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Chapter 1 

Introduction

1.1 M otivation and Background

A proteome represents the proteins that are expressed in a specific biologi­

cal unit at a particular time and under a particular set of conditions. Pro- 

teomics utilizes a diverse set of tools to display, identify, and investigate the 

proteins in a proteome. The results of proteomic studies are commonly dis­

played in on-line databases. In particular, experimental data available from 

two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) are displayed 

in 2-D PAGE databases (or 2-DE databases) [5]. Links to many 2-D PAGE 

database servers and 2-D PAGE related servers and services can be found at 

WORLD-2DPAGE1 and efforts have been made to establish a set of feder­

ated databases [5] that are maintained independently, but are linked together 

through the World Wide Web (WWW).

This dissertation describes the design and implementation of EPPdb (Ex- 

tracytosolic Plant Protein Database), an on-line 2-D PAGE database that is 

built to provide the plant biology community with relevant information about 

extracytosolic plant proteins. Extracytosolic plant proteins are involved in 

numerous processes including nutrient acquisition, communication with other 

soil organisms, protection from pathogens, and resistance to disease and toxic 

metals. Insofar as these proteins are strategically positioned to play a role 

in resistance to environmental stress, biologists are using proteomic tools, 

such as two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), liquid

1 http: / /ca.expasy.org/ch2d /  2d-index.html

1
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chromatography-tandem mass spectrometry (LC-MS/MS), de novo sequenc­

ing, and bioinformatics, to analyze extracellular proteins. These proteins are 

collected from Brassica napus (canola) plants grown hydroponically in a sterile 

environment[4, 8, 81]. The goal of this database is to allow biologists retrieve 

and submit information about extracytosolic plant proteins, and to perform 

advanced data analysis and data mining tasks using tools submitted to the 

database by researchers.

1.2 Contributions

The contributions of this dissertation include:

• From the biology side, EPPdb is the first database built solely for ex­

tracytosolic plant proteins. The information will be available for use in 

plant physiology and plant breeding programs throughout the world to 

improve crop growth. It will open up new opportunities for discovery of 

novel genes and promoters.

•  EPPdb uses Web Services to facilitate information sharing among appli­

cations, which is quite novel in biological database management commu­

nity.

•  EPPdb introduces the concept of allowing users to submit tools to facil­

itate more sophisticated data analysis and data mining tasks.

•  As a proof of the concept of data analysis and data mining tools, a tool 

for identifying extracellular proteins from primary sequences is built by 

using data mining techniques.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 and Chap­

ter 3 comprise the first part of this dissertation, which focuses on the 2D-PAGE 

database. Chapter 2 introduces some related work on protein databases. 

Chapter 3 describes the design and implementation of various functionalities of

2
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the database. The second part of this dissertation concentrates on a database 

analysis tool that we build for EPPdb, which is to identify extracellular pro­

teins from protein primary sequences. This part includes Chapter 4, Chapter 

5 and Chapter 6. Chapter 4 introduces biological background and existing 

methods that are related to the problem of extracellular protein prediction. 

This chapter also introduces the problem of mining sequential data, which is 

related to the methods we use. Chapter 5 describes the approaches we use for 

predicting extracellular proteins, including feature extraction, sequence mod­

eling, and learning algorithms. Chapter 6 presents the experimental results on 

real-world datasets. The last chapter (Chapter 7) concludes the dissertation 

and points to some future work. Appendix A gives a short glossary of common 

terms. Appendix B shows a sample code for accessing our database through 

Web services.

3
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Chapter 2

Work R elated to Protein  
Databases

2.1 Introduction

With the availability of over 165 completed genome sequences from both eu­

karyotic and prokaryotic organisms, a huge volume of data are generated from 

the large-scale analysis of these proteins. This comes from both the informa­

tion provided by the genome projects and the newly developed technologies in 

protein science. Nowadays, it is possible to quickly identify large number of 

proteins, to map their interactions, to determine their locations within the cell 

and to analyze their biological activities. Protein sequence databases play an 

important role as a repository for storing the accumulated data and making 

them accessible to the scientific community [7].

This chapter introduces the work related to the protein database. Accord­

ing to the level of additional information to the sequence records they contain, 

protein sequence databases can be categorized as sequence repositories and 

curated databases. Section 2.2 and Section 2.3 introduce these two type of 

protein databases, respectively. Section 2.4 introduces the two-dimensional 

electrophoresis (2-DE) database, which is the type of databases EPPdb falls 

into [7]. Section 2.5 summarizes this chapter.

4
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2.2 Sequence Repositories

Several protein sequence databases act as repositories of protein sequences, 

in the sense that they contain little or no additional information other than 

protein sequences. Usually they make no effort to provide a non-redundant 

collection of sequences to users.

An example of sequence repositories is GenBank Gene Products (Gen- 

Pept) database. The entries in the database are derived from translations of 

the sequences contained in the nucleotide database maintained by the DNA 

Database Bank of Japan (DDBJ), the European Molecular Biology Labora­

tory (EMBL) Nucleotide Sequence Database and GenBank. The entries in 

the database contain minimal annotation extracted from the corresponding 

nucleotide entries. These databases lack additional annotation and do not 

contain proteins derived from amino acid sequencing. Also, each protein in 

the database can be represented by different entries, so the database is redun­

dant.

2.3 Curated Databases

Compared with sequence repositories, the curated databases enrich the se­

quence data in the databases by adding additional information. The additional 

information is usually validated by expert biologists before they are added into 

the databases. Also effort is made to remove redundancy of the databases by 

compiling all reports for a given protein sequence into a single entry.

SWISS-PROT1 is the most well-known universal curated protein sequence 

database. It contains 152040 sequence entries as of May 2004 (Release 43.4). 

In SWISS-PROT, all the reports for a given protein are merged into a single 

entry, so the database is non-redundant.

The core data, which is required for every SWISS-PROT entry, consists 

of the amino acid sequence, the protein name (description), taxonomy data 

and citation information. Additional information on proteins is available, the

1 http: / / www.ebi.ac.uk/swissprot/index.html

5
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entries contain detailed annotation on items such as the functions of the pro­

tein, subcellular locations, secondary structure, tertiary structure, quaternary 

structure, etc. The annotation added is stored mainly in the description (DE) 

lines, the gene (GN) lines, the comment (CC) lines, the feature table (FT) 

lines, and the keyword (KW) lines [9].

2.4 2-DE Databases

A two-dimensional electrophoresis (2-DE) database is a specific protein database 

that contains experimental data available from two-dimensional polyacrylamide 

gel electrophoresis (2-D PAGE). A 2-DE database usually contains textual de­

scriptions of the proteins identified and various 2-D PAGE images showing the 

protein locations.

The most famous 2-DE database is SWISS-2DPAGE2. Each SWISS-2DPAGE 

entry corresponds to one protein and contains several lines to represent the tex­

tual descriptions of the protein, including mapping procedures, physiological 

and pathological information, experimental data (isoelectric point, molecular 

weight, amino acid composition, peptide masses) and bibliographical refer­

ences. Each line begins with a two-character line code, which indicates the 

type of data contained in the line. Table 2.1 shows the lines codes and line 

types3 used in SWISS-2DPAGE.

In addition to this textual data, SWISS-2DPAGE provides several 2-D 

PAGE and SDS-PAGE images showing the experimentally determined loca­

tion of the protein, as well as a theoretical region computed from the protein 

sequence, indicating where the protein might be found in the gel. Cross- 

references are provided to Medline and other federated 2-DE databases (YEPD, 

EC02DBASE, HSC-2DPAGE, PHCI-2DPAGE, PMMA-2DPAGE, Siena-2DPAGE) 

and to SWISS-PROT, which provides many links to other molecular databases 

(EMBL, Genbank, PROSITE, OMIM, etc).

SWISS-2DPAGE can be browsed through the ExPASy World Wide Web

2http://au.expasy.org/ch2d
3http://tw .expasy.org/ch2d/manch2d.html

6
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Line code Line type Occurrence in an entry
ID Identification Once; starts the entry
AC Accession number(s) One or more
DT Date Two times
DE Description One or more
GN Gene name(s) Optional
OS Organism species One or more
OC Organism classification One or more
OX Taxonomy cross-reference(s) Once
MT Masters One or more
IM Images One or more
RN Reference number One or more
RP Reference position One or more
RX Reference cross-reference (s) Optional
RA Reference authors One or more
RT Reference title Optional
RL Reference location One or more
CC Comments or notes One or more
2D 2-D PAGE specific data several
ID SDS-PAGE specific data several
DR Database cross-reference Optional
/ / Termination line Once; ends the entry

Table 2.1: Line codes and line types in SWISS-2DPAGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



molecular biology server. The SWISS-2DPAGE top page provides several text 

searches, and displays results with links to other databases. SWISS-2DPAGE 

also allows users to select a 2-D PAGE map that will be displayed, then the user 

can click a spot in the map and obtain the information on the corresponding 

protein.

2.5 Summary

This chapter has presented some work related to protein database. In particu­

lar, we introduced 2-DE database, a concept upon which EPPdb will be built. 

The next chapter will describe in detail the design and implementation of the 

various functionalities of EPPdb.

8
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Chapter 3 

Extracytosolic Plant Protein  
Database

3.1 Introduction

EPPdb contains the results from proteomic studies on proteins collected from 

Brassica napus (canola) plants, including the 2D maps showing the protein 

locations, and descriptions of the identified proteins. Cross references are pro­

vided to SWISS-PROT/TrEMBL [9], which is the largest annotated protein 

database in the world. In order to get the data for our database, the pro­

teins in the cells or tissues to be studied are solubilized by biologists. The 

DNA and other contaminants are removed. The proteins are separated by 

their charges using isoelectric focusing, which is an electrophoresis between a 

cathode and anode with the cathode at a higher pH than the anode. Because 

the amino acids in proteins have amphoteric properties, they will be separated 

by migrating toward different pH values. After that, the separated proteins 

are analyzed by LC/MS (Liquid Chromatography/Mass Spectrometry). The 

resulting LC/MS data are submitted for database searching. After de novo se­

quencing the proteins, they are submitted to the MS-Blast and MS-Homology 

to find homologous proteins in other plant species [4, 8].

What distinguishes our database from other 2-D PAGE databases is that 

it not only provides a Web interface for querying using a client browser, but 

also provides Web services that allow other applications to make function calls 

over HTTP and use XML as a message transfer format to be consumed by

9
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the clients. To the best of our knowledge, no other major biological databases 

support an XML interface.

Our database also aims to provide tools that facilitate more sophisticated 

data analysis and data mining tasks. To achieve this goal, our database is 

built as a framework that allows users to submit not only queries, but also 

data and tools for experimenting with various data analysis and data mining 

tasks. For example, one tool that we have developed in this dissertation is for 

predicting extracellular proteins from amino acid sequences.

The sections that follow elaborate on the design and implementation of 

our database. Section 3.2 introduces the overall architecture of our database. 

Section 3.3 discusses the implementation of search functions. Section 3.4 in­

troduces the Web services implemented as part of our database. Section 3.5 

describes the tools added to our database for experimenting with various data 

analysis and data mining tasks.

3.2 System  Architecture

The overall architecture of the our database is shown in Figure 3.1. The 

protein database contains all the protein entries. The format of protein entries 

is similar to that in SWISS-PROT/TrEMBL [9] and SWISS-2DPAGE [30]. 

Each entry is composed of defined lines, used to record various kinds of data. 

Each line begins with a two character line code, which indicates the type of 

data contained in the line1. Table 3.1 shows the line codes and line types used 

in EPPdb. An example of a protein entry is shown in Figure 3.2. Several 

lines are specific to our database: (i) the DB line lists an accession number 

specific to our database. Each entry in our database has a unique DB line; (ii) 

if applicable, the IS line lists the isozyme(s) (identified by their DB accession 

numbers) of a protein. In addition, the 2-D map associated with a protein 

entry displays the experimental location of the protein on the chosen map 

(Figure 3.3).

The protein entries in the database can be queried in two ways. Firstly, a

1Uniprot/SWISS-PROT User Manual, http://ca.expasy.org/sprot/userman.html

10
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Line code Line type Occurrence in an entry
ID Identification in SWISS-PROT Once; starts the entry
AC Accession number (s) One or more
DT Date Two times
DE Description One or more
GN Gene name(s) Optional
OS Organism species One or more
o c Organism classification One or more
o x Taxonomy cross-reference (s) Once
MT Masters One or more
IM Images One or more
RN Reference number One or more
RP Reference position One or more
RA Reference authors One or more
RT Reference title Optional
RL Reference location One or more
CC Comments or notes One or more
2D 2-D PAGE specific data several
DR Database cross-reference Optional
DB Identification in EPPdb Once
IS Other protein spots matching the top hit Optional
SQ Protein sequence Once

KW Keywords Optional
AL Alignment Optional
OP Other sequenced peptides Optional
/ / Termination line Once; ends the entry

Table 3.1: Line codes and line types in EPPdb

,adding newadding! new

Data/Tools
Repository Data Analysis 

Tools Repository

Data Analysis 
via

W eb S erv ices

D ata A nalysis 
via

W eb Interface

D a ta b a se  S earch  
via

W eb Interface

D a ta b a se  S earchData/Tools
subm ission

W eb  S erv ices

Applicatii

Figure 3.1: Overall architecture of EPPdb
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ID Q9M8Y9; PRELIMINARY; 2DG.
AC Q9M8Y9;
DT 30-MAY-2003 (Rel. 01, Created)
DT 30-MAY-2003 (Rel. 01, Last update)
DE Putative trypsin inhibitor.
GN T6K12.5.
OS Arabidopsis thaliana (Mouse-ear cress).
0C Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
0C Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
0C eurosids II; Brassicales; Brassicaceae; Arabidopsis.
OX NCBI.TaxID-3702;
MT <i>Brassica napus</i> Extracellular Proteome.
IM <i>Brassica napus</i> Extracellular Proteome.
RN [1]
RP MAPPING ON GEL.
RA Basu U., et al.;
RT “ Using proteomics to establish an Extracytosolic Plant Proteins Database’’;
RL Unpublished observations (MAY-2003).
CC SUBCELLULAR LOCATION: Secretory pathway signal peptide (predicted by TargetP; RC 1).
CC -!- PTM: SignalP predicts most likely cleavage site to be between pos. 21 and 22 (TSG-VV).
CC MISCELLANEOUS: Predicted pi 5.90.
2D MASTER: BRASSICA.NAPUS.EXTRACELLULAR.PROTEOME;
2D -!- PI/MW: SPOT 00001-5.0/23000;
2D -!- HAPPING: SPOT 00001: LC-MS/MS.
2D -!- PEPTIDE SEQUENCES: SPOT 00001: FANPSKCGESGVWR; VANGEVVLNGVESR;
2D CPHQPVMF; SCKGSLSWETGAAEGN; LLPSSTV.
DR TrEMBL; Q9M8Y9; Q9M8Y9.
DB 00001.
IS 00002;
SQ SEQUENCE 202 AA; 22914 MW; 485A2C8472CD3792 CRC64;
KW
/ /

Figure 3.2: An example of a database entry

lib  31.0

£
■ I

21.5

14.4
- 1» ;. 14

4.8 6.8

PH

Figure 3.3: An example of a 2D map showing the locations of proteins identi­
fied in a gel
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user can query the database through a Web interface using a client browser 

( “Database Search via Web Interface” in Figure 3.1). The Web interface pro­

vides the user several textual and graphical query methods. Secondly, our 

database can also be queried by another application via the Web services that 

are provided as part of the system (“Database Search via Web Services” in 

Figure 3.1). These two query methods greatly enhance the interoperability 

our system.

In addition to database queries, we also augment our database by main­

taining a repository of tools for experimenting with various data analysis and 

data mining tasks, such as characteristic rule mining, sequential pattern anal­

ysis, association rules, etc. These tools provide users with the power of intelli­

gently retrieving and analyzing data across a large array of heterogeneous data 

sets. For example, one tool that we are currently developing is the automatic 

identification of extracellular proteins from amino acid sequences. Adding a 

repository of tools to our database is of paramount importance for the long­

term usefulness of our system. Similarly, the tools in the repository can be 

accessed by users through the Web interface or by other applications through 

the Web services.

Another novel aspect of our database is that it allows users to submit 

their new data and new tools. The data or tools submitted by users are 

maintained in a repository (see Figure 3.1). These data/tools are reviewed to 

make sure they do not contain inconsistencies or errors. If the data/tools pass 

the reviewing process, they are integrated into our database. In this way, our 

database acts as an “information hub” for biologists all over the world who are 

working on extracytosolic plant proteins and expedite information exchange 

and sharing among them.

3.3 Database Construction

Many existing 2D-PAGE databases use the Make2ddb package [29] to build a 

2D-PAGE database on one’s own Web server. The main focus of Make2ddb is 

on ease of use. However, we chose not to use it in our case for the following
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reasons:

• Make2ddb uses text files rather than database management systems to 

manage the data, which might cause performance problems when the 

volume of data is large.

• The queries generated by Make2ddb are fixed, i.e., it only allows search­

ing by description (DE or ID line), by accession number (AC line), by 

clicking on a spot, and by author (RA line). However, in our database, 

we want to allow users to submit more sophisticated queries.

• Make2ddb does not generate an API (Application Programming Inter­

face) for the 2D-PAGE database it creates. That means other applica­

tions cannot communicate with the database easily. In our database, we 

provide an API using SOAP (Simple Object Access Protocol) technol­

ogy2 to allow inter-operations between applications.

We choose to use MySQL3 as our database management system since it 

is a free and powerful relational database management system. The query 

processing is implemented in PHP4, a scripting language especially suited for 

Web application development. The PHP and MySQL combination is cross­

platform compatible and is commonly used for creating data-driven Web sites. 

The schema of the database is shown in Figure 3.4. Currently, the “spot” is 

implemented in text files for some technical issues.

The user can query the database in a variety of ways. The “quick text

search” (Figure 3.5) is currently set up to retrieve entries that contain the

specified keyword(s) in the “DE” line. The user can also query the database

by clicking on a spot in a gel image (similar to other 2D-PAGE databases). In

addition, if a user chooses “advanced text search” , the attributes (text lines)

to be searched can be explicitly specified.

2http://www.w3.org/TR/SOAP
3http://www.mysql.com/
4 http: /  /  www. php. net /
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Protein Entry Spot1 corresponds 1

ID : varchar(lOO) DB : varchar(10)
AC : varchar(200) XCoordinate : int
DT_
DT_

.CREATE : date 

.LAST : date YCoordinate : int
DE : varchar(lOO) ImagelD : varchar(100)
GN : text
OS : varchar(lOO)
OC : text
OX : varchar(lOO)
MT : varchar(lOO)
IM : varchar(lOO)
RN : varchar(100)
RP : varchar(100)
RA : varchar(100)
RT : varchar(100)
RL : varchar(100)
CC : text
2D : text
DR : varchar(100)
DB : varchar(10)
IS : varchar(10)
SQ : text
KW : text
AL : text
OP : text

Figure 3.4: EPPdb database schema

-

Figure 3.5: Quick text search

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4 Web Services

Most other protein databases focus on building applications that are made 

globally available through a Web server, defining their user interfaces with 

HTML, and can be accessed using client browsers. The applications do not 

take advantage of the Internet to make the services available to a variety 

of clients. An example is SWISS-PROT. If other protein databases need to 

link to SWISS-PROT, they must generate pointers to the information related 

to SWISS-PROT entries. However, SWISS-PROT entries are dynamically 

generated HTML pages and their layouts could be inconsistent. If proper 

formats are not used, there is no way for other databases to directly exploit 

the information provided by SWISS-PROT entries in HTML format.

The idea of Web Services is instead of supplying information via dynami­

cally generated user interfaces (HTML) that are fairly fixed and can only be 

consumed by client browsers, the server makes available a series of function 

calls over HTTP and uses XML as a message transfer format to be consumed 

by the clients. This gives much more freedom for the clients to use the ser­

vices in whatever way they wish, since XML is a standard format for structured 

documents and data that is platform and language independent. In addition, 

if functions are called using standard HTTP-based protocols over the Inter­

net, then the client that calls them can be located anywhere on the Internet. 

There are no restrictions on what platform it might be running on or in which 

language it should be written.

3.4.1 Introduction to Web Services

Web Services, in the most simplistic fashion, provide a mechanism of commu­

nication between two remote systems, connected through the network of the 

Web Services. For example, in case of different 2-DE database applications 

maintained by different groups in the world, people do not want to invest 

large amount of money developing software to bring these different applica­

tions together. By extending the applications as Web Services, the information 

systems of different applications can be linked. These applications can be ac-
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cessed by using simple SOAP (see Section 3.4.3) messages over the normal 

HTTP Web protocol.

Web Service is not the first solution to such a problem. RMI, COM, 

CORBA, EDI, and ebXML also address the same problem. However, Web 

Service is different from the others in that this technology is based on the 

already existing and well-known HTTP protocol, and uses XML (see Section 

3.4.2) as the base language. This makes it a very developer-friendly service 

system. However, most of the above-mentioned technologies such as RMI, 

COM, CORBA involve a whole learning curve. New technologies and lan­

guages have to be learned to implement these services. Also Web Services are 

based on a set of standardized rules and specifications, making the technology 

very portable. This is not the case with the technologies mentioned earlier 

[47],
The architecture for Web Services has the following components5:

• a standard way for communication.

• a uniform data representation and exchange mechanism. XML (Exten­

sible Markup Language) is used extensively for this purpose.

• a standard meta language to describe the services offered, specifically 

a language called WSDL (Web Service Definition Language) has been 

developed for describing Web Services.

•  a mechanism to register and locate Web Services-based applications. 

Figure 3.6 shows the architecture of Web Services.

3.4.2 Extensible Markup Language (XML)

Web Service architecture involves many technologies. One critical technology 

is XML (extensible Markup Language). XML is a universally agreed markup 

meta-language primarily used for information exchange. A good example of a 

markup language is the HyperText Markup Language (HTML). The beauty

5 www. w3 .org/TR/ ws-arch
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Web Service description 

using m eta language

Directory Services

t 'm lo rm  data 

icp resenu iion  and 

exchange

Standard com munication channel

Figure 3.6: Architecture of Web Services

of XML lies in the fact that it is extensible. XML is a set of predefined rules 

(syntactical framework) that you need to follow when structuring your data. 

XML provides a standard and common data structure for sharing data between 

systems.

The following is an example of an XML document, representing the per­

sonal information and shift data for an employee in an organization.

<employee>
<shift id=‘* counter’’ time=‘‘8-12'’>
<phone id=“ l” >
<number>3444333</number>

</phone>
</shift>

<home-address>
<street>3434 Norwalk street</street>
<city>New York</city>
< state> N Y < /sta te>

</home-address>
</employee>

Also an example of XML document used in EPPdb is shown as follows:
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<id x s i: ty p e = ‘ fx s d :s t r in g ’ ’>

081352; PRELIMINARY; 2DG.
</id>

<ac x s i :type= ‘ fxsd: s t r i n g ” >

081352;
</ac>

<dt xsi :type=t‘xsd: string” >
2003-05-30

</dt>

There are some XML languages developed or being developed for biolog­

ical data, e.g., GAME6 (Genome Annotation Markup Language), BIOML7 

(BlOpolymer Markup Language), BSML8 (Bioinformatic Sequence Markup 

Language), AGAVE9 (Architecture for Genomic Annotation, Visualization 

and Exchange), DAS10 (Distributed Sequence Annotation System), ProML11 

(Protein Markup Language), PROXIML12 (PROtein extensible Markup Lan­

guage), etc. Most of these XML standards are developed individually by some 

organizations. Also they are usually designed for some particular biological 

data management tasks. Some of them are even still in the process of devel­

opment and are not publicly accessible. To the best of our knowledge, there 

are currently no widely agreed upon XML standards available.

3.4.3 Simple Object Access Protocol (SOAP)

Another technology important to Web Services is SOAP (Simple Object Access 

Protocol). SOAP is a universally agreed on standard protocol for invoking 

the functions available in Web Services. With SOAP as an XML messaging

6www.bioxml.org/Projects/game/index.html
7 www.bioml.com/BIOML/index.html
8 www.labbook.com/products/xmlbsml.asp
9 www. agavexml. org

10 biodas.org
u cart an.gmd.de/promlweb
12 www.cse.ucsc.edu /  douglas /  proximl
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specification, Web Services enable developers to target a range of clients and 

build the services from local and remote resources.

A SOAP transaction begins with an application making a call to a remote 

procedure. The SOAP client script then encodes the procedure as an XML 

payload and sends it over the transport protocol to a server script. The server 

parses the request and passes it to a local method, which returns a response. 

The response is encoded as XML by the server and returned to the client, who 

parses the response and passes the result to the original function. So as long as 

other applications support XML and SOAP, they can communicate with Web 

Services and have the answer right away, instead of having to parse HTML 

documents [47].

3.4.4 Web Services Implementation

The search functions involved in our database are encapsulated into Web ser­

vices. All Web services are implemented and published using NuSOAP13, a 

freely available toolkit which provides a simple API for building Web services 

using Simple Object Access Protocol (SOAP) technology14. Other applica­

tions can remotely call these functions via XML. The implementation of Web 

services provides an appropriate solution for transparently integrating appli­

cations from heterogeneous sources. It is very easy for other applications to 

exchange information with EPPdb using Web Services. Appendix B shows an 

example of PHP code that is used to query EPPdb using Web Services.

3.5 Data Analysis Tools

One unique feature of our database is that it not only provides standard 

database query capabilities, but also provides domain-specific tools for experi­

menting with various data analysis and data mining methods. As described in 

Section 3.2, EPPdb allows users to submit data analysis and data mining tools. 

For a tool to be submitted to EPPdb, it must be able to run on the EPPdb

13 http://dietrich.ganx4.com/nusoap/index.php
14http://www.w3.org/TR/soap
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server and be able to send and receive XML messages. After the tool passes 

the reviewing process, the Web Services that it provides and relevant docu­

mentations on the formats of the XML messages are made publicly available. 

Other applications can communicate with this tool via XML.

Here we give an example of a data mining tool we have developed for our 

database, which is to predict extracellular proteins from amino acid sequences.

In order to function properly, proteins need to be localized at proper lo­

cations within the cell or transported to the extracellular environment. The 

set of locations depend on the type of a cell. For biologists, a very important 

question is to determine whether a given protein is an extracellular protein or 

non-extracellular protein (i.e., intracellular protein). This problem is a special 

case of protein subcellular localization prediction [12]. Most existing localiza­

tion prediction methods use supervised learning algorithms to learn a classifier 

from a set of training data containing both intra- and extra-cellular protein 

sequences. When a new protein sequence comes in, the learned classifier is 

used to predict the correct label for the sequence.

The problem of extracellular protein prediction poses several challenges for 

most existing localization prediction algorithms: (i) the effectiveness of most 

existing algorithms is measured by overall accuracy. However, since extra­

cellular proteins are extremely rare compared with intracellular proteins (less 

than 1%), predicting every protein as intracellular protein can achieve very 

high accuracy level of 99%; (ii) biologists are usually interested in those tools 

that provide some explanations of the prediction, i.e., they want a classifier to 

let them know why a protein is or is not predicted as extracellular. Many ex­

isting algorithms (e.g., Artificial Neural Networks, Support Vector Machines) 

are “black box” techniques, in the sense that they predict the class label for a 

given protein sequence without providing any easily interpretable justification. 

Even if the prediction is correct, biologists may be hesitant in using such non­

transparent tools. If the prediction is incorrect, biologists are given no hints 

to identify the locations in a classifier’s reasoning process that might cause the 

misclassification.

The rest of this thesis elaborates on the algorithms that we have developed
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to solve this problem. We use data mining techniques to develop extracellu­

lar protein predictors based on the subsequences that appears frequently in 

extracellular proteins.

3.6 Summary

In this chapter, we have described in detail the design and implementation 

of various functionalities of EPPdb. Like most other 2-DE database, EPPdb 

provides textual and graphical query capabilities that allow biologists to pop­

ulate and query the database. An novel aspect of EPPdb is that it provides 

an API allowing other applications to access this database as a Web service. 

In addition, we augment EPPdb with a repository of tools to be used in data 

analysis and data mining tasks. The following chapters will describe in de­

tail one particular tool we have developed, which is to predict extracellular 

proteins from amino acid sequences.
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Chapter 4 

Work R elated to Extracellular 
Protein Prediction

This chapter describes the problem of extracellular protein prediction and 

reviews existing approaches. This chapter is organized as follows. Section 4.1 

provides some biological background and introduces the problem of protein 

subcellular localization prediction, a more general area in which our problem 

of extracellular protein prediction falls. Sections 4.2.2, 4.2.1 and 4.2.3 review 

some of the existing methods. Section 4.2.5 points to some limitations of 

existing methods for our particular problem. Section 4.4 summarizes this 

chapter.

4.1 Introduction to Biological Background

This section provides the biological background of our problem. More detailed 

information about the biological background can be found in [33, 40].

Proteins are the molecules that accomplish most of the functions of the 

living cell. All proteins are composed of linear sequences of smaller molecules 

called amino acids. Such a sequence is called the primary structure of a protein. 

There are twenty naturally occurring amino acids (Table 4.1). Long proteins 

may contain a chain of as many as 4500 amino acids. Finding the proteins 

that make up a creature and understanding their functions is the foundation 

of explanation in molecular biology [33].

W ith the introduction of large-scale sequencing, biologists have accumu-
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name Three-letter code One-letter code
1 Alanine Ala A
2 Cysteine Cys C
3 Aspartic Acid Asp D
4 Glutamic Acid Glu E
5 Phenylalanine Phe F
6 Glycine Gly G
7 Histidine His H
8 Isoleucine lie I
9 Lysine Lys K
10 Leucine Leu L
11 Methionine Met M
12 Asparagine Asn N
13 Proline Pro P
14 Glutamine Gin Q
15 Arginine Arg R
16 Serine Ser S
17 Theronine Thr T
18 Valine Val V
19 Tryptophan Try W
20 Tyrosine Tyr Y

Table 4.1: The twenty naturally occurring amino acids
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lated an immense number of raw biological sequences that are publicly avail­

able. In order to better understand the functions and structures of these 

protein sequences, a vitally important problem facing the biology community 

is to classify these sequences into different families based on the properties of 

the sequences, such as functions, structures, etc.

Protein subcellular localization is a key functional characteristic of pro­

teins. In order to execute a common physiological function, proteins must be 

localized in the same cellular compartment. Proteins may be localized at vari­

ous locations within the cell or be transported to the extracellular space. The 

process through which proteins are routed to their proper subcellular localiza­

tions is called subcellular protein sorting. Protein sorting is the simplest in 

gram positive prokaryotes (a kind of single cell organism), where proteins are 

only directed to the cytoplasm, the plasma membrane, the cell wall, or secreted 

to the extracellular space. Gram negative protein localization sites include the 

cytoplasm, the inner membrane, the periplasm, the outer membrane, and the 

extracellular space. Subcellular localizations in eukaryotic proteins are much 

more complex due to the presence of membrane-bound organelles. The major 

location sites for eukaryotic proteins include the plasma membrane, the nu­

cleus, the mitochondria, the peroxisome, the endoplasmic reticulum, the Golgi 

apparatus, the lysosome, the endosome, and others (such as chloroplasts, vac­

uoles, and the cell wall in plant cells). Table 4.2 shows an ontology across five 

different taxonomic categories based on the PSORT ontologies [50].

The subcellular localization of a protein plays an important role with re­

gard to its function. Knowledge of subcellular localization can provide valuable 

information concerning its possible functions. It can also help in analyzing and 

annotating sequences of hypothetical or known gene products. In addition, it 

can influence the design of experimental strategies for functional characteriza­

tion [19, 48].

Since the number of sequences entering into data banks has been rapidly 

increasing, it is time consuming and costly to approach this problem of pre­

dicting the subcellular localization of a protein entirely by performing various 

biological experimental tests. In view of this, it is highly desirable to develop
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Category Subcellular Localizations
Animal
Plant
Fungi

Gram-positive bacteria 
Gram-negative bacteria

nuc, end, gol, mit, pex, lys, cyt, mem, ext 
nuc, end, gol, mit, pex, chi, vac, cyt, mem, ext 
nuc, end, gol, mit, pex, vac, cyt, mem, ext 
cyt, wal, mem, ext 
cyt, inn, per, wal, out, ext

Table 4.2: The ontologies across five different taxonomic categories. Abbrevia­
tions for localizations: nuc (nuclear), end (endoplasmic reticulum), gol (golgi), 
mit (mitochondria), pex (peroxisomal), lys (lysosomal), cyt (cyoplasmic), mem 
(membrane), ext (extracellular), chi (chloroplast), vac (vacuole), inn (inner 
membrane), per (periplasmic), wal (cell wall), out (outer membrane).

some algorithms to rapidly predict the subcellular localizations of proteins.

In our project, we are particularly interested in identifying those proteins 

that are secreted to the extracellular environment (called extracellular pro­

teins), versus proteins localized at various locations within the cell (called 

intracellular proteins). As described in Section 3.1, EPPdb is built for extra- 

cytosolic plant proteome. A tool that can automatically identify whether a 

protein is intracellular or extracellular is of great interest for biologists in the 

extracytosolic plant community.

The following sections (4.2.1, 4.2.2, 4.2.4 and 4.2.3) review the current 

approaches of protein subcellular localization prediction. Section 4.2.5 points 

out some limitations of current methods and explain why new algorithms are 

needed.

4.2 Work Related to Protein Subcellular Lo­
calization Prediction

4.2.1 Prediction Based on N-term inal Sorting Signals

Subcellular protein sorting (see Section 4.1) is a fundamental aspect of cel­

lular life. In many cases, sorting depends on “signals” that can be identified 

by looking at the primary structure of a proteins [53]. Previous work [61, 66] 

has shown that when the final destination is the mitochondrion, the chloro­

plast, or the secretory pathway, sorting usually relies on the presence of an
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N-terminal targeting sequences that can be recognized by a translocation ma­

chinery. Work has been done on identifying individual sorting signals, i.e., 

secretory signal peptides (SPs), mitochondrial targeting peptides (mTPs) and 

chloroplast transit peptides (cTPs) [53].

Signal peptides (SPs) are N-terminal peptides that control the entry to the 

general secretory pathway, which is a mechanism for protein secretion found 

in both eukaryotic and prokaryotic cells [56]. SPs generally consist of three re­

gions (Figure 4.1): a positively charged n-region, a hydrophobic h-region, and 

a polar c-region leading up to the signal peptide cleavage site. Signal peptides 

are often cleaved off the mature proteins upon arrival at the subcellular desti­

nation. The most well-conserved motif1 of SPs is the presence of a small and 

neutral amino acid at positions -3 and -1 relative to the cleavage site [76, 77]. 

Neilsen et al. [54, 55] developed a method (SignalP) for the identification of 

signal peptides and their cleavage sites based on neural networks trained on 

separate sets of prokaryotic and eukaryotic sequences. Their method does not 

provide any explanation for the prediction results. Nielsen and Krogh [56] 

developed an hidden Markov model of signal peptides (SignalP-HMM), which 

contains submodels for the N-terminal part, the hydrophobic region, and the 

region around the cleavage site. For known signal peptides, the model can 

be used to assign objective boundaries between these three regions. Other 

methods used for predicting subcellular localizations based of signal peptides 

include discriminant function analysis [13, 12], weight matrices [17], and oth­

ers.

In mitochondrial targeting peptides (mTPs), Arg (R), Ala (A) and Ser (S) 

are over -represented, while negatively charged amino acid residues (Asp (D) 

and Glu (E)) are rare. Only weak consensus sequences have been found, the 

most prominent of which is a conserved Arg(R) in position -2 and -3 relative to 

the mitochondrial processing peptidase (MPP) cleavage site [21]. Furthermore, 

mTPS are believed to form an amphiphilic ct-helix [27, 62, 79].

Chloroplast transit peptides (cTPs) are the N-terminal presequences found 

in most nuclearly encoded chloroplast proteins that direct them to the chloro- 

:a short conserved region in a protein sequence
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Figure 4.1: Structure of signal peptide [51]

plast stroma [70]. The secondary structure of chloroplast transit peptides is not 

well characterized. Still, cTPs have a few distinguishing features, such as low 

content of acidic residues and rich in hydroxylated residues [78]. Emanuelsson 

et al [20] developed a neural network based method (ChloroP) for identifying 

chloroplast transit peptides and their cleavage sites. ChloroP achieved an accu­

racy of 88% in classifying sequences as transit peptides or nontransit peptides. 

Cleavage sites are predicted using a scoring matrix derived by an automatic 

motif-finding algorithm. About 60% of the known cleavage sites were predicted 

to within + /-2  residues from the cleavage sites given in SWISS-PROT.

Emanuelsson et al. [21] also proposed an integrated prediction system 

(TargetP) for subcellular localization using neural networks. TargetP can be 

used to differentiate four subcellular localizations (extracellular, mitochon­

drial, chloroplast and “other”) based on the individual sorting signal predic­

tions (signal peptides for extracellular, mitochondrial transit peptides for mi­

tochondria, chloroplast transit peptides for chloroplast, and no sorting signal 

for “other” ).

The advantage of predicting subcellular localizations based on N-terminal 

sorting signals is that it can recognize cleavage sites in the sorting signals. 

However, these methods would be inaccurate when the signals are missing or 

only partially included [32]. In addition, the known signals are not general 

enough to cover the resident proteins in each organ [51].
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A C D E F G H  I K L M N P Q R S T V W Y

Figure 4.2: An example of amino acid composition represented by a histogram

4.2.2 Prediction Based on Amino Acid Com position

The amino acid composition of a protein sequence refers to the relative fre­

quencies of twenty different amino acids in this sequence. Figure 4.2 shows an 

example of the amino acid composition of a plant protein sequence represented 

by a histogram. Nakashima and Nishikawa [52] showed that intracellular and 

extracellular proteins differ in their amino acid composition. Andrade et al. 

[3] indicated that protein subcellular localizations correlate better with the 

surface composition. Different methods, including statistical methods, neu­

ral network, and support vector machines, have been proposed for protein 

subcellular localization based on amino acid composition information.

Nakashima and Nishikawa [52] proposed a statistical analysis-based algo­

rithm to discriminate between intracellular and extracellular proteins by amino 

acid composition and residue-pair frequencies, which correctly classify 88% of 

intracellular and 84% of extracellular proteins. Cedano et al. [11] proposed 

a statistical methods using the Mahalanobis distance to extend the discrimi­

native class from two to five, i.e., extracellular, integral membrane, anchored 

membrane, intracellular and nuclear. They proposed an algorithm called Prot- 

Lock [11] to improve the prediction quality of protein subcellular locations,
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75% of 200 proteins from SWISS-PROT are correctly classified. Chou and 

Elrod [12] proposed a covariant discriminant algorithm to further improve the 

accuracy to 79.9%. They have shown that their results are better than other 

methods based on statistical analysis.

NNPSL [60] is a amino acid composition based prediction system con­

structed using neural networks. It computes the fraction of each of the twenty 

amino acids (see Figure 4.3), then uses these fractional numbers for the input 

units of neural networks. Output units are used for predictions that distin­

guish between possible locations. It deals with prokaryotic and eukaryotic 

sequences separately. For prokaryotic sequences, three possible locations (cy­

toplasmic, periplasmic and extracellular) can be predicted. For eukaryotic 

sequences, four locations (nuclear, cytoplasmic, mitochondrial, extracellular) 

can be predicted. NNPSL achieves an overall accuracy of 66% on eukaryotes 

(excluding plants) and 81% on prokaryotes.

Hua and Sun [32] applied support vector machine (SVM) to build a predic­

tion system called SubLoc. The SVM approach is a state-of-the-art method 

for the binary classification problem. In order to handle multi-class problems, 

they built separate k SVM classifiers for each of the k possible classes, where 

the ith SVM was trained with all of the samples in the zth class with positive 

labels and all other samples with negative labels. Finally an unknown sample 

is classified into the class that corresponds to the SVM with the highest pre­

diction confidence. SubLoc achieves an accuracy of 91.4% on prokaryotes and 

79.4% on eukaryotes.

4.2.3 Prediction Based on Lexical Analysis

The SWISS-PROT and many other protein databases contain textual annota­

tions on the subcellular localizations for many proteins. Another approach is 

to infer the subcellular localization of an unknown proteins by lexical analysis 

of “keywords”, which are the words extracted from certain attribute lines of the 

annotated protein entries. This is similar to the problem of “Text Categoriza­

tion” . Text Categorization is the problem of assigning predefined categories to 

unseen documents. A lot of methods have been developed for text categoriza-
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Figure 4.3: The overall differences in amino acid composition between all 
groups [43]

tion, such as nearest neighbor classifiers [84], multivariate regression models 

[83, 68], probabilistic Bayesian models [41], symbolic rule learning [6] etc.

LOCkey [49] is an example of protein subcellular localization prediction 

based on lexical analysis. The algorithm of LOCkey is shown in Figure 4.4.

•  LOCkey firstly compiled a data set with proteins of experimentally known 

localization. For each protein sequence, a homology search tool BLAST

[2] was used to find the homologous protein sequences. Protein homology 

refers to the similarity attributed to descent from a common ancestor. 

If two proteins are homologous, they are likely to share common charac­

terizations.

•  It merged keywords from SWISS-PROT for the proteins in this set and 

their homologous proteins from the “keyindex” file.

• A data set of binary vectors (called “trusted vector set”) was built for 

these keywords that represented the presence of a certain keyword by 1 

and the absence by 0. In order to reduce the dimensionality of feature 

space, only keywords with “above random” (measured by “information 

content”) classifying ability based on an entropy and normalized entropy
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cut-off are retained.

• To infer the localization of a protein U of unknown localization, LOCkey 

first retrieved all the keywords for U from SWISS-PROT that matched 

the “trusted vector set” of informative keywords. Thus a vector V (U) 

that had the same dimension as the vectors in the “trusted vector set” 

was retrieved. Next, all possible alternatives (called “sub-vectors”) to 

V(U)  are generated, for which one or many l ’s were flipped to 0’s. For 

example, for a protein with 3 keywords, it generated 23 — 1 =  7 sub­

vectors V'{U): 111, 110, 101, Oil, 100, 010 and 001.

• Finally the best matching vector is found based on entropy criteria meth­

ods for inferring the subcellular localization of the query sequence.

PA-sub [43] is another protein subcellular localization prediction system 

based on lexical analysis. The algorithm of PA-sub is shown in Figure 4.5 

Different from LOCkey which used simple entropy criteria method to infer the 

subcellular localization of the query sequence. The authors of [43] compared 

several sophisticated machine learning algorithms, including k nearest neigh­

bor, naive Bayes, tree-augmented naive Bayes, artificial neural network and 

support vector machine. In order to remove the “trivial” keywords, PA-Sub 

used a wrapper model to select those informative keyword based on informa­

tion content.

4.2.4 Prediction Based on Integrative Approaches

Some methods for predicting protein subcellular localization take an integra­

tive approach by combining several different methods. PSORT [50] is proba­

bly the most robust tool for predicting subcellular localization. It is an expert 

system developed to distinguish between seventeen different subcellular local­

izations in eukaryotes. The system integrates numerous prediction programs 

and statistical methods to make a prediction.

Recently, an updated version of PSORT, called PSORT-B [25], was pre­

sented for the prediction of protein subcellular localization for Gram-negative
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bacteria. Given a Gram-negative bacteria protein sequence with unknown 

subcellular localization, PSORT-B combines several different methods, includ­

ing homology analysis, identification of sorting signals and other motifs, and 

machine learning algorithms into an expert system for the prediction of five 

subcellular localizations. A query protein undergoes each of the analyses sep­

arately and the results are combined together.

4.2.5 Challenges and Limitations of Existing M ethods

In our project, we are particularly interested in those proteins that are secreted 

from the cell (i.e., extracellular proteins). We study the problem of identify­

ing extracellular proteins from sequence information alone. As mentioned in 

Section 3.1, EPPdb is an on-line database devoted to the extracytosolic plant 

proteome. The identification of extracellular proteins are of particular interest 

to potential users of the database. However, most of the existing approaches 

are not suitable for this particular application.

Firstly, most of the existing systems use overall accuracy to measure how 

good the prediction is. However, in our particular case, overall accuracy is not 

an appropriate measurement. The reason is due to the fact that most of the 

proteins are intracellular proteins. Extracellular are extremely rare among all 

the proteins (e.g., less than 5%). In this case, high overal accuracy (higher 

than 95% can be easily achieved by predicting every protein as intracellular. 

But this kind of classifier does not provide any valuable information for the 

user.

Secondly, since most of the existing prediction tools aim to predict all 

the subcellular locations, they usually use a training dataset that contains 

proteins with all the possible class labels. However, in our application, the 

dataset that we will eventually get does not necessarily distinguish different 

locations among intracellular proteins.

Thirdly, biologists are very interested in those subsequences that discrim­

inate extracellular proteins from intracellular proteins. Approaches based on 

amino acid composition or lexical analysis obviously do not provide such in­

sights for biologists to make further analysis. Approaches based on N-terminal
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signals can provide some insights, since they can identify the signal peptides. 

However, since those approaches are based on artificial neural networks, people 

have no clues on how these signal peptides are identified.

In this dissertation, we apply data mining techniques to build classifiers 

based on frequent subsequences to address this problem.

4.3 Work Related to Mining Sequential Data

The discovery of patterns in sequential data has been an important problem 

in the general area of data mining and knowledge discovery. Since protein 

primary sequences are made up of amino acid sequences, our work is related 

to data mining in sequential data. This section reviews some existing problems 

and different solutions in this field.

4.3.1 M ining Sequential Patterns

The problem of sequential pattern mining was introduced in [1]: Given a set of 

sequences, which each sequence consists of a list of elements and each element 

consists of a set of items, and given a user-specified min-support threshold, 

sequential pattern mining is to find all of the frequent subsequences, i.e., the 

subsequences whose occurrence frequency in the set of sequences is no less than 

the min-support. In [86, 87], a unique transaction time is associated with each 

element in a sequence. The length of a sequence is define as the number of in­

stances of items in the sequence. A sequence with length I is called I—sequence. 

A sequence a —< a\a2 ...an > (where ai, a2, ..., an are elements of a) is called 

a subsequence of another sequence /3 = <  b\, &2, •••, bm > (where bi, b2, ..., bm are 

elements of /3), i.e., ot C /3, if there exist integers 1 < ji  < j'2 < ... < j n < m  

such that di C bji, a2 C bj2 ,...,a n C bjn. And f3 is called a super — sequence 

of a.

For example, Table 4.3 shows a sequence database with four sequences. The 

set of items in the database is { A , B , C , D , E , F , G , H } .  The first sequence 

(with SequenceJd 1) has four elements: (CD), (ABC), (ABF) and (ACDF). It 

is also a 12-sequence since it contains 12 instances of items. Item A  happens 3
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SequenceJd Transaction-Time Items
1 10 C D
1 15 A B C
1 20 A B F
1 25 A C D F
2 15 A B F
2 20 E
3 10 A B F
4 10 D G H
4 20 B F
4 25 A G H

Table 4.3: A sequence database [87]

times in this sequence. However the sequence <(CD) (ABC) (ABF) (ACDF)> 

is considered to contribute only one to the support of < A  > . Sequence <(C) 

(AB) (AF)> is a subsequence of <(CD) (ABC) (ABF) (ACDF)>. If min- 

support=2, sequence s —< (D) (BF) (A ) > is a sequential pattern since both 

sequences 1 and 4 contain sequence s.

Many studies have been conducted on finding sequential patterns from 

a database of sequences. In general, these algorithms can be classified into 

three categories: (1) Apriori-based, horizontal formatting method, such as 

GSP [71]; (2) Apriori-based, vertical formatting method, such as SPADE [87],

(3) projection-based pattern growth methods, such as PrefixSpan [57]. Below 

we briefly describe these three representative algorithms.

GSP A lgorithm

GSP is based on the apriori heuristic, which says a sequence can not be frequent 

if any of its subsequence is not frequent. The algorithm is shown in Figure 4.6. 

It makes multiple scans over the database. In the first scan, all frequent 1- 

sequences are found (line 2) . From frequent 1-sequences, a set of candidate 2- 

sequences are generated (line 5). Another database scan is used to calculate the 

support of each candidate 2-sequences, those candidates with support greater 

than the minimum support threshold form the set of frequent 2-sequences (line 

8). Similarly, frequent 3-sequences are obtained based on frequent 2-sequences. 

This process is repeated until no more frequent sequences are found. Before we
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Frequent
3-Sequences

Candidate 4-sequences
after join after pruning

< ( 1 , 2 ) ( 3 ) >
< ( 1 , 2 ) ( 4 ) >
< ( 1 ) ( 3 , 4 ) >
< ( 1 , 3 ) ( 5 ) >
< (2)(3,4) >
< (2)(3)(5) >

< (1 , 2 ) (3 , 4 ) >
< (1 , 2 ) (3 ) (5 ) >

< (1, 2) (3,4) >

Table 4.4: A example of candidate generation in GSP [71]

describe these two steps, we first define the notion of contiguous subsequence. 

Given a sequence s = <  SiS2 - .sn >, a subsequence c is called a contiguous 

subsequence of s if any of the following conditions hold: (l)c is obtained from 

s by dropping an item from either si or sn; (2)c is obtained from s by dropping 

an item from an element s*, which contains more than one item; (3)c is obtained 

from s by executing the above two operations multiple times.

There are two main steps in GSP algorithm:

• Candidate Generation: Given the set of frequent (k — l)-sequences Fk-i, 

the candidates of /e-sequences Ct are generated by joining Fk- \  with 

itself. Then a pruning phase is applied to eliminate those candidates, of 

which at least one contiguous (k — l)-subsequence is not frequent. Table 

4.4 shows an example of generating C4 from F3 .

•  Candidate Counting: For fast counting, candidate sequences are stored 

in a hash-tree data structure. To find all candidates contained in an input 

sequence s, conceptually all fc-subsequences are generated. A search is 

made in the hash tree for each of such subsequence. If a candidate 

matches a subsequence in the hash tree, its count of that subsequence is 

incremented.

SPADE A lgorithm

SPADE is a different algorithm for mining sequential pattern proposed by Zaki 

[86, 87]. In SPADE, the database of sequences is transformed into a vertical 

layout. In this vertical layout, an id-list is created for each item. The id-list
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A lgorithm  GSP
Input: a sequence database D and minimum support threshold <5 
Output: the set of all frequent subsequences
1.Function GSP(D,5)
2. Fi={ frequent 1-sequences};
3. F=Fi;
4. for (k=2; Fk~i /  0; k + +) do
5. C ^ s e t  of candidate k-sequences;
6. for all sequences s in database D do
7. increment count of all a e C t  contained in s;
8. Fk = {a  £ Ck\a.sup > <5};
9. return (J* Fp,

Figure 4.6: GSP Algorithm

A

CID TID

1 15

1 20

1 25

2 15

3 10

4 25

C

CID TID

1 10

1 25

4 10

B

CID TID

1 15

1 20

2 15

3 10

4 20

D

CID TID

1 20

1 25

2 15

3 10

4 20

Figure 4.7: An example of vertical layout of sequence database

is a list of sequence id (cid) and time stamp identifier (tid). A (cid, tid) pair 

associated with an item records in which sequence this item occurs, and where 

it occurs in that sequence. Figure 4.7 shows the id-lists for the 1-sequence of 

the sequence database in Table 4.3.

Frequent 1-sequences can be found by a single scan of the id-lists of 1- 

sequences. After that, frequent ^-sequences are generated be intersecting the 

id-lists of all distinct pairs of frequent (k — l)-sequences and checking the 

cardinality of the resulting id-lists for k-sequences against m in su p .  Figure 

4.8 shows the shows the process of id-list intersection.

Both breadth first and depth first search can be used to search the lattice 

shown in Figure 4.8 to find the frequent subsequences. Given a limited amount
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Figure 4.8: Computing Support via Id-list Intersections [8 6 ]

of main memory, the intermediate id-lists introduced in the lattice of Figure 4.8 

usually cannot be fit in memory. The author of SPADE proposed to decompose 

the search space into equivalence classes such that each equivalence class can 

be processed independently, so at any time, only one equivalence class need to 

be stored in the main memory.

PrefixSpan A lgorithm

PrefixSpan [57] is an algorithm that exploits prefix-projection in sequential 

pattern mining. Assuming items in any element are listed alphabetically, 

a sequence ft = <  > is called a prefix of another sequence a =<

a1a2...an > (m < n) if and only if (1 )aj =  bi for (i < m  — 1); (2)bn C an; (3) 

all items in (an — bn) are alphabetically after those in bn. Given sequences a  

and one of its prefix ft, a subsequence a' of a  is called a projection of a  w.r.t. 

fi if and only if (1 ) a' has prefix ft; (2 ) there exists no proper super-sequence 

a" of a 1.
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A lgorithm  PrefixSpan
Input: a sequence database S and minimum support threshold S 
Output: the complete set of sequential patterns 
M ethod: call PrefixSpan(<>, 0, S)
Subroutine PrefixSpan(o!, 1,51a)
Parameters: a: a sequential pattern; I: the length of a; S\a: the a-projected 
database, if a ^  0 ; otherwise, the sequence database S.
M ethod:

1 . Scan S\a once, find the set of frequent items b such that

(a) b can be assembled to the last element of a  to form a sequential 
pattern; or

(b) < b > can be appended to a  to form a sequential pattern.

2. For each frequent item b, append it to a  to form a sequential pattern a ', 
and output a'\

3. For each a ', construct a'-projected database S\a', and call 
PrefixSpan^', I +  1 , S\a>).

Figure 4.9: PrefixSpan Algorithm

Similar to SPADE, frequent 1-sequences are found by a single scan of the 

database. Then the database is projected into several subsets, each has a 

distinct frequent 1-sequence as its prefix. Sequences containing < a > are 

projected with respect to < a > to form the < a >-projected database. All 

the frequent 2 -sequences with prefix < a > can be found by a single scan 

in < a >-projected database. In particular, given a prefix a  of length k, all 

frequent (k + l)-sequences with prefix a  can be found by a scan of oprojected 

database. This process ends when no more frequent sequences can be found. 

The algorithm of PrefixSpan is shown in Figure 4.9.

Two techniques are used to optimize the process. A bi-level projection 

scheme is proposed to reduce the number and the size of projected databases. 

A pseudo-projection is proposed to reduce the cost of projection when a pro­

jected database can be held in main memory.
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4.3.2 Sequential Pattern M ining with Constraints

In many real applications, people are interested in finding sequential pattern 

with certain constraints. For example, when mining market-based sequential 

patterns, users often want to place a bound on the maximum distance between 

the occurrence of adjacent pattern elements in a data sequence [71].

One possible constraint in sequential pattern mining is in the form of reg­

ular expression (RE). A RE constraint 7Z is specified as a RE over the alpha­

bet of the sequence items using the established set of RE operators, such as 

disjunction (|) and Kleene closure (*) [26]. Results from complexity theory 

shows that given a RE 71, there exists a deterministic finite automata (DFA) 

A n  such that A n  accepts exactly the same language generated by 7Z. For 

example, Figure 4.10 shows an DFA that corresponds to the RE 1*(2 2 | 2 3 4 

| 4 4). Garofalakis et al. [26] developed a method called SPIRIT for sequen­

tial pattern mining in the presence of user-specified regular expression (RE) 

constraints. They consider only sequences of simple items, i.e., every element 

in the sequence has only one item. Given an DFA (or an equivalent RE), a 

sequence a  is valid if it can be accepted by the DFA that is given. For exam­

ple, given the DFA in Figure 4.10, < 1 1 2 2  > and < 234 > are examples of 

valid sequences. The problem addressed in [26] is: given a database of (simple) 

sequences V,  a user-specified minimum support threshold, and a user-specified 

RE constraint 7Z (or an equivalent DFA), find all frequent and valid sequential 

patterns in V.

A  algorithmic framework called SPIRIT is proposed in [26] for solving this 

problem. The framework is similar to the apriori strategy used in GSP. The 

crucial difference is that they use relaxed constraints that have nice properties 

(e.g., anti-monotonicity) to filter out some candidates in the early stage.

Pei et al. [58] presented seven categories of constraints based on the se­

mantics and the forms of the constraints.

Constraint 1. An item constraint specifies what are the particular individual 

or groups of items that should or should not be in the patterns.

Constraint 2. A length constraint specifies the requirement on the length of
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1 2

Figure 4.10: Computing Support via Id-list Intersections [26]

the patterns, where the length could be the number of items or the number of 

elements (refer to the definitions in Section 4.3.1).

Constraint 3. A super-pattern constraint is to find patterns that contain a 

particular set of patterns as sub-patterns.

Constraint 4. An aggregate constraint is the constraint on an aggregate of 

items in a pattern, where the aggregate function could be sum, avg, max, 

min, standard deviation, etc.

Constraint 5. A regular expression constraint is a constraint expressed as 

a regular expression over the set of items using the established set of regular 

expression operators, such as disjunction and Kleene closure.

Constraint 6. A duration constraint is defined only in the sequence database 

where each element in the sequence has a time-stamp associated with it.

This constraint requires that the pattern appears frequently in the sequence 

database such that the time-stamp difference between the first and the last 

element in the pattern must be longer or shorter than a given period. 

Constraint 7. A gap constraint is defined only in the sequence database

where each element in the sequence has a time-stamp associated with it.

This constraint requires that the pattern appears frequently in the sequence 

database such that the time-stamp different between every two adjacent trans­

actions must be longer or shorter than a given gap.

Pei et al. summarize some commonly used constraints for sequential pat­

tern mining in Table 4.5 based on the notion of monotonicity, anti-monotonicity 

and succinctness. A constraint Cm is m onotonic if a sequence a  satisfying 

Cm implies that any super-sequence of a  also satisfies Cm- A constraint Ca
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C o n s tra in t A n ti-m o to M ono Succ
Item C i t e m ( a ) =  (Vi : 1 <  i < l en(a) , a[ i ]0V) (6  6  { C , D}) Yes No Yes

C'item (Q) — iy* : 1 <  f e n ( a ) ,  c*|ij n  V ^  0 ) Yes No Yes
Ci tem  (<*) =  (3 i : 1 <  i <  len{a.),  ot\i\9V){6 £  { C , D }) Yes No Yes

C i t e m ' W  = I e n ( a ) ,  a  [i\ n  V  0 ) Yes No Yes
L e n g th l e n ( a )  < I Yes No Yes

l e n ( a )  > I No Yes Yes
S u p e r -p a t te rn Cpat(ct) = ( ^ 7  £  p  s .t .  7  C a ) No Yes Yes

S im p le
ag g reg a tes

m a x { a )  <  v , m i n ( a )  >  v Yes No Yes
m a x ( a )  > v , m i n { a )  <  v No Yes Yes

s u m ( a )  <  v ) (w ith  n o n -n eg a tiv e  values) Yes No No
sum(oc)  >  v ) (w ith  n o n -n eg a tiv e  values) No Yes No

T ough
ag g reg a te

g _ s u m t 8 u m ( a ) 0 v , 0  £  { < , > }  (w ith  p o s itiv e  a n d  n eg a tiv e  values) No No No
a v e r  a g e : a  v g (a ) 0 v No No No

R E R eg u la r E x p re ss io n No No No
D u ra tio n D u r ( a )  < A t Yes No No

D u r ( a )  >  A t No Yes No
G ap Gap( a ) 0A t ( d  £  { < ,  > } ) Yes No No

Table 4.5: Characterization of commonly used constraints (for detailed de­
scription about the constraints, refer to [58])

is anti-m onotonic if a sequence a  satisfying Ca implies that any non-empty 

subsequence of a  also satisfies Ca- A constraint is succinct if it can be speci­

fied using a precise “formula” . According to the “formula” , one can generate 

all the patterns satisfying a succinct constraints. A new framework for min­

ing sequential patterns with prefix anti-monotone constraints. A constraint 

Cpa is called prefix anti-m onotonic if a sequence a  satisfying Cpa implies 

every prefix of a  also satisfies Cpa. A constraint Cpm is called prefix mono­

tonic if a sequence a  satisfying Cpm implies that every sequence having a  as 

a prefix also satisfies Cpm. A constraint is called prefix-m onotone if it is 

prefix anti-monotonic or prefix monotonic. The authors showed that most of 

the commonly used constraints (Table 4.5) are prefix-monotone. And all anti­

monotonic or monotonic constraints are prefix-monotone, i.e., prefix-monotone 

property is weaker than anti-monotone and monotone properties.

An algorithm similar to PrefixSpan, called Prefix-Growth (Figure 4.11), is 

proposed to find sequential patterns with prefix-monotone constraints.

4.3.3 M ining Frequent Episodes

Another problem in mining sequential data is the discovery of frequent episodes 

in event sequences, proposed by Mannila et al. [45, 44, 46]. In this section, 

we follow the authors’ definitions and introduce the problem and solutions of 

finding frequent episodes.

Given a set E  of event types, an event is a pair (A,t), where A  e  E
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A lgorithm  Prefix-G rowth
Input: A sequence database S, minimum support threshold <5, prefix-
monotone constraint C
Output: The complete set of sequential patterns satisfying C 
M ethod: call Prefix-Growth(< > , S)
Subroutine Prefix-Growth(c>!, S'la)
Parameters: a: prefix; S |a : the a-projected database 
M ethod:

1 . Let I be the length of a. Scan S |a once, find length-(Z +  l) frequent prefix 
in S |a , and remove infrequent items and useless sequences;

2 . for each length- (I + 1 ) frequent prefix oi potentially satisfying the con­
straint C  do

(a) if oi satisfying C, then output oi as a pattern;

(b) for S |Qq

(c) call Prefix-Growth(a', S |Q')

Figure 4.11: Prefix-Growth Algorithm

and t  is the occurrence time associated with the event type A, represented 

by an integer. An event sequence s on E  is a triple (s,Ts,Te). where s =< 

(A i,ti) ,  (A2, t2) , ..., (An,f„) > (where A, e  E  and ti <  ti+x) is an ordered list 

of event. Ts and Te are integers representing the starting time and the ending 

time, and Ts < t i  < Te for all i = 1,2,..., n. A window on an event sequence s =  

(s,Ta,Te) is an event sequence w ={w,ts, t e), where t s < Te and te > Ts, and w 

consists of those pairs (A, t) from s where t s < t < te. The time span te — ts is 

called the width of the window w, denoted width(w). Given an event sequence 

s and an integer w in , W (s, win) denotes the set of all windows w on s,such 

that width{w) =  win. Figure 4.12 shows an example of an event sequence 

s =  (3,29,68), where s =< (E, 31), (D, 32), (F, 33), (A, 35),..., (D, 67) >. A 

window starting at time 35 (shown in solid line) is (<(A,35), (B,37), (C,38), 

(JF,39)>,35,40).

An episode is a partially ordered collection of events occurring together. 

Episodes can be described as directed acyclic graphs(DAGs). Figure 4.13 

shows three different episodes. Episode 1 is a serial episode: it occurs in a
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Figure 4.12: An example of event sequence and a window of width 5 [46]

sequence only if there are event E  and F  that occur in that order in the 

sequence. Episode 2 is a parallel episode: there are no constraints on the 

order of event A  and event B. Episode 3 is an example of non-serial and non­

parallel episode: it occurs in a sequence if there are occurrences of A  and B  

that precede an occurrence of event C, there are no constraints on the relative 

order of A  and B. An episode is said to occur in a sequence if nodes of the 

episode have corresponding events in the sequence such that the event types 

are the same and the partial order of the episode is respected. For example, 

the window (w, 35,40) in Figure 4.12 contains events A, B, C  and E. Episode

2 and 3 in Figure 4.13 occur in the window, but Episode 1 does not. An 

episode (3 is called a subepisode of a  is the DAG for a  is a subgraph of the 

DAG for /3, e.g., Episode 2 is a subepisode of Episode 3 in Figure 4.13.

Given an event sequence s and a window width win, the frequency of an 

episode a  in s is

,  , . , | { w  G W (s ,w in ) \a  occurs in w } |
f r { a , s ,w z n )  =  ^

\W (s ,w m )\

Episode a  is frequent if f r ( a , s , w i n ) is no less than a threshold m in -fr .  

The task of finding frequent episodes is to find all the frequent episodes from a 

given class e of episodes. For example, the class could be all parallel episodes 

or all serial episodes. The collection of frequent episodes with respect to s, 

w in  and m in - f r  is denoted by F(s, win, m in -fr ) .

Mannila et al. [45, 44, 46] proposed an algorithm called WINEPI for finding 

frequent episodes from event sequence based on the fact that if  an episode a  

is frequent in an event sequence s, then all subepisodes (3 A a  are frequent. 

Like GSP for finding frequent sequential patterns, WINEPI algorithm has two 

phases: candidate generation and candidate counting. But the difference is 

that WINEPI is designed for counting the number of occurrences of a pattern 

when moving a window along a single sequence, while GSP looks for patterns
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Figure 4.13: Examples of three different episodes represented by directed 
acyclic graphs

occurring in multiple sequences.

4.4 Summary

This chapter has introduced the work related to extracellular protein predic­

tion. This problem falls into the general area of protein subcellular localization 

prediction. However, most existing methods for protein subcellular localiza­

tion prediction aims at high overall accuracy, which is not appropriate in our 

case, since we are interested in identifying properties of amino acid sequences 

that discriminate extracellular proteins. Some approaches use additional in­

formation (e.g., lexical annotations) in addition to protein primary sequences. 

However, in our problem, we want to build our predictors only based on protein 

sequences. Also, we would like our predictors to provide as much interpretable 

justifications for biologists as possible.

Since the protein sequence is a kind of sequential data, we also surveyed 

various researches on mining sequential data, which have been studies exten­

sively in data mining community. However, most algorithms introduced in 

this chapter cannot be easily applied in our case for the following reasons.

• In the sequential mining algorithms summarized in this chapter, a se­

quence is defined to be a list of elements, where each element consists of 

a set of items. Protein sequences can be modeled by this definition, by 

restricting each element to be a single item (amino acid). However, in
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this case, most algorithms will find a lot of “uninteresting” patterns, in 

which a element only contain a single item. For example, a pattern “A- 

>D ->E ->G ->F” could be found by those algorithms. But this pattern 

is not quite interesting, since each element in this pattern only contains 

one item.

• The algorithms for finding episodes are used to find some “patterns” 

(episodes) in a single sequence, but we want to find those interesting 

subsequences from many extracellular proteins. Also, the structures of 

episodes have to be known beforehand. But in biology, we usually do 

not know the structures of subsequences that might be interesting.

The next chapter will elaborate on the methods that we have used for 

extracellular protein prediction.
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Chapter 5 

Extracellular Protein Prediction

This chapter introduces the features used for our prediction method, and the 

different data mining algorithm we use. Section 5.1 describes the features 

used in our algorithm and how to find those features from protein primary 

sequences. Sections 5.2, 5.3, 5.4 describe different data mining algorithms 

that we use for the prediction. Section 5.5 summarizes this chapter.

5.1 Feature Extraction

In this thesis, we use frequent subsequences as the features for the learning 

algorithms. A frequent subsequence is a subsequence made up of consecutive 

amino acids that occurs in more than a certain fraction (MinSup) of extracel­

lular proteins. The reason we choose frequent subsequences is based on the 

following observations:

• Subsequences that appear frequently in extracellular proteins and rarely 

appear in intracellular proteins have very good discriminative power for 

identifying extracellular proteins. Those subsequences can be of great 

interest to biologists.

• It has been known that common subsequences among related proteins 

may perform similar functions via related biochemical mechanisms [23, 

33, 39, 42],

• Frequent subsequences capture the local similarity that may relate to 

important functional or structural information of extracellular proteins.
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xa bxac

bxac

bxac

Figure 5.1: Suffix tree for string “xabxac” [28]

Frequent subsequences have been used for identifying outer membrane pro­

tein in Gram-negative bacteria proteins [69]. In this thesis, we want to use 

them for extracellular protein prediction.

In order to identify frequent subsequences from extracellular protein se­

quences, we use an efficient implementation of generalized suffix tree (GST) 

[80]. A suffix tree is trie-like data structure that compactly represent a string 

by collapsing a series of nodes having one child to a single node whose par­

ent edge is associated with a string. A suffix tree for a ra-character string S  

has exactly m  leaves numbered from 1 to m. Each internal node has at least 

two children and each edge is labeled with an nonempty substring of S'. No 

two edges out of a node have labels beginning with the same character. The 

concatenation of the edge labels on the root to leaf i (the numbers shown in 

rectangles in Figure 5.1) exactly corresponds to the suffix of S  that starts at 

position i. Figure 5.1 shows an example of a suffix tree for the string “xabxac”. 

The path from root to leaf numbered 1 spells out the string S  =  xabxac, while 

the path from the root to leaf numbered 4 spells out the suffix xac, which 

starts in position 4 of S. Suffix trees are used extensively in string matching. 

There are algorithms [73, 82] that can construct a suffix tree for a string in 

linear time.

A GST is an extension of the suffix tree, designed for representing a set of 

strings. Each suffix of the strings is represented by a leaf in the GST. Each
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C HK K KC KKC MKKC MNQIHK Q IH K

FK  IH K  K KFK KKFK MKKFK N Q IH K

Figure 5.2: The GST for three sequences: MNQIHK, MKKFK and MKKC

leaf is associated with an index i. The edges are labeled with character strings 

such that the concatenation of the edge labels on the path from the root to 

the leaf with index i is a suffix of the «th string in the set. Figure 5.2 shows 

an example.

The algorithm for constructing the GST is as follows. A unique symbol 

is appended to the end of each sequence and all sequences are concatenated 

into a single one. The suffixes of the sequences are then inserted into a trie. 

When a node has only one child, the child is collapsed with its parent and 

the edge going down from the parent is labeled with a substring instead of a 

single character. In this way, a GST for all extracellular protein sequences are 

constructed [28].

In order to find the frequent subsequences, the GST is traversed to find all 

frequent subsequences that satisfy the minimum support threshold. In Figure

5.2, the number of occurrence of a subsequence is shown in a circle associated 

with an internal node. For example, starting from the root, if the path “K-K” 

is followed, we will reach an internal node with number 2 associated with it. 

This number tells us the occurrence of subsequence “KK” is 2.
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5.2 Support Vector Machine

The support vector machine (SVM) approach for solving classification (espe­

cially binary classification) problems was proposed by Vapnik et al. [74, 75]. 

SVM is well founded theoretically because it is based on well developed statis­

tical learning theory. It has also been shown to be very effective in real-world 

applications. For example, SVM has been successfully applied to handwrit­

ten digit recognition [16, 67], object recognition [63], text categorization [18], 

microarray data analysis [10], and protein secondary structure prediction [31]. 

Here, we use SVM for the problem of extracellular protein identification from 

primary sequences.

Here we briefly describe the basic idea behind SVMs. SVMs are usu­

ally used for binary (two-class) classification problems. SVMs assume data 

to be represented as vectors in some feature space. Assuming we have a 

set of training data, i.e., a set of input vectors Xi G Md(i =  1,2 , . . . ,N ,R  =  

setofrealnumbers) with corresponding labels x/i G {+ 1 ,—l}(i =  1 ,2 ,...,AT), 

where d is the dimensions of the feature space and N  is the number of train­

ing examples, {+1, —1} are used to indicate the labels of two classes. In its 

simplest form, an SVM attempts to find a linear separator in the feature space 

that correctly separate the training data of two different classes. It seeks to 

maximize the margin, or separation between the two classes in order to im­

prove the chance of accurate predictions of future data, as shown in Figure

5.3.

In most real applications, there are no linear hyperplanes that separate the 

original data in the original space. SVMs address this problem by mapping 

the input vectors X{ G Rd into a higher dimensional feature space <h(.x) G EL 

In this feature space, the linear separator is constructed. Figure 5.4 shows 

an example where non-separable data in two-dimensional input space is map­

ping into three-dimensional feature space, where a linear hyperplane can be 

found. The mechanism for this mapping <f>(5f) is performed by a kernel func­

tion K ( x , X i )  which defines an inner product in the space EL The space H is 

determined by the kernel function.
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s u p p o r t  v e c t o r s
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- N Optimal hyperplane
\

Figure 5.3: A linear SVM for a two-dimensional training set 

The decision function implemented by SVM can be written as:

N

f (x )  = s g n (^ 2  K(x,  £<) +  b)
i—1

where a t are obtaining by solving the following Quadratic Programming 

(QP) problem:

Maximize 1 \  E jL i aiaj ' ViVj' K (®«> %i)
subject to 0 < o t i < C

UiVi = 0 (i =  1 , 2 ,..., JV) 

where C is a regularization parameter that controls the trade off between 

margin and misclassification error. Those x t are called Support Vectors if 

the corresponding ctj > 0. There are efficient standard methods to solve the 

Quadratic Programming (QP) problem [15]. Due to the very high dimension­

ality of of the QP problem, an extension of the algorithm for solving QP is 

used in SVM algorithm [35].

Classical kernel functions include:
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Input Space Feature Space

Figure 5.4: Support vector machine: mapping non-separable data from 2-D 
input space to 3-D feature space

• Linear Kernel Function:

K( x i ,  x) = Xi ■ x

• Polynomial Kernel Function:

K ( x i , x )  = (xi • x  + l)d

• Radial Basic Function (RBF):

K ( x i :x)  = exp ( - 7  || Xi -  x  ||2)

To apply SVM approach in the extracellular protein prediction, the first 

step is to transform protein primary sequences, which are strings of letters, 

into some vector representation suitable for SVMs. Here, we use frequent 

subsequences as our feature space. These subsequences represent statistically 

discriminative features with regard to extracellular proteins. And the dimen­

sionality is much lower than the feature space represented by all potential 

subsequences.

Each amino acid sequence is transformed into an n-dimensional vector 

x  =  (ai, a2, ..., an), where n is the number of frequent subsequences found 

from extracellular proteins, and a,j( 1 < j  < n) is the feature corresponding to 

the ith subsequence. A binary representation is used. If the ith  subsequence 

appears in protein sequence x, the value of % is set to 1 . Otherwise, it is
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set to 0. For example, if there are 10 frequent subsequences, and a protein 

sequence contains only the first and the second frequent subsequences, the 1 0 - 

dimensional vector will be (1,1,0,0,0,0,0,0,0,0). For the class label, +1 is used 

to indicate extracellular proteins and -1  for intracellular proteins.

SVM classifiers are trained in this transformed feature space with different 

kernel functions and different parameter settings. The results are described in 

Chapter 6 .

5.3 Boosting

Boosting is a meta-learning method that has a theoretically justified ability 

to improve the performance of any weak classifier. A weak classifier is an 

algorithm that, given e, 5 > 0  and access to random examples, can achieve at 

least slightly better error rate e than random guessing (e > 1 / 2  — 7 , where 

7  > 0), with a probability (1 — 5). The purpose of boosting is to build a highly 

accurate classifier by combining many weak or base hypotheses, each of the 

weak hypothesis may be only moderately accurate. Various different boosting 

algorithms have been proposed in the literature [14, 22, 24, 64, 72],

Boosting algorithms work iteratively. During each iteration, a classifier is 

learned based on a different weighted distribution of the training examples. 

The main intuition behind boosting algorithms is to increase the weights of 

the incorrectly classified examples and decrease the weights of the correctly 

classified examples. This forces the learning algorithm to focus on those ex­

amples that are not correctly classified in the next iteration. The algorithm 

usually stops after a pre-specified number of iterations, or it can stop when 

some measurement of the quality of the classifier based on certain measure­

ment (such as error rate) starts to deteriorate. The set of classifiers obtained 

after these iterations are combined together for the final prediction of unseen 

examples. Figure 5.5 shows the algorithm of the boosting algorithm.

In our application of extracellular protein prediction, we use AdaBoost 

[64, 24] with simple rule-based classifiers as the weak hypotheses. Every rule 

is a simple check for the presence or absence of a frequent subsequence in
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Given: (sq, Yi), (x2, Y2) , ..., {xm, Ym) where x t e X ^ c y  
Initialize Di(i, I) =  1 /(m k).
F o ri =  1,2,..., T:

• Pass distribution Dt to weak leaner.
•  Get weak hypothesis ht : X  x T  —> R.
• Choose a t £ R.
• Update:

n  c  Dt ( i , l )e xp (-a tYi[l}ht {xi, l )) 
u t + iU, l )  = -----------—— -------------------

where Zt is a normalization factor (chosen so that Dt+x will be a distribution). 
Output the final hypothesis:

T

f ( x , 0  = '52ottht(x,l).
t =  1

Figure 5.5: AdaBoost Algorithm [65]

a protein primary sequence. Based only on the outcome of this test, the 

weak hypothesis outputs the prediction and the confidence that each label 

( “extracellular” or “intracellular”) is associated with the protein sequence.

Formally, denote a subsequence by a, the possible class label for a protein 

sequence x  by I (I could be “extracellular” or “intracellular”), and define a £ x 

to represent the fact that subsequence a appears in protein sequence x. The 

weak hypothesis corresponding to this subsequence has the following form:

h(Xj) = {Cai YYv ; \  cu if a^  x

where the Cji are real numbers. For example, if subsequence a is “ABCD- 

HIKG” , I is “extracellular” , c0/ =  0.549 and cu =  —0.168. The weak hypoth­

esis based on this subsequence would read in English:

IF subsequence “ABC D H IK G ” appears in x 

THEN predict

x to be “extracellular” with weight 0.549 

ELSE predict
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x to be “intracellular” with weight -0.168

The weak learner searches all possible frequent subsequences. For each 

subsequence, it calculates the value Cjt and assigns a score. Once all the sub­

sequences are searched, the weak hypothesis with the lowest score is returned 

by the weak learner. In our case, the score will be an exact calculation of Zt 

(refer to [64] for details). The score is calculated as follows [65]:

Let X 0 = {x : w £ x}  and X \  =  {x : w € x \ .  For j  G {0,1} and for 

b e  {—1, +1}, we calculate the following based on the current distribution Dt:

je{o,i} ley
After all frequent subsequences are searched, the weak learner returns the 

one for which the value of Zt is the smallest.

5.4 Frequent Subsequence Pattern (FSP) M ethod

In this section, we introduce another method for extracellular protein predic­

tion, based on frequent subsequence patterns (FSP). The patterns we want to 

discover are regular expressions of the form *Xi * X 2 * ..., where X i , X 2,... 

are frequent subsequences made up of consecutive amino acids, and is a 

variable-length-don’t-care (VLDC) that can substitute for zero or more letters 

when matching the pattern against a protein sequence. Since we are interested 

in identifying extracellular proteins, subsequence patterns are mined only from 

extracellular proteins. We want to find those patterns that can discriminate 

extracellular proteins from intracellular ones. The reason we choose this form

m
w l l =  Dt(i, l){Xi e X j  A Yill] = b}

Zt is minimized for a particular term by choosing

and by setting a t= 1. These settings imply that
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of patterns is that subsequences capture local similarity that may relate to 

important structures or functions or extracellular proteins, and VLDCs com­

press the remaining irrelevant portions. An advantage of using subsequence 

pattern is because it can provide some biological insights for biologists. This 

form of patterns was proposed in [69] and has also been used to identify outer- 

membrane proteins in Gram-negative bacteria proteins.

Most sequential pattern mining algorithms are designed to find subsequence 

patterns in sequences of transactions. A protein sequence can be modeled by a 

sequence of transaction, where each transaction only contains one single item 

(amino acid). However most algorithms will find a lot of subsequence pat­

terns that are not interesting. For example, “*a *C*E” is a possible pattern 

in sequence “(A)(B)(C)(D)(E)” , but this pattern is not interesting to us, since 

“A” “C” “E” may not be frequent subsequences. And they can not find the 

patterns of the form “*ABC*DE”, where “ABC” and “DE” are frequent sub­

sequences. In [69], the authors use an exhaustive search to build patterns to 

identify outer membrane proteins by concatenating two or more frequent sub­

sequences. However, since there could be thousands of subsequences found in 

the training set, exhaustive search produces an explosive number of candidate 

patterns. To deal with this problem, we exploit a greedy algorithm to find 

those patterns.

Our algorithm is based on the idea of FOIL (First Order Inductive Learner) 

proposed by Quinlan et al. [59]. FOIL repeatedly searches for the current best 

rule and removes all the positive examples covered by the rule until the positive 

examples in the data set are all covered. In our case, the positive examples 

are extracellular proteins and the negative examples are intracellular proteins. 

Figure 5.6 shows the algorithm FOIL.

The criteria that we use for choosing the best literal is based on its Z- 

number [38, 37]. Z-number is calculated as follows. Given a rule R  and sR 

denotes its support. Let oc denote the mean of the target class C, defined 

as ac =  |Sc|/1S'!, where S  is the current training set and Sc  is the subset 

of S  where C  is the class label. Let ac  denote the standard deviation of 

the target class C. In the binary classification problem, it is calculated as
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A lgorithm  FOIL
Input: Training set D = P  U  N. (P  and N  are the sets of positive and
negative examples, respectively.)
Output: A set of rules for predicting class labels 
M ethod:
1. rule set P  t— 0
2. while |P| > 0
3. N' ^ N , P '
4. rule r  <— emptyjrule
5. while \N'\ > 0  and r.length < max -rule leng th
6. Choose the best literal according to P' and N
7. append p to r
8. remove from P' all examples not satisfying r
9. remove from N' all examples not satisfying r
10. end
11. p ^ p u { r }
12. remove from P all examples satisfying r ’s body
13. end
14. return P

Figure 5.6: FOIL Algorithm 

ac  =  \ / a c ( l  — ac)- Using these notions, Z-number is defined as

Z r — \ /^ r (0r  — ac)/&c

Z-number measures how well a rule P  discriminate examples of class C. 

It is similar to the z-test or t-test in statistics. A rule with high positive Z- 

number predicts the presence of C  with high confidence. A rule with high 

negative Z-number predicts absence of C with high confidence. A rule with 

Z-number close to zero does not has much power of discriminating examples 

of class C.

The FOIL algorithm is very efficient, but not very effective (in terms of 

prediction accuracy), due to the fact that whenever a rule is generated, all 

the positive examples covered by this rule will be removed, which results in 

the final rule set generated to be very small. In our case, since we want the 

rule in the format of “pattern of subsequences => extracellular” , a small rule 

set means the recall is very low, i.e., a lot of extracellular proteins in the test

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



set are not covered by the rule set, thus misclassified as intracellular proteins. 

In [85], the authors proposed an idea of decreasing the weight of an example 

after it is covered by a newly generated rule, instead of removing it. This will 

produce more rules and it is more likely to cover most of the positive examples 

in the test set. We adopt this idea in our frequent subsequence pattern method. 

However, there are some modifications made to the rule induction.

• The patterns we are interested in have the format of “*Xi * X 2 * ... =>• 

extracellular” , i.e., the relative order of frequent subsequences (Xl5 

X2,...) matters. Also it is possible for a pattern to contain multiple 

occurrences of a subsequence, i.e., “*Xi * X2 * X i* ” is a valid pattern.

• Consider the two examples in Figure 5.7. Pattern Pl=*Xx * X 2* ap­

pears in protein sequence 1, pattern P 2 =*X 3 * X4* appears in sequence

2. Intuitively, P I is more likely to be biologically significant than P2, 

since the two subsequences X \  and X 2 are close to each other in P I , 

while subsequences X 3 and X 4 are too far apart. In our algorithm, we 

introduce another parameter called MaxGap. When matching a pat­

tern against a protein sequence, if the distance (in terms of number of 

amino acids) of two adjacent subsequences are too far apart, we do not 

consider it to be a match. For example, if MaxGap is set to be 3, the pat­

tern “*ABC*DEF*” does not match the sequence “ABCMNOPQDEF” , 

since the gap between subsequence “ABC” and “DEF” is 5 (see Fig­

ure 5.8(a)). However the pattern “*ABC*DEF*” matches the sequence 

“ABCABCPQDEF” , since we can find a way to align them, so that the 

gap between “ABC” and “DEF” is 2. We understand this is not a theo­

retically justified assumption in biological domain. But through manual 

inspection of our dataset and other publications [34], we decide to use it 

in our method.

The algorithm for finding patterns are shown in Figure 5.9. The procedure 

Match(t,r, MaxGap) in Figure 5.9 is implemented by enumerating all the 

possible alignment of the subsequences in the pattern r to the sequence t.
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S e q u e n c e  1 X I X 2

S e q u e n c e  2 X 3 X 4

Figure 5.7: Examples showing two patterns

A B C M N O PQ D

A B C  D E F

(a)

A B C A B C PQ  

A B C  D

(b)

Figure 5.8: Matching pattern against sequence

The pattern r is considered to “match” sequence t, if there is one possible 

alignment, such that the distances between two adjacent subsequences are all 

less than MaxGap. For example, there are two possible alignments of the 

pattern “*A B C  * D E F *” against the sequence “A B C A B C P Q D E F ” , shown 

in Figure 5.10. If MaxGap is set to 3, we consider the pattern “*ABC  * 

D E F *” matches sequence “A B C A B C P Q D E F ”, since in Figure 5.10(b), the 

alignment satisfies the MaxGap constraint.

After the set of patterns are generated, we filter them in order to keep 

those patterns with good predictive power. Only those patterns with support 

greater than a threshold M inSup  and confidence greater than M in C o n f  are 

kept for predicting unseen protein examples.

The prediction process is relatively easy. Given an unseen example t, every 

pattern r  in the pattern set is tested. If there exist a pattern r  that matches 

t, t  is predicted to be an extracellular protein, otherwise it is predicted to be 

an intracellular protein.

5.5 Summary

In this chapter, we have proposed several frequent-subsequence-based algo­

rithms for building predictors of extracellular proteins. The reason for using 

frequent subsequences is that they capture local similarities that may relate
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A lgorithm  FindPattern
Input: Training set D = P  U N.  (P  and N  are the sets of extracellular and 
intracellular proteins, respectively.)
Output: A set of patterns in the format of *A\ * X 2 * ... for predicting extra­
cellular proteins
Parameters: a: rate of weight decreasing; 5: threshold for exiting the pro­
cedure; min-Znumber: minimum acceptable Z-number; M axGap: maximum 
acceptable gap between two subsequences.
M ethod:
1. set the weight of every example in P to 1
2. pattern set R  «— 0
3. totalW eight <— TotalW eight(P)
4. while totalW eight > 5 • totalW eight
5. N' <- N ,P ' <- P
6. pattern r <— empty-rule
7. while true
8. Choose the subsequence p with the largest Z-number, according to 
N ' and P'
9. if  Z-number (p) < miri-Znumber then break
10. append p to r
11. for each example t in P  U N
12. if  not Match(t, r, MaxGap) then
13. remove t  from P' U N
14. end
15. end
16. R  •<— R  U {r}
17. for each example t  in P
18. if Match(t, r, MaxGap) then
19. t.weight t— a ■ t.weight
20. end
21. end
22. return R

Figure 5.9: Algorithm for finding patterns

A B C A B C PQ D

A B C  D E F

(a)

A B C A B C PQ D

A B C  D

(b)

Figure 5.10: Two possible alignment of pattern “*ABC  * D EF*" against 
sequence “A B C A B C P Q D E F "
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to important functional or structural information of extracellular proteins, 

thus may have good discriminative power for identifying extracellular pro­

teins. SYM and boosting are used for learning the classifier because they are 

well founded theoretically and have been shown to be very effective in many 

real-world applications. The frequent subsequence pattern method is used be­

cause the patterns found by this method can be easily interpreted by biologists 

and could be very useful for future biological analysis.

In the next chapter, we test the performance of our algorithms on a real 

dataset and compare them to other algorithms.
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Chapter 6 

Experim ents

This chapter describes the experimental results of our methods, including SVM 

based on frequent sequences, boosting based on frequent subsequences, and 

the frequent subsequence pattern method. We compare our methods to SVM 

based on amino acid composition and boosting based on amino acid composi­

tion. We also investigate the effect of combining subsequences and amino acid 

composition, and the effect of removing some of those subsequences that are 

shorter than a certain threshold.

6.1 Dataset and Evaluation

Our predictor will eventually be used in extracytosolic plant proteins. How­

ever, since there are not that many proteins currently available in our database, 

we test the performance on a plant protein dataset that we got from the Pro- 

teome Analyst project [43] at the University of Alberta. This dataset was 

constructed from SWISS-PROT and contains 3293 proteins, among which 171 

are extracellular proteins.

We performed 5-fold cross validation, i.e., each run takes one of the 5 folds 

(i.e., 1/5 of the data) as the test set and the remaining 4 folds (i.e., 4/5 of 

the data) as the training set. To ensure fair comparisons, all the methods are 

evaluated using the same folding. The number 5 was chosen arbitrarily based 

on other publications [43],

The performance of a classification algorithm is usually evaluated by its 

overall accuracy. However, in our application, overall accuracy is not a good
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Actual Extracellular Actual Intracellular
Predicted as Extracellular TP FP
Predicted as Intracellular FN TN

Table 6.1: Confusion Matrix

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
2658 2605 2532 2817 2722

Table 6.2: Number of subsequence in each fold

evaluation metric. For example, in our dataset, only about 5% of the proteins 

are extracellular proteins. A high accuracy (95%) can easily be achieved by 

classifying every protein to be intracellular. Another possible choice for evalu­

ation is to measure of prediction accuracies for extracellular and intracellular 

separately. But in this case, the performace of an algorithm is measure by two 

number (accuracy of extracellular proteins and accuracy of intracellular pro­

teins). We cannot easily tell whether an algorithm is good, if it performs well 

on one measurement and poorly on another measurement, unless there is an 

appropriate way to combine these two measurements. In our experiment, we 

choose to use F-measure with respect to the rare class (extracellular proteins) 

as our evaluation metrics. They are based on the confusion matrix shown in 

Table 6.1. Using the notions in Table 6.1, precision (P ) and recall (R) of 

extracellular class can be defined as:

T P  o  T P
-  T P  + F P  ’ "  T P  + F N

F-measure (F) [37] is a metric that combines precision and recall. It is 

calculated as:

F = * ™
P  + R

If a naive classifier predicts every protein to be intracellular, the recall (R) 

of this classifier would be zero, resulting F-measure to be zero. So F-measure 

is a evaluation metric suitable in our case.

For all the experiments, the subsequences are obtained by setting the min­

imum support threshold to be 5%. The number of subsequences in each fold 

is summarized in Table 6.2.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Recall Precision F-measure

Linear kernel
Default C 0.291 1 0.451

C=10 0.693 0.957 0.804OOl-HIIO

0.693 0.957 0.804
C=1000 0.693 0.957 0.804

Polynomial Kernel 
(d=2)

Default C 0.26 1 0.413
C=10 0.543 0.945 0.69

Q II h-‘ o o 0.543 0.945 0.69
C=1000 0.543 0.945 0.69

RBF Kernel 
(7=0.005)

Default C 0.11 1 0.199
C=10 0.449 1 0.62OOT—1IIo

0.449 1 0.62oooHIIU

0.449 1 0.62

Table 6.3: SVM classification with frequent subsequences

Number of iterations Recall Precision F-measure
500 0.598 0.884 0.714
1000 0.606 0.917 0.729
2000 0.606 0.906 0.726

Table 6.4: AdaBoost classification with different number of iterations

6.2 Experiment Result of SVM

In this set of experiments, the SYM h9ht implementation [36] is used since it 

is well-known and has been used extensively in previous research. We tried 

with three different kernels, including the linear kernel, the polynomial kernel 

with degree of 2 and the radial basis function kernel with 7=0.005. For each 

kernel, we tried different values for C  (the regularization parameter that con­

trols the trade-off between margin and misclassification error). The result is 

summarized in Table 6.3. The best result (in terms of F-measure) obtained is 

0.804 with a linear kernel.

6.3 Experiment Result of Boosting

In the experiments of boosting, we chose the number of iterations to be 500, 

1000 and 2000. And we used BoosTexter [65] for the experiments. The results 

are shown in Table 6.4.

The results show that the boosting algorithm is robust with respect to the
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Recall Precision F-measure
0.614 0.765 0.681

Table 6.5: Experiment Result of Subsequence Pattern Method

number of iterations. The best result obtained by boosting is 0.729 with 1000 

iterations. The performance of boosting is comparable to that of SVM.

6.4 Experiment Result of the FSP M ethod

For the experiment of subsequence pattern method, there are quite a few pa­

rameters to be tuned. In order to tune those parameters, we took a portion 

of training examples and tried our algorithm on it with different parameter 

setting, then tested the learned model on another portion of the examples. 

Through extensive trial and error, we finally got the following parameter set­

ting. M inLen  is set to be 3, min^gain to be 0.1, 5 to be 0.03 and a  to be 0.8. 

The M inSup  to be 5%, M in C o n f to be 80%, MaxGap to be 300. The result 

is shown in Table 6.5.

6.5 Comparison with Other M ethods

We compared our methods with SubLoc [32], SubLoc used SVM with amino 

acid compositions as its features. The authors show that SubLoc performs 

better compared with other methods based on amino acid composition. It 

also performs better than methods based on N-terminal signals. SubLoc is 

not specifically designed for predicting extracellular proteins, but since its 

implementation is based on SVMb9ht, we re-implemented it with SVM hght and 

tested it on our datasets. We tried the same parameter settings as we did in 

SVM with subsequences, the result is shown in Table 6.6. In the table, “nan” 

represents the non-valid number caused by 0 being the divisor. The best result 

obtained is 0.522 with polynomial kernel (d=2) and C=1000.

For the purpose of comparison, we also tried AdaBoost based on amino 

acid composition. Since the attributes are continuous values in this case, the 

weak hypothesis used is a single test of whether the composition of an amino
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Recall Precision F-measure

Linear Kernel
Default C 0.094 1 0.173

o II I—1 o 0.055 1 0.104ooT—HIIO

0.26 0.825 0.395
C=1000 0.315 0.784 0.449

Polynomial Kernel 
(d=2)

Default C 0.094 1 0.173OT—iIIo

0.094 1 0.193
C=100 0.3 0.844 0.442

0
 II ; O . o
 

o 1 0.378 0.842 0.522

RBF Kernel 
(7=0.005)

Default C 0.094 1 0.173
C=10 0 nan nan

C=100 0 nan nan
C=1000 0.063 1 0.119

Table 6.6: SVM classification with amino acid composition

Number of iterations Recall Precision F-measure
500 0.48 0.678 0.562

1000 0.488 0.697 0.574
2000 0.472 0.652 0.548

Table 6.7: AdaBoost classification on amino acid composition

acid is above or below some threshold (see [65] for details). The result is shown 

in Table 6.7. The best result obtained is 0.574 with 1000 iterations.

For cross comparison, we choose the best (in terms of F-measure) result 

generated by each algorithm (i.e., 0.804 for SVM with subsequences, 0.729 

for boosting with subsequences, 0.522 for SVM with amino acid composi­

tion, 0.574 for boosting with amino acid composition). The comparison of 

different algorithms is shown in Figure 6.2. Our methods based on frequent 

subsequences are better than methods based on amino acid composition. In 

particular, the SVM method based on frequent subsequences performs the best 

among different approaches.

Even though the SVM method based on frequent subsequences achieves the 

best experiment result, there are some advantages in using the FSP method. 

The reason is that the decision functions learned by SVM algorithms are dif­

ficult for people to understand. However, the decision rules found by the FSP 

method can be easily interpreted and modified by human experts. Figure 6.1 

shows some examples of the rules found by subsequence pattern method. Biol-
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IF (sequence contains *CKN*CGPGHGIS*) THEN (extracellular) 
IF (sequence contains *YWGQNG*EIN*) THEN (extracellular)
IF (sequence contains *QVY*AGH*NVT*) THEN (extracellular)

ELSE (intracellular)

Figure 6.1: Examples of patterns found by the FSP method

S V M  w ith  subsequences 

B o o stin g  w ith  subsequences 

F S P  m e thod

S V M  w ith  am ino  ac id  com position  

B oosting  w ith  am ino  ac id  com position

Figure 6.2: F-measures of different algorithms

ogists can easily read these rules and determine whether they are biologically 

meaningful. They can also incorporate their biological knowledge and modify 

the patterns, e.g., by adding or removing subsequences in the patterns, to get 

even better classification models.

6.6 Combining Frequent Subsequences and Amino 
Acid Composition

Since the methods based on frequent subsequences perform better than those 

based on amino acid composition, an interesting question is whether we can 

combine these two kinds of features to do a better job. We did some experi­

ments to show the effect of combining them.

Table 6.8 shows the results of SVM based on combined features. Table 

6.9 shows the comparison of F-measures of SVM based on combined features, 

frequent subsequences, and amino acid composition. The result shows that
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Recall Precision F-measure

Linear Kernel
Default C 0.291 1 0.451

C=10 0.693 0.957 0.804ooIIo

0.693 0.957 0.804
C=1000 0.693 0.957 0.804

Polynomial Kernel 
(d=2)

Default C 0.26 1 0.413
C=10 0.543 0.945 0.69

o II o o 0.543 0.945 0.69
C=1000 0.543 0.945 0.69

RBF Kernel 
(7=0.005)

Default C 0 nan nanor—iIIO

0 nan nan
C=100 0 nan nan

C=1000 nan 0 nan

Table 6.8: SVM classification with combined features

Combined Feature Subsequence Composition

Linear
Kernel

Default C 0.451 0.451 0.173

o II 1—‘
 

o 0.804 0.804 0.104
C=100 0.804 0.804 0.395

C=1000 0.804 0.804 0.449
Polynomial

Kernel
(d=2)

Default C 0.413 0.413 0.173

o II 1—‘
 

o 0.69 0.69 0.193
C=100 0.69 0.69 0.442

C=1000 0.69 0.69 0.522
RBF

Kernel
(7=0.005)

Default C nan 0.199 0.173oIIo

nan 0.62 nan
C=100 nan 0.62 nan

C=1000 nan 0.62 0.119

Table 6.9: Comparison of SVM based on different features

there is no obvious benefits of combined features for SVM. In the case of RBF 

kernel, SVM based on combined features is even worse than SVM simply based 

on frequent subsequences.

Table 6.10 shows the results of boosting based on combined features. Table 

6.11 show the comparison of F-measures of boosting based on combined fea­

tures, frequent subsequences, and amino acid composition. We can conclude 

that, contrary to SVM, the performance of boosting (measured by F-measure) 

can be improved significantly by combining frequent subsequences and amino 

acid composition.
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Number of iterations Recall Precision F-measure
500 0.685 0.967 0.802
1000 0.717 0.989 0.831
2000 0.708 0.989 0.826

Table 6.10: AdaBoost classification with combined features

Number of iterations Combined feature Subsequence Composition
500 0.802 0.714 0.562
1000 0.831 0.729 0.574
2000 0.826 0.726 0.548

Table 6.11: Comparison of AdaBoost based on different features

6.7 Effects of M inLen

In SVM and Boosting, all the subsequences are used as features. However, 

short subsequences are more likely to appear than long subsequences. Some 

very short subsequences (e.g., subsequences with one amino acid or two) actu­

ally do not contain much information, even though they appear very frequently. 

In order to investigate the effect of the minimum length of subsequences, we 

did some experiments by removing those subsequences with length less than 

a certain threshold {MinLen). The results are shown in Table 6.12 and Ta­

ble 6.13. We can see that in general, removing short subsequences does not 

improve the result.
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MinLen=l
(2667)

MinLen=2
(2647)

MinLen=3
(1851)

MinLen=4
(258)

MinLen=5
(67)

Linear
Kernel

Default C 0.451 0.476 0.52 0.565 0.132
C=10 0.804 0.804 0.67 0.5 0.111

o II h-
k

O O 0.804 0.804 0.65 0.489 0.126
n II V—

11
O o o 0.804 0.804 0.66 0.485 0.088

Polynomial
Kernel
(d=2)

Default C 0.413 0.413 0.392 0.517 0.565
C=10 0.69 0.625 0.5 0.497 0.565

C=100 0.69 0.625 0.5 0.497 0.565

O
 

O 
: 

O 
i

r*H 
1

IIO

0.69 0.625 0.5 0.497 0.565
RBF

Kernel
(7=0.005)

Default C 0.199 nan 0.031 0.104 0.591
C=10 0.62 nan 0.046 0.158 0.591

OOr"HIIO

0.62 nan 0.046 0.158 0.591oooT—
1

IIu

0.62 nan 0.046 0.158 0.591

Table 6.12: F-measure of SVM on frequent subsequences with different MinLen 
(the number in brackets shows the average number of frequent subsequences)

Number of iterations MinLen=l
(2667)

MinLen=2
(2647)

MinLen=3
(1851)

MinLen=4
(258)

MinLen=5
(67)

500 0.714 0.704 0.613 0.556 0.551
1000 0.729 0.711 0.615 0.556 0.548
2000 0.726 0.724 0.599 0.55 0.556

Table 6.13: F-measure of AdaBoost on frequent subsequences with different 
MinLen (the number in brackets shows the average number of frequent subse­
quences)
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Chapter 7 

Conclusion and Future Work

7.1 Conclusion

In this dissertation, we have presented EPPdb, an on-line database that has 

been developed for proteomic analysis of extracytosolic plant proteins. Similar 

to other 2-D PAGE databases, EPPdb provides textual and graphical web 

interfaces that allow biologists to query and populate the database. EPPdb 

also provides an open API that allow other applications to access it as a Web 

service.

We also augmented EPPdb with a repository of tools that can be used 

in data analysis and mining tasks. In particular, we introduced a tool that 

we developed for extracellular protein prediction. We have proposed several 

frequent-subsequence-based algorithms for this task and compared them with 

existing methods, which are based on amino acid composition. The experi­

ments show that our algorithms perform better than amino acid composition 

based methods. The best result is achieved by SVM classification based on fre­

quent subsequences. However, even though the experimental results of SVM 

and boosting based on frequent subsequences are the best, there are some ad­

vantages in using the FSP method. The reason is that the decision functions 

learned by SVM and boosting are difficult for people to understand. However, 

the decision functions of the FSP method are easily readable rules, which can 

be easily understood by human experts.
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7.2 Future Work

There are a number of directions for possible future research.

First of all, we only use the protein primary sequences for training the 

predictor of extracellular proteins. If additional properties of proteins (e.g., 

secondary structures, functions) are available, future research can take these 

characteristics into account to make a more accurate prediction.

Moreover, in the algorithms we have developed, we did not use biological 

knowledge about the characterizations of extracellular proteins. It would be 

beneficial if we could embed prior knowledge about extracellular proteins into 

our prediction system.

In addition, EPPdb is still in its early stage of development. As the project 

progresses, other interesting data analysis and mining tasks may be identified. 

Future research is needed to develop further tools to assist biologists.
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A ppendix A

Glossary

am phiphilic : of or relating to a molecule having a polar, water-soluble group 
attached to a nonpolar, water-insoluble hydrocarbon chain.
2-D P A G E  (2-D E ) : two-dimensional polyacrylamide gel electrophoresis.

Am ino acid com position  : relative frequency of twenty amino acids in a 
protein sequence.

B oosting : an iterative learning algorithm that improves the performance of 
any weak classifer.

consensus sequence : a sequence of nucleotides or amino acids in common 
between regions of homology in different but related DNA or RNA or protein 
sequences.
Curated databases : a protein database monitored by biologists. The re­
dundancy of curated databases is removed by compiling all the reports for a 
given protein sequence into a single entry.

E P Pdb : Extracytosolic Plant Protein Database.

Extracellular : situated or occurring outside a cell or the cells of the body. 

Extracytosolic : synonym to “extracellular” .

Frequent subsequences : subsequences made up of consecutive amino acids 
that occur in more than a certain threshold of extracellular proteins.

Gram -negative : a particular kind of bacteria.

G ST  : Generalize Suffix Tree, a data structure designed for representing a set 
of strings.

H om ologous : having the same evolutionary origin.

HTML : HyperText Markup Language.

Intracellular proteins : proteins that are localized within the cell.

M ahalanobis distance : a distance measurement between two N  dimen­
sional points scaled by the statistical variation in each component of the point.
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M ySQ L : a popular Open Source SQL database management system.

N uS O A P  : a toolkit providing a simple API for building Web Services using 
SOAP technology.

P H P  : Hypertext Preprocessor, a widely-used open source general-purpose 
scripting language.

P ro te in  su b ce llu la r loca liza tion  : the cellular compartment where proteins 
are localized.

Sequence re p o s ito ry  : a protein databases that make no efforts to provide 
a non-redundant collection of sequences.

SO A P : Simple Object Access Protocol.

SV M  : Support Vector Machine, a learning algorithm for solving two-class 
classification problems.

W eak classifier : a classifier that performs better than random guessing.

W eb Services : a mechanism of communicating between two remote systems.

W SD L : Web Services Description Language, an XML document used to de­
scribe Web Services.

X M L : Extensible Markup Language, a universally agreed markup language 
primarily used for information exchange.
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A ppendix B 

Sample Code

The following is a sample PHP code of accessing EPPdb using Web Services.
It aims to retrieve all the protein entries that contain “trypsin” in the “DE” 
lines.

<?php
require_once(’nusoap.php’);
$soapclient=new soapclient(

’http://www.cs.ualberta.ca/~wyang/php/soapserver.php’);

$arr=array(’DE’);
$rows=$soapclient->call(’query_by_keyword’,

array(,atts’=>$arr, ’keyword’=>’trypsin’));

echo "Query results:<br>";
echo " <br>" ;
foreach ($rows[0] as $row){ 
foreach ($row as $element){ 
echo $element."<br>\n";

}
echo "<br>\n";

}
?>

The services currently available are listed in Table B.l. More services will 
be added as this project proceeds.
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Name Description Parameters
query_by_ac Retrieve all the entries 

containing a specific 
word in the AC line

$name: the word to be 
search for in AC line

query _by_de Retrieve all the entries 
containing a specific 
word in the DE line

$name: the word to be 
search for in DE line

query _by .keyword Specify the attributes to 
be searched and several 
keywords, retrieve all the 
entries tha t contain all 
the keywords in those 
specified attributes

$atts: list of attributes 
(e.g., AC, DE, etc) 
$keyword: list of key­
words separated by 
spaces

Table B.l: Web services in EPPdb
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