
Sparse and Dense Visual SLAM with Single-Image
Depth Prediction

by

Shing Yan Loo

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Shing Yan Loo, 2022

Abstract

In this thesis, we investigate the use of single-image depth prediction from

convolutional neural networks (CNNs) in sparse and dense monocular visual

simultaneous localization and mapping (SLAM) problems. Mainly, we are

interested in solving three problems: (1) data association, (2) dense mapping,

and (3) long-term adaptation. Hence, we divide the thesis into three parts to

discuss the contributions to solving the problems mentioned above.

To improve the robustness of data association in visual SLAM, our first

proposal extends the state-of-the-art semi-direct visual SLAM algorithm using

single-image depth prediction to improve the reliability of feature matching.

We propose to use the additional depth information to initialize new features

with a small uncertainty centred at the predicted depth. By reducing depth

uncertainty, feature correspondence can be identified in a reduced search range

along the epipolar line, resulting in fast convergence of the feature depth and

improved mapping performance. With the improved mapping performance,

our method outperforms the state-of-the-art visual SLAM algorithms in cam-

era tracking error.

To recover a dense structure, we densify the semi-dense structure of the

scene recovered from the state-of-the-art direct SLAM algorithm, LSD-SLAM.

To this end, our second proposal exploits the local depth gradient consistency

from single-image relative depth prediction as a spatial regularizer to densify

the semi-dense depth maps. In addition, we propose an adaptive filtering

scheme that incorporates the depth and pixel intensity of a local window to

ii

reduce the noise of the semi-dense structure, which allows for a substantial gain

in densification accuracy. The optimized semi-dense and densified structures,

in turn, are being used to refine the pose-graph to refine the pose estimation.

Experimental results show that our dense reconstruction accuracy outperforms

the state-of-the-art methods by a large margin.

Nevertheless, single-image depth prediction from CNNs tends to give ac-

curate depth estimations on images similar to that of the training images.

Therefore, to improve the generality of single-image depth prediction used

in visual SLAM, our third proposal introduces a long-term adaptation frame-

work, which supports online fine-tuning of a depth prediction CNN to improve

its accuracy while leveraging improved quality of depth prediction to optimize

the structure and camera pose estimation globally. Particularly, we propose

a novel online adaptation method in which the fine-tuning is enhanced with

regularization to retain the previously learned knowledge while the CNN is

continually trained. We demonstrate the use of fine-tuned depth prediction

for map point culling before running global photometric BA, resulting in a

more accurate map reconstruction than running global photometric BA on all

map points.

iii

Preface

All of the published work and research conducted for this thesis are the results

of a collaboration between the University of Alberta and Universiti Putra

Malaysia under the Dual Ph.D. Programme, led by Prof. Hong Zhang at

the University of Alberta, with Prof. Sai Hong Tang and Prof. Syamsiah

Mashohor being the supervisors at the Universiti Putra Malaysia.

The thesis chapters are based on the following publications.

• Chapter 3: Shing Yan Loo, Ali Jahani Amiri, Syamsiah Mashohor, Sai

Hong Tang, and Hong Zhang. “CNN-SVO: Improving the mapping

in semi-direct visual odometry using single-image depth prediction.”

In 2019 IEEE International Conference on Robotics and Automation

(ICRA), pp. 5218-5223. IEEE, 2019.

• Chapter 4: Shing Yan Loo, Syamsiah Mashohor, Sai Hong Tang, and

Hong Zhang. “DeepRelativeFusion: Dense Monocular SLAM using Single-

Image Relative Depth Prediction.” In 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 6641-6648.

IEEE, 2021.

• Chapter 5: Shing Yan Loo, Moein Shakeri, Sai Hong Tang, Syamsiah

Mashohor and Hong Zhang. “Online Mutual Adaptation of Deep Depth

Prediction and Visual SLAM.” Under review, 2022.

Shing Yan Loo was responsible for the proposed methodology, implemen-

tation and evaluation of the solutions. Hong Zhang, Sai Hong Tang, and

Syamsiah Mashohor provided suggestions and proofread the papers. Particu-

lar acknowledgement goes to Ali Jahani Amiri and Seyed Moein Shakeri for

evaluating the state-of-the-art methods and helping with the experiments.

iv

To my wife

For the unwavering support and love.

v

Acknowledgements

Prof. Hong Zhang has given me a once-in-a-lifetime opportunity to study in

Canada and taken me under his wing. I want to thank him for providing a safe

place for me to learn-from-failures, which helps me become a better researcher

and, more importantly, a better person.

Many thanks go to my co-supervisors, Prof. Sai Hong Tang and Prof.

Syamsiah Mashohor, for the kind support academically and mentally during

my time at the Universiti Putra Malaysia. Also, I would like to express my

gratitude to my supervisory and thesis committee members, Prof. Nilanjan

Ray, Prof. Matt Taylor, Prof. Ron Kube, Prof. Li Cheng and Prof. Ping

Tan, for participating and asking thought-provoking questions in the progress

meetings, seminars and my thesis defence.

Of course, this journey would not be complete without my wonderful lab

mates. I am grateful to have Ali, Sean, Weinan, Xuebin, Nazmus, Moein and

Islam for their incredible help in experiments and insightful discussions. I

appreciate the technical support from Martin and Ehsan for keeping the lab

server machine up and running. Last but not least, I would like to thank Sara

for offering her help when I did not sleep for two days working on a demo.

Lastly, I would like to express my gratitude to my wife, Renzi, and my

family for being a great support system in my life.

vi

List of Publications

(In chronological order)

1. Shing Yan Loo, Ali Jahani Amiri, Syamsiah Mashohor, Sai Hong Tang,

and Hong Zhang. “CNN-SVO: Improving the mapping in semi-direct

visual odometry using single-image depth prediction.” In 2019 Interna-

tional Conference on Robotics and Automation (ICRA), pp. 5218-5223.

IEEE, 2019.

2. Ali Jahani Amiri, Shing Yan Loo, and Hong Zhang. “Semi-supervised

monocular depth estimation with left-right consistency using deep neu-

ral network.” In 2019 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pp. 602-607. IEEE, 2019.

3. Moein Shakeri, Shing Yan Loo, Hong Zhang, and Kangkang Hu. “Po-

larimetric Monocular Dense Mapping Using Relative Deep Depth Prior.”

In IEEE Robotics and Automation Letters (RAL), 6(3), pp. 4512-4519,

IEEE, 2021.

4. Weinan Chen, Lei Zhu, Shing Yan Loo, Jian Kun, Chaoqun Wang, Max

Qinghu Meng, and Hong Zhang. “Robustness Improvement of Using

Pre-trained Network in Visual Odometry for On-road Driving.” IEEE

Transactions on Vehicular Technology (TVT), IEEE, 2021.

5. Shing Yan Loo, Syamsiah Mashohor, Sai Hong Tang, and Hong Zhang.

“DeepRelativeFusion: Dense Monocular SLAM using Single-Image Rel-

ative Depth Prediction.” In 2021 International Conference on Intelligent

Robots and Systems (IROS), pp. 6641-6648. IEEE, 2021.

vii

6. Shing Yan Loo, Moein Shakeri, Sai Hong Tang, Syamsiah Mashohor, and

Hong Zhang. “Online Mutual Adaptation of Deep Depth Prediction and

Visual SLAM.” under review, 2021.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 3

1.2.1 Visual SLAM . 3
1.2.2 Single-image depth prediction 9

1.3 Problem Statements . 13
1.4 Contributions . 16
1.5 Thesis Outline . 17

2 Preliminaries 19
2.1 Mathematical notation . 19
2.2 Visual SLAM in robotics . 19
2.3 Projective geometry and 3D transformations 21

2.3.1 Camera projection . 21
2.3.2 3D transformation . 22

2.4 Learning to predict depth from images 27
2.4.1 Unsupervised learning 27
2.4.2 Semi-supervised learning 29

3 CNN-SVO: Improving the Mapping in Semi-Direct Visual Odom-
etry Using Single-Image Depth Prediction 31
3.1 Overview . 31
3.2 Method . 32

3.2.1 Review of the SVO mapping algorithm 32
3.2.2 Proposed method . 34

3.3 Implementation . 37
3.4 Results . 39

3.4.1 Accuracy evaluation 40
3.4.2 Runtime evaluation . 40
3.4.3 Scale evaluation . 43

3.5 Summary . 43

4 DeepRelativeFusion: Dense Monocular SLAM using Single-
Image Relative Depth Prediction 45
4.1 Overview . 45
4.2 Related work . 45
4.3 Method . 47

4.3.1 Depth prediction . 47
4.3.2 Adaptive filter on a semi-dense structure 48
4.3.3 Densification of the semi-dense structure 50
4.3.4 Pose-graph refinement 50

4.4 Implementation . 52
4.5 Experimental results and discussion 53

ix

4.5.1 Reconstruction accuracy 53
4.5.2 Results of the adaptive filter 55
4.5.3 Cost function analysis 56
4.5.4 Relative depth prediction vs. absolute depth prediction 57
4.5.5 Keyframe trajectory accuracy 59
4.5.6 Conditions for accurate densification 59

4.6 Qualitative reconstruction results on other datasets 61
4.7 Summary . 63

5 Online Mutual Adaptation of Deep Depth Prediction and Vi-
sual SLAM 65
5.1 Overview . 65
5.2 Related work . 65
5.3 Method . 67

5.3.1 SLAM . 67
5.3.2 Online CNN depth adaptation 69
5.3.3 Global BA . 72

5.4 Evaluation . 74
5.4.1 Laboratory dataset . 76
5.4.2 Online adaptation . 76
5.4.3 Learning against catastrophic forgetting in online adap-

tation . 79
5.4.4 Effect of global photometric BA with map point culling

on SLAM accuracy . 79
5.4.5 Online adaptation vs. relative depth prediction 82
5.4.6 Runtime evaluation . 84

5.5 Summary . 84

6 Conclusions and Future Work 87
6.1 Conclusions . 87
6.2 Limitations and Future Work 88

References 90

Appendix A Online adaptation regularization 103
A.1 Adapted EWC regularization for single-task regression problem 103
A.2 SI and MAS regularizations 104

Appendix B Visual SLAM with factor graph optimization 106
B.1 Photometric bundle adjustment 106
B.2 Pose-graph optimization . 111

x

List of Tables

1.1 A comparison between modern visual SLAM algorithms in chrono-
logical order. 8

2.1 Lie groups and their attributes. 25
2.2 Lie groups and their corresponding Lie algebras. 25

3.1 A comparison between SVO and CNN-SVO in the initialization
of parameters. The parameters are defined by prior knowledge
of the scene, where davg is the average scene depth in the refer-
ence keyframe, dCNN the depth prediction from the single-image
depth prediction CNN, dmin the minimum scene depth in the
reference keyframe, μn the mean of the feature’s inverse depth,
and σ2

n the variance of the feature’s inverse depth. 37
3.2 Absolute keyframe trajectory error (in metre) on the KITTI

dataset [16]. 41
3.3 Absolute keyframe trajectory error (in metre) on the Oxford

Robotcar dataset [17]. 41
3.4 Scale factor of the evaluated trajectories on the (left) KITTI

dataset [16] and (right) Oxford Robotcar Dataset [17]. 44

4.1 Comparison of overall reconstruction accuracy on the ICL-NUIM
dataset [5] and the TUM RGB-D dataset [118]. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far.) 54

4.2 Effect of the error terms on the reconstruction accuracy. (TUM/seq1:
fr3 long office household, ◦: our cost function, �: simulated
DeepFusion [89] cost function, †: not used in DeepFusion.) . . 56

4.3 Comparison of depth prediction CNNs accuracy being used in
CNN-SLAM (Laina [119]) and our system (VNLNet [66] and
MiDaS [82]) on the ICL-NUIM dataset [5] and the TUM RGB-D
dataset [118]. (TUM/seq1: fr3 long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3: fr3 structure texture far,
abs: absolute depth prediction CNN, rel: relative depth predic-
tion CNN.) . 58

4.4 Comparison of absolute trajectory error on the ICL-NUIM dataset [5]
and the TUMRGB-D dataset [118]. (TUM/seq1: fr3 long office household,
TUM/seq2: fr3 nostructure texture near withloop, TUM/seq3:
fr3 structure texture far, abs: absolute depth prediction CNN,
rel: relative depth prediction CNN, �: before pose-graph re-
finement, ◦: after pose-graph refinement, *: (baseline) after
pose-graph refinement with ground truth depth .) 58

xi

4.5 Effect of semi-dense depth (from LSD-SLAM [37]) and predicted
dense depth (from MiDaS [82]) accuracies on densification ac-
curacy based on 142 keyframes generated on the TUM RGB-D
fr3 long office household sequence [118]. 61

5.1 A comparison between the overall depth accuracy of our method
and Luo et al.’s [124] SLAM-based online adaptation on the
ICL-NUM [5] and TUM RGB-D [118] datasets. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far) 77

5.2 A comparison between the overall depth accuracy of our method
and CoMoDa’s [123] end-to-end online adaptation on the ICL-
NUM [5] and TUM RGB-D [118] datasets. Both our method
and CoMoDa [123] are fine-tuned on the same pre-trained CNN
model, mono+stereo 640x192 [103]. (TUM/seq1: fr3 long office household,
TUM/seq2: fr3 nostructure texture near withloop, TUM/seq3:
fr3 structure texture far) . 78

5.3 An ablation study on different online adaptation schemes us-
ing our proposed framework on the ICL-NUM [5] and TUM
RGB-D [118] datasets. (TUM/seq1: fr3 long office household,
TUM/seq2: fr3 nostructure texture near withloop, TUM/seq3:
fr3 structure texture far) . 80

5.4 A comparison of the camera tracking ATEs with and with-
out global photometric BA on the ICL-NUM [5] and TUM
RGB-D [118] datasets. (TUM/seq1: fr3 long office household,
TUM/seq2: fr3 nostructure texture near withloop, TUM/seq3:
fr3 structure texture far) . 81

5.5 A comparison of the number of points and depth error of the
SVO map with and without our proposed map point culling and
global photometric BA. A larger max fts generates more map
points in SVO. 82

5.6 A comparison of scale-invariant depth errors of SVO [51] map
points, MiDaS [82], DiverseDepth [83] and our online adapted
Monodepth2 [103] CNN model. 84

xii

List of Figures

1.1 Perception of the 3D world through a camera. The image shown
on the right is formed by capturing rays of light in front of the
camera location in the 3D world. An illustration generated
using the ICL-NUIM dataset [5]. 2

1.2 With a depth map, where blue is near and red is far, we can
back-project the image pixels to reconstruct the 3D world. An
illustration generated using the ICL-NUIM dataset [5]. 3

1.3 A factor graph consisting of three variable vertices and two fac-
tor vertices with edges connecting a variable node to a factor
node such that the variable vertices {X1,X2,X3} and the factor
vertices {f1, f2, f3} belong to two disjoint and independent sets
X and F , respectively. 5

1.4 Front-end and back-end design in a visual SLAM algorithm. . 5
1.5 Illustration of the “infinite corridor” problem where a robot

drives around a rectangular hallway, starting at point A, travel-
ling counterclockwise, and ending at point B. Without loop clo-
sure (left), the accumulated drift causes inconsistency between
the mapped trajectory and the actual map, whereas, with loop
closure (right), the mapped trajectory is corrected to match
the actual rectangular hallway. Therefore, without loop clo-
sure, the robot perpetually “discovers” new structures in the
environment, hence the “infinite corridor” problem. 9

1.6 A demonstration of 2D convolution operation for generating a
convolved feature. The coloured pixel on top is generated by the
weighted combination of the corresponding image region in the
bottom row with the weights in the convolution kernel. Note
that the bias parameter is not included in this illustration. . . 10

1.7 A demonstration of max pooling (left) and average pooling
(right) . 11

1.8 A comparison of photometric errors of various stereo baselines.
From top to bottom: A reference feature in a reference frame
(the circled red dot), three consecutive images in a sequence
with increasing motion stereo baselines, and the photometric
matching errors at varying depth. The red line is the re-projected
pixel locations along the epipolar line. A small baseline gives
a distinct minimum at around the depth of 15 m, and an in-
creasing stereo baseline results in an increase in local minima
in matching cost. 14

xiii

1.9 A comparison of photometric errors of various stereo baselines
in textureless image regions. From top to bottom: A reference
feature in a reference frame (the circled red dot), three consec-
utive images in a sequence with increasing motion stereo base-
lines, and the photometric matching errors at varying depth.
The red line is the re-projected pixel locations along the epipo-
lar line. Compared to matching a textured corner in the nearby
images (see Figure 1.8), a textureless region cannot be localized
in the nearby images using photometric error. 15

1.10 A comparison of the generalizability of two state-of-the-art depth
prediction models by AdaBins [79], nyu and kitti, which have
been trained on the (indoor) NYUv2 [18] and (outdoor) KITTI [16]
datasets, respectively. We test the pre-trained models on two
input images (1 and 2), and the predicted depth maps are shown
on the right. Image 2 is taken from the 7 scenes dataset stairs
sequence [90]. Note that the AdaBins kitti model is not able
to predict accurate depth in the upper image region, due to the
absence of ground truth depth in the training, and is typically
ignored in the quantitative evaluation. 16

1.11 A comparison of single-image relative depth prediction by Di-
verseDepth [83] (middle) and MiDaS [82] (right). 17

2.1 The visual SLAM problem. The new camera location is recov-
ered using the existing 3D points as constraints, while new 3D
points are also being initialized at the location. 20

2.2 Left: Projection of a 3D object to the 2D image plane. Right:
Projection of point p to the image plane, omitting the X-axis.
See text for explanation of notation. 22

2.3 Examples of distorted images. From left to right: image with no
distortion, image with barrel distortion and image with pincush-
ion distortion. Image taken from the ICL-NUIM dataset [5]. . 23

2.4 Given two images Il and Ir and their relative rotation and trans-
lation, epipolar geometry dictates that the corresponding point
of a lies along the epipolar line and that the epipolar plane con-
tains the 3D point p and the re-projected image points a and
a′. The epipolar plane is determined by the vector defined by
a and the stereo baseline. 24

2.5 Generalized Charbonnier function with different parameter set-
tings. 29

3.1 Proposed depth-filter initialization strategy. Each initialized
depth-filter has a mean depth (black dot) and an interval in
which the corresponding feature should lie, as shown by the
magenta line. Note that larger depth uncertainty can allow
the erroneous match to happen (as illustrated in (a) where the
depth filter could converge to the “similar feature” rather than
the “corresponding feature”). Our proposed depth-filter ini-
tialization method using depth estimation from a convolutional
neural network (CNN) (see (b)) has lower depth uncertainty for
identifying the corresponding feature. 35

3.2 The CNN-SVO pipeline. Our work augments the SVO pipeline
[50] with the CNN depth estimation module (marked in green)
to improve the mapping in SVO. 36

xiv

3.3 Preliminary results of the depth-filters from images with ground
truth camera poses obtained from KITTI dataset [16]. The
length of the magenta line represents the depth uncertainty and
the triangle at the bottom is the centre of projection. (a) ini-
tialization of the depth-filters where SVO uses a large interval to
model the uncertainty of each initial map point whereas CNN-
SVO uses a short interval; (b) depth estimates of the map points
by the depth-filters after three updates; (c) depth estimates of
the map points by the depth-filters after five updates. 38

3.4 CNN-SVO: Camera motion estimation in the high dynamic
range (HDR) environment. Left: The single-image depth pre-
diction CNN demonstrates the illumination invariance property
in estimating depth maps, and the colour-coded reprojected
map points on the five consecutive frames show the reprojected
map points onto those frames (best viewed in colour). Right:
Camera trajectory and map points in magenta generated by
CNN-SVO. 42

3.5 Qualitative comparison of camera trajectories produced by ORB-
SLAM (without loop closure), DSO, and CNN-SVO. SVO is
not included in this figure because it is not able to complete
the trajectory due to tracking and mapping failures. (a) KITTI
odometry sequence 00 and 08; (b) Oxford Robotcar Sequence
2014-05-06-12-54-54. 42

4.1 Our dense monocular SLAM sytem. We introduce a depth pre-
diction module, an adaptive filtering module and a dense map-
ping module to the state-of-the-art semi-dense SLAM pipeline,
LSD-SLAM [37]. The optimized depth maps are being used
to improve pose-graph optimization, while the optimized pose-
graph combines with the densified depth maps to generate a
globally consistent 3D reconstruction. 47

4.2 Demonstration of the effectiveness of our optimization frame-
work by comparing the relative depth prediction accuracy from
MiDaS before the densification with the densified depth map.
(Left column) image and ground truth depth map. (Middle col-
umn) scale- and shift-corrected relative depth map and depth
correctness mask. (Right column) densified depth map and
depth correctness mask. The percentage of correct depth of
the depth correctness mask is shown above. 55

4.3 The proposed adaptive filter on semi-dense depth map. From
left to right: (back-projected) semi-dense depth map from LSD-
SLAM, filtered semi-dense depth map, and keyframe image. . 55

4.4 Qualitative comparison of relative depth maps from MiDaS and
absolute depth maps from VNLNet on (a) the TUM RGB-D
dataset and (b) the ICL-NUIM dataset. From left to right:
image, ground truth depth map, depth prediction from MiDaS,
and depth prediction from VNLNet. 57

xv

4.5 Back-projected point cloud generated from (left to right) LSD-
SLAM [37], predicted depth map from MiDaS [82], and densi-
fied depth map using DeepRelativeFusion. Generally, fusing a
good semi-dense depth map with a good predicted depth map
results in a good densified depth map (see the first two rows).
However, having either a bad semi-dense depth map or a bad
predicted depth map is likely to generate a bad densified depth
map (see the last two rows). Depth pixels that have less than
10 % relative error are in blue and are in red otherwise. The
percentage of blue points is shown below their respective point
clouds and the good-ness threshold is set to 70 %, as described
in the text. 60

4.6 From top to bottom: colour-coded semi-dense depth map on
the keyframe image (red is near and blue is far), histogram
of the semi-dense depth distribution (depth values with less
than 10 % relative error are shown in blue bars and are in red
bars otherwise), and the scale- and shift-correct depth map with
its correctness mask (depth regions that have less than 10 %
relative error are shown in white). When performing scale- and
shift-correction, using a partially distributed scene depth (see
the histograms in the first two columns in which the depth count
is skewed towards one end) results in poor recovery of absolute
depth from predicted relative depth; whereas a well-distributed
scene depth (see the histograms in the last two columns) leads
to better recovery of absolute depth. 62

4.7 Qualitative reconstructions on various datasets. (i) ICL-NUIM [5]
lr kt2, (ii) ScanNet [19] scene0565 00 and scene0010 01, (iii)
TUMMonoVO [120] Sequence 29, (iv) EuRoC MAV [121] v1 01
and (v) Oxford Robotcar 2014-06-22-15 [17]. 64

5.1 The decrease in SVO mapping performance using a lower qual-
ity depth prediction CNN. 66

5.2 Our proposed online adaptation framework. We use a SLAM
algorithm to generate a sequence of keyframes. The keyframes
are classified as training or validation to fine-tune a depth pre-
diction CNN and monitor the adaptation progress. If the train-
ing is not converged, we use the most recent keyframe and one
randomly sampled old keyframe to fine-tune the CNN. Mean-
while, we calculate the validation loss once every m keyframes
to determine if the predicted depth maps are accurate. We keep
track of the number of continuous accurate depth predictions to
perform global photometric BA if the CNN has been accurate
for the past n keyframes. KF: keyframe. 68

5.3 Assuming the magenta map point is observed in two keyframes
(the red and green camera frustums), a host keyframe is selected
based on the validation loss (Lval) of the predicted CNN depth,
and in this case, the green keyframe has a lower Lval and hence
is being selected as the host keyframe of the magenta map point. 74

5.4 A TurtleBot equipped with an Nvidia Jetson AGX Xavier and
an Orbbec Astra RGBD camera. A Mango mini router is used
to create a local wireless network to communicate between the
Jetson and a laptop. 76

xvi

5.5 A comparison of different online adaptation schemes tested on
the ICL-NUIM [5] of kt3 (left) and lr kt1 (right) using the
final online adapted CNN. Adaptation accuracy is measured
by the averaged percentage of overall depth accuracy over all
frames up to the frame. (Method 1: fine-tuning on most re-
cent keyframes only; Method 2: fine-tuning on the most re-
cent keyframe with experience replay ; Method 3: fine-tuning
on the most recent keyframe with regularization; Method 4:
fine-tuning on the most recent keyframe with experience replay
and regularization. 80

5.6 Qualitative comparisons between different correctness thresh-
olds used in map point (MP) culling: (a) no culling, (b) MP
culling with α = 0.5, (c) MP culling with α = 0.25 and (d) MP
culling with α = 0.15. 83

5.7 A qualitative comparison of the back-projected point clouds
(shown in black) between (from left to right) ground truth
depth with SVO map points (in blue), MiDaS v2.1, MiDaS
v3.0, DiverseDepth, pre-trained Monodepth2, and our online
adapted Monodepth2. From top to bottom: first and second
viewpoint of the back-projected depth maps and the predicted
depth maps by the aforementioned CNN models. Our proposed
method’s overall online adapted depth prediction accuracy com-
pares favourably with MiDaS and DiverseDepth, which have
been trained on an extensive collection of datasets. The pre-
dicted depth maps are scaled to ground truth. Best viewed
digitally. 85

B.1 Factor graph for optimizing the keyframe poses (blue nodes)
and map points (red nodes) in visual SLAM. The green squares
are the photometric re-projection factors, and grey squares the
odometry factors. 107

B.2 Factor graph for solving photometric BA in which photometric
re-projection factors (Ephoto

(·,·)) are defined by projecting the map

points (MPs) to their observable keyframes (KFs). 107
B.3 Jacobian and Hessian matrices of the energy function. The

matrices are fill with zeros except for the white blocks. 110
B.4 Factor graph for optimizing the keyframe (KF) poses on the

odometry constraints (from the odometry factors). 112

xvii

Chapter 1

Introduction

This chapter begins with the motivation (Section 1.1) and background (Sec-

tion 1.2) of the thesis. Next, we outline the problems of the study in Sec-

tion 1.3 and define the main contributions in Section 1.4. Then, we delineate

the structure of the thesis in Section 1.5.

1.1 Motivation

Vision is a powerful sensory modality to understand our surroundings. No-

tably, as humans, we depend on vision predominantly to perceive our surround-

ings and navigate from point A to point B. However, it is still a challenging

problem for robots to reconstruct the environment and localize within the

environment as an egocentric agent.

The core of the problem is to recover the 3D structure from which the image

pixels are formed and the camera locations at which the images are taken [1],

[2], which is particularly challenging due to the loss of depth information in

the image capturing process, as illustrated in Figure 1.1. Solving the problem,

also known as the visual simultaneous localization and mapping (SLAM) prob-

lem [3], can benefit numerous applications: autonomous navigation systems

and virtual and augmented realities. For instance, autonomous navigation ve-

hicles require constant localization with respect to the map while expanding

the map with the newly observed visual features; similarly, augmented reality

expands the map with artificial objects, which requires faithful reconstruction

of the surroundings and reliable tracking of the camera locations. With the

1

Figure 1.1: Perception of the 3D world through a camera. The image shown
on the right is formed by capturing rays of light in front of the camera location
in the 3D world. An illustration generated using the ICL-NUIM dataset [5].

recent development of self-driving cars and Metaverse [4] technologies, there

has not been a more important time to contribute to solving visual SLAM

problems.

On the other hand, deep learning has gained tremendous progress in terms

of providing useful solution to technical challenges in solving the SLAM prob-

lem. Specifically, convolutional neural networks (CNN) have been able to

predict surface normals [6], optical flow [7], keypoints [8] and depth maps

from image input, information that can be exploited for improving SLAM

performance [9]–[15]. In particular, single-image depth prediction is useful in

the sense that it helps mitigate the mapping part of the SLAM problem, as

the predicted depth information can be used to reconstruct the scene (see Fig-

ure 1.2). With the increasing amount of training data from real-world scenarios

(e.g., KITTI [16], Oxford Robotcar [17], NYUv2 [18] and ScanNet [19]) and

sophisticated simulators (e.g., Microsoft AirSim [20], Carla Simulator [21] and

Nvidia OmniverseTM Isaac Sim [22]), we have seen tremendous opportunities

to apply deep depth prediction for improving SLAM performance.

2

Figure 1.2: With a depth map, where blue is near and red is far, we can
back-project the image pixels to reconstruct the 3D world. An illustration
generated using the ICL-NUIM dataset [5].

1.2 Background

This section provides a general overview of the visual SLAM algorithms and

single-image depth prediction. These are two research topics that serve as the

basis of the research described in this thesis.

1.2.1 Visual SLAM

Solving SLAM requires the formulation of the SLAM problem. In general,

there are two approaches to solving SLAM [1], [2], [23], [24]: filtering and

smoothing. Filtering-based approaches (e.g., extended Kalman filter (EKF) [25],

[26], Rao-Blackwellized particle filter [27], [28], and MonoSLAM [26]) solve the

SLAM problem using Bayesian inference, i.e., assuming a Markov chain1 [29],

the current state (the current robot pose and the map) of the robot is sequen-

tially updated based on the sensory observation and the previous state; alterna-

tively, smoothing-based approaches (e.g., smoothing and mapping (SAM) [30],

[31] and graph-based SLAM [32], [33]) optimize over all the robot poses and

1In the context of online state estimation, one of the Markov chain properties is that
the current state estimation is dependent on the previous state.

3

the map. The latter is considered to be a modern approach for tackling the

SLAM problem [2].

A typical design of a modern SLAM algorithm consists of a front-end and

a back-end (see Figure 1.4). For a visual SLAM algorithm, the front-end

extracts and matches useful features from the images captured by a camera,

computes the relative motion between the camera poses2 and constructs a

graph in which a set of nodes (the camera poses and position of map points3)

and edges (the constraints between the nodes) are contained. Then, the back-

end performs maximum a posteriori (MAP) estimation to optimize the graph.

In the following, we give a brief introduction to the front-end and back-end of

a visual SLAM algorithm, and then compare the state-of-the-art visual SLAM

algorithms.

Visual SLAM front-end

The primary purpose of the front-end is to establish constraints a graph. In

this thesis, we consider two main constraint types, relative motion constraint

and feature matching constraint. Relative motion constraint determines the

relative transformation between two camera poses. On the other hand, feature

matching constraint contains a measurement between a new visual features and

an existing feature, e.g., matching a corner of a table in two images.

We can impose two types of relative motion constraints, namely odometry

and loop constraints. Odometry constraint is a short-term constraint that can

be established by defining pairwise camera transformations while the camera

moves. Loop constraint, on the contrary, is a long-term constraint that defines

the relative transformation between two distant camera poses, which requires

loop closure detection [34]–[36] to determine if the camera revisits a previously

mapped area.

Moreover, matching features can be done directly or indirectly. In a direct

formulation, matching operates directly on the raw pixel level to identify fea-

ture correspondences [37], [38]. Therefore, any arbitrary pixels (e.g., corners

2As a camera is rigidly attached to a robot, recovering the camera poses is equivalent
to recovering the robot poses.

3We review the concept of camera pose and map point in Section 2.3.2.

4

Figure 1.3: A factor graph consisting of three variable vertices and two factor
vertices with edges connecting a variable node to a factor node such that the
variable vertices {X1,X2,X3} and the factor vertices {f1, f2, f3} belong to two
disjoint and independent sets X and F , respectively.

Figure 1.4: Front-end and back-end design in a visual SLAM algorithm.

5

or edges) can be extracted and matched, assuming photometric consistency.

However, the photometric consistency assumption does not always hold in

practice. One way to maximize the photometric consistency is to optimize

the affine brightness transformation across images by shifting and scaling the

pixel intensity globally [13], [38]. On the other hand, an indirect formulation

requires feature extraction, feature description, and matching of feature de-

scriptors [33], [39], [40]. The descriptor matching performance mainly depends

on maximizing descriptor distance between two non-matching features while

minimizing descriptor distance between two matching features. As laptops

and embedded computers are getting more powerful, there are research efforts

proposing the use of hardware acceleration and parallelism for CNN feature

descriptors [41], [42]), which can be expensive to compute. Once the features

are matched, new nodes and edges that define the constraints in the graph can

be formed.

We can use a factor graph to solve the visual SLAM problem [32], which

is a bipartite graph G = (X ,F , E) consisting the variable vertices X , factor

vertices F , and edges E of the graph. Without getting into details of solving

the visual SLAM problem4, suppose the factor graph consists of three SLAM

variables X = {X1,X2,X3}, three factor vertices F = {f1, f2, f3} and six edges

E = {ε11, ε12, ε21, ε23, ε32, ε33}, as illustrated in Figure 1.3. We can perform a

factorization of a function f into a product of sub-functions over the local

variables [43]:

f(X1,X2,X3) = f1(X1,X2)f2(X1,X3)f3(X2,X3), (1.1)

where each sub-function corresponds to a constraint.

Visual SLAM back-end

The purpose of the back-end is to optimize the graph constructed by the

front-end. Optimization of the graph can be formulated as a MAP problem,

which seeks to estimate the variable X that maximizes the posterior p(X|Z)

4More details can be found in Appendix-B

6

according to the Bayes theorem:

X ∗ = argmax
X

p(X|Z) = argmax
X

p(Z|X)p(X), (1.2)

where Z are the measurements defined by the constraints from the front-end.

Assuming that the measurements are independent, we can rewrite Equation 1.2

as:

X ∗ = argmax
X

p(X)
m∏
k=1

p(zk|Xk), (1.3)

where there are m measurements and that the measurement zk only relates to

Xk ⊆ X . Further assuming that the measurement noise is Gaussian (a zero-

mean noise εk with information matrix5 Qk). The measurement likelihood and

the prior becomes:

p(zk|Xk) ∝ exp(−1

2
‖h(Xk)− zk‖2Qk

) (1.4)

and

p(X) ∝ exp(−1

2
‖h(X0)− z0‖2Q), (1.5)

respectively. h(·) is a function that is known as the measurement model,

‖e‖2Qk
is a shorthand for eTQke, and z0 and Q0 are the prior measurement

and information matrix.

Since maximizing the posterior is equivalent to minimizing the negative

log-likelihood, we can re-write Equation 1.3 in an explicit form:

X ∗ = argmin
X

− log
(
p(X)

m∏
k=1

p(zk|Xk)
)

= argmin
X

− log
m∏
k=0

p(zk|Xk)

= argmin
X

m∑
k=0

‖h(Xk)− zk‖2Qk
.

(1.6)

Therefore, minimizing the negative log-likelihood becomes a least-squares prob-

lem, which can be solved iteratively via Gauss-Newton or Levenberg-Marquardt

methods. To deal with outliers in the measurements, we may substitute the

squared Mahalanobis norm with a more robust norm (Huber or Tukey) [44].

5Information matrix is the inverse of the covariance matrix.

7

Table 1.1: A comparison between modern visual SLAM algorithms in chrono-
logical order.

Direct/indirect Sparse/dense Loop closure detection Open-source
PTAM [48] Indirect Sparse � �

DTAM [49] Direct Dense � �

LSD-SLAM [37] Direct Semi-dense � �

SVO [50], [51] Semi-direct Sparse � �

DSO [38] Direct Sparse � �

LDSO [52] Direct Sparse � �

VITAMIN-E [53] Direct Dense � �

OpenVSLAM [54] Indirect Sparse � �1

UcoSLAM [55] Indirect Sparse � �

DSM [56] Direct Sparse � �

ORB-SLAM [33], [57], [58] Indirect Sparse � �
1Archived; no official support for future releases.

More details on the visual SLAM graph optimization can be found in Appendix

B.

State-of-the-art visual SLAM algorithms

Table 1.1 compares the state-of-the-art modern visual SLAM algorithms. In

general, there is no one dominant solution for solving all SLAM problems [45];

rather, the SLAM performance strongly depends on the scene characteristics

and camera types. For example, direct methods can use all the pixels in the

images, but are prone to fail under the rolling shutter effect, illumination

changes, large interframe distance, etc. [38]. On the other hand, indirect

methods tend to fail in texture-poor scenes in which limited feature descriptors

can be calculated and matched [45]. To further improve SLAM performance,

loop closure detection [34]–[36] is performed in the front-end to determine if

the most recent image is similar to one of the previously captured images, and

an additional loop constraint is created upon detection. Failing to detect a

loop might result in the “infinite corridor” problem, as the tracked camera

motion could drift over time (see Figure 1.5). Note that certain literature

uses loop closure as a differentiator to highlight the difference between visual

SLAM and visual odometry (VO) [46], where visual SLAM produces a globally

consistent estimation of camera trajectory and map [3], [47]. Instead, we refer

to both visual SLAM and VO as visual SLAM throughout the thesis.

8

Figure 1.5: Illustration of the “infinite corridor” problem where a robot drives
around a rectangular hallway, starting at point A, travelling counterclock-
wise, and ending at point B. Without loop closure (left), the accumulated
drift causes inconsistency between the mapped trajectory and the actual map,
whereas, with loop closure (right), the mapped trajectory is corrected to match
the actual rectangular hallway. Therefore, without loop closure, the robot
perpetually “discovers” new structures in the environment, hence the “infinite
corridor” problem.

1.2.2 Single-image depth prediction

Single-image depth prediction is the task of predicting a depth map from an

image. Without leveraging multiple viewpoints, traditional (shallow) meth-

ods are designed to operate on constrained assumptions, e.g., shape-from-

vanishing-points [59], shape-from-defocus [60], and shape-from-shading [61].

In recent years, single-image depth prediction using deep neural networks has

been an active research topic [62], with the advantages of being able to learn

from training data and good depth prediction accuracy. Specifically, CNNs

have been widely used for solving image-based tasks and have been shown

to predict depth with state-of-the-art accuracy6,7. Though we are well aware

that dense vision transformers [63], a new architecture for solving image-based

tasks, could potentially replace or combine with CNNs for greater learning ca-

pabilities, it can in principle be adapted for use by the methods presented in

this thesis. For now, we will only present a general overview of CNNs and

6http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_

prediction
7https://paperswithcode.com/task/depth-estimation

9

Figure 1.6: A demonstration of 2D convolution operation for generating a
convolved feature. The coloured pixel on top is generated by the weighted
combination of the corresponding image region in the bottom row with the
weights in the convolution kernel. Note that the bias parameter is not included
in this illustration.

types of single-image depth predictions in the following.

Convolutional neural networks (CNNs)

A convolutional neural network mainly consists of convolutional layers to ex-

tract useful visual features in the training process. Each convolutional layer

generates a set of feature maps, and relies on a convolution operation using

a trainable convolution kernel (see Figure 1.6 for a minimal example). After

obtaining the feature maps, we may apply an activation function to obtain the

nonlinearity mapping between the input and output:

Hk = f(Wk ∗X+ b), (1.7)

where Hk is the k-th feature map, Wk the k-th convolution kernel, X the

input map, b the bias, and f(·) the activation function.

Besides convolutional layers, pooling layers have also been used to reduce

the dimension of the feature maps in a CNN, allowing for multi-scale feature

representation and interaction. Figure 1.7 demonstrates two commonly used

pooling layers: max pooling and average pooling.

Effective combinations of convolutional layers, activation functions, pooling

10

Figure 1.7: A demonstration of max pooling (left) and average pooling (right)

layers and fully connected layers8 together with a dataset and proper training

enable a CNN to map an image input to a depth map output [62]. We will

discuss the types of single-image depth prediction using a CNN in the following

sub-section and the training methods in Section 2.4.

Types of single-image depth predictions

There are two types of single-image depth predictions: absolute depth pre-

diction and relative depth prediction. In absolute depth prediction, a CNN

is trained to predict the metric depth maps from single images [6], [64]–[66].

Because of the CNN prediction range, the CNN training is commonly limited

to one scene type, e.g., indoor or outdoor9. On the other hand, relative depth

prediction is concerned with estimating the distance of one space point with

respect to the others, i.e., their depth order, rather than the absolute depth.

Training a CNN to predict absolute depth is popularized by the unsuper-

vised (sometimes referred to as self-supervised) learning of depth by mini-

mizing the photometric reconstruction errors of the corresponding left/right

images from the predicted disparity maps, whereby a static stereo camera

setup captures left-right image pairs10 [65], [67]. The technique of reconstruct-

ing the corresponding image is also known as novel view synthesis and has

been applied to reconstruct nearby views in a monocular sequence to train

depth and pose prediction CNN’s end-to-end [68]–[70]. Even with the absence

8As its name suggests, each neuron in the fully connected layer is connected to all
neurons of the previous layer (and we need to flatten the feature maps if the previous layer
is not in the form of a vector.)

9Two commonly used benchmarks are the KITTI Eigen split [16] and NYUv2
dataset [18].

10The relationship between disparity and depth is given by z = f ·b
d , where z is the depth,

f the camera focal length, b the stereo baseline, and d the disparity.

11

of pose prediction CNNs, geometric cues (camera poses and sparse structure)

can be provided externally (e.g., SLAM, depth sensors, IMUs) to synthesize

novel views and provide sparse geometric supervision to train depth predic-

tion CNNs [12], [71], [72]. Since then, remarkable progress has been made to

advance the state-of-the-art, ranging from novel training methods (e.g., semi-

supervised with sparse ground truth [64], [73], 3D consistency, normal/planar

constraint [6], [66], [74], and flow field consistency [75]) to new CNN architec-

tures (e.g., generative adverserial networks [76], 3D packing/unpacking convo-

lutional blocks [77], dense prediction transformers [63] and discretized depth

output bins [78], [79]).

On the other hand, early work on relative depth prediction learns from

ordinal depth annotations (closer/farther relationship between two points),

which contain relatively accurate sparse depth relationships covering a wide

range of scene types (e.g., mixing indoor and outdoor scenes in a combined

training dataset) [80], [81]. The training results demonstrate accurate ordinal

depth prediction quantitatively on different datasets and qualitatively on un-

constrained photos taken from the internet, albeit in the absence of absolute

depth values. To train on more extensive and diverse datasets, Lasinger et al.

propose to train a relative depth prediction CNN, named MiDaS [82], using a

scale- and shift-invariant loss, which handles unknown depth scale and global

shift factors in different datasets. Yin et al. further disentangle the scaling

and translation (surface normals) by combining scale- and shift-invariant loss

with virtual normal loss to predict affine-invariant depth [83]. Furthermore,

due to scale, shift and surface normals disentanglements in the training loss,

CNNs can be trained to predict depth maps on a large variety of scene types

without the metric scale. To differentiate between absolute and relative depth

prediction, we from now on refer to single-image absolute depth prediction as

single-image depth prediction, unless a comparison between the two is taking

place.

12

1.3 Problem Statements

This thesis seeks to investigate the benefits and limitations of using single-

image absolute and relative depth predictions to solve monocular visual SLAM

problems. Formally, this thesis attempts to address three fundamental ques-

tions.

1. How can we improve feature correspondence in sparse visual

SLAM?

Mapping involves the reconstruction of a 3D structure from an image

sequence, a critical step to ensure the continuation of camera tracking

in the subsequent frames. To reconstruct the 3D structure, triangula-

tion is performed by the tracked camera poses and the matched features

between images, also known as the feature correspondences. Therefore,

the mapping problem becomes the problem of identifying accurate fea-

ture correspondences. Feature correspondences can be done through the

matching of feature descriptors (indirect formulation) [33], [39], [40] and

patterned image patches (direct formulation) [37], [38], [50]. In this the-

sis, we opt for the latter for identifying feature correspondences for two

reasons. First, calculating photometric errors between two image patches

is faster than extracting and matching feature descriptors. Second, ad-

ditional depth information can be conveniently incorporated into the

feature matching step; given known camera poses of the images, we can

exploit epipolar geometry by identifying the corresponding feature with

the lowest photometric matching cost along the epipolar line. However,

as the distance between two cameras grows, photometric matching be-

comes an issue as the number of local minima also increases in the feature

correspondence search (see Figure 1.8). With single-image depth predic-

tion, the search range along the epipolar line can be narrowed down,

which helps disambiguate a true feature match from a false match.

2. How can we densify a semi-dense map from visual SLAM?

Dense reconstruction is especially challenging in the texture-poor im-

13

Figure 1.8: A comparison of photometric errors of various stereo baselines.
From top to bottom: A reference feature in a reference frame (the circled red
dot), three consecutive images in a sequence with increasing motion stereo
baselines, and the photometric matching errors at varying depth. The red line
is the re-projected pixel locations along the epipolar line. A small baseline
gives a distinct minimum at around the depth of 15 m, and an increasing
stereo baseline results in an increase in local minima in matching cost.

age regions due to the lack of minima in photometric matching (see

Figure 1.9). Without distinct local minima in photometric matching,

dense reconstruction cannot be performed using conventional triangu-

lation [38], [50]. Nevertheless, traditional dense monocular SLAM al-

gorithms rely on regularization techniques to enable dense map recon-

struction, such as piecewise planar [84], [85], Manhattan assumption [86],

smoothness [49], and plane sweeping [87], [88]. Recently deep learning-

based regularization techniques have been proposed that use depth [15],

[89] or surface normals [9] information estimated by CNNs as a reg-

ularizer to create a dense map. Motivated by the high accuracy of

single-image relative depth prediction across novel domains, we study

the problem of optimizing and densifying a semi-dense structure by ex-

ploiting the local depth gradient consistency from single-image relative

depth prediction, and using the optimized structure to refine the pose

estimation.

3. How can we adapt a depth prediction network online to a novel

14

Figure 1.9: A comparison of photometric errors of various stereo baselines
in textureless image regions. From top to bottom: A reference feature in a
reference frame (the circled red dot), three consecutive images in a sequence
with increasing motion stereo baselines, and the photometric matching errors
at varying depth. The red line is the re-projected pixel locations along the
epipolar line. Compared to matching a textured corner in the nearby images
(see Figure 1.8), a textureless region cannot be localized in the nearby images
using photometric error.

environment in order for us to use it to improve depth predic-

tion and visual SLAM accuracy?

Single-image depth prediction needs to be accurate for it to be used to

improve SLAM performance. However, single-image depth prediction

suffers from the generalization problem, where the depth prediction ac-

curacy cannot be generalized across the pre-trained domain. Figure 1.10

illustrates the generalization problem of single-image absolute depth pre-

diction, where the depth prediction accuracy is not transferrable to a

novel domain (e.g., trained in an indoor environment and used in an

outdoor environment); similarly, Figure 1.11 shows that even single-

image relative depth can be inconsistent in depth prediction accuracy

in the operating environment. Evidently, the accurate depth prediction

assumption does not hold in practical robotics applications. Therefore,

we investigate the problem of visual SLAM with online adaptation by on-

demand fine-tuning of a depth prediction CNN before integrating online

15

nyu

kitti

Figure 1.10: A comparison of the generalizability of two state-of-the-art depth
prediction models by AdaBins [79], nyu and kitti, which have been trained on
the (indoor) NYUv2 [18] and (outdoor) KITTI [16] datasets, respectively. We
test the pre-trained models on two input images (1 and 2), and the predicted
depth maps are shown on the right. Image 2 is taken from the 7 scenes dataset
stairs sequence [90]. Note that the AdaBins kitti model is not able to predict
accurate depth in the upper image region, due to the absence of ground truth
depth in the training, and is typically ignored in the quantitative evaluation.

adapted depth prediction and using it to improve structure and motion

estimation.

1.4 Contributions

In this thesis, we propose novel solutions for improving monocular SLAM

performance using single-image absolute and relative depth predictions. Our

main contributions are as follows.

• In Chapter 3, we use the predicted depth information from single-image

depth prediction to improve the feature matching performance, which,

in turn, improves the mapping and camera tracking accuracies. As-

sume that the camera motion can be recovered reliably. Corresponding

features can be found along their respective epipolar lines. We propose

using single-image depth prediction to improve the feature matching per-

formance by limiting the scope of the epipolar line search for identifying

the corresponding features.

16

Figure 1.11: A comparison of single-image relative depth prediction by Di-
verseDepth [83] (middle) and MiDaS [82] (right).

• In Chapter 4, we use single-image relative depth prediction for densi-

fying and optimizing a semi-dense structure from a monocular SLAM

algorithm, and using the optimized structure to further improve the

camera tracking accuracy. To densify the structure, we propose to ex-

ploit single-image relative depth prediction as a smoothness prior in a

GPU-accelerated energy minimization framework to fill in the texture

poor image regions. To improve the densification accuracy, we also in-

troduce two additional enhancements, an adaptive filter to remove noisy

semi-dense depth pixels and pose-graph refinement, to further improve

densification and camera tracking accuracies.

• In Chapter 5, we propose an online learning framework that consists of

two complementary processes: a SLAM algorithm that is used to gener-

ate keyframes to fine-tune the depth prediction and another algorithm

that uses the online adapted depth to improve map quality. Once the

potential noisy map points are removed, we perform global photometric

bundle adjustment (BA) [91] to improve the overall SLAM performance.

To improve the fine-tuning accuracy, we introduce regularization to miti-

gate catastrophic forgetting [92] in the online learning of sequential data.

1.5 Thesis Outline

The thesis is organized as follows. Chapter 2 presents the fundamentals of

visual SLAM in robotics, computer vision and deep neural network training

17

necessary for solving the problems in the subsequent chapters. Chapter 3

studies the problem of improving the mapping performance in visual SLAM.

Chapter 4 investigates the problem of densifying and optimizing of a semi-

dense structure from visual SLAM and then using the optimized structure

to improve motion estimation. Chapter 5 looks into the problem of online

adaptation to improve SLAM on the fly through the fine-tuning of single-

image depth prediction. Chapter 6 concludes the thesis contributions and

provides some potential future directions.

18

Chapter 2

Preliminaries

This chapter is divided into four parts. In Section 2.1, we define the math-

ematical notation used in this thesis. Then, the next three sections address

the primals of visual SLAM in robotics (Section 2.2), computer vision (Sec-

tion 2.3) and learning of single-image depth prediction (Section 2.4). The goal

is to provide a background knowledge required for the rest of the chapters.

2.1 Mathematical notation

We use upper case letters (e.g., X and M) to denote sets. In addition, we

use bold upper case letters (e.g,, T and R) and lower case letters (e.g., a and

u) for representing matrices and vectors, respectively. Lastly, we use function

notations to express the access of image I, depth map D and variance map V

values:

I : Ω → R
+ (2.1)

D : Ω → R
+ (2.2)

V : Ω → R
+, (2.3)

where Ω ⊂ R
2 is a set of valid pixel coordinates.

2.2 Visual SLAM in robotics

What is the visual SLAM problem? To illustrate the problem, suppose a mo-

bile robot (e.g., wheeled, legged and flying robots) is moving around in an un-

19

Figure 2.1: The visual SLAM problem. The new camera location is recovered
using the existing 3D points as constraints, while new 3D points are also being
initialized at the location.

known environment and incrementally build a map while determining its loca-

tion. Formally, given an image stream captured by a camera attached to a mo-

bile robot, the structure of the problem can be defined as the recovery of a set

of camera locations T = {T1,T2 . . . ,Tk}, local maps M = {M1,M2, . . . ,Mk},
and constraints C = {C1, C2, . . . , Ck} at successive discrete time steps. Then,

we can solve for the optimal locations of the 3D points and cameras using

least-squares.

However, considerable effort is required to solve the visual SLAM problem.

For instance, having too many constraints can be computationally prohibitive

in the back-end least-squares optimization. Conversely, having too little con-

straints may result in poor estimation of the 3D points and camera locations.

Therefore, a visual SLAM algorithm will need to formulate an adequate set

of constraints by sampling a subset of images from the image stream, known

as the keyframes, and extracting high quality features in the keyframes for

creating 3D points.

20

2.3 Projective geometry and 3D transforma-

tions

This section provides the fundamentals of computer vision and mathematical

concepts used in this thesis. First, we describe the relationship between a 3D

point and a 2D image pixel coordinates in Section 2.3.1. Then, we discuss the

transformation of 3D points in Section 2.3.2.

2.3.1 Camera projection

An image is a projection of the 3D world to a 2D plane (see also Figure 1.1). To

perform the projection, we use the pinhole camera model1, which describes the

relationship between the 3D points (also known as map points in the SLAM

context) and the 2D image coordinates (see Figure 2.2). Using projection of

the 3D point p =
[
x y z

]T
to the 2D image coordinates a =

[
u v

]T
as an

example, the projection can be expressed as:

a =

[
u
v

]
=

[fx·x
z

+ cx
fy ·y
z

+ cy

]
, (2.4)

where fx, fy, cx and cy are the focal lengths and principal point of the camera,

collectively known as the camera intrinsics (K), obtained through camera cal-

ibration [95]. A more general expression can be expressed using a projection

function π : R3 → R
2:

a = π(p), (2.5)

where

â =

⎡
⎣uv
1

⎤
⎦ = λKp (2.6)

= λ

⎡
⎣fx 0 cx
0 fy cy
0 0 1

⎤
⎦
⎡
⎣xy
z

⎤
⎦ (2.7)

= λ

⎡
⎣fx · x+ cx · z
fy · y + cy · z

z

⎤
⎦ (2.8)

1Omnidirectional camera models (e.g., fisheye and catadioptric) [93] have also been
studied in solving the visual SLAM problem [54], [94].

21

Figure 2.2: Left: Projection of a 3D object to the 2D image plane. Right:
Projection of point p to the image plane, omitting the X-axis. See text for
explanation of notation.

·̂ represents the homogeneous coordinates and λ is a normalization factor. By

setting λ = 1
z
and then removing the third row of the vectors in Equation 2.8,

we arrive at the Equation 2.4. Similarly, the projection function can be in-

versed (i.e., π−1 : R2 → R
3) to obtain a 3D point from a 2D image coordinates,

given that the depth d is known:

p = dπ−1(a), (2.9)

where

π−1(a) = K−1â. (2.10)

Note that the images may be distorted and have to be undistorted before

the pinhole model can be used (see Figure 2.3). For the experiments in the

subsequent chapters, we assume that the images have been undistorted for the

3D-2D (π) and 2D-3D (π−1) camera projections.

2.3.2 3D transformation

A map point may be observed in two or more images (or frames in the SLAM

context). Therefore, we express the camera poses (i.e., the rotation R and

translation t of the cameras with respect to a world frame) of the frames using

rigid body transformation2 to allow for the re-projection of a map point to

2Rigid body transformations preserve the angle and distance of the map points

22

Figure 2.3: Examples of distorted images. From left to right: image with no
distortion, image with barrel distortion and image with pincushion distortion.
Image taken from the ICL-NUIM dataset [5].

different frames. Moreover, through the re-projection of map points in mul-

tiple viewpoints, we can optimize the structure and camera motion. In the

following, we introduce three essential concepts for solving the visual SLAM

problem. First, we discuss the epipolar geometry, a constraint used for iden-

tifying feature correspondence between two images. Second, we introduce the

definition of Lie groups and Lie algebras for transformation matrices. Third,

we present the linearization (also known as the Jacobians) on the Lie group

manifolds for structure and motion optimization.

Epipolar geometry

To map the scene captured by a camera, we need to triangulate 3D points

from 2D image point correspondences between two images. To this end, let us

consider two-view epipolar geometry shown in Figure 2.4. Assuming known

relative rotation and translation between Il and Ir, we can form an epipolar

plane using the stereo baseline (the dashed line connecting Il and Ir) and the

vector defined by a. With the epipolar plane, the corresponding point of a

is restricted along the epipolar line (the blue line connecting the epipole er

and a′ in Ir). This is due to the depth ambiguity as image point a can be the

projection of a 3D point along the ray defined by a (e.g., p, p1 or p2). Once

we get a match (a ↔ a′), a map point (p) can be triangulated.

Lie groups and Lie algebras

Transformation matrices of the camera poses are 4 × 4 square matrices that

belong to the Lie groups (denoted T and S in Table 2.1). The Lie groups used

23

Figure 2.4: Given two images Il and Ir and their relative rotation and trans-
lation, epipolar geometry dictates that the corresponding point of a lies along
the epipolar line and that the epipolar plane contains the 3D point p and the
re-projected image points a and a′. The epipolar plane is determined by the
vector defined by a and the stereo baseline.

in this thesis for solving the visual SLAM problem are the special orthogonal

group SO(3), special Euclidean group SE(3) and 3D similarity transformations

group Sim(3). A Lie group G is a differentiable manifold in which the group

product (· : G → G) and inverse (−1 : G → G) operations are smooth [96].

Note that Lie groups are not closed under the addition operation (i.e., adding

two transformation matrices does not result in a transformation matrix), and

therefore products of transformation matrices are used for concatenating cam-

era poses; the inverse of a camera pose is simply the inverse of the transforma-

tion matrix. For example, given two camera poses with respect to the world

frame, T1→w and T2→w, a relative transformation can be obtained as follows:

T1→2 = T1→wT
−1
2→w, (2.11)

where T−1
2→w is equivalent to Tw→2.

A minimal representation of the Lie groups is defined by their correspond-

ing Lie algebras shown in Table 2.2. The Lie algebras are the tangent spaces of

their respective Lie groups at the identity, and that the mapping of elements

24

Table 2.1: Lie groups and their attributes.

Group No. dimensions Definition

SO(3) 3 SO(3) =

{
R ∈ R

3×3|RRT = I, det(R) = 1

}
SE(3) 6 SE(3) =

{
T =

[
R t

01×3 1

]
∈ R

4×4|R ∈ SO(3), t ∈ R
3

}
Sim(3) 7 Sim(3) =

{
S =

[
sR t
01×3 1

]
∈ R

4×4|R ∈ SO(3), t ∈ R
3, s ∈ R

+

}

Table 2.2: Lie groups and their corresponding Lie algebras.
Lie group Lie algebra Definition

SO(3) so(3) so(3) =

{
φ ∈ R

3|φ∧ = Φ =

⎡
⎣ 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⎤
⎦ ∈ R

3×3

}

SE(3) se(3) se(3) =

{
ξ =

[
ρ
φ

]
∈ R

6|ξ∧ =

[
φ∧ ρ
01×3 0

]
∈ R

4×4|ρ ∈ R
3,φ ∈ so(3)

}

Sim(3) sim(3) sim(3) =

{
ζ =

⎡
⎣ρφ
σ

⎤
⎦ ∈ R

7|ζ∧ =

[
ρI+ φ∧ ρ
01×3 0

]
|ρ ∈ R

3,φ ∈ so(3), σ ∈ R
+

}
Note: (.)∧ is the hat operator, not to be confused with the homogeneous coordinates representation (̂.).

from a Lie group G to the corresponding Lie algebra g is called the logarithm

map (log : G → g) and the reversed mapping is called the exponential map

(exp : g → G). For a more in-depth treatment on the topic of Lie groups and

Lie algebras, we refer to references [96]–[98].

Jacobians

Now that we have the minimal representation of a transformation matrix (the

Lie algebras), we can perform the derivatives of the camera projection function

with respect to the 6 degrees of freedom (DOF) of the camera pose. For the

camera projection, we define a series of mappings from a world map point to

a re-projected pixel in a local frame. Let pw be a map point in the world

coordinate frame, T1→w be the transformation matrix from frame 1 to the

world coordinate frame, and a1 be the projected image coordinates in frame

1. First, we transform pw to frame 1:

p′
1 = (T1→wp̂w)1:3︸ ︷︷ ︸

drop last row

(2.12)

25

Second, we project the local map point a′
1 to the image coordinates:

a1 = π(p′
1). (2.13)

Lastly, we can obtain the image intensity at the projected (sub)pixel image

coordinates I1(a1). Once the camera projection is defined, we can calculate

the Jacobians of the projection function with respect to the 6 DOF Lie algebra

elements ξ using chain rule:

Jproj = JIJπJp′ , (2.14)

where

JI =
[
∂I
∂u

∂I
∂v

]
, (2.15)

Jπ =

[∂u
∂x′

∂u
∂y′

∂u
∂z′

∂v
∂x′

∂v
∂y′

∂v
∂z′

]

=

[
fx
z′ 0 −fxx′

z′2

0 fy
z′ −fyy′

z′2 ,

] (2.16)

and

Jp′ =
∂p′

∂ξ

∣∣∣∣
ξ=0

= [Gtxp̂
′|Gtyp̂

′|Gtzp̂
′|Grxp̂

′|Gryp̂
′|Grzp̂

′]

=

⎡
⎣1 0 0 0 z′ −y′

0 1 0 −z′ 0 x′

0 0 1 y′ −x′ 0

⎤
⎦ .

︸ ︷︷ ︸
dropped last row

(2.17)

For brevity, we omit the numbering subscripts. The generator matrices Gtx,

Gty, Gtz, Grx, Gry, Grz and Gs evaluates the derivatives of the Lie algebra

26

elements around the identity:

Gtx =

⎡
⎢⎢⎣
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ Gty =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ Gtz =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

Grx =

⎡
⎢⎢⎣
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦ Gry =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎤
⎥⎥⎦ Grz =

⎡
⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Gs =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Above is the illustration of Jacobians on the SE(3) manifold, and the

derivations can be generalized to SO(3) and Sim(3). In the context of SLAM,

calculating the Jacobians of camera projection function has been used in struc-

ture and motion [99], [100] as well as propagation of errors (or uncertainty) [37],

[101].

2.4 Learning to predict depth from images

This section details the relevant methods for learning single-image depth es-

timation in this thesis. The methods pertinent to solving our problems are

unsupervised (Section 2.4.1) and semi-supervised learning (Section 2.4.2) used

for training a CNN.

2.4.1 Unsupervised learning

Unsupervised learning (sometimes also referred to as self-supervised learning)

is a method that does not require ground truth depth in training. Rather,

unsupervised learning of depth uses novel view synthesis to optimize the pre-

dicted depth maps [68]–[70]. The key idea is that, with the predicted depth

map and known camera transformation between two views, the pixels can be

densely projected from one view to another, and the predicted depth dictates

the accuracy of the projection to synthesize the novel view.

27

Unsupervised learning can be performed by minimizing the difference be-

tween the target image and its synthesized target images from a set of source

images (that are close to the target image). To synthesize a novel view, we

reconstruct the target image Ij→i using a source image Ij, the relative trans-

formation Tj→i and the predicted depth Di,CNN:

Ij→i(a) = Ij(a
′) ∀a ∈ Ωj,

a′ = π
(
Tj→iDi,CNN(a)π

−1(a)
)
,

(2.18)

Ωj the set of pixel locations in Ii with valid re-projections in Ij. Then, the

per-pixel photometric error can be computed as follows:

pe(Ij→i, Ii, a) = ‖Ij→i(a)− Ii(a)‖1 . (2.19)

where pe is the photometric error function. Following [65], the structural sim-

ilarity index (SSIM) [102] can be added to the photometric error for improved

training accuracy:

pe(Ij→i, Ii, a) =
α

2
(1− SSIM(Ij→i, Ii)(a) + (1− α) ‖Ij→i(a)− Ii(a)‖1 , (2.20)

where α controls the relative contribution between the SSIM and absolute

intensity difference. Instead of aggregating the photometric errors, Godard et

al. [103] propose the use of per-pixel minimum photometric error across the

reconstructed target images to minimize the occlusion artefacts around the

foreground borders:

Lphoto =
1

|Ω|
∑
a∈Ω

min
j

pe(Ii, Ij→i, a), (2.21)

where j ∈ {i − 1, i + 1} is the image index of the source images, Ω the set of

pixel locations in Ii, |Ω| the total number of pixels and Lphoto the photometric

loss term in the training loss. To further improve the training, a smoothness

loss term Lsmooth is also included in the training loss, which penalizes depth

discontinuities in the texture-poor image regions:

Lsmooth =
∑
a∈Ωi

(
|∂xDi,CNN(a)|e−|∂xIi(a)| + |∂yDi,CNN(a)|e−|∂yIi(a)|

)
, (2.22)

28

Figure 2.5: Generalized Charbonnier function with different parameter set-
tings.

where ∂ is the gradient operator. Therefore, by combining the photometric

loss with the smoothness loss, the unsupervised loss function is given by

Lunsupervised = Lphoto + λLsmooth, (2.23)

where λ is a weighting parameter.

2.4.2 Semi-supervised learning

Semi-supervised learning extends the unsupervised learning with ground truth

sparse/dense depth supervision. To this end, we can introduce an additional

supervised depth loss term Ldepth that incorporates the depth errors between

the predicted depth and the ground truth depth [64], [73]:

Ldepth =
∑
a∈Ωgt

∥∥∥D−1
gt (a)−D−1

i,CNN(a)
∥∥∥
1
, (2.24)

where Ωgt is a set pixels with valid ground truth depth. Combining the super-

vised depth loss term Ldepth with the unsupervised loss function (Eq. 2.23),

the semi-supervised loss function is given by

Lsemi supervised = Lphoto + λ1Lsmooth + λ2Ldepth, (2.25)

where λ1 and λ2 are the weighting parameters.

29

For less reliable ground truth depth (e.g., sparse depth generated by SLAM),

we may add a generalized Charbonnier function3 [104] to alleviate the influence

of outliers, which is given by

ρ(x) = (x2 + ε2)α, (2.26)

where ε is a small constant. Setting α = 0.5 results in the Charbonner function

(a differentiable L1 norm) and that reducing α below 0.5 increases the non-

convexity of the function (see Figure 2.5). Therefore, we can rewrite Eq. 2.24 to

use the generalized Charbonnier function for better robustness against outliers:

Ldepth =
∑
a∈Ωgt

∥∥∥D−1
gt (a)−D−1

i,CNN(a)
∥∥∥
ρ
. (2.27)

3This is similar to M-estimators (e.g., Huber norm and Tukey norm) used for solving a
system of linear equations.

30

Chapter 3

CNN-SVO: Improving the
Mapping in Semi-Direct Visual
Odometry Using Single-Image
Depth Prediction

3.1 Overview

Reliable feature correspondence between frames is critical in visual SLAM al-

gorithms. In comparison with existing visual SLAM algorithms, semi-direct

visual odometry (SVO) adopts direct feature correspondence and efficient im-

plementation of probabilistic mapping method, which lead to state-of-the-art

frame rate camera motion estimation. However, one main limitation in SVO

is the large depth uncertainty when initializing new map points, resulting in

increased likelihood of erroneous feature matching (see Figure 3.1) and slow

convergence in estimating new map points. This chapter presents a method

that improves the SVO mapping by initializing the mean and variance of the

depth at a feature location according to the predicted depth from a single-

image depth prediction CNN.

The key contribution of this study is to analyze the effectiveness of using

single-depth prediction as prior knowledge to improve mapping performance.

Formally, given Ii as the current keyframe, Ij as a nearby frame and F as the

features initialized in Ii, the goal is to find the correspondences of the features

F between Ii and Ij. For each feature location fm ∈ F in Ii, the corresponding

31

feature f ′m can be identified along the epipolar line Lm in Ij, which can be

defined as follow:

Lm := {pmin + α

(
lm,x

lm,y

)
| α ∈ Sm}, (3.1)

where pmin is the image coordinates in Ij that correspond to the minimum

depth of the search range,
(
li,x li,ys

)T
the normalized direction of the epipolar

line, and Sm the search interval of fm. By constraining the correspondence

search along Lm, a correspondence is considered found with the lowest zero-

mean sum of squared difference zmssd between fm and f ′m calculated by

f ′∗m = min
f ′m

zmssd(Ii(fm), Ij(f
′
m)), (3.2)

where f ′∗m is the image coordinates of the corresponding feature, which is used

to triangulate a new depth measurement. Thus, the accuracy of the correspon-

dences is strongly dependant on the depth range Sm being used in the epipolar

line search, as more extensive search range may introduce the number of false

matches (see Figure 1.8). In Section 3.2, we introduce our proposed solution

to improve the correspondence search accuracy.

3.2 Method

For a complete understanding of how the depth range affects the overall accu-

racy of SVO mapping, we cover the fundamental of SVO mapping algorithm

in Section 3.2.1. Next, we detail our improved initialization of the map points

in Section 3.2.2.

3.2.1 Review of the SVO mapping algorithm

As shown in Figure 3.2, SVO [50] contains two threads running in parallel:

tracking thread and mapping thread. In the tracking thread, the camera pose

of a new frame is obtained by minimizing the photometric residuals between

the reference image patches (from which the map points are back-projected)

and the image patches that are centred at the reprojected locations in the new

frame. Concurrently, the mapping thread creates new map points using two

32

processes: initialization of new map points with large depth uncertainty and

update of depth uncertainty of the map points with depth-filters [50], [105];

consequently, a new map point is inserted in the map if the depth uncertainty

of the map point is small.

Given the camera poses of two frames, one of which is a keyframe, the

depth of a feature can be obtained using the following two steps: finding

the feature correspondence along the epipolar line in the non-keyframe, and

then recovering the depth via triangulation. Since the occurrence of outlier

matching is inevitable, a depth-filter is run for every new feature, which models

the distribution of two types of measurements: inlier and outlier [50], [105].

The first dimension describes the probability distribution of the depth, and

the second dimension models the outlier measurement. Therefore, given a set

of depth measurements, a depth-filter approximates the mean depth and the

variance of the feature while determining the confidence of the approximation.

The depth uncertainty (i.e., approximated variance) of the feature is updated

when there is a new depth measurement, and the depth-filter is considered to

have converged if the updated depth uncertainty is below a threshold. Then,

the converged depth-filters that contain the true depths are used to create new

map points by back-projecting the points at their feature locations according

to the converged depth.

However, SVO mapping initializes new map points in a reference keyframe

with large uncertainty, and their mean depths are set to the average scene

depth in the reference frame. While such an initialization strategy is reason-

able for the scene with one dominant plane (e.g., the floor plane), the large

depth uncertainty has limited the capability of the mapping to determine the

true depths of the map points for the scene in which the depths of the map

points vary considerably. Mainly, large depth uncertainty introduces two prob-

lems: (1) possible erroneous feature correspondence along the epipolar line in

the nearby frames and (2) a high number of depth measurements required to

converge to the true depth.

Given a set of triangulated depth measurements, the goal of using depth-

filter is to separate the good measurements from the bad measurements; inlier

33

measurements are normally distributed around the true depth, whereas outlier

measurements are uniformly distributed within an interval [ρmin
i , ρmax

i]. Specif-

ically given a set of triangulated inverse depth measurements {ρ1i , ρ2i , . . . , ρNi }
that correspond to the same feature, the measurement ρni is modeled in SVO

using a Gaussian + Uniform mixture model:

p(ρni |ρi, γi) = γiN (ρni |ρi, τ 2i) + (1− γi)U(ρni |ρmin
i , ρmax

i), (3.3)

where ρi is the true inverse depth, τ
2
i the variance of the inverse depth, and γi

the inlier ratio. Assuming the inverse depth measurements are independent,

the approximation of the true inverse depth posterior can be computed incre-

mentally by the product of a Gaussian distribution for the depth and a Beta

distribution for the inlier ratio [50]:

q(ρi, γi|an, bn, μn, σ
2
n) = Beta(γi|an, bn)N (ρi|μn, σ

2
n) (3.4)

where an and bn are the parameters in the Beta distribution, and μn and σ2
n the

mean and variance of the Gaussian depth estimate. The incremental Bayesian

update step for an, bn, μn, and σ2
n is described in detail in [50], [105]. Once

σ2
n is lower than a threshold, the depth-filter has converged to the true depth.

The converged true depth is then used to create a new map point.

3.2.2 Proposed method

To reduce the depth uncertainty, we propose to initialize new depth-filters with

depth prior from a single-image depth prediction CNN [65] (i.e., small variance

centred about the predicted depth), such that the likelihood of identifying the

corresponding features is vastly increased (see Figure 3.1). Combining exist-

ing SLAM algorithms with single-image depth estimation from a CNN has

been proposed to overcome the limitation of depth uncertainty. Notably, such

combinations have been designed to tackle two classes of problems: dense re-

construction [14], [15] and map scale recovery [12], [106]. One advantage of

these combinations is to initialize the depth search within the optimal conver-

gence basin using depth information from a CNN.

34

Figure 3.1: Proposed depth-filter initialization strategy. Each initialized depth-
filter has a mean depth (black dot) and an interval in which the corresponding
feature should lie, as shown by the magenta line. Note that larger depth
uncertainty can allow the erroneous match to happen (as illustrated in (a)
where the depth filter could converge to the “similar feature” rather than
the “corresponding feature”). Our proposed depth-filter initialization method
using depth estimation from a convolutional neural network (CNN) (see (b))
has lower depth uncertainty for identifying the corresponding feature.

35

Figure 3.2: The CNN-SVO pipeline. Our work augments the SVO pipeline
[50] with the CNN depth estimation module (marked in green) to improve the
mapping in SVO.

With single-image depth prediction as prior knowledge of the scene geom-

etry, our CNN-SVO can obtain a better estimate of the mean and a smaller

initial variance of a depth-filter than SVO to allow for the convergence of a

map point to the true depth. Figure 3.2 illustrates the CNN-SVO pipeline, in

which we add the CNN depth estimation module (marked in green) to provide

strong depth priors in the map points initialization process when a keyframe

is selected—the initialization of depth-filters.

Hence, each depth-filter is initialized with the following parameters: the

mean of the inverse depth μn and the variance of the inverse depth σ2
n. Ta-

ble 3.1 compares the initialization of the parameters between SVO and CNN-

SVO. The key difference is that CNN-SVO initializes the feature’s mean and

variance using learned scene depth instead of using the average and minimum

scene depths in the reference keyframe. Setting the proper variance is again

a crucial design step in the experiment, as a small variance provides adequate

room for noisy depth prediction to converge. We empirically found that setting

the depth variance to 1
(6dCNN)2

provides adequate room for noisy depth predic-

36

Table 3.1: A comparison between SVO and CNN-SVO in the initialization
of parameters. The parameters are defined by prior knowledge of the scene,
where davg is the average scene depth in the reference keyframe, dCNN the depth
prediction from the single-image depth prediction CNN, dmin the minimum
scene depth in the reference keyframe, μn the mean of the feature’s inverse
depth, and σ2

n the variance of the feature’s inverse depth.

SVO CNN-SVO

μn
1

davg
1

dCNN

σ2
n

1
(6dmin)2

1
(6dCNN)2

tion to converge; we will be losing the absolute scale if the depth variance is

large (e.g., replacing 6 with a higher number) by allowing more uncertainty

in the measurement. Based on the initialized μn and σ2
n, a depth interval

[ρmin
i , ρmax

i] can be defined by

ρmin
i = μn +

√
σ2
n, (3.5)

ρmax
i =

{
0.00000001, if μn −

√
σ2
n < 0 (3.6a)

μn −
√
σ2
n, otherwise. (3.6b)

so that the corresponding feature can be found in the limited search range

along the epipolar line in the nearby views (see Figure 3.1). By obtaining

strong depth prior from the single-image depth prediction CNN, the benefits

are twofold: smaller uncertainty in identifying feature correspondence and

faster map point convergence, as illustrated in Figure 3.3.

3.3 Implementation

To provide depth prediction in the initialization of map points in CNN-SVO,

we adopt the Resnet50 variant of the encoder-decoder architecture from [65]

that has already been trained on Cityscape dataset. Next, we fine-tune the

network on stereo images in KITTI raw data excluding KITTI Odometry Se-

quence 00-10 using original settings in [65] for 50 epochs. To produce consis-

tent structural information, even on overexposed or underexposed images, the

brightness of the images has been randomly adjusted throughout the training,

37

Figure 3.3: Preliminary results of the depth-filters from images with ground
truth camera poses obtained from KITTI dataset [16]. The length of the
magenta line represents the depth uncertainty and the triangle at the bottom
is the centre of projection. (a) initialization of the depth-filters where SVO
uses a large interval to model the uncertainty of each initial map point whereas
CNN-SVO uses a short interval; (b) depth estimates of the map points by the
depth-filters after three updates; (c) depth estimates of the map points by the
depth-filters after five updates.

creating the effect of illumination variation. This consideration is helpful for

the CNN to handle high dynamic range (HDR) environments (see Fig. 3.4).

To design the system with real-time capability, we resize the images to

512 × 256 for depth map inference and back to the original shape for SLAM

processing. While two separate threads have been designed to handle mapping

and tracking, GPU is used to provide the depth maps for the keyframes. The

hardware is an Intel i7 processor1 with an NVidia GeForce GTX Titan X

graphics card.

To scale the depth prediction for other datasets, the scaled depth dcurrent

can be obtained by the inferred depth dtrained multiplied by the ratio of current

focal length fcurrent to trained focal length ftrained, i.e.,

dcurrent =
fcurrent
ftrained

dtrained. (3.7)

We set the maximum and the minimum number of tracked features in a

1Intel i7-4790K, 4 cores, 4.0GHz, 32GB RAM

38

frame to 200 and 100, respectively. Regarding the depth-filter, we modify SVO

to use five previous keyframes to increase the number of measurements in the

depth-filters. We also enable bundle adjustment during the evaluation process.

3.4 Results

For the evaluation, we calculate the absolute trajectory RMSEs2 (ATEs) on

the KITTI [16] and Oxford Robotcar [17] datasets. The ATEs of KITTI and

Oxford Robotcar datasets are collected with a median of five runs to account

for the non-deterministic factors of running the visual SLAM algorithms.

We use eleven KITTI Odometry sequences and nine Oxford Robotcar se-

quences for performance benchmarking. As for the images, we use the left

camera from KITTI binocular stereo setup and the centre camera of the Bum-

blebee XB3 trinocular stereo setup from Oxford Robotcar. Both of the image

streams are captured using global shutter cameras. Note that the ground

truth poses from Oxford Robotcar dataset are not reliable for evaluation [17],

because of the poor and inconsistent GPS signals; we still use the ground

truth for both quantitative and qualitative evaluation purposes. The frame

rates are 10 frames per second (FPS) and 16 FPS for KITTI and Oxford

Robotcar, respectively. To maintain the same aspect ratio that is used by the

network input, the images in the Oxford Robotcar dataset have been cropped

to 1248x376 throughout the evaluation process. We skip the first 200 frames

for all the Oxford Robotcar sequences because of the extremely overexposed

images at the beginning of the sequences.

We compare our proposed method against the state-of-the-art SLAM algo-

rithms, namely SVO [50], DSO [38] and ORB-SLAM without loop closure [33].

In addition, we indicate with ‘X’ for methods that are unable to complete the

sequence due to lost tracking in the middle of the sequence. In Section 3.4.1,

we compare the camera tracking accuracy between CNN-SVO and the state-

of-the-art visual SLAM algorithms. In Section 3.4.2. we evaluate the runtime

performance of CNN-SVO. In Section 3.4.3, we evaluate the scale factors of

2root mean square error

39

the evaluated trajectories against the ground truth trajectories.

3.4.1 Accuracy evaluation

Table 3.2 show that CNN-SVO outperforms the state-of-the-art SLAM algo-

rithms on the KITTI dataset. Overall, our system can track all the sequences

except for KITTI Sequence 01 because of failure to match features accurately

in the scene with repetitive structure. On the other hand, SVO is designed

to perform well in a planar scene; therefore, it fails to identify corresponding

features effectively in the outdoor scene, where the depths of the features can

vary considerably. Note that the large ATEs by DSO and ORB-SLAM are

due to scale drift (see Figure 3.5 (a) for a qualitative comparison).

Table 3.3 compares the ATEs on the Oxford Robotcar dataset. We demon-

strate that our competitors fail to track most of the Oxford Robotcar sequences

containing severely underexposed and overexposed images. Notably, ORB-

SLAM failed to match features when the textural information in the images

vanishes; the tracking failure in DSO may be due to the inability of affine

brightness modelling to handle severe brightness change in the sequences, a

problem that has also been reported in stereo DSO [107]. We attribute the

robust tracking of CNN-SVO to its ability to match features in consecutive

frames with additional depth information, even when the images are over-

exposed or underexposed (see Figure 3.4). The experimental results suggest

generalizability to a structurally similar scene since the CNN has not been

trained on Oxford Robotcar sequences.

The qualitative comparison of the camera trajectories can be found in

Figure 3.5 for KITTI dataset and Robotcar dataset, respectively. In Figure 3.5

(b), an S-like curve is produced by CNN-SVO near the end of trajectory in

Sequence 2014-05-06-12-54-54, which is caused by a moving car in front of the

camera.

3.4.2 Runtime evaluation

Local BA (about 29 ms) and single-image depth prediction (about 37 ms)

have been the most demanding processes in the pipeline, but both processes

40

Table 3.2: Absolute keyframe trajectory error (in metre) on the KITTI
dataset [16].

Sequence SVO CNN-SVO DSO
ORB-SLAM

(w/o loop closure)
00 X 17.5269 113.1838 77.9502
01 X X X X
02 X 50.5119 116.8108 41.0064
03 X 3.4588 1.3943 1.0182
04 58.3970 2.4414 0.422 0.9302
05 X 8.1513 47.4605 40.3542
06 X 11.5091 55.6173 52.2282
07 X 6.5141 16.7192 16.546
08 X 10.9755 111.0832 51.6215
09 X 10.6873 52.2251 58.1742
10 X 4.8354 11.090 18.4765

Table 3.3: Absolute keyframe trajectory error (in metre) on the Oxford Robot-
car dataset [17].

Sequence SVO CNN-SVO DSO
ORB-SLAM

(w/o loop closure)
2014-05-06-12-54-54 X 8.657 4.708 10.6596
2014-05-06-13-09-52 X 9.1947 X X
2014-05-06-13-14-58 X 10.1865 X X
2014-05-06-13-17-51 X 8.26 X X
2014-05-14-13-46-12 X 13.7513 X X
2014-05-14-13-50-20 X 32.4199 X X
2014-05-14-13-53-47 X 6.3017 X X
2014-05-14-13-59-05 X 6.1515 2.4532 X
2014-06-25-16-22-15 X 3.703 X 6.558

41

Figure 3.4: CNN-SVO: Camera motion estimation in the high dynamic range
(HDR) environment. Left: The single-image depth prediction CNN demon-
strates the illumination invariance property in estimating depth maps, and
the colour-coded reprojected map points on the five consecutive frames show
the reprojected map points onto those frames (best viewed in colour). Right:
Camera trajectory and map points in magenta generated by CNN-SVO.

Figure 3.5: Qualitative comparison of camera trajectories produced by ORB-
SLAM (without loop closure), DSO, and CNN-SVO. SVO is not included in
this figure because it is not able to complete the trajectory due to tracking
and mapping failures. (a) KITTI odometry sequence 00 and 08; (b) Oxford
Robotcar Sequence 2014-05-06-12-54-54.

42

are only required when new keyframes are created. Despite the computational

demand, we experimentally found that CNN-SVO runs faster at 16 FPS with

Oxford Robotcar dataset than 10 FPS with the KITTI dataset due to the

close distance between frames in high frame rate; hence lesser keyframes are

selected relative to the total number of frames from the sequence. For this

reason, the real-time computation can be achieved.

3.4.3 Scale evaluation

Since the network is trained on rectified stereo images with a known static

stereo baseline, we examine the scale of the odometry based on predicted

depth from the network. From Table 3.4, the average recovered scale is 1.0183

and 0.9313 with a standard deviation of 0.0793 and 0.0231, for the KITTI and

Oxford Robotcar datasets, respectively. As expected, CNN-SVO is able to

achieve close to metric scale in the evaluated sequences, as the training data is

based on the scene on the KITTI dataset. As for the Oxford Robotcar dataset,

we offer two possible explanations for the inconsistent odometry scale. First,

as mentioned in the Oxford Robotcar dataset documentation, the provided

ground truth poses are not accurate because of the inconsistent GPS signals

and scale drift in the large-scale map (see Section III in [17]). Second, the

single-image depth prediction network has not been trained on the Oxford

Robotcar dataset images, so the absolute scale recovery cannot be guaranteed.

3.5 Summary

The key takeaways of this chapter are as follows.

• We propose a method that improves the mapping performance of the

state-of-the-art semi-direct visual odometry, which we refer to as CNN-

SVO.

• Using single-image depth prediction as a prior, features can be matched

effectively by limiting the search range along the epipolar line in nearby

views, assuming the camera poses are known.

43

Table 3.4: Scale factor of the evaluated trajectories on the (left) KITTI
dataset [16] and (right) Oxford Robotcar Dataset [17].

Sequence Scale
Sequence 00 0.9296
Sequence 01 X
Sequence 02 0.921
Sequence 03 1.0811
Sequence 04 1.1876
Sequence 05 0.9837
Sequence 06 0.9602
Sequence 07 1.0246
Sequence 08 1.0014
Sequence 09 1.043
Sequence 10 1.0512

Sequence Scale
2014-05-06-12-54-54 0.8953
2014-05-06-13-09-52 0.9321
2014-05-06-13-14-58 0.9172
2014-05-06-13-17-51 0.9399
2014-05-14-13-46-12 0.9103
2014-05-14-13-50-20 0.9737
2014-05-14-13-53-47 0.9427
2014-05-14-13-59-05 0.9473
2014-06-25-16-22-15 0.9236

• Also, depth-filters are initialized with low depth uncertainty, and there-

fore they can converge to their true depth values more effectively than

the original SVO formulation in order to create new map points.

• With the improved mapping performance, experimental results indicate

that CNN-SVO has better camera tracking accuracy than the state-of-

the-art monocular SLAM algorithms.

44

Chapter 4

DeepRelativeFusion: Dense
Monocular SLAM using
Single-Image Relative Depth
Prediction

4.1 Overview

In Chapter 3, we describe the idea of using single-image depth prediction as a

strong prior in identifying feature correspondences. Despite improved feature

matching, the reconstructed map in CNN-SVO is sparse. Similar to the other

state-of-the-art SLAM algorithms reviewed in Chapter 1, they all produce a

sparse or semi-dense map. This chapter extends the state-of-the-art direct

SLAM algorithm by densifying the semi-dense map to generate a dense map.

4.2 Related work

Traditional monocular SLAM algorithms are capable of producing sparse,

semi-dense, and dense structures. Conceptually, sparse refers to the spar-

sity of the structure as well as the independence of each space point from one

another during the structure and motion optimization. During the optimiza-

tion, each image point (usually a corner) is being matched across frames and

mapped, and collectively, the whole structure and camera motion are being

optimized through photometric [38] or geometric [33], [50] re-projection error

minimization. On the other hand, instead of processing the sparse points inde-

45

pendently, semi-dense and dense methods employ the notion of the neighbour-

hood connectedness of the points. Dense methods regularize the neighbouring

depth pixels using image gradient [49], [108], [109], typically formulated as

a smoothness term in an energy minimization framework; whereas the semi-

dense method, LSD-SLAM [37], estimates the depth values of the high gradient

image regions, thus semi-dense, and regularizes the semi-dense depth map by

computing a weighted average of in the neighbouring depth values with the

estimated variances as their weight. In this work, we use LSD-SLAM to re-

cover a semi-dense structure reliably. Next, we filter the semi-dense structure

using contextual information of the local photometric and depth information,

which is inspired by the edge-preserving bilateral filtering from Tomasi and

Manduchi [110]. Then, we perform densification by regularizing the struc-

ture using the filtered semi-dense structure, and depth and depth gradient

information from single-image depth prediction.

Fusions of single-image depth prediction to visual SLAM algorithms have

been proposed to solve dense reconstruction problems. One approach to per-

forming depth fusion from multiple viewpoints is through the accumulation of

probabilistic distribution of depth observations from the single-image depth

prediction [15], [111]. Recently, Czarnowski et al. propose a factor-graph op-

timization framework named DeepFactors [112], which jointly optimizes the

camera motion and the code-based depth maps. Each depth map is param-

eterized in an n-dimensional code to avoid costly per-pixel depth map opti-

mization. Another dense SLAM system proposed by Laidlow et al., named

DeepFusion [89], uses the depth and depth gradient predictions from a CNN

to constrain the optimized depth maps. Our proposed system is similar to

DeepFusion, except for three key differences:

1. We use depth and depth gradient from relative depth prediction as priors

in the densification of semi-dense depth maps generated by LSD-SLAM.

2. Through extensive experimentation, we have a better cost function for

performing densification than DeepFusion.

3. We use the densified depth maps to refine the camera pose.

46

Figure 4.1: Our dense monocular SLAM sytem. We introduce a depth pre-
diction module, an adaptive filtering module and a dense mapping module to
the state-of-the-art semi-dense SLAM pipeline, LSD-SLAM [37]. The opti-
mized depth maps are being used to improve pose-graph optimization, while
the optimized pose-graph combines with the densified depth maps to generate
a globally consistent 3D reconstruction.

4.3 Method

Figure 4.1 illustrates our proposed dense SLAM algorithm. The proposed

algorithm contains an optimization framework using the predicted keyframe

depth maps (see Section 4.3.1) and the filtered semi-dense depth maps (see

Section 4.3.2) to perform densification (see Section 4.3.3). The optimized

depth maps are, in turn, used to optimize the keyframe pose-graph in LSD-

SLAM (see Section 4.3.4). For dense scene reconstruction, we back-project the

densified depth maps from their respective keyframe poses from the optimized

keyframe pose-graph.

4.3.1 Depth prediction

For every new keyframe Ki, we predict a relative depth map using MiDaS1 [82]

to densify the semi-dense depth map. Because Di,CNN is a relative depth

1Note that MiDaS v2.0 was the state-of-the-art and was being used to run experiments.
There are more accurate pre-trained models available on their official website (https://
github.com/intel-isl/MiDaS) at the time of preparing the thesis.

47

map, it needs to be scale- and shift-corrected before it can be used in the

densification step. The scale- and shift-correction can be performed as follows:

D′
i,CNN = aDi,CNN + b, (4.1)

where a ∈ R
+ and b ∈ R are the scale and shift parameters, respectively. Let

�dn =
(
dn 1

)T
and hopt =

(
a b

)T
, and the parameters a and b can be solved

in closed-form as follows [82]:

hopt =

(∑
n∈Ωi

�dn
�dn

T

)−1(∑
n∈Ωi

�dnd
′
n

)
, (4.2)

where dn ∈ Di,semi-dense and d′n ∈ Di,CNN are the inverse depth values of the

semi-dense depth map and relative depth map, respectively. Since we will

perform scale-and shift-correction for all predicted depth maps, we drop the

prime superscript on Di,CNN for brevity.

4.3.2 Adaptive filter on a semi-dense structure

Our proposed adaptive filter is based upon the bilateral filter [110], which

combines the local pixel values according to the geometric closeness wd(·, ·)
and the intensity similarity ws(·, ·) between the centre pixel x and a nearby

pixel xn within a window N of an image:

Ifiltered(x) =
1

WN

∑
n∈N

(
I(xn)

exp
(
− (I(x)− I(xn))

2

2σ2
s

)
︸ ︷︷ ︸

=:ws(x,xn)

exp
(
− ‖x− xn‖2

2σ2
d

)
︸ ︷︷ ︸

=:wd(x,xn)

)
(4.3)

with

WN =
∑
n∈N

ws(x,xn)wd(x,xn). (4.4)

To perform semi-dense depth map filtering, we introduce two weighting

schemes, depth uncertainty wu(·) and CNN depth consistency wc(·, ·), to re-

move the semi-dense depth pixels that have a large depth uncertainty and

48

large local variance relative to their corresponding CNN depth:

wu(xn) = exp

(
−σuVi,semi-dense(xn)

Di,semi-dense(xn)4

)

wc(x,xn) = exp

⎛
⎜⎝−

(
Di,semi-dense(x)

Di,semi-dense(xn)
− Di,CNN(x)

Di,CNN(xn)

)2
2σ2

c

⎞
⎟⎠ ,

(4.5)

where the squared ratio difference in wc(·, ·) computes the scale-invariant er-

ror [113], and Di,semi-dense(xn) in wu(·) attenuates spurious depth pixels. σs, σd,

σc and σu are the tunable weights in their respective spatial kernels. Conse-

quently, we compute the filtered semi-dense depth map D′
i,semi-dense as follows:

D′
i,semi-dense(x) =

1

W ′
N

∑
n∈N

(
Di,semi-dense(xn)

ws(x,xn)wd(x,xn)wc(x,xn)wu(xn)
) (4.6)

with

W ′
N =

∑
n∈N

ws(x,xn)wd(x,xn)wc(x,xn)wu(xn). (4.7)

With the updated D′
i,semi-dense, we re-estimate the corresponding semi-dense

depth variance map V ′
i,semi-dense by taking the weighted average of squared

deviations within the local window for all valid semi-dense depth pixels:

V ′
i,semi-dense(x) =

|N |
nvalid

1

W ′
N

∑
n∈N

(
W ′

N (xn)

(
D′

i,semi-dense(x)−Di,semi-dense(xn)
)2)

,

(4.8)

where |N | is the total number of pixels within the window, nvalid the num-

ber of pixels containing depth values, and W ′
N (·) the weight computed at a

nearby pixel. To ensure the depth variance has a similar weighting effect in

densification, we rescale the semi-dense depth variance V ′
i,semi-dense:

V ′
i,semi-dense =

Vi,semi-dense

V ′
i,semi-dense

V ′
i,semi-dense, (4.9)

where · is the mean operator. Then, we remove the noisy depth pixel by

excluding the semi-dense depth pixels whose variance is higher than a threshold

γ. For ease of notation, we denote the filtered semi-dense depth map and semi-

dense variance map as Di,semi-dense and Vi,semi-dense, respectively.

49

4.3.3 Densification of the semi-dense structure

Let Di,opt be the densified depth map. We perform densification of D′
i,semi-dense

of Ki using D′
i,CNN through the minimization of the cost function given by:

Etotal = ECNN grad + λEsemi-dense. (4.10)

The first term, ECNN grad, is similar to scale-invariant mean squared error

used in [113], which enforces depth gradient consistency between Di,CNN and

Di,opt:

ECNN grad =
1

|Ω|
∑
x∈Ω

(ECNN grad,x(x))
2 + (ECNN grad,y(x))

2

(1/Di,CNN(x))
2 , (4.11)

with
ECNN grad,x = ∂x lnDi,opt − ∂x lnD

′
i,CNN

ECNN grad,y = ∂y lnDi,opt − ∂y lnD
′
i,CNN,

(4.12)

where |Ω| is the cardinality of Ω, and ∂ the gradient operator. The denomina-

tor (1/Di,CNN)
2 in Equation (4.11) simulates the variance of the depth predic-

tion, which provides stronger depth gradient regularization to closer objects

than farther objects.

The second term, Esemi-dense, minimizes the difference between the opti-

mized depth map and the semi-dense depth map from LSD-SLAM (similar

to [89]):

Esemi-dense =
1

|Ωi|
∑
x∈Ωi

ρ

(
(Di,opt(x)−Di,semi-dense(x))

2

Vi,semi-dense(x)

)
, (4.13)

where |Ωi| is the cardinality of Ωi. We use the generalized Charbonnier penalty

function [114], ρ(.), to improve reconstruction accuracy.

4.3.4 Pose-graph refinement

Next, we incorporate the optimized semi-dense and dense depth maps into

pose-graph optimization2. To minimize the influence of erroneous regions

in the structure, we perform a two-view consistency check between the cur-

rent keyframe Ki and the last keyframe Ki−1 by projecting the semi-dense

2Pose-graph optimization is explained in Appendix-B.2

50

Di−1,semi-dense and densified Di−1,opt depth maps from the last keyframe to the

current keyframe’s viewpoint:

ˆ̃x = sKRDi,•(x)π
−1(x̂) + t (4.14)

with
{x|Di−1,•(x) > 0},

Si−1→i =

[
sR t
01×3 1

]
,

(4.15)

and

D̃i,•(x̃) =
[
ˆ̃x
]
3
, (4.16)

where x̃ is the warped coordinates with ˆ̃x being its homogeneous coordinates,

Si−1→i ∈ Sim(3) the relative transformation and K the camera intrinsics.

Di−1,• is a placeholder for Di−1,semi-dense and Di−1,opt, and D̃i,•(x̃) the warped

Di−1,semi-dense andDi−1,opt inKi’s viewpoint. To retain the semi-dense structure

in LSD-SLAM, we exclude the semi-dense depth regions in Di−1,semi-dense when

warping Di−1,opt. The two-view consistent depth map Di,c is computed as

follows:

Di,c(x) =

{
Di,•(x) if

∣∣∣Di,•(x)− D̂i,•(x)
∣∣∣ < τe

0 otherwise
. (4.17)

Consequently, the two-view consistent depth Di,c and depth variance Vi,c maps

contain a mixture of semi-dense depth (Di−1,semi-dense, Vi−1,semi-dense) and den-

sified depth (Di,opt, Vi,opt) regions. Then, we approximate the uncertainty

Vi,opt associated with Di,opt by propagating the pose uncertainty Σξ,i ∈ R
7×7

estimated by LSD-SLAM [37]:

Vi,opt ≈ JdΣξ,iJ
T
d (4.18)

where Jd ∈ R
1×7 is the first-order partial derivatives of the camera projection

function with respect to the camera pose [98]. With the two-view consistent

depthDi,c and depth variance Vi,c maps, we update the Sim(3) pose constraints

to refine the keyframe pose-graph.

51

4.4 Implementation

We use PyTorch [115] Multiprocessing3 to implement the dense SLAM pipeline,

enabling the depth prediction and dense mapping module to process in paral-

lel. To improve computational performance, we process loops and deserialize

ROS messages4 using Boost.Python5. On average, the CNN depth prediction

and optimization require 0.15 s and 0.2 s, respectively, to complete6.

For semi-dense structure adaptive filter, we define a local window size as

5× 5 with the following parameter settings: σs = 76.5, σd = 2, σc = 0.3, σu =

2, γ = 0.0025 and β = 1.1. Then, for densification of the semi-dense structure,

we use PyTorch Autograd [116] with Adam optimizer [117] to minimize the cost

function, where the learning rate is set to 0.05. To calculate the cost function,

we set λ to 0.003 and the generalized Charbonnier function [114] parameters, ε

and α, to 0.001 and 0.45, respectively. The number of optimization iterations is

30. Also, we resize the images and depth maps to 320×240 before performing

depth prediction and densification. To perform pose-graph refinement, we set

the error threshold τe = 0.001 for obtaining two-view consistent depth regions.

In LSD-SLAM, we modify the KFUsageWeight and KFDistWeight param-

eters to 7.5. For the ICL/office0, ICL/living1, and TUM/seq2 sequences (see

Table 4.1), we set minUseGrad parameter to 1. We set the frame-rate of all

image sequences to 5 for better synchronization between the visualization of

camera tracking and dense mapping. Though the increase of frame-rate, the-

oretically, should not affect the dense reconstruction accuracy except for the

delayed visualization of the dense map because of the Multiprocessing imple-

mentation.

3https://pytorch.org/docs/stable/multiprocessing.html
4http://wiki.ros.org/msg
5https://github.com/boostorg/python
6The measurements are taken on a laptop computer equipped with an Intel 7820HK

CPU and an Nvidia GTX 1070 GPU.

52

4.5 Experimental results and discussion

For the evaluation, we use ICL-NUIM [5] and TUM RGB-D [118] datasets,

which contain ground truth depth maps and trajectories to measure the re-

construction accuracy. We follow the performance metrics used in [15]: The

reconstruction accuracy is measured with the percentage of the depth values

with relative errors of less than 10% and the pose estimation error is measured

with the absolute trajectory error (ATE). Since our system does not pro-

duce metric scale reconstruction, and therefore each depth map needs to be

scaled using the optimal trajectory scale (calculated with the TUM benchmark

script7) and its corresponding Sim(3) scale for depth correctness evaluation.

The experimental results to validate our proposed method are organized

as follows.

• Section 4.5.1 compares the dense reconstruction accuracy between our

method and the state-of-the-art methods.

• Section 4.5.2 analyzes the effectiveness of the proposed adaptive filter.

• Section 4.5.3 provides an ablation study to compare different the effect

of different cost functions, highlighting the better accuracy using our

proposed cost function.

• Section 4.5.4 compares relative and absolute depth prediction accuracies

to show the benefit of using relative depth prediction in dense recon-

struction.

• Section 4.5.5 presents the improvement of camera pose estimation from

our proposed pose-graph refinement.

• Section 4.5.6 analyzes the conditions required for accurate densification.

4.5.1 Reconstruction accuracy

Table 4.1 shows a comparison of the reconstruction accuracy between our

method and the state-of-the-art dense SLAM systems (CNN-SLAM [15], Deep-

7https://vision.in.tum.de/data/datasets/rgbd-dataset/tools

53

Table 4.1: Comparison of overall reconstruction accuracy on the ICL-
NUIM dataset [5] and the TUM RGB-D dataset [118]. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far.)

Percentage of correct depth (%)
Sequence CNN-SLAM DeepFactors* DeepFusion DeepFusion†(MiDaS)* Ours (VNLNet)* Ours (MiDaS)*
ICL/office0 19.410 30.17 21.090 15.934 17.395 17.132
ICL/office1 29.150 20.16 37.420 57.097 60.909 58.583
ICL/office2 37.226 - 30.180 72.602 68.914 72.527
ICL/living0 12.840 20.44 24.223 65.395 60.210 65.710
ICL/living1 13.038 20.86 14.001 75.631 69.980 75.694
ICL/living2 26.560 - 25.235 79.994 78.887 80.172
TUM/seq1 12.477 29.33 8.069 69.990 64.862 66.892
TUM/seq2 24.077 16.92 14.774 52.132 43.607 59.744
TUM/seq3 27.396 51.85 27.200 76.433 75.680 76.395
Average 22.464 27.10 22.466 62.801 60.049 63.650

*After aligned with ground truth scale
†Our implementation of DeepFusion

Fusion [89], and DeepFactors [112]): the first three columns show the recon-

struction accuracy of the state-of-the-art systems and the last two columns

show a comparison between using VNLNet (an absolute depth prediction

CNN) and MiDaS (a relative depth prediction CNN) in our optimization

framework (see Section 4.5.4). Because of the similarity of the optimization

frameworks between our system and DeepFusion, we also include the results

for running dense reconstruction with an additional CNN depth consistency

error term in the cost function (labelled “†” in Table 4.1)8. Note that the re-

construction accuracy of our method is taken with an average of 5 runs. Our

method outperforms the competitors except for the ICL/office0 sequence, as

LSD-SLAM is unable to generate a good semi-dense structure under rotational

motion, hence the degraded reconstruction performance in the densification of

the semi-dense structure. The reconstruction results demonstrate the superi-

ority of our system by comparing the last column with all other columns in

Table 4.1. Figure 4.2 shows the use of our optimization framework to obtain

more accurate densified depth maps from less accurate predicted relative depth

maps.

8DeepFusion is not open-source, and therefore the results are based on the implementa-
tion of our optimization framework (see Section 4.4). Our implementation of the CNN depth
consistency term is similar to that of DeepFusion except we use CNN depth for providing
depth uncertainty (similar to Equation (4.11)).

54

Figure 4.2: Demonstration of the effectiveness of our optimization framework
by comparing the relative depth prediction accuracy from MiDaS before the
densification with the densified depth map. (Left column) image and ground
truth depth map. (Middle column) scale- and shift-corrected relative depth
map and depth correctness mask. (Right column) densified depth map and
depth correctness mask. The percentage of correct depth of the depth correct-
ness mask is shown above.

Figure 4.3: The proposed adaptive filter on semi-dense depth map. From left
to right: (back-projected) semi-dense depth map from LSD-SLAM, filtered
semi-dense depth map, and keyframe image.

4.5.2 Results of the adaptive filter

We notice that the semi-dense structure from LSD-SLAM contains spurious

map points, which may worsen the dense reconstruction performance. Fig-

ure 4.3 shows a qualitative comparison between the semi-dense depth maps

by LSD-SLAM and the filtered depth maps, demonstrating the effectiveness

of the adaptive filter in eliminating noisy depth pixels while preserving the

structure of the scene. Quantitatively, the second row and the third row of

Table 4.2 (labelled “f”) shows about 5% improvement on using the adaptive

filter in dense reconstruction (see also the last four rows).

55

Table 4.2: Effect of the error terms on the reconstruction accuracy.
(TUM/seq1: fr3 long office household, ◦: our cost function, �: simulated
DeepFusion [89] cost function, †: not used in DeepFusion.)

Percentage of correct depth (%)
Energy term ICL/living2 ICL/office2 TUM/seq1

1 62.620 57.563 55.031
1(c) 65.611 57.644 55.042

1(f)(c) 71.265 61.445 60.143
1(c)+2◦ 69.967 69.905 64.650

1(f)(c)+2◦ 79.788 71.778 67.319
1(c)+2+3� 70.167 69.863 64.730

1(f)(c)+2+3� 79.742 71.692 67.323

1. SLAM depth consistency
2. CNN depth gradient consistency
3. CNN depth consistency
(c). Generalized Charbonnier function†

(f). Adaptive semi-dense depth filtering†

4.5.3 Cost function analysis

Table 4.2 shows the reconstruction results using different combinations of error

terms in the cost function. To ensure consistent measurement of the recon-

struction accuracy using different cost functions, the keyframes—i.e., the semi-

dense depth and depth variance maps, and the camera poses—are pre-saved so

that the inconsistency between runs from LSD-SLAM does not influence the

densification process. Consistent with the finding in DeepFusion, incorpora-

tion of CNN depth gradient consistency and CNN depth consistency improves

the reconstruction accuracy dramatically, although our CNN does not explic-

itly predict depth gradient and depth gradient variance maps (see the second

and last row). However, removing the CNN depth consistency term (the third

and fourth last row), in our case, leads to better reconstruction accuracy (see

also the third last and last column of Table 4.1); the added generalized Char-

bonnier function (the second row, labelled “c”) also increases the accuracy.

56

Figure 4.4: Qualitative comparison of relative depth maps from MiDaS and
absolute depth maps from VNLNet on (a) the TUM RGB-D dataset and (b)
the ICL-NUIM dataset. From left to right: image, ground truth depth map,
depth prediction from MiDaS, and depth prediction from VNLNet.

4.5.4 Relative depth prediction vs. absolute depth pre-
diction

To illustrate the advantage of using relative depth prediction CNNs (e.g., Mi-

DaS), we perform the same densification step with an absolute depth prediction

CNN, VNLNet9 [66], and then compare the reconstruction accuracy between

them. Neither MiDaS nor VNLNet has been trained on the TUM RGB-D and

ICL-NUIM datasets to promote a fair comparison. In Table 4.1, we show that,

in general, using scale- and shift-corrected relative depth prediction (labelled

“MiDaS”) instead of absolute depth prediction (other columns) has superior

dense reconstruction performance, as a result of more accurate depth predic-

tion from MiDaS than depth prediction from VNLNet (last and second last

column of Table 4.3; see also Figure 4.4 for a qualitative comparison); Laina

(second column of Table 4.3), another absolute depth prediction CNN being

used in CNN-SLAM, is significantly less accurate than MiDaS, which indicates

that the outperformance of our system may simply be because MiDaS provides

more accurate depth prediction for densification.

9One crucial consideration in selecting a competing absolute depth prediction CNN is
the runtime memory requirements. VNLNet is considered state-of-the-art at the time of
experimental setup with a reasonable memory footprint.

57

Table 4.3: Comparison of depth prediction CNNs accuracy being used in
CNN-SLAM (Laina [119]) and our system (VNLNet [66] and MiDaS [82]) on
the ICL-NUIM dataset [5] and the TUM RGB-D dataset [118]. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far, abs: absolute depth prediction CNN,
rel: relative depth prediction CNN.)

Percentage of correct depth (%)
Sequence Laina (abs) VNLNet (abs)* MiDaS (rel)*
ICL/office0 17.194 11.791 13.059
ICL/office1 20.838 45.866 42.980
ICL/office2 30.639 55.180 55.136
ICL/living0 15.008 40.294 54.287
ICL/living1 11.449 55.806 72.139
ICL/living2 33.010 59.367 67.130
TUM/seq1 12.982 47.552 54.860
TUM/seq2 15.412 33.143 55.136
TUM/seq3 9.450 52.144 57.255
Average 18.452 44.571 52.442

*After scale- and shift-correction

Table 4.4: Comparison of absolute trajectory error on the ICL-
NUIM dataset [5] and the TUM RGB-D dataset [118]. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far, abs: absolute depth prediction CNN,
rel: relative depth prediction CNN, �: before pose-graph refinement, ◦: after
pose-graph refinement, *: (baseline) after pose-graph refinement with ground
truth depth .)

Absolute trajectory error (m)
Sequence CNN-SLAM Ours� Ours◦ Ours*
ICL/office0 0.266 0.352 0.295 0.260
ICL/office1 0.157 0.057 0.046 0.045
ICL/office2 0.213 0.159 0.061 0.045
ICL/living0 0.196 0.057 0.039 0.036
ICL/living1 0.059 0.017 0.018 0.017
ICL/living2 0.323 0.062 0.059 0.056
TUM/seq1 0.542 0.103 0.075 -
TUM/seq2 0.243 0.261 0.245 -
TUM/seq3 0.214 0.108 0.111 -
Average 0.246 0.131 0.106 -

-Not evaluated as not all the images have a corresponding depth map

58

4.5.5 Keyframe trajectory accuracy

Table 4.4 shows the camera tracking accuracy between our method and CNN-

SLAM10. From the first two columns, we can see that our camera tracking

performance, even without the pose-graph refinement, reduces the ATE of

CNN-SLAM by almost 50%. Since both of the systems are built upon LSD-

SLAM, the performance difference could be due to our configuration settings in

LSD-SLAM (see Section 4.4). The last column shows a baseline performance

of refining the pose-graph using ground truth depth to evaluate the effective-

ness of pose-graph refinement. In general, pose-graph refinement reduces the

ATE significantly to the extent that, in certain sequences, it is similar to that

obtained by pose-graph refinement using the ground truth depth.

4.5.6 Conditions for accurate densification

In order to have accurate densification, both semi-dense depth maps and pre-

dicted depth maps from MiDaS have to be accurate. Statistically, we find

that the aforementioned condition happens occasionally (see Table 4.5). Re-

call that 10 % relative error is used to evaluate depth accuracy. We define

a semi-dense depth map from LSD-SLAM as good if more than 70 % of the

semi-dense depth pixels have less than 10 % relative error; similarly, a scale-

and shift-corrected dense depth map from MiDaS is considered good if more

than 70 % of all depth pixels have less than 10 % relative error. As shown

in the first row of Table 4.5, if both semi-dense depth and dense depth maps

are of good quality, then the densified depth maps are also of good quality;

in contrast, if both semi-dense and dense depth maps are of bad quality (see

the last row of Table 4.5), then the probability of getting good densified depth

maps is drastically reduced. In general, having good depth prior is beneficial

for obtaining good densification results (see first and third rows of Table 4.5).

Using the same metric, Figure 4.5 shows a qualitative comparison of back-

projected depth maps (semi-dense depth maps, predicted depth maps, and

densified depth maps).

10Only CNN-SLAM has the ATEs on the evaluation datasets.

59

Figure 4.5: Back-projected point cloud generated from (left to right) LSD-
SLAM [37], predicted depth map from MiDaS [82], and densified depth map
using DeepRelativeFusion. Generally, fusing a good semi-dense depth map
with a good predicted depth map results in a good densified depth map (see
the first two rows). However, having either a bad semi-dense depth map or a
bad predicted depth map is likely to generate a bad densified depth map (see
the last two rows). Depth pixels that have less than 10 % relative error are in
blue and are in red otherwise. The percentage of blue points is shown below
their respective point clouds and the good-ness threshold is set to 70 %, as
described in the text.

60

Table 4.5: Effect of semi-dense depth (from LSD-SLAM [37]) and predicted
dense depth (from MiDaS [82]) accuracies on densification accuracy based
on 142 keyframes generated on the TUM RGB-D fr3 long office household
sequence [118].

Quality of depth
Semi-dense MiDaS #keyframes #good keyframes

good good 14 14
good bad 59 39
bad good 13 12
bad bad 56 9

Total 142 74

A semi-dense depth map or dense depth map is defined as good
if more than 70 % of the depth pixels have less than 10 % relative
error; otherwise it is considered bad.

As mentioned in Section 4.3.1, we convert the MiDaS’s relative depth to

absolute depth by recovering the scale and shift factors using the semi-dense

depth map in each keyframe. Despite being an efficient method of recovering

absolute depth, as it only relies on a single view to perform the relative depth

to absolute depth conversion, the accuracy of the conversion is strongly de-

pendent on the depth distribution in the keyframe semi-dense depth map (see

Figure 4.6). To maximize the densification accuracy, one may develop a more

sophisticated scale- and shift-correction technique, e.g., leveraging multi-view

consistency for better absolute depth alignment.

4.6 Qualitative reconstruction results on other

datasets

Lastly, we present qualitative dense reconstructions on various datasets in Fig-

ure 4.7. One of the major bottlenecks of the state-of-the-art dense SLAM sys-

tems is the accurate depth prediction requirement in the testing scene. While

the use of absolute depth prediction may help produce absolute scale recon-

struction, it mostly makes sense in the context narrow application domain,

such as dense scene reconstruction for self-driving cars. With the proposed

use of relative depth prediction, we improve the versatility of our system by

61

Figure 4.6: From top to bottom: colour-coded semi-dense depth map on the
keyframe image (red is near and blue is far), histogram of the semi-dense depth
distribution (depth values with less than 10 % relative error are shown in blue
bars and are in red bars otherwise), and the scale- and shift-correct depth
map with its correctness mask (depth regions that have less than 10 % relative
error are shown in white). When performing scale- and shift-correction, using
a partially distributed scene depth (see the histograms in the first two columns
in which the depth count is skewed towards one end) results in poor recovery of
absolute depth from predicted relative depth; whereas a well-distributed scene
depth (see the histograms in the last two columns) leads to better recovery of
absolute depth.

62

forgoing absolute scale reconstruction, which can be easily recovered using

fiducial markers or objects with known scales. With accurate relative depth

prediction as well as continuous expansion in single-image relative depth CNN

training datasets, we are getting closer to solving dense monocular SLAM in

the wild—dense scene reconstruction on arbitrary image sequences.

4.7 Summary

The key takeaways of this chapter are as follows.

• We propose a dense monocular SLAM system, named DeepRelativeFu-

sion, capable of recovering a globally consistent 3D structure.

• Using a visual SLAM algorithm to reliably recover the camera poses

and semi-dense depth maps of the keyframes, our proposed energy min-

imization framework exploits the accurate depth gradient information

from single-image relative depth prediction as priors to densify the semi-

dense depth maps.

• To improve the densification accuracy, we propose an adaptive filter for

improving the semi-dense depth maps, a structure-preserving weighted

average smoothing filter that considers the pixel intensity and depth of

the neighbouring pixels.

• After densification, we update the keyframes with the optimized depth

maps to improve pose-graph optimization, providing a feedback loop to

refine the keyframe poses for accurate scene reconstruction.

• Our system outperforms the state-of-the-art dense SLAM systems quan-

titatively in dense reconstruction accuracy by a large margin.

63

Figure 4.7: Qualitative reconstructions on various datasets. (i) ICL-
NUIM [5] lr kt2, (ii) ScanNet [19] scene0565 00 and scene0010 01, (iii) TUM
MonoVO [120] Sequence 29, (iv) EuRoC MAV [121] v1 01 and (v) Oxford
Robotcar 2014-06-22-15 [17].

64

Chapter 5

Online Mutual Adaptation of
Deep Depth Prediction and
Visual SLAM

5.1 Overview

In Chapter 3 and Chapter 4, we have demonstrated the advantages of using

single-image depth prediction CNNs to solve data association and dense map-

ping problems. Specifically, we immediately observe degradation in CNN-SVO

mapping (see Figure 5.1) and densification accuracy (see Section 4.5.4) with

the use of less accurate depth prediction CNNs. This chapter is set out to

answer the following question: Can we tune a depth prediction CNN with the

help of a visual SLAM algorithm even if the CNN is not trained for the current

operating environment and can the fine-tuned CNN in turn benefit the SLAM

performance?

5.2 Related work

To overcome the domain gap of single-image depth prediction, online learn-

ing has been used to fine-tune a depth prediction CNN on the images avail-

able in the target domain. These images typically arrive sequentially [122]–

[124]. One particular challenge for online fine-tuning is ensuring that learning

does not overfit the most recent data, a problem known as catastrophic for-

getting [92]. To mitigate catastrophic forgetting, experience replay has been

65

Figure 5.1: The decrease in SVO mapping performance using a lower quality
depth prediction CNN.

proposed by inserting randomly sampled past training data into the current

training batch [122], [123], [125]. An alternative solution is to regularize and

preserve the CNN parameters that are important to the previously learned

tasks [92], [126]. In a typical multi-task learning scenario, the importance

of the CNN parameters can be measured by the magnitude of the gradients

with respect to the loss function or output function through the training on

a task [126]–[129], which intuitively determines how a perturbation in a CNN

parameter affects the loss (see Appendix A for more information). Instead

of measuring the parameter importance after learning a task and regularizing

the parameters in learning the next task, Maltoni and Lomonaco [129] propose

single-incremental-task (SIT) learning, which seeks to estimate and consolidate

the parameter importance from batch to batch using synaptic intelligence (SI),

so that the previously learned knowledge is retained throughout the learning.

Unlike SIT, which has to deal with learning new instances or classes, our goal is

to preserve the previously learned depth from batch to batch by consolidating

the parameter importance using a semi-supervised loss, instead of supervised

loss, which requires ground truth labels [129].

Depth prediction by a CNN has been widely used to benefit SLAM al-

gorithms. A SLAM pipeline can be enhanced by improving feature match-

ing [130] and photometric re-projection accuracies [12] through the use of

depth prediction by CNNs. However, the predicted depth has to be accurate

to achieve good performance, an assumption that is often violated in prac-

66

tical robotics applications. Therefore, instead of directly incorporating the

predicted depth information into front-end tracking and mapping [12], [130],

we design a VO pipeline that only incorporates online adapted depth infor-

mation in optimizing the structure and motion estimation. To this end, we

use two common procedures in SLAM optimization: map point culling and

global BA. Removing noisy map points is an essential part of sparse SLAM

for preventing erroneous state estimation from being included in optimization

(see ORB-SLAM3 [58] and DSO [38]); on the other hand, global photometric

BA [91], [131] has been shown to improve SLAM performance further. As-

suming that online fine-tuning can obtain reasonable depth prediction (with-

out extreme accuracy), we use depth prediction as a hint to cull the potential

noisy map points from being included in global photometric BA, resulting in

an improved SLAM accuracy. For implementation, we opt for SVO [51] for

being computationally lightweight on an embedded computer, compared to

other state-of-the-art sparse SLAM algorithms [38], [58].

5.3 Method

In this section, we outline our proposed online adaptation framework (see

Figure 5.2). The framework consists of SLAM (Section 5.3.1), online CNN

depth adaptation (Section 5.3.2), and global BA with adapted CNN depth

(Section 5.3.3).

5.3.1 SLAM

We use SVO 2.01 (its monocular variant with edgelets) to generate a set of

keyframes from a monocular image stream captured by the camera on a mobile

robot. Associated with each keyframe are an image, a camera pose, and a set

of sparse map points. While the keyframes are being generated, we publish

two serialized channels2 over a local network containing the newly created

keyframes (image, pose and map points) and optimized camera poses and

1https://github.com/HeYijia/svo_edgelet
2The keyframes are converted to ROS messages before they are published. See http:

//wiki.ros.org/msg for more information.

67

Figure 5.2: Our proposed online adaptation framework. We use a SLAM al-
gorithm to generate a sequence of keyframes. The keyframes are classified as
training or validation to fine-tune a depth prediction CNN and monitor the
adaptation progress. If the training is not converged, we use the most re-
cent keyframe and one randomly sampled old keyframe to fine-tune the CNN.
Meanwhile, we calculate the validation loss once every m keyframes to deter-
mine if the predicted depth maps are accurate. We keep track of the number
of continuous accurate depth predictions to perform global photometric BA if
the CNN has been accurate for the past n keyframes. KF: keyframe.

68

map points of all keyframes. The reason for publishing the keyframe graph is

that local BA, in most cases, improves the camera pose estimation. Therefore,

it is beneficial for improving the training loss in the online adaptation.

5.3.2 Online CNN depth adaptation

Our online adaptation algorithm is inspired by early stopping3 [132], whose

goal is to avoid overfitting by stopping fine-tuning when depth prediction is

reasonably accurate in terms of validation error (see Algorithm 1 for detailed

steps). To this end, we validate the depth prediction accuracy once every

m incoming keyframes to determine if the fine-tuning has converged. After

determining the stopping criterion, we describe the training details of the

online adaptation algorithm.

To adapt a depth prediction CNN on sequential data without forgetting,

we improve upon the experience replay method (i.e., incorporating recent data

and randomly selecting old data into the training batches [122], [123], [125])

by adding regularization. Training regularization requires the consideration of

the learning of two separate tasks T1 (learn from old data) and T2 (learn from

recent data). The goal is to maximize the training accuracy on both T1 and T2,

ensuring that we preserve the depth prediction accuracy in the new environ-

ment. To reinforce the previously learned knowledge, we modify EWC [126]

regularization in the following ways. First, instead of multi-task learning con-

solidation, we consolidate the importance of the parameters at each training

batch and use it in the next batch, which considers the adaptation progress

thus far to be absorbed into the posterior probability, i.e, the importance, of

the parameters. Second, to estimate the posterior probability, we compute the

gradient of the negative log-likelihood of the training loss, assuming constant

observation noise for the input4 [13], [133]. Let θ∗ be the CNN parameters

fine-tuned on the last training batch and θ be the current CNN parameters.

3https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/

EarlyStopping
4Realistically, observation noise can occur in the violation of brightness constancy as-

sumption and motion blur. This issue can be mitigated by incorporating the heteroscedastic
aleatoric uncertainty in training (studied in [13], [133]) and modifying a pre-trained depth
prediction CNN to predict an additional uncertainty output.

69

Algorithm 1 online adaptation framework represented in a finite-state ma-
chine
state = IDLE

t = 0
nconverged = 0
m = 5 � Validate every m steps
n = 3 � patience in the context of EarlyStopping
τval = 0.2 � Validation error threshold
while not quit do

if state == IDLE then
run global ba = false
if t > 0 and t%m == 0 then

Compute validation error (Lval)
if Lval < τval then

nconverged += 1
else

nconverged = 0
end if
if nconverged > 0 and nconverged%n == 0 then

run global ba = true
end if

else
state = FINE TUNE

end if
else if state == FINE TUNE then

Fine-tune the depth prediction CNN
state = IDLE

end if
if run global ba then

go through all keyframe and publish the keyframe depth maps to
trigger BA in SVO

end if
t += 1

end while

70

We introduce an additional regularization term to the training loss5 [126]:

LEWC = Ltrain +
∑
i

β

2
F̂i(θi − θ∗i)

2 (5.1)

with

F = F+ F(j)

F̂ = max(
F

j
,maxF), (5.2)

where j is the number of trained batches and F the consolidated empirical

Fisher information matrix at the end of every training batch. F̂i is importance

of the i-th parameter, which is obtained from the averaged parameter impor-

tance matrix F̂ to ensure the preservation of the previously learned knowledge.

The empirical Fisher information matrix converges to the Fisher information

matrix as we incorporate more training samples [134]. maxF determines the

maximum value of F̂.

To compute the training loss (Ltrain), we use a semi-supervised training

loss [73], [103], which consists of photometric re-projection (Lphoto), sparse

depth (Lsparse depth) and smoothness loss (Lsmooth) terms, to be defined below.

First, the photometric re-projection error Lphoto is given by:

Lphoto =
1

|Ω|
∑
p∈Ω

min
s

pe(Ii, Is→i,p), and (5.3)

pe(Ii, Is→i,p) =
α

2
(1− SSIM(Ii, Is→i)(p)

+ (1− α) ‖ Ii(p)− Is→i(p) ‖1, (5.4)

where pe(·, ·, ·) calculates the minimum per-pixel photometric re-projection

error [103], s ∈ {i−1, i+1} the indices of the adjacent keyframes and Ω the set

of pixel locations in Ii. To reconstruct the target image from an adjacent image

Is→i, we use bilinear sampling at the pixel locations (Ωs) that can be warped

to the adjacent image using depth prediction Di,CNN and relative keyframe

pose transformation Ti→s from SVO:

Is→i(p) = Is(p
′) ∀p ∈ Ωs,

p′ = π(Tj→iDi,CNN(p)π
−1(p)),

(5.5)

5We explain the details in Appendix A.

71

where p′ is a re-projected pixel location.

Then, to define Lsparse depth, we project the sparse map points generated by

SVO in each keyframe to form sparse depth maps as ground truth labels [73],

[135]:

Lsparse depth =
1

|Ωi,sparse|
∑

p∈Ωi,sparse

| 1

Di,CNN(p)
− 1

Di,sparse(p)
|, (5.6)

where Di,sparse is the sparse depth map of keyframe i, Ωi,sparse the set of re-

projected (sub)pixel locations containing depth values of their corresponding

map points from SVO, and |Ωi,sparse| the number of valid re-projections. By

using inverse depth, near depth is penalized more heavily than far depth.

Finally, we compute the edge-aware smoothness loss Lsmooth using the im-

age gradient:

Lsmooth =
1

|Ω|
∑
p∈Ω

|∂xDi,CNN(p)|e−|∂xIi(p)|

+ |∂yDi,CNN(p)|e−|∂yIi(p)| (5.7)

where ∂ is the gradient operator.

Combining the three loss terms, the final training loss is

Ltrain = Lphoto + λ1Lsparse depth + λ2Lsmooth, (5.8)

where λ1 and λ2 are the weighting for the sparse depth loss and smoothness

loss, respectively. Algorithm 2 details the steps involved in the online fine-

tuning. To validate the adaptation progress, we use the sparse depth loss

term on all validation keyframes as the validation loss:

Lval = Lsparse depth. (5.9)

5.3.3 Global BA

To optimize the structure and motion, we employ the traditional photometric

BA [91], which jointly optimizes the keyframe poses and map points. However,

we found that the map points generated by SVO, albeit the sparsest amongst

the state-of-the-art visual SLAM algorithms [38], [58], still contain noisy and

72

Algorithm 2 Online fine-tuning with parameter importance regularization

1: Init θ from a pre-trained depth prediction CNN
2: F̂ = 0 � parameter importance matrix
3: while not quit do
4: if state == IDLE then
5: continue � Low validation error; skip training
6: end if
7: θcpy = θ � Make a copy
8: Get latest keyframe Ki from SVO
9: Train the CNN on Ki and Kj∼{0,...,(i−1)} with LEWC (see Eq. 5.1) ac-

cording to θ and F̂
10: Consolidate the parameter importance matrix F̂ according to θcpy and

θ (see Eq. 5.2)
11: end while

redundant map points. Therefore, with the learned depth information, we

introduce a map point culling step before performing photometric BA. To

determine if a map point should be culled, we identify a host keyframe for the

map point (see Figure 5.3) and check if the depth of the map point is within

the correctness range:

g(dmp, dCNN) =

⎧⎪⎨
⎪⎩
1, if |dmp − dCNN| < αdCNN or

dCNN > dmax

0, otherwise

(5.10)

where dCNN and dmp are the predicted CNN depth and the depth of the map

point in the host keyframe, dmax a threshold that defines an effective depth

range of the CNN depth values (similar to a depth sensor) to avoid far map

points from being culled prematurely. g(·) evaluates if the map point is valid.

Then, we use the standard photometric BA formulation [91] to globally opti-

mize the structure and camera poses (collectively defined as the SLAM vari-

ables X) given by:

X ∗ = argmin
X

1

2

∑
k

‖ek‖22 (5.11)

with

ek = zk − hk(Xk) (5.12)

where ek is the photometric error induced by a subset of the SLAM variables

Xk ⊆ X , zk the reference image patch and hk(·) the measurement model to

73

Figure 5.3: Assuming the magenta map point is observed in two keyframes
(the red and green camera frustums), a host keyframe is selected based on the
validation loss (Lval) of the predicted CNN depth, and in this case, the green
keyframe has a lower Lval and hence is being selected as the host keyframe of
the magenta map point.

obtain the re-projected image patch.

5.4 Evaluation

To evaluate the performance of our proposed method for online CNN adapta-

tion experimentally, our mobile robot hardware setup consists of the following

main components: a TurtleBot, an Nvidia Jetson AGX Xavier, an Orbbec

Astra RGBD camera, and a laptop6, as shown in Figure 5.4. With the Jetson

and laptop connected to the same wireless network, we run the SLAM process

(tracking, mapping, and BA) on the Jetson and the fine-tuning process on the

laptop.

To illustrate the effectiveness of the online adaptation, we use Monodepth2’s

6Specifications: Intel 7820HK CPU and Nvidia GTX 1070 GPU

74

mono+stereo 640x192 CNN model, which has been pre-trained on outdoor

scenes fine-tuned in an indoor environment. For the network to learn, we

use Adam optimizer with a learning rate of 10−3, and set the weights of the

loss function λ1, λ2 and β at 0.1, 0.1 and 5 × 107, respectively. For EWC

consolidation of parameter importance matrix, maxF is set to 0.001.

In SVO, the main change we made is the increased number of tracked

features in the keyframes. We have modified the following parameter values:

max fts = 500, grid size = 20, and core kfs = 5. For performing map

point culling, we define the correctness range by setting α = 0.5 and dmax =

1.5. This particular design allows for more map points to be generated for

fine-tuning the depth prediction CNN. The online adapted depth is then used

for removing the potential noisy map points. After noisy point removal, each

map point has a maximum of five photometric re-projections to the nearby

keyframes, including the existing 3D-2D constraints (i.e., the list of observed

keyframes for the map point), for performing global photometric BA in a

separate thread. We get a 3 × 3 image patch around the re-projected image

coordinates for each re-projection edge to compute the photometric errors7.

In the following, we present experimental results to validate the perfor-

mance of our proposed method. Section 5.4.1 details the dataset that we

collected in our laboratory and its purposes. Section 5.4.2 compares and con-

trasts our proposed online adaptation method with regularization against the

state-of-the-art methods. Section 5.4.3 conducts an ablation study to compare

different online adaptation schemes in overcoming catastrophic forgetting. Sec-

tion 5.4.4 presents quantitative and qualitative results of our proposed map

point culling with online adapted depth and global photometric BA to im-

prove map reconstruction accuracy. Section 5.4.5 analyzes the accuracy of

online adapted and pre-trained depth prediction to show the advantage of us-

ing online adaptation to improve SLAM performance. And lastly, Section 5.4.6

evaluates the runtimes of our proposed online adaptation framework.

7More details can be found in Appendix-B1

75

Figure 5.4: A TurtleBot equipped with an Nvidia Jetson AGX Xavier and an
Orbbec Astra RGBD camera. A Mango mini router is used to create a local
wireless network to communicate between the Jetson and a laptop.

5.4.1 Laboratory dataset

The reason for collecting our own dataset is that the image sequences in exist-

ing benchmarking datasets [18], [19], [118] are not long enough to evaluate and

illustrate the effectiveness of our proposed online adaptation. Our dataset con-

tains two sequences (dubbed Lab1 and Lab2) that we collected in our labora-

tory (see Figure 5.6 for the example images of the experimental environment).

We record both sequences in the same environment, with the difference that

the Lab2 sequence (16366 images) is longer than the Lab1 sequence (10611

images).

5.4.2 Online adaptation

To evaluate the effectiveness of our proposed online adaptation, we compare

our method against the state-of-the-art methods: a SLAM-based approach by

Luo et al. [124] (Section 5.4.2) and a learning-based approach by Kuznietsov

et al. [123] (Section 5.4.2). For the comparison, we adopt the datasets and

performance metric in [124]. The datasets are the ICL-NUIM [5] and TUM

RGB-D [118] datasets and the performance metric is the percentage of overall

depth pixels below 10% relative errors, i.e., |D−Dgt|
Dgt

< 0.1.

76

Table 5.1: A comparison between the overall depth accuracy of
our method and Luo et al.’s [124] SLAM-based online adaptation on
the ICL-NUM [5] and TUM RGB-D [118] datasets. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far)

Percentage of correct depth (%)
Sequence Pre-trained [124] [124] Pre-trained Ours
ICL/office0 19.117 22.206 8.766 12.541
ICL/office1 28.086 31.289 19.739 21.870
ICL/office2 21.695 21.695 4.591 42.244
ICL/living0 18.680 23.278 7.726 41.375
ICL/living1 21.071 22.774 8.518 49.075
ICL/living2 16.150 20.995 13.509 25.159
TUM/seq1 18.208 20.259 10.999 23.861
TUM/seq2 25.796 29.014 12.678 52.162
TUM/seq3 20.668 30.156 10.295 37.848
Average 21.052 24.630 10.758 34.015

SLAM-based online adaptation

Table 5.1 compares the overall depth accuracy between our method and a

similar method by Luo et al. [124]. Our method improves the overall depth

accuracy by around 23% (the last two columns), compared to 4% (2nd and 3rd

column) by Luo et al. [124]. The performance gap could be due to the number

of keyframes used in the fine-tuning; we use all the keyframes generated by

SVO [51], whereas Luo et al. [124] use the keyframe pairs by LSD-SLAM [37]

that have a dominant horizontal motion as simulated static stereo pairs. Be-

sides, Luo et al. [124] perform online adaptation using most recent keyframes

only, which performs the worst in the online adaptation scheme comparison

(see Section 5.4.3). Note that Luo et al. [124] evaluate the keyframe depth

accuracy based on the fine-tuned CNN models in different fine-tuning stages,

which may result in different overall depth correctness should the final fine-

tuned CNN model be used in the evaluation.

77

Table 5.2: A comparison between the overall depth accuracy of our method and
CoMoDa’s [123] end-to-end online adaptation on the ICL-NUM [5] and TUM
RGB-D [118] datasets. Both our method and CoMoDa [123] are fine-tuned on
the same pre-trained CNN model, mono+stereo 640x192 [103]. (TUM/seq1:
fr3 long office household, TUM/seq2: fr3 nostructure texture near withloop,
TUM/seq3: fr3 structure texture far)

Percentage of correct depth (%)
Sequence Pre-trained∗ Ours∗ CoMoDa∗ [123]
ICL/office0 13.660 32.98 21.054
ICL/office1 22.453 38.383 41.623
ICL/office2 22.514 44.790 37.374
ICL/living0 17.659 48.158 35.164
ICL/living1 22.585 51.531 46.148
ICL/living2 21.606 35.757 35.571
TUM/seq1 16.931 27.915 33.120
TUM/seq2 17.722 41.782 33.708
TUM/seq3 23.026 50.339 39.769
Average 19.795 41.293 35.948

∗Median scaling to ground truth depth

Learning-based online adaptation

Table 5.2 compares our method against a learning-based online adaptation

method, CoMoDa8. Overall, our proposed SLAM-based method outperforms

CoMoDa by around 5% (the last two columns). One particular challenge in

end-to-end online adaptation is the simultaneous fine-tuning of depth and pose

prediction CNNs, and the pose prediction CNN is not trained in the indoor

test environments; on the contrary, we obtain camera poses from SVO [51].

Furthermore, accurate camera pose estimation is essential when performing

online adaptation (see Equation 5.5). Plus, CoMoDa does not use regulariza-

tion in online adaptation, which is a reason that it performs worse than our

method (see Section 5.4.3).

8We generate results using CoMoDa’s [123] open-source code (https://github.com/
Yevkuzn/CoMoDA)

78

5.4.3 Learning against catastrophic forgetting in online
adaptation

To evaluate the effectiveness of our proposed regularization in online adapta-

tion, we perform an ablation study to measure the impact of different adap-

tation schemes on alleviating catastrophic forgetting. To this end, we examine

the overall depth accuracy (using the same 10% relative error as the metric)

on the ICL-NUIM [5] and TUM RGB-D [118] datasets.

Table 5.3 shows that performing online adaptation using only the most re-

cent keyframes has the worst overall depth accuracy (3rd column), compared

to using the most recent keyframe with experience replay and regularization

(the last two columns). Moreover, Figure 5.5 illustrates catastrophic forget-

ting on the lr kt1 sequence, where the CNN is overfitted to the most recent

keyframes in the sequence. In general, a combination of experience replay and

regularization in online adaptation has the best overall depth accuracy (see

the last column in Table 5.3 and Figure 5.5). Thus, it validates the effective-

ness of our proposed online adaptation scheme. However, for a short sequence,

regularization can inhibit changes in the CNN parameters and hurt the online

adaptation accuracy (2nd last row in Table 5.3). For the sake of completeness,

we compare the online adaptation performances using the three popular regu-

larization techniques9: EWC [126], MAS [127] and SI [128], and they perform

similarly.

5.4.4 Effect of global photometric BA with map point
culling on SLAM accuracy

After the depth prediction CNN has been fine-tuned to a reasonable accuracy,

the next step of our proposed method uses the online adapted depth to re-

move potential noisy map points and then performs global photometric BA to

improve SLAM performance.

To measure the camera tracking performance before and after the global

photometric BA, we use the standard absolute trajectory RMSE (ATE) as the

9See Appendix A.2 for more information on the SI and MAS regularizations. The
regularization strength (λ in Eq. A.6) for SI and MAS are set to 1.0 and 0.5, respectively.

79

Figure 5.5: A comparison of different online adaptation schemes tested on
the ICL-NUIM [5] of kt3 (left) and lr kt1 (right) using the final online
adapted CNN. Adaptation accuracy is measured by the averaged percent-
age of overall depth accuracy over all frames up to the frame. (Method 1:
fine-tuning on most recent keyframes only; Method 2: fine-tuning on the most
recent keyframe with experience replay ; Method 3: fine-tuning on the most
recent keyframe with regularization; Method 4: fine-tuning on the most recent
keyframe with experience replay and regularization.

Table 5.3: An ablation study on different online adaptation schemes
using our proposed framework on the ICL-NUM [5] and TUM RGB-
D [118] datasets. (TUM/seq1: fr3 long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3: fr3 structure texture far)

Percentage of correct depth (%)
Sequence Pre-trained Ours(a) Ours(b) Ours(c)
ICL/office0 8.766 7.249 12.734 12.541
ICL/office1 19.739 4.034 22.613 21.870
ICL/office2 4.591 21.449 34.609 42.244
ICL/living0 7.726 13.179 22.883 41.375
ICL/living1 8.518 38.246 41.149 49.075
ICL/living2 13.509 9.110 13.117 25.159
TUM/seq1 10.999 16.012 19.782 23.861
TUM/seq2 12.678 14.457 37.539 52.162
TUM/seq3 10.295 49.515 51.545 37.848
Average 10.758 19.250 28.441 34.015

(a) Online adaptation with two most recent keyframes
(b) Online adaptation with the most recent keyframe and

experience replay
(c) Online adaptation with the most recent keyframe,

experience replay and regularization

80

Table 5.4: A comparison of the camera tracking ATEs with and with-
out global photometric BA on the ICL-NUM [5] and TUM RGB-
D [118] datasets. (TUM/seq1: fr3 long office household, TUM/seq2:
fr3 nostructure texture near withloop, TUM/seq3: fr3 structure texture far)

Sequence Without BA∗ With BA∗

ICL/office0 0.363 0.323
ICL/office1 0.196 0.204
ICL/office2 0.170 0.171
ICL/living0 0.220 0.227
ICL/living1 0.032 0.026
ICL/living2 0.161 0.158
TUM/seq1 0.088 0.073
TUM/seq2 0.029 0.011
TUM/seq3 0.011 0.012
Average 0.141 0.134

∗Aligned to ground truth trajectory

performance metric on the ICL-NUIM [5] and TUM RGB-D [118] datasets,

which contains ground truth camera poses for the evaluation. Table 5.4 com-

pares the ATEs obtained from SVO and SVO with our proposed map point

culling and global photometric BA. In general, performing global photometric

BA leads to a lower overall ATE than that without the global BA (compare

the last two columns in Table 5.4). Our proposed global photometric BA with

map point culling reduces the ATE by more than 50% (from 0.029 to 0.011)

on the TUM/seq2 sequence, likely due to the improved depth prediction with

online adaptation (check the corresponding rows in Table 5.3).

To highlight the effectiveness of the online adaptation, we evaluate the ac-

curacy of the SVO map on long sequences, Lab1 and Lab2, from our Labora-

tory dataset. We use the scale-invariant inverse depth error as the performance

metric [70] given by:

esi =

√
1

N

∑
i

d2i −
1

N2
(
∑
i

di)2 (5.13)

where di = log zi − log z∗i , and the superscript ∗ indicates the ground truth

depth.

To allow for a more accurate online adaptation accuracy, we increase the

81

Table 5.5: A comparison of the number of points and depth error of the SVO
map with and without our proposed map point culling and global photometric
BA. A larger max fts generates more map points in SVO.

MP SVO param Lab1 Lab2

BA culling (max fts) No. map points esi No. map points esi
120 13992 0.533 19856 0.607

� 120 14469 0.545 20464 0.625
� � 120 7435 0.473 9226 0.495

500 19179 0.527 25743 0.540
� 500 19208 0.515 23998 0.528
� � 500 9916 0.493 12686 0.472

Note: max fts is set at 120 by default in SVO.

number of map points by tweaking the max fts parameter in SVO. Table 5.5

shows that the SVO map accuracy is improved by our proposed map point

culling with online adapted depth prediction and global photometric BA (com-

pare the esi with and without BA in Table 5.5 and Figure 5.6(a) and 5.6(b)).

The improved map accuracy also comes at the expense of removing good map

points, which can be mitigated by having a training scheme with better online

adaptation performance. As a result, our proposed online adaptation frame-

work achieves a mutual adaptation of depth prediction and visual SLAM.

5.4.5 Online adaptation vs. relative depth prediction

A competing idea to our online adaption for resolving the domain gap in single-

image depth prediction is to train a network with a large number of datasets

across multiple domains to improve its generalization. Unlike absolute depth

prediction, which is trained in a narrow domain, state-of-the-art relative depth

prediction CNN models, such as MiDaS [82] and DiverseDepth [83], have been

trained on an extensive collection of datasets. Therefore, to compare between

online adapted depth and pre-trained depth prediction, we use the same scale-

invariant inverse depth error esi (see Equation 5.13).

Table 5.6 shows a quantitative comparison of the scale-invariant depth er-

rors of sparse SVO map points, MiDaS, DiverseDepth and our fine-tuned Mon-

odepth2 CNN model. On both sequences (2nd and 3rd column), our method

82

Figure 5.6: Qualitative comparisons between different correctness thresholds
used in map point (MP) culling: (a) no culling, (b) MP culling with α = 0.5,
(c) MP culling with α = 0.25 and (d) MP culling with α = 0.15.

83

Table 5.6: A comparison of scale-invariant depth errors of SVO [51] map points,
MiDaS [82], DiverseDepth [83] and our online adapted Monodepth2 [103] CNN
model.

esi
Method Lab1 Lab2

MiDaS (V2.1) 0.271 0.256
MiDaS (V3.0) 0.315 0.322
DiverseDepth 0.450 0.435
Pre-trained 0.401 0.399

Ours 0.226 0.197
† only the re-projected (sub)pixels

has the lowest scale-invariant inverse depth error in comparison with the rel-

ative depth prediction CNNs10 (MiDaS and DiverseDepth) (see Figure 5.7 for

a qualitative comparison). Due to the similarity between Lab1 and Lab2, the

depth prediction errors of MiDaS, DiverseDepth and pre-trained Monodepth2

are similar in both sequences. Conversely, our method can further boost the

depth prediction accuracy and SVO map point accuracy (see the last and 1st

row of Table 5.6) resulting from our proposed online adaptation. especially on

a longer sequence (Lab2).

5.4.6 Runtime evaluation

The two main time-consuming processes in our proposed online adaptation

framework are depth prediction and fine-tuning. On average, depth predic-

tion and one fine-tuning iteration take about 18 ms and 250 ms to process,

respectively. Incidentally, the global photometric BA time consumption varies

according to the total number of photometric re-projections between the map

points and keyframes, but real-time processing should not be affected as the

BA process itself runs on another thread.

5.5 Summary

The key takeaways of this chapter are as follows.

10For relative depth prediction to achieve maximum accuracy, accurate scale- and shift-
correction for each predicted depth map is required [83], [136]

84

Figure 5.7: A qualitative comparison of the back-projected point clouds (shown
in black) between (from left to right) ground truth depth with SVO map points
(in blue), MiDaS v2.1, MiDaS v3.0, DiverseDepth, pre-trained Monodepth2,
and our online adapted Monodepth2. From top to bottom: first and second
viewpoint of the back-projected depth maps and the predicted depth maps
by the aforementioned CNN models. Our proposed method’s overall online
adapted depth prediction accuracy compares favourably with MiDaS and Di-
verseDepth, which have been trained on an extensive collection of datasets.
The predicted depth maps are scaled to ground truth. Best viewed digitally.

85

• We propose a novel online adaptation framework consisting of two com-

plementary processes: a SLAM algorithm that is used to generate keyframes

to fine-tune the depth prediction and another algorithm that uses the

online adapted depth to improve map quality.

• Once the potential noisy map points are removed, we perform global

photometric bundle adjustment (BA) to improve the overall SLAM per-

formance.

• To perform online adaptation without catastrophic forgetting, we investi-

gate the effectiveness of EWC regularization in the online adaptation of

a depth prediction CNN, a single-task regression problem, as opposed to

heavily studied regularization in multi-task classification problems [137],

[138].

• Experimental results on both benchmark datasets and a real robot in

our own experimental environments show that our proposed method im-

proves the SLAM accuracy and that our online adapted depth prediction

CNN outperforms the state-of-the-art depth prediction CNNs that have

been trained on a large collection of datasets.

86

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have demonstrated the effectiveness of incorporating single-

image depth prediction to solve sparse and dense visual SLAM problems.

Through extensive experiments on datasets and our own experimental environ-

ment, the experimental results have indicated that our proposed contributions

excel in the following ways.

• In Chapter 3, we have improved the mapping of SVO [50], the state-of-

the-art semi-direct SLAM, by initializing the map points with low depth

uncertainty centred around the predicted depth from a single-depth pre-

diction CNN. The proposed method has two main advantages. First,

features can be matched effectively by limiting the search range along

their respective epipolar lines, assuming known camera poses. Second,

because the map points are initialized with low depth uncertainty, they

can converge to their true depth values effectively. The experimental

results have revealed improved camera tracking accuracy and robust-

ness with the improved mapping performance. For the benefit of the

robotics community, we have open-sourced this work, which is available

at https://github.com/yan99033/CNN-SVO.

• In Chapter 4, we have presented a real-time dense monocular SLAM

system that exploits the depth and depth gradient priors provided by

single-image relative depth prediction. Our system densifies a semi-

87

dense structure provided by LSD-SLAM through a GPU-based energy

minimization framework, of which the effectiveness of the error terms

in the cost function has been examined through an ablation study. Our

proposed adaptive filtering has been shown to remove spurious depth pix-

els in the semi-dense depth maps while preserving the structure, which

in turn improves the densification accuracy. To improve the dense re-

construction accuracy further, we have presented a method that uses

optimized depth maps to refine the keyframe poses. With accurate rela-

tive depth prediction on diverse scene types, the use of a relative depth

prediction CNN is a promising step towards dense scene reconstruction

in unconstrainted environments.

• In Chapter 5, we have addressed a practical robotics problem concerning

the use of single-image depth prediction to improve SLAM performance.

Notably, we have proposed a novel online adaptation framework in which

the fine-tuning is enhanced with regularization for retaining the previ-

ously learned knowledge while the CNN is being trained continually.

Also, we have demonstrated the use of fine-tuned depth prediction for

map point culling before running global photometric BA, resulting in im-

proved camera tracking and map reconstruction. Lastly, we have com-

pared our online adaptation framework against state-of-the-art depth

prediction CNNs that have been trained on a large number of datasets

across domains, showing that our online adapted depth prediction CNN

has a lower depth error, especially after performing online adaptation on

a long sequence.

6.2 Limitations and Future Work

As a concluding remark, we would like to shed some light on our work’s short-

comings and potential future research directions.

• Semi-direct and direct formulations in SLAM (e.g., SVO [50] and LSD-

SLAM [37]) are promising in a way that algorithms work directly on raw

88

image pixels instead of having another layer of feature description com-

putation in the algorithms. Although we have shown that single-image

depth prediction is able to facilitate feature matching and regularization

in the structure densification, the fundamental sparse and dense map-

ping problems could be improved. One way is to reformulate the sparse

and dense mapping problems as the optical flow problem, i.e., consid-

ering the whole image when performing correspondences between image

pixels [75], [139]. Alternatively, images can be projected to deep feature

space using CNNs for facilitating the convergence to global optima when

performing feature correspondence [140], [141]. After all, accurate and

efficient feature matching is one of the cornerstones of reliable visual

SLAM.

• We have been adopting modular approaches [130], [136], [142] to our

sparse and dense SLAM system designs. While having additional mod-

ules in existing SLAM systems are effective and easy to debug (from a

programmer’s point of view), such system designs might not be as ef-

ficient and accurate as well-integrated systems, e.g., BA-Net [140] and

DeepTAM [143]. The main difference between two design philosophies

is that the latter leverages datasets to learn structure and motion opti-

mizations by feedforwarding images through CNNs and backpropagat-

ing errors to iteratively optimizing camera poses and depth maps. In

contrast, the former typically contains separate modules for solving ded-

icated tasks (e.g., camera tracking, graph optimization and loop-closing

modules). Such fragmented designs can only be as strong as the weak-

est link, and our proposed contributions are designed to strengthen the

weak links. A hybrid approach, such as ∇SLAM [144] and DROID-

SLAM [145], which construct a fully differentiable computational graph

in a traditional modular design of SLAM, could be a better solution for

using deep learning to solve SLAM problems, alleviating the fragmenta-

tion issues in the modular design.

89

References

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: Part i,” IEEE robotics & automation magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[3] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision and
Applications, vol. 9, no. 1, pp. 1–11, 2017.

[4] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar,
C. Bermejo, and P. Hui, “All one needs to know about metaverse: A
complete survey on technological singularity, virtual ecosystem, and
research agenda,” arXiv preprint arXiv:2110.05352, 2021.

[5] A. Handa, T. Whelan, J. McDonald, and A. Davison, “A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM,” in IEEE
Intl. Conf. on Robotics and Automation, ICRA, Hong Kong, China,
May 2014.

[6] X. Qi, R. Liao, Z. Liu, R. Urtasun, and J. Jia, “Geonet: Geometric neu-
ral network for joint depth and surface normal estimation,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 283–291.

[7] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2462–2470.

[8] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Super-
glue: Learning feature matching with graph neural networks,” in Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 4938–4947.

90

[9] C. S. Weerasekera, Y. Latif, R. Garg, and I. Reid, “Dense monocular re-
construction using surface normals,” in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), IEEE, 2017, pp. 2524–
2531.

[10] Z. Min, Y. Yang, and E. Dunn, “Voldor: Visual odometry from log-
logistic dense optical flow residuals,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 4898–
4909.

[11] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, “Gcnv2: Efficient
correspondence prediction for real-time slam,” IEEE Robotics and Au-
tomation Letters, vol. 4, no. 4, pp. 3505–3512, 2019.

[12] N. Yang, R. Wang, J. Stuckler, and D. Cremers, “Deep virtual stereo
odometry: Leveraging deep depth prediction for monocular direct sparse
odometry,” in Proc. European Conference on Computer Vision (ECCV’18),
Amsterdam, The Netherlands: Springer, Sep. 2018, pp. 817–833.

[13] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, “D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,”
pp. 1281–1292, 2020.

[14] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davi-
son, “CodeSLAM-Learning a Compact, Optimisable Representation for
Dense Visual SLAM,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’18), IEEE, Salt Lake City, Utah, Jun.
2018.

[15] K. Tateno, F. Tombari, I. Laina, and N. Navab, “CNN-SLAM: Real-
time dense monocular SLAM with learned depth prediction,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17),
IEEE, Honolulu, Hawaii, Jul. 2017.

[16] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE conference on
computer vision and pattern recognition, IEEE, 2012, pp. 3354–3361.

[17] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km:
The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[18] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in European conference on
computer vision, Springer, 2012, pp. 746–760.

[19] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M.
Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor scenes,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 5828–5839.

91

[20] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and service
robotics, Springer, 2018, pp. 621–635.

[21] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual
Conference on Robot Learning, 2017, pp. 1–16.

[22] Nvidia. (). Omniverse isaac sim, [Online]. Available: https://docs.
omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.

html (visited on 11/19/2021).

[23] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (slam): Part ii,” IEEE robotics & automation magazine, vol. 13,
no. 3, pp. 108–117, 2006.

[24] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The slam problem: A
survey,” Artificial Intelligence Research and Development, pp. 363–371,
2008.

[25] S. Huang and G. Dissanayake, “Convergence and consistency analysis
for extended kalman filter based slam,” IEEE Transactions on robotics,
vol. 23, no. 5, pp. 1036–1049, 2007.

[26] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[27] K. P. Murphy et al., “Bayesian map learning in dynamic environ-
ments.,” in NIPS, 1999, pp. 1015–1021.

[28] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings of the 2005 IEEE international
conference on robotics and automation, IEEE, 2005, pp. 2432–2437.

[29] P. A. Gagniuc, Markov chains: from theory to implementation and ex-
perimentation. John Wiley & Sons, 2017.

[30] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The Interna-
tional Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203,
2006.

[31] M. Kaess, A. Ranganathan, and F. Dellaert, “Isam: Incremental smooth-
ing and mapping,” IEEE Transactions on Robotics, vol. 24, no. 6,
pp. 1365–1378, 2008.

[32] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, 2010.

92

[33] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM: A Ver-
satile and Accurate Monocular SLAM System,” IEEE Trans. Robot.,
vol. 31, no. 5, pp. 1147–1163, 2015.

[34] Y. Hou, H. Zhang, and S. Zhou, “Bocnf: Efficient image matching with
bag of convnet features for scalable and robust visual place recognition,”
Autonomous Robots, vol. 42, no. 6, pp. 1169–1185, 2018.

[35] X. Zhang, L. Wang, and Y. Su, “Visual place recognition: A survey from
deep learning perspective,” Pattern Recognition, vol. 113, p. 107 760,
2021.

[36] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual place recognition: A survey,” IEEE Trans-
actions on Robotics, vol. 32, no. 1, pp. 1–19, 2015.

[37] J. Engel, T. Schps, and D. Cremers, “LSD-SLAM: Large-scale Direct
Monocular SLAM,” in Proc. European Conference on Computer Vision
(ECCV’14), Zurich, Switzerland: Springer, Sep. 2014, pp. 834–849.

[38] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 3, pp. 611–625, 2018.

[39] H. Lim, J. Lim, and H. J. Kim, “Real-Time 6-DOF Monocular Vi-
sual SLAM in a Large-Scale Environment,” in Proc. IEEE Interna-
tional Conference on Robotics and Automation (ICRA’14), Hong Kong,
China: IEEE, May 2014, pp. 1532–1539.

[40] S. Song, M. Chandraker, and C. C. Guest, “Parallel, Real-Time Monoc-
ular Visual Odometry,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA’13), Karlsruhe, Germany: IEEE, May
2013, pp. 4698–4705.

[41] Z. Dai, X. Huang, W. Chen, L. He, and H. Zhang, “A comparison
of cnn-based and hand-crafted keypoint descriptors,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), IEEE, 2019,
pp. 2399–2404.

[42] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk, “From coarse
to fine: Robust hierarchical localization at large scale,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 12 716–12 725.

[43] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on information theory,
vol. 47, no. 2, pp. 498–519, 2001.

[44] R. Hartley and A. Zisserman, “Iterative estimation methods,” in Multi-
ple View Geometry in Computer Vision, 2nd ed. Cambridge University
Press, 2004, pp. 597–627. doi: 10.1017/CBO9780511811685.035.

93

[45] M. Servières, V. Renaudin, A. Dupuis, and N. Antigny, “Visual and
visual-inertial slam: State of the art, classification, and experimental
benchmarking,” Journal of Sensors, vol. 2021, 2021.

[46] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., Ieee, vol. 1, 2004,
pp. I–I.

[47] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE
robotics & automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[48] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality, IEEE, 2007, pp. 225–234.

[49] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in 2011 international conference
on computer vision, IEEE, 2011, pp. 2320–2327.

[50] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-Direct
Monocular Visual Odometry,” in Proc. IEEE International Conference
on Robotics and Automation (ICRA’14), Hong Kong, China: IEEE,
May 2014, pp. 15–22.

[51] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“Svo: Semidirect visual odometry for monocular and multicamera sys-
tems,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 249–265,
2016.

[52] X. Gao, R. Wang, N. Demmel, and D. Cremers, “Ldso: Direct sparse
odometry with loop closure,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 2198–
2204.

[53] M. Yokozuka, S. Oishi, S. Thompson, and A. Banno, “Vitamin-e: Vi-
sual tracking and mapping with extremely dense feature points,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 9641–9650.

[54] S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: A versatile
visual slam framework,” in Proceedings of the 27th ACM International
Conference on Multimedia, 2019, pp. 2292–2295.

[55] R. Munoz-Salinas and R. Medina-Carnicer, “Ucoslam: Simultaneous
localization and mapping by fusion of keypoints and squared planar
markers,” Pattern Recognition, vol. 101, p. 107 193, 2020.

[56] J. Zubizarreta, I. Aguinaga, and J. M. M. Montiel, “Direct sparse map-
ping,” IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1363–1370,
2020.

94

[57] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam sys-
tem for monocular, stereo, and rgb-d cameras,” IEEE transactions on
robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[58] C. Campos, R. Elvira, J. J. G. Rodŕıguez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Transactions on Robotics, 2021.

[59] Y.-M. Tsai, Y.-L. Chang, and L.-G. Chen, “Block-based vanishing line
and vanishing point detection for 3d scene reconstruction,” in 2006
international symposium on intelligent signal processing and communi-
cations, IEEE, 2006, pp. 586–589.

[60] C. Tang, C. Hou, and Z. Song, “Depth recovery and refinement from
a single image using defocus cues,” Journal of Modern Optics, vol. 62,
no. 6, pp. 441–448, 2015.

[61] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape-from-shading:
A survey,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 21, no. 8, pp. 690–706, 1999.

[62] Y. Ming, X. Meng, C. Fan, and H. Yu, “Deep learning for monocular
depth estimation: A review,” Neurocomputing, vol. 438, pp. 14–33, 2021.

[63] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for
dense prediction,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 12 179–12 188.

[64] Y. Kuznietsov, J. Stuckler, and B. Leibe, “Semi-supervised deep learn-
ing for monocular depth map prediction,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 6647–
6655.

[65] C. Godard, O. M. Aodha, and G. J. Brostow, “Unsupervised Monoc-
ular Depth Estimation with Left-Right Consistency,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’17),
IEEE, Honolulu, Hawaii, Jul. 2017.

[66] W. Yin, Y. Liu, C. Shen, and Y. Yan, “Enforcing geometric constraints
of virtual normal for depth prediction,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 5684–5693.

[67] R. Garg, V. K. Bg, G. Carneiro, and I. Reid, “Unsupervised cnn for
single view depth estimation: Geometry to the rescue,” in European
conference on computer vision, Springer, 2016, pp. 740–756.

[68] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learn-
ing of depth and ego-motion from video,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1851–
1858.

95

[69] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth,
optical flow and camera pose,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 1983–1992.

[70] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy,
and T. Brox, “Demon: Depth and motion network for learning monocu-
lar stereo,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5038–5047.

[71] X. Liu, A. Sinha, M. Unberath, M. Ishii, G. D. Hager, R. H. Tay-
lor, and A. Reiter, “Self-supervised learning for dense depth estima-
tion in monocular endoscopy,” in OR 2.0 Context-Aware Operating
Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based
Procedures, and Skin Image Analysis, Springer, 2018, pp. 128–138.

[72] M. Klodt and A. Vedaldi, “Supervising the new with the old: Learning
sfm from sfm,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 698–713.

[73] A. J. Amiri, S. Y. Loo, and H. Zhang, “Semi-supervised monocular
depth estimation with left-right consistency using deep neural net-
work,” in 2019 IEEE International Conference on Robotics and Biomimet-
ics (ROBIO), IEEE, 2019, pp. 602–607.

[74] W. Yin, Y. Liu, and C. Shen, “Virtual normal: Enforcing geometric con-
straints for accurate and robust depth prediction,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2021.

[75] J. Kopf, X. Rong, and J.-B. Huang, “Robust consistent video depth
estimation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 1611–1621.

[76] F. Aleotti, F. Tosi, M. Poggi, and S. Mattoccia, “Generative adversarial
networks for unsupervised monocular depth prediction,” in Proceedings
of the European Conference on Computer Vision (ECCV) Workshops,
2018.

[77] V. Guizilini, R. Ambrus, S. Pillai, A. Raventos, and A. Gaidon, “3d
packing for self-supervised monocular depth estimation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 2485–2494.

[78] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao, “Deep ordi-
nal regression network for monocular depth estimation,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 2002–2011.

[79] S. F. Bhat, I. Alhashim, and P. Wonka, “Adabins: Depth estimation
using adaptive bins,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 4009–4018.

96

[80] D. Zoran, P. Isola, D. Krishnan, and W. T. Freeman, “Learning ordinal
relationships for mid-level vision,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 388–396.

[81] W. Chen, Z. Fu, D. Yang, and J. Deng, “Single-image depth perception
in the wild,” in Advances in neural information processing systems,
2016, pp. 730–738.

[82] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “To-
wards robust monocular depth estimation: Mixing datasets for zero-
shot cross-dataset transfer,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2020.

[83] W. Yin, X. Wang, C. Shen, Y. Liu, Z. Tian, S. Xu, C. Sun, and D.
Renyin, “Diversedepth: Affine-invariant depth prediction using diverse
data,” arXiv preprint arXiv:2002.00569, 2020.

[84] A. Concha and J. Civera, “Dpptam: Dense piecewise planar tracking
and mapping from a monocular sequence,” in 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), IEEE,
2015, pp. 5686–5693.

[85] A. Argiles, J. Civera, and L. Montesano, “Dense multi-planar scene es-
timation from a sparse set of images,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2011, pp. 4448–
4454.

[86] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Reconstruct-
ing building interiors from images,” in 2009 IEEE 12th International
Conference on Computer Vision, IEEE, 2009, pp. 80–87.

[87] D. Gallup, J.-M. Frahm, P. Mordohai, Q. Yang, and M. Pollefeys, “Real-
time plane-sweeping stereo with multiple sweeping directions,” in 2007
IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
2007, pp. 1–8.

[88] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, P. Mordohai, B.
Clipp, C. Engels, D. Gallup, S.-J. Kim, P. Merrell, et al., “Detailed
real-time urban 3d reconstruction from video,” International Journal
of Computer Vision, vol. 78, no. 2-3, pp. 143–167, 2008.

[89] T. Laidlow, J. Czarnowski, and S. Leutenegger, “Deepfusion: Real-time
dense 3d reconstruction for monocular slam using single-view depth and
gradient predictions,” in 2019 International Conference on Robotics and
Automation (ICRA), IEEE, 2019, pp. 4068–4074.

[90] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgib-
bon, “Scene coordinate regression forests for camera relocalization in
rgb-d images,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 2930–2937.

97

[91] H. Alismail, B. Browning, and S. Lucey, “Photometric bundle adjust-
ment for vision-based slam,” in Asian Conference on Computer Vision,
Springer, 2016, pp. 324–341.

[92] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Contin-
ual lifelong learning with neural networks: A review,” Neural Networks,
vol. 113, pp. 54–71, 2019.

[93] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, J. Barreto, et al.,
“Camera models and fundamental concepts used in geometric computer
vision,” Foundations and Trends® in Computer Graphics and Vision,
vol. 6, no. 1–2, pp. 1–183, 2011.

[94] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for omni-
directional cameras,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 141–148.

[95] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 11,
pp. 1330–1334, 2000.

[96] B. C. Hall et al., Lie groups, Lie algebras, and representations: an ele-
mentary introduction. Springer, 2003, vol. 10.

[97] J.-L. Blanco, “A tutorial on se (3) transformation parameterizations
and on-manifold optimization,” University of Malaga, Tech. Rep, vol. 3,
p. 6, 2010.

[98] H. Strasdat, “Local accuracy and global consistency for efficient visual
slam,” PhD thesis, Department of Computing, Imperial College Lon-
don, 2012.

[99] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G 2 o: A general framework for graph optimization,” in 2011 IEEE
International Conference on Robotics and Automation, IEEE, 2011,
pp. 3607–3613.

[100] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment—a modern synthesis,” in International workshop
on vision algorithms, Springer, 1999, pp. 298–372.

[101] T. D. Barfoot, State estimation for robotics. Cambridge University
Press, 2017.

[102] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[103] C. Godard, O. Mac Aodha, M. Firman, and G. J. Brostow, “Digging
into self-supervised monocular depth estimation,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019,
pp. 3828–3838.

98

[104] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation
and their principles,” in 2010 IEEE computer society conference on
computer vision and pattern recognition, IEEE, 2010, pp. 2432–2439.

[105] G. Vogiatzis and C. Hernández, “Video-based, real-time multi-view
stereo,” Image Vis. Comput., vol. 29, no. 7, pp. 434–441, 2011, issn:
0262-8856.

[106] W. N. Greene and N. Roy, “Metrically-scaled monocular slam using
learned scale factors,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2020, pp. 43–50.

[107] R. Wang, M. Schworer, and D. Cremers, “Stereo dso: Large-scale di-
rect sparse visual odometry with stereo cameras,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017, pp. 3903–
3911.

[108] R. A. Newcombe and A. J. Davison, “Live dense reconstruction with a
single moving camera,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, IEEE, 2010, pp. 1498–1505.

[109] J. Stühmer, S. Gumhold, and D. Cremers, “Real-time dense geometry
from a handheld camera,” in Joint Pattern Recognition Symposium,
Springer, 2010, pp. 11–20.

[110] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Sixth international conference on computer vision (IEEE
Cat. No. 98CH36271), IEEE, 1998, pp. 839–846.

[111] C. Liu, J. Gu, K. Kim, S. G. Narasimhan, and J. Kautz, “Neural rgb (r)
d sensing: Depth and uncertainty from a video camera,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 10 986–10 995.

[112] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “Deepfactors:
Real-time probabilistic dense monocular slam,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 2, pp. 721–728, 2020.

[113] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” in Advances in neural
information processing systems, 2014, pp. 2366–2374.

[114] J. T. Barron, “A general and adaptive robust loss function,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 4331–4339.

[115] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.

99

d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.

[116] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in NeurIPS Workshop, 2017.

[117] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[118] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proc. of the
International Conference on Intelligent Robot Systems (IROS), Oct.
2012.

[119] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab,
“Deeper depth prediction with fully convolutional residual networks,”
in 2016 Fourth international conference on 3D vision (3DV), IEEE,
2016, pp. 239–248.

[120] J. Engel, V. Usenko, and D. Cremers, “A photometrically calibrated
benchmark for monocular visual odometry,” arXiv preprint arXiv:1607.02555,
2016.

[121] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–
1163, 2016.

[122] M. Knowles, V. Peretroukhin, W. N. Greene, and N. Roy, “Toward ro-
bust and efficient online adaptation for deep stereo depth estimation,”
in International Conference on Robotics and Automation (ICRA), IEEE,
2021.

[123] Y. Kuznietsov, M. Proesmans, and L. Van Gool, “Comoda: Continuous
monocular depth adaptation using past experiences,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), Jan. 2021, pp. 2907–2917.

[124] H. Luo, Y. Gao, Y. Wu, C. Liao, X. Yang, and K.-T. Cheng, “Real-time
dense monocular slam with online adapted depth prediction network,”
IEEE Transactions on Multimedia, vol. 21, no. 2, pp. 470–483, 2018.

[125] Z. Zhang, S. Lathuilière, E. Ricci, N. Sebe, Y. Yan, and J. Yang, “Online
depth learning against forgetting in monocular videos,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020, pp. 4494–4503.

100

[126] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al., “Overcoming catastrophic forgetting in neural networks,” Pro-
ceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[127] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
“Memory aware synapses: Learning what (not) to forget,” in Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018,
pp. 139–154.

[128] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synap-
tic intelligence,” in International Conference on Machine Learning,
PMLR, 2017, pp. 3987–3995.

[129] D. Maltoni and V. Lomonaco, “Continuous learning in single-incremental-
task scenarios,” Neural Networks, vol. 116, pp. 56–73, 2019.

[130] S. Y. Loo, A. J. Amiri, S. Mashohor, S. H. Tang, and H. Zhang, “Cnn-
svo: Improving the mapping in semi-direct visual odometry using single-
image depth prediction,” in 2019 International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 5218–5223.

[131] N. Demmel, M. Gao, E. Laude, T. Wu, and D. Cremers, “Distributed
photometric bundle adjustment,” in 2020 International Conference on
3D Vision (3DV), IEEE, 2020, pp. 140–149.

[132] L. Prechelt, “Early stopping-but when?” In Neural Networks: Tricks of
the trade, Springer, 1998, pp. 55–69.

[133] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?” Advances in neural information
processing systems, vol. 30, 2017.

[134] F. Kunstner, P. Hennig, and L. Balles, “Limitations of the empirical
fisher approximation for natural gradient descent,” Advances in neural
information processing systems, vol. 32, 2019.

[135] L. Tiwari, P. Ji, Q.-H. Tran, B. Zhuang, S. Anand, and M. Chandraker,
“Pseudo rgb-d for self-improving monocular slam and depth predic-
tion,” in European Conference on Computer Vision, Springer, 2020,
pp. 437–455.

[136] S. Y. Loo, S. Mashohor, S. H. Tang, and H. Zhang, “Deeprelativefusion:
Dense monocular slam using single-image relative depth prediction,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2021, pp. 6641–6648.

[137] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defy-
ing forgetting in classification tasks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

101

[138] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Contin-
ual lifelong learning with neural networks: A review,” Neural Networks,
vol. 113, pp. 54–71, 2019.

[139] T. Ke, T. Do, K. Vuong, K. Sartipi, and S. I. Roumeliotis, “Deep multi-
view depth estimation with predicted uncertainty,” in 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, 2021,
pp. 9235–9241.

[140] C. Tang and P. Tan, “Ba-net: Dense bundle adjustment networks,” in
International Conference on Learning Representations, 2018.

[141] X. Gu, W. Yuan, Z. Dai, C. Tang, S. Zhu, and P. Tan, “Dro: Deep recur-
rent optimizer for structure-from-motion,” arXiv preprint arXiv:2103.13201,
2021.

[142] S. Y. Loo, M. Shakeri, S. H. Tang, S. Mashohor, and H. Zhang, Online
mutual adaptation of deep depth prediction and visual slam.

[143] H. Zhou, B. Ummenhofer, and T. Brox, “Deeptam: Deep tracking and
mapping,” in Proceedings of the European conference on computer vi-
sion (ECCV), 2018, pp. 822–838.

[144] K. M. Jatavallabhula, G. Iyer, and L. Paull, “Gradslam: Dense slam
meets automatic differentiation,” in 2020 IEEE International Confer-
ence on Robotics and Automation (ICRA), IEEE, 2020, pp. 2130–2137.

[145] Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monocular,
stereo, and rgb-d cameras,” in Thirty-Fifth Conference on Neural In-
formation Processing Systems, 2021.

[146] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with
application to planetary landing,” Journal of Field Robotics, vol. 27,
no. 5, pp. 587–608, 2010.

102

Appendix A

Online adaptation regularization

Regularization is a way to prevent catastrophic forgetting in the online adap-

tation of single-image depth prediction. Here, we present three regularization

techniques: elastic weight consolidation (EWC) (Section A.1), synaptic intel-

ligence (SI) and memory aware synapses (MAS) (Section A.2).

A.1 Adapted EWC regularization for single-

task regression problem

To perform online adaptation incrementally on a single task, we measure and

consolidate the importance of the CNN parameters at each iteration, allowing

for the preservation of learned knowledge. The EWC loss comprises the train-

ing loss and a regularizer to fine-tune the CNN parameters while preserving

the important parameters measured through consolidation.

Formally, let E be the loss function of the problem at hand and assuming

E to be locally smooth. we may expand the function about θ0 using Taylor

series approximation:

E(θ) = E(θ0) + Jθ(θ0)(θ − θ0)

+
1

2!
(θ − θ0)

THθ(θ0)(θ − θ0) + h.o.t, (A.1)

where Jθ(θ0) and Hθ(θ0) are the Jacobian and Hessian of E evaluated at θ0,

respectively. Assume that the CNN is fine-tuned on old data T1, which implies

that θ0 would be at a local minimum (denoted by θ∗T1) and that E ′(θ∗T1) = 0,

103

we can rewrite Equation A.1 as

ET1(θ) ≈ E(θ∗T1) +
1

2!
(θ − θ∗T1)

THθ(θ
∗
T1)(θ − θ∗T1) (A.2)

where ET1 is the approximated error for old data T1. Next, to fine-tune the

CNN on recent data T2, we can use the following loss function:

E(θ) = ET2(θ) + βET1(θ), (A.3)

where β controls the weighting between the two loss terms. Substituting Equa-

tion A.2 into Equation A.3, we get

E(θ) = ET2(θ) + β
(
E(θ∗T1) +

1

2
(θ − θ∗T1)

THθ(θ
∗
T1)(θ − θ∗T1)

)
= ET2(θ) +

β

2

(
(θ − θ∗T1)

THθ(θ
∗
T1)(θ − θ∗T1)

)
, (A.4)

in which the first term of Equation A.2 is being treated as a constant and

can be eliminated in the optimization. To measure the importance of the pa-

rameters contained in the Hessian matrix, Kirkpatrick et al. approximate the

Gaussian distribution of the posterior with Laplace approximation, whereby

diagonal of the Fisher information matrix replaces the Hessian matrix for the

approximation of the posterior [126]:

E(θ) = ET2(θ) +
β

2

(∑
i

Fi(θi − θ∗T1,i)
2
)
. (A.5)

A.2 SI and MAS regularizations

Similar to EWC regularization [126], SI and MAS can be expressed using the

following loss function:

L = Ltrain + λ
∑
i

Ωi(θi − θ∗i)
2, (A.6)

with the main difference being the estimation of the weight importance matrix,

Ωi. For MAS, the weight importance matrix is given by the gradient of the

squared L2-norm of the CNN output function, G [127]:

Ωi =
1

N

N∑
j=1

∂ ‖G(xj; θ)‖22
∂θi

, (A.7)

104

whereas for SI, the weight importance matrix is given by [128]:

Ωi =
∑
j

ωij

(Δθij)2 + ξ
, (A.8)

where ωij is the estimated per-parameter contribution to the total loss, and

Δθij the total trajectory of the parameter.

105

Appendix B

Visual SLAM with factor graph
optimization

Visual SLAM can be formulated as a factor graph optimization problem. In

this thesis, we consider two types of factor graph optimization: photometric

bundle adjustment (Section B.1) and pose-graph optimization (Section B.2).

Let us consider a toy problem of visual SLAM (shown in Figure B.1) in which

the solution (i.e., the optimal keyframe poses and map point positions) is

constrained by the photometric re-projection factors and the odometry factors.

B.1 Photometric bundle adjustment

Photometric BA seeks to minimize the photometric re-projection errors defined

by the photometric re-projection factors, as shown in Figure B.2. Formally, let

the optimizable parameters be the keyframe poses T = {T1,T2, . . . ,Tn} and

map points X = {x1,x2, . . . ,xm}, where n and m are the number of keyframe

poses and map points, respectively (according to Figure B.2, n and m would

be 3 and 4, respectively). The maximum likelihood estimation of T and X

can be solved by minimizing the least-squares errors from the photometric

re-projection factors:

argmin
{Ti},{Xj}

1

2

m∑
j=1

∑
i∈S(j)

‖eij‖22, (B.1)

106

Figure B.1: Factor graph for optimizing the keyframe poses (blue nodes) and
map points (red nodes) in visual SLAM. The green squares are the photometric
re-projection factors, and grey squares the odometry factors.

Figure B.2: Factor graph for solving photometric BA in which photometric
re-projection factors (Ephoto

(·,·)) are defined by projecting the map points (MPs)

to their observable keyframes (KFs).

107

S(·) a set of keyframes observing xj, and eij the photometric residuals between

the reference image patch and the projected image patch:

eij = Ij(p)− Ii(p
′), (B.2)

with

p′ = π(Rixj + ti). (B.3)

Further, p′ is the re-projected image coordinates of xj with the keyframe pose1

Ti ∈ SE(3), where

Ti =

[
Ri ti
01×3 1

]
. (B.4)

Iterative optimization of parameters

To iteratively optimize the map point locations as well as the keyframe poses

over the SE(3) manifold, we make two following assumptions:

1. the total photometric error (in Equation B.1) has at least one well-

defined minimum, and

2. the initial estimate of u (also known as u(0)) is close to a minimum.

Equation B.2 can be expressed more generally using the measurement function

f and the corresponding variables uij =
[
Ti xj

]T
and reference image patch

yj for calculating the photometric residuals eij:

eij = yj − f(uij). (B.5)

Therefore, we may rewrite Equation B.1 as

argmin
x

‖y − f(u(0))‖22 = argmin
x

‖e(u(0))‖22, (B.6)

where y = [y1, . . . ,ym]
T the vector containing the reference image patch, u =

[T1, . . . ,Tn,x1, . . . ,xm]
T the vector containing the optimizable parameters,

and e(u(0)) = e(0) = [e11, . . . , enm]
T the stacked photometric errors by the

1Here we use SE(3) camera pose as an example. However, the steps described for solving
photometric BA should be able to generalize to Sim(3) camera pose.

108

initial estimation u(0). We seek an incremental step u(1) ← u(0) + Δ(0) that

minimizes the total photometric error, i.e,

argmin
x

‖e(u(1))‖22 (B.7)

= argmin
Δ

‖e(u(0) +Δ(0))‖22 (B.8)

≈ argmin
Δ

‖e(u(0)) + JeΔ
(0)‖22 (B.9)

= argmin
Δ

‖e(0) + JeΔ
(0)‖22 (B.10)

= argmin
Δ

e(0)Te(0) + 2Δ(0)TJee
(0) +Δ(0)TJT

e JeΔ
(0), (B.11)

where Je =
∂e
∂x

is the Jacobian of the energy function e evaluated at u(0). The

increment vector Δ(0) can be obtained as follows

2Jee
(0) + 2JT

e JeΔ
(0) = 0 (B.12)

Δ(0) = (JT
e Je︸ ︷︷ ︸
=:H

)−1 (−JT
e e

(0))︸ ︷︷ ︸
=:b

, (B.13)

which is used to iteratively update the parameters:

x(i+1) ← x(i) +Δ(i) (B.14)

until the solution has converged to a local minimum. Note that H is the

Hessian matrix, the second derivative of e, and using JT
e Je to approximate

the Hessian is also known as the Gauss-Newton method [44]. For the iterative

update of keyframe poses, we adopt the left-multiplication convention, which

is given by

T(i+1) = Δ
(i)
ξ �T(i) (B.15)

= exp(Δ
(i)
ξ)T(i), (B.16)

where � : se(3) × SE(3) → SE(3) is the left-multiplication operator for the

camera parameter increment, and exp : se(3) → SE(3) is the exponential map.

Leveraging the sparsity of the Hessian matrix

Figure B.3 displays the underlying structure of the Jacobian and Hessian

matrices. Instead of computing the inverse of the Hessian matrix in Equa-

tion B.13, we divide the Hessian matrix into sub-blocks to solve the system of

109

Figure B.3: Jacobian and Hessian matrices of the energy function. The ma-
trices are fill with zeros except for the white blocks.

linear equations, i.e.,

H =

[
A B
BT C

]
. (B.17)

Thus, we can solve the system of linear equations HΔ = b (from Equa-

tion B.13) by performing a Gauss elimination on H as follows:[
A B
BT C

] [
ΔT

ΔX

]
=

[
b1

b2

]
(B.18)[

I −BC−1

0 I

] [
A B
BT C

] [
ΔT

ΔX

]
=

[
I −BC−1

0 I

] [
b1

b2

]
(B.19)[

A−BC−1BT 0
BT C

] [
ΔT

ΔX

]
=

[
b1 −BC−1b2

b2

]
. (B.20)

We can first solve for the camera parameter increment (ΔT)

(A−BC−1BT)ΔT = b1 −BC−1b2, (B.21)

which is in turn used to solve for the map parameter increment (ΔX). In

practice, the number of map points is far greater than the number of keyframes

(m >> n), hence a much larger submatrix C. However, C is a block diagonal

matrix, and its inverse can be carried out very efficiently. The partitioning of

the Hessian matrix and leveraging the sparsity of the matrix is also known as

the Schur complement trick for optimizing a large number of parameters in

sparse SLAM problems [100], [146].

110

Weighted iterative estimation

Furthermore, one can increase the quality of the solution by weighting the pho-

tometric re-projection errors appropriately by introducing a positive-definite

symmetric matrixWe containing the weighting of the photometric re-projection

factors to the system of linear equations:

JT
eWeJe = JT

eWeb. (B.22)

In practice, the weighting of the photometric re-projection factors can be cal-

culated using a robust kernel function (e.g., Huber and Tukey norms).

B.2 Pose-graph optimization

On the other hand, pose-graph optimization seeks to minimize the keyframe

pose errors defined by the odometry factors, as shown in Figure B.4. The

maximum likelihood estimation of the keyframe poses T = {T1,T2, . . . ,Tn},
where n is the number of keyframes, can be solved by minimizing the least

squares errors from the odometry factors:

argmin
{Ti}

n∑
i=1

∑
j∈εi

eTijeij, (B.23)

where εi is a set of odometry constraints from the i-th keyframe and eij the

odometry error between the two constrained keyframe poses:

eij = ξji ◦ ξ−1
i ◦ ξj (B.24)

= log(T−1
ij T

−1
i Tj) (B.25)

where log : SE(3) → se(3) is the logarithmic mapping from a SE(3) keyframe

pose (Ti,Tj,Tij ∈ Sim(3)) to its corresponding Lie algebra pose (ξi, ξj, ξij ∈
se(3)). Tij and its corresponding ξij are an odometry constraint, and ◦ is the

pose concatenation operator. The total pose-graph energy can be iteratively

minimized using the Gauss-Newton or Levenberg-Marquardt method, similar

to the steps elucidated in Section B.1.

111

Figure B.4: Factor graph for optimizing the keyframe (KF) poses on the odom-
etry constraints (from the odometry factors).

Weighted iterative estimation

Similar to photometric BA, odometry constraints can also be weighted accord-

ing to their uncertainties:

argmin
{Ti}

n∑
i=1

∑
j∈εi

eTijΣ
−1
ij eij, (B.26)

where the pose uncertainty Σij may be obtained from the inverse of the Hes-

sian (JTWJ)−1 from the last iteration of the camera tracking [37] or a pose

uncertainty prediction CNN [13].

112

