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Abstract 

 

Black-Scholes Model is a widely used mathematical model for stock price 

behaviors, of which the return is assumed to be normally distributed. But this 

‘normally distributed’ assumption is doubted and proved to be not true by 

realistic data. The main goal of this thesis is to explore polynomial-normal 

distribution, and use this distribution in the stock return, as a non-normal 

extension of the Black-Scholes Model. We will develop the properties of 

polynomial-normal distribution in the thesis, and also give the European call and 

put option price formulas under this model, and show how to use this model to 

estimate real stock returns. 
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Chapter 1 

 

Introductory 
 

Stock price behavior has been an attracting and sophisticated problem for 

financial researcher for many years. After long developments, the opinions of 

researchers converge to geometric Brownian motion and log-normal 

distribution, which the stock prices are believed to follow. Famous scholars 

such as Jack L. Theynor, Paul Samuelson, A. James Boness, Sheen T. Kassouf, 

Edward O. Thorp did great contributions to the fundamental of this idea. In 

1973, Fischer Black and Myron Scholes used these assumptions in the 

modeling of stock returns, and derived the formulas for risk-neutral prices of 

put and call options written on the underlying stock. This is Black-Scholes 

Model, the most famous and fundamental model in estimate stock prices, as it 

gives a nice framework for analyze stock price behavior, fair derivatives prices 

with relatively less complicated calculation. 

However, deficiencies of Black-Scholes Model arise. F. Black wrote a 

special paper ‘How to Use the Holes in Black-Scholes’ (1993), devoted to the 

Black-Scholes formula and its holes, because there are both pure theoretical 

and practical evidences that stock price returns may follow other distributions 

different from normal. For instance, the Black-Scholes Model gives 
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mis-pricing for some deep-in-the-money or some deep-out-of-money options. 

Another important example is the ‘volatility smile’. Empirical data shows that 

the implied volatility becomes higher when the strike price is relatively high or 

low, and this is a confliction with the assumption of constant volatility in 

Black-Scholes Model. 

For better estimates of the stock prices, many researchers looked for 

extensions of Black-Scholes Model, or even turned to study other models. An 

example is Robert C. Merton, who derived Black-Scholes formula nearly at 

the same time which Black and Scholes, had extended Black-Scholes Model 

and relax the strong assumptions in the model. To make better estimation for 

extreme stock prices, scholars including Michael Sorensen, Svetlozar T. 

Rachev explored heavy-tailed distribution, which allows a higher probability 

for extreme stock prices than Black-Scholes Model. Another extension of 

Black-Scholes Model is the jump diffusions model, which largely based on 

Levy process and its generalizations. Some of the generalizations were 

tremendous and it’s difficult to expect closed form solutions on option pricing 

under such general approach. 

One of the important drawbacks of Black-Scholes Model is that the 

skewness and kurtosis of the stock returns are constants (skewness is 0 and 

kurtosis is 3), which conflicts with the fact that skewness and kurtosis may 

vary in a considerable wild range. To make Black-Scholes Model become 

more accurate in estimate the skewness and kurtosis of the future stock price, 
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Gram-Charlier Extension is introduced and has become popular in financial 

estimates, as this distribution allow different skewness and kurtosis. The paper 

‘Option Pricing under Extended Normal Distribution’ in 2004 by Hosam Ki, 

etc. has introduced this model in detail. 

Gram-Charlier distribution, is defined by its probability density function (pdf) 

p(x)h(x), where p is a 4th order polynomial, and h is the pdf of a standard 

normal distribution. It is quite natural to extend p to be higher order 

polynomial. This extension is called Polynomial-Normal distribution. 

While giving better estimates of the stock price by allowing moments 

parameters adjusted easily, polynomial-normal distribution is neglected by 

some researchers because the their computations are complicated. However, in 

this thesis we will extend many properties, from Black-Scholes Model to 

Polynomial-Normal Model (Let’s call it Polynomial-Normal Model in latter 

part of the paper), and give the calculations of option prices, model parameters 

estimating and so on, in a not so complicated way. 

The reminder of this thesis is written in basis of the three models we 

considered: Black-Scholes Model, Gram-Charlier Model, and 

Polynomial-Normal Model. We will give results in all these three models and 

do comparisons on them. Others chapters are recognized as follows. Chapter 2 

will give the definitions of our three models, and discuss some tools for 

Polynomial-Normal distribution analyzing, and give a solution for positivity 

density functions. Chapter 3 will discuss the risk-neutral option prices under 
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our three models, and give the Greeks, which helps us to analyze the changes 

of option prices. In Chapter 4 we will use examples of real data to show how 

to use these models and estimate parameters in the models. 
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Chapter 2 

 

Preliminary Notions and Some Related 

Considerations 
 

2.1 The Black-Scholes Model 

 

Let  0, ,{ } ,t tF F P  be a stochastic basis and   0
,t t t

W W F


  be a 

standard Wiener process (Brownian motion). 

The Black-Scholes market model consists of two components. The first 

component is a bank account which is defined by t tB rB dt , with 0r  be 

the interest rate. And the second component is the stock price evolution. The 

stock price is modeled by 

( )t t tdS S dt dW               (2.1) 

Here   is the expected growing rate of the stock, and   is its volatility. If 

the stock is calculated with respect to a unique risk neutral probability measure, 

the parameter   equals the risk free rate r . 

There is another representation for the stock price known as Geometric 

Brownian Motion: 
2

0 (( ) )
2T TS S Exp T W
               (2.2) 

We can also solve (2.1) by Ito’s formula and get (2.2). 

The return of the stock over the time interval [0, ]T  is defined by 
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0( / )TR Log S S , thus we have 
2

( )
2 TR T W
                (2.3) 

 

When Black-Scholes Model was originally developed, the stock is supposed 

to pay no dividends. However, modifications of the model allow the stock to 

be paying continuous dividends, which is proportion to the stock price and 

time taking. In this case, we assume the continuous dividend rate to be q , and 

the expected return rate of the stock to be  , where q   . (2.1) and 

(2.2) also hold and the return turns out to be 0( / )TR Log S S qT   and thus  

2

( )
2 TR T W
               (2.3*) 

As the model without dividend is the fundamental and originally designed 

Black-Scholes model, many considerations and results were given is a way 

that no dividends are considered. However, in the thesis, most of the analysis 

will be done in the way that non-zero continuous dividend rate q  exists, 

because a full version of the model would make it more closed to reality and 

thus model the price better, and we will do some analysis of the dividend rate 

somewhere. In some considerations, where a zero dividend rate will simplify 

our analysis greatly, or other types of dividend is used instead of continuous 

dividend (like discrete dividend), we will mention how it should be 

considered. 
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2.2 Polynomial-Normal Model 

 

Due to the connection of the Black-Scholes Model with Brownian motion, 

the parameters of the skewness and kurtosis of the return are fixed and become 

constants no matter whatever   and   are. There are many evidences in 

reality that the parameters of skewness and kurtosis are different from that in 

Black-Scholes Model, like in some large stock exchange market, smaller 

capitalized stocks indices would be more negative skewed than other stock 

indices, and the stock return would be more negative skewed in economic 

booming. (The paper ‘Regularities in the Variation of Skewness of Asset 

Return’ by Kling has introduced these results.) 

To make better estimation of the stock prices, we need to generalize the 

Black-Scholes Model with the help of other distributions. Let’s describe first a 

model which is the straightforward generalization of the Black-Scholes Model, 

known as Gram-Charlier Model. 

Gram-Charlier Model can overcome the restriction of constant skewness and 

kurtosis which is implied in Black-Scholes Model. Under Gram-Charlier 

distribution, pdf of 0( / )TLog S S  is 

 ( ) ( ) ( ) /
x m x m

f x h p 
 
 

 
 

                (2.4) 

 where 3 4

3
( ) 1 ( ) ( )

6 24
p x H x H x

  
   .   denotes the parameter of 

skewness and   denotes the parameter of kurtosis of 0( / )TLog S S . iH  
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is the ith order Hermite polynomial. Hermite polynomial series is one kind of 

orthogonal polynomials arises from probability, and has lots of good properties. 

It will be discussed in section 2.4. 

T   also holds in Gram-Charlier, but m  is not. As the expected 

changing rate of logarithm of the price is  , we have 

   

 

 

 

So 
2

3 43
ln(1 )

2 6 24
m T

    
    

    

Notice that if 0   and 3  , 
2

2
m T

 


 and it’s the same with 

that in Black-Scholes Model. If under risk neutral probability, 

2
3 43

( ) ln(1 )
2 6 24

m r q T
   

     
                     (2.5) 

 

Now we are going to give a more general theoretical framework for such 

approach using the Polynomial-Normal distribution. 

Assume that the following represents the pdf of 0( / )TLog S S : 

( ) ( ) ( ) /
x m x m

f x h p 
 
 

 
 

                       (2.4) 

Here p  is an Nth order polynomial: 
0 0

( ) ( )
N N

n
n n n

n n

p x a x b H x
 

   . The 

nth moment of the 0( / )TLog S S  is determined by 1 2, , ..., nb b b  , and 

2

3 42

( )

( ) ( ) /

3
(1 )

6 24

T R

x

x

m

e E e

x m x m
e h p dx

e






 

  









 



  





 

 

(This calculation is forward 

from propositions in section 

2.4) 
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independent of 1 ...,n Nb b  . And because the pdf should satisfy the following: 

01 ( ) ( ) ( )
x y

f x dx h y p y dy b
 

 

     

We have 0 1b  . 

We can notice that this model includes the Gram-Charlier Model if we take 

4N   and 1 2 0b b  . 

Like Gram-Charlier Model, we can determine the value of m  as follows: 

2

2

0

( )

( ) ( ) /

( )

T R

x

x

Nm n
n

n

e E e

x m x m
e h p dx

e b






 













 










 



  

So we have 
2

ln( ( ))
2

m T p
   
  .                   (2.5*) 

 

Remark 2.1: 

In Polynomial-Normal distribution, we also let T  . But unlike 

Black-Scholes Model and Gram-Charlier Model, we no long have 

2 2
0var( ( / ))TLog S S T   . Instead, we have 

0 1( ( / )) ( ) ( )T

x

x m x m
Exp Log S S xh p dx m b

 





 
   

 
            (2.6) 

2 2
0 1

2 2 2 2
2 1 1

2 2
2 1

( ( / )) ( ) ( ) ( )

2 2 ( )

(2 1 )

T

x

x m x m
Var Log S S x h p dx m b

b m b m m b

b b


 

   







 
  

     

  

 
 

   



          (2.7) 

 

(This calculation is forward 

from propositions in Section 

2 4)
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Sometimes we just let 1 2 0b b   to simplify our computation, and use 

m  and   to adjust the mean and variance. For this reason, we will set 

1 2 0b b   in the part of parameter estimation. 

 

Remark 2.2: 

A disadvantage of the Gram-Charlier distribution and Polynomial-Normal 

distribution is that not for all ( , )   in Gram-Charlier distribution and not 

for all polynomials in Polynomial-Normal distribution would generate an 

acceptable density function, because the function would become negative 

somewhere, for some ( , )   or some polynomials. But fortunately, the 

region of ( , )   which guarantee positivity of the pdf has been found, and 

this method can also be generalized to Polynomial-Normal case. We will 

discuss the detail of it in section 2.6. 

 

 

2.3 Hermite Polynomial Series 

 

Hemite Polynomial Series is an important polynomial series in theoretical 

financial modeling analysis. This polynomial series is found very useful in the 

fields such as physics, combinatorics, probability theory, and also stock 

pricing estimating here. There are two types of Hermite polynomials, one is 

the ‘physicists’ type, while the other is called ‘probabilists’ type. We will only 
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use the ‘probabilists’ type in this thesis, and we will call it Hermite 

polynomials in latter pages, with the name of ‘probabilists’ omitted. 

Hermite polynomials can be seen as a kind of orthogonal polynomial series 

on probability space, which has a lot of nice properties. We usually need to 

decompose the polynomials in the integrals into a linear sum of Hermite 

polynomials to forward our calculation. In this section we introduce several 

basic properties of Hermite polynomials. 

The nth order Hermite polynomial is defined as 

2

2
2

2( ) ( 1)

x
x n

n
n n

d e
H x e

dx



             (2.8) 

The first few Hermite polynomials are as follows: 

0 ( ) 1H x   

1( )H x x  

2
2 ( ) 1H x x   

3
3( ) 3H x x x   

4 2
4 ( ) 6 3H x x x    

5 3
5( ) 10 15H x x x x    

6 4 2
6 ( ) 15 45 15H x x x x     

…… 

 

Proposition 2.1: 1

( )
( )n

n

dH x
nH x

dx                   (2.9) 

Proof: Use induction method, and assume the proposition holds for 
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0,1,2,...,n N , by definition, we have 

2 2

2 2
1( ( ) ) ( )

x x

n nH x e H x e
 

                       (2.10) 

Expanding the derivative of the formula above and canceling the term 

2

2

x

e


, 

we get 1( ) ( ) ( )n n nH x xH x H x                         (2.11) 

When 1n N  , we have the following 

1

1 1

1 1

( ) ( ( ) ( ))

( ) ( ) ( )

( ( ) ( )) ( )

( 1) ( )

N N N

N N N

N N N

N

H x H x xH x

NH x H x NxH x

N H x xH x H x

N H x



 

 

    

   

   

 

 

So the proposition holds. 

 

Proposition 2.2: 

1 1( ( ) ( ) ( ) ( )) ( )
( ) ( ) ( ) m n m n

m n

nH x H x mH x H x h x
H x H x h x dx C

m n
 

 
 , if 

0m  , 0n   and m n . 

Proof: 

1

1 1

1 1 1

1 1 1

( ) ( ) ( )

( )( ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m n

m n

m n m n

m n m n

m n m n

H x H x h x dx

H x H x h x dx

H x H x h x dx H x H x h x

m H x H x h x dx H x H x h x

n H x H x h x dx H x H x h x



 

  

  

 

 

 

 











 

When m n , solve the linear equation and we have 
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 1 1( ( ) ( ) ( ) ( )) ( )
( ) ( ) ( ) m n m n

m n

nH x H x mH x H x h x
H x H x h x dx C

m n
 

 
  

So the proposition holds. 

 

Proposition 2.3: ( ) ( ) ( ) 0m n

x

H x H x h x dx




  if m n . And 

2 ( ) ( ) !n

x

H x h x dx n




  

Proof: 

Suppose m n , from proposition 2.2 we have 

 

 

1

1 1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

.......

!
( ) ( )

( )!

m n

x

m n

x

m n m n

x

m n

x

m n

x

H x H x h x dx

d
H x H x h x dx

dx

d
H x H x h x dx H x H x h x

dx

m H x H x h x dx

m
H x h x dx

m n










 

  




 







 

 
















 

As ( ) 1
x

h x dx




 , and 1( ) ( ) ( ) ( ) 0m n m n

x

H x h x dx H x h x
 

  


   when 

0m n  , the proposition holds. 

 

If we define the inner product on the vector space of polynomials as 

2

2, ( ) ( )
x

x

p q p x q x e dx






  , for any polynomial p and q. Proposition 2.2 
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shows  that any Hermite polynomials are orthogonal to each other, over the 

inner product defined. Hermite polynomials can be seen as an orthogonal basis 

on the polynomial vector space, while  ( ) / !n
n

H x n  is the standardized 

basis. This nice property makes Hermite polynomial a perfect tool in analysis 

of Polynomial-Normal Model, and is the basis of many calculations. By 

expressing the polynomial used in density function as linear sum of Hermite 

polynomials, it’s much more convenient to express everything in the form of 

the parameters of Hermite polynomials weights, than in the form of  na , if 

we use the usual polynomial definition 
0

( )
N

n
n

n

p x a x


 . 

 

Proposition 2.4: 
0

( ) ( )
n

n j
n j

j

n
H x t t H x

j




 
   

 
                 (2.12) 

Proof: Use induction method. Assume that the proposition holds for 

0,1,2,...,n N . From proposition 2.1, we have 

1
0

( ( )) ( 1) ( ) ( 1) ( )
N

N j
N t N j

j

N
H x t N H x t N t H x

j





        
 

  

So by integration with t, we get 

1 1
00

1

1
0

1
1

0

( ) ( ) ( 1) ( )

( ) ( 1) ( )
1

1
( )

t N
N j

N N j
j

N jN

N j
j

N
N j

j
j

N
H x t H x N s H x ds

j

Nt
H x N H x

jN j

N
t H x

j


 



 





 



 
     

 
 

       
 

  
 







 

Thus the proposition holds. 
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This proposition shows how we can express Hermite polynomials with a 

drift as linear sum of original Hermite polynomials. This proposition is used in 

the determination of m  in the section 2.2 and 2.3, and is very useful in latter 

calculations, especially in option price formulas, as drifts such as   happens 

usually. 

 

 

2.4 The Moments of 0( / )TLog S S  

 

Now we have a fine definition of the Polynomial-Normal distribution and a 

convenient tool of Hermite polynomials for its analysis. It’s necessary to 

calculate the moments of the 0( / )TLog S S  from the weights of Hermite 

polynomial  parameters, as these moments would be obtained by stock data, 

and be plugged into the formulas derived in the following, thus determine 

what parameter we should use in the polynomial. The parameter estimating 

part would be in Chapter 4. 

The nth moment (raw moment) of 0( / )TLog S S  is denoted as n . Let 

,
0

( ) ( )
n

n
n j j

j

x m c H x


  , we have the following: 
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,
0

( )

( ) ( ) ( )

!

n
n

x

n

y

n

n j j
j

x f x dx

y m h y p y dy

j c b

















 









                        (2.13) 

As 1 0( ) ( )x m H x mH x     , we have the mean 1 1b m   . 

As 2 2 2 2
2 1( ) ( ) 2 ( ) ( )x m H x m H x m           , we have the 

variance 2 2 2
2 2 12 2b m b m          

For high order moments, the following calculation can give ,n jc  in a 

relatively simple way. 

 

Proposition 2.5: , ,0
j

n j n j

n
c c

j
 

 
  
 

  

Proof: 

,

1

1
1

,0

1
( ) ( ) ( )

!

1
( ) ( ( ) ( ))

!

( ) ( ) ( )
!

......

!
( ) ( )

!( )!

n
n j j

x

n
j

x

n
j

x

j
n j

x

j
n j

c x m H x h x dx
j

x m H x h x dx
j

n
x m H x h x dx

j

n
x m h x dx

j n j

n
c

j





 

 

























 

  

 

 


 
  
 













 

 



 

So the proposition holds. 
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Proposition 2.6: ,0 ( ) ( )n
n n

mi
c i H


  


, where 1i    stands for the 

imaginary units for complex numbers. 

Proof:  

From 1  and 2 , we can see that 1,0c m , and 2 2
2,0c m    . 

,0nc  is calculated by induction method as follows: 

,0

1
1,0

1
1,0

2 2
1,0

2
2,0 1,0

( ) ( )

( ) ( )

( ) ( )

( 1) ( ) ( )

( 1)

n
n

x

n
n

x

n
n

x

n
n

x

n n

c x m h x dx

x m xh x dx mc

x m h x dx mc

n x m h x dx mc

n c mc



 

 

 

























 

 

  

   

   

  











 

 

 



 

It’s obvious that the proposition holds when 1, 2n   . Assume that it holds 

for n N , and we have the following: 

2
,0 2,0 1,0

2 2 1
2 1

2 1

( 1)

( 1)( ) ( ) ( ) ( )

( ) ((1 ) ( ) ( ))

( ) ( )

N N N

N N
N N

N
N N

N
N

c N c mc

mi mi
N i H m i H

mi mi mi
i N H H

mi
i H



  
 


  




 

 
 

 

  

    

   

 



  
 


  




 

So the proposition holds. 

 

Combining two propositions, we have 

, ( ) ( )n n j
n j n j

n mi
c i H

j







 
  
 




                 (2.14) 
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2.5 Implementing Positivity into Density Functions 

 

As mentioned in previous sections, a disadvantage of a Gram-Charlier or a 

Polynomial-Normal Distribution is that, the density function is not guaranteed 

to be globally positive for every skewness and kurtosis in Gram-Charlier 

Distribution, or for every polynomial in Polynomial-Normal Distribution. In 

other words, only when ( , )   is addressed in a special region in 2R , the 

density function ( ) ( ) ( ) /
x m x m

f x h p 
 
 

 
 

 is positive for every x. 

Polynomial-Normal Distribution is in similar case.  

Barton and Dennis (1952) obtained the parameter conditions for positivity in 

this issue by numerical method. Later Jondeau and Rockinger (1999) found 

out the border of this region by theoretical method. We show in this section 

that the region of ( , )   that ensure positivity for the Gram-Charlier 

Distribution, and also extend this method to Polynomial-Normal Distribution. 

In Gram-Charlier Distribution, the density function of the 0( / )TLog S S  is 

3 4

3
( ) ( )(1 ( ) ( )) /

6 24
f x h y H y H y

  
    , with 

x m
y







. 

We have to find out the region of ( , )  , such that 

3 4

3
1 ( ) ( ) 0

6 24
H y H y

  
    for every y. For a fixed y, 

3 4

3
1 ( ) ( ) 0

6 24
H y H y

  
    is a straight line in 2R  space of ( , )  . 

Holding ( , )   fixed on this line, a small perturbation of y would give 
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( )p y  positive or negative value. Thus, we can determine the boundary of 

( , )   as a function of y, such that ( )p y  remains zero for a small 

perturbation of y. So we have 2 3

3
( ) ( ) ( ) 0

2 6
p y H y H y

      . 

Solve the linear equations, we have 

 

3 2
2 2
3 4 2 3 4 2

24 ( ) 72 ( )
( ( ), ( )) ( ,3 )

4 ( ) 3 ( ) ( ) 4 ( ) 3 ( ) ( )

H y H y
y y

H y H y H y H y H y H y
   

  
 

 

Figure 2.1 below shows the curve of ( ( ), ( ))y y   and the region with 

shadow denotes acceptable area that generates positive density function.  

 

 

For general Polynomial-Normal Distributions where 
0

( ) ( )
N

n n
n

p x b H x


 , 

Figure 2.1 
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suppose array 1 2( , ,..., )Nb b b  is a point on the border of the region where 

positivity is satisfied, then 
0

( ) ( ) 0
N

n n
n

p x b H x


   for some x, and ( )p x  

have the minimum at x . So x  is a critical point of the polynomial and 

( ) 0p x  . Thus the set of the points on the border is a subset of 

1 2{( , ,..., ), ( ) ( ) 0 }NA b b b p x p x for some x     . A  can be seen as a union of 

a series of moving 2n   dimensional manifolds. Each of these manifolds will 

be tangent to the border of the region we required. As the manifold moves, the 

border of the region forms and it becomes a curved surfaces (or 1N   

dimensional manifold) in NR  space. 

As the set of A  would generate a complicated manifold in NR  space, 

which divide the space into many parts, we need to decide which part is the 

region we wanted. Consider 1 2( , ,...., )Nb b b  such that 2 1 0kb   , 2kb   for 

every nature number k, where   is sufficiently small positive number. Then 

2
2 0

min( ( )) 1 min( ( )) 0n
N n

p x H x
 

    if   is small enough. So the region 

required should include this point while other parts without this point would 

have negative ( )p x  somewhere. 

Figure 2.2 shows the border of the region required when 

3 3 4 4 6 6( ) 1 ( ) ( ) ( )p x b H x b H x b H x    . The three axis denote 3b , 4b , 6b  

respectively, and the plot range is 3 [ 0.2,0.2]b   , 4 [ 0.02,0.2]b   , 

6 [ 0.0015,0.018]b   . 
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Chapter 3 

 

Option Pricing Formulas 
 

There are many types of options. Classified by the assets written on, there 

are options written on stocks, written on indices, written on commodities and 

so on. Classified by exercise maturity, the European type options only 

authorize the owner to exercise it exactly at maturity, and the American type 

allows the owner to exercise it at any time before maturity. Classify by the 

right to buy or sell, the call option gives the owner the right to buy underlying 

assets at some fixed prices (also called strike price) while the put option gives 

the right to sell it. Classified by payoff, there is usual option in which the 

strike price is a fixed amount, and there is Asian option in which average price 

of the stock is used instead, and in Russian option the maximum of minimum 

of the stock price over a time period is used. And the so-called exotic options 

are also used in many ways. We can generalize this concept to a contract that 

will pay the owner an amount which is depend on the price behavior over a 

time period, of the asset that the option written on. 

The most simple and often used options are call options and put options, 

with European and American type. European call option gives its holder the 

right but not the obligation to buy the asset that the option written on at strike 
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price at maturity, while European put option gives the right to sell it. American 

option gives this right at any time before maturity to buy of sell the stock at 

strike price. 

It has become a problem how to price options fairly. Because the payoff of 

these options are uncertain and usually depend on the behavior of the prices of 

the stocks, the risk-neutral price became a popular pricing method in many 

researching. The risk-neutral price gives the price of options as the average 

payoff under some probability measure, less the expected interest and dividend 

earned over time. Despite that risk-free assets are usually considered more 

valuable than risky assets like options, it is still important to find the 

risk-neutral price as it is the foundation of the whole pricing model. 

In this chapter, we will give the famous Black-Scholes formula, and extend 

this formula to Gram-Charlier Model and Polynomial-Normal Model. To 

estimate how option price would change when the formula parameters change, 

we will use Greeks to analyze the change rate of the option price. 

 

 

3.1 The Black-Scholes Formula 

 

In Black-Scholes Model, the European call and put price is determined by 

Black-Scholes formula. This formula is first articulate by Fischer Black and 

Myron Scholes in the paper ‘the Pricing of Options and Corporate Liabilities’ 
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(1973). This famous formula is given as follows: 

0 1 2( ) ( )qT rTC S e d Ke d                          (3.1) 

0 1 2( ) ( )qT rTP S e d Ke d                          (3.2) 

Where 
2

0
1

ln( / ) ( / 2)S K r q T
d

T



  

  and 2 1d d T  . 

C  and P  denote the price European call and put option, with strike price 

K . r  and q  denote the risk free interest rate and continuous dividend rate 

respectively. And T  is time to maturity while   is the volatility of the 

stock. 

Black-Scholes formula can be simply derived by taking the discounted 

expected value of the payoff of the option at maturity. So actually it’s the 

risk-neutral option price under log-normal distribution. 

 

Remark 3.1: 

The original Black-Scholes Formula is 0 1 2( ) ( )rTC S d Ke d    , where 

1d  and 2d  is like what is defined above without the dividend term. This 

formula is the non-dividend version of Black-Scholes formula. We can see that 

our modified Black-Scholes formula have the stock price part discounted, 

because if the option is exercise, the stock purchased is valued less as it pays 

dividend before time T . 
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3.2 The Gram-Charlier Model: Formulas for Calls and 

Puts 

 

When Gram-Charlier distribution is used, the risk-neutral option prices can 

be determined as follows, which is similar to Black-Scholes Model. 

0

0

ln( / )

0 1 2

2
0 1 2 1 1 1

2 3
0 1 3 1 2 1 1 1

2

( )

( ) ( ) ( ) /

( ) ( )

( )( ( ) 3 ( ) 3 ) / ( )
6

3
( )( ( ) 4 ( ) 6 ( ) 4 ) / ( )

24

( )(
6

rT
T

rT x

x K S

qT rT

qT

qT

rT

C e E S K

x m x m
e S e K h p dx

S e D Ke D

S e h D H D H D p

S e h D H D H D H D p

Ke h D H


 

   

    



 






 







 

 
 

   

  


    



 
 

  

   

2 2 3 2

3
( ) ( ))

24
D H D

 


 

where 

2 3 4
0

1

3
ln( / ) ( ) / 2 ln(1 )

6 24
S K r q T

D

   



     


  


, and 

2 1D D    , T  . 

Remark 3.1: 1D  and 2D  are different to 1d  and 2d  we used in 

Black-Scholes Model, but they are the same when ( ) 1p x  , or identically 

0   and 3  . Also we can notice that when 0   and 3  , the two 

latter terms will be cancel out, and the Gram-Charlier call price would equal to 

Black-Scholes call price. In latter text, we will use 1d , 2d  in Black-Scholes 

Model and 1D , 2D  in Gram-Charlier and Polynomial-Normal Model. 

 

Using similar calculation, we get the Gram-Charlier put price as 
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0

0

ln( / )

0 1 2

2
0 1 2 1 1 1

( )

( ) ( ) ( ) /

( ) ( )

( )( ( ) 3 ( ) 3 ) / ( )
6

rT
T

rT x

x K S

qT rT

qT

P e E K S

x m x m
e K S e h p dx

S e D Ke D

S e h D H D H D p


 

   

 






 



 

 
 

      

  

 
 

  

 

2 3
0 1 3 1 2 1 1 1

2 2 2 3 2

3
( )( ( ) 4 ( ) 6 ( ) 4 ) / ( )

24

3
( )( ( ) ( ))

6 24

qT

rT

S e h D H D H D H D p

Ke h D H D H D

    

 






    


 

   
 

We can also use the put-call parity to get this formula. 

 

 

3.3 The Polynomial-Normal Model: General Formulas for 

Calls and Puts 

 

In Polynomial-Normal Model, risk-neutral option price is determined as 

follows: 

0

0

ln( / )

1

0 1 2 2 1 2
0

1

0 1 1
1 0

( )

( ) ( ) ( ) /

( ) ( ) ( )( ( ))

( ) ( ( 1) ( )) / ( )
1

rT
T

rT x

x K S

N
qT rT rT

n n
n

N n
qT j n j

n j
n j

C e E S K

x m x m
e S e K h p dx

S e D Ke D Ke h D b H D

n
S e h D b H D p

j


 

 

 







  





 

 

 

 
 

    

 
    





 


 

 

                              

(The properties of Hermite Polynomials is used here)                 

(3.3) 
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0ln( / )

0

1

0 1 2 2 1 2
0

1

0 1 1
1 0

( )

( ) ( ) ( ) /

( ) ( ) ( )( ( ))

( ) ( ( 1) ( )) / ( )
1

rT
T

K S
rT x

x

N
qT rT rT

n n
n

N n
qT j n j
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P e E K S
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e K S e h p dx

S e D Ke D Ke h D b H D

n
S e h D b H D p
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 

 






  





 

 

 

 
 

       

 
    





 


 

 

                            

(The properties of Hermite Polynomials is used here)                 

(3.4) 

Where 
2

0
1

ln( / ) ( ) / 2 ln( ( ))S K r q T p
D

 


   


 


 and 2 1D D     

We can also notice that the option formulas for Polynomial-Normal Model 

have the term 0 1 2( ) ( )qT rTS e D Ke D     for the calls, and the term 

0 1 2( ) ( )qT rTS e D Ke D        for the puts. These terms are the option prices 

under Black-Scholes Model, if we ignore the difference between 1 2,D D  and 

1 2,d d . In other words, option prices under Polynomial-Normal Model are the 

ones under Black-Scholes Model plus some other terms. We will call these 

terms moment premium in latter analysis. 

Moment Premium:  

1

0 1 1
1 0

1

2 1 2
0

( ) ( ( 1) ( )) / ( )
1

( )( ( ))

N n
qT j n j

n j
n j

N
rT

n n
n

n
MP S e h D b H D p

j

Ke h D b H D

 


 

 







 
    



 



 
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3.4 Greeks for Polynomial-Normal Model 

 

Greeks is used to measure the sensitivity of option prices, in response to the 

changes of underlying parameters. The name of ‘Greek’ is obtained by the 

reason that people usually use Greek letters to represent these sensitivity rates. 

In Black-Scholes formula, call and put prices depend on 6 parameters, and 

they also depend on the polynomial parameters in Gram-Charlier Model and 

Polynomial-Normal Model. After the option is written, its price on derivative 

market may change as the value of these arguments change. By differentiating 

the price respect to these arguments, we can estimate the change in price of the 

option in response to change in one value of these arguments. This is useful 

when one wishes to estimate the gain and loss of the options, to hedge the 

option for some particular parameters, and so on. 

The following table gives the definitions of the 6 Greek measures that is 

used mostly. 

 

Name Equation Description 

 (Delta) 
0

C

S




,
0

P

S




 
Increase in option price to the increase 

in stock price 

 (Gamma) 
2

2
0

C

S




,
2

2
0

P

S




 

Increase in Delta to the increase in stock 

price 

 

(Vega) 

 
0.01

C





 
Increase in option price to the increase 

in volatility. Times 0.01, because 
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0.01
P





 volatility is measured in the percentage 

form. (There is no Greek letter for it) 

 (Theta) 

1

365

C

T

 


 

1

365

P

T

 


 

Increase in option price to the increase 

in time to maturity. Divided by 365, because 

the time is measured in days. Negative sign 

is taken because time to maturity decreases 

as time approaches. 

 (Rho) 
0.01

C

r




 

0.01
P

r




 

Increase in option price to the increase 

in interest rate. Times 0.01, because the 

interest rate is measured in percentage 

form. 

 (Psi) 
0.01

C

q




 

0.01
P

q




 

Increase in option price to the increase 

in dividend yield. Times 0.01, because the 

dividend rate is measured in percentage 

form. 

 

In this part, we will give the Greeks formula for Polynomial-Normal Model, 

and additionally we will pay attention to how the put-call parity affects the 

relations of Greeks for calls and puts. For some Greeks, we can derive the 

formulas from the pdf of the return, and it’s a good way to see what 

mathematical meanings these Greeks have. 

Greeks for Black-Scholes Model and Gram-Charlier Model can be derived 

as special cases from the formulas of Polynomial-Normal Model, so we will 

not use other formulas for Greeks of these two models here. 

Maybe it’s easy to think that the Greeks under Polynomial-Normal Model is 

that under Black-Scholes model plus the derivatives of moment premium 

Table 3.1: definitions of the 6 Greek Measures that usually used 
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respect to the corresponding variables. However, this is not true in the Greeks 

of Vega and Theta because 1D  and 2D  in Polynomial-Normal Model is 

different from 1d  and 2d  in Black-Scholes Model, so are their derivatives. 

For other four Greeks, we can use this consideration, because 

1,2 1,2 ( ) /D d p      , which means they only differ in derivatives respect to 

  and T . 

 

Delta: 

Delta measures the change in option price in response to the change in stock 

price. Delta is often used in Delta hedging, which let the investor have 

extremely low risk if the stock price doesn’t change too much. Delta hedging 

is the most important and fundamental Greek letter hedging, and is often 

combined with other hedging. 

If risk-neutral option price is used, we have the following. 

0

0

0

0
0 ln( / )

0
0ln( / )

ln( / )

( ) ( )

( ) ( ) ( )
ln( / )

( )

rT x
call

K S

rT x rT x

K S

rT x

K S

e S e K f x dx
S

e e f x dx e S e K f x
x S K

e e f x dx





 





  



  










 

By differentiating the put-call parity equation 0
qT rTC P S e Ke    , we 

have qT
call put e    . 

In Polynomial-Normal Model, 

1

1 1 1
1 0

( ) ( ) ( ( 1) ( )) / ( )
1

N n
qT qT j n j

call n j
n j

n
e D e h D b H D p

j
 


  

 

 
       

     
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1

1 1 1
1 0

( ) ( ) ( ( 1) ( )) / ( )
1

N n
qT qT j n j

put n j
n j

n
e D e h D b H D p

j
 


  

 

 
         

     

In Black-Scholes Model, 1( )qT
call e d   , 1( )qT

put e d      

From the formula 
0ln( / )

( )rT x
call

K S

e e f x dx


   , and 

0ln( / )

( ) ( )
K S

rT x
put e e f x dx



   , it’s obvious that 0call   and 0put  . We 

can see that Delta tends to 0 or qTe  when 0S  is extremely high or low, 

such like some deep-in-the-money options or deep-out-of-money options. For 

options with a short time to maturity, Delta remains close to qTe  or 0 most 

of the time, and varies rapidly near strike price. 

 

Gamma: 

Gamma is the second derivatives of option price in respect to stock price. 

Gamma hedging is also used as a complementary of Delta hedging, allowing 

the investors to make their positions further less risky with change of stock 

prices. By differentiating the put-call parity equation twice, we have 

call put   . We will not identify call  and put  in latter analysis. 

00 ln( / )

2
0 0

( ( ) )

(ln( )) 0

rT x

K S

rT

e e f x dx
S

e K K
f

S S







 



 


 

Because   is always positive, the option price is a convex function in 

respect to the stock price, and Delta is an increasing function in respect to the 

stock price. 
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In Polynomial-Normal Model, we have the following formula by 

differentiating Delta to 0S : 

11
1 1

1 10 0

( )
( ) ( ( 1) ( )) / ( )

qT qT N n
j n j

n j
n j

ne h D e
h D b H D p

jS S
 

 

 
 

 

 
     

 
   

 
 

In Black-Scholes Model, we have 1

0

( )qTe h d

S T



  . 

 

Vega: 

Vega is used to see how changes in volatility affect option prices. In 

traditional Black-Scholes Models, the volatility is assumed to be constant. 

However, as reality data conflicts with this simple assumption, the changing of 

volatility must be taken into consideration. 

Differentiating put-call parity equation 0
qT rTC P S e Ke     by  , we 

have call putVega Vega . We will not identify callVega  or putVega  in latter 

analysis. 

As the density function f  mainly depends  , T , r  and q , these Greek 

letter would be related to derivatives of f  in respect to these parameters. 

In Polynomial-Normal Model,  

1 2
0 1 2

1 1
0 1 1

1 1

1

0 1 1
1 0

1

2

0.01 ( ) ( )

( ) ( ( 1) ( )) / ( )

( ) ( ( 1) ( ))
1

( ) ( ) ( )
(

( )

qT rT

N n
qT j n j

n j
n j

N n
qT j

n j
n j

n j n j
rT

D D
Vega S e h D Ke h D

n D
S e h D b H D p

j

n
S e h D b H D T

j

n j p p
Ke h

p

 

 


   


 

  

 




 

  


    
  

     
 

    
 



 

 

 

   


2
2 2

1

) ( )
N

n n
n

D
D b H D



 
 


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where 01
2

ln( / ) ( ) ln( ( )) ( )

2 ( )

S K r q T p TD T p T T

T p T T

 
   

  
   


 

And 2 1D D
T

 
 

 
 

 

In Black-Scholes Model, 

2 0 1 1 20.01( ( ) ( )) /qT rTVega d S e h d d Ke h d      

 

Theta: 

Theta is used to measure how option prices changes as time approach, if 

other parameters stay the same. This measures the decay effect of option prices. 

Theta hedging is usually done by borrowing or investing in the bank account. 

For Polynomial-Normal Model, we have 

1 2
0 1 0 1 2 2

1

0 1 1
1 0

1

0 1 1 1
1 0

1

365
1

( ) ( ) ( ) ( )
365

( ) ( ( 1) ( )) / ( )
1

( ) ( ( 1) ( ))
1

call

qT qT rT rT

N n
qT j n j

n j
n j

N n
qT j n j

n j
n j

C

T
D D

qS e D S e h D rKe D Ke h D
T T

n
qS e h D b H D p

j

n
S e h D b H D

j



 



   


 

 


 


 

 



          

 
    

  
    

 

 

 

 1

0 1

1
1 2

1
1 0

1
2

2 1 2 2 2
0 1

/ ( )

( )

( ( 1) ( )(( ) ( ) ( ))) /(2 ( ))
1

( )( ( )) ( )( ( ) )

qT

N n
j n j n j

n j
n j

N N
rT rT

n n n n
n n

D
p

T

S e h D

n
b H D n j p p Tp

j

D
rKe h D b H D Ke h D b H D

T



    




  

 


 


 





      
    

 

 



    
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1
0 1 0 1 2

1
2

2 0 1 1
1 0

1

0 1 1 1
1 0

1

365
1

( ) ( ) ( )
365

( ) ( ) ( ( 1) ( )) / ( )
1

( ) ( ( 1) ( ))
1

put

qT qT rT

N n
rT qT j n j

n j
n j

N n
qT j n j

n j
n j

P

T
D

qS e D S e h D rKe D
T

nD
Ke h D qS e h D b H D p

jT

n
S e h D b H D

j



 



  


  

 


 


 

 



        

 
      

  
    

 

 

 

 1 / ( )
D

p
T






1
1

0 1 1
1 0

2

1
2

2 1 2 2 2
0 1

( ) ( ( 1) ( )(( ) ( ) ( )))
1

/(2 ( ))

( )( ( )) ( )( ( ))

N n
qT j n j n j

n j
n j

N N
rT rT

n n n n
n n

n
S e h D b H D n j p p

j

Tp

D
rKe h D b H D Ke h D b H D

T

   




   

 


 


 

       

    

 

 

   

  

 

where 
2

01
3 2
2

ln( / ) / 2 ln( ( )) ( )
( )

( )2 2
2

S KD r q p p

T pT T
T

   
  

  
    


 

  
, and 

2 1

2

D D

T T T

 
 

 
. 

In Black-Scholes Model, we have 

1 2
0 1 2 0 1 2

1

365
1

( ) ( ) ( ) ( )
365

call

qT rT qT rT

C

T
d d

qS e d rKe d S e h d Ke h d
T T



   

 



            

 

1 2
0 1 2 0 1 2

1

365
1

( ) ( ) ( ) ( )
365

put

qT rT qT rT

P

T
d d

qS e d rKe d S e h d Ke h d
T T



   

 



             

Where 
32

1 2
0( ln( / ) ( ) ) /(2 )

2

d
S K r q T T

T

 
    


, and 2 1

2

d d

T T T

 
 

 
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Rho: 

Rho is used to measure how changes in interest rate would affect option 

prices. 

Differentiating the put-call parity equation, we have 

0.01 rT
call put TKe    . 

For Polynomial-Normal Model, we have 

0 1 2 2

1
0 1 1

1 1

1

2 2 2 1 2
1 0

0.01 ( ) ( ) ( )

( ) ( ( 1) ( )) / ( )

( ) ( ( )) ( )( ( ))

qT rT rT
call

N n
qT j n j

n j
n j

N N
rT rT

n n n n
n n

T T
S e h D TKe D Ke h D

nT
S e h D b H D p

j

T
Ke h D b H D TKe h D b H D


 

 




  

  

 


 


 

   


 
   

 
  


 

 

 

0 1 2 2

1
0 1 1

1 1

1

2 2 2 1 2
1 0

0.01 ( ) ( ) ( )

( ) ( ( 1) ( )) / ( )

( ) ( ( )) ( )( ( ))

qT rT rT
put

N n
qT j n j

n j
n j

N N
rT rT

n n n n
n n

T T
S e h D TKe D Ke h D

nT
S e h D b H D p

j

T
Ke h D b H D TKe h D b H D


 

 




  

  

 


 


 

    


 
   

 
  


 

 

   

In Black-Scholes Model, Rho is given as follows: 

0 1 2 20.01 ( ) ( ) ( )qT rT rT
call

T T
S e h d TKe d Ke h d

 
   

    
 

 

0 1 2 20.01 ( ) ( ) ( )qT rT rT
put

T T
S e h d TKe d Ke h d

 
   

     
 

 

Rho for calls is always positive and for puts is always negative in these three 

models, no matter what polynomial is used. This is basically because the strike 

price is discount greater when a higher interest rate is used. The following 
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proposition is a simple proof for this consideration. 

 

Proposition 3.1: 0call   and 0put   in Polynomial Model. 

Proof:  

Consider another interest rate r r   is used instead of r , and 0r  . 

Denote the original and new call options prices as 1C  and 2C , the original 

and new put options prices as 1P  and 2P . 

0

0

0

0

( )
2 0

ln( / )

0

ln( / )

0

ln( / )

0 1

ln( / )

( ) ( )

( ) ( )
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r r T x
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 
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
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 

  








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0

0
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2 0
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0
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0
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0 1
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r r T x
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rT rT x rT

K S rT
rT rT x
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P e K S e f x rT dx
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e Ke S e f x dx

e K S e f x dx P
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

  




 







  

  

 
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







 

So the call option price should be an increasing function of r , while the put 

option price is a decreasing function of r . Thus 0call   and 0put  . The 

proposition holds. 
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Psi: 

Psi is used to measure how the changes of dividend rate q would affect the 

option prices. 

Differentiating the put-call parity equation, we have 

00.01 qT
call put TS e     . 

In Polynomial-Normal Model, we have 
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In Black-Scholes Model, we have the following: 
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As dividend rate here is playing a role of reversing interest rate, we can 
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prove 0call   and 0put   similarly. 

 

Proposition 3.2: 0call   and 0put   in Polynomial-Normal Model. 

Proof: 

Consider another dividend rate q q   is used instead of q , and 0q  . 

Denote the original and new call options prices as 1C  and 2C , the original 

and new put options prices as 1P  and 2P . 
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So the call option price should be a decreasing function of q , while the put 

option price is an increasing function of q . Thus 0call   and 0put  . The 

proposition holds. 

 

 

 

 



 39

 

Chapter 4 

 

Parameters Estimating and Examples 
 

In this section, we will use realistic stock data to see how our models 

actually work in real data analysis, and estimate the efficiency of our models. 

Stock data of a few large companies and some index will be used in our 

empirical work. We will use monthly return and prices changing to evaluate 

the return distribution function. 

For Polynomial-Normal Models, We will assume that 1 2 0b b   in this 

section, so the mean and variance of the return would be m  and   

respectively and our estimation would be simplified greatly. We also assume 

that the moment parameters up to order three stay the same with different time 

periods, for the simplification of the model. However this is not true in the real 

world, like the skewness of the annual return is likely to be different from that 

of monthly return. We have derived the formula for moments in section 2.5. 

The equation 2.13 and equation 2.14 show us how to get the moments from 

polynomial parameters. Basically we will estimate the moments from our data 

and solve the linear equations to get the polynomial parameters. Another part 

of our example is to use the estimated parameters to calculate the option prices, 

from the formulas we derived in Chapter 3, to see which model would give the 
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most precise option prices. 

 

 

4.1 Empirical Performance: Royal Bank of Canada 

 

We are using the data of Royal Bank of Canada in our first example. Royal 

Bank of Canada is the largest financial organization in Canada, with the most 

measured deposits, revenues and market capitalization. It also has a large 

proportion of business in the United States and some other Caribbean 

countries. Its stock is traded on Toronto Stock Exchange (TSE). 

The data source is Canada Financial Market Research Center (CFMRC). The 

data was lastly revised at 2008 when we cited it into this thesis. The time 

period of our data is between the beginning of 2001 and the end of 2006. We 

use monthly return to estimate the changing of the stock prices, so the time 

unit considered is 1/12t  , and the sample size is 72n  . Assume that 

( / )t t tLog S S  is independent identically distributed (IDD) random variable. 

The average annual dividend rate is ˆ 0.07153q  . And the average annual risk 

free rate period is calculated from the Geometric mean of long-term 

government bond yields between 2001 and 2006, which gives us 

ˆ 0.069425r  . Here we will use Black-Scholes Model, Gram-Charlier Model 

and a Polynomial-Normal Model up to degree 6 to analyze our data. 

In our models, we can calculate from the data that the sample mean and 
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standard deviation of 1( / )t tLog S S  are the following: 
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Using equation 2.13 and 2.14, we can solve the polynomial parameters as 

following: 3 0.020019b  , 4 0.025875b  , 5 0.0040980b  , 

6 0.0019260b   . 

The pdf under three models can be plot as following: 
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The call and put option prices under the three models can be calculated from 

equation 3.3 and 3.4. The following table shows us the option prices under 

1T  , 0 50S K  .  

 

 Black-Scholes Gram-Charlier Polynomial-Normal 

Call Price 4.68767 4.09483 4.38713 

Put Price 1.63133 1.03849 1.33079 

 

 

Remark 5.1: 

For Gram-Charlier and Polynomial-Normal Model, the pdf doesn’t satisfy 

global positivity actually. The pdf of Gram-Charlier Model falls below 0 

around 1 , and rise to above 0 again at around 2 . The pdf of 6-degree 

Polynomial-Normal Model falls below 0 at about -4 and 6, and never rise 

____ Polynomial-Normal 

____ Gram-Charlier Model 

____ Black-Schole Model 

Figure 4.1: phf of rbc stock returns distribution 

Table 4.1: option prices on RBC stocks under the three models 
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above 0 again (because the 6th order polynomial parameter is negative). But as 

the main part of the pdf is positive, this won’t be big problem for our 

modeling. 

 

Remark 5.2: 

Because ̂  is the sample standard deviation of return in month, so the 

yearly volatility should be ˆ12 0.1599   . These two volatilities should 

be identified with each other. 

 

Remark 5.3: 

There are two stock splits for stocks of RBC in the period considered. The 

first one was in Oct 5, 2000, and the second one was in March 3, 2006. Both 

stock splits are 2-1 stock splits. We use 1(2 / )t tLog S S  as a substitution of 

1( / )t tLog S S  in these two months, as a compensation to the influence of the 

stock split. 

 

The data of stock prices of RBC is showed as following: 

 

Date 
closing 

price 
return dividendDate 

closing 

price 
return dividend

2000-1-31 59.05 -0.061575 1 2004-1-30 63.19 0.029935 1

2000-2-29 62.25 0.054191 0 2004-2-27 63.51 0.005064 0

2000-3-31 68 0.092369 0 2004-3-31 62.7 -0.012754 0

2000-4-28 69.9 0.035882 1 2004-4-30 60.96 -0.019458 1

2000-5-31 77.85 0.113734 0 2004-5-31 59.02 -0.031824 0

2000-6-30 75.75 -0.026975 0 2004-6-30 58.96 -0.001017 0
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2000-7-31 79.3 0.054786 1 2004-7-30 61.5 0.0519 1

2000-8-31 86.15 0.086381 0 2004-8-31 59.42 -0.033821 0

2000-9-29 44.7n/a 1 2004-9-30 59.63 0.003534 0

2000-10-31 48.3 0.09396 12004-10-29 63.4 0.071944 1

2000-11-30 45.65 -0.054865 0 2004-11-30 62.48 -0.014511 0

2000-12-29 50.85 0.11391 02004-12-31 64.18 0.027209 0

2001-1-31 48.2 -0.045624 1 2005-1-31 63 -0.009816 1

2001-2-28 46.85 -0.028008 0 2005-2-28 72.55 0.151587 0

2001-3-30 47.18 0.007044 0 2005-3-31 73.56 0.013921 0

2001-4-30 43.25 -0.076304 1 2005-4-29 74.93 0.026101 1

2001-5-31 48.94 0.131561 0 2005-5-31 75.22 0.00387 0

2001-6-29 48.57 -0.00756 0 2005-6-30 76 0.01037 0

2001-7-31 50.96 0.056619 1 2005-7-29 77.39 0.026316 1

2001-8-31 49.6 -0.026688 0 2005-8-31 80.75 0.043416 0

2001-9-28 48.15 -0.029234 0 2005-9-30 84.96 0.052136 0

2001-10-31 46.8 -0.020561 12005-10-31 83.54 -0.009181 1

2001-11-30 49.24 0.052137 0 2005-11-30 89.27 0.06859 0

2001-12-31 51.83 0.0526 02005-12-30 90.65 0.015459 0

2002-1-31 50 -0.028362 1 2006-1-31 89.22 -0.008715 1

2002-2-28 50.71 0.0142 0 2006-2-28 94.87 0.063327 0

2002-3-28 53.2 0.049103 0 2006-3-31 49.3 0.039317 1

2002-4-30 54.97 0.040414 1 2006-4-28 47.8 -0.023124 1

2002-5-31 58.6 0.066036 0 2006-5-31 45.24 -0.053556 0

2002-6-28 52.5 -0.104096 0 2006-6-30 45.51 0.005968 0

2002-7-31 53.45 0.025333 1 2006-7-31 46.06 0.019996 1

2002-8-30 56 0.047708 0 2006-8-31 48.92 0.062093 0

2002-9-30 52.7 -0.058929 0 2006-9-29 49.62 0.014309 0

2002-10-31 54.41 0.040038 12006-10-31 49.89 0.013503 1

2002-11-29 58.55 0.076089 0 2006-11-30 53.24 0.067148 0

2002-12-31 57.85 -0.011956 02006-12-29 55.51 0.042637 0

2003-1-31 55.3 -0.037165 1 2007-1-31 54.52 -0.017835 0

2003-2-28 58.1 0.050633 0 2007-2-28 54.32 -0.003668 0

2003-3-31 57.14 -0.016523 0 2007-3-30 57.61 0.060567 0

2003-4-30 59.8 0.054078 1 2007-4-30 57.78 0.010936 1

2003-5-30 58.89 -0.015217 0 2007-5-31 58.33 0.009519 0

2003-6-30 57.38 -0.025641 0 2007-6-29 56.55 -0.030516 0

2003-7-31 58.9 0.033984 1 2007-7-31 54.25 -0.032538 1

2003-8-29 59.59 0.011715 0 2007-8-31 54.38 0.002396 0

2003-9-30 59.45 -0.002349 0 2007-9-28 55.1 0.01324 0

2003-10-31 63.48 0.075526 12007-10-31 56.04 0.026134 1

2003-11-28 61.7 -0.02804 0 2007-11-30 53.12 -0.052106 0

2003-12-31  61.8 0.001621 02007-12-31 50.69 -0.045745 0

        Table 4.2: RBC stock prices history 
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4.2 Empirical Performance: Wal-Mart Store Inc. 

 

We choose Wal-Mart Store Inc. for our second real data analysis. Wal-Mart 

Store Inc. is an American company that runs a chain of department stores, 

which spread on many countries in the world. In the corporation ranking of 

Fortune Global 500 in 2008, Wal-Mart Store Inc. is the largest public 

corporation by revenue. Its stock is traded on New York Stock Exchange 

(NYSE). 

We take the data for Wal-Mart Store Inc. from finance.yahoo.com. The data 

period is from 2000 to 2007. As we are using monthly return in our analysis, 

Similar to the stock analysis for RBC, we set 1/12T  , and the sample size 

96n  . Continuous dividend rate is calculated from the geometric mean of the 

dividend discounted prices by non-discounted prices. Thus we have 

ˆ 0.0112484q  . The risk free rate is calculated as the geometric mean of the 

yields of 10 Years Treasury Notes (^TNX), thus we have ˆ 0.04560r  . We 

what we did in the RBC analysis, we assume the monthly return of stocks for 

Wal-Mart Store Inc. follows a IID Polynomial-Normal distribution and 

perform our analysis as follow: 
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Using equation 2.13 and 2.14, we can solve the polynomial parameters as 

following: 3 0.070076b   , 4 0.047632b  , 5 0.014970b   , 

6 0.00055747b  . 

The pdf under three models can be plot as following: 
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If we let 1T  , 0 50S K  , the call and put options prices under the three 

models can be calculated by equation 3.3 and 3.4 as follows: 

 Black-Scholes Gram-Charlier Polynomial-Normal 

Call Price 5.46240 6.06516 6.18909 

Put Price 3.28045 3.88320 4.00714 

 

Remark 5.4 

Like in the RBC data analysis, under the Gram-Charlier and 

Polynomial-Normal model, the pdf of the return didn’t satisfy global positivity 

actually. The pdf goes negative at a tiny interval around 0.1 in both 

Gram-Charlier and Polynomial-Normal Models, and additionally it falls 

negative in Polynomial-Normal Model in a relatively large interval at about 

(0.2,1.5). But this would not cause too much problem as the main part of the 

pdf stays positive. 

____ Polynomial-Normal 

____ Gram-Charlier Model 

____ Black-Schole Model 

Figure 4.2: pdf of Wal-Mart Inc. stock returns distribution 

Table 4.3: option prices of Wal-Mart Inc. stocks under the three models 
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The stock data of Wal-Mart Store Inc. is listed as following: 

Date Close Price Dividend Date Close Price Dividend

2007-12-3 47.53 0.22 2003-12-1 53.05 0.09

2007-11-1 47.9 0 2003-11-3 55.64 0

2007-10-1 45.21 0 2003-10-1 58.95 0.09

2007-9-4 43.65 0 2003-9-2 55.85 0

2007-8-1 43.63 0.22 2003-8-1 59.17 0

2007-7-2 45.95 0 2003-7-1 55.91 0

2007-6-1 48.11 0 2003-6-2 53.67 0.09

2007-5-1 47.6 0.22 2003-5-1 52.61 0

2007-4-2 47.92 0 2003-4-1 56.32 0

2007-3-1 46.95 0.22 2003-3-3 52.03 0.09

2007-2-1 48.31 0 2003-2-3 48.06 0

2007-1-3 47.69 0 2003-1-2 47.8 0

2006-12-1 46.18 0.168 2002-12-2 50.51 0.075

2006-11-1 46.1 0 2002-11-1 53.9 0

2006-10-2 49.28 0 2002-10-1 53.55 0

2006-9-1 49.32 0 2002-9-3 49.24 0.075

2006-8-1 44.72 0.168 2002-8-1 53.48 0

2006-7-3 44.5 0 2002-7-1 49.18 0

2006-6-1 48.17 0 2002-6-3 55.01 0.075

2006-5-1 48.45 0.168 2002-5-1 54.1 0

2006-4-3 45.03 0 2002-4-1 55.86 0

2006-3-1 47.24 0.168 2002-3-1 61.3 0.075

2006-2-1 45.36 0 2002-2-1 62.01 0

2006-1-3 46.11 0 2002-1-2 59.98 0

2005-12-1 46.8 0.15 2001-12-3 57.55 0.07

2005-11-1 48.56 0 2001-11-1 55.15 0

2005-10-3 47.31 0 2001-10-1 51.4 0

2005-9-1 43.82 0 2001-9-4 49.5 0.07

2005-8-1 44.96 0.15 2001-8-1 48.05 0

2005-7-1 49.35 0 2001-7-2 55.9 0

2005-6-1 48.2 0 2001-6-1 48.8 0.07

2005-5-2 47.23 0.15 2001-5-1 51.75 0

2005-4-1 47.14 0 2001-4-2 51.74 0

2005-3-1 50.11 0.15 2001-3-1 50.5 0.07

2005-2-1 51.61 0 2001-2-1 50.09 0

2005-1-3 52.4 0 2001-1-2 56.8 0

2004-12-1 52.82 0.13 2000-12-1 53.13 0.06

2004-11-1 52.06 0 2000-11-1 52.19 0
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2004-10-1 53.92 0 2000-10-2 45.38 0

2004-9-1 53.2 0 2000-9-1 48.13 0.06

2004-8-2 52.67 0.13 2000-8-1 47.63 0

2004-7-1 53.01 0 2000-7-3 55.25 0

2004-6-1 52.5 0 2000-6-1 57.63 0.06

2004-5-3 55.73 0.13 2000-5-1 57.63 0

2004-4-1 57 0 2000-4-3 55.38 0

2004-3-1 59.69 0.13 2000-3-1 56.5 0.06

2004-2-2 59.56 0 2000-2-1 48.75 0

2004-1-2 53.85 0 2000-1-3 54.75 0

 

 

4.3 Empirical Performance: S&P 500 Index 

 

Our last empirical analysis will be about S&P 500 Index. Established at 1957, 

S&P 500 index served as a weight index for 500 large publicly traded stocks in 

the United States. Most of the stocks in S&P 500 are those with the largest 

capitalization in American stock market. Compared to Dow Jones Industries 

Index, S&P 500 included more companies, has more diversified risk, and 

reflects the stock market behaviors better. S&P 500 index uses the market 

capitalization as the weight of stocks. 

Our data for S&P 500 is from finance.yahoo.com. The period we considered 

is from the beginning of 1979 to the end of 2008. As our analysis is based on 

monthly return of the index, we set 1/12t  , and the sample size 360n  . 

As the index would not pay any dividend, so we set ˆ 0q  . The risk free rate 

we use here is calculated from the geometric mean of the yield of 10-year 

treasury notes, thus we have ˆ 0.071288r  . Instead of using the 6th degree 

Table 4.4: Wal-Mart Inc. stock price history 
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Polynomial-Normal Model in the previous examples, we are using the 8th 

degree model this time, to see what result will generates from a much longer 

time period and a more precise model. 

The mean and variance is calculated as follows: 
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The seventh sample moment 7̂  should be 
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The eighth sample moment 8̂  should be 
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Using equation 2.13 and 2.14, we can solve the polynomial parameters as 

following: 3 0.164276b   , 4 0.15114b  , 5 0.11362b   , 6 0.082215b  , 

7 0.050499b   , 8 0.024831b  . 

The pdf under three models can be plot as following: 
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If we let 1T  , 0 1000S K  , the call and put options prices under the 

three models can be calculated by equation 3.3 and 3.4 as follows: 

 Black-Scholes Gram-Charlier Polynomial-Normal 

Call Price 84.6193 -31.4912 0 

Put Price 40.0379 -76.0671 -44.576 

 

____ 8th order Polynomial-Normal 

____ Gram-Charlier Model 

____ Black-Schole Model 

Figure 4.3: pdf of S&P 500 index return, 30 years model

Table 4.5: option prices of S&P 500 index, 30 years data, under the three models 
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Remark 4.5: 

We can notice that there’s a relatively greater negative part in the pdf of the 

Polynomial-Normal Model. This is a sign that even the Gram-Charlier 

distribution function cannot model this distribution well, as the pdf under two 

models looks so different. The negative option price under Gram-Charlier 

Model is another evidence of the flawed modeling. But this may be because of 

the reason that the monthly return are not following the same distribution and 

independent with each other, because the time period taken into consideration 

is so long. We would see the return pdf with only 15 years taken into account 

would looks much better. 

 

The 8th order Polynomial-Normal model shows us that the actual pdf of the 

return may be not reaching the peak around its mean value, which 

Black-Scholes Model assumes to be true, and it may has multiple peaks. 

Another thing caught our concern is that such a ‘negative somewhere’ pdf 

function would possibly lead to a negative call price or put price, if the risk 

neutral price is used. 

 

The 8th order Polynomial-Normal Model with 15 years data: 

With only 15th years data accounted, it’s much likely that the return would be 

the same distributed, as the distribution wouldn’t change so much in a 

relatively short period of time. 
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With 15th years taken into account, the sample size would be 180. The mean 

and standard deviation of the return and moments of different orders is list as 

follows: 

ˆ 0.0036714m  , ˆ 0.043900  , 5
3ˆ 6.1967 10    , 5

4ˆ 1.7258 10   , 

6
5ˆ 1.9040 10    , 7

6ˆ 3.5403 10   , 8
7ˆ 5.5917 10    , 

9
8ˆ 9.9394 10   . 

The polynomial parameter is listed as follows: 

3 0.16399b   , 4 0.080576b  , 5 0.031988b   , 6 0.016405b  , 

7 0.0049211b   , 8 0.00016531b  . 

Thus we have the return pdf under the three models as following: 
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Similarly, if we let 1T  , 0 1000S K  , the call and put options prices 

under the three models can be calculated as follows: 

 Black-Scholes Gram-Charlier Polynomial-Normal 

Call Price 84.1857 2.1353 120.6050 

Put Price 39.6089 -42.4407 72.0292 

 

____ 8th order Polynomial-Normal 

____ Gram-Charlier Model 

____ Black-Schole Model 

Figure 4.4: pdf of S&P 500 Index return, 15 years model 

Table 4.6: option prices of S&P 500 index, 15 years data, under the three models 
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Now we use the historical option prices to compare the results generated by 

these three models. 

The historical optional prices can be calculated from the implied volatility of 

the specific option and the Black-Scholes framework. However, we don’t 

know how much the implied volatility is before the option written, because the 

implied volatility is calculated from the market price of the option such that 

the Black-Scholes option prices equal to the market prices. We use the CBOT 

Volatility Index value at the time of the option written as the volatility in our 

option formulas, and use the three prices we got in our three models and 

compare with the market price of the option. The option prices between 2005 

and 2007 are considered. Time to maturity is selected as one month, and strike 

prices are equal to index value. (It means we only consider at-the-money 

options.) We used the 10-year treasury notes rates as interest rates.  The 

standard error of the three prices is listed as follows. 

Black-Scholes Model: 

2 21
( ( ) ( )) ( ( ) ( )) 4.3602

2BS BS mk BS mk
t

SE C t C t P t P t
n

        

Gram-Charlier Model: 

2 21
( ( ) ( )) ( ( ) ( )) 25.0353

2GC GC mk GC mk
t

SE C t C t P t P t
n

        

Polynomial-Normal Model: 

2 21
( ( ) ( )) ( ( ) ( )) 20.4595

2PN PN mk PN mk
t

SE C t C t P t P t
n

        

Here, BSC , BSP , GCC , GCP , PNC , PNP , mkC , mkP  stand for the call and 
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put prices under Black-Scholes Model, Gram-Charlier Model, 

Polynomial-Normal Model, and the market prices respectively. We can see 

that the Black-Scholes formula gives the closest option prices to the market 

prices. The Polynomial-Normal formula is worse than Black-Scholes formula, 

but better than Gram-Charlier formula. 

 

In spite of the result that Black Scholes Model is providing the most closing 

price estimate for the option price, we still think that Gram Charlier and 

Polynomial Normal Model would be good extensions of the well known Black 

Scholes Model. Why these model extensions are not giving better results? 

That’s because the market option prices mkC  and mkP  are calculated in Black 

Scholes Model from implied volatility, which an average of that of options 

with different strike prices. In fact, the market prices of different strike prices 

options at different time would have different implied volatility, and this lack 

of information impairs the accuracy of the estimation greatly. Another reason 

would be from the calculation of polynomial parameters. As we can see in the 

section 2.5, which is for find the region of polynomial parameters that makes 

the density function positive globally, the range of 6b  is about  0,0.02 . Any 

number of 6b  out of this range would make the pdf negative at some point. In 

fact, the accepted range of ib  is very narrow, and it becomes narrower for 

higher order parameters. However, the results of these parameters in our real 

data example fall out of the range and none of the pdf is a valid one that 



 56

satisfies positivity. And this is why we even have negative option prices some 

time. 

Other than data-relevant biases in our model, non-data biases are also 

important when considering the accuracy of our models. From the view of 

company management, events such as stock split, stock issued or repurchase 

would be a source of distortion in the stock return. This leads to bias in our 

model estimation, which can be adjusted using company accounting 

information. Other non-data biases that would occur include the systematic 

risk of the whole stock market, the upturn or downturn of the national 

economy, etc. Actually, our models are good for measuring and estimating the 

non-systematic risk, while the systematic risk estimation would better off 

using some models relevant to the whole markets behavior. 

Further improvement for our new models would be for the approximation of 

polynomial parameters. We should make it more accurate and provide better 

approximation of the stock prices. 

 

The following table shows the data used for S&P 500 Index analysis. 

Date 
Closing 

Price 
Date 

Closing 

Price 
Date 

Closing 

Price 

2008-12-1 903.25 1998-11-2 1163.63 1988-11-1 273.7 

2008-11-3 896.24 1998-10-1 1098.67 1988-10-3 278.97 

2008-10-1 968.75 1998-9-1 1017.01 1988-9-1 271.91 

2008-9-2 1164.74 1998-8-3 957.28 1988-8-1 261.52 

2008-8-1 1282.83 1998-7-1 1120.67 1988-7-1 272.02 

2008-7-1 1267.38 1998-6-1 1133.84 1988-6-1 273.5 

2008-6-2 1280 1998-5-1 1090.82 1988-5-2 262.16 

2008-5-1 1400.38 1998-4-1 1111.75 1988-4-4 261.33 
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2008-4-1 1385.59 1998-3-2 1101.75 1988-3-1 258.89 

2008-3-3 1322.7 1998-2-2 1049.34 1988-2-1 267.82 

2008-2-1 1330.63 1998-1-2 980.28 1988-1-4 257.07 

2008-1-2 1378.55 1997-12-1 970.43 1987-12-1 247.08 

2007-12-3 1468.36 1997-11-3 955.4 1987-11-2 230.3 

2007-11-1 1481.14 1997-10-1 914.62 1987-10-1 251.79 

2007-10-1 1549.38 1997-9-2 947.28 1987-9-1 321.83 

2007-9-4 1526.75 1997-8-1 899.47 1987-8-3 329.8 

2007-8-1 1473.99 1997-7-1 954.31 1987-7-1 318.66 

2007-7-2 1455.27 1997-6-2 885.14 1987-6-1 304 

2007-6-1 1503.35 1997-5-1 848.28 1987-5-1 290.1 

2007-5-1 1530.62 1997-4-1 801.34 1987-4-1 288.36 

2007-4-2 1482.37 1997-3-3 757.12 1987-3-2 291.7 

2007-3-1 1420.86 1997-2-3 790.82 1987-2-2 284.2 

2007-2-1 1406.82 1997-1-2 786.16 1987-1-2 274.08 

2007-1-3 1438.24 1996-12-2 740.74 1986-12-1 242.17 

2006-12-1 1418.3 1996-11-1 757.02 1986-11-3 249.22 

2006-11-1 1400.63 1996-10-1 705.27 1986-10-1 243.98 

2006-10-2 1377.94 1996-9-3 687.33 1986-9-2 231.32 

2006-9-1 1335.85 1996-8-1 651.99 1986-8-1 252.93 

2006-8-1 1303.82 1996-7-1 639.95 1986-7-1 236.12 

2006-7-3 1276.66 1996-6-3 670.63 1986-6-2 250.84 

2006-6-1 1270.2 1996-5-1 669.12 1986-5-1 247.35 

2006-5-1 1270.09 1996-4-1 654.17 1986-4-1 235.52 

2006-4-3 1310.61 1996-3-1 645.5 1986-3-3 238.9 

2006-3-1 1294.87 1996-2-1 640.43 1986-2-3 226.92 

2006-2-1 1280.66 1996-1-2 636.02 1986-1-2 211.78 

2006-1-3 1280.08 1995-12-1 615.93 1985-12-2 211.28 

2005-12-1 1248.29 1995-11-1 605.37 1985-11-1 202.17 

2005-11-1 1249.48 1995-10-2 581.5 1985-10-1 189.82 

2005-10-3 1207.01 1995-9-1 584.41 1985-9-3 182.08 

2005-9-1 1228.81 1995-8-1 561.88 1985-8-1 188.63 

2005-8-1 1220.33 1995-7-3 562.06 1985-7-1 190.92 

2005-7-1 1234.18 1995-6-1 544.75 1985-6-3 191.85 

2005-6-1 1191.33 1995-5-1 533.4 1985-5-1 189.55 

2005-5-2 1191.5 1995-4-3 514.71 1985-4-1 179.83 

2005-4-1 1156.85 1995-3-1 500.71 1985-3-1 180.66 

2005-3-1 1180.59 1995-2-1 487.39 1985-2-1 181.18 

2005-2-1 1203.6 1995-1-3 470.42 1985-1-2 179.63 

2005-1-3 1181.27 1994-12-1 459.27 1984-12-3 167.24 

2004-12-1 1211.92 1994-11-1 453.69 1984-11-1 163.58 
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2004-11-1 1173.82 1994-10-3 472.35 1984-10-1 166.09 

2004-10-1 1130.2 1994-9-1 462.71 1984-9-4 166.1 

2004-9-1 1114.58 1994-8-1 475.49 1984-8-1 166.68 

2004-8-2 1104.24 1994-7-1 458.26 1984-7-2 150.66 

2004-7-1 1101.72 1994-6-1 444.27 1984-6-1 153.18 

2004-6-1 1140.84 1994-5-2 456.5 1984-5-1 150.55 

2004-5-3 1120.68 1994-4-4 450.91 1984-4-2 160.05 

2004-4-1 1107.3 1994-3-1 445.77 1984-3-1 159.18 

2004-3-1 1126.21 1994-2-1 467.14 1984-2-1 157.06 

2004-2-2 1144.94 1994-1-3 481.61 1984-1-3 163.41 

2004-1-2 1131.13 1993-12-1 466.45 1983-12-1 164.93 

2003-12-1 1111.92 1993-11-1 461.79 1983-11-1 166.4 

2003-11-3 1058.2 1993-10-1 467.83 1983-10-3 163.55 

2003-10-1 1050.71 1993-9-1 458.93 1983-9-1 166.07 

2003-9-2 995.97 1993-8-2 463.56 1983-8-1 164.4 

2003-8-1 1008.01 1993-7-1 448.13 1983-7-1 162.56 

2003-7-1 990.31 1993-6-1 450.53 1983-6-1 167.64 

2003-6-2 974.5 1993-5-3 450.19 1983-5-2 162.39 

2003-5-1 963.59 1993-4-1 440.19 1983-4-4 164.43 

2003-4-1 916.92 1993-3-1 451.67 1983-3-1 152.96 

2003-3-3 848.18 1993-2-1 443.38 1983-2-1 148.06 

2003-2-3 841.15 1993-1-4 438.78 1983-1-3 145.3 

2003-1-2 855.7 1992-12-1 435.71 1982-12-1 140.64 

2002-12-2 879.82 1992-11-2 431.35 1982-11-1 138.53 

2002-11-1 936.31 1992-10-1 418.68 1982-10-1 133.72 

2002-10-1 885.76 1992-9-1 417.8 1982-9-1 120.42 

2002-9-3 815.28 1992-8-3 414.03 1982-8-2 119.51 

2002-8-1 916.07 1992-7-1 424.21 1982-7-1 107.09 

2002-7-1 911.62 1992-6-1 408.14 1982-6-1 109.61 

2002-6-3 989.82 1992-5-1 415.35 1982-5-3 111.88 

2002-5-1 1067.14 1992-4-1 414.95 1982-4-1 116.44 

2002-4-1 1076.92 1992-3-2 403.69 1982-3-1 111.96 

2002-3-1 1147.39 1992-2-3 412.7 1982-2-1 113.11 

2002-2-1 1106.73 1992-1-2 408.78 1982-1-4 120.4 

2002-1-2 1130.2 1991-12-2 417.09 1981-12-1 122.55 

2001-12-3 1148.08 1991-11-1 375.22 1981-11-2 126.35 

2001-11-1 1139.45 1991-10-1 392.45 1981-10-1 121.89 

2001-10-1 1059.78 1991-9-3 387.86 1981-9-1 116.18 

2001-9-4 1040.94 1991-8-1 395.43 1981-8-3 122.79 

2001-8-1 1133.58 1991-7-1 387.81 1981-7-1 130.92 

2001-7-2 1211.23 1991-6-3 371.16 1981-6-1 131.21 
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2001-6-1 1224.38 1991-5-1 389.83 1981-5-1 132.59 

2001-5-1 1255.82 1991-4-1 375.34 1981-4-1 132.81 

2001-4-2 1249.46 1991-3-1 375.22 1981-3-2 136 

2001-3-1 1160.33 1991-2-1 367.07 1981-2-2 131.27 

2001-2-1 1239.94 1991-1-2 343.93 1981-1-2 129.55 

2001-1-2 1366.01 1990-12-3 330.22 1980-12-1 135.76 

2000-12-1 1320.28 1990-11-1 322.22 1980-11-3 140.52 

2000-11-1 1314.95 1990-10-1 304 1980-10-1 127.47 

2000-10-2 1429.4 1990-9-4 306.05 1980-9-2 125.46 

2000-9-1 1436.51 1990-8-1 322.56 1980-8-1 122.38 

2000-8-1 1517.68 1990-7-2 356.15 1980-7-1 121.67 

2000-7-3 1430.83 1990-6-1 358.02 1980-6-2 114.24 

2000-6-1 1454.6 1990-5-1 361.23 1980-5-1 111.24 

2000-5-1 1420.6 1990-4-2 330.8 1980-4-1 106.29 

2000-4-3 1452.43 1990-3-1 339.94 1980-3-3 102.09 

2000-3-1 1498.58 1990-2-1 331.89 1980-2-1 113.66 

2000-2-1 1366.42 1990-1-2 329.08 1980-1-2 114.16 

2000-1-3 1394.46 1989-12-1 353.4 1979-12-3 107.94 

1999-12-1 1469.25 1989-11-1 345.99 1979-11-1 106.16 

1999-11-1 1388.91 1989-10-2 340.36 1979-10-1 101.82 

1999-10-1 1362.93 1989-9-1 349.15 1979-9-4 109.32 

1999-9-1 1282.71 1989-8-1 351.45 1979-8-1 109.32 

1999-8-2 1320.41 1989-7-3 346.08 1979-7-2 103.81 

1999-7-1 1328.72 1989-6-1 317.98 1979-6-1 102.91 

1999-6-1 1372.71 1989-5-1 320.52 1979-5-1 99.08 

1999-5-3 1301.84 1989-4-3 309.64 1979-4-2 101.76 

1999-4-1 1335.18 1989-3-1 294.87 1979-3-1 101.59 

1999-3-1 1286.37 1989-2-1 288.86 1979-2-1 96.28 

1999-2-1 1238.33 1989-1-3 297.47 1979-1-2 99.93 

1999-1-4 1279.64 1988-12-1 277.72 1978-12-3 96.11 

1998-12-1 1229.23     

 

 

 

 

Date 

Closing 

price of 

S&P 500 

Implied 

volatility of 

call option

Implied 

volatility of 

put option 

Closing value of 

CBOT volatility 

index 

10-year 

treasury note 

Table 4.7: S&P 500 Index history 
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2007-12-3 1468.36 0.23514 0.23089 0.225 0.0403 

2007-11-1 1481.14 0.20716 0.24245 0.2287 0.0397 

2007-10-1 1549.38 0.17369 0.17238 0.1853 0.0447 

2007-9-4 1526.75 0.20848 0.22611 0.18 0.0458 

2007-8-1 1473.99 0.24274 0.21858 0.2338 0.0454 

2007-7-2 1455.27 0.13712 0.14425 0.2352 0.0477 

2007-6-1 1503.35 0.11317 0.115 0.1623 0.0503 

2007-5-1 1530.62 0.11562 0.11982 0.1305 0.0489 

2007-4-2 1482.37 0.12445 0.12542 0.1422 0.0463 

2007-3-1 1420.86 0.1723 0.14417 0.1464 0.0465 

2007-2-1 1406.82 0.09108 0.09677 0.1542 0.0455 

2007-1-3 1438.24 0.10676 0.12415 0.1042 0.0483 

2006-12-1 1418.3 0.10185 0.11285 0.1156 0.0471 

2006-11-1 1400.63 0.10346 0.10988 0.1091 0.0446 

2006-10-2 1377.94 0.12776 0.11455 0.111 0.0461 

2006-9-1 1335.85 0.11475 0.11198 0.1198 0.0463 

2006-8-1 1303.82 0.13487 0.13541 0.1231 0.0473 

2006-7-3 1276.66 0.11726 0.1212 0.1495 0.0499 

2006-6-1 1270.2 0.12894 0.12596 0.1308 0.0514 

2006-5-1 1270.09 0.10896 0.10917 0.1644 0.0511 

2006-4-3 1310.61 0.12259 0.10704 0.1159 0.0507 

2006-3-1 1294.87 0.11286 0.10963 0.1139 0.0485 

2006-2-1 1280.66 0.11202 0.12587 0.1234 0.0455 

2006-1-3 1280.08 0.10437 0.10812 0.1295 0.0453 

2005-12-1 1248.29 0.10925 0.10168 0.1207 0.0439 

2005-11-1 1249.48 0.12048 0.12255 0.1206 0.045 

2005-10-3 1207.01 0.11782 0.11427 0.1532 0.0456 

2005-9-1 1228.81 0.12862 0.11509 0.1192 0.0433 

2005-8-1 1220.33 0.10746 0.10748 0.126 0.0402 

2005-7-1 1234.18 0.11992 0.10856 0.1157 0.0429 

2005-6-1 1191.33 0.11155 0.11202 0.1204 0.0394 

2005-5-2 1191.5 0.13503 0.1376 0.1329 0.0401 

2005-4-1 1156.85 0.1278 0.1299 0.1531 0.042 

2005-3-1 1180.59 0.11664 0.11013 0.1402 0.045 

2005-2-1 1203.6 0.10239 0.10916 0.1208 0.0436 

2005-1-3 1181.27 0.12562 0.12843 0.1282 0.0413 

 

 

 

Table 4.8: implied volatility, volatility index, yields of 10-year treasury notes 



 61

Bibliography 
 

[1] Hosam Ki, Byungwook Choi, Kook-Hyun Chang, Miyoung Lee. Option 

Pricing Under Extended Normal Distribution. Journal of Future Markets, 

Volume 25, Issue 9, Pages 845-871. 

[2] Andrew W. Lo, the Statistics of Sharpe Ratio. Financial Analysts Journal, 

Vol. 58, Issue 4, Page 18. 

[3] Donald Lien. A Note on the Relationships Between Some Risk-Adjusted 

Performance Measures, The Journal of Future Markets. Volume 22, Issue 5, 

Pages 483-495. 

[4] Jean-Daniel M. Saphores. The Density of Bounded Diffusions. Journal of 

Economics Letters, Volume 86, Issue 1, Pages 87-93. 

[5] Eric Jondeau, Michael Rockinger. Gram-Charlier Densities. Jounal of 

Economic Dynamics and Controls, Volume 25, Issue 10, Pages 1457-1483. 

[6] Eric Jondeau, Michael Rockinger. Estimating Gram-Charlier Expansions 

with Positive Constraints, Banque de France, January, 2009. 

[7] Abken, P. A.; Madan, D. B.; Ramamurtie, S. Estimation of Risk-Neutral 

and Statistical Densities by Hermite Polynomial Approximation: With 

Application to Eurodollar Futures Options. Federal Reserve Bank of Atlanta. 

Working Paper 96-5; (June) 1996a. 

[8] David Backus, Silverio Foresi, Liuren Wu. Accounting for Biases in 

Black-Scholes. Frank J. Petrilli Center for Research in International Finance. 



 62

The Frank J. Petrilli Centre for Research in International Finance, Working 

Paper Series, 2002. 

[9] Abken, P. A.; Madan, D. B.; Ramamurtie, S. Pricing S&P 500 Index 

options using a Hilbert space basis. Federal Reserve Bank of Atlanta. Working 

Paper 96-21; (December) 1996b. 

[10] Knight, J.; Satchell, S. Pricing derivatives written on assets with 

arbitrary skewness and kurtosis. Return Distributions in Finance, Butterworth 

Heinemann. 

[11] S. T Rachev, 2003. Handbook of Heavy-Tailed Distribution in Finance. 

[12] Kai-tai Fang, Samuel Kotz, Kai Wang Ng, 1990. Symmetric 

Multivariate and Related Distributions. 

[13] Fischer Black, Myron Scholes, 1973. The Pricing of Options and 

Corporate Liabilities. The Journal of Political Economy, Volume 81, Issue 3 

(May-Jun), pages 637-654. 

[14] Fischer Black, Goldman, Sachs & Co, 1993. How to Use the Holes in 

Black-Scholes. Journal of Applied Corporate Finance, Volume 1, Issue 4, 

pages 67-73. 

[15] Kling, John L, 1994. Regularities in the Variation of Skewness in Asset 

Returns. Journal of Financial Research, Volume 17, Issue 3, pages 427-438. 


	title
	thesis body

