Services... 18

4.1 Structure of signal peptide [51] 28
4.2 An example of amino acid composition represented by a histogram 29
4.3 The overall differences in amino acid composition between all

groups [43].. 31
4.4 LOCkey algorithm [4 9] ... 33
4.5 PA-Sub builds a classifier using machine learning algorithms [43] 33
4.6 GSP A lg o rith m .. 38
4.7 An example of vertical layout of sequence d a ta b a s e 38
4.8 Computing Support via Id-list Intersections [8 6] 39
4.9 PrefixSpan Algorithm .. 40
4.10 Computing Support via Id-list Intersections [2 6] 42
4.11 Prefix-Growth A lgorithm ... 44
4.12 An example of event sequence and a window of width 5 [46] . 45
4.13 Examples of three different episodes represented by directed

acyclic g ra p h s ... 46

5.1 Suffix tree for string “xabxac” [28]... 49
5.2 The GST for three sequences: MNQIHK, MKKFK and MKKC 50
5.3 A linear SVM for a two-dimensional training s e t 52
5.4 Support vector machine: mapping non-separable data from 2-D

input space to 3-D feature sp ace ... 53
5.5 AdaBoost Algorithm [65]... 55
5.6 FOIL A lgorithm ... 58
5.7 Examples showing two p a t te r n s .. 60
5.8 Matching pattern against sequence ... 60
5.9 Algorithm for finding p a t te rn s .. 61
5.10 Two possible alignment of pattern U*ABC * D E F *” against

sequence “A B C A B C P Q D E F ” ... 61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1 Examples of patterns found by the FSP m e th o d 68
6.2 F-measures of different algorithm s.. 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Line codes and line types in SW ISS-2D PA G E........................... 7

3.1 Line codes and line types in E P P d b .. 11

4.1 The twenty naturally occurring amino a c i d s 24
4.2 The ontologies across five different taxonomic categories. Ab­

breviations for localizations: nuc (nuclear), end (endoplasmic
reticulum), gol (golgi), mit (mitochondria), pex (peroxisomal),
lys (lysosomal), cyt (cyoplasmic), mem (membrane), ext (extra­
cellular), chi (chloroplast), vac (vacuole), inn (inner membrane),
per (periplasmic), wal (cell wall), out (outer membrane). . . . 26

4.3 A sequence database [87]... 36
4.4 A example of candidate generation in GSP [71] 37
4.5 Characterization of commonly used constraints (for detailed de­

scription about the constraints, refer to [5 8])............................. 43

6.1 Confusion M a tr ix ... 64
6.2 Number of subsequence in each fo ld ... 64
6.3 SVM classification with frequent subsequences.......................... 65
6.4 AdaBoost classification with different number of iterations . . 65
6.5 Experiment Result of Subsequence Pattern M e th o d 66
6.6 SVM classification with amino acid com position 67
6.7 AdaBoost classification on amino acid composition 67
6.8 SVM classification with combined fe a tu re s 69
6.9 Comparison of SVM based on different f e a tu r e s 69
6.10 AdaBoost classification with combined features 70
6.11 Comparison of AdaBoost based on different features................ 70
6.12 F-measure of SVM on frequent subsequences with different MinLen

(the number in brackets shows the average number of frequent
subsequences).. 71

6.13 F-measure of AdaBoost on frequent subsequences with different
MinLen (the number in brackets shows the average number of
frequent subsequences).. 71

B.l Web services in E P P d b ... 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 M otivation and Background

A proteome represents the proteins that are expressed in a specific biologi­

cal unit at a particular time and under a particular set of conditions. Pro-

teomics utilizes a diverse set of tools to display, identify, and investigate the

proteins in a proteome. The results of proteomic studies are commonly dis­

played in on-line databases. In particular, experimental data available from

two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) are displayed

in 2-D PAGE databases (or 2-DE databases) [5]. Links to many 2-D PAGE

database servers and 2-D PAGE related servers and services can be found at

WORLD-2DPAGE1 and efforts have been made to establish a set of feder­

ated databases [5] that are maintained independently, but are linked together

through the World Wide Web (WWW).

This dissertation describes the design and implementation of EPPdb (Ex-

tracytosolic Plant Protein Database), an on-line 2-D PAGE database that is

built to provide the plant biology community with relevant information about

extracytosolic plant proteins. Extracytosolic plant proteins are involved in

numerous processes including nutrient acquisition, communication with other

soil organisms, protection from pathogens, and resistance to disease and toxic

metals. Insofar as these proteins are strategically positioned to play a role

in resistance to environmental stress, biologists are using proteomic tools,

such as two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), liquid

1 http: / /ca.expasy.org/ch2d / 2d-index.html

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chromatography-tandem mass spectrometry (LC-MS/MS), de novo sequenc­

ing, and bioinformatics, to analyze extracellular proteins. These proteins are

collected from Brassica napus (canola) plants grown hydroponically in a sterile

environment[4, 8, 81]. The goal of this database is to allow biologists retrieve

and submit information about extracytosolic plant proteins, and to perform

advanced data analysis and data mining tasks using tools submitted to the

database by researchers.

1.2 Contributions

The contributions of this dissertation include:

• From the biology side, EPPdb is the first database built solely for ex­

tracytosolic plant proteins. The information will be available for use in

plant physiology and plant breeding programs throughout the world to

improve crop growth. It will open up new opportunities for discovery of

novel genes and promoters.

• EPPdb uses Web Services to facilitate information sharing among appli­

cations, which is quite novel in biological database management commu­

nity.

• EPPdb introduces the concept of allowing users to submit tools to facil­

itate more sophisticated data analysis and data mining tasks.

• As a proof of the concept of data analysis and data mining tools, a tool

for identifying extracellular proteins from primary sequences is built by

using data mining techniques.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 and Chap­

ter 3 comprise the first part of this dissertation, which focuses on the 2D-PAGE

database. Chapter 2 introduces some related work on protein databases.

Chapter 3 describes the design and implementation of various functionalities of

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the database. The second part of this dissertation concentrates on a database

analysis tool that we build for EPPdb, which is to identify extracellular pro­

teins from protein primary sequences. This part includes Chapter 4, Chapter

5 and Chapter 6. Chapter 4 introduces biological background and existing

methods that are related to the problem of extracellular protein prediction.

This chapter also introduces the problem of mining sequential data, which is

related to the methods we use. Chapter 5 describes the approaches we use for

predicting extracellular proteins, including feature extraction, sequence mod­

eling, and learning algorithms. Chapter 6 presents the experimental results on

real-world datasets. The last chapter (Chapter 7) concludes the dissertation

and points to some future work. Appendix A gives a short glossary of common

terms. Appendix B shows a sample code for accessing our database through

Web services.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Work R elated to Protein
Databases

2.1 Introduction

With the availability of over 165 completed genome sequences from both eu­

karyotic and prokaryotic organisms, a huge volume of data are generated from

the large-scale analysis of these proteins. This comes from both the informa­

tion provided by the genome projects and the newly developed technologies in

protein science. Nowadays, it is possible to quickly identify large number of

proteins, to map their interactions, to determine their locations within the cell

and to analyze their biological activities. Protein sequence databases play an

important role as a repository for storing the accumulated data and making

them accessible to the scientific community [7].

This chapter introduces the work related to the protein database. Accord­

ing to the level of additional information to the sequence records they contain,

protein sequence databases can be categorized as sequence repositories and

curated databases. Section 2.2 and Section 2.3 introduce these two type of

protein databases, respectively. Section 2.4 introduces the two-dimensional

electrophoresis (2-DE) database, which is the type of databases EPPdb falls

into [7]. Section 2.5 summarizes this chapter.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Sequence Repositories

Several protein sequence databases act as repositories of protein sequences,

in the sense that they contain little or no additional information other than

protein sequences. Usually they make no effort to provide a non-redundant

collection of sequences to users.

An example of sequence repositories is GenBank Gene Products (Gen-

Pept) database. The entries in the database are derived from translations of

the sequences contained in the nucleotide database maintained by the DNA

Database Bank of Japan (DDBJ), the European Molecular Biology Labora­

tory (EMBL) Nucleotide Sequence Database and GenBank. The entries in

the database contain minimal annotation extracted from the corresponding

nucleotide entries. These databases lack additional annotation and do not

contain proteins derived from amino acid sequencing. Also, each protein in

the database can be represented by different entries, so the database is redun­

dant.

2.3 Curated Databases

Compared with sequence repositories, the curated databases enrich the se­

quence data in the databases by adding additional information. The additional

information is usually validated by expert biologists before they are added into

the databases. Also effort is made to remove redundancy of the databases by

compiling all reports for a given protein sequence into a single entry.

SWISS-PROT1 is the most well-known universal curated protein sequence

database. It contains 152040 sequence entries as of May 2004 (Release 43.4).

In SWISS-PROT, all the reports for a given protein are merged into a single

entry, so the database is non-redundant.

The core data, which is required for every SWISS-PROT entry, consists

of the amino acid sequence, the protein name (description), taxonomy data

and citation information. Additional information on proteins is available, the

1 http: / / www.ebi.ac.uk/swissprot/index.html

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ebi.ac.uk/swissprot/index.html

entries contain detailed annotation on items such as the functions of the pro­

tein, subcellular locations, secondary structure, tertiary structure, quaternary

structure, etc. The annotation added is stored mainly in the description (DE)

lines, the gene (GN) lines, the comment (CC) lines, the feature table (FT)

lines, and the keyword (KW) lines [9].

2.4 2-DE Databases

A two-dimensional electrophoresis (2-DE) database is a specific protein database

that contains experimental data available from two-dimensional polyacrylamide

gel electrophoresis (2-D PAGE). A 2-DE database usually contains textual de­

scriptions of the proteins identified and various 2-D PAGE images showing the

protein locations.

The most famous 2-DE database is SWISS-2DPAGE2. Each SWISS-2DPAGE

entry corresponds to one protein and contains several lines to represent the tex­

tual descriptions of the protein, including mapping procedures, physiological

and pathological information, experimental data (isoelectric point, molecular

weight, amino acid composition, peptide masses) and bibliographical refer­

ences. Each line begins with a two-character line code, which indicates the

type of data contained in the line. Table 2.1 shows the lines codes and line

types3 used in SWISS-2DPAGE.

In addition to this textual data, SWISS-2DPAGE provides several 2-D

PAGE and SDS-PAGE images showing the experimentally determined loca­

tion of the protein, as well as a theoretical region computed from the protein

sequence, indicating where the protein might be found in the gel. Cross-

references are provided to Medline and other federated 2-DE databases (YEPD,

EC02DBASE, HSC-2DPAGE, PHCI-2DPAGE, PMMA-2DPAGE, Siena-2DPAGE)

and to SWISS-PROT, which provides many links to other molecular databases

(EMBL, Genbank, PROSITE, OMIM, etc).

SWISS-2DPAGE can be browsed through the ExPASy World Wide Web

2http://au.expasy.org/ch2d
3http://tw .expasy.org/ch2d/manch2d.html

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://au.expasy.org/ch2d
http://tw.expasy.org/ch2d/manch2d.html

Line code Line type Occurrence in an entry
ID Identification Once; starts the entry
AC Accession number(s) One or more
DT Date Two times
DE Description One or more
GN Gene name(s) Optional
OS Organism species One or more
OC Organism classification One or more
OX Taxonomy cross-reference(s) Once
MT Masters One or more
IM Images One or more
RN Reference number One or more
RP Reference position One or more
RX Reference cross-reference (s) Optional
RA Reference authors One or more
RT Reference title Optional
RL Reference location One or more
CC Comments or notes One or more
2D 2-D PAGE specific data several
ID SDS-PAGE specific data several
DR Database cross-reference Optional
/ / Termination line Once; ends the entry

Table 2.1: Line codes and line types in SWISS-2DPAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

molecular biology server. The SWISS-2DPAGE top page provides several text

searches, and displays results with links to other databases. SWISS-2DPAGE

also allows users to select a 2-D PAGE map that will be displayed, then the user

can click a spot in the map and obtain the information on the corresponding

protein.

2.5 Summary

This chapter has presented some work related to protein database. In particu­

lar, we introduced 2-DE database, a concept upon which EPPdb will be built.

The next chapter will describe in detail the design and implementation of the

various functionalities of EPPdb.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Extracytosolic Plant Protein
Database

3.1 Introduction

EPPdb contains the results from proteomic studies on proteins collected from

Brassica napus (canola) plants, including the 2D maps showing the protein

locations, and descriptions of the identified proteins. Cross references are pro­

vided to SWISS-PROT/TrEMBL [9], which is the largest annotated protein

database in the world. In order to get the data for our database, the pro­

teins in the cells or tissues to be studied are solubilized by biologists. The

DNA and other contaminants are removed. The proteins are separated by

their charges using isoelectric focusing, which is an electrophoresis between a

cathode and anode with the cathode at a higher pH than the anode. Because

the amino acids in proteins have amphoteric properties, they will be separated

by migrating toward different pH values. After that, the separated proteins

are analyzed by LC/MS (Liquid Chromatography/Mass Spectrometry). The

resulting LC/MS data are submitted for database searching. After de novo se­

quencing the proteins, they are submitted to the MS-Blast and MS-Homology

to find homologous proteins in other plant species [4, 8].

What distinguishes our database from other 2-D PAGE databases is that

it not only provides a Web interface for querying using a client browser, but

also provides Web services that allow other applications to make function calls

over HTTP and use XML as a message transfer format to be consumed by

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the clients. To the best of our knowledge, no other major biological databases

support an XML interface.

Our database also aims to provide tools that facilitate more sophisticated

data analysis and data mining tasks. To achieve this goal, our database is

built as a framework that allows users to submit not only queries, but also

data and tools for experimenting with various data analysis and data mining

tasks. For example, one tool that we have developed in this dissertation is for

predicting extracellular proteins from amino acid sequences.

The sections that follow elaborate on the design and implementation of

our database. Section 3.2 introduces the overall architecture of our database.

Section 3.3 discusses the implementation of search functions. Section 3.4 in­

troduces the Web services implemented as part of our database. Section 3.5

describes the tools added to our database for experimenting with various data

analysis and data mining tasks.

3.2 System Architecture

The overall architecture of the our database is shown in Figure 3.1. The

protein database contains all the protein entries. The format of protein entries

is similar to that in SWISS-PROT/TrEMBL [9] and SWISS-2DPAGE [30].

Each entry is composed of defined lines, used to record various kinds of data.

Each line begins with a two character line code, which indicates the type of

data contained in the line1. Table 3.1 shows the line codes and line types used

in EPPdb. An example of a protein entry is shown in Figure 3.2. Several

lines are specific to our database: (i) the DB line lists an accession number

specific to our database. Each entry in our database has a unique DB line; (ii)

if applicable, the IS line lists the isozyme(s) (identified by their DB accession

numbers) of a protein. In addition, the 2-D map associated with a protein

entry displays the experimental location of the protein on the chosen map

(Figure 3.3).

The protein entries in the database can be queried in two ways. Firstly, a

1Uniprot/SWISS-PROT User Manual, http://ca.expasy.org/sprot/userman.html

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ca.expasy.org/sprot/userman.html

Line code Line type Occurrence in an entry
ID Identification in SWISS-PROT Once; starts the entry
AC Accession number (s) One or more
DT Date Two times
DE Description One or more
GN Gene name(s) Optional
OS Organism species One or more
o c Organism classification One or more
o x Taxonomy cross-reference (s) Once
MT Masters One or more
IM Images One or more
RN Reference number One or more
RP Reference position One or more
RA Reference authors One or more
RT Reference title Optional
RL Reference location One or more
CC Comments or notes One or more
2D 2-D PAGE specific data several
DR Database cross-reference Optional
DB Identification in EPPdb Once
IS Other protein spots matching the top hit Optional
SQ Protein sequence Once

KW Keywords Optional
AL Alignment Optional
OP Other sequenced peptides Optional
/ / Termination line Once; ends the entry

Table 3.1: Line codes and line types in EPPdb

,adding newadding! new

Data/Tools
Repository Data Analysis

Tools Repository

Data Analysis
via

W eb S erv ices

D ata A nalysis
via

W eb Interface

D a ta b a se S earch
via

W eb Interface

D a ta b a se S earchData/Tools
subm ission

W eb S erv ices

Applicatii

Figure 3.1: Overall architecture of EPPdb

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ID Q9M8Y9; PRELIMINARY; 2DG.
AC Q9M8Y9;
DT 30-MAY-2003 (Rel. 01, Created)
DT 30-MAY-2003 (Rel. 01, Last update)
DE Putative trypsin inhibitor.
GN T6K12.5.
OS Arabidopsis thaliana (Mouse-ear cress).
0C Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
0C Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
0C eurosids II; Brassicales; Brassicaceae; Arabidopsis.
OX NCBI.TaxID-3702;
MT <i>Brassica napus</i> Extracellular Proteome.
IM <i>Brassica napus</i> Extracellular Proteome.
RN [1]
RP MAPPING ON GEL.
RA Basu U., et al.;
RT “ Using proteomics to establish an Extracytosolic Plant Proteins Database’’;
RL Unpublished observations (MAY-2003).
CC SUBCELLULAR LOCATION: Secretory pathway signal peptide (predicted by TargetP; RC 1).
CC -!- PTM: SignalP predicts most likely cleavage site to be between pos. 21 and 22 (TSG-VV).
CC MISCELLANEOUS: Predicted pi 5.90.
2D MASTER: BRASSICA.NAPUS.EXTRACELLULAR.PROTEOME;
2D -!- PI/MW: SPOT 00001-5.0/23000;
2D -!- HAPPING: SPOT 00001: LC-MS/MS.
2D -!- PEPTIDE SEQUENCES: SPOT 00001: FANPSKCGESGVWR; VANGEVVLNGVESR;
2D CPHQPVMF; SCKGSLSWETGAAEGN; LLPSSTV.
DR TrEMBL; Q9M8Y9; Q9M8Y9.
DB 00001.
IS 00002;
SQ SEQUENCE 202 AA; 22914 MW; 485A2C8472CD3792 CRC64;
KW
/ /

Figure 3.2: An example of a database entry

lib 31.0

£
■ I

21.5

14.4
- 1» ;. 14

4.8 6.8

PH

Figure 3.3: An example of a 2D map showing the locations of proteins identi­
fied in a gel

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

user can query the database through a Web interface using a client browser

(“Database Search via Web Interface” in Figure 3.1). The Web interface pro­

vides the user several textual and graphical query methods. Secondly, our

database can also be queried by another application via the Web services that

are provided as part of the system (“Database Search via Web Services” in

Figure 3.1). These two query methods greatly enhance the interoperability

our system.

In addition to database queries, we also augment our database by main­

taining a repository of tools for experimenting with various data analysis and

data mining tasks, such as characteristic rule mining, sequential pattern anal­

ysis, association rules, etc. These tools provide users with the power of intelli­

gently retrieving and analyzing data across a large array of heterogeneous data

sets. For example, one tool that we are currently developing is the automatic

identification of extracellular proteins from amino acid sequences. Adding a

repository of tools to our database is of paramount importance for the long­

term usefulness of our system. Similarly, the tools in the repository can be

accessed by users through the Web interface or by other applications through

the Web services.

Another novel aspect of our database is that it allows users to submit

their new data and new tools. The data or tools submitted by users are

maintained in a repository (see Figure 3.1). These data/tools are reviewed to

make sure they do not contain inconsistencies or errors. If the data/tools pass

the reviewing process, they are integrated into our database. In this way, our

database acts as an “information hub” for biologists all over the world who are

working on extracytosolic plant proteins and expedite information exchange

and sharing among them.

3.3 Database Construction

Many existing 2D-PAGE databases use the Make2ddb package [29] to build a

2D-PAGE database on one’s own Web server. The main focus of Make2ddb is

on ease of use. However, we chose not to use it in our case for the following

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reasons:

• Make2ddb uses text files rather than database management systems to

manage the data, which might cause performance problems when the

volume of data is large.

• The queries generated by Make2ddb are fixed, i.e., it only allows search­

ing by description (DE or ID line), by accession number (AC line), by

clicking on a spot, and by author (RA line). However, in our database,

we want to allow users to submit more sophisticated queries.

• Make2ddb does not generate an API (Application Programming Inter­

face) for the 2D-PAGE database it creates. That means other applica­

tions cannot communicate with the database easily. In our database, we

provide an API using SOAP (Simple Object Access Protocol) technol­

ogy2 to allow inter-operations between applications.

We choose to use MySQL3 as our database management system since it

is a free and powerful relational database management system. The query

processing is implemented in PHP4, a scripting language especially suited for

Web application development. The PHP and MySQL combination is cross­

platform compatible and is commonly used for creating data-driven Web sites.

The schema of the database is shown in Figure 3.4. Currently, the “spot” is

implemented in text files for some technical issues.

The user can query the database in a variety of ways. The “quick text

search” (Figure 3.5) is currently set up to retrieve entries that contain the

specified keyword(s) in the “DE” line. The user can also query the database

by clicking on a spot in a gel image (similar to other 2D-PAGE databases). In

addition, if a user chooses “advanced text search” , the attributes (text lines)

to be searched can be explicitly specified.

2http://www.w3.org/TR/SOAP
3http://www.mysql.com/
4 http: / / www. php. net /

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/SOAP
http://www.mysql.com/

Protein Entry Spot1 corresponds 1

ID : varchar(lOO) DB : varchar(10)
AC : varchar(200) XCoordinate : int
DT_
DT_

.CREATE : date

.LAST : date YCoordinate : int
DE : varchar(lOO) ImagelD : varchar(100)
GN : text
OS : varchar(lOO)
OC : text
OX : varchar(lOO)
MT : varchar(lOO)
IM : varchar(lOO)
RN : varchar(100)
RP : varchar(100)
RA : varchar(100)
RT : varchar(100)
RL : varchar(100)
CC : text
2D : text
DR : varchar(100)
DB : varchar(10)
IS : varchar(10)
SQ : text
KW : text
AL : text
OP : text

Figure 3.4: EPPdb database schema

-

Figure 3.5: Quick text search

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Web Services

Most other protein databases focus on building applications that are made

globally available through a Web server, defining their user interfaces with

HTML, and can be accessed using client browsers. The applications do not

take advantage of the Internet to make the services available to a variety

of clients. An example is SWISS-PROT. If other protein databases need to

link to SWISS-PROT, they must generate pointers to the information related

to SWISS-PROT entries. However, SWISS-PROT entries are dynamically

generated HTML pages and their layouts could be inconsistent. If proper

formats are not used, there is no way for other databases to directly exploit

the information provided by SWISS-PROT entries in HTML format.

The idea of Web Services is instead of supplying information via dynami­

cally generated user interfaces (HTML) that are fairly fixed and can only be

consumed by client browsers, the server makes available a series of function

calls over HTTP and uses XML as a message transfer format to be consumed

by the clients. This gives much more freedom for the clients to use the ser­

vices in whatever way they wish, since XML is a standard format for structured

documents and data that is platform and language independent. In addition,

if functions are called using standard HTTP-based protocols over the Inter­

net, then the client that calls them can be located anywhere on the Internet.

There are no restrictions on what platform it might be running on or in which

language it should be written.

3.4.1 Introduction to Web Services

Web Services, in the most simplistic fashion, provide a mechanism of commu­

nication between two remote systems, connected through the network of the

Web Services. For example, in case of different 2-DE database applications

maintained by different groups in the world, people do not want to invest

large amount of money developing software to bring these different applica­

tions together. By extending the applications as Web Services, the information

systems of different applications can be linked. These applications can be ac-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cessed by using simple SOAP (see Section 3.4.3) messages over the normal

HTTP Web protocol.

Web Service is not the first solution to such a problem. RMI, COM,

CORBA, EDI, and ebXML also address the same problem. However, Web

Service is different from the others in that this technology is based on the

already existing and well-known HTTP protocol, and uses XML (see Section

3.4.2) as the base language. This makes it a very developer-friendly service

system. However, most of the above-mentioned technologies such as RMI,

COM, CORBA involve a whole learning curve. New technologies and lan­

guages have to be learned to implement these services. Also Web Services are

based on a set of standardized rules and specifications, making the technology

very portable. This is not the case with the technologies mentioned earlier

[47],
The architecture for Web Services has the following components5:

• a standard way for communication.

• a uniform data representation and exchange mechanism. XML (Exten­

sible Markup Language) is used extensively for this purpose.

• a standard meta language to describe the services offered, specifically

a language called WSDL (Web Service Definition Language) has been

developed for describing Web Services.

• a mechanism to register and locate Web Services-based applications.

Figure 3.6 shows the architecture of Web Services.

3.4.2 Extensible Markup Language (XML)

Web Service architecture involves many technologies. One critical technology

is XML (extensible Markup Language). XML is a universally agreed markup

meta-language primarily used for information exchange. A good example of a

markup language is the HyperText Markup Language (HTML). The beauty

5 www. w3 .org/TR/ ws-arch

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Web Service description

using m eta language

Directory Services

t 'm lo rm data

icp resenu iion and

exchange

Standard com munication channel

Figure 3.6: Architecture of Web Services

of XML lies in the fact that it is extensible. XML is a set of predefined rules

(syntactical framework) that you need to follow when structuring your data.

XML provides a standard and common data structure for sharing data between

systems.

The following is an example of an XML document, representing the per­

sonal information and shift data for an employee in an organization.

<employee>
<shift id=‘* counter’’ time=‘‘8-12'’>
<phone id=“ l” >
<number>3444333</number>

</phone>
</shift>

<home-address>
<street>3434 Norwalk street</street>
<city>New York</city>
< state> N Y < /sta te>

</home-address>
</employee>

Also an example of XML document used in EPPdb is shown as follows:

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<id x s i: ty p e = ‘ fx s d :s t r in g ’ ’>

081352; PRELIMINARY; 2DG.
</id>

<ac x s i :type= ‘ fxsd: s t r i n g ” >

081352;
</ac>

<dt xsi :type=t‘xsd: string” >
2003-05-30

</dt>

There are some XML languages developed or being developed for biolog­

ical data, e.g., GAME6 (Genome Annotation Markup Language), BIOML7

(BlOpolymer Markup Language), BSML8 (Bioinformatic Sequence Markup

Language), AGAVE9 (Architecture for Genomic Annotation, Visualization

and Exchange), DAS10 (Distributed Sequence Annotation System), ProML11

(Protein Markup Language), PROXIML12 (PROtein extensible Markup Lan­

guage), etc. Most of these XML standards are developed individually by some

organizations. Also they are usually designed for some particular biological

data management tasks. Some of them are even still in the process of devel­

opment and are not publicly accessible. To the best of our knowledge, there

are currently no widely agreed upon XML standards available.

3.4.3 Simple Object Access Protocol (SOAP)

Another technology important to Web Services is SOAP (Simple Object Access

Protocol). SOAP is a universally agreed on standard protocol for invoking

the functions available in Web Services. With SOAP as an XML messaging

6www.bioxml.org/Projects/game/index.html
7 www.bioml.com/BIOML/index.html
8 www.labbook.com/products/xmlbsml.asp
9 www. agavexml. org

10 biodas.org
u cart an.gmd.de/promlweb
12 www.cse.ucsc.edu / douglas / proximl

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bioxml.org/Projects/game/index.html
http://www.bioml.com/BIOML/index.html
http://www.labbook.com/products/xmlbsml.asp
http://www.cse.ucsc.edu

specification, Web Services enable developers to target a range of clients and

build the services from local and remote resources.

A SOAP transaction begins with an application making a call to a remote

procedure. The SOAP client script then encodes the procedure as an XML

payload and sends it over the transport protocol to a server script. The server

parses the request and passes it to a local method, which returns a response.

The response is encoded as XML by the server and returned to the client, who

parses the response and passes the result to the original function. So as long as

other applications support XML and SOAP, they can communicate with Web

Services and have the answer right away, instead of having to parse HTML

documents [47].

3.4.4 Web Services Implementation

The search functions involved in our database are encapsulated into Web ser­

vices. All Web services are implemented and published using NuSOAP13, a

freely available toolkit which provides a simple API for building Web services

using Simple Object Access Protocol (SOAP) technology14. Other applica­

tions can remotely call these functions via XML. The implementation of Web

services provides an appropriate solution for transparently integrating appli­

cations from heterogeneous sources. It is very easy for other applications to

exchange information with EPPdb using Web Services. Appendix B shows an

example of PHP code that is used to query EPPdb using Web Services.

3.5 Data Analysis Tools

One unique feature of our database is that it not only provides standard

database query capabilities, but also provides domain-specific tools for experi­

menting with various data analysis and data mining methods. As described in

Section 3.2, EPPdb allows users to submit data analysis and data mining tools.

For a tool to be submitted to EPPdb, it must be able to run on the EPPdb

13 http://dietrich.ganx4.com/nusoap/index.php
14http://www.w3.org/TR/soap

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://dietrich.ganx4.com/nusoap/index.php
http://www.w3.org/TR/soap

server and be able to send and receive XML messages. After the tool passes

the reviewing process, the Web Services that it provides and relevant docu­

mentations on the formats of the XML messages are made publicly available.

Other applications can communicate with this tool via XML.

Here we give an example of a data mining tool we have developed for our

database, which is to predict extracellular proteins from amino acid sequences.

In order to function properly, proteins need to be localized at proper lo­

cations within the cell or transported to the extracellular environment. The

set of locations depend on the type of a cell. For biologists, a very important

question is to determine whether a given protein is an extracellular protein or

non-extracellular protein (i.e., intracellular protein). This problem is a special

case of protein subcellular localization prediction [12]. Most existing localiza­

tion prediction methods use supervised learning algorithms to learn a classifier

from a set of training data containing both intra- and extra-cellular protein

sequences. When a new protein sequence comes in, the learned classifier is

used to predict the correct label for the sequence.

The problem of extracellular protein prediction poses several challenges for

most existing localization prediction algorithms: (i) the effectiveness of most

existing algorithms is measured by overall accuracy. However, since extra­

cellular proteins are extremely rare compared with intracellular proteins (less

than 1%), predicting every protein as intracellular protein can achieve very

high accuracy level of 99%; (ii) biologists are usually interested in those tools

that provide some explanations of the prediction, i.e., they want a classifier to

let them know why a protein is or is not predicted as extracellular. Many ex­

isting algorithms (e.g., Artificial Neural Networks, Support Vector Machines)

are “black box” techniques, in the sense that they predict the class label for a

given protein sequence without providing any easily interpretable justification.

Even if the prediction is correct, biologists may be hesitant in using such non­

transparent tools. If the prediction is incorrect, biologists are given no hints

to identify the locations in a classifier’s reasoning process that might cause the

misclassification.

The rest of this thesis elaborates on the algorithms that we have developed

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to solve this problem. We use data mining techniques to develop extracellu­

lar protein predictors based on the subsequences that appears frequently in

extracellular proteins.

3.6 Summary

In this chapter, we have described in detail the design and implementation

of various functionalities of EPPdb. Like most other 2-DE database, EPPdb

provides textual and graphical query capabilities that allow biologists to pop­

ulate and query the database. An novel aspect of EPPdb is that it provides

an API allowing other applications to access this database as a Web service.

In addition, we augment EPPdb with a repository of tools to be used in data

analysis and data mining tasks. The following chapters will describe in de­

tail one particular tool we have developed, which is to predict extracellular

proteins from amino acid sequences.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Work R elated to Extracellular
Protein Prediction

This chapter describes the problem of extracellular protein prediction and

reviews existing approaches. This chapter is organized as follows. Section 4.1

provides some biological background and introduces the problem of protein

subcellular localization prediction, a more general area in which our problem

of extracellular protein prediction falls. Sections 4.2.2, 4.2.1 and 4.2.3 review

some of the existing methods. Section 4.2.5 points to some limitations of

existing methods for our particular problem. Section 4.4 summarizes this

chapter.

4.1 Introduction to Biological Background

This section provides the biological background of our problem. More detailed

information about the biological background can be found in [33, 40].

Proteins are the molecules that accomplish most of the functions of the

living cell. All proteins are composed of linear sequences of smaller molecules

called amino acids. Such a sequence is called the primary structure of a protein.

There are twenty naturally occurring amino acids (Table 4.1). Long proteins

may contain a chain of as many as 4500 amino acids. Finding the proteins

that make up a creature and understanding their functions is the foundation

of explanation in molecular biology [33].

W ith the introduction of large-scale sequencing, biologists have accumu-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

name Three-letter code One-letter code
1 Alanine Ala A
2 Cysteine Cys C
3 Aspartic Acid Asp D
4 Glutamic Acid Glu E
5 Phenylalanine Phe F
6 Glycine Gly G
7 Histidine His H
8 Isoleucine lie I
9 Lysine Lys K
10 Leucine Leu L
11 Methionine Met M
12 Asparagine Asn N
13 Proline Pro P
14 Glutamine Gin Q
15 Arginine Arg R
16 Serine Ser S
17 Theronine Thr T
18 Valine Val V
19 Tryptophan Try W
20 Tyrosine Tyr Y

Table 4.1: The twenty naturally occurring amino acids

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lated an immense number of raw biological sequences that are publicly avail­

able. In order to better understand the functions and structures of these

protein sequences, a vitally important problem facing the biology community

is to classify these sequences into different families based on the properties of

the sequences, such as functions, structures, etc.

Protein subcellular localization is a key functional characteristic of pro­

teins. In order to execute a common physiological function, proteins must be

localized in the same cellular compartment. Proteins may be localized at vari­

ous locations within the cell or be transported to the extracellular space. The

process through which proteins are routed to their proper subcellular localiza­

tions is called subcellular protein sorting. Protein sorting is the simplest in

gram positive prokaryotes (a kind of single cell organism), where proteins are

only directed to the cytoplasm, the plasma membrane, the cell wall, or secreted

to the extracellular space. Gram negative protein localization sites include the

cytoplasm, the inner membrane, the periplasm, the outer membrane, and the

extracellular space. Subcellular localizations in eukaryotic proteins are much

more complex due to the presence of membrane-bound organelles. The major

location sites for eukaryotic proteins include the plasma membrane, the nu­

cleus, the mitochondria, the peroxisome, the endoplasmic reticulum, the Golgi

apparatus, the lysosome, the endosome, and others (such as chloroplasts, vac­

uoles, and the cell wall in plant cells). Table 4.2 shows an ontology across five

different taxonomic categories based on the PSORT ontologies [50].

The subcellular localization of a protein plays an important role with re­

gard to its function. Knowledge of subcellular localization can provide valuable

information concerning its possible functions. It can also help in analyzing and

annotating sequences of hypothetical or known gene products. In addition, it

can influence the design of experimental strategies for functional characteriza­

tion [19, 48].

Since the number of sequences entering into data banks has been rapidly

increasing, it is time consuming and costly to approach this problem of pre­

dicting the subcellular localization of a protein entirely by performing various

biological experimental tests. In view of this, it is highly desirable to develop

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Category Subcellular Localizations
Animal
Plant
Fungi

Gram-positive bacteria
Gram-negative bacteria

nuc, end, gol, mit, pex, lys, cyt, mem, ext
nuc, end, gol, mit, pex, chi, vac, cyt, mem, ext
nuc, end, gol, mit, pex, vac, cyt, mem, ext
cyt, wal, mem, ext
cyt, inn, per, wal, out, ext

Table 4.2: The ontologies across five different taxonomic categories. Abbrevia­
tions for localizations: nuc (nuclear), end (endoplasmic reticulum), gol (golgi),
mit (mitochondria), pex (peroxisomal), lys (lysosomal), cyt (cyoplasmic), mem
(membrane), ext (extracellular), chi (chloroplast), vac (vacuole), inn (inner
membrane), per (periplasmic), wal (cell wall), out (outer membrane).

some algorithms to rapidly predict the subcellular localizations of proteins.

In our project, we are particularly interested in identifying those proteins

that are secreted to the extracellular environment (called extracellular pro­

teins), versus proteins localized at various locations within the cell (called

intracellular proteins). As described in Section 3.1, EPPdb is built for extra-

cytosolic plant proteome. A tool that can automatically identify whether a

protein is intracellular or extracellular is of great interest for biologists in the

extracytosolic plant community.

The following sections (4.2.1, 4.2.2, 4.2.4 and 4.2.3) review the current

approaches of protein subcellular localization prediction. Section 4.2.5 points

out some limitations of current methods and explain why new algorithms are

needed.

4.2 Work Related to Protein Subcellular Lo­
calization Prediction

4.2.1 Prediction Based on N-term inal Sorting Signals

Subcellular protein sorting (see Section 4.1) is a fundamental aspect of cel­

lular life. In many cases, sorting depends on “signals” that can be identified

by looking at the primary structure of a proteins [53]. Previous work [61, 66]

has shown that when the final destination is the mitochondrion, the chloro­

plast, or the secretory pathway, sorting usually relies on the presence of an

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N-terminal targeting sequences that can be recognized by a translocation ma­

chinery. Work has been done on identifying individual sorting signals, i.e.,

secretory signal peptides (SPs), mitochondrial targeting peptides (mTPs) and

chloroplast transit peptides (cTPs) [53].

Signal peptides (SPs) are N-terminal peptides that control the entry to the

general secretory pathway, which is a mechanism for protein secretion found

in both eukaryotic and prokaryotic cells [56]. SPs generally consist of three re­

gions (Figure 4.1): a positively charged n-region, a hydrophobic h-region, and

a polar c-region leading up to the signal peptide cleavage site. Signal peptides

are often cleaved off the mature proteins upon arrival at the subcellular desti­

nation. The most well-conserved motif1 of SPs is the presence of a small and

neutral amino acid at positions -3 and -1 relative to the cleavage site [76, 77].

Neilsen et al. [54, 55] developed a method (SignalP) for the identification of

signal peptides and their cleavage sites based on neural networks trained on

separate sets of prokaryotic and eukaryotic sequences. Their method does not

provide any explanation for the prediction results. Nielsen and Krogh [56]

developed an hidden Markov model of signal peptides (SignalP-HMM), which

contains submodels for the N-terminal part, the hydrophobic region, and the

region around the cleavage site. For known signal peptides, the model can

be used to assign objective boundaries between these three regions. Other

methods used for predicting subcellular localizations based of signal peptides

include discriminant function analysis [13, 12], weight matrices [17], and oth­

ers.

In mitochondrial targeting peptides (mTPs), Arg (R), Ala (A) and Ser (S)

are over -represented, while negatively charged amino acid residues (Asp (D)

and Glu (E)) are rare. Only weak consensus sequences have been found, the

most prominent of which is a conserved Arg(R) in position -2 and -3 relative to

the mitochondrial processing peptidase (MPP) cleavage site [21]. Furthermore,

mTPS are believed to form an amphiphilic ct-helix [27, 62, 79].

Chloroplast transit peptides (cTPs) are the N-terminal presequences found

in most nuclearly encoded chloroplast proteins that direct them to the chloro-

:a short conserved region in a protein sequence

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-3 -1 +1

< (hydrophobic) mature
portion

n-region h-region c-region i
cleavage

site

Figure 4.1: Structure of signal peptide [51]

plast stroma [70]. The secondary structure of chloroplast transit peptides is not

well characterized. Still, cTPs have a few distinguishing features, such as low

content of acidic residues and rich in hydroxylated residues [78]. Emanuelsson

et al [20] developed a neural network based method (ChloroP) for identifying

chloroplast transit peptides and their cleavage sites. ChloroP achieved an accu­

racy of 88% in classifying sequences as transit peptides or nontransit peptides.

Cleavage sites are predicted using a scoring matrix derived by an automatic

motif-finding algorithm. About 60% of the known cleavage sites were predicted

to within + /-2 residues from the cleavage sites given in SWISS-PROT.

Emanuelsson et al. [21] also proposed an integrated prediction system

(TargetP) for subcellular localization using neural networks. TargetP can be

used to differentiate four subcellular localizations (extracellular, mitochon­

drial, chloroplast and “other”) based on the individual sorting signal predic­

tions (signal peptides for extracellular, mitochondrial transit peptides for mi­

tochondria, chloroplast transit peptides for chloroplast, and no sorting signal

for “other”).

The advantage of predicting subcellular localizations based on N-terminal

sorting signals is that it can recognize cleavage sites in the sorting signals.

However, these methods would be inaccurate when the signals are missing or

only partially included [32]. In addition, the known signals are not general

enough to cover the resident proteins in each organ [51].

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A C D E F G H I K L M N P Q R S T V W Y

Figure 4.2: An example of amino acid composition represented by a histogram

4.2.2 Prediction Based on Amino Acid Com position

The amino acid composition of a protein sequence refers to the relative fre­

quencies of twenty different amino acids in this sequence. Figure 4.2 shows an

example of the amino acid composition of a plant protein sequence represented

by a histogram. Nakashima and Nishikawa [52] showed that intracellular and

extracellular proteins differ in their amino acid composition. Andrade et al.

[3] indicated that protein subcellular localizations correlate better with the

surface composition. Different methods, including statistical methods, neu­

ral network, and support vector machines, have been proposed for protein

subcellular localization based on amino acid composition information.

Nakashima and Nishikawa [52] proposed a statistical analysis-based algo­

rithm to discriminate between intracellular and extracellular proteins by amino

acid composition and residue-pair frequencies, which correctly classify 88% of

intracellular and 84% of extracellular proteins. Cedano et al. [11] proposed

a statistical methods using the Mahalanobis distance to extend the discrimi­

native class from two to five, i.e., extracellular, integral membrane, anchored

membrane, intracellular and nuclear. They proposed an algorithm called Prot-

Lock [11] to improve the prediction quality of protein subcellular locations,

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75% of 200 proteins from SWISS-PROT are correctly classified. Chou and

Elrod [12] proposed a covariant discriminant algorithm to further improve the

accuracy to 79.9%. They have shown that their results are better than other

methods based on statistical analysis.

NNPSL [60] is a amino acid composition based prediction system con­

structed using neural networks. It computes the fraction of each of the twenty

amino acids (see Figure 4.3), then uses these fractional numbers for the input

units of neural networks. Output units are used for predictions that distin­

guish between possible locations. It deals with prokaryotic and eukaryotic

sequences separately. For prokaryotic sequences, three possible locations (cy­

toplasmic, periplasmic and extracellular) can be predicted. For eukaryotic

sequences, four locations (nuclear, cytoplasmic, mitochondrial, extracellular)

can be predicted. NNPSL achieves an overall accuracy of 66% on eukaryotes

(excluding plants) and 81% on prokaryotes.

Hua and Sun [32] applied support vector machine (SVM) to build a predic­

tion system called SubLoc. The SVM approach is a state-of-the-art method

for the binary classification problem. In order to handle multi-class problems,

they built separate k SVM classifiers for each of the k possible classes, where

the ith SVM was trained with all of the samples in the zth class with positive

labels and all other samples with negative labels. Finally an unknown sample

is classified into the class that corresponds to the SVM with the highest pre­

diction confidence. SubLoc achieves an accuracy of 91.4% on prokaryotes and

79.4% on eukaryotes.

4.2.3 Prediction Based on Lexical Analysis

The SWISS-PROT and many other protein databases contain textual annota­

tions on the subcellular localizations for many proteins. Another approach is

to infer the subcellular localization of an unknown proteins by lexical analysis

of “keywords”, which are the words extracted from certain attribute lines of the

annotated protein entries. This is similar to the problem of “Text Categoriza­

tion” . Text Categorization is the problem of assigning predefined categories to

unseen documents. A lot of methods have been developed for text categoriza-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Amina Avid

Figure 4.3: The overall differences in amino acid composition between all
groups [43]

tion, such as nearest neighbor classifiers [84], multivariate regression models

[83, 68], probabilistic Bayesian models [41], symbolic rule learning [6] etc.

LOCkey [49] is an example of protein subcellular localization prediction

based on lexical analysis. The algorithm of LOCkey is shown in Figure 4.4.

• LOCkey firstly compiled a data set with proteins of experimentally known

localization. For each protein sequence, a homology search tool BLAST

[2] was used to find the homologous protein sequences. Protein homology

refers to the similarity attributed to descent from a common ancestor.

If two proteins are homologous, they are likely to share common charac­

terizations.

• It merged keywords from SWISS-PROT for the proteins in this set and

their homologous proteins from the “keyindex” file.

• A data set of binary vectors (called “trusted vector set”) was built for

these keywords that represented the presence of a certain keyword by 1

and the absence by 0. In order to reduce the dimensionality of feature

space, only keywords with “above random” (measured by “information

content”) classifying ability based on an entropy and normalized entropy

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cut-off are retained.

• To infer the localization of a protein U of unknown localization, LOCkey

first retrieved all the keywords for U from SWISS-PROT that matched

the “trusted vector set” of informative keywords. Thus a vector V (U)

that had the same dimension as the vectors in the “trusted vector set”

was retrieved. Next, all possible alternatives (called “sub-vectors”) to

V(U) are generated, for which one or many l ’s were flipped to 0’s. For

example, for a protein with 3 keywords, it generated 23 — 1 = 7 sub­

vectors V'{U): 111, 110, 101, Oil, 100, 010 and 001.

• Finally the best matching vector is found based on entropy criteria meth­

ods for inferring the subcellular localization of the query sequence.

PA-sub [43] is another protein subcellular localization prediction system

based on lexical analysis. The algorithm of PA-sub is shown in Figure 4.5

Different from LOCkey which used simple entropy criteria method to infer the

subcellular localization of the query sequence. The authors of [43] compared

several sophisticated machine learning algorithms, including k nearest neigh­

bor, naive Bayes, tree-augmented naive Bayes, artificial neural network and

support vector machine. In order to remove the “trivial” keywords, PA-Sub

used a wrapper model to select those informative keyword based on informa­

tion content.

4.2.4 Prediction Based on Integrative Approaches

Some methods for predicting protein subcellular localization take an integra­

tive approach by combining several different methods. PSORT [50] is proba­

bly the most robust tool for predicting subcellular localization. It is an expert

system developed to distinguish between seventeen different subcellular local­

izations in eukaryotes. The system integrates numerous prediction programs

and statistical methods to make a prediction.

Recently, an updated version of PSORT, called PSORT-B [25], was pre­

sented for the prediction of protein subcellular localization for Gram-negative

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Localisation
 ̂ <\ minuted

*--(Kind Hoiiiologi

S U B vccLors
OiOOliUOlO..
DiOOlOOOlitl. .
0 3 0 0 1 0 0 0 1 0 . .

1 n u c :| 0 1 I H l> 1 O I 0 0 I
I 0 0 I J o n 1 I 0 0 If-md

Matching
Vector

it

Figure 4.4: LOCkey algorithm [49]

Training

- A .

Unknown
t Sequences

Machine
Training Learning Classifier

Sequences Algorithm

Figure 4.5: PA-Sub builds a classifier using machine learning algorithms [43]

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bacteria. Given a Gram-negative bacteria protein sequence with unknown

subcellular localization, PSORT-B combines several different methods, includ­

ing homology analysis, identification of sorting signals and other motifs, and

machine learning algorithms into an expert system for the prediction of five

subcellular localizations. A query protein undergoes each of the analyses sep­

arately and the results are combined together.

4.2.5 Challenges and Limitations of Existing M ethods

In our project, we are particularly interested in those proteins that are secreted

from the cell (i.e., extracellular proteins). We study the problem of identify­

ing extracellular proteins from sequence information alone. As mentioned in

Section 3.1, EPPdb is an on-line database devoted to the extracytosolic plant

proteome. The identification of extracellular proteins are of particular interest

to potential users of the database. However, most of the existing approaches

are not suitable for this particular application.

Firstly, most of the existing systems use overall accuracy to measure how

good the prediction is. However, in our particular case, overall accuracy is not

an appropriate measurement. The reason is due to the fact that most of the

proteins are intracellular proteins. Extracellular are extremely rare among all

the proteins (e.g., less than 5%). In this case, high overal accuracy (higher

than 95% can be easily achieved by predicting every protein as intracellular.

But this kind of classifier does not provide any valuable information for the

user.

Secondly, since most of the existing prediction tools aim to predict all

the subcellular locations, they usually use a training dataset that contains

proteins with all the possible class labels. However, in our application, the

dataset that we will eventually get does not necessarily distinguish different

locations among intracellular proteins.

Thirdly, biologists are very interested in those subsequences that discrim­

inate extracellular proteins from intracellular proteins. Approaches based on

amino acid composition or lexical analysis obviously do not provide such in­

sights for biologists to make further analysis. Approaches based on N-terminal

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signals can provide some insights, since they can identify the signal peptides.

However, since those approaches are based on artificial neural networks, people

have no clues on how these signal peptides are identified.

In this dissertation, we apply data mining techniques to build classifiers

based on frequent subsequences to address this problem.

4.3 Work Related to Mining Sequential Data

The discovery of patterns in sequential data has been an important problem

in the general area of data mining and knowledge discovery. Since protein

primary sequences are made up of amino acid sequences, our work is related

to data mining in sequential data. This section reviews some existing problems

and different solutions in this field.

4.3.1 M ining Sequential Patterns

The problem of sequential pattern mining was introduced in [1]: Given a set of

sequences, which each sequence consists of a list of elements and each element

consists of a set of items, and given a user-specified min-support threshold,

sequential pattern mining is to find all of the frequent subsequences, i.e., the

subsequences whose occurrence frequency in the set of sequences is no less than

the min-support. In [86, 87], a unique transaction time is associated with each

element in a sequence. The length of a sequence is define as the number of in­

stances of items in the sequence. A sequence with length I is called I—sequence.

A sequence a —< a\a2 ...an > (where ai, a2, ..., an are elements of a) is called

a subsequence of another sequence /3 = < b\, &2, •••, bm > (where bi, b2, ..., bm are

elements of /3), i.e., ot C /3, if there exist integers 1 < ji < j'2 < ... < j n < m

such that di C bji, a2 C bj2 ,...,a n C bjn. And f3 is called a super — sequence

of a.

For example, Table 4.3 shows a sequence database with four sequences. The

set of items in the database is { A , B , C , D , E , F , G , H } . The first sequence

(with SequenceJd 1) has four elements: (CD), (ABC), (ABF) and (ACDF). It

is also a 12-sequence since it contains 12 instances of items. Item A happens 3

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SequenceJd Transaction-Time Items
1 10 C D
1 15 A B C
1 20 A B F
1 25 A C D F
2 15 A B F
2 20 E
3 10 A B F
4 10 D G H
4 20 B F
4 25 A G H

Table 4.3: A sequence database [87]

times in this sequence. However the sequence <(CD) (ABC) (ABF) (ACDF)>

is considered to contribute only one to the support of < A > . Sequence <(C)

(AB) (AF)> is a subsequence of <(CD) (ABC) (ABF) (ACDF)>. If min-

support=2, sequence s —< (D) (BF) (A) > is a sequential pattern since both

sequences 1 and 4 contain sequence s.

Many studies have been conducted on finding sequential patterns from

a database of sequences. In general, these algorithms can be classified into

three categories: (1) Apriori-based, horizontal formatting method, such as

GSP [71]; (2) Apriori-based, vertical formatting method, such as SPADE [87],

(3) projection-based pattern growth methods, such as PrefixSpan [57]. Below

we briefly describe these three representative algorithms.

GSP A lgorithm

GSP is based on the apriori heuristic, which says a sequence can not be frequent

if any of its subsequence is not frequent. The algorithm is shown in Figure 4.6.

It makes multiple scans over the database. In the first scan, all frequent 1-

sequences are found (line 2) . From frequent 1-sequences, a set of candidate 2-

sequences are generated (line 5). Another database scan is used to calculate the

support of each candidate 2-sequences, those candidates with support greater

than the minimum support threshold form the set of frequent 2-sequences (line

8). Similarly, frequent 3-sequences are obtained based on frequent 2-sequences.

This process is repeated until no more frequent sequences are found. Before we

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frequent
3-Sequences

Candidate 4-sequences
after join after pruning

< (1 , 2) (3) >
< (1 , 2) (4) >
< (1) (3 , 4) >
< (1 , 3) (5) >
< (2)(3,4) >
< (2)(3)(5) >

< (1 , 2) (3 , 4) >
< (1 , 2) (3) (5) >

< (1, 2) (3,4) >

Table 4.4: A example of candidate generation in GSP [71]

describe these two steps, we first define the notion of contiguous subsequence.

Given a sequence s = < SiS2 - .sn >, a subsequence c is called a contiguous

subsequence of s if any of the following conditions hold: (l)c is obtained from

s by dropping an item from either si or sn; (2)c is obtained from s by dropping

an item from an element s*, which contains more than one item; (3)c is obtained

from s by executing the above two operations multiple times.

There are two main steps in GSP algorithm:

• Candidate Generation: Given the set of frequent (k — l)-sequences Fk-i,

the candidates of /e-sequences Ct are generated by joining Fk- \ with

itself. Then a pruning phase is applied to eliminate those candidates, of

which at least one contiguous (k — l)-subsequence is not frequent. Table

4.4 shows an example of generating C4 from F3 .

• Candidate Counting: For fast counting, candidate sequences are stored

in a hash-tree data structure. To find all candidates contained in an input

sequence s, conceptually all fc-subsequences are generated. A search is

made in the hash tree for each of such subsequence. If a candidate

matches a subsequence in the hash tree, its count of that subsequence is

incremented.

SPADE A lgorithm

SPADE is a different algorithm for mining sequential pattern proposed by Zaki

[86, 87]. In SPADE, the database of sequences is transformed into a vertical

layout. In this vertical layout, an id-list is created for each item. The id-list

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm GSP
Input: a sequence database D and minimum support threshold <5
Output: the set of all frequent subsequences
1.Function GSP(D,5)
2. Fi={ frequent 1-sequences};
3. F=Fi;
4. for (k=2; Fk~i / 0; k + +) do
5. C ^ s e t of candidate k-sequences;
6. for all sequences s in database D do
7. increment count of all a e C t contained in s;
8. Fk = {a £ Ck\a.sup > <5};
9. return (J* Fp,

Figure 4.6: GSP Algorithm

A

CID TID

1 15

1 20

1 25

2 15

3 10

4 25

C

CID TID

1 10

1 25

4 10

B

CID TID

1 15

1 20

2 15

3 10

4 20

D

CID TID

1 20

1 25

2 15

3 10

4 20

Figure 4.7: An example of vertical layout of sequence database

is a list of sequence id (cid) and time stamp identifier (tid). A (cid, tid) pair

associated with an item records in which sequence this item occurs, and where

it occurs in that sequence. Figure 4.7 shows the id-lists for the 1-sequence of

the sequence database in Table 4.3.

Frequent 1-sequences can be found by a single scan of the id-lists of 1-

sequences. After that, frequent ^-sequences are generated be intersecting the

id-lists of all distinct pairs of frequent (k — l)-sequences and checking the

cardinality of the resulting id-lists for k-sequences against m in su p . Figure

4.8 shows the shows the process of id-list intersection.

Both breadth first and depth first search can be used to search the lattice

shown in Figure 4.8 to find the frequent subsequences. Given a limited amount

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Intersect D ->B->A and D->BF

D - > B F - > A

Intersect D->B adn D->F

ABF BF->A D ->B->A D->BF D -> F -> v

Intersect D and A

AB AF BF B->, D->A D->B D->] F->A)

C ID

ID-LIST DATABASE

Figure 4.8: Computing Support via Id-list Intersections [8 6]

of main memory, the intermediate id-lists introduced in the lattice of Figure 4.8

usually cannot be fit in memory. The author of SPADE proposed to decompose

the search space into equivalence classes such that each equivalence class can

be processed independently, so at any time, only one equivalence class need to

be stored in the main memory.

PrefixSpan A lgorithm

PrefixSpan [57] is an algorithm that exploits prefix-projection in sequential

pattern mining. Assuming items in any element are listed alphabetically,

a sequence ft = < > is called a prefix of another sequence a =<

a1a2...an > (m < n) if and only if (1)aj = bi for (i < m — 1); (2)bn C an; (3)

all items in (an — bn) are alphabetically after those in bn. Given sequences a

and one of its prefix ft, a subsequence a' of a is called a projection of a w.r.t.

fi if and only if (1) a' has prefix ft; (2) there exists no proper super-sequence

a" of a 1.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm PrefixSpan
Input: a sequence database S and minimum support threshold S
Output: the complete set of sequential patterns
M ethod: call PrefixSpan(<>, 0, S)
Subroutine PrefixSpan(o!, 1,51a)
Parameters: a: a sequential pattern; I: the length of a; S\a: the a-projected
database, if a ^ 0 ; otherwise, the sequence database S.
M ethod:

1 . Scan S\a once, find the set of frequent items b such that

(a) b can be assembled to the last element of a to form a sequential
pattern; or

(b) < b > can be appended to a to form a sequential pattern.

2. For each frequent item b, append it to a to form a sequential pattern a ',
and output a'\

3. For each a ', construct a'-projected database S\a', and call
PrefixSpan^', I + 1 , S\a>).

Figure 4.9: PrefixSpan Algorithm

Similar to SPADE, frequent 1-sequences are found by a single scan of the

database. Then the database is projected into several subsets, each has a

distinct frequent 1-sequence as its prefix. Sequences containing < a > are

projected with respect to < a > to form the < a >-projected database. All

the frequent 2 -sequences with prefix < a > can be found by a single scan

in < a >-projected database. In particular, given a prefix a of length k, all

frequent (k + l)-sequences with prefix a can be found by a scan of oprojected

database. This process ends when no more frequent sequences can be found.

The algorithm of PrefixSpan is shown in Figure 4.9.

Two techniques are used to optimize the process. A bi-level projection

scheme is proposed to reduce the number and the size of projected databases.

A pseudo-projection is proposed to reduce the cost of projection when a pro­

jected database can be held in main memory.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.2 Sequential Pattern M ining with Constraints

In many real applications, people are interested in finding sequential pattern

with certain constraints. For example, when mining market-based sequential

patterns, users often want to place a bound on the maximum distance between

the occurrence of adjacent pattern elements in a data sequence [71].

One possible constraint in sequential pattern mining is in the form of reg­

ular expression (RE). A RE constraint 7Z is specified as a RE over the alpha­

bet of the sequence items using the established set of RE operators, such as

disjunction (|) and Kleene closure (*) [26]. Results from complexity theory

shows that given a RE 71, there exists a deterministic finite automata (DFA)

A n such that A n accepts exactly the same language generated by 7Z. For

example, Figure 4.10 shows an DFA that corresponds to the RE 1*(2 2 | 2 3 4

| 4 4). Garofalakis et al. [26] developed a method called SPIRIT for sequen­

tial pattern mining in the presence of user-specified regular expression (RE)

constraints. They consider only sequences of simple items, i.e., every element

in the sequence has only one item. Given an DFA (or an equivalent RE), a

sequence a is valid if it can be accepted by the DFA that is given. For exam­

ple, given the DFA in Figure 4.10, < 1 1 2 2 > and < 234 > are examples of

valid sequences. The problem addressed in [26] is: given a database of (simple)

sequences V, a user-specified minimum support threshold, and a user-specified

RE constraint 7Z (or an equivalent DFA), find all frequent and valid sequential

patterns in V.

A algorithmic framework called SPIRIT is proposed in [26] for solving this

problem. The framework is similar to the apriori strategy used in GSP. The

crucial difference is that they use relaxed constraints that have nice properties

(e.g., anti-monotonicity) to filter out some candidates in the early stage.

Pei et al. [58] presented seven categories of constraints based on the se­

mantics and the forms of the constraints.

Constraint 1. An item constraint specifies what are the particular individual

or groups of items that should or should not be in the patterns.

Constraint 2. A length constraint specifies the requirement on the length of

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 2

Figure 4.10: Computing Support via Id-list Intersections [26]

the patterns, where the length could be the number of items or the number of

elements (refer to the definitions in Section 4.3.1).

Constraint 3. A super-pattern constraint is to find patterns that contain a

particular set of patterns as sub-patterns.

Constraint 4. An aggregate constraint is the constraint on an aggregate of

items in a pattern, where the aggregate function could be sum, avg, max,

min, standard deviation, etc.

Constraint 5. A regular expression constraint is a constraint expressed as

a regular expression over the set of items using the established set of regular

expression operators, such as disjunction and Kleene closure.

Constraint 6. A duration constraint is defined only in the sequence database

where each element in the sequence has a time-stamp associated with it.

This constraint requires that the pattern appears frequently in the sequence

database such that the time-stamp difference between the first and the last

element in the pattern must be longer or shorter than a given period.

Constraint 7. A gap constraint is defined only in the sequence database

where each element in the sequence has a time-stamp associated with it.

This constraint requires that the pattern appears frequently in the sequence

database such that the time-stamp different between every two adjacent trans­

actions must be longer or shorter than a given gap.

Pei et al. summarize some commonly used constraints for sequential pat­

tern mining in Table 4.5 based on the notion of monotonicity, anti-monotonicity

and succinctness. A constraint Cm is m onotonic if a sequence a satisfying

Cm implies that any super-sequence of a also satisfies Cm- A constraint Ca

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C o n s tra in t A n ti-m o to M ono Succ
Item C i t e m (a) = (Vi : 1 < i < l en(a) , a[i]0V) (6 6 { C , D}) Yes No Yes

C'item (Q) — iy* : 1 < f e n (a) , c*|ij n V ^ 0) Yes No Yes
Ci tem (<*) = (3 i : 1 < i < len{a.), ot\i\9V){6 £ { C , D }) Yes No Yes

C i t e m ' W = I e n (a) , a [i\ n V 0) Yes No Yes
L e n g th l e n (a) < I Yes No Yes

l e n (a) > I No Yes Yes
S u p e r -p a t te rn Cpat(ct) = (^ 7 £ p s .t . 7 C a) No Yes Yes

S im p le
ag g reg a tes

m a x { a) < v , m i n (a) > v Yes No Yes
m a x (a) > v , m i n { a) < v No Yes Yes

s u m (a) < v) (w ith n o n -n eg a tiv e values) Yes No No
sum(oc) > v) (w ith n o n -n eg a tiv e values) No Yes No

T ough
ag g reg a te

g _ s u m t 8 u m (a) 0 v , 0 £ { < , > } (w ith p o s itiv e a n d n eg a tiv e values) No No No
a v e r a g e : a v g (a) 0 v No No No

R E R eg u la r E x p re ss io n No No No
D u ra tio n D u r (a) < A t Yes No No

D u r (a) > A t No Yes No
G ap Gap(a) 0A t (d £ { < , > }) Yes No No

Table 4.5: Characterization of commonly used constraints (for detailed de­
scription about the constraints, refer to [58])

is anti-m onotonic if a sequence a satisfying Ca implies that any non-empty

subsequence of a also satisfies Ca- A constraint is succinct if it can be speci­

fied using a precise “formula” . According to the “formula” , one can generate

all the patterns satisfying a succinct constraints. A new framework for min­

ing sequential patterns with prefix anti-monotone constraints. A constraint

Cpa is called prefix anti-m onotonic if a sequence a satisfying Cpa implies

every prefix of a also satisfies Cpa. A constraint Cpm is called prefix mono­

tonic if a sequence a satisfying Cpm implies that every sequence having a as

a prefix also satisfies Cpm. A constraint is called prefix-m onotone if it is

prefix anti-monotonic or prefix monotonic. The authors showed that most of

the commonly used constraints (Table 4.5) are prefix-monotone. And all anti­

monotonic or monotonic constraints are prefix-monotone, i.e., prefix-monotone

property is weaker than anti-monotone and monotone properties.

An algorithm similar to PrefixSpan, called Prefix-Growth (Figure 4.11), is

proposed to find sequential patterns with prefix-monotone constraints.

4.3.3 M ining Frequent Episodes

Another problem in mining sequential data is the discovery of frequent episodes

in event sequences, proposed by Mannila et al. [45, 44, 46]. In this section,

we follow the authors’ definitions and introduce the problem and solutions of

finding frequent episodes.

Given a set E of event types, an event is a pair (A,t), where A e E

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm Prefix-G rowth
Input: A sequence database S, minimum support threshold <5, prefix-
monotone constraint C
Output: The complete set of sequential patterns satisfying C
M ethod: call Prefix-Growth(< > , S)
Subroutine Prefix-Growth(c>!, S'la)
Parameters: a: prefix; S |a : the a-projected database
M ethod:

1 . Let I be the length of a. Scan S |a once, find length-(Z + l) frequent prefix
in S |a , and remove infrequent items and useless sequences;

2 . for each length- (I + 1) frequent prefix oi potentially satisfying the con­
straint C do

(a) if oi satisfying C, then output oi as a pattern;

(b) for S |Qq

(c) call Prefix-Growth(a', S |Q')

Figure 4.11: Prefix-Growth Algorithm

and t is the occurrence time associated with the event type A, represented

by an integer. An event sequence s on E is a triple (s,Ts,Te). where s =<

(A i,ti) , (A2, t2) , ..., (An,f„) > (where A, e E and ti < ti+x) is an ordered list

of event. Ts and Te are integers representing the starting time and the ending

time, and Ts < t i < Te for all i = 1,2,..., n. A window on an event sequence s =

(s,Ta,Te) is an event sequence w ={w,ts, t e), where t s < Te and te > Ts, and w

consists of those pairs (A, t) from s where t s < t < te. The time span te — ts is

called the width of the window w, denoted width(w). Given an event sequence

s and an integer w in , W (s, win) denotes the set of all windows w on s,such

that width{w) = win. Figure 4.12 shows an example of an event sequence

s = (3,29,68), where s =< (E, 31), (D, 32), (F, 33), (A, 35),..., (D, 67) >. A

window starting at time 35 (shown in solid line) is (<(A,35), (B,37), (C,38),

(JF,39)>,35,40).

An episode is a partially ordered collection of events occurring together.

Episodes can be described as directed acyclic graphs(DAGs). Figure 4.13

shows three different episodes. Episode 1 is a serial episode: it occurs in a

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

E D F A B C E F C D B A D C E F C B E A E C F A D

1 M I "I I ;l I I—I + T I t H — I I- - I- t -t'- l + H — I— 1 I I I I I I I I I 1 I 1 1 I

30 35 40 45 50 55 60 65

Figure 4.12: An example of event sequence and a window of width 5 [46]

sequence only if there are event E and F that occur in that order in the

sequence. Episode 2 is a parallel episode: there are no constraints on the

order of event A and event B. Episode 3 is an example of non-serial and non­

parallel episode: it occurs in a sequence if there are occurrences of A and B

that precede an occurrence of event C, there are no constraints on the relative

order of A and B. An episode is said to occur in a sequence if nodes of the

episode have corresponding events in the sequence such that the event types

are the same and the partial order of the episode is respected. For example,

the window (w, 35,40) in Figure 4.12 contains events A, B, C and E. Episode

2 and 3 in Figure 4.13 occur in the window, but Episode 1 does not. An

episode (3 is called a subepisode of a is the DAG for a is a subgraph of the

DAG for /3, e.g., Episode 2 is a subepisode of Episode 3 in Figure 4.13.

Given an event sequence s and a window width win, the frequency of an

episode a in s is

, , . , | { w G W (s ,w in) \a occurs in w } |
f r { a , s ,w z n) = ^

\W (s ,w m)\

Episode a is frequent if f r (a , s , w i n) is no less than a threshold m in -fr .

The task of finding frequent episodes is to find all the frequent episodes from a

given class e of episodes. For example, the class could be all parallel episodes

or all serial episodes. The collection of frequent episodes with respect to s,

w in and m in - f r is denoted by F(s, win, m in -fr) .

Mannila et al. [45, 44, 46] proposed an algorithm called WINEPI for finding

frequent episodes from event sequence based on the fact that if an episode a

is frequent in an event sequence s, then all subepisodes (3 A a are frequent.

Like GSP for finding frequent sequential patterns, WINEPI algorithm has two

phases: candidate generation and candidate counting. But the difference is

that WINEPI is designed for counting the number of occurrences of a pattern

when moving a window along a single sequence, while GSP looks for patterns

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©— *©)

Episode 1 Episode2 Episode3

Figure 4.13: Examples of three different episodes represented by directed
acyclic graphs

occurring in multiple sequences.

4.4 Summary

This chapter has introduced the work related to extracellular protein predic­

tion. This problem falls into the general area of protein subcellular localization

prediction. However, most existing methods for protein subcellular localiza­

tion prediction aims at high overall accuracy, which is not appropriate in our

case, since we are interested in identifying properties of amino acid sequences

that discriminate extracellular proteins. Some approaches use additional in­

formation (e.g., lexical annotations) in addition to protein primary sequences.

However, in our problem, we want to build our predictors only based on protein

sequences. Also, we would like our predictors to provide as much interpretable

justifications for biologists as possible.

Since the protein sequence is a kind of sequential data, we also surveyed

various researches on mining sequential data, which have been studies exten­

sively in data mining community. However, most algorithms introduced in

this chapter cannot be easily applied in our case for the following reasons.

• In the sequential mining algorithms summarized in this chapter, a se­

quence is defined to be a list of elements, where each element consists of

a set of items. Protein sequences can be modeled by this definition, by

restricting each element to be a single item (amino acid). However, in

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this case, most algorithms will find a lot of “uninteresting” patterns, in

which a element only contain a single item. For example, a pattern “A-

>D ->E ->G ->F” could be found by those algorithms. But this pattern

is not quite interesting, since each element in this pattern only contains

one item.

• The algorithms for finding episodes are used to find some “patterns”

(episodes) in a single sequence, but we want to find those interesting

subsequences from many extracellular proteins. Also, the structures of

episodes have to be known beforehand. But in biology, we usually do

not know the structures of subsequences that might be interesting.

The next chapter will elaborate on the methods that we have used for

extracellular protein prediction.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Extracellular Protein Prediction

This chapter introduces the features used for our prediction method, and the

different data mining algorithm we use. Section 5.1 describes the features

used in our algorithm and how to find those features from protein primary

sequences. Sections 5.2, 5.3, 5.4 describe different data mining algorithms

that we use for the prediction. Section 5.5 summarizes this chapter.

5.1 Feature Extraction

In this thesis, we use frequent subsequences as the features for the learning

algorithms. A frequent subsequence is a subsequence made up of consecutive

amino acids that occurs in more than a certain fraction (MinSup) of extracel­

lular proteins. The reason we choose frequent subsequences is based on the

following observations:

• Subsequences that appear frequently in extracellular proteins and rarely

appear in intracellular proteins have very good discriminative power for

identifying extracellular proteins. Those subsequences can be of great

interest to biologists.

• It has been known that common subsequences among related proteins

may perform similar functions via related biochemical mechanisms [23,

33, 39, 42],

• Frequent subsequences capture the local similarity that may relate to

important functional or structural information of extracellular proteins.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xa bxac

bxac

bxac

Figure 5.1: Suffix tree for string “xabxac” [28]

Frequent subsequences have been used for identifying outer membrane pro­

tein in Gram-negative bacteria proteins [69]. In this thesis, we want to use

them for extracellular protein prediction.

In order to identify frequent subsequences from extracellular protein se­

quences, we use an efficient implementation of generalized suffix tree (GST)

[80]. A suffix tree is trie-like data structure that compactly represent a string

by collapsing a series of nodes having one child to a single node whose par­

ent edge is associated with a string. A suffix tree for a ra-character string S

has exactly m leaves numbered from 1 to m. Each internal node has at least

two children and each edge is labeled with an nonempty substring of S'. No

two edges out of a node have labels beginning with the same character. The

concatenation of the edge labels on the root to leaf i (the numbers shown in

rectangles in Figure 5.1) exactly corresponds to the suffix of S that starts at

position i. Figure 5.1 shows an example of a suffix tree for the string “xabxac”.

The path from root to leaf numbered 1 spells out the string S = xabxac, while

the path from the root to leaf numbered 4 spells out the suffix xac, which

starts in position 4 of S. Suffix trees are used extensively in string matching.

There are algorithms [73, 82] that can construct a suffix tree for a string in

linear time.

A GST is an extension of the suffix tree, designed for representing a set of

strings. Each suffix of the strings is represented by a leaf in the GST. Each

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[I] [!] [l l [l | [i] [2] 0 [2] [3] [2] [t | [2] [l] 0 H
C HK K KC KKC MKKC MNQIHK Q IH K

FK IH K K KFK KKFK MKKFK N Q IH K

Figure 5.2: The GST for three sequences: MNQIHK, MKKFK and MKKC

leaf is associated with an index i. The edges are labeled with character strings

such that the concatenation of the edge labels on the path from the root to

the leaf with index i is a suffix of the «th string in the set. Figure 5.2 shows

an example.

The algorithm for constructing the GST is as follows. A unique symbol

is appended to the end of each sequence and all sequences are concatenated

into a single one. The suffixes of the sequences are then inserted into a trie.

When a node has only one child, the child is collapsed with its parent and

the edge going down from the parent is labeled with a substring instead of a

single character. In this way, a GST for all extracellular protein sequences are

constructed [28].

In order to find the frequent subsequences, the GST is traversed to find all

frequent subsequences that satisfy the minimum support threshold. In Figure

5.2, the number of occurrence of a subsequence is shown in a circle associated

with an internal node. For example, starting from the root, if the path “K-K”

is followed, we will reach an internal node with number 2 associated with it.

This number tells us the occurrence of subsequence “KK” is 2.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Support Vector Machine

The support vector machine (SVM) approach for solving classification (espe­

cially binary classification) problems was proposed by Vapnik et al. [74, 75].

SVM is well founded theoretically because it is based on well developed statis­

tical learning theory. It has also been shown to be very effective in real-world

applications. For example, SVM has been successfully applied to handwrit­

ten digit recognition [16, 67], object recognition [63], text categorization [18],

microarray data analysis [10], and protein secondary structure prediction [31].

Here, we use SVM for the problem of extracellular protein identification from

primary sequences.

Here we briefly describe the basic idea behind SVMs. SVMs are usu­

ally used for binary (two-class) classification problems. SVMs assume data

to be represented as vectors in some feature space. Assuming we have a

set of training data, i.e., a set of input vectors Xi G Md(i = 1,2 , . . . ,N ,R =

setofrealnumbers) with corresponding labels x/i G {+ 1 ,—l}(i = 1 ,2 ,...,AT),

where d is the dimensions of the feature space and N is the number of train­

ing examples, {+1, —1} are used to indicate the labels of two classes. In its

simplest form, an SVM attempts to find a linear separator in the feature space

that correctly separate the training data of two different classes. It seeks to

maximize the margin, or separation between the two classes in order to im­

prove the chance of accurate predictions of future data, as shown in Figure

5.3.

In most real applications, there are no linear hyperplanes that separate the

original data in the original space. SVMs address this problem by mapping

the input vectors X{ G Rd into a higher dimensional feature space <h(.x) G EL

In this feature space, the linear separator is constructed. Figure 5.4 shows

an example where non-separable data in two-dimensional input space is map­

ping into three-dimensional feature space, where a linear hyperplane can be

found. The mechanism for this mapping <f>(5f) is performed by a kernel func­

tion K (x , X i) which defines an inner product in the space EL The space H is

determined by the kernel function.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s u p p o r t v e c t o r s

o .

o /

- N Optimal hyperplane
\

Figure 5.3: A linear SVM for a two-dimensional training set

The decision function implemented by SVM can be written as:

N

f (x) = s g n (^ 2 K(x, £<) + b)
i—1

where a t are obtaining by solving the following Quadratic Programming

(QP) problem:

Maximize 1 \ E jL i aiaj ' ViVj' K (®«> %i)
subject to 0 < o t i < C

UiVi = 0 (i = 1 , 2 ,..., JV)

where C is a regularization parameter that controls the trade off between

margin and misclassification error. Those x t are called Support Vectors if

the corresponding ctj > 0. There are efficient standard methods to solve the

Quadratic Programming (QP) problem [15]. Due to the very high dimension­

ality of of the QP problem, an extension of the algorithm for solving QP is

used in SVM algorithm [35].

Classical kernel functions include:

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Input Space Feature Space

Figure 5.4: Support vector machine: mapping non-separable data from 2-D
input space to 3-D feature space

• Linear Kernel Function:

K(x i , x) = Xi ■ x

• Polynomial Kernel Function:

K (x i , x) = (xi • x + l)d

• Radial Basic Function (RBF):

K (x i :x) = exp (- 7 || Xi - x ||2)

To apply SVM approach in the extracellular protein prediction, the first

step is to transform protein primary sequences, which are strings of letters,

into some vector representation suitable for SVMs. Here, we use frequent

subsequences as our feature space. These subsequences represent statistically

discriminative features with regard to extracellular proteins. And the dimen­

sionality is much lower than the feature space represented by all potential

subsequences.

Each amino acid sequence is transformed into an n-dimensional vector

x = (ai, a2, ..., an), where n is the number of frequent subsequences found

from extracellular proteins, and a,j(1 < j < n) is the feature corresponding to

the ith subsequence. A binary representation is used. If the ith subsequence

appears in protein sequence x, the value of % is set to 1 . Otherwise, it is

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set to 0. For example, if there are 10 frequent subsequences, and a protein

sequence contains only the first and the second frequent subsequences, the 1 0 -

dimensional vector will be (1,1,0,0,0,0,0,0,0,0). For the class label, +1 is used

to indicate extracellular proteins and -1 for intracellular proteins.

SVM classifiers are trained in this transformed feature space with different

kernel functions and different parameter settings. The results are described in

Chapter 6 .

5.3 Boosting

Boosting is a meta-learning method that has a theoretically justified ability

to improve the performance of any weak classifier. A weak classifier is an

algorithm that, given e, 5 > 0 and access to random examples, can achieve at

least slightly better error rate e than random guessing (e > 1 / 2 — 7 , where

7 > 0), with a probability (1 — 5). The purpose of boosting is to build a highly

accurate classifier by combining many weak or base hypotheses, each of the

weak hypothesis may be only moderately accurate. Various different boosting

algorithms have been proposed in the literature [14, 22, 24, 64, 72],

Boosting algorithms work iteratively. During each iteration, a classifier is

learned based on a different weighted distribution of the training examples.

The main intuition behind boosting algorithms is to increase the weights of

the incorrectly classified examples and decrease the weights of the correctly

classified examples. This forces the learning algorithm to focus on those ex­

amples that are not correctly classified in the next iteration. The algorithm

usually stops after a pre-specified number of iterations, or it can stop when

some measurement of the quality of the classifier based on certain measure­

ment (such as error rate) starts to deteriorate. The set of classifiers obtained

after these iterations are combined together for the final prediction of unseen

examples. Figure 5.5 shows the algorithm of the boosting algorithm.

In our application of extracellular protein prediction, we use AdaBoost

[64, 24] with simple rule-based classifiers as the weak hypotheses. Every rule

is a simple check for the presence or absence of a frequent subsequence in

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Given: (sq, Yi), (x2, Y2) , ..., {xm, Ym) where x t e X ^ c y
Initialize Di(i, I) = 1 /(m k).
F o ri = 1,2,..., T:

• Pass distribution Dt to weak leaner.
• Get weak hypothesis ht : X x T —> R.
• Choose a t £ R.
• Update:

n c Dt (i , l)e xp (-a tYi[l}ht {xi, l))
u t + iU, l) = -----------—— -------------------

where Zt is a normalization factor (chosen so that Dt+x will be a distribution).
Output the final hypothesis:

T

f (x , 0 = '52ottht(x,l).
t = 1

Figure 5.5: AdaBoost Algorithm [65]

a protein primary sequence. Based only on the outcome of this test, the

weak hypothesis outputs the prediction and the confidence that each label

(“extracellular” or “intracellular”) is associated with the protein sequence.

Formally, denote a subsequence by a, the possible class label for a protein

sequence x by I (I could be “extracellular” or “intracellular”), and define a £ x

to represent the fact that subsequence a appears in protein sequence x. The

weak hypothesis corresponding to this subsequence has the following form:

h(Xj) = {Cai YYv ; \ cu if a^ x

where the Cji are real numbers. For example, if subsequence a is “ABCD-

HIKG” , I is “extracellular” , c0/ = 0.549 and cu = —0.168. The weak hypoth­

esis based on this subsequence would read in English:

IF subsequence “ABC D H IK G ” appears in x

THEN predict

x to be “extracellular” with weight 0.549

ELSE predict

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x to be “intracellular” with weight -0.168

The weak learner searches all possible frequent subsequences. For each

subsequence, it calculates the value Cjt and assigns a score. Once all the sub­

sequences are searched, the weak hypothesis with the lowest score is returned

by the weak learner. In our case, the score will be an exact calculation of Zt

(refer to [64] for details). The score is calculated as follows [65]:

Let X 0 = {x : w £ x} and X \ = {x : w € x \ . For j G {0,1} and for

b e {—1, +1}, we calculate the following based on the current distribution Dt:

je{o,i} ley
After all frequent subsequences are searched, the weak learner returns the

one for which the value of Zt is the smallest.

5.4 Frequent Subsequence Pattern (FSP) M ethod

In this section, we introduce another method for extracellular protein predic­

tion, based on frequent subsequence patterns (FSP). The patterns we want to

discover are regular expressions of the form *Xi * X 2 * ..., where X i , X 2,...

are frequent subsequences made up of consecutive amino acids, and is a

variable-length-don’t-care (VLDC) that can substitute for zero or more letters

when matching the pattern against a protein sequence. Since we are interested

in identifying extracellular proteins, subsequence patterns are mined only from

extracellular proteins. We want to find those patterns that can discriminate

extracellular proteins from intracellular ones. The reason we choose this form

m
w l l = Dt(i, l){Xi e X j A Yill] = b}

Zt is minimized for a particular term by choosing

and by setting a t= 1. These settings imply that

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of patterns is that subsequences capture local similarity that may relate to

important structures or functions or extracellular proteins, and VLDCs com­

press the remaining irrelevant portions. An advantage of using subsequence

pattern is because it can provide some biological insights for biologists. This

form of patterns was proposed in [69] and has also been used to identify outer-

membrane proteins in Gram-negative bacteria proteins.

Most sequential pattern mining algorithms are designed to find subsequence

patterns in sequences of transactions. A protein sequence can be modeled by a

sequence of transaction, where each transaction only contains one single item

(amino acid). However most algorithms will find a lot of subsequence pat­

terns that are not interesting. For example, “*a *C*E” is a possible pattern

in sequence “(A)(B)(C)(D)(E)” , but this pattern is not interesting to us, since

“A” “C” “E” may not be frequent subsequences. And they can not find the

patterns of the form “*ABC*DE”, where “ABC” and “DE” are frequent sub­

sequences. In [69], the authors use an exhaustive search to build patterns to

identify outer membrane proteins by concatenating two or more frequent sub­

sequences. However, since there could be thousands of subsequences found in

the training set, exhaustive search produces an explosive number of candidate

patterns. To deal with this problem, we exploit a greedy algorithm to find

those patterns.

Our algorithm is based on the idea of FOIL (First Order Inductive Learner)

proposed by Quinlan et al. [59]. FOIL repeatedly searches for the current best

rule and removes all the positive examples covered by the rule until the positive

examples in the data set are all covered. In our case, the positive examples

are extracellular proteins and the negative examples are intracellular proteins.

Figure 5.6 shows the algorithm FOIL.

The criteria that we use for choosing the best literal is based on its Z-

number [38, 37]. Z-number is calculated as follows. Given a rule R and sR

denotes its support. Let oc denote the mean of the target class C, defined

as ac = |Sc|/1S'!, where S is the current training set and Sc is the subset

of S where C is the class label. Let ac denote the standard deviation of

the target class C. In the binary classification problem, it is calculated as

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm FOIL
Input: Training set D = P U N. (P and N are the sets of positive and
negative examples, respectively.)
Output: A set of rules for predicting class labels
M ethod:
1. rule set P t— 0
2. while |P| > 0
3. N' ^ N , P '
4. rule r <— emptyjrule
5. while \N'\ > 0 and r.length < max -rule leng th
6. Choose the best literal according to P' and N
7. append p to r
8. remove from P' all examples not satisfying r
9. remove from N' all examples not satisfying r
10. end
11. p ^ p u { r }
12. remove from P all examples satisfying r ’s body
13. end
14. return P

Figure 5.6: FOIL Algorithm

ac = \ / a c (l — ac)- Using these notions, Z-number is defined as

Z r — \ /^ r (0r — ac)/&c

Z-number measures how well a rule P discriminate examples of class C.

It is similar to the z-test or t-test in statistics. A rule with high positive Z-

number predicts the presence of C with high confidence. A rule with high

negative Z-number predicts absence of C with high confidence. A rule with

Z-number close to zero does not has much power of discriminating examples

of class C.

The FOIL algorithm is very efficient, but not very effective (in terms of

prediction accuracy), due to the fact that whenever a rule is generated, all

the positive examples covered by this rule will be removed, which results in

the final rule set generated to be very small. In our case, since we want the

rule in the format of “pattern of subsequences => extracellular” , a small rule

set means the recall is very low, i.e., a lot of extracellular proteins in the test

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

set are not covered by the rule set, thus misclassified as intracellular proteins.

In [85], the authors proposed an idea of decreasing the weight of an example

after it is covered by a newly generated rule, instead of removing it. This will

produce more rules and it is more likely to cover most of the positive examples

in the test set. We adopt this idea in our frequent subsequence pattern method.

However, there are some modifications made to the rule induction.

• The patterns we are interested in have the format of “*Xi * X 2 * ... =>•

extracellular” , i.e., the relative order of frequent subsequences (Xl5

X2,...) matters. Also it is possible for a pattern to contain multiple

occurrences of a subsequence, i.e., “*Xi * X2 * X i* ” is a valid pattern.

• Consider the two examples in Figure 5.7. Pattern Pl=*Xx * X 2* ap­

pears in protein sequence 1, pattern P 2 =*X 3 * X4* appears in sequence

2. Intuitively, P I is more likely to be biologically significant than P2,

since the two subsequences X \ and X 2 are close to each other in P I ,

while subsequences X 3 and X 4 are too far apart. In our algorithm, we

introduce another parameter called MaxGap. When matching a pat­

tern against a protein sequence, if the distance (in terms of number of

amino acids) of two adjacent subsequences are too far apart, we do not

consider it to be a match. For example, if MaxGap is set to be 3, the pat­

tern “*ABC*DEF*” does not match the sequence “ABCMNOPQDEF” ,

since the gap between subsequence “ABC” and “DEF” is 5 (see Fig­

ure 5.8(a)). However the pattern “*ABC*DEF*” matches the sequence

“ABCABCPQDEF” , since we can find a way to align them, so that the

gap between “ABC” and “DEF” is 2. We understand this is not a theo­

retically justified assumption in biological domain. But through manual

inspection of our dataset and other publications [34], we decide to use it

in our method.

The algorithm for finding patterns are shown in Figure 5.9. The procedure

Match(t,r, MaxGap) in Figure 5.9 is implemented by enumerating all the

possible alignment of the subsequences in the pattern r to the sequence t.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S e q u e n c e 1 X I X 2

S e q u e n c e 2 X 3 X 4

Figure 5.7: Examples showing two patterns

A B C M N O PQ D

A B C D E F

(a)

A B C A B C PQ

A B C D

(b)

Figure 5.8: Matching pattern against sequence

The pattern r is considered to “match” sequence t, if there is one possible

alignment, such that the distances between two adjacent subsequences are all

less than MaxGap. For example, there are two possible alignments of the

pattern “*A B C * D E F *” against the sequence “A B C A B C P Q D E F ” , shown

in Figure 5.10. If MaxGap is set to 3, we consider the pattern “*ABC *

D E F *” matches sequence “A B C A B C P Q D E F ”, since in Figure 5.10(b), the

alignment satisfies the MaxGap constraint.

After the set of patterns are generated, we filter them in order to keep

those patterns with good predictive power. Only those patterns with support

greater than a threshold M inSup and confidence greater than M in C o n f are

kept for predicting unseen protein examples.

The prediction process is relatively easy. Given an unseen example t, every

pattern r in the pattern set is tested. If there exist a pattern r that matches

t, t is predicted to be an extracellular protein, otherwise it is predicted to be

an intracellular protein.

5.5 Summary

In this chapter, we have proposed several frequent-subsequence-based algo­

rithms for building predictors of extracellular proteins. The reason for using

frequent subsequences is that they capture local similarities that may relate

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lgorithm FindPattern
Input: Training set D = P U N. (P and N are the sets of extracellular and
intracellular proteins, respectively.)
Output: A set of patterns in the format of *A\ * X 2 * ... for predicting extra­
cellular proteins
Parameters: a: rate of weight decreasing; 5: threshold for exiting the pro­
cedure; min-Znumber: minimum acceptable Z-number; M axGap: maximum
acceptable gap between two subsequences.
M ethod:
1. set the weight of every example in P to 1
2. pattern set R «— 0
3. totalW eight <— TotalW eight(P)
4. while totalW eight > 5 • totalW eight
5. N' <- N ,P ' <- P
6. pattern r <— empty-rule
7. while true
8. Choose the subsequence p with the largest Z-number, according to
N ' and P'
9. if Z-number (p) < miri-Znumber then break
10. append p to r
11. for each example t in P U N
12. if not Match(t, r, MaxGap) then
13. remove t from P' U N
14. end
15. end
16. R •<— R U {r}
17. for each example t in P
18. if Match(t, r, MaxGap) then
19. t.weight t— a ■ t.weight
20. end
21. end
22. return R

Figure 5.9: Algorithm for finding patterns

A B C A B C PQ D

A B C D E F

(a)

A B C A B C PQ D

A B C D

(b)

Figure 5.10: Two possible alignment of pattern “*ABC * D EF*" against
sequence “A B C A B C P Q D E F "

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to important functional or structural information of extracellular proteins,

thus may have good discriminative power for identifying extracellular pro­

teins. SYM and boosting are used for learning the classifier because they are

well founded theoretically and have been shown to be very effective in many

real-world applications. The frequent subsequence pattern method is used be­

cause the patterns found by this method can be easily interpreted by biologists

and could be very useful for future biological analysis.

In the next chapter, we test the performance of our algorithms on a real

dataset and compare them to other algorithms.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Experim ents

This chapter describes the experimental results of our methods, including SVM

based on frequent sequences, boosting based on frequent subsequences, and

the frequent subsequence pattern method. We compare our methods to SVM

based on amino acid composition and boosting based on amino acid composi­

tion. We also investigate the effect of combining subsequences and amino acid

composition, and the effect of removing some of those subsequences that are

shorter than a certain threshold.

6.1 Dataset and Evaluation

Our predictor will eventually be used in extracytosolic plant proteins. How­

ever, since there are not that many proteins currently available in our database,

we test the performance on a plant protein dataset that we got from the Pro-

teome Analyst project [43] at the University of Alberta. This dataset was

constructed from SWISS-PROT and contains 3293 proteins, among which 171

are extracellular proteins.

We performed 5-fold cross validation, i.e., each run takes one of the 5 folds

(i.e., 1/5 of the data) as the test set and the remaining 4 folds (i.e., 4/5 of

the data) as the training set. To ensure fair comparisons, all the methods are

evaluated using the same folding. The number 5 was chosen arbitrarily based

on other publications [43],

The performance of a classification algorithm is usually evaluated by its

overall accuracy. However, in our application, overall accuracy is not a good

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Actual Extracellular Actual Intracellular
Predicted as Extracellular TP FP
Predicted as Intracellular FN TN

Table 6.1: Confusion Matrix

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
2658 2605 2532 2817 2722

Table 6.2: Number of subsequence in each fold

evaluation metric. For example, in our dataset, only about 5% of the proteins

are extracellular proteins. A high accuracy (95%) can easily be achieved by

classifying every protein to be intracellular. Another possible choice for evalu­

ation is to measure of prediction accuracies for extracellular and intracellular

separately. But in this case, the performace of an algorithm is measure by two

number (accuracy of extracellular proteins and accuracy of intracellular pro­

teins). We cannot easily tell whether an algorithm is good, if it performs well

on one measurement and poorly on another measurement, unless there is an

appropriate way to combine these two measurements. In our experiment, we

choose to use F-measure with respect to the rare class (extracellular proteins)

as our evaluation metrics. They are based on the confusion matrix shown in

Table 6.1. Using the notions in Table 6.1, precision (P) and recall (R) of

extracellular class can be defined as:

T P o T P
- T P + F P ’ " T P + F N

F-measure (F) [37] is a metric that combines precision and recall. It is

calculated as:

F = * ™
P + R

If a naive classifier predicts every protein to be intracellular, the recall (R)

of this classifier would be zero, resulting F-measure to be zero. So F-measure

is a evaluation metric suitable in our case.

For all the experiments, the subsequences are obtained by setting the min­

imum support threshold to be 5%. The number of subsequences in each fold

is summarized in Table 6.2.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recall Precision F-measure

Linear kernel
Default C 0.291 1 0.451

C=10 0.693 0.957 0.804OOl-HIIO

0.693 0.957 0.804
C=1000 0.693 0.957 0.804

Polynomial Kernel
(d=2)

Default C 0.26 1 0.413
C=10 0.543 0.945 0.69

Q II h-‘ o o 0.543 0.945 0.69
C=1000 0.543 0.945 0.69

RBF Kernel
(7=0.005)

Default C 0.11 1 0.199
C=10 0.449 1 0.62OOT—1IIo

0.449 1 0.62oooHIIU

0.449 1 0.62

Table 6.3: SVM classification with frequent subsequences

Number of iterations Recall Precision F-measure
500 0.598 0.884 0.714
1000 0.606 0.917 0.729
2000 0.606 0.906 0.726

Table 6.4: AdaBoost classification with different number of iterations

6.2 Experiment Result of SVM

In this set of experiments, the SYM h9ht implementation [36] is used since it

is well-known and has been used extensively in previous research. We tried

with three different kernels, including the linear kernel, the polynomial kernel

with degree of 2 and the radial basis function kernel with 7=0.005. For each

kernel, we tried different values for C (the regularization parameter that con­

trols the trade-off between margin and misclassification error). The result is

summarized in Table 6.3. The best result (in terms of F-measure) obtained is

0.804 with a linear kernel.

6.3 Experiment Result of Boosting

In the experiments of boosting, we chose the number of iterations to be 500,

1000 and 2000. And we used BoosTexter [65] for the experiments. The results

are shown in Table 6.4.

The results show that the boosting algorithm is robust with respect to the

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recall Precision F-measure
0.614 0.765 0.681

Table 6.5: Experiment Result of Subsequence Pattern Method

number of iterations. The best result obtained by boosting is 0.729 with 1000

iterations. The performance of boosting is comparable to that of SVM.

6.4 Experiment Result of the FSP M ethod

For the experiment of subsequence pattern method, there are quite a few pa­

rameters to be tuned. In order to tune those parameters, we took a portion

of training examples and tried our algorithm on it with different parameter

setting, then tested the learned model on another portion of the examples.

Through extensive trial and error, we finally got the following parameter set­

ting. M inLen is set to be 3, min^gain to be 0.1, 5 to be 0.03 and a to be 0.8.

The M inSup to be 5%, M in C o n f to be 80%, MaxGap to be 300. The result

is shown in Table 6.5.

6.5 Comparison with Other M ethods

We compared our methods with SubLoc [32], SubLoc used SVM with amino

acid compositions as its features. The authors show that SubLoc performs

better compared with other methods based on amino acid composition. It

also performs better than methods based on N-terminal signals. SubLoc is

not specifically designed for predicting extracellular proteins, but since its

implementation is based on SVMb9ht, we re-implemented it with SVM hght and

tested it on our datasets. We tried the same parameter settings as we did in

SVM with subsequences, the result is shown in Table 6.6. In the table, “nan”

represents the non-valid number caused by 0 being the divisor. The best result

obtained is 0.522 with polynomial kernel (d=2) and C=1000.

For the purpose of comparison, we also tried AdaBoost based on amino

acid composition. Since the attributes are continuous values in this case, the

weak hypothesis used is a single test of whether the composition of an amino

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recall Precision F-measure

Linear Kernel
Default C 0.094 1 0.173

o II I—1 o 0.055 1 0.104ooT—HIIO

0.26 0.825 0.395
C=1000 0.315 0.784 0.449

Polynomial Kernel
(d=2)

Default C 0.094 1 0.173OT—iIIo

0.094 1 0.193
C=100 0.3 0.844 0.442

0
 II ; O . o

o 1 0.378 0.842 0.522

RBF Kernel
(7=0.005)

Default C 0.094 1 0.173
C=10 0 nan nan

C=100 0 nan nan
C=1000 0.063 1 0.119

Table 6.6: SVM classification with amino acid composition

Number of iterations Recall Precision F-measure
500 0.48 0.678 0.562

1000 0.488 0.697 0.574
2000 0.472 0.652 0.548

Table 6.7: AdaBoost classification on amino acid composition

acid is above or below some threshold (see [65] for details). The result is shown

in Table 6.7. The best result obtained is 0.574 with 1000 iterations.

For cross comparison, we choose the best (in terms of F-measure) result

generated by each algorithm (i.e., 0.804 for SVM with subsequences, 0.729

for boosting with subsequences, 0.522 for SVM with amino acid composi­

tion, 0.574 for boosting with amino acid composition). The comparison of

different algorithms is shown in Figure 6.2. Our methods based on frequent

subsequences are better than methods based on amino acid composition. In

particular, the SVM method based on frequent subsequences performs the best

among different approaches.

Even though the SVM method based on frequent subsequences achieves the

best experiment result, there are some advantages in using the FSP method.

The reason is that the decision functions learned by SVM algorithms are dif­

ficult for people to understand. However, the decision rules found by the FSP

method can be easily interpreted and modified by human experts. Figure 6.1

shows some examples of the rules found by subsequence pattern method. Biol-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IF (sequence contains *CKN*CGPGHGIS*) THEN (extracellular)
IF (sequence contains *YWGQNG*EIN*) THEN (extracellular)
IF (sequence contains *QVY*AGH*NVT*) THEN (extracellular)

ELSE (intracellular)

Figure 6.1: Examples of patterns found by the FSP method

S V M w ith subsequences

B o o stin g w ith subsequences

F S P m e thod

S V M w ith am ino ac id com position

B oosting w ith am ino ac id com position

Figure 6.2: F-measures of different algorithms

ogists can easily read these rules and determine whether they are biologically

meaningful. They can also incorporate their biological knowledge and modify

the patterns, e.g., by adding or removing subsequences in the patterns, to get

even better classification models.

6.6 Combining Frequent Subsequences and Amino
Acid Composition

Since the methods based on frequent subsequences perform better than those

based on amino acid composition, an interesting question is whether we can

combine these two kinds of features to do a better job. We did some experi­

ments to show the effect of combining them.

Table 6.8 shows the results of SVM based on combined features. Table

6.9 shows the comparison of F-measures of SVM based on combined features,

frequent subsequences, and amino acid composition. The result shows that

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recall Precision F-measure

Linear Kernel
Default C 0.291 1 0.451

C=10 0.693 0.957 0.804ooIIo

0.693 0.957 0.804
C=1000 0.693 0.957 0.804

Polynomial Kernel
(d=2)

Default C 0.26 1 0.413
C=10 0.543 0.945 0.69

o II o o 0.543 0.945 0.69
C=1000 0.543 0.945 0.69

RBF Kernel
(7=0.005)

Default C 0 nan nanor—iIIO

0 nan nan
C=100 0 nan nan

C=1000 nan 0 nan

Table 6.8: SVM classification with combined features

Combined Feature Subsequence Composition

Linear
Kernel

Default C 0.451 0.451 0.173

o II 1—‘

o 0.804 0.804 0.104
C=100 0.804 0.804 0.395

C=1000 0.804 0.804 0.449
Polynomial

Kernel
(d=2)

Default C 0.413 0.413 0.173

o II 1—‘

o 0.69 0.69 0.193
C=100 0.69 0.69 0.442

C=1000 0.69 0.69 0.522
RBF

Kernel
(7=0.005)

Default C nan 0.199 0.173oIIo

nan 0.62 nan
C=100 nan 0.62 nan

C=1000 nan 0.62 0.119

Table 6.9: Comparison of SVM based on different features

there is no obvious benefits of combined features for SVM. In the case of RBF

kernel, SVM based on combined features is even worse than SVM simply based

on frequent subsequences.

Table 6.10 shows the results of boosting based on combined features. Table

6.11 show the comparison of F-measures of boosting based on combined fea­

tures, frequent subsequences, and amino acid composition. We can conclude

that, contrary to SVM, the performance of boosting (measured by F-measure)

can be improved significantly by combining frequent subsequences and amino

acid composition.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of iterations Recall Precision F-measure
500 0.685 0.967 0.802
1000 0.717 0.989 0.831
2000 0.708 0.989 0.826

Table 6.10: AdaBoost classification with combined features

Number of iterations Combined feature Subsequence Composition
500 0.802 0.714 0.562
1000 0.831 0.729 0.574
2000 0.826 0.726 0.548

Table 6.11: Comparison of AdaBoost based on different features

6.7 Effects of M inLen

In SVM and Boosting, all the subsequences are used as features. However,

short subsequences are more likely to appear than long subsequences. Some

very short subsequences (e.g., subsequences with one amino acid or two) actu­

ally do not contain much information, even though they appear very frequently.

In order to investigate the effect of the minimum length of subsequences, we

did some experiments by removing those subsequences with length less than

a certain threshold {MinLen). The results are shown in Table 6.12 and Ta­

ble 6.13. We can see that in general, removing short subsequences does not

improve the result.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MinLen=l
(2667)

MinLen=2
(2647)

MinLen=3
(1851)

MinLen=4
(258)

MinLen=5
(67)

Linear
Kernel

Default C 0.451 0.476 0.52 0.565 0.132
C=10 0.804 0.804 0.67 0.5 0.111

o II h-
k

O O 0.804 0.804 0.65 0.489 0.126
n II V—

11
O o o 0.804 0.804 0.66 0.485 0.088

Polynomial
Kernel
(d=2)

Default C 0.413 0.413 0.392 0.517 0.565
C=10 0.69 0.625 0.5 0.497 0.565

C=100 0.69 0.625 0.5 0.497 0.565

O

O
:

O
i

r*H
1

IIO

0.69 0.625 0.5 0.497 0.565
RBF

Kernel
(7=0.005)

Default C 0.199 nan 0.031 0.104 0.591
C=10 0.62 nan 0.046 0.158 0.591

OOr"HIIO

0.62 nan 0.046 0.158 0.591oooT—
1

IIu

0.62 nan 0.046 0.158 0.591

Table 6.12: F-measure of SVM on frequent subsequences with different MinLen
(the number in brackets shows the average number of frequent subsequences)

Number of iterations MinLen=l
(2667)

MinLen=2
(2647)

MinLen=3
(1851)

MinLen=4
(258)

MinLen=5
(67)

500 0.714 0.704 0.613 0.556 0.551
1000 0.729 0.711 0.615 0.556 0.548
2000 0.726 0.724 0.599 0.55 0.556

Table 6.13: F-measure of AdaBoost on frequent subsequences with different
MinLen (the number in brackets shows the average number of frequent subse­
quences)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we have presented EPPdb, an on-line database that has

been developed for proteomic analysis of extracytosolic plant proteins. Similar

to other 2-D PAGE databases, EPPdb provides textual and graphical web

interfaces that allow biologists to query and populate the database. EPPdb

also provides an open API that allow other applications to access it as a Web

service.

We also augmented EPPdb with a repository of tools that can be used

in data analysis and mining tasks. In particular, we introduced a tool that

we developed for extracellular protein prediction. We have proposed several

frequent-subsequence-based algorithms for this task and compared them with

existing methods, which are based on amino acid composition. The experi­

ments show that our algorithms perform better than amino acid composition

based methods. The best result is achieved by SVM classification based on fre­

quent subsequences. However, even though the experimental results of SVM

and boosting based on frequent subsequences are the best, there are some ad­

vantages in using the FSP method. The reason is that the decision functions

learned by SVM and boosting are difficult for people to understand. However,

the decision functions of the FSP method are easily readable rules, which can

be easily understood by human experts.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Future Work

There are a number of directions for possible future research.

First of all, we only use the protein primary sequences for training the

predictor of extracellular proteins. If additional properties of proteins (e.g.,

secondary structures, functions) are available, future research can take these

characteristics into account to make a more accurate prediction.

Moreover, in the algorithms we have developed, we did not use biological

knowledge about the characterizations of extracellular proteins. It would be

beneficial if we could embed prior knowledge about extracellular proteins into

our prediction system.

In addition, EPPdb is still in its early stage of development. As the project

progresses, other interesting data analysis and mining tasks may be identified.

Future research is needed to develop further tools to assist biologists.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In In Proceedings
of the 11th International Conference on Data Engineering, pages 3-14,
1995.

[2] S.F. Altschul and W. Gish. Local alignment statistics. Methods in Enzy-
mology, 266:460-480, 1996.

[3] M.A. Andrade, S.I. O’Donoghue, and B. Rost. Adaption of protein sur­
faces to subcellular location. Journal of Molecular Biology, 276:517-525,
1998.

[4] V.M. Anoop, U. Basu, M.T. McCammon, L. McAlister-Henn, and G.J.
Taylor. Modulation of citrate metabolism alters aluminum tolerance in
yeast and transgenic canola overexpressing a mitochondrial citrate syn­
thase. Plant Physiology, 132:2205-2217, 1999.

[5] R.D. Appel, A. Bairoch, J.-C. Sanchez, J.R. Vargas, O. Golaz,
C. Pasquali, and D.F. Hochstrasser. Federated two-dimensional elec­
trophoresis database: a simple means of publishing two-dimensional elec­
trophoresis data. Electrophoresis, 17(3):504-506, 1996.

[6] C. Apte, F. Damerau, and S. Weiss. Towards language independent auto­
mated learning of text categorization models. In Proceedings of the 17th
Annual ACM SIGIR Conference, 1994.

[7] Rolf Apweiler, Amos Bairoch, and Cathy H. Wu. Protein sequence
databases. Current Opinion in Chemical Biology, 8:76-80, 2004.

[8] U. Basu, A.G. Good, T. Aung, J.J. Slaski, A. Basu, K.G. Briggs, and G.J.
Taylor. A 23kD, aluminum-binding, root exudate polypeptide cosegre-
gates with the aluminum-resistant phenotype in Triticum aestivum. Phys-
iologia Plantarum, 106:53-61, 1999.

[9] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher,
E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pil-
bout, and M. Schneider. The Swiss-Prot protein knowledgebase and its
supplement trembl in 2003. Nucleic Acids Research, 31:365-370, 2003.

[10] M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, T.S.
Furey, M. Ares, and D. Haussler. Konwledge-based analysis of microarray
gene expression data by using support vector machines. Proceedings of
National Academy of Science USA, 97:262-267, 2000.

[11] Juan Cedano, Patrick Aloy, Josep A. Perez-Pons, and Enrique Querol.
Relation between amino acid compositionn and cellular location of pro­
teins. Journal of Molecular Biology, 266:594-600, 1997.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] K. C. Chou and D. W. Elrod. Protein subcellular location prediction.
Protein Engineering., 12(2):107-118, 1999.

[13] M. Claros and P. Vincens. Computational method to predict mitochon-
drially imported proteins and their targeting sequences. European Journal
of Biochemistry, 241:779-786, 1996.

[14] W. Cohen and Y. Singer. A simple, fast and effective rule learner. In In
Proceedings of Annual Conference of American Association for Artificial
Intelligence, pages 335-342, 1999.

[15] T. F. Coleman and Y. Li. A reflective newton method for minimizing
a quadratic function subject to bounds on some of the variables. SIAM
Journal on Optimization, 6(4):1040-1058, 1996.

[16] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273-293, 1995.

[17] Genetics Computer Croup(GCG). SPScan. Wisconsin Package Version
10 .2 .

[18] H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spam
categorization. IEEE Transaction on Neural Networks, 10:1048-1054,
1999.

[19] Prank Eisenhaber and Peer Bork. Wanted: subcellular localization of
proteins based on sequence. Trends in Cell Biology, 8:169-170, 1998.

[20] Olof Emanuelsson, S^ren Brunak, and Gunnar von Heijne. Chlorop, a
neural network-based method for predicting chloroplast transit peptides
and their cleavage sites. Protein Science, 8:978-984, 1999.

[21] Olof Emanuelsson, Henrik Nielsen, Sr/)ren Brunak, and Gunnar von Hei­
jne. Predicting subcellular localization of proteins based on their N-
terminal amino acid sequence. Journal of Molecular Biology, 300:1005-
1016, 2000.

[22] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: Misclassification
cost-sensitive boosting. In In Proceedings of 6th International Conference
on Machine Learning, Bled, Slovenia, 1999.

[23] K. A. Frenkel. The human genome project and informatics. Communi­
cations of the ACM, 34(11):41-51, 1991.

[24] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on­
line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119—139, 1997.

[25] Jennafer L. Gardy, Cory Spencer, Ke W ang, Martin Ester, Gabor E.
Tusnady, Istvan Simon, Sujun Hua, Katalin deFays, Christophe Lambert,
Kenta Nakai, and Fiona S.L. Brinkman. PSORT-B: improving protein
subcelllular localization prediction for gram-negative bacteria. Nucleic
Acids Research, 31(13):3613-3617, 2003.

[26] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. SPIRIT: Se­
quential pattern mining with regular expression constraints. In Proceed­
ings of the 25th VLDB Conference, Edinburgh, Scotland, 1999.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[27] Y. Gavel, L. Nilsson, and G. von Heijne. Mitochondrial targeting se­
quences. why “non-amphiphilic” peptides may still be amphiphilic. FEBS
Letters, 235:173-177, 1988.

[28] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge
University Press, 1997.

[29] C. Hoogland, V. Banjard, J.-C. Sanchez, D. F. Hochstrasser, and R. D.
Appel. Make2ddb: A simple package to set up a two-dimensional elec­
trophoresis database for the world wide web. Electrophoresis, 18:2755-
2758, 1997.

[30] C. Hoogland, J.-C. Sanchez, L. Tonella, P.-A. Binz, A. Bairoch, D. F.
Hochstrasser, and R. D. Appel. The 1999 SWISS-2DPAGE database
update. Nucleic Acids Research, 28:286-288, 2000.

[31] Sujun Hua and Zhirong Sun. A novel method of protein secondary struc­
ture prediction with high segment overlap measure: support vector ma­
chine approach. Journal of Molecular Biology, 2001.

[32] Sujun Hua and Zhirong Sun. Support vector machine approach for protein
subcellular localization prediction. Bioinformatics, 17(8):721-728, 2001.

[33] Larry Hunter. Artificial Intelligence and Molecular Biology. AAAI Press,
1993.

[34] A. Icev, C. Ruiz, and E. Ryder. Distance-enhanced association rules for
gene expression. In Proceedings of the 3rd ACM SIGKDD Workshop on
Data Mining in Bioinformatics, Washington, DC, USA, 2003.

[35] T. Joachims. Making large-scale SVM learning practical. In Advances in
Kernel Methods-Support Vector Learning. MIT Press, 1999.

[36] T. Joachims. Learning to Classify Text Using Support Vector Machines.
Kluwer, 2002.

[37] M. V. Joshi. On evaluating performance of classifiers for rare classes.
In Proceedings o f 2002 IEEE International Conference on Data Mining,
Maebashi City, Japan, 2002.

[38] M. V. Joshi, R. C. Agarwal, and V. Kumar. Mining needles in a haystack:
Classifying rare classes via two-phase rule induction. In Proceedings of
ACM SIGMOD Conference, pages 91-102, Santa Barbara, CA, 2001.

[39] N. Kamel, M. Delobel, T.G. Marr, R. Robbins, J. Thierry-Mieg, and
A. Tsugita. Data and knowledge bases for genome mapping: W hat lies
ahead? In Panel Presentation in the 17th International Conference on
Very Large Data Bases, Barcelona, Spain, 1991.

[40] Benjam in M. Lewin. Genes. Oxford U niversity Press, 1999.

[41] D.D. Lewis and M. Ringuette. Comparison of two learning algorithms for
text categorization. In Proceedings of the Third Annual Symposium on
Document Analysis and Information Retrieval(SDAIR’94), 1994.

[42] R.J. Lipton, T.G. Marr, and J.D. Welsh. Computational approaches to
discovering semantics in molecular biology. In Proceedings of the IEEE,
volume 77, pages 1056-1060, 1989.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[43] Zhiyong Lu. Predicting protein sub-cellular localization from homologs
using machine learning algorithms. Master thesis, 2002. Department of
Computing Science, University of Alberta.

[44] H. Mannila and H. Toivonen. Discovery generalized episodes using mini­
mal occurances. In In Proceedings of the 2nd International Conference on
Knowledge Discovery and Data M ining(KDD’96), pages 146-151, Port­
land, OR, 1996.

[45] H. Mannila, H. Toivonen, and A.I. Verkamo. Discovering frequent
episodes in sequences. In In Proceedings of the 1st International Confer­
ence on Knowledge Discovery and Data Mining(KDD’ 95), pages 210-215,
Montreal, Canada, 1995.

[46] Heikki Mannila, Hannu Toivonen, and A.Inkeri Verkamo. Discovery of
frequent episodes in event sequences. Data Mining and Knowledge Dis­
covery, pages 259-289, 1997.

[47] B. Marchal. Applied XML Solutions. SAMS publishing, 2000.

[48] Afshin Nadershahi. Prediction of cell localization, 2002.
http: / / www.micab.umn.edu/8006/litreviews/afshin.pdf.

[49] Rajesh Nair and Burkhard Rost. Inferring sub-cellular localization
through automatic lexical analysis. In In Proceedings of the tenth Inter­
national Conference on Intelligent Syetems for Molecular Biology, pages
78-86. Oxford University Press, 2002.

[50] K. Nakai. A knowledge base for predicting protein localization sites in
eukaryotic cells. Genomics, 14:897-911, 1992.

[51] K. Nakai. Protein sorting signals and prediction of subcellular localization.
Advances in Protein Chemistry, 54:277-344, 2000.

[52] H. Nakashima and K. Nishikawa. Discrimination of intracellular and ex­
tracellular proteins using amino acid composition and residue-pair fre­
quencies. Journal of Molecular Biology, 238(1):54-61, 1994.

[53] Henrik Nielsen, S^ren Brunak, and Gunnar von Heijne. Review: Machine
learning approaches for the prediction of signal peptides and other protein
sorting signals. Protein Engineering, 12(l):3-9, 1999.

[54] Henrik Nielsen, Jacob Engelbrecht, and S/»ren Brunak. A neural network
method for identification of prokaryotic and eukaryotic signal peptides
and prediction of their cleavage sites. International Journal of Neural
Systems, 8:581-599, 1997.

[55] Henrik Nielsen, Jacob Engelbrecht, S^ren Brunak, and Gunnar von Hei­
jne. Identification of prokaryotic and eukaryotic signal peptides and pre­
diction of their cleavage sites. Protein Engineering, 10(1):1—6, 1997.

[56] Henrik Nielsen and Anders Krogh. Prediction of signal peptides and
signal anchors by a hidden markov model. In J. Glasgow et al., editor,
Proceedings of Sixth International Conference on Intelligent Systems for
Molecular Biology, volume 1, pages 122-130. AAAI Press, 1998.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.micab.umn.edu/8006/litreviews/afshin.pdf

[57] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
MC. Hsu. PrefixSpan: Mining sequential patterns effeciently by prefix-
projected pattern growth. In In Proceedings of the 17th International
Conference on Data Engineering, pages 215-224, 2001.

[58] Jian Pei, Jiawei Han, and Wei Wang. Mining sequential patterns with
constraints in large databases. In Proceedings of the 11th International
Conference on Information and Knowledge Management, McLean, VA,
2002 .

[59] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In
Proceedings of 1993 European Conference on Machine Learning, pages
3-20, Vienna, Austria, 2002.

[60] A. Reinhardt and T.Hubbard. Using neural networks for prediction of the
subcellular location of proteins. Nucleic Acids Research, 26(9):2230-2236,
1998.

[61] C. Robinson and R.J. Ellis. Transport of proteins into chloroplasts, par­
tial purification of a chloroplast protease involved in the processing of
important precursor polypeptides. European Journal of Biochemistry,
142:337-342, 1984.

[62] D. Roise. Recognition and binding of mitochondrial presequences dur­
ing the import of proteins into mitochondria. Journal of Bioenergy and
Biomembrane, 29:19-27, 1997.

[63] D. Roobaert and M.M. Hulle. View-based 3D object recognition with
support vector machines. In Proceedings of the IEEE Neural Networks
for Signal Processing Workshop, pages 77-84, Totowa, NJ, 1999. IEEE
Press.

[64] R. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297-336, 1999.

[65] R. Schapire and Y. Singer. BoosTexter: A boosting-based system for text
categorization. Machine Learning, 39(2):135-168, 2000.

[66] G. Schatz and B. Dobberstein. Common principles of protein transloca­
tion across membranes. Science, 271:1519-1526, 1996.

[67] B. Scholkopf, C. Burges, and V. Vapnik. Extracting support data for
a given task. In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, pages 252-257, Menlo Park, CA,
1995. AAAI Press.

[68] H. Schutze, D.A. Hull, and J.O. Pederson. A comparison of classifiers
and document representation for the routing problem. In Proceedings of
the 18th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval(SIGIR’95), pages 229-237, 1995.

[69] R. She, F. Chen, K. Wang, M. Ester, J. L. Gardy, and F. S. L. Brinkman.
Frequent-subsequence-based prediction of outer membrane proteins. In
Proceedings of ACM SIGKDD 2003 Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, 2003.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[70] J. Soil and R. Tien. Protein translocation into and across the chloroplastic
envelope membranes. Plant Molecular Biology, 38:191-207, 1998.

[71] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations
and performance improvements. In In Proceedings of the 5th International
Conference on Extending Database Technology, 1996.

[72] K. M. Ting. A comparative study of cost-sensitive boosting algorithms.
In In Proceedings of 17th International Conference on Machine Learning,
pages 983-990, Stanford University, CA, 2000.

[73] E. Ukkonen. On-line construction of sufhx-trees. Algorithmica, 14:249-
260, 1995.

[74] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[75] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[76] G. von Heijne. Patterns of amino acids near signal sequence cleavage sites.
European Journal of Biolchemistry, 133:17-21, 1983.

[77] G. von Heijne. Signal sequences: the limits of variation. Journal of
Molecular Biology, 184:99-105, 1985.

[78] G. von Heijne, J. Steppuhn, and S.G. Hermann. Domain structure of
mitochondrial and chloroplast targeting peptides. European Journal of
Biochemistry, 180:535-545, 1989.

[79] M. Waltner and H. Weiner. Conversion of a nonprocessed mitochondrial
precursor protein into one that is processed by the mitochondrial process­
ing peptidase. Journal of Biological Chemistry, 271:21226-21230, 1996.

[80] J. Wang, G. Chirn, T. Marr, B. Shapiro, D. Shasha, and K. Zhang. Com­
binatorial pattern discovery for scientific data: Some preliminary results.
In SIGMOD-94, Minnesota, USA, 1994.

[81] Yang Wang, Osmar R. Zaiane, Randy Goebel, Jennafer L. Shouthron,
Urmila Basu, Randy M. W hittal, Julie L. Stephens, and Greg J. Taylor.
Developing a database for proteomic analysis of extracytosolic plant pro­
teins. In Second International Workshop on Biological Data Management
(BIDM ’2004), 2004.

[82] P. Weiner. Linear pattern matching algorithms. In Proceedings of the
14th IEEE Symposium on Switching and, Automata Theory, pages 1—11,
1973.

[83] Y. Yang and C.G. Chute. An application of least squares fit mapping
to clinical classification. In Proceedings of the Annual Symposium on
Computer Applications in Medical Care, pages 460-464, 1992.

[84] Y. Yang and J.P. Pederson. A comparative study of feature selection
in text categorization. In Proceedings of the Fourteenth International
Conference on Machine Learning, 1997.

[85] Xiaoxin Yin and Jiawei Han. CPAR: Classification based on predictive
association rules. In Proceedings of 2003 SIAM International Conference
on Data Mining, San Fransisco, CA, 2003.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[86] M.J. Zaki. Efficient enumeration of frequent sequences. In Proceedings
of the 7th International Conference on Information and Knowledge Man­
agement, 1998.

[87] M.J. Zaki. SPADE: An efficient algorithm for mining frequent subse­
quences. Machine Learning, 40:31-60, 2001.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Glossary

am phiphilic : of or relating to a molecule having a polar, water-soluble group
attached to a nonpolar, water-insoluble hydrocarbon chain.
2-D P A G E (2-D E) : two-dimensional polyacrylamide gel electrophoresis.

Am ino acid com position : relative frequency of twenty amino acids in a
protein sequence.

B oosting : an iterative learning algorithm that improves the performance of
any weak classifer.

consensus sequence : a sequence of nucleotides or amino acids in common
between regions of homology in different but related DNA or RNA or protein
sequences.
Curated databases : a protein database monitored by biologists. The re­
dundancy of curated databases is removed by compiling all the reports for a
given protein sequence into a single entry.

E P Pdb : Extracytosolic Plant Protein Database.

Extracellular : situated or occurring outside a cell or the cells of the body.

Extracytosolic : synonym to “extracellular” .

Frequent subsequences : subsequences made up of consecutive amino acids
that occur in more than a certain threshold of extracellular proteins.

Gram -negative : a particular kind of bacteria.

G ST : Generalize Suffix Tree, a data structure designed for representing a set
of strings.

H om ologous : having the same evolutionary origin.

HTML : HyperText Markup Language.

Intracellular proteins : proteins that are localized within the cell.

M ahalanobis distance : a distance measurement between two N dimen­
sional points scaled by the statistical variation in each component of the point.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M ySQ L : a popular Open Source SQL database management system.

N uS O A P : a toolkit providing a simple API for building Web Services using
SOAP technology.

P H P : Hypertext Preprocessor, a widely-used open source general-purpose
scripting language.

P ro te in su b ce llu la r loca liza tion : the cellular compartment where proteins
are localized.

Sequence re p o s ito ry : a protein databases that make no efforts to provide
a non-redundant collection of sequences.

SO A P : Simple Object Access Protocol.

SV M : Support Vector Machine, a learning algorithm for solving two-class
classification problems.

W eak classifier : a classifier that performs better than random guessing.

W eb Services : a mechanism of communicating between two remote systems.

W SD L : Web Services Description Language, an XML document used to de­
scribe Web Services.

X M L : Extensible Markup Language, a universally agreed markup language
primarily used for information exchange.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Sample Code

The following is a sample PHP code of accessing EPPdb using Web Services.
It aims to retrieve all the protein entries that contain “trypsin” in the “DE”
lines.

<?php
require_once(’nusoap.php’);
$soapclient=new soapclient(

’http://www.cs.ualberta.ca/~wyang/php/soapserver.php’);

$arr=array(’DE’);
$rows=$soapclient->call(’query_by_keyword’,

array(,atts’=>$arr, ’keyword’=>’trypsin’));

echo "Query results:
";
echo "
" ;
foreach ($rows[0] as $row){
foreach ($row as $element){
echo $element."
\n";

}
echo "
\n";

}
?>

The services currently available are listed in Table B.l. More services will
be added as this project proceeds.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~wyang/php/soapserver.php%e2%80%99

Name Description Parameters
query_by_ac Retrieve all the entries

containing a specific
word in the AC line

$name: the word to be
search for in AC line

query _by_de Retrieve all the entries
containing a specific
word in the DE line

$name: the word to be
search for in DE line

query _by .keyword Specify the attributes to
be searched and several
keywords, retrieve all the
entries tha t contain all
the keywords in those
specified attributes

$atts: list of attributes
(e.g., AC, DE, etc)
$keyword: list of key­
words separated by
spaces

Table B.l: Web services in EPPdb

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

