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Abstract

This study of bound states composed of short-lived particles (i.e., positron and muon)

serves a common purpose to describe their bound properties precisely. The calculation of a

scattering amplitude can be lengthy and cumbersome when we have a specific spin preference

and many Feynman diagrams. We introduce a simple technique of constructing matrices

from the spinor product in the amplitudes that can reduce the number of terms saving a

significant amount of time. The decay rates of positronium atom and positronium ion have

been reproduced to verify this method. The decay rate of the two-photon annihilation of

di-positronium molecule is also calculated for the first time including all contributions from

the tree level Feynman diagrams. On the other hand, neutrino oscillation has motivated

physicists to look for charged lepton flavor violation (CLFV). The Standard Model prediction

for CLFV is too small to detect in an experiment; thus any trace of this violation will require

new physics. One of the important backgrounds of muon-electron conversion is the weak

decay in a muonic atom. The bound muon decay rate has been analytically evaluated with

approximations when the decay electron is bound in the atom. The decay rate has vanishing

features at two extreme points which have been explained.
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Chapter 1

Introduction

Quantum Electrodynamics (QED) is the quantum theory of the electromagnetic inter-
action. The notion of antiparticle first emerged from QED in 1930s. A particle and its
antiparticle can annihilate each other, also known as the pair annihilation. Positron is the
antiparticle of an electron; in other words, it is a positively charged electron. If a proton in an
atom is replaced by a positron, the positron will annihilate with one of the bound electrons.
Such annihilation is inevitable, since every electron shell has s-orbital (� = 0) filled out at
first, and s-orbital electrons can be found at the point nucleus (r = 0 point) because the
wave function ψn,�=0(r = 0) �= 0 unlike other orbitals. Thus, an exotic atom is produced
which decays into photons and/or another stable atom.

In experiments, a few simple exotic bound states consisting of positrons have been
found e.g., positronium (Ps), positronium ion (Ps±), positronium hydride (PsH), and di-
positronium molecule (Ps2). The calculation for their decay rates up to the leading-order
can be performed using QED. As the tree level Feynman diagrams have no loops, there is
no divergent integral encountered at this level. Gamma matrix algebra is sufficient to find
the corresponding decay rates. The decay rates of Ps, Ps−, and Ps2 have been computed in
Chapters 2 and 3. We introduce a trick that combines the spinors in the amplitude term
and represent the amplitude as a trace of a product of gamma matrices. This makes the
calculation much simpler and faster to do. The known decay rates of Ps and Ps− have been
reproduced by this method in Chapter 2. Chapter 3 gives the decay rate of Ps2 decaying to
two photons, which has not been computed considering all Feynman diagram to the leading
order until now.

Thanks to the spinor trick we used, these calculations are greatly simplified compared to
what had been done previously. For example, sixty-four terms were computed for Ps− in [4],
whereas only eight terms were evaluated for the same problem in Chapter 2. As the number
of terms reduces, we can even do the calculation by hand.
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Chapter 4 and 5 concerns a problem of bound muon decay. The motivation to explore
the decay nature of bound muon decay originates from the search for charged lepton flavor
violation. Muon is the optimal particle to exhibit flavor violation due to its various properties
(lifetime, production). Neutrino oscillation provides the ground for μ− e conversion, but the
conversion rate according to the Standard Model is largely suppressed by neutrino masses.
Therefore, μ− e conversion rate predicted by the established theory goes beyond the current
observation limit. If it is still found in experiments, we will need new physics to answer why
the conversion is within the experimental sensitivity. A brief summary of the premise of these
experiments is given in Chapter 4.

COMET and Mu2e are two experiments that will search for μ−e conversion with O(10−17)

sensitivity. Since it is a rare process, it is essential to remove any intrinsic background that
is in the same order of the conversion. A significant background is muon decay in the atomic
orbit. When a muon beam is bombarded on a target, a muonic atom will be formed. The
muonic decay into an electron has the same time distribution as the conversion signal. This
serves as the motivation to study bound muon decay.

A bound muon can decay into either a free electron or a bound electron. It has been found
that the decay probability of a bound electron has larger contribution from the negative
energy component of the bound muon state than previously estimated [3]. This surprising
discovery calls for a careful investigation on bound-to-bound decay. It is crucial to understand
the bound-to-bound decay behaviour to explain the finding of the paper. The decay rate is
expressed as a single integral in [3], which is approximately computed in Chapter 5. The
decay rate vanishes for both small and large values of atomic number (Z) of the atom, and
this property has been explained in that chapter as well.

In summary, this thesis describes Ps species decay and bound muon decay. Although
their aspects are different in nature, both projects have a common theme to understand the
precise description of bound states governed by QED.
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Chapter 2

Decay Rates of Ps and Ps−

2.1 Introduction

Ps is a two-body bound state of an electron and a positron. Being an antimatter-matter
system, this exotic hydrogen-like atom annihilates into photons. Calculation of the decay
rate of this two-body system has been performed [5]. It has been of interest to compute
decay rates of similar exotic systems consisting of electrons and positrons, that can be found
as bound states in Nature. Two examples are Ps± and Ps2. They have been found to exist
in experiments [6, 7].

Electron and positron annihilate each other in a Ps atom and converts into photons.
However, due to the conservation of 4-momentum, single photon annihilation is not possible
for Ps atom. Since Ps± has an extra electron (or positron), it can emit a single photon in
addition to multi-photon emission from the electron-positron pair annihilation. It motivated
physicists to compute this one-photon decay channel for Ps±. It was done by Kryuchkov [4]
for the first time accounting for all Feynman diagrams that contribute in the leading order.

In this chapter, we will reproduce the decay rates of para-positronium and Ps− using a
simple technique by expressing spinors in terms of gamma matrices. We will also explain
the symmetry factors due to the identical particles in detail. Using the same mathematical
machineries, we will compute the decay rate for Ps2 in the following chapter.

2.2 Para-positronium Annihilation

The 1s state of Ps atom can decay into photons, where the number of photons depends
on the initial spin, S. Thus, the ortho-positronium (o-Ps) (S = 1) annihilates into an odd
number of photons, while the para-positronium (p-Ps) (S = 0) into an even number. This
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section will show the calculation of the decay rate of p-Ps into two photons to the leading
order of α. We use natural units, � = c = 1.

2.2.1 Amplitudes

In p-Ps atom, the electron and the positron can annihilate each other and produce two
photons, e+e− → γγ. Crossing two photons generates two Feynman diagrams as shown
in Fig. 2.1. Each diagram for a multi-particle interaction corresponds to a probability
amplitude, and observables (e.g., decay rate and scattering cross-section) are computed from
the the sum of the amplitudes.

Figure 2.1: Feynman diagrams representing electron-positron pair annihilation to two pho-
tons, e+e− → γγ.

The amplitudes are,

M1 = iv̄(p2) (ie�ε
�(k2))

i

��p1−��k1−m
(ie�ε

�(k1)) u(p1),

M2 = iv̄(p2) (ie�ε
�(k1))

i

��p1−��k2−m
(ie�ε

�(k2)) u(p1),
(2.1)

where u and v are the electron and positron spinors, respectively. The adjoint spinor v̄ = v†γ0,
and εμ is the polarization vector of a photon. pi and ki stand for incoming and outgoing
momenta, respectively. We use the Feynman slash notation, �p = γμpμ where the Einstein
summation is implied.

In the next step, M1 and M2 have to be evaluated. Since the p-Ps state is a spin singlet
state, we have to substitute spinors with specific spins and perform the matrix multiplication
in M1,2. However, the calculation gets tedious if we have more amplitudes in similar problems
with specific spin condition. Therefore, a simple alternative, that can reduce the intricacy of
the calculation, will be much desirable.
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The amplitude is a product of two current terms that have gamma matrices sandwiched
between a spinor and an adjoint spinor. We can rearrange the spinors in a current term as
a matrix in the following way. Let s1 and s2 be two spinors, and they are connected with a
matrix M in a current. The current term can be written as a trace,

s̄2Ms1 = (s̄2)i Mij (s1)j = (s1)j (s̄2)i Mij = (s1s̄2)ji Mij = Tr(s1s̄2M). (2.2)

The indices follow the Einstein summation. This implies M1,2 can be calculated as a multi-
plication of two traces. Eq. (2.2) is the key idea to calculate the amplitudes with preferred
spin states. We know that any 4×4 matrices can be expressed in terms of gamma matrices.
Therefore, we only need to find the gamma matrix representation of s1s̄2 for specific spins
and use them to evaluate the amplitudes.

Electron and positron spinors are (first order approximation discarding momentum de-
pendent terms O(pi

n))

u↑ =
√
2m

⎛
⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎠ , u↓ =

√
2m

⎛
⎜⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎟⎠ , v↑ =

√
2m

⎛
⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎠ , v↓ =

√
2m

⎛
⎜⎜⎜⎜⎝

0

0

−1

0

⎞
⎟⎟⎟⎟⎠ , (2.3)

where m is the mass of electron (positron), and the subscript ↑(↓) specifies spin up (down).
The matrix representation of all possible s1s̄2’s is given in table 2.1.

Table 2.1: s1s̄2-like spinor products in terms of gamma matrices (Dirac representation). u
and v stand for electron and positron spinors, and their subscripts imply spin up (↑) and
down (↓).

s1s̄2 gamma matrices presentation
u↑u↑
2m

1
8
(1 + γ0) (γ5 + γ3) (γ5 − γ3) γ0

u↓u↓
2m

1
8
(1 + γ0) (γ5 − γ3) (γ5 + γ3) γ0

u↑u↓
2m

−1
4
(γ5 + γ3) (γ1 + iγ2) γ0

u↓u↑
2m

−1
4
(γ5 − γ3) (γ1 − iγ2) γ0

u↑v↑
2m

1
4
(1 + γ0) (γ1 + iγ2) γ0

u↓v↓
2m

−1
4
(1 + γ0) (γ1 − iγ2) γ0

u↑v↓
2m

−1
4
(1 + γ0) (γ5 + γ3) γ0

u↓v↑
2m

1
4
(1 + γ0) (γ5 − γ3) γ0
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The total amplitude, M = M1+M2 is computed using FORM [8]. The electron-positron
pair forms a singlet state, (↑↓ − ↓↑)/√2. Transition amplitudes for ↑↓ and ↓↑ differ by a
sign only,

M↑↓ = −M↓↑ = 2e2 (2.4)

where, e is the charge of the positron (e > 0). These amplitudes correspond to the emission
of two right-handed photons. Therefore, the singlet amplitude for two right-handed photons
is

M(e+e− → γRγR) =
M↑↓ −M↓↑√

2
= 2

√
2e2. (2.5)

This is the amplitude when initial state is a pair of free electron and positron. If they form
a bound state, the effective amplitude will be depend on the wave function, as we will see in
the next subsection.

2.2.2 Bound State Amplitude

A bound state can be described as a superposition of free states with different momenta
as it is shown in Eq. (5.43) in [9]. Then we can compute the bound state amplitude from
the free state superposition of the bound state.

From [9], we can write,

|p-Ps〉 =
√
2M

∫
d3k

(2π)3
ψ̃(k)

|free e+e−〉√
2m

√
2m

, (2.6)

where M is the mass of a Ps atom.
√
2m in the denominator comes from the normalization

of the spinors. The bound state amplitude is given by

M(p-Ps → γRγR) =
√
2E

∫
d3k

(2π)3
ψ̃(k)

M(e+e− → γRγR)√
2E1

√
2E2

(2.7)

where
ψ̃(k) =

∫
d3xψ(x)eik.x (2.8)

and Ei =
√
p2
i +m2, energy of the positron and electron. Since the particles in the atom are

non-relativistic, we can drop O(
p2
i

m2 ) terms and get E1 = E2 ≈ m. We evaluate the amplitude
in Eq. (2.7) and get
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M(p-Ps → γRγR) =

√
2M

2m
M(e+e− → γRγR)

∫
d3xψ(x)

∫
d3k

(2π)3
eik.x (2.9)

=

√
2M

2m
× 2

√
2e2 ×

∫
d3xψ(x)δ(x) (2.10)

=

√
2M

m

√
2e2ψ(0), (2.11)

where ψ(0) is the value of the wave function at origin.
Eq. (2.11) tells us that when O(

p2
i

m2 ) correction ignored, the bound state amplitude de-
pends on ψ(0), the probability of both particles meeting at the same point (i.e. the relative
distance is zero).

2.2.3 Decay Rate

The decay rate is calculated integrating the probability density |M| 2 over the outgoing
momenta. We use Eq. (4.86) from [9],

Γ =
1

2MA

∫
dΠLIPS |M (MA → {pf})| 2 (2.12)

to compute the decay rate of a bound state. MA is the mass of bound state A that annihilates
into other particles with momenta {pf} and

dΠLIPS = (2π)4δ4(pA −
∑
f

pf )
∏
f

d3pf
(2π)3

1

2Ef

, (2.13)

where LIPS stands for the Lorentz invariant phase space.
As we are looking into two-photon decay, we have implicitly specified this to be a system

of Ps in singlet state, since only singlet states can decay into even number of photons. So
the decay rate should be Γ2γ = Γp-Ps→2γ because there is no o-Ps present in the system of
interest.

In this problem, MA = M , mass of the Ps atom. Plugged in with the bound amplitude
from Eq. (2.11), Eq. (2.12) gives the decay rate ΓRR(p-Ps → γRγR) of p-Ps to emit two
right-handed photons.

However, in
∫
dΠ2 integral, we sum over all momenta for the outgoing photons. Thus,

photon states with momenta (k1 = pf,1,k2 = pf,2) and (k1 = pf,2,k2 = pf,1) are indistin-
guishable in the integral

∫
d3k1
2ω1

d3k2
2ω2

(performed to derive Eq. (A.6)). Therefore, the phase
space integral carries a double-counting of the same state, and a factor of 1

2
is needed to

7



avoid the over-counting. In general, if there are N outgoing identical particles, we have to
divide the appropriate version of Eq. (2.12) by N ! to remove the over-counting embedded in
the phase space integral of

∫
dΠN . 1

N !
is the symmetry factor due to the outgoing identical

particles, which is 1
2

in our case. The decay rate expression becomes,

ΓRR =
1

2
× 1

2M

∫
dΠ2|M(p-Ps → γRγR)|2 (2.14)

=
1

2
× 1

2M

(√
2M

m

√
2e2ψ(0)

)2 ∫
dΠ2 (2.15)

=
1

2
× 2e4

m2
|ψ(0)|2 × 1

8π
(2.16)

=
2πα2

m2
|ψ(0)|2 (e2 = 4πα where � = c = ε0 = 1). (2.17)

Adding contributions from both right-handed and left-handed photons, the total decay
rate is Γ = ΓRR + ΓLL = 2ΓRR = 4πα2

m2 |ψ(0)|2. The wave function solution in a hydrogen-like
atom yields |ψ1s(0)|2 = |ψ100(0)|2 = 1

πa3
, where Bohr radius a0 =

4πε0�2

me2
= 1

mα
. In a Ps atom,

the effective mass meff = m
2
; therefore, effective Bohr radius will be, a = 2

mα
(= 2a0).

Therefore, |ψ1s(0)|2 = m3α3

8π
, and the final expression of Γ = 4πα2

m2 |ψ(0)|2 reduces to

Γ(p-Ps → γγ) =
1

2
mα5. (2.18)

Eq. (2.18) is the p-Ps decay rate to the order of α5 corroborating the experimental result
[10]. We reproduced it employing the simple spinor matrix technique shown in Eq. (2.2) and
using Table 2.1.

2.3 Single Photon Annihilation of Ps−

In this section, we will study the single photon annihilation of Ps−. First, we will write
the 4-momenta of initial and final particles. Then we will calculate the amplitudes using the
4-momenta, the bound state amplitude, and the decay rate, respectively.

Ps− consists of two electrons and a positron. The initial momenta are small compared
to m, which determines the scale of transition amplitude. The ground state energy of Ps−

is also negligible compared to m. Therefore, we expand 4-momentum of any constituting
particle in Ps− with respect to pi

m
and obtain the first non-zero term, (m, 0, 0, 0). We write

pi = (m, 0, 0, 0), where i = 1, 2, 3 stand for the initial momenta of the electrons and the
positron. We have two outgoing particles that must preserve 3-momentum; therefore, the
decay products should have motion in the opposite direction to each other. We choose that
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line to be z axis. Let the momenta of outgoing photon and electron be k1 and k2 such that
k1 = (p, 0, 0,−p), k2 = (E, 0, 0, p). The conservation of 4-momentum and k2

2 = m2 provide

E + p = 3m, (2.19)

E2 − p2 = m2, (2.20)

solving which we find p = 4
3
m and E = 5

3
m. Thus k1 = (4

3
m, 0, 0,−4

3
m), k2 = (5

3
m, 0, 0, 4

3
m).

Figure 2.2: Feynman diagrams of e−e+e− → e−γ representing the annihilations of spin singlet
and triplet e+e− pair in the Ps− ion.

There are two ways Ps− can emit a photon; the annihilating e−e+ pair can either convert
into one or two photons, for a triplet or singlet pair, respectively. In the singlet decay, the
remaining electron absorbs a virtual photon and the other photon goes out. In contrast, in
the triplet decay, the remaining electron emits the outgoing photon absorbing the virtual
photon from annihilation.

There are two possible e−e+ pairs for annihilation in each type of decay. The remaining
electron can absorb any one of the two photons in the singlet case; similarly the order of
absorption and emission in the triplet decay provides two possibilities. Therefore, we will
have 4 diagrams in each of the singlet and triplet decays; the two representative diagrams
are shown in Fig. 2.2 out of 8 diagrams. Their amplitudes are computed in the following
subsection.
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2.3.1 Amplitudes

We will denote the spin assignment of e−e+e− → e−γ following the order of the particles
as written here. For example, the up-down arrows in ↑↑↓→↓↑ imply the spins as (1st) electron
up, (2nd) positron up, and (3rd) electron down on the left-hand side and (outgoing) electron
up and photon down on the right-hand side, respectively.

Let’s consider the case where the positron spin is up. Since the electron pair will form a
singlet state in the ground state (� = 0) of Ps− ion, the total angular momentum is determined
by the positron spin, which is +1/2. Only if the photon spin is +1 and the outgoing electron
spin is −1/2, then angular momentum is conserved (+1/2 = +1− 1/2). In the definition of
k1, the photon is going in the −z direction. Therefore, it must be a left-handed photon, i.e.
spin +1 with motion in the opposite direction of the spin. If the positron state is spin down,
the outgoing photon will be right-handed. Because of parity conservation, the probabilities
of left and right handed photon emission must be equal. Therefore, we choose to calculate
only the left-handed photon case i.e. for positron spin up.

The general expression for the singlet and triplet decay amplitudes are

MS =
1

(k2 − p3)2

(
v̄(p2) (ieγμ)

i

��p1 −��k1 −m
(ie�ε

�(k1)) u(p1)

)(
ū(k2) (ieγ

μ) u(p3)

)
, (2.21)

MT =
1

(p1 + p2)2

(
v̄(p2) (ieγμ) u(p1)

)(
ū(k2) (ie�ε

�(k1))
i

��k2 −��k1 −m
(ieγμ) u(p3)

)
. (2.22)

The contributions of all the diagrams will be generated with the careful interchange of labels
such as 1 ↔ 3, appropriate virtual momentum, and the correct ordering of the matrices for a
corresponding diagram. Eq. (2.2) will be helpful again to convert the matrix multiplication
in the amplitudes to a trace calculation. The spinor for the free outgoing electron can be
expressed in terms of the basis spinors in Eq. (2.3),

U↑ =
√
E +m

⎛
⎜⎜⎜⎜⎝

1

0
pz

E+m

0

⎞
⎟⎟⎟⎟⎠ =

√
8m

3

⎛
⎜⎜⎜⎜⎝

1

0
1
2

0

⎞
⎟⎟⎟⎟⎠ =

√
8m

3

(
u↑ − 1

2
v↓√

2m

)
=

√
4

3

(
u↑ − 1

2
v↓

)
(2.23)

U↓ =
√
E +m

⎛
⎜⎜⎜⎜⎝

0

1

0

− pz
E+m

⎞
⎟⎟⎟⎟⎠ =

√
8m

3

⎛
⎜⎜⎜⎜⎝

0

1

0

−1
2

⎞
⎟⎟⎟⎟⎠ =

√
8m

3

(
u↓ − 1

2
v↑√

2m

)
=

√
4

3

(
u↓ − 1

2
v↑

)

(2.24)
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substituting pz = 4
3
m,E = 5

3
m. We can check the normalization of U as U †U = 2E. Eq.

(2.24) will be used as the spinor of outgoing electron in this problem, where the positron spin
is strictly up. We rearranged the expression of MS and MT following the “spinor matrix”
construction in Eq. (2.2) and putting the spinor matrices from Table 2.1. A program in
FORM produced the trace values and the amplitudes. We list all the amplitudes for positron
up in table 2.2.

Table 2.2: Amplitude values M for the 8 Feynman diagrams of Ps− → e−γ when the positron
spin is up.

× 1√
6
ie3

m
M↑↑↓→↓↑ M↓↑↑→↓↑

M1 −2 +1

M2 0 −1

M3 −1 +2

M4 +1 0

M5 −9 0

M6 +9 −6

M7 0 +9

M8 +6 −9∑Mi M↑·↓ = 4 M↓·↑ = −4

Since the electron pair forms a singlet, we write the sum of the amplitudes in singlet
superposition and find

M =
M↑·↓ −M↓·↑√

2
=

+4− (−4)√
2

√
1

6

ie3

m
= 4

√
1

3

ie3

m
(2.25)

giving

|M|2 = 16

3

e6

m2
. (2.26)

Eq. (2.26) provides the leading order amplitude when all three initial particles (e−, e+,
e−) are free.

2.3.2 Bound State Amplitude

Similarly to the expression of p-Ps bound state in Eq. (2.6), we can write

|Ps−〉 =
√
2M

∫
d3k1
(2π)3

d3k2
(2π)3

ψ̃(k1,k2)
|free e−e+e−〉√
2m

√
2m

√
2m

, (2.27)
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where, ψ̃(k1,k2) and M are the momentum-space wave function and the mass of Ps−.

M(Ps− → e−γ) =
√
2M

∫
d3k1
(2π)3

d3k2
(2π)3

ψ̃(k1,k2)
M(e−e+e− → e−γ)√

2m
√
2m

√
2m

(2.28)

=

√
2M

(2m)3
M(e−e+e− → e−γ)

×
∫

d3x1d
3x2ψ(x1,x2)

∫
d3k1
(2π)3

d3k2
(2π)3

eik1.x1eik2.x2 (2.29)

=

√
2M

(2m)3
M(e−e+e− → e−γ)ψ(0, 0) (2.30)

2.3.3 Decay Rate

Since we have two identical electrons, we have to include 1
2

prefactor in the expression of
the decay rate. This prefactor arises from the operator algebra and the normalization of the
bound state, explained in Appendix B.2. We again use Eq. (2.12),

Γ(Ps− → e−γ) =
1

2
× 1

2M

∫
dΠ2|M(Ps− → e−γ)|2 (2.31)

∫
dΠ2 = 1

9π
from Eq. (A.17). Using Eq. (2.26), we obtain the decay rate of Ps−, when the

positron spin is up (emitting a left-handed photon).

Γ(Ps− → e−γL) =
1

2
× 1

2M
×
(√

2M

(2m)3
M(e−e+e− → e−γL)ψ(0, 0)

)2 ∫
dΠ2 (2.32)

=
1

2
× 1

2M
× 2M

(2m)3
16

3

e6

m2
|ψ(0, 0)|2 × 1

9π
(From Eq.(2.26)) (2.33)

=
64π2α3

27m5
|ψ(0, 0)|2. (2.34)

The decay rate for positron spin down (a right-handed photon) will be same as Eq. (2.34).
Therefore, the total decay rate will be average of the initial states (in this case, positron state),
giving

Γ(Ps− → e−γ) =
Γpositron up + Γpositron down

2
=

64π2α3

27m5
|ψ(0, 0)|2. (2.35)

Eq. (2.35) confirms Kryuchkov’s result in [4].
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2.4 Conclusion

In this chapter, we reproduced the decay rates of p-Ps and Ps− using the spinor matrix
technique described in 2.2.1. This reduces the toll of calculations and yields results with
fewer terms. For example, in [4], Kryuchkov summed eight amplitudes M, converted the
square |M|2 to a trace, and computed the final result in Mathematica. In the final step, the
program had to execute the expression |M|2 containing 64 terms. In contrast, we derived
Eq. (2.35) considering 8 amplitude terms. If we wished, it is also possible to complete the
trace calculation by hand instead of any computational tool. This demonstrates the level of
simplicity we accomplished with this method.
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Chapter 3

Decay Rate of Di-positronium Molecule

3.1 Introduction

Ps2 is a hydrogen-like molecule consisting of two Ps atoms. Wheeler predicted its existence
in his 1946 paper on polyelectrons [11]. Ps has a short lifetime, and it is cumbersome to
produce a large number of low-energy positrons. Therefore, it took more than six decades
to find it in a laboratory [7]. This is the first matter-antimatter molecule produced in an
experiment.

In the meantime, this molecule has been extensively studied theoretically. Decay rates of
possible Ps2 decay channels have been computed numerically [12]. The analytical calculation
of two-photon total annihilation of Ps2 is shown in [13], where the authors did not consider
all Feynman diagrams corresponding to the leading order. There are 40 diagrams but only 8
of them were calculated in [13].

In this section, we have performed the full calculation for the ground state of Ps2 by
taking into account of all 40 diagrams. We will use the approach constructed in Chapter 2,
and derive the decay rate analytically.

3.2 Two-photon Total Annihilation of Ps2

In this section, we will define the symbols and classify the diagrams for Ps2 → γγ channel.
Then we will calculate amplitudes, bound state amplitudes, and the decay rate.

We consider the following notation

e−(p1) + e+(p2) + e−(p3) + e+(p4) → γ(k1) + γ(k2),

to denote the momenta of the constituting particles in Ps2 and the outgoing photons. Similar
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to the calculation for Ps−, we keep the leading order term in the incoming momenta i.e.
pi = (m, 0, 0, 0), where i goes from 1 to 4 for the incoming particles, and therefore, k1 =

(2m, 0, 0, 2m) and k2 = (2m, 0, 0,−2m) preserving 4-momentum.
The leading-order diagrams of Ps2 → γγ have 4 vertices. We have categorized them into

three classes- namely A, B, and C shown in Fig. 3.1. Each e+e− pair emits a photon in class
A diagrams, where one pair emits both photons in class B diagrams. The class C is similar
to B, but the virtual photon from one e+e− pair is absorbed by the virtual electron, whereas
it is absorbed by a real particle (e− or e+) in B.

Figure 3.1: Three classes of diagrams corresponding to Ps2 → γγ.

There are 16 diagrams in class A. We can arrange the initial identical particles in three
possible ways to generate this class of diagrams. These are interchanging between (i) e− pair,
(ii) e+ and e− in each of the pairs, and (iii) outgoing photon pair. There are 2 ways to draw
the positions of e+ and e− in a pair; for two pairs of e+e− there will be 4 ways. Interchanging
between e− pair and photon pair will create 2 and 2 ways of drawing diagrams, respectively.
Altogether we get 24 = 16 diagrams in class A.

In class B, we can interchange between (i) e− pair, (ii) e+ and e− in the pair that emits
real photons, (iii) e+e− pairs between them such as 12 � 34, and (iv) outgoing photon pair.
This contributes another 24 = 16 diagrams. Similarly, class C will accommodate 23 = 8

diagrams crossing (i) e− pair, (ii) both e+e− pairs and (iii) outgoing photon pair.
In total, we have 16+16+8=40 diagrams from these three classes.
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3.2.1 Amplitudes

As we have identified all the diagram classes for the decay, now we will write the general
expressions of amplitudes for A,B, and C.

Amplitudes for the representative diagrams shown in Fig. 3.1 are

MA =
1

(p1 + p2 − k1)2

(
v̄(p2)γμ

i

��p1 −��k1 −m�ε
�(k1)u(p1)

)(
v̄(p4)�ε

�(k2)
i

��k2 −��p4 −m
γμu(p3)

)
,

(3.1)

MB =
1

(p3 + p4)2

(
v̄(p2)γμ

i

��p1 −��k1 −��k2 −m�ε
�(k2)

i

��p1 −��k1 −m�ε
�(k1)u(p1)

)(
v̄(p4)γ

μu(p3)

)
,

(3.2)

MC =
1

(p3 + p4)2

(
v̄(p2)�ε

�(k2)
i

��k2 −��p4 −m
γμ

i

��p1 −��k1 −m�ε
�(k1)u(p1)

)(
v̄(p4)γ

μu(p3)

)
.

(3.3)

All the other 37 amplitudes are generated switching momenta in these expressions.
We used the spinor matrices in Table 2.1 along with the technique in Eq. (2.2) to compute

the amplitude M’s for emitting two right-handed photons for these particular spin combina-
tions using FORM and summed for all 40 diagrams. We would like to put a remark about
the relation among these M′s for specific spin combinations. Since we were computing the
amplitudes one by one for specific spins, we could verify a simple crossing symmetry of the
identical particles. For an example, if electrons are crossed for two diagrams (say Mi and
Mj), Mi(↑↑↓↓) = Mj(↓↑↑↓). In other words, different diagrams will yield the same value
of amplitudes for different spin configurations. Tracing M value from this symmetry can
sometimes reduce the toll of computing all diagrams when we have specific spin preferences.
It is also an efficient and simple way to check the results.

We consider the ground state of Ps2, i.e., both electron and positron pairs are in the
singlet state. Spin notation with arrows will be denoted such that 1st and 3rd spins are
electrons, and 2nd and 4th spins are positrons.

|S = 0,ms = 0〉Ps2 = |0, 0〉e− pair ⊗ |0, 0〉e+ pair (3.4)

=
(↑↓ − ↓↑)√

2
.
(↑↓ − ↓↑)√

2
(3.5)

=
1

2

( ↑↑↓↓ − ↑↓↓↑ − ↓↑↑↓ + ↓↓↑↑ ) (3.6)

The ground state can only emit photon pair that will preserve the total angular momentum,
which implies outgoing photons must be both either right-handed or left-handed. C diagram
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Table 3.1: Amplitude values for A (left) and B class diagrams in Ps2 → γγ decay.

× ie4

m2 ↑↑↓↓ ↑↓↓↑ ↓↑↑↓ ↓↓↑↑
M1 −1 0 0 0

M2 +1 −1 0 0

M3 +1 0 −1 0

M4 0 0 0 −1

M5 0 0 +1 0

M6 −1 0 0 0

M7 0 0 −1 +1

M8 0 0 −1 +1

M9 0 −1 0 +1

M10 +1 0 −1 0

M11 0 +1 0 0

M12 0 0 0 −1

M13 0 0 +1 0

M14 +1 −1 0 0

M15 0 −1 0 +1

M16 0 +1 0 0

Mtot,A +2 −2 −2 +2

× ie4

m2 ↑↑↓↓ ↑↓↓↑ ↓↑↑↓ ↓↓↑↑
M1 −1/2 0 +1/4 0

M2 0 +1/4 0 −1/2

M3 −1/2 +1/4 0 0

M4 0 0 +1/4 −1/2

M5 −1/2 +1/4 0 0

M6 0 0 +1/4 −1/2

M7 0 +1/4 0 −1/2

M8 −1/2 0 +1/4 0

M9 0 0 +1/2 −1/4

M10 −1/4 +1/2 0 0

M11 0 +1/2 0 −1/4

M12 −1/4 0 +1/2 0

M13 0 +1/2 0 −1/4

M14 −1/4 0 +1/2 0

M15 0 0 +1/2 −1/4

M16 −1/4 +1/2 0 0

Mtot,B −3 +3 +3 −3

contribution is zero i.e. Mtot,C = 0. M = Mtot,A +Mtot,B +Mtot,C yields,

M↑↑↓↓ = −1

M↑↓↓↑ = +1

M↓↑↑↓ = +1

M↓↓↑↑ = −1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× ie4

m2
. (3.7)

From Eq. (3.6) and (3.7),

M(e+e−e+e− → γRγR) =
1

2

∑
40 diagrams

(M↑↑↓↓ −M↑↓↓↑ −M↓↑↑↓ +M↓↓↑↑
)

(3.8)

= −2ie4

m2
. (3.9)

This free state amplitude is the contribution of all diagrams for emitting two right-handed
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photons. We will use this result to find the bound state amplitude of Ps2 in Eq. (3.13).

3.2.2 Bound State Amplitude

We construct the bound state amplitude connecting the bound state wave function and
the free state amplitude in Eq. (3.9). There are 12 coordinate variables for 4-particles
wave function. We assume the center of mass to be fixed which reduces the number of
required coordinates to 9 that will be denoted by {x1,x2,x3}, defined as the separation
vectors between the initial particles. Fourier transform of the ground state wave function
ψ(x1,x2,x3) provides the momentum space wave function, ψ̃(k1,k2,k3). We expand the
bound state as a superposition of free electron and positron states in momentum space (as
already shown in Chapter 2),

|Ps2〉 =
√
2M

∫
d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

ψ̃(k1,k2,k3)
|free e+e−e+e−〉√
2m

√
2m

√
2m

√
2m

, (3.10)

where M is the mass of the Ps2, and ψ̃(k1,k2,k3) is the free particle wave function in
momentum space. It yields

M(Ps2 → γRγR) =

√
2M

(2m)4

∫
d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

ψ̃(k1,k2,k3)M(e+e−e+e− → γRγR)

(3.11)

=

√
2M

(2m)4
M(e+e−e+e− → γRγR)

∫
d3x1d

3x2d
3x3ψ(x1,x2,x3)

×
∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

eik1.x1eik2.x2eik3.x3 (3.12)

=

√
2M

(2m)4

(
−2ie4

m2

)
ψ(0, 0, 0). (3.13)

The decay rate (∼ |M|2) will be eventually proportional to |ψ(0, 0, 0)| 2 , an intuitive require-
ment for all the particles to annihilate at one point and produce photons.

3.2.3 Decay Rate

We will use the master formula Eq. (2.12) to evaluate the decay rate. We will have a factor

of
1

23
for the participating identical particles (e−, e+, γ) and

1

24
to count the contribution for
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the singlet state only out of 24 distinct spin states. We have,

ΓRR = Γ(Ps2 → γRγR) =
1

24
× 1

23
× 1

2M

∫
dΠ2 |M(Ps2 → γRγR)| 2 (3.14)

=
1

27
× 1

2M

∣∣∣∣∣
√

2M

(2m)4

(
−2ie4

m2

)
ψ(0, 0, 0)

∣∣∣∣∣
2 ∫

dΠ2 (3.15)

=
1

29m4

(
(4πα)4

m4

)
|ψ(0, 0, 0)|2 × 1

8π
(3.16)

=
π3α4

16m8
|ψ(0, 0, 0)| 2. (3.17)

where,
∫
dΠ2 =

1

8π
, for two outgoing photons from Eq. (A.6) derived later. The rate should

be same for emitting left-handed photons as well.
Therefore, the total rate,

Γ(Ps2 → γγ) = ΓRR + ΓLL = 2ΓRR =
π3α4

8m8
|ψ(0, 0, 0)| 2 (3.18)

where |ψ(0, 0, 0)| 2 = 4.5 × 10−6a−90 (as employed in [13], a0 = the Bohr radius). Inserting
the relation between SI and natural units, we find Γ(Ps2 → γγ) = 2.25× 10−12s−1.

Eq. (3.18) is the main result of this chapter. After carefully considering all 40 diagrams,
we find our result to be 4.07 times smaller than the previous result with 8 diagrams [13].

3.3 Conclusion

Aside from the remarkable success of being the first matter-antimatter molecule, the
production of Ps2 has a promising future to create high intensity laser beam [14]. With
its decay, Ps2 produces spin-polarized Ps atoms, and if cooled enough, those Ps atoms can
form a Bose-Einstein condensate. The condensate may produce coherent gamma rays when
annihilated, generating a laser beam more powerful than current laser technology. However,
attaining the milestone may not be possible in the near future for experimental challenges.

Our purpose for this calculation was to apply the theoretical tools constructed in Chapter
2 and complement the existing theoretical analysis of the description of Ps2. We provide the
correct decay rate for two-photon total annihilation of Ps2, which will be published soon.
Most importantly, we learned how to compute a bound state decay rate with minimum
intricacy. Similarly, we can investigate the decay nature of other short-lived compounds with
a positron i.e., PsH.
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Chapter 4

Search for Muon to Electron Conversion

4.1 Introduction

In the Standard Model (SM), there are three flavors of leptons. Each lepton flavor is
approximately conserved, up to effects suppressed by neutrino masses. Lepton numbers are
conserved individually and as a total in any interaction. However, the neutrino oscillation
refutes the basis of the conservation of the lepton number.

Charged leptons have mass eigenstates as the Hamiltonian eigenstates unlike the neutri-
nos; therefore, it is not feasible to observe oscillation among electron, muon, and tau lepton.
Nevertheless, the neutrino oscillation can cause the charged lepton flavor violation (CLFV),
which is depicted in diagram A in Fig. (4.1). The neutrino in the interaction changes its
flavor, and the W boson becomes a new charged lepton absorbing the “new” neutrino after
emitting a photon. On the other hand, theories Beyond the Standard Model (BSM) can
accommodate the CLFV independently with new type of interactions.

In this chapter, we will discuss possible CLFV processes in BSM and experimental searches
for it (μ− e conversion), and we will state the problem of bound muon decay which arose as
a background in the conversion search.

4.2 BSM Processes for CLFV and Experimental Endeavor

The search for μ → eγ dates back to 1947 [15] before the discovery of neutrino. In that
work, Hincks and Pontecorvo set an upper limit on the branching ratio of less than 10% for
this decay channel. The upper limit improved with more experiments conducted later, and
motivation for the CLFV search has gradually centered around BSM theories.

Muon is the optimal particle for CLFV process, because of its long lifetime and copious
production, thanks to its light mass in comparison with tau lepton. Its lifetime allows it to
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Figure 4.1: Diagrams corresponding to the μ − e conversion, (A) for μ+ → e+ + γ, (B-F)
for μ− + N → e− + N . (A-B) describes SM processes due to massive neutrino, (C) is a
supersymmetric (SUSY) process in a loop diagram, (D) and (E) are vector boson and scalar
boson exchanges processes, and (F) is another SUSY process in a box diagram. [1]

stay longer in the atomic orbit before it disintegrates into an electron. For example of the
efficiency of production, only 1 ∼ 10 tau lepton pair productions per second were found in
the B-factory data, while the future muon conversion experiments will generate 1013 ∼ 1014

muons per second. Therefore, the huge flux of muons will make the search for μ−e conversion
possible.

There are three types of CLFV processes important in the experiments μ−+N → e−+N ,
μ+ → e++γ, and μ+ → e+e−e+. In the first process, muon converts into electron while bound
in an atom. A diagram with radiationless conversion is shown in diagram B, where the virtual
photon interacts with the nucleus. There can be hypothetical interactions shown in diagrams
C-F where conversion occurs without involving any neutrino. These are the proposed BSM
interactions. There can be a charged supersymmetric particle with photon interaction to
quarks, as shown in diagram C as well as direct lepton-quark interaction depicted in D-F.
The effective Lagrangian of μ− e conversion process is

LCLFV =
1

(1 + κ)Λ2
mμμ̄Rσ

μνeLFμν

+
κ

(1 + κ)Λ2
(μ̄Lγ

μeL)
(
ūLγμuL + d̄LγμdL

)
+ H.C., (4.1)

where the first term stands for μ → e + γ and the second term gives contact interaction of
two leptons and two quarks. μ, e, d, u are fields of the interacting particles [16]. We have two
free parameters Λ and κ that describe the energy scale of the CLFV process and the relative
strength of the two terms respectively.
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Since SM process involves neutrino oscillations, its contribution is negligible, because the
rate of neutrino oscillation is extremely small for the tiny mass of neutrino, and the heavy
mass of W boson suppresses the SM interaction in the denominator. Therefore, BSM theories
predict a higher rate of CLFV compared to the unobservable branching ratios of about 10−54

estimated by the SM [17]. Consequently, any observation of the CLFV process can be a
direct signature of BSM theories.

Mu2e experiment in Fermilab differs from previous μ− e conversion experiments in three
major ways: using a novel solenoid system for the formation of the muon beam, producing
10000 times stronger intensity of the muon beam than earlier experiments, and generating a
pulsed beam with a long time gap between pulses to reduce backgrounds [2]. The background
events arise from the pion decays or other beam particles. The pulsed muon beam ensures
to discard these beam related backgrounds out of the muon capture events. The experiment
will begin its operations in 2022, taking data for 3 years. It will examine ∼ 1018 stopped
muons with a single event sensitivity of 3× 10−17.

The COMET experiment in J-PARC, Japan has similarity with Mu2e in operational
aspects such as pulsed muon beam, level of sensitivity, and aluminum target. COMET has
two phases; Phase-I experiment has an estimated single event sensitivity of 3 × 10−15. The
COMET Phase-II will achieve O(10−17) conversion sensitivity.

It is hard to predict that the conversion can be found even within the extraordinary
sensitivity achieved in these experiments. Provided any trace of CLFV is discovered, it will
be a strong pillar to build the extension of SM.

4.3 Backgrounds to μ − e Conversion and Bound Muon

Decay

The conversion experiments will measure the conversion ratio,

Rμe =
Γ(μ+N → e+N)

Γ(μ+N → all muon captures)
(4.2)

by detecting the momenta of the conversion electrons. There are three general backgrounds
which are considered to put constraints on the beam structure, the detector types, and
the required momentum resolution. The backgrounds are (1) intrinsic type (caused by the
muons), (2) beam-related, and (3) cosmic type.

The muon decay in the atomic orbit of the target atom, also known as decay in orbit,
(DIO), has the same time distribution as the conversion signal. Therefore, it is the most
important intrinsic background and needs to be accounted carefully. It is imperative to
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distinguish between the electrons from the weak decay of muonic atoms and the conversion
electrons. Setting the appropriate momentum resolution from DIO calculation will guarantee
it.

In the free muon decay, the momentum spectrum of the electron, also known as Michel
spectrum [18], has an endpoint energy at

Emax =
m2

μ +m2
e

2mμ

= 52.8 MeV (4.3)

which can be derived from the conservation of four-momentum. The maximum energy for
the conversion electron is the muon rest energy. Thus, the endpoint of muon-to-electron
conversion is near 105.66 MeV (muon mass). Clearly, the free muon decay does not pose any
background in a detector with modest resolution.

Figure 4.2: Electron energy spectrum for muon decay in orbit (aluminum nucleus) from [19].
Left plot is in linear scale, and right plot is in logarithmic scale.

On the other hand, DIO includes interaction of the electron with the nucleus exchanging a
virtual photon. It can provide sufficient electron energy equivalent to the conversion energy.
The detectors will observe free electrons, (both from conversion and DIO) recoiling from
the nuclei. At the DIO end-point energy, neutrino energy is zero, recoiling decay electrons
can have energy large enough that the detector may fail to distinguish them. DIO energy
spectrum is shown in Fig. (4.2). There can be one event from DIO within less than 1 MeV of
the conversion endpoint, which strengthens the probability of finding the desired conversion
if Rμe ∼ 10−17.

Our investigation continues in bound muon decay. We study the decay behaviour of a
bound muon into a bound electron. It has been recently found that the negative energy
component of the bound muon wave function contributes significantly to this decay [3]. We
explore this topic to understand how negative energy part of a bound state contributes to
the decay process.
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4.4 Conclusion

In this chapter, we summarized the essence of CLFV search and its experimental premises.
Mu2e and COMET will run soon with its upgraded arrangement, and their findings can
inform us to the right direction to pursue new physics. The problem of bound muon decay
emerged as a dominant background of the conversion signal. DIO affirms that it is possible
to discover CLFV if it exists within the lower bound sensitivity of the experimental settings.

Moreover, when analytically performed, the problem turned to be rich in interpretation.
The bound-to-bound DIO has been the objective for this project. The decay result offers a
new theoretical aspect of the negative energy part of a bound state. As for next action, we
want to understand the underlying physics of the decay behaviour.
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Chapter 5

The Ratio of Bound Muon and Free
Muon Decay Rates

5.1 Introduction

Muon is the lightest unstable elementary particle. Its relatively long lifetime (2.2 μs)
makes it an excellent probe to explore new physics beyond the Standard Model. A bound
muon in a muonic atom can decay into a bound electron and neutrinos. This decay can be
expressed as (Zμ−) → (Ze−) νμν̄e where (Zx−) represents the bound atom. The decay rate
is expressed as a single integral,

Γ ((Zμ−) → (Ze−) νμν̄e)
Γ0 (μ− → e−νμν̄e)

= 128

∫ zmax

0

(
N2

a +N2
b + F 2

a + F 2
b

)
kAz

3dz, (5.1)

as shown in [3] where Na,b and Fa,b stand for spin non-flip and spin flip events of μ− → e−, Γ
and Γ0 are the bound muon and the free muon decay rates, respectively. z is a dimensionless
variable characterizing the mass of a fictitious boson A, such that the decay can be broken
up into two steps, (Zμ−) → (Ze−)A and A → νμν̄e with its mass, mA = zmμ. z is maximum
when the pair of neutrinos go in the opposite direction, and it is zero when they are in the
same direction. The maximum value of z is given by zmax = Eμ−Ee

mμ
, and the expressions of

Na,b and Fa,b are [3]

Na =
√
2
zmax

z

[
4a2 (C2 − S3) +

(
1 + a2

)
S1

]
, (5.2)

Nb =
√
2
kA
z

(
1 + a2

)
S1, (5.3)

Fa = 4a2 (C2 − S3)− 2
(
1− a2

)
S1, (5.4)
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Fb = 4a (S2 − C1) , (5.5)

where

Cn =
1 + γ

8

(
4δ

(1 + δ)2

)γ+ 1
2 Γ (1 + 2γ − n)

knΓ (1 + 2γ)

(
1 + k2

)n−1
2
−γ

cos [(1 + 2γ − n) arctan k] , (5.6)

and analogously Sn with cos → sin. Other variables are defined as:

αZ = Zα, (5.7)

γ =
√
1− α2

Z , (5.8)

a =
1− γ

αZ

, (5.9)

k =
kA

αZ (1 + δ)
, (5.10)

kA =
√
z2max − z2, (5.11)

zmax =
Eμ − Ee

mμ

=
γ (mμ −me)

mμ

= γ (1− δ) . (5.12)

Here, Ei is the 1s binding energy of a Dirac particle of mass mi in a hydrogenic atom, and
Ei = γmi.

Binomial expansion in δ in Eq. [5.1],

Γ

Γ0

∝
((

δ

(1 + δ)2

)γ+ 1
2

)2

= δ2γ+1 (1 + δ)−4γ−2 = δ2γ+1 +O (δ2γ+2
)→ δ2γ+1 (5.13)

tells us that the leading order term in the δ-expansion of Γ
Γ0

carries δ2γ+1. We shall factor
this fractional power out in the expression of Γ

Γ0
. The plot of numerical values of Γ

Γ0

1
δ2γ+1 as

a function of γ (setting δ = me

mμ
= 1

207
in the rest of the expression) is illustrated in Fig. 5.1.

Γ
Γ0

vanishes at both ends, γ = 0 and 1 regardless of the directions of the neutrinos and the
relative spin orientations of muon and electron. The physical reasons for this behaviour are
explained in section 5.5.

However, we are interested in an analytic expression for Γ
Γ0

. Since δ is small from the
definition (δ = me

mμ
� 1), we can take advantage of the smallness of this physical parameter

to evaluate an asymptotic expression of Γ
Γ0

as a function of δ and γ. This expression will tell
us about the decay nature (Zμ−) → (Ze−) νμν̄e, and thus, from the decay behaviour, we can
draw an intuitive contrast between the corresponding decays in heavy atoms (αZ → 1) and
light atoms (αZ → 0).
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Figure 5.1: Plot of Γ
Γ0

1
δ2γ+1 with Na, Nb, Fa, and Fb contributions.

As we have defined all the symbols and their meanings, we proceed with the integral in
Eq. (5.1). We briefly explain how we can evaluate the integral approximately and calculate
the asymptotic expression as γ → 0 and γ → 1. Then we present the approximate expression
that is valid for all values of γ. In conclusion, we describe the vanishing nature of bound-to-
bound decay in Section 5.5.

5.2 Procedure of Integration

In this section, we will simplify the integrand and convert it to a power series to perform
the integration straight.

First we make a change of variables, k (z) → tan θ so that

Cn =
1 + γ

8

(
4δ

(1 + δ)2

)γ+ 1
2 Γ (1 + 2γ − n)

Γ (1 + 2γ)

(sec θ)n−1−2γ

tann θ
cos [(1 + 2γ − n) θ] . (5.14)
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The ratio of Gamma functions in Eq. (5.14) is expressed as a simple fraction,

Γ (1 + 2γ − n)

Γ (1 + 2γ)
= ��������

Γ (1 + 2γ − n)

(1 + 2γ − 1) (1 + 2γ − 2) ... (1 + 2γ − n)��������
Γ (1 + 2γ − n)

=
1

(1 + 2γ − 1) (1 + 2γ − 2) ... (1 + 2γ − n)
. (5.15)

This exact fraction in (5.15) will be used for computational purpose.
We introduce a new parameter λ = αZ (1 + δ) and

k =
kA

αZ (1 + δ)
⇒ kA = λ tan θ. (5.16)

Thus, we have the relation between z and θ variables,

kA = λ tan θ ⇒
√
z2max − z2 = λ tan θ. (5.17)

From the last equation, we obtain new integration limits
∫ zmax

0
→ ∫ 0

θ0
where θ0 = arctan zmax

λ
.

From Eq. (5.17), we get

z2 = z2max − λ2 tan2 θ ⇒ zdz = −λ2 tan θ sec2 θdθ. (5.18)

Let f (γ, δ, z) = 128 (N2
a +N2

b + F 2
a + F 2

b ) kAz
2; then,

Γ

Γ0

=

∫ zmax

0

f (δ, γ, z) zdz =

∫ 0

θ0

f (δ, γ, θ)× (−λ2 tan θ sec2 θdθ
)

Γ

Γ0

≡
∫ θ0

0

G (δ, γ, θ) dθ (5.19)

where G (δ, γ, θ) is the total integrand. Divergences can arise from Cn/Sn or tan θ sec2 θ in
the integrand at θ = π

2
. But zmax

αZ(1+δ)
< ∞ ⇒ θ0 <

π
2
, the integral will not have any divergence

as π
2

fall outside the integration limit.
G (δ, γ, θ) is a smooth function in the region 0 ≤ θ ≤ θ0; however, it is too complicated

to give a compact integral. The principle to find an approximate expression for the integral
Eq. (5.19) is to expand G (δ, γ, θ) in a Taylor series of θ around θ = θ′ ∈ [0, θ0] and write
G (δ, γ, θ) =

∑∞
n=0 cn (δ, γ) (θ − θ′)n. This series can be simply integrated, since

∫ θ0

0

(θ − θ′)n dθ =
(θ0 − θ′)n+1 − (−θ′)n+1

n+ 1
. (5.20)

Moreover, G (δ, γ, θ) is an even function in θ i.e. G (δ, γ,−θ) = G (δ, γ, θ). It can be shown
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using the relations,

When θ → −θ,

Cn → (−1)nCn,

Sn → (−1)n+1Sn,

kA → −kA,

z → z.

Therefore, the Taylor expansion will have only the even powers of θ. In principle, we can
write

Γ

Γ0

=
∞∑

n=0,2,4

cn (δ, γ)
(θ0 − θ′)n+1 − (−θ′)n+1

n+ 1
. (5.21)

Eq. (5.21) is the key equation that yields us the decay ratio. The choice of θ′ will decide
where and how fast the series will converge. However, we can only take a finite number of
terms in practice, and the more terms we include, the better approximation we obtain.

5.3 Asymptotic Behaviour as γ → 0 and γ → 1

First we will compute Γ
Γ0

1
δ2γ+1 as γ → 0 and γ → 1. Although it is a simple integral using

the limit, one should be careful approximating the γ and θ-dependent integrand terms. We
are looking for the coefficient of γn-like term (or αn

Z), and if we substitute the limiting value
for any γ-dependent integrand term (e.g. sin (2γ − 1) θ) in the calculation, sometimes we
can miss a γn-contribution from the γ expansion of that particular term. It will provide a
divergence in the calculation, even though the exact integral is finite.

When γ → 0, we choose θ′ = 0 and take only the leading non-zero term in the RHS of Eq.
(5.21). For γ → 1, αZ → 0; therefore, αZ variable is used to find the asymptotic integral.

We find

lim
γ→0

Γ

Γ0

1

δ2γ+1
=

256

15
γ5, (5.22)

lim
γ→1

Γ

Γ0

1

δ2γ+1
= 96πα3

Z = 96π
(
1− γ2

) 3
2 . (5.23)
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Figure 5.2: Plot of Γ
Γ0

1
δ2γ+1 and its asymptotic function as γ → 0.

Figure 5.3: Plot of Γ
Γ0

1
δ2γ+1 and its asymptotic function as γ → 1.
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These results are calculated for the leading-order term of δ (as shown in Eq. (5.13))
taking advantage of the smallness of δ. We can conclude that the asymptotic terms in Eq.
(5.22) and (5.23) are accurate comparing with the numerical result of Eq. (5.1) in Fig. 5.2
and Fig. 5.3, respectively.

5.4 Expression for 0 ≤ γ ≤ 1

We will keep higher order terms in Eq. (5.21) to obtain an expression valid for all γ.
Evidently, θ′ = 0 in Eq. (5.21) can produce the simplest expression of all choices of θ′.
Setting θ′ = 0 in Eq. (5.21),

Γ

Γ0

≈
16∑

n=0,2,4

cn (δ, γ)
θn+1
0

n+ 1
⇒ Γ

Γ0

1

δ2γ+1
= 25+4γ

(
1− γ2

)3/2 17∑
n=1,3

w (δ, n, γ) θn0 (5.24)

where we changed the summation index n → n + 1, and w (δ, n, γ) is an (n + 1)-order
polynomial of γ. n = 3 is the lowest order non-zero term, therefore θ30 is factorized from all
the terms.

Figure 5.4: 12-order Taylor expansion of f0 (γ) + f1 (γ) δ in Eq. (5.26) does not fit the
numerical result for large values of γ.
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Γ

Γ0

1

δ2γ+1
= 25+4γ

(
1− γ2

)3/2
θ30

14∑
n=0,2

w (δ, n+ 3, γ) θn0 (5.25)

⇒ Γ

Γ0

1

δ2γ+1
≈ 25+4γα3

Zθ
3
0 (f0 (γ) + δf1 (γ)) (5.26)

In the last step, we made a δ-expansion as
∑14

n=0,2 w (δ, n+ 3, γ) θn0 ≈ f0 (γ)+f1 (γ) δ+O (δ2)

and dropped O (δ2). Finally another Taylor expansion is performed on f0 (γ)+f1 (γ) δ around
γ = 0 to produce a polynomial-like expression. The order of this polynomial determines how
far the expression will be a good approximation.

Figure 5.5: 15-order Taylor expansion of f0 (γ) + f1 (γ) δ in Eq. (5.26) fits the numerical
result without any significant deviation.

Comparison between Fig. 5.4 and Fig. 5.5 illustrates that the 15-order Taylor expansion
of f0 (γ) + f1 (γ) δ fits the numerical plot consistently. Furthermore, there is 0.5% difference
at the peak point γ ≈ 0.83 in Fig. 5.5. In Fig. 5.4, the difference is 4.1%. The order of
polynomial is a matter of choice, and we choose it to be 15 to achieve a decent fit with fewer
terms as possible.

Replacing f0 (γ) + f1 (γ) δ in Eq. (5.26) by a finite series expansion of order 15, we can
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finally write,

f0 (γ) + f1 (γ) δ =
4γ2

32564156625

{− 4341887550(−1 + δ)− 4341887550γ(−1 + 5δ)

− 6822966150γ2(−1 + 5δ)− 206756550γ3(13 + 67δ)

+ 4594590γ4(−727 + 6363δ) + 9189180γ5(−1241 + 8033δ)

+ 2506140γ6(−1537 + 21785δ) + 835380γ7(−5671 + 16289δ)

− 612γ8(−9571451 + 91513537δ)− 153γ9(−12459949 + 424465429δ)

− 68γ10(−109533853 + 848898624δ) + 136γ11(−8351086 + 4626217δ)

+ γ12(3194531102 + 20768279230δ) + γ13(−4627628276 + 47663119216δ)
}
.

(5.27)

We can split this long expression into two expressions of arguments γ and αZ respectively,
that will match Γ

Γ0

1
δ2γ+1 from γ = 0 and γ = 1 (αZ = 0) tails and meet in between (Fig. 5.6).

f0 (γ)+f1 (γ) δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α12
Z (95.1δ − 5.02) + α10

Z (6.67− 190.δ) + α8
Z(186.δ − 0.945) upper tail

+α6
Z(−88.1δ − 4.14) + α4

Z(19.3δ + 1.35) + α2
Z(0.509− 1.14δ)

+(0.262− 1.52δ)

16γ8(21785δ−1537)
51975

+ 16γ7(8033δ−1241)
14175

lower tail

+8γ6(6363δ−727)
14175

− 8
315

γ5(67δ + 13)

− 88
105

γ4(5δ − 1)− 8
15
γ3(5δ − 1)− 8

15
γ2(δ − 1)

(5.28)
All algebraic expressions and figures in this chapter have been produced using Mathematica
[20].

Steps in Brief

Here I briefly go over the steps in the procedures explained in section [5.4]:

1. Approximation 1: θ′ = 0 is used in Eq. (5.21) and the series is taken up to 16-th order
terms.

2. After the integration, the integral is rearranged to write Eq. (5.25).

3. Approximation 2: We perform first order approximation of
∑14

n=0,2 w (δ, n+ 3, γ) θn0 in
δ-variable and produce Eq. (5.26).
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Figure 5.6: Γ
Γ0

1
δ2γ+1 from Eq. (5.26) is plotted with the 12-th order polynomial (upper tail)

and 8-th order polynomial (lower tail) in Eq. (5.28). Both expressions are consistent with
the numerical plot meeting around γ ≈ 0.7.

4. Approximation 3: f0 (γ) + f1 (γ) δ is Taylor-expanded in δ to achieve a polynomial-like
expression. 15-order polynomial is given by Eq. (5.27).

5. Eq. (5.27) is rearranged with respect to both end of γ values and a new form as in Eq.
(5.28) is derived.

In summary, the exact analytic expression for the decay rate ratio is nearly impossible to
achieve. We derived an approximate expression for Γ

Γ0

1
δ2γ+1 as a function of γ, and it fits the

numerical plot. Therefore, the current formula given by Eq. (5.26) with Eq. (5.28) is an
economic form to get the decay behaviour of bound muon to bound electron.

5.5 Interpretation

As depicted in Fig. 5.1, Γ
Γ0

vanishes at γ = 0 and γ = 1. In this section, we will describe
the vanishing behaviour physically.

We know, the energy of the bound particle is E = γmi (mi = mμ,me). The difference of
the energies of muon and electron is the energy of the neutrino pair, i.e., Eν+Eν̄ = γ(mμ−me).
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Large values of Z corresponds to γ → 0, which implies the neutrino pair receives less energy
from the decay as the atomic number Z increases. As the neutrino phase space gets smaller,
the decay rate falls and becomes zero when the neutrino pair gets no energy from the decay.

For small values of Z, the phase space is larger. Regardless, the decay rate vanishes for
Z → 0 ⇔ γ → 1. In fact, we can see from the numerical values of the derivatives of the
asymptotic decay rate that Γ

Γ0
drops faster near γ = 1 than γ = 0.

For γ → 0 :
d
(

256γ5

15

)
dγ

∣∣∣∣γ=0.01 = 8.5× 10−7 (5.29)

For γ → 1 :
d
(
96π (1− γ2)

3/2
)

dγ

∣∣∣∣
γ=0.99

= −126.36 (5.30)

There must be a factor which causes Γ
Γ0

to vanish near γ = 1 sharply. The bound muon to
bound electron amplitude is,

M =
g√
2

∫
d3r exp(iq.r)Φe(r)�ε

λA∗LΦμ(r) (5.31)

where Φi(r) is the wave function of i particle (electron or muon), g is the weak interaction
strength, L = 1−γ5

2
. λA labels the polarization state of the boson A. The term exp(iq.r)

is the wave function for two neutrinos, where q is their total momentum. We consider the
r-integral of M for 1s Dirac wave function,

∫ ∞

0

dr r2γe−(mμ+me)αZr exp(iq.r), (5.32)

where q can have any magnitude from 0 to a maximum of γ(mμ −me). We write q = |q| =
ωγ(mμ − me) where 0 ≤ ω ≤ 1, and make a change of variable r → x = (mμ + me)αZr.
exp(iq.r) can be rearranged as

exp(iq.r) = exp(iqr cos θ)

= exp(iβx cos θ)

= exp

[
βx

2

(
ieiθ − 1

ieiθ

)]

=
∞∑

n=−∞
ineinθJn(βx) (5.33)

where β = ωγ(mμ−me)

(mμ+me)αZ
= ωγ(1−δ)√

1−γ2(1+δ)
. Here we identified the exponential function as the
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generating function of Bessel functions of the first kind, Jn(βx) [21] and expanded it in a
Laurent series in Eq. (5.33). The r-integral in M becomes

∫ ∞

0

dr r2γe−(mμ+me)αZr exp(iq.r) ∼
∞∑

n=−∞
ineinθ

∫ ∞

0

dx x2γe−xJn(βx). (5.34)

when γ → 1, β → ∞. In this limit, the asymptotic expression of Jn(βx),

lim
β→∞

Jn(βx) =
1

4
√
2π(βx)3/2

[
(4n2 − 1) sin

(
1

4
(2n+ 1)π − βx

)

+ 8βx sin

(
1

4
(2n− 1)π + βx

)]
. (5.35)

In this limit, even for any small value of x, the asymptotic sinusoidal behaviour of Jn(βx)
becomes dominant. However, since αZ → 0 in this limit and x = (mμ+me)αZr, other factors
of the r-dependent integrand (x2γ and e−x) remain flat. The nature of asymptotic Jn(βx)

in Eq. [5.35] essentially determines the integral, and its positive and negative contributions
from the sin functions cancel each other resulting a vanishing integral. To summarize, we can
attribute this vanishing behaviour to the neutrino wave function exp(iq.r) whose positive
and negative components vanishes M as γ → 1.

Intuitively, it might be tempting to convince oneself that the decay rate maintains a
monotonic behaviour; but it does not. The neutrino phase space keeps shrinking as γ → 0.
As γ keeps increasing and goes to 1, the bound wave function spreads in the position space
and becomes nearly flat. The oscillatory neutrino wave function cancels out with itself when
multiplied with the uniformly-spread bound wave functions in the r integration. Together
they vanish the decay rate at both ends.

5.6 Conclusion

The main result of the paper [3] was the single integral representation of the decay rate
ratio as given in Eq. (5.1). The paper calculated the decay rate for the hypothetical case
of mμ ≈ me. In this chapter, we did not assume any artificial condition; but we have taken
advantage of the smallness of the mass ratio δ = me

mμ
by expanding parts of the integrand

with respect to δ.
The bound-muon-to-bound-electron decay rate vanishes at γ = 0 since there is no energy

left for the neutrinos from the decay. With the increase of γ, outgoing neutrinos are allowed
to receive more energy, and the decay probability rises. However, the neutrino wave function
is expressed by a series Bessel functions which exhibit oscillatory behaviour at large dis-
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tance. The oscillatory neutrino wave coupled with the nearly-constant bound wave functions
vanishes as we integrate over r in the position space.

As for the next step, we may study the decay of bound muon into free electron and connect
with our interpretation. In that case, free electron wave function will be only oscillatory and
can be merged with the neutrino wave function. In the bound electron case, there are two
bound wave functions, combination of which made the bound part in the integrand nearly
flat. For free decay electron, we have one muon bound wave function; therefore, it will be
still flat. It motivates us to speculate that the decay rate still vanishes for free decay electron
for Zα → 0.
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Appendix A

Phase Space Integrals

A.1 Two Outgoing Photons

Let ki the 4-momentum for the i-th photon. k0
1 and k0

2 are equal for symmetry. From Eq.
(2.13), we can write

∫
dΠ2 =

∫
d3k1

(2π)32k0
1

d3k2
(2π)32k0

2

(2π)4δ4(pA − k1 − k2) (A.1)

= (2π)−2
∫

d3k1
2k0

1

d3k2
2k0

2

δ4(pA − k1 − k2) (A.2)

=
1

4π2

∫
d3k1
4k2

1

δ(p0A − 2k0
1) (k0

2 = k0
1) (A.3)

=
1

2

1

16π2

∫
dΩ

∫
dk1δ(k1 − p0A

2
) (k0

1 = |k1| = k1) (A.4)

=
1

32π2

∫
dΩ (A.5)

=
1

8π
(A.6)

Eq. (A.6) is used in the two-photon annihilations in Chapter 2 and 3.

A.2 One Electron and One Photon

Let p and E stand for 4-momentum and energy while their subscript labels γ and f

are for the photon and the electron. The energy-momentum relations are Eγ = pγ and
Ef =

√
p2f +m2. The phase space integral is,
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∫
dΠ2 =

∫
d3pγ

(2π)32Eγ

d3pf
(2π)32Ef

(2π)4δ4(pA − pf − pγ) (A.7)

=
1

4π2

1

4

∫
d3pγ
pγ

p2fdpfdΩf√
p2f +m2

δ4(pA − pf − pγ) (A.8)

=
1

4π2

1

4

∫
1

pf
× p2fdpfdΩf√

p2f +m2
δ(p0A −

√
p2f +m2 − pf ) (pγ = |pf | = pf ) (A.9)

=
1

4π2

1

4

∫
pfdpfdΩf√
p2f +m2

δ(p0A −
√
p2f +m2 − pf ). (A.10)

Now on, p0A will be denoted by pA. The root of the argument of the delta function is
pA −

√
p2f +m2 − pf = 0 ⇒ pf =

p2A−m2

2pA
.

d

dpf

(
pA −

√
p2f +m2 − pf

)
pf=

p2
A

−m2

2pA

= − 2p2A
p2A +m2

(A.11)

∴ δ(pA −
√
p2f +m2 − pf ) =

δ(pf − p2A−m2

2pA
)∣∣∣− 2p2A

p2A+m2

∣∣∣ =
p2A +m2

2p2A
δ(pf − p2A −m2

2pA
) (A.12)

∫
dΠ2 =

1

4π2

1

4

∫
dΩf

∫
pfdpf√
p2f +m2

δ(pA −
√
p2f +m2 − pf ) (A.13)

=
1

4π2

1

4
× 4π × p2A +m2

2p2A

∫
pfdpf√
p2f +m2

δ(pf − p2A −m2

2pA
) (A.14)

=
1

4π

p2A +m2

2p2A

(
p2A−m2

2pA

)
p2A+m2

2pA

(A.15)

=
1

4π

1

pA

(
p2A −m2

2pA

)
(A.16)

Putting pA = 3m (as in Ps− ion),

∫
dΠ2 =

1

9π
. (A.17)

Eq. (A.17) is used in the single photon annihilation in Chapter 2.
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Appendix B

Symmetry Factor for Incoming Identical
Particles

Identical particles in the initial state contribute a symmetry factor 1
n!

to the scattering
amplitude where n is the number of identical particles of a single type. In the outgoing
state, the amplitude has the same factor from the phase space integral which is intuitive to
understand. However, 1

n!
from the initial state non-trivially arises from normalization of the

initial state and the commutator algebra of the creation and annihilation operators of the
identical particles. In this appendix, first we will explain how we can write a bound state
generally, and then we will recover the symmetry factor from the normalization of the bound
state.

Note that initial state may not be strictly a bound state, nonetheless we are able to write
it in the same manner as we will write the bound state generally in B.1. Therefore, the
symmetry factor derived here holds for all cases.

B.1 Expression of the Bound State |B〉
A free particle is described by the state |k〉 with the normalization,

〈k′ |k〉 = (2π)3δ3(k′ − k). (B.1)

An open system of n free particles, where particles can exchange energy among themselves
and with any external agent, can be similarly given by the state |k1, ...,kn〉 satisfying

〈k′1, ...,k′n |k1, ...,kn〉 =
n∏

i=1

(2π)3δ3(k′i − ki). (B.2)
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Total energy and momentum is not conserved in an open system. Let’s consider a bound
state |B(P , σB, σ)〉 with a total momentum P (P =

∑
i ki) and where σB(σB +1) and σ are

the Ŝ2 and Ŝ3 eigenvalues. Normalization of such a bound state is

〈B(P ′, σ′B, σ
′) |B(P , σB, σ)〉 = (2π)3δ3(P ′ − P )δσ′

BσB
δσ′σ. (B.3)

We can write |B(P , σB, σ)〉 as a superposition of all momentum states of all the particles.
We may choose to write the superposition as

|B(P , σB, σ)〉 ∼
n∏

i=1

∑
σi

∑
ki

ψσ1...σn(k1, ...,kn)δσ,σ1+...+σnÔσ1...σn(k1, ...,kn) |0〉 . (B.4)

The operator Ôσ1...σn(k1, ...,kn) creates i th particle of ki momentum and σi 3-spin. ψ is a
wave function describing how the particles are constrained in this bound state of total spin σ

where δσ,σ1+...+σn on the right hand side maintains the 3-spin conservation as we sum over σi.
The summations

∑
ki

and
∑

σi
include all momenta and spins; we can replace the k summa-

tions as
∑

ki
→ ∫

d3ki

(2π)3
where (2π)3 is a conventional factor. All these integrals are required to

respect the total momentum P on the left hand side of [B.4] i.e. P =
∑

i ki. It is guaranteed
by the inclusion of a delta function δ3(P −k1−k2...−kn) inside the integrals

∫
d3ki

(2π)3
. More-

over, specifying the total 3-spin σi demands appropriate Clebsch-Gordan coefficients (denoted
as c

(σB)
σ;σ1...σn) on the right hand side which substitute spin-conservation δσ,σ1+...+σn term. We

will denote the Clebsch-Gordan coefficients 1 as c(σB)
σ;σ1...σn for |σB, σ〉 = |s1, σ1〉 ⊕ ...⊕ |sn, σn〉.

Therefore, the bound state is defined as

|B(P , σB, σ)〉 ≡
n∏

i=1

∑
σi

∫
d3ki

(2π)3
(2π)3δ3(P − k1 − k2 − ...− kn)c

(σB)
σ;σ1...σn

ψσ1...σn(k1, ...,kn)

× Ôσ1...σn(k1, ...,kn) |0〉 . (B.5)

We have included another conventional factor (2π)3 with δ3(P − k1 − k2 − ... − kn), any
arbitrary factor will be absorbed into ψ to preserve the normalization in [B.3]. We may

1In the bound state, there can be more than two angular momenta as |σB , σ〉 = |s1, σ1〉 ⊕ ... ⊕ |sn, σn〉
where si and σi are the spin and the 3-spin of i th particle. Therefore, |B〉 will have more than two Casimir
operators (Ŝ2 and Ŝ3) and thus we will need more than two labels (σB , σ). We should keep that in mind
while calculating for arbitrary bound state. For now, we look over other eigenvalues from other possible
Casimir operators and carry out the general expression because this choice does not affect our result.
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re-write Eq. (B.5) as

|B(P , σB, σ)〉 =
n∏

i=1

∑
σi

∫
d3ki

(2π)3
c(σB)
σ;σ1...σn

Ψσ1...σn(P ;k1, ...,kn)Ôσ1...σn(k1, ...,kn) |0〉 (B.6)

where

Ψσ1...σn(P ;k1, ...,kn) = (2π)3δ3(P − k1 − k2 − ...− kn)ψσ1...σn(k1, ...,kn). (B.7)

B.2 Symmetry Factor from the Normalization of a Bound

State

We will consider the bound state of Ps− ion that contains two identical electron (fermions).
We will show that it requires a factor of 1

2
to preserve the normalization. Analyzing the same

calculation, we can convince ourselves that of a factor of 1
n!

for n identical fermions and
bosons.

Eq. (B.6) and [B.7] motivates us to write,

∣∣Ps−(P , σB, σ)
〉
=
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
c(σB)
σ;σ1σ2σ3

Ψσ1σ2σ3(P ;k1,k2,k3)

× a†σ1
(k1)a

†
σ2
(k2)bσ3(k3)|0〉

where aσ(k) annihilates an electron of spin σ and momentum k, and bσ(k) creates a positron
of spin σ and momentum k.

〈Ps−(P ′, σB, σ)|Ps−(P , σB, σ)〉

=
∑
σ′
i

∑
σi

c
(σB)

σ;σ′
1σ

′
2σ

′
3
c(σB)
σ;σ1σ2σ3

∫
d3k′1
(2π)3

d3k′2
(2π)3

d3k′3
(2π)3

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

×Ψ∗σ′
1σ

′
2σ

′
3
(P ′;k′1,k

′
2,k

′
3)Ψσ1σ2σ3(P ;k1,k2,k3)

× 〈0| b†σ′
3
(k′3)aσ′

2
(k′2)aσ′

1
(k′1)a

†
σ1
(k1)a

†
σ2
(k2)bσ3(k3) |0〉

(B.8)

We use the following anti-commutative relations,

{
aσ′(k′), a†σ(k)

}
=
{
bσ′(k′), b†σ(k)

}
= (2π)3δσσ′δ3(k − k′), (B.9)

{aσ′(k′), aσ(k)} = {bσ′(k′), bσ(k)} =
{
aσ′(k′), b†σ(k)

}
= 0, (B.10)
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to evaluate the product of the operators in 〈Ps−(P ′, σB, σ)|Ps−(P , σB, σ)〉.

b†σ′
3
(k′3)aσ′

2
(k′2)aσ′

1
(k′1)a

†
σ1
(k1)a

†
σ2
(k2)bσ3(k3)

=
({

b†σ′
3
(k′3), bσ3(k3)

}
− bσ3(k3)b

†
σ′
3
(k′3)
)

× (aσ′
2
(k′2)

{
aσ′

1
(k′1), a

†
σ1
(k1)
}
a†σ2

(k2)− aσ′
2
(k′2)a

†
σ1
(k1)aσ′

1
(k′1)a

†
σ2
(k2)
)

=
{
b†σ′

3
(k′3), bσ3(k3)

}{
aσ′

1
(k′1), a

†
σ1
(k1)
}
aσ′

2
(k′2)a

†
σ2
(k2)

− bσ3(k3)
{
aσ′

1
(k′1), a

†
σ1
(k1)
}
aσ′

2
(k′2)a

†
σ2
(k2)b

†
σ′
3
(k′3)

−
{
b†σ′

3
(k′3), bσ3(k3)

}
aσ′

2
(k′2)a

†
σ1
(k1)aσ′

1
(k′1)a

†
σ2
(k2)

+ bσ3(k3)aσ′
2
(k′2)a

†
σ1
(k1)aσ′

1
(k′1)a

†
σ2
(k2)b

†
σ′
3
(k′3)

=
{
b†σ′

3
(k′3), bσ3(k3)

}{
aσ′

1
(k′1), a

†
σ1
(k1)
}{

aσ′
2
(k′2), a

†
σ2
(k2)
}

−
{
b†σ′

3
(k′3), bσ3(k3)

}{
aσ′

1
(k′1), a

†
σ1
(k1)
}
a†σ2

(k2)aσ′
2
(k′2)

−
{
b†σ′

3
(k′3), bσ3(k3)

}({
aσ′

2
(k′2), a

†
σ1
(k1)
}− a†σ1

(k1)aσ′
2
(k′2)
)

× ({aσ′
1
(k′1), a

†
σ2
(k2)
}− a†σ2

(k2)aσ′
1
(k′1)
)

=
{
b†σ′

3
(k′3), bσ3(k3)

}{
aσ′

1
(k′1), a

†
σ1
(k1)
}{

aσ′
2
(k′2), a

†
σ2
(k2)
}

−
{
b†σ′

3
(k′3), bσ3(k3)

}{
aσ′

2
(k′2), a

†
σ1
(k1)
}{

aσ′
1
(k′1), a

†
σ2
(k2)
}

=δσ1σ′
1
δσ2σ′

2
δσ3σ′

3
(2π)3δ3(k3 − k′3)(2π)

3δ3(k1 − k′1)(2π)
3δ3(k2 − k′2)

− δσ1σ′
2
δσ2σ′

1
δσ3σ′

3
(2π)3δ3(k3 − k′3)(2π)

3δ3(k2 − k′1)(2π)
3δ3(k1 − k′2) (B.11)

where all the terms with a or b† on the right-most position are dropped because a |0〉 =

b† |0〉 = 0.
Therefore,

〈Ps−(P ′)|Ps−(P )〉

=
∑
σ′
i

∑
σi

c
(σB) ∗
σ;σ′

1σ
′
2σ

′
3
c(σB)
σ;σ1σ2σ3

∫
d3k′1
(2π)3

d3k′2
(2π)3

d3k′3
(2π)3

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

×Ψ∗σ′
1σ

′
2σ

′
3
(P ′;k′1,k

′
2,k

′
3)Ψσ1σ2σ3(P ;k1,k2,k3)

× 〈0| b†σ′
3
(k′3)aσ′

2
(k′2)aσ′

1
(k′1)a

†
σ1
(k1)a

†
σ2
(k2)bσ3(k3) |0〉
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=
∑
σ′
i

∑
σi

c
(σB) ∗
σ;σ′

1σ
′
2σ

′
3
c(σB)
σ;σ1σ2σ3

∫
d3k′1
(2π)3

d3k′2
(2π)3

d3k′3
(2π)3

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

×Ψ∗σ′
1σ

′
2σ

′
3
(P ′;k′1,k

′
2,k

′
3)Ψσ1σ2σ3(P ;k1,k2,k3)

×
{
δσ1σ′

1
δσ2σ′

2
δσ3σ′

3
(2π)3δ3(k3 − k′3)(2π)

3δ3(k1 − k′1)(2π)
3δ3(k2 − k′2)

− δσ1σ′
2
δσ2σ′

1
δσ3σ′

3
(2π)3δ3(k3 − k′3)(2π)

3δ3(k2 − k′1)(2π)
3δ3(k1 − k′2)

}

=
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

{ ∣∣c(σB)
σ;σ1σ2σ3

∣∣2 Ψ∗σ1σ2σ3
(P ′;k1,k2,k3)

− c(σB) ∗
σ;σ2σ1σ3

c(σB)
σ;σ1σ2σ3

Ψ∗σ2σ1σ3
(P ′;k2,k1,k3)

}
Ψσ1σ2σ3(P ;k1,k2,k3) (B.12)

The wave function,

∑
σi

c(σB)
σ;σ1σ2σ3

Ψσ1σ2σ3(P ;k1,k2,k3) = f(P ;k1,k2,k3)
∑
σi

c(σB)
σ;σ1σ2σ3

χσ1σ2σ3 (B.13)

is anti-symmetric for 1 ↔ 2 where χσ1σ2σ3 is the normalized spin wave function labeled
with the 3-spin eigenvalues, and

∑
σi
c
(σB)
σ;σ1σ2σ3χσ1σ2σ3 is the total spin wave function for∣∣Ps−(P , σB, σ)

〉
. f is the momentum-dependent scalar function that can be taken out of

the summation. If f is symmetric for 1 ↔ 2,
∑

σi
c
(σB)
σ;σ1σ2σ3χσ1σ2σ3 is anti-symmetric i.e.

c
(σB)
σ;σ1σ2σ3 = −c

(σB)
σ;σ2σ1σ3 and vice versa. Regardless of which component is anti-symmetric, we

can safely write

c(σB) ∗
σ;σ2σ1σ3

Ψ∗σ2σ1σ3
(P ′;k2,k1,k3) = −c(σB) ∗

σ;σ1σ2σ3
Ψ∗σ1σ2σ3

(P ′;k1,k2,k3). (B.14)

Thus, Eq. (B.12) reduces to

〈Ps−(P ′)|Ps−(P )〉

=
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3

{ ∣∣c(σB)
σ;σ1σ2σ3

∣∣2 Ψ∗σ1σ2σ3
(P ′;k1,k2,k3)

+ c(σB) ∗
σ;σ1σ2σ3

c(σB)
σ;σ1σ2σ3

Ψ∗σ1σ2σ3
(P ′;k2,k1,k3)

}
Ψσ1σ2σ3(P ;k1,k2,k3)

=2
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
∣∣c(σB)

σ;σ1σ2σ3

∣∣2 Ψ∗σ1σ2σ3
(P ′;k1,k2,k3)Ψσ1σ2σ3(P ;k1,k2,k3)
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=2
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
d3k3

(2π)3
∣∣c(σB)

σ;σ1σ2σ3

∣∣2 (2π)3δ(3)(P ′ − k1 − k2 − k3)ψ
∗
σ1σ2σ3

(k1,k2,k3)

(2π)3δ(3)(P − k1 − k2 − k3)ψσ1σ2σ3(k1,k2,k3)

=2(2π)3δ(3)(P − P ′)
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
∣∣c(σB)

σ;σ1σ2σ3
ψσ1σ2σ3(k1,k2,P − k1 − k2)

∣∣2 . (B.15)

As ψσ1σ2σ3(k1,k2,P − k1 − k2) ≡ ψσ1σ2σ3(P ;k1,k2), the final expression becomes

〈Ps−(P ′, σB, σ)|Ps−(P , σB, σ)〉

=2(2π)3δ(3)(P − P ′)
∑
σi

∫
d3k1

(2π)3
d3k2

(2π)3
∣∣c(σB)

σ;σ1σ2σ3
ψσ1σ2σ3(P ;k1,k2)

∣∣2 . (B.16)

It is evident that the normalization of the bound state |Ps−〉 comes with this additional
factor of two which has to be compensated to retain the normalization of the state as given
in Eq. (B.3). This is the reason to add a factor of 1

2
in the decay expression of Ps− → e−γ

attributed to the identical electrons.
In general, if there were n identical fermions in a state |B〉, there are n! ways to pair up

the annihilation and creation operators in anti-commutators. The product of operators will
have terms of both signs present as we saw in Eq. (B.11). (+)-signed terms are derived after
getting even number of anti-commutators in the expression, and (−)-signed terms for any
odd number. Antisymmetricity of the wave function compensates the − sign as for any odd
number of exchange in fermions, the total state holds a negative sign. Therefore, we have n!

terms contributing the same quantity. In the normalization of the state, n! comes out of the
expression,

〈B(P ′, σB, σ)|B(P , σB, σ)〉

=n!(2π)3δ(3)(P − P ′)
n∏

i=1

∑
σi

∫
d3ki

(2π)3
∣∣c(σB)

σ;σ1σ2...σn
ψσ1σ2...σn(P ;k1,k2, ...,kn)

∣∣2 . (B.17)

The same procedure holds for identical bosons as well. Bosons will satisfy commutative
relation, [

aσ′(k′), a†σ(k)
]
=
[
bσ′(k′), b†σ(k)

]
= (2π)3δσσ′δ3(k − k′), (B.18)

[aσ′(k′), aσ(k)] = [bσ′(k′), bσ(k)] =
[
aσ′(k′), b†σ(k)

]
= 0. (B.19)

Therefore, the minus sign in Eq. (B.11) will be plus for the bosons in the initial state, and
consequently, the normalization term will have a plus sign unlike Eq. (B.12). Since bosons
will form a symmetric wave function, all the terms will be added and the factor n! will arise
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from the addition if there are n identical bosons.
To preserve the normalization of the initial state, we divide the final expression by n!.

Thus comes the rule of 1
n!

factor for any n number of identical particles in the initial state.
The origin of this factor is the operator algebra of the identical particles; fermions and bosons
both will have the factor respecting the spin-statistics theorem.
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