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Abstract

Predicting a dense depth map from LiDAR scans and synced RGB images with a

small deep neural network is a challenging task. Most top-accuracy methods boost

precision by having a very large number of parameters and as a result huge mem-

ory consumption. Whereas, depth completion tasks are commonly tackled in areas

like autonomous driving such that edge devices, which are powered by embedded

GPU, are the main platform. In this work, we present a methodology to produce an

efficient depth completion model with high-performance fidelity inspired by PENet

[1]. To create a compact model, we propose replacing convolutional encoder lay-

ers with depth-wise separable convolution and transpose convolutional decoder with

up-sampling plus depth-wise separable convolution. Our technique of using random

layer pruning as a stability test guilds the design of the architecture and avoids over-

parameterization. We also provide a simple but robust knowledge distillation method

to further turbocharge the network and make our model scalable to fulfill a better

quality requirement. Our experiments have shown a decent improvement over the

leading compact models while using significantly fewer parameters compared with

other larger models.
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Chapter 1

Introduction

In the last decade, computer vision via machine learning has been a rapidly progressed

topic not only in academic research, but it is also widely employed in industry solu-

tions.

A popular approach to improve the robustness of a visual cognition system includes

multiple and multiple types of sensors, such as RGB cameras, stereo cameras, IR

sensors, and LiDAR, depending on the requirement of the specific task. To integrate

these sensors, a proper sensor fusion method is crucial. Deep learning and its variants

can leverage the multiple hidden layers to automate the process of feature generation

instead of manually handcrafting sophisticated algorithms for sensor fusion.

Regardless of the ease to deploy deep learning neural networks for solving single

problems, generating a precise depth map, which is also a visual recognition task,

has become a crucial step for various down-streamed visual recognition tasks, such as

autonomous driving, 3D object detection, and Augmented reality.

These applications require an understanding of the spatial depth of surroundings to

certain degrees. An effective method of acquiring precise dense depth maps is depth

completion via RGB cameras and sparse LiDAR scans. Since such multi-sensor fusion

can make use of the highly informative RGB imagery and direct discrete quantitative

depth measured by the LiDAR sensor. Therefore, it has complementary advantages

over implementation with sensors of a single type.
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However, due to the sparsity of the LiDAR depth scans and their non-uniform

distribution in a 2D viewpoint, blurriness and ambiguity around object edges are

common issues. The sensors are also prone to noise and errors due to the environment.

Thus, depth completion is a challenging task and has attracted high research interest

in recent years. Many works have selected KITTI [2] as the benchmark dataset, in

which 3D point cloud captured by Velodyne LiDAR HDL-64E is projected into an

image plane that is synced with RGB cameras mounted on the same data collection

platform.

After the success of convolutional neural networks in computer vision, deep con-

volutional neural networks have been a very popular choice for state of the art, such

as the PE-Net [1]. Hourglass deep convolutional neural networks as the backbone for

extracting multi-scale features and a refinement module to further process the coarse

depth map have been a common approach. Whereas, it often consists of multiple

layers and multiple branches with sophisticated connections. Such networks can be

very heavy with more than a hundred Million parameters and a relatively slow in-

ference time. Despite the prosperity of these methods, due to the nature of depth

completion, in production, it is commonly deployed on embedded devices, where the

hardware is constrained by both space and cost, furthermore, real-time inference is a

fundamental requirement. Therefore, the demand for a compact and efficient while

still precise depth completion implementation is needed to be addressed.

Inspired by PE-Net design, we propose a methodology of composing a Compact

Depth-wise Separable Precise Network (CDSPN), which takes advantage of the highly

efficient depth-wise separable technique to significantly reduce the parameters, selec-

tive fine-tuning via pruning to further compact the model without losing precision,

black-boxed knowledge distillation for boosting the accuracy and model scaling that

requires no knowledge of the teacher models.

Specifically, We have replaced convolutional layers including the encoder and de-

coder with highly efficient depth-wise separable convolution. During experiments,
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we find the attention module, such as the squeeze-and-excitation in MBConv [3] has

a limited utility. With wholly grouped convolution and point-wise convolution, the

parameters needed and the inference time are reduced by a large margin. And up-

sampling combined with convolutional operations replace the transpose convolution

to remove some undesirable checkerboard artifacts.

After adopting the depth-wise separable convolution, we utilize random layer prun-

ing as a stability test on our backbone model to selectively guide the fine-tuning of

the model, furthermore preventing over-parameterization. As a result, after iterations

of pruning, our redesigned backbone model can excel from a simple architecture with

a high ratio of quality verse the number of parameters. Overall, our model trains

on significantly fewer parameters than state of the art while outperforming existing

models with Depth-wise separable convolution and other compact models at a nearly

identical number of parameters, as well as fast enough to be ported on embedded

devices.

To compensate for the precision loss from the architectural changes and further,

endue the network with the ability of scaling, we provide a simple but effective knowl-

edge distillation method that solely depends on the prediction of the teacher model

which is treated as a black box. With distillation on the prediction and its gradi-

ent, our model is easy to scale for a higher accuracy requirement without complex

tricks, fine-tuning of the network architecture or retraining of the teacher. It ensures

that distillation is still possible when in real-world applications, only the API to the

teacher is accessible.

1.1 Motivation

Although precision is utterly important in in-depth prediction, portability and speed

are essential in real-world applications, where the performance is limited by the device

hardware. Existing efforts focus on breaking the record in terms of accuracy, con-

versely, it has become larger and heavier to be deployed. Therefore, a bridge between
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efficient implementation and existing high precision is seriously demanded, which has

been the major motivation for this work.

Yet in nature, there is a trade-off between the performance and the resource utilized

by the system, we aim to achieve as large an area as possible of this two axis. The

goal being optimized is defined, such that at the same parameter size and inference

time, our work presents an advantage in precision. When the precision is compara-

ble with state of the art, our model leverages a smaller parameter footprint and a

faster inference speed. The priority from high to low is parameter size, precision and

inference speed.

Notably, the sparsity and nonuniform distribution of the LiDAR scans promote

great difficulties at the edge of objects. While being further from the viewpoint,

fewer signals are received by the LiDAR as well as a larger ratio of noise, making it

even harder to predicting the depth. The challenge presents in the problem makes it

an exciting research objective.

1.2 Contributions

The discussion mentioned above encourages us to propose a depth completion frame-

work that focuses on the characteristics of light-weighted, efficient, and extendable.

The main contributions of this work are as follows:

1. We propose a complete workflow of composing a compact model from the ex-

isting state of the art, creating flexible and efficient agents concerning the re-

quirement of different scales for performing visual recognition tasks. Without

laying tricks and sophisticated design, this methodology, at a large elasticity,

can be applied to other and even future works of suitable.

2. We attract attention to depth-wise separable convolution as a promising ap-

proach to design compact models for model compression and constrained envi-

ronment. In terms of depth completion tasks, it can be a helpful addition to
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the literature as we observed attention might not be necessary for depth-wise

separable convolution. By reducing the network fragmentation, the inference

speed, which is one of the downsides of depth-wise separable convolutions, can

be relieved.

3. Our models are capable of outperforming existing depth-wise separable imple-

mentation [4] in all metrics of accuracy, parameter count, and inference speed,

and competitive root mean square error (RMSE) to state-of-the-art compact

model [5] with [6] or without knowledge distillation at a similar number of pa-

rameters and inference speed. Our scaled model with the help of knowledge

distillation can match state of the art results of the teacher PE-Net model by a

saving of over 50 times parameters and faster inference speed.

1.3 Thesis Outline

In Chapter 2, we review existing works, their limitations, and other related efforts.

In Chapter 3, we present a complete workflow to generate and fine-tune an efficient

compact model from existing state of the art. In Chapter 4, we propose a simple

knowledge distillation algorithm that treats the teacher as a black box and discuss

how it can help to scale the model and boost its performance. Finally, in Chapter 5, we

summarize and conclude this thesis and discuss possible future research directions.
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Chapter 2

Background

2.1 General Introduction

Depth completion aims to up-sample sparse irregular depth (often from LiDAR scan

or RGB-D cameras) to dense regular depth, which facilitates the downstream percep-

tion module. Commonly, not only sparse depth is employed, but additional sensor

data as well, such as RGB images. Pure sparse depth suffers from the ambiguity

around object edges, while further away from the viewpoint, the scarcer the measure-

ment gets. In complementary, cameras can capture dense and high-resolution data.

When multiple sensors work together, dense depth prediction can be more accurate.

In recent years, deep learning based methods have shown overwhelming advantages

in processing sensor fusion and depth enhancement.

In addition to depth completion, depth prediction is a similar task, in which only a

single or multiple RGB cameras are exploited. There is also research on unsupervised

depth estimation. But in this thesis, only techniques of depth completion are the

emphasis. The research is drawn from computer vision and deep learning.

2.2 Related Works

2.2.1 Multi-scale Deep Convolution Neural Network

The depth completion task is a pixel-wise inference task similar to semantic seg-

mentation. In these tasks, multi-scale networks are widely employed because these

6



Figure 2.1: GoogLeNet [7] layers consist of convolutions with different kernel sizes.

Figure 2.2: This figure shows UNet [7] architecture which is one of the most popular
hourglass network designs.

architectures can extract and exploit features at different scales or spatial properties.

Encoder-decoder architecture with skip connections, the Hourglass networks (shown

in Fig.2.2), such as the U-Net [8] is one of the most popular backbones, which in-

cludes an encoder to extract multi-scale features sequentially, a transpose convolution

decoder to reconstruct the prediction, and the residual connections aid the decoder

7



in collecting features.

Another approach to learning a coarse-to-fine representation is using convolution

kernels of different sizes. An example layer in GoogLeNet [7] can be seen in Fig.2.1 By

further composing an attention mechanism [9], the weights from different convolutions

can be reweighed as the input to the next layer. However, the inference speed and

training can be slow due to the fragmentation of convolutions.

2.2.2 Depth-wise Separable Convolution

Depth-wise separable convolution [10]was first proposed by Chollet from Google. It

tries to represent a regular dense convolution by two separate convolutional opera-

tions. As shown in Fig.2.3, it includes one group convolution with a kernel on each

channel of the input feature independently.

Figure 2.3: Standard convolution (left) and depth-wise separable convolution (right)

In this process, usually, the output channels are equal to the input channels while

the spatial property of each channel may change. Then a point-wise (1x1 kernels)

convolution follows, where the output feature is projected into a new channels space.

Compared to dense convolution, depth-wise separable convolution has a significantly

fewer total number of parameters. As a result, depth-wise separable convolution and

its variants have been commonly utilized in many prior works [11][12][13][14], and

depth completion [4] as well. However, some studies [15] also have shown that depth-

wise separable convolution has a higher memory access consumption, leading to a
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longer inference time than dense convolution at the same number of parameters. Our

implementation balances accuracy and speed.

2.2.3 Multi-branch Depth Completion Networks

Many researches [16][1][17] in depth completion has adopted a multi-branch design

for its network architecture, as it has a better capacity to exploit contextual features.

PE-Net [1] is one of them that does not only have a simple architecture but also

perform decently in the depth completion task. It employs a two-branch structure

as shown in Fig.2.4, taking advantage of RGB data and spacial depth information

respectively. The final depth prediction is calculated by the depth maps and their

confidence values from each branch.

D̂f (u, v) =
eCcd(u,v) · D̂cd(u, v) + eCdd(u,v) · D̂dd(u, v)

eCcd(u,v) + eCdd(u,v)
(2.1)

Where (u, v) denotes a pixel, C is the confidence map, and D is the depth prediction.

Figure 2.4: In the two-branch design of PE-Net, the first color-dominant branch takes
in the color and sparse depth as inputs, and the second depth-dominant branch fea-
tures the depth generated in the first branch and sparse depth as inputs. Furthermore,
residual connections are placed between and within the two branches.

Geometric properties are fused into the convolutional layers to enhance the capa-

bility of the model. In each layer, three filters are concatenated which follow the

formula below.

Z = D (2.2)
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X =
(u− u0)Z

fx
(2.3)

Y =
(v − v0)Z

fy
(2.4)

The u0, v0, fx, and fy are intrinsic parameters of the camera. The sparse depth

map D is min-pooled to obtain Z at smaller scales, u and v are x and y coordinates

respectively.

2.2.4 Convolutional Spatial Propagation Networks

The spatial propagation network (SPN) is first proposed by Liu et al. [18] to learn

local affinities, a weighted graph, in which each pixel is a node, and an edge between

each pair of pixels determines how close, or similar, two points are in latent space.

However, it propagates in an inefficient column-wise and row-wise manner.

Figure 2.5: Comparison between the propagation process in (a) SPN, and (b) CPSN.
SPN scans the whole image in four directions sequentially, while CSPN propagates a
local area towards all directions simultaneously at each step in a recurrent manner.

Cheng et al. [19] thereby propose a convolutional spatial propagation network

(CSPN) for efficiency and meanwhile apply it to refine depth completion results.

Later, Cheng et al. [20] further improve the effectiveness and efficiency by learning

adaptive convolutional kernel sizes and the number of iterations for the propagation,

thus the context and computational resource needed at each pixel could be dynami-

cally assigned upon requests.

In PE-Net, the involvement of the dilated accelerated convolutional spatial propa-

gation networks (DA-CSPN++) acts as a refinement module to perform operations in
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2.5, further recovering structural details. The coarse depth map is defined as D0 and

for pixel i, at each iteration t, it aggregates information propagated from neighbor

pixels N(i). Aji denotes the affinity between pixel i and pixel j.

Dt+1
i = AiiD

0
i +

∑︂
j∈N(i)

AjiD
t
j (2.5)

Two modifications to make it more effective and efficient. First, the convolution is

dilated [21] to enlarge the propagation neighborhoods, aggregating a larger receptive

field without losing coverage.

Then, by using one-hot convolutional kernels, it makes propagation from each

neighbor truly parallel, which greatly accelerates the propagation procedure compared

to the original pixel-wise spatial propagation. In our work, we choose to follow the

design of DA-CSPN++ and keep this refine module untouched.

2.2.5 Model Pruning

Pruning is one model compression technique that allows the fine-tuned model to

become smaller and more efficient. Model pruning involves two distinct paths, weight

pruning, and layer pruning.

Weight pruning [22] aims to increase model sparsity by eliminating the weights

with low magnitude, such that both the original and pruned model has the same

architecture, but the pruned model becomes sparser where the weights with the low

magnitude are set to zeros.

Weight pruning can be applied during training, such that at every t step, a binary

mask of setting all the selected weights to zeros, then continues with the training.

With an identical memory footprint, large, but pruned models (large-sparse) can

achieve better accuracy than their smaller, but dense (small-dense) counterparts.

The second way is filter pruning [23] and layer pruning. It directly eliminates the

filters and layers in the model instead of the weights. Compared with weight pruning,

which sometimes can be tricky to benefit from memory saving and speed improvement
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Figure 2.6: Illustration of weight pruning, the connection with the low magnitude is
removed, resulting in a sparser network.

when deploying onto edge devices due to irregular network connections, filter pruning

and layer pruning can be much easier to apply. Furthermore, because the entire filter

or layer is removed, the resulting model can be easily exported for production. In

each step t, one of the layers or filters that minimize the increase in error is pruned.

Or instead of calculating the error of each layer being removed, Li et al. [24] state

that removing the filter with the ’smallest’ absolute kernel weights, defined by 2.6,

sj =

ni∑︂
l=1

∑︂
|Kl| (2.6)

where ni is the input channel number, Kl is the kernel of the filter l, i and j are the

input and output filters respectively,

is better than ’random’ or ’largest’ when the pruned parameter counts are the same.

It allows filter pruning without ground truth or when error calculation is expensive

or not possible.

2.2.6 Knowledge Distillation

Knowledge distillation was first proposed [25] to compress the model without signif-

icant loss in performance. It is the process of transferring knowledge from a larger

and more accurate teacher network to a smaller student network. So that the student

model can have a better convergence with no overhead during inference. By learning
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the patterns of the teacher network, the student can avoid some learning pitfalls to

have better performance than training with only the ground truth. It has been a

popular approach to improving the performance of compact models without adding

additional weights and costs.

Most common distillation methods can be classified into two categories to help the

student model mimic the teacher.

Figure 2.7: Different stages to apply distillation in a classification neural network.

Naturally, the first direction is to train the student to have similar outputs as the

teacher. It can further be categorized into hard labels and soft labels [26]. Hard labels

simply compare the predictions, whereas soft labels compare the output distribution

or relations. In classification problems, the soft labels are usually generated from

the softmax function. Using soft targets can provide more information, such as the

probability, thus having better generalization and less variance in gradients between

training examples.

The second direction is about feature similarity between the teacher and the stu-

dent. The goal is to train the student model to learn the same feature activation as

the teacher model. It requires the teacher and the student to have a similar layer
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structure so that the pair-wise comparison can be formed.

Regarding the depth completion task, Wang et al. [6] propose a self-paced knowl-

edge distillation method. They propose learning with the easy-to-hard curriculum by

gradually introducing hard pixels to distill the depth and structure (gradient) knowl-

edge from the teacher to the student. Not only the final teacher model is required, but

in order to mine the hard pixels, snapshots of the teacher model in intermediate steps

are also taken as well. The hardness R is calculated by 2.7, where the intermediate

and final teachers predicted dense depth maps are Dti and Dt respectively.

R =
|Dti −Dt|
Dt + ϵ

(2.7)

When compared to hyper-parameter γ, a pixel-wise mask is generated to leave out

the hard pixels in distillation loss calculation.

And Liu et al. [27] exhibit a knowledge distillation method using multiple teachers

so that the student can avoid learning the error modes of a particular teacher. The

author state that different error modes can be observed in different teachers at dif-

ferent depth ranges. Hence, the distillation loss is constructed by adaptive selecting

predictions from the teacher that best minimize the error. For regions where all of

the teachers yield high errors, a default loss is chosen instead of the distillation loss.

2.3 Gap in Research

As discussed in motivation, prior efforts are concentrated on exploiting the properties

of the contextual information from the input data or network architecture to squeeze

more precision. However, efficient models are more practically demanded in the field.

In this direction, existing works are heavily on variants of knowledge distillation.

These distillation methods either require modification on the models to form feature

connections or training one or more teacher models together with the student model.

While in the real-world application, these implementations can be sophisticated, and

sometimes the teacher model is accessible only through API. There is a gap in how
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we can transform the highly accurate state of the art into efficient models that can be

deployed in the real world. Knowledge distillation can greatly boost the performance

of the model while we believe a simple distillation that only requires the teacher as a

black box can be helpful.
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Chapter 3

Workflow To Create CDSPN

In this chapter, we first discuss the architecture overview, then introduce the process

of creating the compact model, and finally the related experiments.

3.1 Overview

Our model employs a two-branch network developed from PE-Net, which was re-

fined by a stability test via random layer pruning. The stability test was deployed

to improve the cost-efficiency of trainable parameters of our model in addition to

controlling the total parameter count. We utilize lightweight depth-wise separable

convolution for replacing regular convolutions in our proposed model. Unlike many

current works, no attention module, e.g. squeeze and excitation attention, was added

to have a better inference speed. In the decoder, instead of transpose convolutions

[28], we choose bilinear upsampling to avoid checkerboard artifacts. Additionally, the

geometric encoding in PE-Net is excluded for simplicity.

3.1.1 Model Architecture

Same as PE-net, our model is also constructed with the two-branch hourglass back-

bone and the DA-CSPN++ refinement module.

In the backbone, there are residual connections inside the layer, between the en-

coder and decoder in each branch and between the encoder of the color-dominant
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Figure 3.1: Overview of the proposed model. Our network consists of two hourglass
branches denoted as the color-dominant branch and the depth-dominant branch, in
which there are residual connections. A refinement module DA-CSPN++ [1] further
processes the depth predicted by the backbone.

branch and the decoder of the depth-dominant branch. Because of the layer pruning,

the residuals between layers are moved or excluded when needed. The entire model is

built upon the same layer design for both the encoder and decoder, which is shown in

Fig.3.2. A global scaling factor m allows custom scaling with ease, which is discussed

in the next chapter.

Each branch in the backbone can output a dense depth map and a confidence

map. The intermediate dense depth map is calculated with the two depth maps and

confidence maps from each map, which is shown in 3.1

D̂f (u, v) =
eCcd(u,v) · D̂cd(u, v) + eCdd(u,v) · D̂dd(u, v)

eCcd(u,v) + eCdd(u,v)
(3.1)

Where (u, v) denotes a pixel, C is the confidence map, and D is the depth prediction.

When we train the model, the backbone is first trained for about 15 epochs then

its weights are frozen, and then train the refinement module for another 3-5 epochs.

Finally, the entire model is trained to convergence.
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Figure 3.2: Layer composition for the encoder and decoder. Bilinear upsampling only
exists in the decoder part of the model. Scaling is treated as a multiplier to the
channel number C and C’.

3.2 Methodology

3.2.1 Base Model Selection

One of our aims is to create a top-down pipeline to convert the existing works, which is

high precision and has a large number of parameters, to accurate but efficient compact

solutions. We first explore the leaderboard and find a few candidates. Among them,

we have chosen the PE-Net because it has two very deep branches with a relatively

simple layer design. It is a good fit for deploying our model compression techniques.

Our work is around two main objectives, a small count of parameters and the accuracy

should be comparable with other state of the art which are designed to be compact

from scratch.
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3.2.2 Efficient Layer Design

From chapter 2 we have discussed that depth-wise separable convolution has dras-

tically fewer learnable parameters than a regular convolution with the same input

size and output size. Inevitably, depth-wise separable convolution will sacrifice some

accuracy, but under the same number of parameters, it still has better cost-efficiency.

The base model makes use of both convolution and transpose convolution, we have

replaced the convolution in the encoder with depth-wise separable convolution, then

we choose to use the same depth-wise separable convolution and bilinear upsampling

cooperatively, because it can not only remove the undesired checkerboard pattern,

which is due to the uneven overlap when the kernel size is not divisible by the stride,

but also has no trainable parameters. It makes our basic block unified, see Fig.3.2,

in the architecture. And then we can continue decorating the layers globally.

3.2.3 Random Layer Pruning Stability Test

Convolution with large input and output channel sizes creates a huge parameter

footprint even though we can use depth-wise separable convolution. Our proposed

random layer pruning stability test is used to fine-tune the network. The stability

test is done by randomly pruning filters from the target layer. One layer at a time,

after the target layer is pruned, we reevaluate the new model. With a proportion

of layer filters disabled, the model usually suffers a drop in accuracy. If the layer

is important, that it has a large influence on prediction, we can see a large drop in

accuracy. Otherwise, a very small difference from the full model. Sometimes, pruning

can even increase the accuracy, which means the model is over-parameterized. To take

advantage of this observation, we can purge the over-parameterized layers, reduce the

number of filters in insignificant layers and carefully increase the number of filters in

important layers.

Detailed implementation can be viewed in Alg.1, where ϵ is chosen respectively to

the base accuracy. An example is shown in Tab.3.1.
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More importantly, with careful pruning [29], the production model can be even

smaller, despite a little reduction in accuracy.

Algorithm 1 The workflow of compression via pruning

Require: model N
Acc← test(N)
while countParams(N) ⪊ target do

Train the model N
for all layer M ∈ N do

N
′ ← N

M
′ ←M

Randomly prune γ% filters in M
′

Accnew ← test(N
′
)

if Accnew + ϵ1 > Acc then
M will be pruned

else if Accnew + ϵ2 > Acc then
M will have less number of filters

else if Accnew + ϵ3 < Acc then
M will have more number of filters

end if
end for
Apply changes to N
Maintain residual connections in N

end while

After iterations of fine-tuning cycles, the resulting model, shown in Tab.3.2, is no

longer symmetrical in the encoder and decoder, because we find the decoder needs

fewer layers and filters than the encoder.

Color Dominant Branch

Layer Ker., Str. Channel I/O Out Shape Input

rgb init 5, 1 4/32 H xW rgb, d

rgb e1 3, 2

32/32 1/2 H x 1/2 W

rgb init

rgb e2 3, 1 rgb e1

rgb e2 2 3, 1 rgb e2

rgb e3 3, 2 32/64

1/4 H x 1/4 W

rgb e2 2

rgb e4 3, 1
64/64

rgb e3
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rgb e4 2 3, 1 rgb e4

rgb e5 3, 2 64/128
1/8 H x 1/8 W

rgb e4 2

rgb e6 3, 1 128/128 rgb e5

rgb e7 3, 2 128/256
1/16 H x 1/16 W

rgb e6

rgb e8 3, 1 256/256 rgb e7

rgb d1 3, 1 256/128 1/8 H x 1/8 W rgb e8

rgb d2 3, 1 128/64 1/4 H x 1/4 W rgb d1 + rgb e6

rgb d3 3, 1 64/32 1/2 H x 1/2 W rgb d2 + rgb e4 2

rgb d4 3, 1 32/32
H x W

rgb d3 + rgb e2 2

rgb d5 3, 1 32/2 rgb d4 + rgb init

Depth Dominant Branch

Layer Ker., Str. Channel I/O Out Shape Input

depth init 5, 1 2/32 H x W d, rgb d5[0]

depth e1 3, 2

32/32 1/2 H x 1/2 W

depth init

depth e2 3, 1 depth e1

depth e2 2 3, 1 depth e2

depth e3 3, 2
64/64 1/4 H x 1/4 W

rgb d3 + rgb e2 2,

depth e2 2

depth e4 3, 1 depth e3

depth e5 3, 2 128/128 1/8 H x 1/8 W
rgb d2 + rgb e4 2,

depth e4

depth e6 3, 1 128/128 1/8 H x 1/8 W depth e5

depth d1 3, 1 256/64 1/4 H x 1/4 W
rgb d1 + rgb e6,

depth e6

depth d2 3, 1 64/32 1/2 H x 1/2 W depth e4 + depth d1

depth d3 3, 1 32/32
H x W

depth e2 2 + depth d2

depth d4 3, 1 32/2 depth d3
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Table 3.2: The layer components of the proposed model. K. is the kernel size and
Str. is the stride of the group convolution. H and W are the height and width of the
input features, Ch.I/O are the channel numbers of the input and output features in
the layer. Input consists of the source of the input features, where a comma means
concatenation and a plus means addition.

3.2.4 Apply to Other Architectures

Our approach to create a compact network is model-agnostic. Although, we have only

demonstrated on PE-Net due to time consumption in training, in this section, we will

briefly introduce how to apply the same techniques on another network architecture.

SemAttNet [16] is one of the top accuracy models on the leaderboard Its backbone

consists of three branches, which is one more branch than the PE-Net. Likewise,

with the SAMMAFB block unchanged, the same depth-wise separable convolution

unit can replace the Resblocks and deconvolutions in these branches. The number

of channels and the filters counts can be guided by the same pruning test that has

been shown on PE-Net. By this approach, a compact network from SemAttNet are

available for deploying on embedded device.

3.3 Experiments

In this section, we conduct experiments and ablation studies on our model.

3.3.1 Dataset

Our methods are evaluated on the KITTI depth completion dataset [2], a popular

benchmark dataset for outdoor depth completion tasks. It provides RGB images and

aligned sparse depth maps. The ground truths are semi-dense depth maps that are

generated by 11 laser scans to increase the density of the generated depth maps. A

consistency check can remove noise and outliers, which makes use of stereo camera

pairs to compare the scanned depth to results from a semi-global matching stereo
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Layers RMSE [mm] Random Pruning = 75% filters

Baseline 886

rgb init 9843 depth init 4905

rgb e1 15706 depth e1 6685

rgb e2 3913 depth e2 3693

rgb e3 5598 depth e3 1966

rgb e4 1125 depth e4 1132

rgb e5 1236 depth e5 1046

rgb e6 948 depth e6 1031

rgb e7 1076 depth e7 926

rgb e8 999 depth e8 907

rgb e9 938 depth e9 899

rgb e10 919 depth e10 889

rgb d1 915 depth d1 885

rgb d2 952 depth d2 890

rgb d3 1040 depth d3 1351

rgb d4 1977 depth d4 921

rgb d5 5418 depth d5 4055

Table 3.1: An example of the pruning test on each layer, 75% of the filters are pruned
separately and then evaluated for accuracy. In this example, because there are too
many filters near the bottleneck layers e10 and d1, even though most of the filters are
pruned, the accuracy is very close to the baseline of which the parameter number is
several times more.

reconstruction approach (SGM) [30]. Therefore, the ground truths are reliable to be

used for comparing the results.

The dataset contains 85895 samples for training, 1000 samples as the selected

validation, and 1000 test samples without ground truth for benchmarks.

The data collection platform is a Volkswagen Passat B6 with the following sensors:

1. 1 inertial navigation system (GPS/IMU): OXTS RT 3003
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Figure 3.3: How the sensors capture data, from rays to image. The camera and the
LiDAR are synchronized, such that the camera is triggered when the rotating LiDAR
is facing forward.

2. 1 laserscanner: Velodyne HDL-64E

3. 2 grayscale cameras, 1.4 megapixels: Point Grey Flea 2 (FL2-14S3M-C)

4. 2 color cameras, 1.4 megapixels: Point Grey Flea 2 (FL2-14S3C-C)

5. 4 varifocal lenses, 4-8 mm: Edmund Optics NT59-917

The LiDAR scans at 10 frames per second, 64 beams, 0.09 degree angular resolution,

20 mm distance accuracy, 120 m maximum range with field of view of 360◦ horizontal

and 26.8◦ vertical. The camera images are cropped to a size of 1382 x 512 pixels,

capturing synchronously at 10 frames per second, when the LiDAR is facing forward.

The configuration is shown in Fig.3.4.

As a common practice in KITTI benchmarks, we select four metrics for evaluation:

the root mean square error (RMSE, [mm]), mean square error (MAE, [mm]), inverse

depth iMAE [1/km] and iRMSE [1/km]. Whereas, we report our results on the test

dataset with no ground truth open to us, most experiments such as ablation studies

are carried out on the selected validation dataset. The reason is that we have limited

submission for benchmarks, as requested by the dataset provider, such studies should

be on the validation dataset.

24



Figure 3.4: KITTI recording platform setup.

3.3.2 Experiment Setups

Most of our training hyper-parameters are consistent with PE-Net, as tweaking these

hyper-parameters is not the main focus of this work. We also use the same multi-

staged training strategy by first training the backbone model, then it is frozen while

the DA-CSPN++ module is trained, and finally training the entire network.
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3.3.3 Results

In this section, our model series are tested on the KITTI dataset among other state of

the art. Our models have been one of the best compact models in this range, especially

in KITTI’s primary metric ’RMSE’. The test results are available at Tab.3.3.

Datasets Test

Metrics RMSE MAE iRMSE iMAE #Params Runtime1 Runtime2

E-Net [1] 741.30 216.26 2.14 0.95 131.8M 0.02 0.010

PE-Net [1] 730.08 210.55 2.17 0.94 131.9M 0.03 0.018

DeepLiDAR [31] 758.38 226.50 1.15 2.56 144.0M 0.07 —

Sparse-to-Dense [32] 814.73 249.95 2.80 1.21 26.1M 0.08 —

DepthNet [4] 991.88 261.67 2.99 1.09 1.0M 0.09 —

NConv-CNN [33] 829.98 233.26 2.60 1.03 0.4M 0.02 —

MSGCHN32 [5] 783.49 226.91 2.35 1.01 0.4M 0.01 0.013

Ours x32 779.36 227.71 2.63 1.07 0.4M — 0.014

Table 3.3: Comparison with state of the art on KITTI benchmark. RMSE and MAE
are measured in mm. IRMSE and iMAE are measured in 1/km. Runtime is measured
in seconds. Runtime1 is published on the benchmark site. Runtime2 is evaluated on
the same hardware. Our base models can achieve competitive results compared with
the state of the art. It can also outperform the current best compact model around
the same number of parameters in terms of ’RMSE’.

3.3.4 Ablation Studies

Use of Attention Module

Attention is commonly used in Inverted Residual Blocks (MBConv [34]) and many

depth completion networks [35][36] to improve performance. The attention module

is employed in the dynamic weight adjustment process based on the features of the

input image.

Initially, we experiment with the standard MBConv [3] blocks, but then the squeeze

and excitation attention has been proven not beneficial, because of no improvement
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in precision with 40% more parameters. Hence, our base block only includes depth-

wise convolution and point-wise projection to compensate for the latency and further

decrease the number of parameters.

In the experiments, to analyze the effect of the attention module, we test on classic

squeeze and excitation [37] and coordinate attention [38]. ’SE’ refers to squeeze and

excitation and ’CA’ refers to coordinate attention. Squeeze and excitation in the

inverted residual block dynamically allocate weights to channels of the feature. It

transforms the feature tensor to a single 2D feature vector via 2D global pooling and

then performs point-wise convolutions followed by a sigmoid function, and finally

multiplies the original feature tensor. Coordinate attention further embeds positional

information by aggregating features along the two spatial directions X and Y.

Our studies in Tab.3.4 show although attention may improve the MAE, it is signif-

icantly slower because of too many small operators causing a reduction of parallelism

[15] and requires more parameters in general.

Datasets selected validation

Metrics RMSE MAE #Params Runtime

base 882 315 2.54M 0.0114

base+SE 915 305 3.49M 0.0167

Base+CA 900 267 2.74M 0.0259

Table 3.4: Comparison of an early backbone model with and without attention on
KITTI selected validation dataset. RMSE and MAE are measured in mm. Runtime
is measured in seconds. ’SE’ refers to squeeze and excitation and ’CA’ refers to
coordinate attention.
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Chapter 4

Knowledge Distillation and Scaling

In this chapter, we present techniques to make our model extendable and flexible.

4.1 Model Scaling

Model scaling aims to scale up a base network model to endow it with more rep-

resentational power at the cost of greater computational complexity. Model scaling

approaches typically focus on maximizing accuracy versus resource demands. Com-

pact models are often sensitive to scales, for example, MobileNets [39] provides two

hyperparameters, width multiplier α, and resolution multiplier ρ. Both multipliers

control the size of the feature map, the width multiplier thins a network uniformly

at each layer, and the resolution multiplier ensures the input image and the internal

representation of every layer is subsequently reduced by the same multiplier.

Similar to the width multiplier, in our model, a global scaling factor is provided,

which simply acts as a multiplier for the number of filters in each layer. However, un-

like MobileNets compressing the model with the hyperparameters, our scaling factor

is mainly for expanding the model. Because our network has been fine-tuned to the

desired size during the pruning test, and when requiring better precision, the global

scaling factor helps produce a larger model. As shown in Fig.4.1, the parameter count

is increasing in a quadratic manner.
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Figure 4.1: Model parameter counts verse the scaling factor.

4.2 Black-box Knowledge Distillation

One major challenge of training a lite or sub-optimal model is being stuck at some

local maximum. To tackle the problem without introducing more parameters and

overhead in production, we distill knowledge from a pretrained E-Net and PE-Net.

Unlike others [6][40], only the prediction part of the models is involved in the distil-

lation as part of the loss function. In other words, our knowledge distillation trains

the student to have similar outputs as the teacher. Since it does not compare the

intermediate features, it is friendly to deploy when the teacher model is a black box

or only accessible via API. During experiments, we find two loss terms are helpful for

reducing the error of the student model.

These distillation losses are formulated as:

Ldd = MSE(Dt,Ds). (4.1)

Lgd = MSE(g(Dt),g(Ds). (4.2)

MSE refers to Mean squared error, Dt is the predicted depth map generated by the

teacher model, Ds is the predicted depth map generated by the student model. g(x)

calculates the gradient of x.
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Together our loss function is:

LD = λ1Ldd + λ2Lgd. (4.3)

LGT = MSE(m(Dg),m(Ds)) (4.4)

L = (1− λ1 − λ2)LGT + LD. (4.5)

Dg is the groundtruth depth map, m(x) is binary mask where Di,j
g is not 0. λ1, λ2

are hyperparameters, where λ1 = 0.1, λ2 = 0.1

Knowledge distillation can be added in each training stage or as the fourth stage

of training after the base model converges. No conclusive gap can be observed in

the final performance when both models converge. However, training with knowledge

distillation can be slower and require a larger memory, unless caching the predictions

from the teacher model. Thus, it is recommended to apply knowledge distillation as a

booster. In summary, after adding the distillation, our entire workflow is represented

in Fig.4.2.

Studies [41] also show that a stronger teacher model tends to have a better distil-

lation effect. Our approach ensures one can easily find a stronger model and achieve

even higher performance without retraining or modifying the teacher model. This

simple approach dramatically improves the performance of the student model.

In our experiment, we also find that a larger or less fine-tuned model benefits more

from distillation. Although a scaled model has better precision when compared with

the base model, the cost-efficiency is actually lower being a sub-optimal model. Our

hypothesis is smaller models have too few parameters for representation and well-

tuned models have already learned more optimal weights. With a combination of the

simple channel multiplier and knowledge distillation, the resulting scaled models can

perform well at different parameter sizes.
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4.3 Experiments

4.3.1 Knowledge Distillation Loss

Our knowledge distillation consists of two loss terms. To validate the effect of each

loss, we conduct ablation studies on the cropped validation dataset, the results are

in Tab.4.1 and Fig.4.3. Instead of training the backbone and the entire network

separately, the training is done in one stage to better reflect the effect of distillation.

Depth distillation only distills from the teacher’s depth prediction, while gradient dis-

tillation takes the gradient of the teacher’s depth prediction. When both distillations

are employed, each of them weighs half of the total distillation loss.

Datasets selected validation

Metrics RMSE MAE

base (no distillation) 829 231

Depth Distillation 813 241

Gradient Distillation 805 239

Both 806 243

Table 4.1: Comparison with different distillation methods. RMSE and MAE are
measured in mm.

From the experiment, as both of the distillation losses help reduce the primary

metric ’RMSE’, the structure gradient loss is superior to direct distillation with the

teacher’s depth prediction. However, there is a trend of overestimating the depth, pre-

dicting the depth further than the ground-truth, when using only the gradient loss,

in real work applications like autonomous driving, it is often not desired. Although

involving depth distillation will transfer some of the behaviors from the teacher, such

as checkerboard patterns when using PE-Net as the teacher, a mixture of the depth

distillation loss helps fix the above problem while still having better accuracy. There-

fore, we choose to use the combination of both losses in our later experiments.
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For all of the distillation methods, an increase of MAE can be seen, this is possibly

caused by the shift of the local minimal where the model converges when involving

the distillation losses in addition to the base L2 loss.

4.3.2 Knowledge Distillation in Scaling

Our distillation method is a helpful piece when scaling the model, we compare dif-

ferent scaled models with or without distillation to different scaled PE-Net. In this

test, the scaled PE-Net applies the same global channel scaling, such that each layer

has the input and output channels scaled by a certain amount. The experiment is

conducted on the cropped validation dataset, and results are in Tab.4.2 and Fig.4.4.

Our distillation method greatly improves the performance of larger models, hence we

can achieve a similar precision in ’RMSE’ with 50 times fewer parameters and faster

speed, allowing developers to scale a compact light model flexibly without fine-tuning.

Datasets selected validation

Metrics RMSE MAE #Params Runtime

PE-Net 757 209 131.9M 0.018

PE-Net (1/2 channels) 780 214 33.1M 0.018

PE-Net (1/4 channels) 807 223 8.4M 0.020

Ours x32 808 228 0.4M 0.014

Ours x32 (distillation) 806 243 0.4M 0.014

Ours x64 788 221 1.2M 0.014

Ours x64 (distillation) 770 226 1.2M 0.014

Ours x96 777 214 2.6M 0.014

Ours x96 (distillation) 760 223 2.6M 0.014

Table 4.2: Comparison with different scales of models on the KITTI selected valida-
tion dataset. RMSE and MAE are measured in mm. Runtime is measured in seconds.
Our larger-scaled models are initially worse than PE-Net with larger scales. But after
knowledge distillation, the improvement is higher than PE-Net with larger scales.
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However, the distillation is not as effective on the fine-tuned compact model. Our

hypothesis is when the model is already very compact, converging very close to the

global minimal at its parameter count, then adding a teacher does not help guild the

network to better convergence.

4.3.3 Summary

In addition to local comparison carried out on the selected validation dataset, we have

submitted our series of models to KITTI for test set benchmarking. When we compare

our results with the state of the art in Tab.4.3, our base model can outperform other

compact models in the same range of parameters, with or without distillation. Even

compared with the much larger models, ours are still competitive in accuracy and

speed.
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Figure 4.3: Comparison with different distillation methods. The inputs to the model
are the RGB image and sparse depth data. The base is the prediction when trained
without any distillation loss. TD is the prediction when trained with teacher depth
distillation loss, TG is the prediction when trained with teacher gradient distillation
loss, and Both utilizes both distillation loss in training.
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Figure 4.4: Comparison with different scales of models on KITTI Selected Validation
Dataset verse parameter counts in logarithmic scale. As a common practice, no
samples in the validation set are used in training the following models.

37



Chapter 5

Conclusions, Recommendations
and Future Work

5.1 Conclusions

In this thesis, we have proposed a methodology for generating an efficient compact

depth completion network from existing larger precision models. This top-down ap-

proach can take advantage of the existing efforts which represent the leading network

architecture of high accuracy and make them suitable to be deployed in real-time

applications.

After selecting the PE-Net as the base model, the proposed workflow starts with

converting the normal convolution layer with efficient depth-wise separable convo-

lutions, reducing the parameter footprint by a remarkable amount. Since inference

speed is crucial, unlike many popular layer designs, no attention module is added in

our unified depth-wise separable convolution blocks, given that the precision loss is

not noticeable.

Further network compression exploits selective pruning via a random layer pruning

test, in which every layer is pruned to get how much it affects the overall prediction.

Utilizing this stability report, the over-parameterized layers are purged or shrunk,

giving us the ability to fine-tune the network structure. We also provide a global

scaling factor to customize the scale of the entire network by controlling the multiplier

to the number of filters in each layer.
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To compensate for precision loss from the compression, black-boxed knowledge

distillation can be applied to further boost the performance of the compact model at

different scales. The knowledge distillation method only requires the prediction results

from the teacher model, and the distillation loss is formulated by the mean squared

error between the teacher’s and student model’s predictions and their gradient.

As benchmarked in the KITTI dataset, not only the series of the model are com-

petitive compared to other compact implementations as well as some larger ones, but

also it can be a valuable addition to the literature. Because this work is not limited

to a single model or problem, as it can be generalized to other model compression

topics as well.

5.2 Future Work

In our current implementation of the decoder layers, bilinear upsampling replaces the

transpose convolution operation and the checkerboard artifacts generated along it.

However, this checkerboard artifact may return in the form of knowledge distillation.

The distillation loss also provokes the ’MAE’ when reducing the ’RMSE’ as a limita-

tion. Depending on the requirements, further work can explore different knowledge

distillation methods that best fit.

Although we have tested with two attentions and proved to exclude the attention,

a proper attention module is still considered helpful for better precision and gener-

alizability. Further experiments may experience a better block design that balances

both accuracy and speed.

The efficient network is targeting real-world applications, these applications are

commonly deployed in embedded environments, such as the edge device. One tech-

nique that can dramatically speed up the inference and save resources is quantization.

Quantization functions to execute some operations at lower memory precision, i.e.,

from fp64 to fp32 and int8. Some hardware can benefit from the reduced precision,

accelerating the inference at a small cost of accuracy. We have not included the down-
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stream process to quantize the model, but such research can surely provide insights

into the area.
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