
MODELING AND ANALYSIS OF HETEROGENEOUS AND COGNITIVE CELLULAR

NETWORKS

by

Yamuna Dhungana

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Communications

Department of Electrical and Computer Engineering
University of Alberta

©Yamuna Dhungana, 2016



Abstract

The unprecedented escalation in the data traffic demand due to rapid proliferation

of smart phones and tablets cannot be fulfilled with the advancement in radio link

technologies only as the radio link efficiency is fast approaching its limit. This

problem motivates new paradigms of network deployment and spectrum utiliza-

tion – heterogeneous network (HetNet) and cognitive radio. This thesis addresses

the coexistence and interference management challenges in HetNets and cognitive

radio networks while exploring the capacity and reliability improvement opportu-

nities.

Due to the increasing irregularity in the spatial deployment of the network nodes

in HetNets and cognitive radio networks, the stochastic geometry based modeling

and analysis is adopted. The idea is to abstract the locations of the network nodes

with a suitable point process and then analyze the average behavior of the network

using tools from stochastic geometry. With this approach, the cell range expan-

sion (CRE) method of load balancing supported by interference coordination via re-

source partitioning for the capacity improvement in HetNets is analyzed. In order to

accurately model the network interference, the cell-load is also incorporated in this

analysis. To understand the coexistence between the multi-antenna techniques and

HetNet, and how they complement each other for the network throughput improve-

ment, a tractable framework for modeling and analyzing a multi-antenna HetNet

is developed, along with comprehensive performance evaluation of beamforming,

multi-user spatial multiplexing and interference nulling techniques in the presence

of perfect as well as imperfect channel state information (CSI).

Motivated by the lack of error probability analysis of the cellular networks in

the presence of inter-cell interference, a mathematical framework for computing the
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average error probability of a typical cellular user is introduced. Uniform approx-

imation (UA) method for the average error probability analysis in Poisson field of

interferers is also developed to simplify the analytical complexity of the existing

results. To alleviate the spectrum scarcity problem in future cellular networks, an

underlay method of cognitive secondary access to television (TV) spectrum is ana-

lyzed, and a relay transmission technique to improve the performance of secondary

users is proposed.
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Chapter 1

Introduction

Wireless communication has gone through decades of thriving advances. With rev-

olutionary developments such as multiple input multiple output (MIMO), smart an-

tennas, advanced coding and orthogonal frequency division multiplexing (OFDM),

it has already evolved to a point where the efficiency of a point-to-point radio link

is near optimal, as determined by information theoretic limits.

The ease of connectivity brought about by wireless communication is transform-

ing our society. Over the past few years, the rapid proliferation of smart-phones and

tablets, and the bandwidth-intensive usage trends they encourage such as video and

audio streaming, online gaming, social networking and cloud computing, have led

to an explosion in the demand for data traffic in cellular networks (a.k.a. mobile

networks). In 2015, more than half a billion mobile devices were added to the

market, most of which were smart-phones, and global mobile data traffic grew by

74% [1]. Following this trend, the global mobile data traffic is expected to grow

at a compound annual growth rate (CAGR) of 53% from 2015 to 2020, reaching

30.6 exabytes (EB) per month by 2020 (Figure 1.1), which is nearly an eight-fold

increase over 2015 [1]. Consequently, even with advanced radio link technologies,

the cellular networks are struggling to keep pace with the user demand. Further-

more, the radio spectrum is a scare resource and cannot be increased at the rate of

the escalating data traffic demand. Hence, to meet the evolving needs for higher

data rates, the next generation of technology must revolutionize the way the radio

spectrum is utilized.

The traditional spectrum allocation method which assigns fixed non-overlapping

1
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Figure 1.1: Global mobile data traffic [1]

blocks to different services from the available spectrum, and the conventional macro-

centric network deployment approach hinder efficient utilization of the resources.

This problem motivates the search for a new paradigm of spectrum utilization that

will maximize the exploitation of the available resources to the fullest. To this end,

(i) heterogeneous network (HetNet) deployments and (ii) cognitive radio techniques

have received significant research interest. Both approaches have tremendous po-

tential to increase the spectral efficiency of wireless access. While HetNet supports

aggressive spatial reuse of the spectrum, cognitive radio allows unlicensed users to

access underutilized portions of the radio spectrum. These technologies are cur-

rently being investigated towards the evolution of the existing 4th-generation (4G)

wireless standards such as 3rd generation partnership project (3GPP) Long Term

Evolution (LTE)-Advanced [4–6] on the road to 5th-generation (5G) wireless.
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1.1 Heterogeneous Cellular Networks

Cellular networks are conventionally homogeneous where an identical set of base-

stations (BSs) with similar transmit power levels and similar backhaul links are

laid in a planned layout. These BSs, usually referred to as macro BSs, are typ-

ically big, high-power tower-mounted transceivers and have service areas called

cells of roughly the same size. To meet the increasing data traffic demand, the cel-

lular networks rely on cell splitting by increasing the density of BSs. However,

the additional deployment of BSs in the conventional one-size-fits-all approach is

very difficult and expensive in dense urban areas due to site-acquisition issues.

To resolve this problem, the concept of heterogeneous deployments has recently

emerged [4, 7, 8]. The main idea behind a HetNet is to improve spectral efficiency

per unit area with the deployment of a diverse set of non-conventional, low-power

nodes such as pico BSs, femto BSs and relays within the areas covered by the exist-

ing macro cellular infrastructure, over the same frequency spectrum.

Figure 1.2: Heterogeneous Cellular Network

A typical HetNet is depicted in Figure 1.2. Macro BSs, which are typically de-

ployed in a planned layout to provide basic coverage, transmit at high power levels

(5W to 40W). Pico BSs are usually intended for outdoor deployments to alleviate
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Table 1.1: Types of Nodes in Heterogeneous Cellular Networks

Node Transmit power Features
macro 5W− 40W operator deployed, open access, dedicated backhaul
pico 250mW− 2W operator deployed, same access and backhaul features

as macro
femto < 100mW consumer deployed, typically closed access (but can

be open or hybrid), backhaul facilitated by consumer’s
digital subscriber line or cable modem

relay 250mW− 2W operator deployed, wireless backhaul

“dead-spots” (no-coverage zones) and “hot-spots” (localities of higher traffic de-

mand), and thus follow relatively unplanned placements. Pico BSs usually have the

same access and backhaul features as macro BSs [9], but operate with much lower

transmit power, typically 250mW to 2W. Femto BSs, on the other hand, are typ-

ically consumer-deployed indoor nodes with transmit power of less than 100mW.

Their backhaul connections to the operator’s network are typically facilitated by

the consumer’s digital subscriber line or cable modem. Access to femto BS may be

unrestricted, or restricted to the users within a closed subscriber group, or a combi-

nation of both with priority to users within the closed subscriber group [10]. These

access mechanisms are termed as open, closed and hybrid, respectively. When

wired backhaul is not feasible, relay nodes are deployed. Depending on whether

the backhaul connection is on the same frequency as the access link or on different

frequencies, relays are classified as in-band and out-of-band [11]. A summary of

different types of nodes in HetNets is given in the Table 1.1.

HetNets are thus characterized by unplanned/random locations of the network

nodes with large disparities in transmit power between the nodes, in contrast to

planned layout of the conventional macro-cellular networks with similar transmit

power levels of all the nodes. Such differences impose many challenges and require

several fundamental changes to the traditional approaches to modeling, analyzing

and designing cellular networks. Some of the required changes are discussed below.

1. Spatial Modeling of the BS-locations

A major change in cellular networks is the network topology, which is evolv-

ing towards the irregular spatial deployment of nodes. In a conventional cel-
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lular network, macro BSs are somewhat evenly spaced as compared to low-

power BSs (pico, femto, relays), which follow mainly ad hoc placements in

a HetNet. Thus, the locations of BSs have been conventionally modeled as

a regular grid, most popularly a hexagonal grid [12, 13]. Their coverage ar-

eas, commonly known as cells, are thus simply the hexagons they belong

to. Clearly, the traditional grid-based model is not suitable for modeling

the spatial distribution of low-power BSs in a HetNet. They are not regu-

larly spaced and their coverage areas are not homogeneous. Even for macro

BSs, the grid-based model is highly idealized, as the real deployment is struc-

turally very different. Meanwhile, due to the analytical intractability of the

grid-based model, parameter tuning and performance evaluation in cellular

networks have relied on simulations. As networks become more complex

with the addition of irregularly deployed low-power nodes, even simulations

become nontrivial. Thus, stochastic geometry characterization of the spatial

distribution of BSs has been adopted [14–22], in which the locations of the

BSs are abstracted by a suitable point process. The details on stochastic ge-

ometry modeling of wireless networks are given in Section 2.2.

2. BS-user Association

The traditional approach to BS-user association where a mobile user connects

to the BS with the strongest downlink received signal may not be appropri-

ate in a HetNet. The large disparities in transmit power between macro and

pico/femto BSs imply that the downlink coverage area of a pico/femto BS is

potentially much smaller than that of a macro BS. Thus, the strongest sig-

nal based association would cause most of the users to be attracted towards

macro BSs, with only a few users connected to pico/femto BSs. This situ-

ation might cause a macro BS to be severely congested while the resources

at the nearby pico/femo BS are not even fully utilized. Thus, even if a user

receives the strongest signal from the macro BS, it is desirable to offload the

user connection to the nearby lightly-loaded pico/femto cell, which can serve

the user with higher data rate by allocating a larger fraction of radio resources.
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Such offloading also reduces the macro cellular load, thereby allowing the re-

maining macro users to be served with improved rates. The optimal BS-user

association in a HetNet is the one that can maximize the data rate of all users

in the network through balanced distribution of user loads across all tiers of

the BSs. But such optimal association is very complex to compute [23]. A

rather simple, yet very effective method is cell range expansion (CRE) [7, 8],

in which the coverage area of a low-power BS is expanded by virtually in-

creasing its power by an amount known as the association bias.

3. Interference Management

Since interference rather than noise is the performance limiting factor in cel-

lular networks, managing interference is a primary concern in any cellular

network. However, the interference scenarios in HetNets are more complex

than those in conventional cellular networks and require advanced manage-

ment techniques. For example, as explained above, the users in HetNets are

proactively offloaded from macro to small cells for load balancing. If the low-

power nodes are deployed in the same frequency band as macro BSs, i.e.,

if co-channel deployment is used, each offloaded user suffers from severe

downlink interference because the macro BS, which should have been the

serving BS based on the strongest downlink received signal, now acts as an

interferer. Thus, the benefits of load balancing cannot be fully realized unless

a suitable interference mitigation technique is employed. Another example

of an interference scenario in co-channel deployment occurs when users in

the coverage area of a femto BS must be served by the nearest macro BS due

to the restricted access to the femto BS. In this case, these users suffer from

severe downlink interference from the femto BS. Meanwhile, the femto users

are also severely interfered by these users in the uplink. Thus, interference

management is critical in HetNet.
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1.1.1 Interference Management Techniques in HetNets

An obvious solution to avoid complex interference scenarios between macro and

small cell networks is to deploy pico/femto BSs in a different frequency band than

the one the macro network is deployed on. However, such deployment results in

reduced spectral efficiency, and is not preferred as the whole idea behind HetNets

is to improve spectral efficiency. The following are some of the techniques for

interference management in HetNets.

1. Resource Partitioning

Interference can be controlled through coordination of time/frequency re-

source blocks, where an interfering BS sacrifices some of its resources to

enable communication to vulnerable users in these interference protected

resources. In time-domain resource partitioning, the macro tier is periodi-

cally muted on certain fraction of subframes, known as almost blank sub-

frames (ABSFs) [7, 21, 24] so that the offloaded users can be scheduled on

these macro interference-free subframes. An approach to frequency-domain

resource partitioning is fractional frequency reuse in OFDMA based net-

works. In this method, the cell-center users are assigned subchannels with

universal reuse (i.e., a reuse factor of 1), whereas the subchannels with a

higher reuse factor are allocated to cell-edge users [25]. Subchannels alloca-

tion in this method, however, becomes very complex for multi-tier HetNets

as the number of tiers increases.

2. Carrier Aggregation

Carrier aggregation, a key feature of LTE-Advanced [26], allows multiple

component carriers to be used simultaneously to increase the system band-

width. The component carriers need not be contiguous and not necessarily be

in the same frequency band, thereby allowing fragmented chunks of spectrum

to be aggregated for higher data rates. The carrier aggregation feature can be

exploited for deploying HetNets without creating severe interference scenar-

ios. Consider a macro-pico network in which both tiers use two component
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carriers, f1 and f2. If the macro BS transmits at its regular power level on both

f1 and f2, the coverage area of the pico BS will be limited, and thus, the pico

resources will not be sufficiently utilized. However, if the macro BS reduces

the transmit power on f2, while continuing to provide regular coverage on f1,

the coverage area of the pico cell on f2 will be enlarged without incurring

severe macro interference. Since both tiers use two carrier frequencies, car-

rier aggregation capable users can enjoy enhanced data rates. However, this

solution may be highly inefficient for users incapable of aggregating carriers,

unless each component carrier has ample spectrum.

3. Coordinated Multipoint Transmission

In coordinated multipoint operation, alternatively known as network MIMO

or multicell processing or BS coordination, multiple BSs mutually cooperate

either to mitigate interference or even to turn interference signals into mean-

ingful signals. Coordinated multipoint transmission is an integral component

of LTE-Advanced [27]. The coordination techniques have been broadly clas-

sified into the following categories [28, 29].

• Joint Transmission: Multiple coordinating BSs simultaneously trans-

mit data to a user, thereby converting interfering signals into desired sig-

nals. The coordinated BSs may jointly or independently encode data to

allow coherent or non-coherent combining of the signals at the receiver.

With coherent transmission, the available spatial degrees of freedom can

be efficiently exploited for diversity/multiplexing gain.

• Transmission Point Selection: User data is available at multiple coor-

dinating BSs, but is transmitted from a single BS, for example, the BS

with the highest received signal-to-interference-and-noise ratio (SINR).

The selected BS utilizes channel state information (CSI) of the user for

transmission in order to improve the received SINR. The remaining BSs

in the coordinating set may remain silent to further improve the SINR.

The dynamic selection of BS can be changed subframe-to-subframe.
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• Coordinated Scheduling/Beamforming: User data is always transmit-

ted from the serving BS only, unlike the above two techniques. How-

ever, scheduling decisions and beamforming vectors are coordinated

among multiple BSs so that the scheduled users within the coordinating

cells either do not create mutual interference at all or receive minimum

interference. Such coordination requires information such as the CSI of

the users and the offered cell-load to be shared among the coordinated

BS.

By exploiting the additional spatial degrees of freedom, joint transmission

and transmission point selection can provide substantial performance gain.

However, they require user data sharing between the coordinating BSs, and

such sharing is practically very challenging due to backhaul overhead. For

coherent joint transmission based on CSI feedback, the CSI of each user is

required at all the coordinating BSs, and such demanding requirement makes

CSI estimation and feedback very challenging. Furthermore, precise synchro-

nization between the BSs is needed to fully realize the benefits of coherent

joint transmission. Coordinated scheduling/beamforming, on the other hand,

has lower complexity and overhead since no user data exchange between the

BSs is required, and is thus more appealing in terms of implementation. Inter-

ference nulling is an example of coordinated beamforming, which has been

demonstrated to provide considerable gain at the cost of CSI feedback to the

serving and a few neighboring BSs [30, 31].

1.1.2 Multi-antenna Transmissions in HetNets

Multi-antenna transmission has been an integral part of cellular standards such as

LTE (3GPP Release 8) [32] and LTE-Advanced (3GPP Release 10) [33]. The addi-

tional degrees of freedom in the spatial dimension introduced by multiple antennas

on top of the time and frequency dimensions can be used for improving link relia-

bility (e.g., transmit diversity through space-time block coding (STBC) [34, 35]),

boosting the spectral efficiency of a radio link (single-user spatial multiplexing
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[36]), and spatially separating users (user multiplexing known as space division

multiple access (SDMA) or multi-user MIMO [37]). MIMO techniques, particu-

larly multi-user MIMO , which serves multiple users on the same time-frequency

resource, can significantly improve the spectral efficiency of cellular networks.

Multi-antenna techniques will thus complement HetNets to meet the escalating data

traffic demand, and therefore their coexistence in future networks is unavoidable.

1.2 Cognitive Radio

Since 1930s, the radio spectrum is allocated for services via licensing. The reg-

ulatory bodies assign licenses for spectral frequency blocks to specific groups or

companies. For example, the licensed frequency band for digital television (TV)

broadcasting channels 14 − 51 in the United States is 470 − 698 MHz. Such a

static allocation approach has resulted in almost all frequency bands being already

assigned, leaving no room for new wireless services. Out of this spectrum shortage

has emerged the idea of cognitive radio, [38–40] which allows the unlicensed (sec-

ondary) users to access the licensed (primary) users spectrum with minimal or no

impact on the primary system communications.

A cognitive radio network is an intelligent communication system which utilizes

the available side information of the primary network to enable primary-secondary

spectrum sharing in three different ways: (i) underlay, (ii) overlay, and (iii) inter-

weave. While the interweave method allows secondary users to opportunistically

communicate over spectrum holes in time, frequency and/or geographic locations

that remain temporarily unused by primary users, the other two modes support

primary-secondary concurrent transmissions. In overlay systems, the secondary

users must mitigate the interference imposed on the primary receivers by apply-

ing sophisticated signal processing [40]. The underlay method, on the other hand,

constrains the transmit powers of secondary users to ensure that the resultant in-

terference on each primary user is below a predefined threshold [40]. Unlike the

overlay system, where the secondary users require knowledge of the primary users’

codebooks and their messages as well, the underlay system only require knowl-
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edge of the interference channel gains to primary users. Thus, underlay systems

are preferred over overlay systems for implementation simplicity. However, under-

lay system must operate under stringent interference constraints, which limit the

coverage range as well as the data rates of secondary users.

1.2.1 Cognitive Cellular Networks

As data traffic volume continues to grow, cellular networks require more spectrum

to serve the users. The spectrum scarcity has made researchers explore millimeter

wave frequencies (30 GHz−300 GHz) for possible deployment in future networks.

The radio propagation characteristics of millimeter waves are, however, very dif-

ferent and challenging compared to the currently deployed frequencies [41]. For

example, millimeter waves are more susceptible to blockage effects, and the chan-

nel gains fluctuate very rapidly, in the order of hundreds of microseconds. While

millimeter wave communication might be potentially deployed in future networks,

the very sparse utilization of some portions of the currently deployed radio spec-

trum [42] indicates that it can still accommodate more demand if utilized efficiently.

Cognitive radio exploits the underutilized spectrum to make room for new demand.

The TV band, which occupies a large amount of spectrum in the order of 300−
400 MHz, is an example of an inefficiently utilized spectrum. This spectrum band

is particularly appealing for cellular broadband services due to its favorable prop-

agation characteristic (lower propagation loss) and the simplicity of the TV broad-

casting system (static network design, open standards and the public availability of

information associated with TV transmitters) [43]. A cognitive radio network in the

TV spectrum is illustrated in Figure 1.3.

For cellular and TV broadcasting networks to coexist, cellular communication

must not harmfully interfere with TV receivers and should require no modifica-

tion to their design. Also, primary communication should be the first priority at all

times. Due to such stringent requirements, standalone broadband service over the

TV spectrum with secondary usage may be questionable, considering the quality-

of-service requirements of cellular standards such as LTE-Advanced. However,

when deployed together with the regular licensed cellular spectrum, the spectral re-
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Figure 1.3: Cognitive Radio Network in the TV spectrum

sources of TV networks can be utilized to increase the cellular capacity. With carrier

aggregation technology, a cellular network can aggregate the regular licensed and

the TV spectrum. By simultaneously transmitting/receiving over carriers in both

spectra (of course TV band accessed through cognitive radio), the system capacity

can be significantly improved. A similar concept, in which a licensed cellular band

and an unlicensed Wireless Fidelity (WiFi) band are aggregated to allow the LTE

terminals to opportunistically operate in the WiFi band by using listen-before-talk

method, is currently being investigated. This technology is named LTE in unli-

censed spectrum [44], or license-assisted access [45].

1.3 Motivation and Objectives

HetNet is a promising concept to meet the traffic demand and performance expec-

tations of future cellular networks. However, with the addition of a wide variety

of low-power nodes, each with its own operating characteristics and irregularly

deployed in the existing macro-cellular infrastructure, modeling, analyzing and

designing HetNets become very challenging. Some of the main challenges were

briefly discussed in Section 1.1. To this end, stochastic geometry characterization
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of spatial distribution of BSs, the analysis of various BS-user association schemes

and interference coordination techniques have been studied [15–18, 21]. However,

given that the concept of HetNets has only recently attracted the interest of the re-

search community, the existing studies have many limitations and research gaps

regarding analytical modeling, performance metrics, and many other issues. This

thesis identifies such limitations and gaps and develops a comprehensive framework

for modeling and analyzing HetNets. Despite the potential advantages of HetNet

deployments, the growing data traffic volume will create demand for more spectrum

in future cellular networks. As a potential solution to this spectrum scarcity prob-

lem, cognitive radio communication in the TV spectrum is studied in this thesis.

The main objectives of this research are listed as follows.

1. To develop a refined analytical model of the cellular network that comprehen-

sively captures the network heterogeneity in terms of the spatial distribution

of different nodes, their transmit powers (and thus, coverage areas), and traf-

fic load.

2. To explore load balancing and interference coordination techniques in HetNets

and to devise a framework to evaluate the data rate improvement from such

techniques.

3. To investigate multi-antenna transmission techniques in HetNets and offer

suggestions for the most suitable technique for optimal performance depend-

ing upon the network deployment and user load.

4. To develop a comprehensive mathematical framework for the average error

probability analysis in cellular networks.

5. To explore the cognitive radio approach to spectrum sharing between primary

TV broadcasting and secondary cellular networks and to develop transmis-

sion techniques for the cellular network under such sharing.
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1.4 Significance of the Thesis

The deployment of HetNets appears the most pragmatic, scalable and cost-effective

approach to meet the ambitious data rate and ubiquitous coverage requirements

of next-generation cellular networks and has recently gained much momentum in

the industry and research community. The standardization activities for HetNet

deployment have already started since 3GPP Release 10 of LTE (known as LTE-

Advanced [33]) and is rigorously being investigated [4, 5, 46]. The research out-

comes will thus facilitate the standardization of the deployment of HetNets to such

wireless standards. The load balancing and interference coordination strategies de-

veloped in this research are anticipated to significantly increase the network data

rate. With the growing interest in higher frequency bands such as the millime-

ter wave band, which requires denser deployment of various small cells due to

its inherent high signal attenuation, and encourages multiple antenna deployments

due to the less stringent antenna spacing constraint, the coexistence of MIMO and

HetNets seems almost unavoidable in emerging wireless networks. The thesis re-

sults for multi-antenna HetNets confirm the interference mitigation potential of

multi-antenna transmission in HetNet deployments and also provide some useful

guidelines for selecting the best multi-antenna technique for cellular capacity im-

provement. The proposed transmission and relay selection scheme for cognitive

secondary usage of a TV broadcasting network spectrum will contribute to the de-

velopment of feasible systems that can leverage the TV spectrum effectively to

address the increasing spectrum demand in future cellular networks.

1.5 Thesis Outline and Contributions

This thesis focuses on modeling and analyzing heterogeneous and cognitive cellular

networks for spectral efficiency enhancements. The thesis outline is as follows.

The theoretical background on wireless channels, stochastic geometry modeling

of wireless networks, and other related topics is covered in Chapter 2. The main

contributions of this research are presented in Chapter 3 to Chapter 6. Chapter 7

presents the concluding remarks and future research directions.
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1.5.1 Novel Contributions of the Thesis

The major contributions of this thesis are summarized as follows.

• Chapter 3 develops an analytical framework for average rate evaluation of the

CRE load-balancing technique supported by resource partitioning method of

interference coordination in a two-tier (macro-pico) downlink HetNet. The

downlink analysis of HetNets usually assumes a time-shared single channel

per cell [16, 17, 19, 21, 47]. Thus, only the time-domain method of resource

partitioning such as ABSF has been significantly analyzed [21, 24, 47, 48].

In contrast, a multi-channel downlink, for example an orthogonal frequency

division multiple access (OFDMA) based LTE downlink, is considered in

Chapter 3. Due to the flexibility in subchannel allocation offered by OFDMA,

we propose frequency-domain resource partitioning, where the macro tier is

restricted from using a fraction of the total subchannels so that they are al-

located exclusively to offloaded users. Although the load perceived by a BS

is a key factor in determining its interference contribution over the network,

most of the analysis in the literature ignores the cell load by considering a

fully-loaded network [16, 19, 21, 47]. In Chapter 3, the cell load is properly

characterized as a function of user density, association bias and resource par-

titioning fraction. The results demonstrate that if the bias value and resource

partitioning fraction are carefully selected, the rate performance can be highly

improved in comparison to the CRE only system (i.e., a system with no re-

source partitioning), and their jointly tuned optimal combination is strongly

dependent on the network load.

• A downlink multi-antenna HetNet with zero-forcing (ZF) precoding based

SDMA is modeled and analyzed in Chapter 4. In cellular networks, user dis-

tribution determines the number of users in a cell and usually differs from one

cell to another. However, the previous analyses of SDMA in multi-antenna

HetNet are based on the limiting assumption that the same number of users

are simultaneously served on a resource block by every BS of a tier, and

the number is chosen arbitrarily. In Chapter 4, the number of simultane-
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ously served users in a cell is a function of the total number of users in that

cell, with the maximum number of served users limited to Lmax. Thus, if

the number of users in a cell is below the limit, all the users in the cell are

simultaneously served; otherwise, only Lmax users chosen randomly are si-

multaneously served. A biased-nearest-distance based BS-user association

scheme suitable for a multi-antenna HetNet is proposed, where the bias value

can be controlled for load balancing. By exploiting the feasibility of deploy-

ing a large number of antennas at a macro BS due to its physical size, an

antenna precoding based interference nulling scheme is proposed for inter-

ference suppression from the dominating macro BS to the small cell users.

The proposed interference nulling scheme is demonstrated to have strong po-

tential for performance improvement, subject to fine tunning of the system

parameters. The optimal value of Lmax that maximizes the average data rate

is numerically evaluated and is shown to have a better performance than sin-

gle user-beamforming (SU-BF) (Lmax = 1) and full-SDMA (Lmax = K),

where K is the number of transmit antennas. Antenna precoding requires

CSI feedback from the users. The impact of limited feedback, which leads to

imperfect CSI, is also analyzed.

• Apart from capacity/throughput and coverage, the effectiveness of a wireless

network is also characterized by its reliability, measured by metrics such as

error probability, which has been barely analyzed for HetNets. There are only

a few studies on error probability analysis of a fixed source-destination link in

a Poisson field of interferers [49–51]. However, they are not directly applica-

ble to cellular networks because these studies do not consider BS-user associ-

ation. Motivated by the lack of error probability analysis of cellular networks

in the presence of inter-cell interference, Chapter 5 develops a stochastic ge-

ometry based mathematical framework for computing the average error prob-

ability of a typical user in a cellular network with maximum received power

based BS-user association. As an alternative to the semi-analytical solution

in [49] and the complex integral expressions in [50, 51], a highly accurate

uniform approximation (UA) method for analyzing average error probability
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of an intended communication link with a given transmitter-receiver separa-

tion, which is subject to interference from Poisson distributed nodes, is also

developed. The error probability UAs for both single-antenna and maximal

ratio combining (MRC) receivers are derived.

• Exploitation of the existing TV spectrum for cellular network through cog-

nitive radio techniques is desirable to alleviate the spectrum scarcity prob-

lem in cellular networks. For such coexistence to be feasible, the cellular

communication must not interfere with the TV receivers and should not re-

quire any modification to their design. Thus, the interference generated by

a cellular network on TV receivers must be accurately modeled to develop

transmission schemes for the cellular network to operate under such inter-

ference constraint. In Chapter 6, an underlay approach to such coexistence

is analyzed in which the transmit power of a secondary node is controlled

to satisfy the interference constraint on the TV receiver to which it gener-

ates the maximum interference. This approach ensures that the interference

imposed on all the TV receivers is below their tolerable thresholds. How-

ever, since this requirement may result in very limited power, and thus, lim-

ited coverage of the secondary nodes, cooperative relaying is proposed to

achieve adequate radio reception quality at the distant users. A novel relay-

selection scheme is developed, which considers not just the source-relay and

relay-destination links, but also the stringent interference constraints on all

the primary receivers. Closed-form expressions are derived for the outage

probabilities of both the relay and direct links, along with their high signal-

to-noise ratio (SNR) asymptotics. The random spatial distributions of the TV

receivers and secondary relay nodes are taken into consideration for deriving

the outage probabilities.
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Chapter 2

Background

This chapter reviews the key concepts employed in this thesis. The analysis of

any wireless communication system requires proper modeling of the wireless chan-

nel. Various channel impairments and their modeling are discussed in Section 2.1.

Section 2.2 illustrates the concept of stochastic geometry modeling of wireless

networks and introduces popular point processes used to model the wireless net-

works. Poisson point process (PPP) is used in this thesis for modeling and analyz-

ing HetNets and cognitive radio networks. The special properties of PPP applied in

this thesis are thus reviewed in Section 2.3. The accurate characterization of the in-

terference power plays vital role in the analysis and design of interference-limited

cellular networks. The probability distribution of total interference in a network

with interfering nodes distributed according to a PPP is introduced in Section 2.4.

The chapter concludes with a brief overview of multi-antenna and relay communi-

cation in Section 2.5 and Section 2.6, respectively.

2.1 Wireless Channel

A radio link between a transmitter and a receiver is referred to as a wireless channel.

Radio waves propagate on a wireless channel through diverse mechanisms includ-

ing reflection, diffraction and scattering. These complex phenomena lead to various

impairments in the transmitted radio signal, which can be categorized as path loss,

shadowing, and multipath fading [2, 12, 13] (Figure 2.1).
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Path Loss

Path loss is signal power attenuation as a function of the distance propagated by the

signal. It also depends on the frequency of the transmitted signal, antenna heights

and topography. Exact theoretical prediction of the path loss is difficult due to

its site-specific behavior. In this thesis, a power-law path loss model is used, in

which the signal power attenuates at the rate of r−α, where r is the distance from

the transmitter. The parameter α is called power loss exponent, which effectively

captures the dependence of the path loss on the frequency and topography. The

value of the exponent is empirically calculated. It is typically in the range of 1.6 to

6 [12], with α = 2 for free space propagation.

Shadowing

Shadowing, also known as large-scale fading, on the other hand, is radio impairment

due to large objects such as buildings and hills. Shadowing causes deviation in the

average channel power gain anticipated from the path loss. The statistical variation

in the channel power gain due to shadowing is most commonly modeled by log-

normal distribution [13].

Multipath Fading

In urban cellular communication, a direct line-of-sight between a transmitter and

a receiver is rare. Thus, the transmit signal propagates through multiple paths cre-

ated by reflection, diffraction and scattering. The received multipath signals have

different amplitudes and phases, and thus, may combine either constructively or

destructively, causing rapid fluctuations in the amplitude as well as the phase of

the resultant signal. This phenomenon is known as multipath fading. If all the

spectral components of the transmit signal encounter the same amplitude gain and

linear phase, the fading is known as frequency flat; otherwise the fading is called

frequency selective [13, 52]. While narrowband communications are frequency

flat, wideband communications are frequency selective. Although LTE systems

are wideband, with OFDM technique, each subchannel communication effectively
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becomes narrowband, and thus undergoes flat fading. Flat fading channels are con-

sidered in this thesis.

As flat fading has identical effects on each frequency component, this fading can

effectively be represented by a single complex channel coefficient h = |h| exp(jψ),
where |h| is the amplitude gain, and ψ is the phase shift. Ideal coherent modulation

assumes phase shifts caused by multipath fading to be perfectly corrected at the

receiver. For non-coherent modulation, phase information is not required. Thus,

performance analyses usually require knowledge of the fading amplitude statistics

only. For communication in a rich scattering environment without a dominant line-

of-sight, the fading amplitude is typically modeled by Rayleigh distribution:

f|h|(x) =
2x

ω
exp(−x

2

ω
), x ≥ 0, (2.1)

where E[|h|2] = ω. The power gain |h|2 is thus exponentially distributed with mean

ω (i.e., |h|2 ∼ Exp[ω]). The Rayleigh fading model is particularly popular due to

its simplicity as it leads to closed-form solutions, thus providing insights into the

system performance. A more generalized model is Nakagami-m fading, in which

the fading amplitude is distributed as

f|h|(x) =
2mmx2m−1

Γ(m)ωm
exp(−mx

2

ω
), x ≥ 0, (2.2)

where m determines the severity of fading. The power gain |h|2 is thus Gamma

distributed (i.e., |h|2 ∼ Gamma(m,ω)). Note that the Nakagami-m fading reduces

to Rayleigh fading for m = 1. When m → ∞, it reduces to the impulse function,

which indicates a non-fading, static channel.

With flat multipath fading superimposed on power-law path loss and log-normal

shadowing, the channel power gain Ωxy between a pair of nodes at x and y, where

x, y ∈ Rd are the locations of the transmitter and the receiver respectively, can be

modeled as

Ωxy = eσgxy |hxy|2||x− y||−α, (2.3)

where eσgxy represents the variation in the channel power gain due to log-normal

shadowing with gxy ∼ N (0, 1), and hxy = |hxy| exp(jψxy) is the complex multi-

path fading coefficient with E[|hxy|2] = 1. σ is the shadowing standard deviation.

gxy and hxy are independent random variables (RVs) in (2.3).
20



Figure 2.1: Path loss, shadowing and multipath fading effects [2]

2.2 Stochastic Geometry Modeling of Wireless Net-
works

It is readily evident from (2.3) that the SNR of a receiver, which determines its per-

formance, implicitly depends on the location of the transmitter with respect to the

receiver. If other nodes in the network are also transmitting in the same channel,

in addition to the desired signal, the test receiver also receives interference signals

which depend on the locations of the interfering nodes with respect to the receiver.

Therefore, the SINR experienced by a receiver is strongly affected by the network

geometry and significantly varies from one receiver to another. Unlike traditional

wireless networks, where the nodes are deployed in a planned layout, the emerging

wireless systems such as HetNets and cognitive radio networks are characterized

by unplanned/irregular locations of the nodes. For modeling and analysis of such

networks with random topologies, stochastic geometry is a very powerful mathe-

matical tool [53–56]. It allows us to evaluate the average behavior of a network for

metrics of interest such as the SINR, outage probability and achievable data rate by

averaging over many spatial realizations of the network.

Under stochastic geometry modeling, the spatial distribution of the network

nodes is modeled by a suitable point process. A point process is a random se-

quence of points in the space Rd. Any realization of a point process is a locally
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finite subset φ = {x1, x2, x3, . . .} ⊂ R
d, where xi �= xj , ∀i �= j [57]. Some of

the popular point processes used to model wireless networks are briefly discussed

below. A comprehensive survey on stochastic geometry modeling of cellular and

cognitive networks can be found in [58].

1. PPP [57,59]: A point processΦ = {x1, x2, x3, . . .} ⊂ Rd is a PPP of intensity

measure Λ if and only if

(a) the number of points of Φ in a compact set B ⊂ Rd, denoted by Φ(B),

is a Poisson RV with mean Λ(B) =
∫
B
λ(x) dx, i.e.,

P(Φ(B) = k) =
Λ(B)k

k!
e−Λ(B), k = 0, 1, 2, . . . ,

(b) the numbers of points in disjoint sets are independent. This property is

known as independent scattering.

If λ(x) = λ, known as intensity or density, is a constant, then Φ is called

homogeneous PPP.

The PPP, suitable for modeling networks with a possibly infinite number of

nodes randomly and independently distributed in a finite or infinite area, is

the most popular model due to its analytical tractability, and is widely used in

modeling and analysis of HetNets and cognitive radio networks. In a multi-

tier HetNet, the spatial distribution of the BSs of each tier (macro, pico, and/or

femto tiers) are modeled as independent PPPs in [16–21]. It is shown in [15]

that for the macro tier, the PPP model provides tight lower bounds for per-

formance measures, as tight as the upper bound results provided by the pop-

ular grid model, when compared to the actual 4G network. The PPP based

modeling of the locations of primary and secondary users in cognitive radio

networks is adopted in [60] to analyze the performance of various medium ac-

cess control (MAC) protocols and in [61] for aggregate interference analysis

of underlay method of spectrum sharing.

2. Binomial point process (BPP) [57]: A point processΦn
W = {x1, x2, x3, . . . xn}

in a compact set W ⊂ Rd is a BPP if the number of points in any set B ⊂W
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is a binomial RV with parameters n and p = νd(B)/νd(W ), i.e.,

P(Φn
W (B) = k) =

(
n

k

)
pk(1− p)k, k = 0, 1, 2, . . . , n,

where νd(.) is a volume measure (e.g., length for d = 1, area for d = 2). Note

that a homogeneous PPP Φ constrained to a compact set W under the condi-

tion that Φ(W ) = n yields a BPP. In a wireless network, if the total number

of nodes is known and they are independently and uniformly distributed in a

finite service area, then BPP is used to model the network [62].

3. Hard core point process (HCPP) [63]: An HCPP is a repulsive point process

in which the distance between any two points is at least a predefined hard core

parameter h ≥ 0. It is formed by a dependent thinning operation applied to a

homogeneous parent PPP Φp of intensity λp. The thinning operation retains

a point x of Φp if a sphere b(x, h) of radius h and centered at x contains

no point of Φp; otherwise the point x is deleted. This operation is called

dependent thinning because the deletion of any point in Φp depends on the

locations and possible deletions of other points in the process. The resultant

HCPP Φh is thus given by Φh = {x ∈ Φp; ||x − y|| ≥ h, ∀y ∈ Φp}, and its

intensity is λh = λp exp(−λpνd(b)), where νd(b) is the volume of b(x, h). The

carrier sense multiple access (CSMA) MAC protocol in wireless networks is

modeled by HCPP in [64, 65].

4. Poisson cluster process (PCP) [57]: A PCP is constructed from a parent PPP

Φ by replacing each point of Φ with a cluster of points.The clusters are of

the form Mxi
= Mi + xi for each xi ∈ Φ, where Mi is a family of identical,

independently distributed point sets, also independent of the parent process.

As network operators may deploy more BSs in the areas of higher traffic

demand, PCP can be used to abstract such behavior [66]. A special case of

PCP is the Neyman-Scott process in which the cluster associated with each

xi is a PPP centered at xi, and these processes are independent of one another

and, of course, independent of the parent process as well.

23



2.3 Special Properties of the Poisson Point Process

The special properties of and important theorems on PPP used in this thesis are

introduced in this section. Further details on these and other properties of PPP can

be found in [54, 56, 57, 59].

Superposition

IfΦ1,Φ2, . . . ,Φk are independent PPPs onRd with intensity measuresΛ1,Λ2, . . .Λk,

respectively, then their superposition Φ = ∪k
n=1Φn is a PPP with intensity measure

Λ =
∑k

n=1 Λn. This result follows from the disjointness lemma [59, p. 14], which

states that independent PPPs are disjoint with probability 1 in any measurable set.

Thus, the number of points of the union set Φ = ∪k
n=1Φn in a compact set B is

given by Φ(B) =
∑k

n=1Φn(B). It can then be easily verified that Φ is a PPP with

intensity measure Λ.

Independent Thinning

Thinning is an operation that deletes points from a point process to generate a

thinned version of the process. Let Φ be a PPP on Rd with intensity λ(x). If a

point x ∈ Φ is deleted with probability 1− p(x), where 0 ≤ p(x) ≤ 1, independent

of the location of any other point in the process as well as its possible deletion,

the resulting p(x)-thinned process Φth is a PPP with intensity λth(x) = p(x)λ(x),

where p(x) is the retention probability. Note that the set of deleted or culled points

is also a PPP Φcu with intensity λcu(x) = (1−p(x))λ(x), and is independent ofΦth.

If Φ is a homogeneous PPP, the p-thinned process Φth and the corresponding culled

process Φcu are independent PPPs with intensity pλ and (1−p)λ, respectively. The

superposition of thinned and culled process recovers the original PPP.

A more generalized form of the property is called the coloring theorem. Let

each point of Φ belong to exactly one of the k classes, which are referred to as

colors. Let the probability of a point x ∈ Φ receiving the ith color be pi(x), in-

dependent of the location of any other point and its color. Let Φi denote the set

of points with ith color. The coloring theorem states that Φ1,Φ2, . . . ,Φk are inde-

pendent PPPs with densities p1(x)λ(x), p2(x)λ(x), . . . , pk(x)λ(x), respectively.
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The superposition of these independent PPPs is the original PPP with intensity∑k
i=1 pi(x)λ(x) = λ(x).

Mapping Theorem

According to the mapping theorem, under certain conditions, if the state space R
d

is mapped into another space Rs, a PPP is transformed into another point process,

which is again PPP with a different intensity measure. The theorem can be formally

stated as follows.

Mapping theorem: Let Φ be a PPP on Rd with intensity measure Λ, and let

f : Rd → Rs be a state space transformation function such that Λ(f−1(x)) = 0,

∀x ∈ Rs. If μ(B) = Λ(f−1(B)) for every B ⊆ Rs, then f(Φ) is a PPP on Rs with

intensity measure μ.

Slivnyak’s Theorem

Before presenting Slivnyak’s theorem, we will first introduce the Palm distribu-

tion and reduced Palm distribution. Let the distribution P of a point process Φ be

determined by the probability P(Y ) = P(Φ has propertyY ). For example, the dis-

tribution P of a homogeneous PPP Φ with density λ is determined by the system of

void probabilities

P({φ ∈ N : φ(B) = 0}) = P(Φ(B) = 0) = e−λνd(B)

for compact sets B ⊂ Rd, where N is the family of all possible realizations φ

of the PPP Φ. The conditional distribution of Φ given that a point at x belongs

to Φ is known as the Palm distribution of P at x, denoted by Px, i.e., Px(Y ) =

P(Φ has propertyY |x ∈ Φ). However, if the conditional distribution is defined by

excluding x, it is known as the reduced Palm distribution at x, denoted by Px!, i.e.,

Px!(Y ) = P(Φ\{x} has propertyY |x ∈ Φ).
To illustrate the Palm and reduced Palm distributions, let us consider the nearest

neighbor distance distribution. The complementary cumulative distribution func-

tion (CCDF) D̄(r) of the distance l to the nearest neighbor from a typical point
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x ∈ Φ, i.e., P(l > r) can be expressed in terms of Px and Px! as

D̄(r) = P(Φ (b(x, r)) = 1|x ∈ Φ) = Px({φ ∈ N : φ(b(x, r)) = 1}),
= P(Φ (b(x, r)\{x}) = 0|x ∈ Φ) = Px!({φ ∈ N : φ (b(x, r)) = 0}). (2.4)

After introducing the Palm and reduced Palm distributions, the Slivnyak’s theorem

is stated as follows.

Slivnyak’s theorem: For a PPP,

Px! = P, (2.5)

i.e., the reduced Palm distribution equals the distribution of the PPP itself. This

implies that the properties observed at a point x do not depend on whether x belongs

toΦ or not, as long as the point x is not considered ifΦ is conditioned to have a point

at x. By applying Slivnyak’s theorem, the nearest neighbor distance distribution

(2.4) for a homogeneous PPP Φ with density λ can be computed as

D̄(r) = P(Φ (b(x, r)) = 0) = exp(−λ νd(b)).

For homogeneous PPP, due to the stationary property Φ = {xn} has the same

distribution as Φx = {xn+x}. Thus, Po = Px, and similarly, Po! = Px!. Hence, the

conditional distribution of a homogeneous PPP Φ with respect to any typical point

of Φ can be simply defined by the Palm distribution with the respect to the origin

without loss of generality.

Probability Generating Functional

The probability generating functional (PGFL) of a point process Φ on Rd is defined

as

G[ν] = E

[∏
x∈Φ

ν(x)

]
(2.6)

for all non-negative functions ν(x) : Rd → [0, 1] with {x ∈ Rd : ν(x) < 1}
bounded. The PGFL of a PPP with intensity function λ(x) is given by

G[ν] = exp

(
−
∫
Rd

(1− ν(x))λ(x) dx

)
. (2.7)
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A PGFL is very useful in evaluating the Laplace transform (LT) of the sum
∑

x∈Φ f(x)

as follows and is often used in this thesis.

E

[
exp

(
−s
∑
x∈Φ

f(x)

)]
= E

[∏
x∈Φ

exp(−sf(x))
]
= G [exp(−sf(·))] . (2.8)

2.4 Interference Distribution in Poisson Wireless Net-
works

Let us consider a network where the nodes are distributed on R2 as a homogeneous

PPP Φ with density λ and each node transmits with power P . Due to Slivnyak’s

theorem and stationarity of Φ, the aggregate interference power received at a test

receiver does not depend on where the receiver is located and whether the receiver

location belongs to the process Φ. The test receiver is thus assumed to be located at

the origin without loss of generality. The aggregate interference is then given by

I = P
∑
x∈Φ

Qx||x||−α, (2.9)

where Qx = exp(σgx)|hx|2 are independent and identically distributed (i.i.d.) RVs.

By using tools from stochastic geometry, the interference I can be characterized by

its probability distribution function in the form of its LT or equivalently its charac-

teristic function. The LT LI(s) = E[exp(−sI)] can be computed by applying the

PGFL of PPP as in (2.8), and is thus given by [56]

LI(s) = exp(−πλP 2/α
E[Q2/α

x ]Γ(1− 2/α)s2/α]). (2.10)

Its equivalent characteristic function ΨI(ω) = E[exp(jωI)] for α > 2 is given

by [67]

ΨI(ω) = exp (−γ|ω|μ [1− jβsign(ω) tan(πμ/2)]) , (2.11)

where μ = 2/α, β = 1, γ = πλC−12/αP
2/α

E[Q
2/α
x ] and

Cx =

{
1−x

Γ(2−x) cos(πx/α) , x �= 1
2
π
, x = 1.

(2.12)
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According to the characteristic function given by (2.11), I is a stable RV1 with

characteristic exponent μ, skew parameter β and dispersion γ. Thus,

I ∼ S
(
μ = 2/α, β = 1, γ = πλC−12/αP

2/α
E[Q2/α

x ]
)
. (2.13)

2.5 Multi-antenna Communication

The use of multiple antennas at the transmitter and/or receiver enables the spatial

dimension to be exploited for diversity gain, array gain, spatial multiplexing gain,

and interference mitigation [68, 69].

Diversity Gain

Multiple antennas at the transmitter and/or receiver can be used to achieve diversity

against fading by providing multiple independently faded replicas of the transmitted

signal to the receiver. The key idea is that if at least one of the copies is not severely

faded, the probability of successful reception is high. Well-known multi-antenna

transmission technique for diversity gain is STBC [34,35]. A simple way to achieve

diversity gain by using multiple receive antennas is selection combining [70], in

which the receive antenna branch with the highest SNR is selected.

Technically, diversity gain also known as diversity order is given by the nega-

tive of the slope of the average-error-probability/outage-probability versus average-

SNR curve on a log-log scale as the average SNR ρ→∞ [71].

Array Gain

The SNR at the receiver can be improved through coherent combining enabled by

either processing at the receive antenna array or precoding at the transmit antenna

array or a combination of both. Such spatial filtering techniques are known as

beamforming and the resulting gain in SNR is called array gain. Receive-antenna

1A real stable RV with characteristic exponentμ ∈ (0, 2], skew parameter β ∈ [−1, 1] and dispersion
γ ∈ [0,∞) is denoted by S(μ, β, γ), whose characteristic function is given by

Ψ(ω) =

{
exp (−γ|ω|μ [1− jβsign(ω) tan(πμ/2)]) , μ �= 1

exp (−γ|ω| [1 + j2β/πsign(ω) ln(|ω|)]) , μ = 1.
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processing, which maximizes the receive SNR is MRC, in which the received signal

on each antenna element is weighted by its corresponding complex fading coeffi-

cient and then combined [70]. MRC is thus an optimal diversity combining method

in the absence of interference. Similarly, on the transmit side, the precoding vector

maximizing the receive SNR is eigen beamforming, also known as maximal ratio

transmission (MRT) [72].

The average error probability of wireless transmissions over flat fading channels

impaired by additive white Gaussian noise (AWGN) at high SNR can be quantified

in terms of the diversity gain (diversity order) Gd and array gain Gc as [3, 71]

Pe(ρ) ≈ (Gcρ)
−Gd, as ρ→∞. (2.14)

Spatial Multiplexing Gain

For MIMO systems in a rich scattering environment such that the fading coefficients

of the channels between each transmit-receive antenna pair are independent, multi-

ple independent data streams can be simultaneously transmitted over the MIMO

channel in the same bandwidth. This technique is known as spatial multiplex-

ing. A MIMO system with Nt transmit and Nr receive antennas can support up to

min(Nt, Nr) data streams [36,73]. Thus, system capacity can be increased linearly

with the number of antennas. Precoding and/or receive-antenna processing tech-

niques, for example those based on ZF and minimum mean square error (MMSE)

criteria, are employed to help the receiver decode spatially multiplexed signals [71].

While spatial multiplexing in general implies transmitting multiple data streams to

a single user, it can be extended to the case where data streams are intended for

different users. This technique is known as SDMA, or multi-user MIMO [37].

Interference Mitigation

The spatial dimension can also be exploited to cancel/suppress interference. In

cellular networks, if a BS has Nt transmit antennas, the precoding vector can be

designed to create a transmit beam with high attenuation in the directions of M

other-cell users, while utilizing the remaining degrees of freedom Nt −M to focus

the signal energy towards its served user. The ZF criterion is used to design such
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precoder in [30,31]. Similarly, receive antenna weights can be designed to suppress

the dominant interfering BSs. A ZF receiver with Nr antennas can suppress up to

Nr − 1 interferers [74].

2.6 Relay Communication

Although multi-antenna techniques improve per link throughput, they cannot solve

the problem of limited coverage due to transmit power constraint. An effective

solution to the limited-coverage problem is to use an intermediate node known as

relay to assist the communication between a source and a destination by forwarding

the information received from the source node towards its destination [75]. In addi-

tion to the advantage of coverage extension without increasing the transmit power,

another advantage of relay transmission is cooperative diversity [76, 77]. Cooper-

ative relay networks, in which the source and the cooperating relay/relays create

distributed antenna array by utilizing the broadcast nature of the wireless commu-

nication, have been widely investigated in the literature [78–80].

Among the various relaying protocols studied in the literature, amplify-and-

forward (AF) and decode-and-forward (DF) are the two most popular protocols. In

AF relaying, the relay node simply scales (amplifies) the signal received from the

source node and forwards it to the destination. Whereas, in DF protocol, the relay

node first decodes the received signal and retransmits the re-encoded signal to the

destination. While amplification of the noise and interference is a major drawback

of AF relays, DF relays suffer from error propagation. To mitigate error propagation

in DF relaying, the relay nodes may be allowed to retransmit only if their received

SNRs are above the required thresholds for error-free decoding [81].

When multiple relay nodes are available, they can efficiently utilize the spatial

degrees of freedom by jointly transmitting to the destination for higher data rates.

However, the limited resources and the minimum cost implementation requirement

make the best relay selection scheme (also known as opportunistic relaying) based

on the CSI more desirable over multi-relay scheme. Thus, the opportunistic relaying

has been significantly investigated in the literature [82–84].
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Chapter 3

Multi-Channel Analysis of Cell
Range Expansion and Resource
Partitioning in Two-Tier HetNets

The capacity of cellular HetNets can be improved by offloading users from con-

gested macro cells to lightly-loaded small cells through biased association known

as CRE. However, the offloaded (range-expanded) users must be protected from

macro interference. This chapter1 develops an analytical framework to evaluate

the performance gain due to CRE further supported by resource partitioning in

two-tier (macro-pico) networks with multi-channel downlinks, for example, those

based on OFDMA. By exploiting the flexibility in subchannel allocation offered by

OFDMA, frequency-domain resource partitioning is proposed in which the macro

tier is muted on a fraction of the total subchannels, which are allocated exclusively

to range-expanded pico users to protect them from macro interference. The load

perceived by a BS is a key factor in determining its interference contribution over

the network and is directly affected by user offloading and resource allocation.

Thus, the analysis of CRE and resource partitioning must incorporate the cell load.

In this chapter, the cell load is properly characterized as a function of the user den-

sity, association bias and resource partitioning fraction. The performance is then

evaluated in terms of the average user data rate over the entire network, and the op-

timal choice of association bias and resource partitioning fraction for maximizing

the average data rate is also investigated.

1This chapter has been published in the IEEE Transactions on Wireless Communications [85].
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3.1 Introduction

With co-channel deployment of low-power BSs such as picos and femtos within

the areas covered by the existing macro cellular infrastructure, the system capacity

improves as users get offloaded from the congested macro tier to pico/femto tier.

The benefits of user offloading are two-fold. First, the offloaded users get access

to a larger fraction of radio resources. Second, the macro cellular load is reduced,

which allows the remaining macro users to be served with improved rates. The user

offloading, however, may be limited due to transmit power disparities between the

macro and pico/femto BSs, thereby limiting the capacity gain.

The macro offloading can be increased by biased association known as CRE

[7, 8], in which a user is offloaded to a small cell if the received power from it is

less than that from a macro cell by at most some amount known as association bias.

Such offloaded users are referred to as range-expanded users. With this technique,

the number of offloaded users can be controlled with the bias value to obtain a

balanced distribution of user loads across the tiers. However, the load balancing

offered by CRE comes at the cost of severe downlink co-channel interference to the

range-expanded users from the macro tier and such interference must be mitigated

by using interference coordination techniques. The interference coordination can be

implemented by resource partitioning [7, 8, 86], in which a certain fraction of time

or frequency resources is provided exclusively to small cells by muting the macro-

tier transmissions in these resources. The range-expanded users are then served by

the small cells in these resources, thereby isolating these users from the macro tier

interference.

3.1.1 Motivation and Contributions

Simulation results [87–90] demonstrate that CRE with resource partitioning highly

enhances the otherwise limited performance gains from the deployment of small

cells. These interdependent techniques, however, must be jointly tuned for optimal

system performance. The optimal association bias at the given resource partition-

ing fraction is investigated for sum capacity and related performance metrics in [91]
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through a semi-analytical approach. Analytical approaches to determine the opti-

mal combination of the bias value and resource partitioning fraction are presented

in [47] and [21] based on the per user spectral efficiency and downlink rate distri-

bution, respectively. However, both assumed a fully loaded network, i.e., a network

with all the BSs simultaneously active all the time.

The full-load assumption is not applicable for small cells unless they are de-

ployed in hot-spots and large biasing towards them is introduced. On the other

hand, with very large biasing, macro cells may no longer be fully loaded. Thus, the

full-load assumption is not reasonable for studying biasing. The analytical results

in [19] show that biasing has a detrimental impact on the average rate of the overall

network in the fully loaded condition. The motivation behind biasing is to improve

the network rate through load balancing, i.e., relieving the heavily loaded macro

cells and better utilizing the resources of the lightly loaded small cells. However,

if the macro and small cells are assumed to be always fully loaded, then biasing

makes no sense. Thus, the full-load assumption cannot reflect the benefits of bi-

asing. Moreover, the interference from a BS is a direct function of its load. For

example, the BSs that receive more load have a higher probability of being active

at a given time instant and thus contribute more interference to the network. As the

load perceived by a BS is significantly affected by the number of users offloaded

to/from and the fraction of resources allocated, the interference to a given user

strongly depends on the association bias and resource partitioning fraction. Such

effects cannot be captured if the full-load assumption is used. Thus, an analytical

framework for the performance evaluation of cellular HetNets with biased associa-

tion and resource partitioning, while appropriately modeling the cell load, becomes

essential, and this chapter aims to fulfill this need.

We focus on the downlink performance analysis of two-tier (macro and pico)

HetNets, which can be extended to multi-tier networks. The locations of macro

and pico BSs are modeled as independent PPPs, which have recently been popular

for modeling cellular HetNets [14, 16, 17, 58]. The downlink analysis of cellular

HetNets usually assumes a time-shared single channel per cell [16, 17, 19, 21, 47].

Thus, only the time-domain method of resource partitioning has been significantly

33



analyzed [21, 24, 47, 48]. In this method, the macro tier is periodically muted on

certain fraction of the subframes, known as ABSFs. In contrast, we consider a

multi-channel downlink, for example, the one based on OFDMA, in which multi-

ple users are simultaneously served in orthogonal subchannels. In LTE networks,

multiple access in the downlink is established by OFDMA. Due to the flexibility in

subchannel allocation offered by OFDMA, we propose frequency-domain resource

partitioning in which the macro tier is restricted from using a fraction of the total

subchannels so that they are allocated exclusively to the range-expanded pico users.

The main contributions of this chapter are summarized as follows:

1. Based on the proposed multi-channel model, we first define the load per-

ceived by a BS as a direct function of the number of associated users and

the number of available subchannels. Such characterization effectively cap-

tures the effect of the user density, association bias and resource partitioning

fraction on the cell load.

2. Next, we evaluate the performance of the proposed system in terms of the

average user data rate that can be attained over the entire network, while

incorporating the cell load into the analysis.

3. We comprehensively analyze the average rate performance under different

bias values and resource partitioning fractions and investigate their optimal

combination.

4. We numerically demonstrate that if the bias value and resource partitioning

fraction are carefully selected, the rate performance can be highly improved

in comparison to the CRE-only system (i.e., a system with no resource parti-

tioning).

5. We show that the optimal combination of the association bias and resource

partitioning fraction is strongly dependent on the network load.

We hasten to add that although the stochastic geometry method for multi-channel

downlink analysis of cellular HetNets has been considered before, for example
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Table 3.1: System Parameters for CRE with resource partitioning

Symbol Description
Φm;Φp;Φu PPP of macro BSs; PPP of pico BSs; PPP of users
λm;λp;λu Density of macro BSs; density of pico BSs; density of users
Pm

max;P
p
max Maximum allowable transmit power of macro BS; Maximum allowable transmit

power of pico BS
Pm;Pp Transmit power per subchannel of macro BS; Transmit power per subchannel of

pico BS
B Association bias for pico CRE

αp;αm Path-loss exponent of macro tier; path-loss exponent of pico tier
Φ

m
u ;Φo

u;Φ
e
u Set of macro users; set of unbiased pico users; set of range-expanded pico users

Um;Uo;Up Association probability of a typical user to Φm
u ; association probability of a typ-

ical user to Φo
u; association probability of a typical user to Φe

u

Nm;No;Ne Number of users in a typical macro cell; number of unbiased users in a typical
pico cell; number of range expanded users in a typical pico cell

L;Lr;Lc Total number of subchannels; number of subchannels reserved for range-
expanded pico users; number of common subchannels shared by macro and pico
tier

Sr;Sc Set of subchannels reserved for range-expanded pico users; set of common sub-
channels shared by maro and pico users

pm; po; pe Probability that a typical macro BS is active on a given subchannel from the set
Sc; probability that a typical pico BS is active on a given subchannel from the
set Sc and Sr respectively

σ2 Noise variance
Tm;To;Te Average share of resources of a typical macro user; average share of resources

of a typical unbiased pico user; average share of resources of a typical range-
expanded pico user

R̄m; R̄o; R̄e Average rate of a typical macro user; average rate of a typical unbiased pico user;
average rate of a typical range-expanded pico user

in [18, 25], the problem of CRE with resource partitioning in a multi-channel en-

vironment, while successfully capturing their impact on cell load is addressed here

for the first time.

The chapter is organized as follows. The network model, user association policy

and resource partitioning scheme are described in Section 3.2. Section 3.3 utilizes

the user association probability and cell load derived in Section 3.2 to derive the

average user data rate over the entire network. The special case of no resource

partitioning is also analyzed in Section 3.3.1. The analytical results are validated

through Monte-Carlo simulation in Section 3.4, along with extensive numerical

analysis to assess the impact of biasing and resource partitioning on the user data

rate. Section 3.5 finally concludes the chapter.
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3.2 System Model

3.2.1 Network and Channel Model

We consider an OFDMA based two-tier downlink cellular HetNet consisting of

macro and pico BSs, which are assumed to be spatially distributed on R2 plane as

independent homogeneous PPPs Φm of density λm and Φp of density λp, respec-

tively. For the macro tier, the PPP model provides tight lower bounds for perfor-

mance measures, as tight as the upper bound results provided by the popular grid

model, when compared to the actual 4G network [15]. However, the analytical

tractability of the PPP model is a key benefit over the grid model. The adoption

of PPP model for the pico tier is justified because randomness is expected in the

pico BS locations. Similarly, user locations are modeled as an independent PPP Φu

with density λu. The two network tiers share the same spectrum, which is evenly

divided into L > 1 subchannels2. We consider flat transmit power spectrum on the

downlink3 and thus, the power per subchannel is kept constant at Pm and Pp for

the macro and pico tiers, respectively. If Pm
max and P p

max are the maximum allowable

transmit powers of the macro and pico BSs, respectively, then Pm = Pm
max/L and

Pp = P p
max/L.

Independent Rayleigh multipath fading with power-law path loss is assumed

between any BS-user pair. The channel power gains from the macro BS located at

xm ∈ Φm and the pico BS located at xp ∈ Φp to a typical user located, without

loss of generality, at the origin, are thus given by hxm ||xm||−αm and hxp||xp||−αp ,

respectively, where hxm ∼ Exp[1] and hxp ∼ Exp[1] are the corresponding fading

powers, and αm and αp are the path-loss exponents of the macro and pico tier,

respectively.

3.2.2 User Association

The user association scheme is based on biased received power. Thus, each user is

associated with the BS offering the maximum biased received power [19, 21]. The

2A subchannel may refer to one or multiple resource blocks (RBs) in LTE systems.
3This assumption is consistent with LTE downlink power allocation [92].

36



fading effect is ignored in the association metric to avoid the ping-pong handover

effect [93]. If B is the association bias introduced for the pico CRE, a typical user

at the origin is associated with the nearest macro BS only if PmR
−αm
m ≥ PpBR

−αp
p ,

where Rm = min
xm∈Φm

‖xm‖ and Rp = min
xm∈Φp

‖xp‖ are the distances from the origin

to the nearest macro and pico BSs, respectively. The user is otherwise associated

with the nearest pico BS. When associated with the nearest pico BS, the user is

registered in its user list as an unbiased user if PpR
−αp
p ≥ PmR

−αm
m and as a range-

expanded user if PpR
−αp
p ≤ PmR

−αm
m < PpBR

−αp
p . The nomenclatures for pico

users (unbiased and range-expanded) have been adopted from [21].

For the given user association scheme, if we randomly pick a user, it may turn

out to be a macro user, an unbiased pico user, or a range-expanded pico user with

certain probabilities. The following lemma expresses these probabilities.

Lemma 1. Let Um, Uo, and Ue denote the probabilities that a randomly chosen

user is a macro user, unbiased pico user, or range-expanded pico user, respectively,

which are given by,

Um = 2πλm

∫ ∞

0

re−πλmr2 exp
(
− πλp

(BPp

Pm

) 2
αp
r

2αm
αp

)
dr (3.1)

Uo = 2πλp

∫ ∞

0

re−πλpr2 exp
(
− πλm

(Pm

Pp

) 2
αm
r

2αp
αm

)
dr (3.2)

Ue = 2πλp

∫ ∞

0

re−πλpr2
{
exp
(
− πλm

( Pm

BPp

) 2
αm
r

2αp
αm

)
− exp

(
− πλm

(Pm

Pp

) 2
αm
r

2αp
αm

)}
dr. (3.3)

Proof. Since the analysis conducted on a typical user located at the origin is valid

for any randomly chosen user according to Slivnyak’s theorem (Section 2.3), Um

can be derived as

Um = P(PmR
−αm
m ≥ PpBR

−αp
p ) = ERm

[
P(Rp ≥

(
Pp/PmB)

1/αpRαm/αp
m

)]
,

which can be solved by using the probability distributions of Rm and Rp. We know

that P(Rl > r), l ∈ {m, p}, is the probability that no points of Φl lie within a

circle of radius r, centered at the origin. Since Φl is a PPP with density λl, we have

F̄Rl
(r) = P(Rl > r) = exp(−πλlr2). The probability density function (PDF) ofRl
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can then be obtained as fRl
(r) = −dF̄Rl

(r)/dr = 2πλlr exp(−πλlr2). Similarly,

by using these distributions, Uo and Ue can be obtained as Uo = P(PpR
−αp
p ≥

PmR
−αm
m ) and Ue = P(PpR

−αp
p ≤ PmR

−αm
m < PpBR

−αp
p ).

For the special case of equal path-loss exponents, i.e., αm = αp = α, the inte-

grals in (3.1)-(3.3) can be reduced to the following simple closed-form expressions

by using
∫∞
0
r exp(−βr2)dr = 1/(2β):

Um =
λmP

2/α
m

λmP
2/α
m + λp(BPp)2/α

, Uo =
λpP

2/α
p

λmP
2/α
m + λpP

2/α
p

,

Ue =
λp(BPp)

2/α

λmP
2/α
m + λp(BPp)2/α

− λpP
2/α
p

λmP
2/α
m + λp(Pp)2/α

. (3.4)

The probabilities (3.1)-(3.4) are also derived in [21] and are given here for the sake

of completeness.

As per the given user association scheme, the set of total users in the network

Φu can be divided into three subsets:

1. Φm
u , the set of macro users,

2. Φo
u, the set of unbiased pico users, and

3. Φe
u, the set of range-expanded pico users,

such that Φu = Φm
u ∪ Φo

u ∪ Φe
u. Since each user in Φu can belong to exactly

one of these three sets, they are disjoint. The probabilities Um, Uo, and Ue can

also be interpreted as the average fraction of users belonging to the sets Φm
u , Φo

u

and Φe
u, respectively. For each user-set, we are interested in the number of users

associated with a typical BS to characterize the typical cell load of each tier and

the average share of radio resources received by a typical user. The actual locations

of users with respect to each other in each Φl
u, l ∈ {m, o, e} are less important to

us. Thus, Φm
u , Φo

u and Φe
u can be equivalently modeled as independent PPPs with

densities Umλu, Uoλu and Ueλu, respectively. In other words, they can be modeled

as thinned versions of the original process Φu with retention probabilities Um, Uo

and Ue, respectively, independent of the locations of the users.
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Each user in Φm
u is always associated with the nearest macro BS, and each

user in Φo
u ∪ Φe

u is always associated with the nearest pico BS. The network can

thus be viewed as a superposition of two independent Voronoi tessellations of the

macro and pico tier, respectively. The Voronoi cells of each tessellation are disjoint,

and their sizes are i.i.d. RVs [94]. Hence, together with the independent scattering

property of the PPP, which states that the number of points of a PPP in disjoint

sets are independent RVs [57, 59], the number of macro users in different macro

Voronoi cells are i.i.d RVs, and so are the number of unbiased pico users and the

number of range-expanded pico users in different pico Voronoi cells. The following

lemma gives their probability mass functions (PMFs), which will be used later in

this chapter for calculating the typical cell load of each tier and the average share

of radio resources received by a typical user.

Lemma 2. Let Nm be the number of users associated with a randomly chosen

macro BS and No and Ne be the number of unbiased and range-expanded users of

a randomly chosen pico BS. Their PMFs are given by

P(Nl = n) =
3.53.5Γ(3.5 + n)(Ulλu/λζ(l))

n

Γ(3.5)n!(Ulλu/λζ(l) + 3.5)n+3.5
, n ≥ 0, ∀l ∈ {m, o, e}, (3.5)

where λζ(m) = λm and λζ(o) = λζ(e) = λp.

Proof. Since Φm
u is a PPP of density Umλu, the number of macro users in a typi-

cal macro Voronoi cell of given area A is Poisson distributed with mean UmλuA.

The unconditional PMF of Nm in (3.5) is then obtained by averaging over the

distribution of the Voronoi cell area A approximated by the Gamma distribution,

fA(a) = (3.5λm)
3.5a2.5 exp(−3.5λma)/Γ(3.5) [94]. The PMFs of No and Ne can

be similarly obtained.

3.2.3 Resource Allocation and Partitioning

For any range-expanded pico user in Φe
u, the average received power from its near-

est macro BS is greater than that from the serving pico BS. The range-expanded

users thus need to be protected from high-power macro interference. If each macro

BS leaves a set of Lr subchannels unutilized out of the total L subchannels, each
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pico BS can serve its range-expanded users in these macro-interference free sub-

channels. Each macro BS thus allocates L − Lr = Lc number of subchannels to

serve its users. The unbiased users in each pico cell are also served in the same

set of Lc subchannels since Lr macro-interference free subchannels are reserved

exclusively for its range-expanded users.

Let the set of Lr macro-interference free subchannels reserved exclusively for

range-expanded users be denoted by Sr and the set of Lc common subchannels

shared by the macro and pico tiers be denoted by Sc. The subchannels in each

BS are allocated to individual users according to one subchannel per user and they

are uniformly and independently selected from the available set. However, if the

number of users associated with a BS is greater than the number of subchannels

available, the resources are time-shared equally among the users. This scheduling

method is basically frequency- and time-domain round-robin scheduling, which

gives an equal share of the resources to all the users. This simple scheduling al-

gorithm leads to analytical tractability and provides important insights into system

parameters. Sophisticated scheduling algorithms like max-rate and proportional fair

schedulers, which add significant complexities to the analysis, can be considered in

future work. The current analysis serves as a lower bound on the performance of

these sophisticated algorithms.

We assume that each BS has a saturated downlink transmission queue for each

associated user, and thus, each user always has data to receive from its serving BS.

While some BSs may have more users than the available subchannels, some may

have less. Thus, depending upon the number of users associated with it, a BS, may

or may not be active on all of its available subchannels. In the following lemma, we

derive the probability that a typical BS of each tier is active on a given subchannel.

Lemma 3. Let pm be the probability that a randomly chosen macro BS is active on

a given subchannel from the set Sc. Similarly, let po and pe be the probabilities that

a randomly chosen pico BS is active on a given subchannel from the set Sc and Sr,
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respectively. Then,

pl = 1− 3.53.5

Γ(3.5)

1

Lκ(l)

Lκ(l)−1∑
n=0

[
(Lκ(l) − n)Γ(3.5 + n)(Ulλu/λζ(l))

n

n!(Ulλu/λζ(l) + 3.5)3.5+n

]
, ∀l ∈ {m, o, e}

(3.6)

where λζ(m) = λm, λζ(o) = λζ(e) = λp, Lκ(m) = Lκ(o) = Lc and Lκ(e) = Lr.

Proof. If the number of users associated with a typical macro cell is less than Lc

(i.e. Nm < Lc), the probability that a subchannel of Sc is used in the cell is Nm/Lc.

However, ifNm ≥ Lc, all the subchannels of Sc are used in the cell with probability

1. Thus, pm can be expressed as

pm =
Lc−1∑
n=0

n

Lc

P(Nm = n) +
∞∑

n=Lc

P(Nm = n)

= 1−
Lc−1∑
n=0

(
1− n

Lc

)
P(Nm = n). (3.7)

The final expression for pm is then obtained by substituting the PMF of Nm in the

above equation. The probabilities po and pe can be similarly obtained.

Remark. As we explained earlier, the number of users associated with different

macro cells are independent. Thus, the probability that any randomly chosen macro

BS is active on a given subchannel from the set Sc, which is pm, is independent of

any other macro BS. Similarly, the probabilities po and pe of any arbitrary pico BS

are independent of any other pico BS.

We refer to pm as the load of a typical macro cell. It can also be interpreted

as the probability that a typical macro BS is contributing to network interference

because a typical user being served on a subchannel receives interference from only

those BSs which are active on that particular subchannel. While the authors in

[20] used the mean statistic of the number of users associated with a typical BS

to approximate this probability by min
(

Average number of users
Total number of frequency RBs available , 1

)
, we derive

the exact probability in this paper. Similarly, po and pe are referred to as the loads

of a typical pico cell in two different groups of frequency resources Sc and Sr,

respectively. We can observe that user density, association bias and the degree of

resource partitioning directly affect the cell load.
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Having derived the cell loads, we can compute the SINR of a typical user u lo-

cated at the origin when it belongs to Φl
u, denoted by SINRl, for each l ∈ {m, o, e}

as

SINRm =
PmhbmD

−αm
m

Pm

∑
xm∈Ψm\bm

hxm||xm||−αm + Pp

∑
xo∈Ψo

hxo ||xo||−αp + σ2
, (3.8)

SINRo =
PphboD

−αp
o

Pm

∑
xm∈Ψm

hxm ||xm||−αm + Pp

∑
xo∈Ψo\bo

hxo ||xo||−αp + σ2
, (3.9)

SINRe =
PphbeD

−αp
e

Pp

∑
xe∈Ψe\be

hxe ||xe||−αp + σ2
, (3.10)

where bl is the serving BS at a distance Dl from the user u when it belongs to

Φl
u and σ2 is AWGN power. If the user u is being served on a subchannel from

the set Sc (i.e., when the user is either a macro user or an unbiased-pico user),

Ψm and Ψo are the sets of the macro and pico BSs, respectively, that are active

on that particular subchannel. The sets Ψm and Ψo are independent thinning of

the the original PPPs Φm and Φp, respectively, with retention probabilities pm and

po, respectively. Hence, they are independent PPPs with densities pmλm and poλp,

respectively. Similarly, Ψe is the set of active pico BSs on the subchannel the user

u being served from the set Sr (i.e., when u is a range-expanded pico user) and is

also a PPP with density peλp.

3.3 Average User Data Rate

The motivation behind CRE supported by resource partitioning in cellular HetNets

is to provide a high data rate to users through load balancing. Thus, the perfor-

mance metric chosen is the average user data rate that can be attained over the

entire network.

Theorem 1. The average data rate per unit bandwidth of a typical user u is given

by

R̄ =
∑

l∈{m,o,e}
Ul Tl E [log2(1 + SINRl)], (3.11)
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where Ul = P(u ∈ Φl
u), which is given by Lemma 1, and Tl is the average time

share of frequency resources received by the user u when it belongs to Φl
u.

Proof. With an adaptive transmission scheme so that the Shannon bound can be

achieved and treating interference as noise [15], the data rate per unit bandwidth of

a typical user u, conditioned on u belonging to Φl
u, is given by

Rl = tl log2(1 + SINRl), ∀l ∈ {m, o, e}, (3.12)

where tl is the fraction of time the user u is served on a subchannel. Let N ′
l be the

number of other users in the cell to which the user u belongs. If the total number of

users is no greater than Lκ(l) (i.e., N ′
l + 1 ≤ Lκ(l)), where Lκ(m) = Lκ(o) = Lc and

Lκ(e) = Lr, the user u can exclusively occupy a subchannel without time sharing,

and thus, tl = 1. Otherwise, the subchannels are time-shared equally among the

total users, and thus, tl = Lκ(l)/(N
′
l + 1).

The average data rate per unit bandwidth of the user u ∈ Φl
u is R̄l = E[Rl] =

E[tl log2(1+SINRl)]. Since the number of users associated with a BS determines its

probability of being active on a certain subchannel (Lemma 3), the total interference

received by the user u, and thus, its SINR depend on the number of users associated

with the cells other than the serving cell in the network. tl, however, is the function

of the number of users in the serving cell. As we discussed in Section 3.2.2, the

number of users in different cells are independent, which implies that tl and SINRl

are independent. Thus, E[tl log2(1 + SINRl)] = Tl E[ log2(1 + SINRl)], where

Tl = E[tl]. According to the law of total expectation, the overall data rate of a

typical user u is then given by R̄ =
∑

l∈{m,o,e}Ul R̄l. By using Lemma 4 and 5,

which derive Tl = E[tl] and the average spectral efficiency E [log2(1 + SINRl)],

respectively, the final expression for the average user data rate is obtained.

In the following Lemma, we derive Tl, which is required to compute the average

user data rate in (3.11).

Lemma 4. The average time-share of the frequency resources Tl received by a
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typical user u when u ∈ Φl
u is given by

Tl =
Lκ(l)λζ(l)
Ulλu

(
1−
(
1 + 3.5−1Ulλu/λζ(l)

)−3.5)

− 3.53.5

Γ(3.5)

Lκ(l)∑
n=1

Γ(3.5 + n)
(
Ulλu/λζ(l)

)n−1
(Lκ(l) − n)

n! (Ulλu/λζ(l) + 3.5)3.5+n
∀l ∈ {m, o, e}, (3.13)

where λζ(m) = λm, λζ(o) = λζ(e) = λp, Lκ(m) = Lκ(o) = Lc and Lκ(e) = Lr.

Proof. The proof is given in Appendix A.1.

To finally compute the average user data rate in (3.11), we now derive the aver-

age link spectral efficiency E [log2(1 + SINRl)].

Lemma 5. The average link spectral efficiency E [log2(1 + SINRl)] of the user u

when it belongs to Φl
u, denoted by Cl is given by

Cl =
1

ln 2

∫ ∞

0

F̄l(t)

1 + t
dt, ∀l ∈ {m, o, e}, (3.14)

where F̄l(t) = P(SINRl ≥ t) is the conditional CCDF of the SINR of the user u

when it belongs to Φl
u. F̄l(t) for each l ∈ {m, o, e} is given by

F̄m(t) =
2πλm
Um

∫ ∞

0

r exp

{
− t

Pm
σ2rαm − πλp

(
Pp

Pm

) 2
αp

r
2αm

αp

×
(
B

2
αp +

2po
(αp − 2)

B
2
αp

(1 + B
t
)
2F1

[
1, 1, 2− 2

αp
,

1

(1 + B
t
)

])
− πλmr

2

×
(
1 +

2pm
(αm − 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αm
,

1

(1 + 1
t
)

])}
dr, (3.15)

F̄o(t) =
2πλp
Uo

∫ ∞

0

r exp

{
− t

Pp

σ2rαp − πλm

(
Pm

Pp

) 2
αm

r2
αp
αm

×
(
1 +

2pm
(αm − 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αm
,

1

(1 + 1
t
)

])

−πλpr2
(
1 +

2po
(αp − 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αp
,

1

(1 + 1
t
)

])}
dr, (3.16)
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F̄e(t) =
2πλp
Ue

∫ ∞

0

r exp

{
− t

Pp

σ2rαp − πλm

(
Pm

Pp

) 2
αm

r2
αp
αm

−πλpr2
(
1 +

2pe
(αp − 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αp
,

1

(1 + 1
t
)

])}

×
{
exp

(
−πλm

(
Pm

Pp

) 2
αm

r2
αp
αm (B−

2
αm − 1)

)
− 1

}
dr. (3.17)

If the noise is ignored (i.e., if the network is interference-limited) and the path-

loss exponents are assumed equal (αm = αp = α), then F̄m(t), F̄o(t) and F̄e(t) can

be simplified as follows:

F̄m(t) =U
−1
m

{
1 +

2pm
(α− 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

α
,

1

(1 + 1
t
)

]
+
λp
λm

(
Pp

Pm
B

) 2
α

×
(
1 +

2po
(α− 2)

1

(1 + B
t
)
2F1

[
1, 1, 2− 2

α
,

1

(1 + B
t
)

])}−1
, (3.18)

F̄o(t) =U
−1
o

{
1 +

λm
λp

(
Pm

Pp

) 2
α

+
2

(α− 2)

1

(1 + 1
t
)

× 2F1

[
1, 1, 2− 2

α
,

1

(1 + 1
t
)

](
po +

λmpm
λp

(
Pm

Pp

) 2
α

)}−1
, (3.19)

F̄e(t) = U−1e

[{
1 +

2pe
(α− 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αp
,

1

(1 + 1
t
)

]

+
λm
λp

(
Pm

Pp

) 2
α

}−1
−
{
1 +

λm
λp

(
Pm

PpB

) 2
α

+
2pe

(α− 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αp

,
1

(1 + 1
t
)

]}−1]
. (3.20)

Proof. The proof is given in Appendix A.2.

These conditional SINR distributions can also be interpreted as the conditional

coverage probability because P(SINRl > τ) is the probability that a randomly cho-

sen user can achieve the target SINR τ under the condition that the user belongs to

Φl
u.

Unlike the SINR distribution in [21], in this chapter, the distribution is also

dependent on the user density and the degree of resource partitioning, apart from
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association bias. In the full-load model, the impact of biasing on SINR distribution

is only due to the associated users’ geometry (i.e., with biased association, only the

very good geometry users are served by macro cells while the pico users now also

include worse geometry users). In this work, biasing also affects the interference

power through the cell load. Thus, the impact of biasing on SINR distribution is

better captured than in [21]. The SINR distribution of the unbiased pico users is

also dependent on the association bias unlike that in [21] as the interference from

the macro tier to the unbiased pico users depends on biasing. These claims will be

verified through the numerical results in Figure 3.2.

The special case of no resource partitioning will be addressed next so that the

average data rate with resource partitioning can be compared against the no resource

partitioning case, subsequently quantifying the gain.

3.3.1 Special Case: CRE without Resource Partitioning

If no resource partitioning is applied, the pico users need not be categorized as

unbiased and range-expanded users because they are served from the same pool of

totalL subchannels in each pico cell. Let Up denotes the probability that a randomly

chosen user is a pico user. Then,

Up = 1− Um,

where Um is the probability that a randomly chosen user is a macro user, and is

derived in Lemma 1. The total users in the network can thus be divided into two

sets: Φm
u , the set of macro users, and Φp

u, the set of pico users. Φm
u and Φp

u are

independent PPPs of densities Umλu and Upλu, respectively.

With no resource partitioning, each macro BS can access all the available sub-

channels in the system to serve its users (i.e., a total of L subchannels). Meanwhile,

in each pico cell, as explained earlier, the users (either the unbiased or the range-

expanded users) are served from the same pool of L subchannels. The cell loads of

a typical macro BS and a typical pico BS, denoted by pm and pp, respectively, are

thus given by

pj = 1− 3.53.5

Γ(3.5)

1

L

L−1∑
n=0

[
(L− n)Γ(3.5 + n)(Ujλu/λj)

n

n!(Ujλu/λj + 3.5)3.5+n

]
, ∀j ∈ {m, p}. (3.21)
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In any macro or pico cell, if the total associated users are less than L, all the users

can exclusively occupy a subchannel; otherwise, the subchannels have to be time-

shared among the users. The average time shares received by a typical macro user

and a typical pico user, denoted by Tm and Tp, respectively, are given by

Tj =
Lλj
Ujλu

(
1−
(
1 + 3.5−1Ujλu/λj

)−3.5)

− 3.53.5

Γ(3.5)

L∑
n=1

Γ(3.5 + n) (Ujλu/λj)
n−1 (L− n)

n! (Ujλu/λj + 3.5)3.5+n
, ∀j ∈ {m, p}. (3.22)

The average user data rate per unit bandwidth for the case with no resource

partitioning can finally be expressed as

R̄ = UmTmCm + UpTpCp, (3.23)

where Cj = E [log2(1 + SINRm), and Cp = E [log2(1 + SINRp) are the spectral

efficiencies of a typical user u located at the origin when it belongs to Φm
u and Φp

u,

respectively. The corresponding SINRs are given by

SINRm =
PmhbmD

−αm
m

Pm

∑
xm∈Ψm\bm

hxm ||xm||−αm + Pp

∑
xp∈Ψp

hxp ||xp||−αp + σ2
, (3.24)

SINRp =
PphbpD

−αp
p

Pm

∑
xm∈Ψm

hxm ||xm||−αm + Pp

∑
xp∈Ψp\bp

hxp||xp||−αp + σ2
, (3.25)

where bj is the serving BS at a distance Dj from u when u ∈ Φj
u, j ∈ {m, p}.

Ψm and Ψp are the sets of macro and pico BSs respectively, that are active on the

subchannel the user u is being served on, and they are PPPs with densities pmλm

and ppλp, respectively. As in Lemma 5, the spectral efficiencies can be derived as

Cj =
1

ln 2

∫ ∞

0

F̄j(t)

1 + t
dt, ∀j ∈ {m, p}, (3.26)
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where, F̄m(t) and F̄p(t) are given by

F̄m(t) =
2πλm
Um

∫ ∞

0

r exp

{
− t

Pm
σ2rαm − πλp

(
Pp

Pm

) 2
αp

r
2αm

αp

×
(
B

2
αp +

2pp
(αp − 2)

B
2
αp

(1 + B
t
)
2F1

[
1, 1, 2− 2

αp
,

1

(1 + B
t
)

])

−πλmr2
(
1 +

2pm
(αm − 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αm

,
1

(1 + 1
t
)

])}
dr,

(3.27)

F̄p(t) =
2πλp
Up

∫ ∞

0

r exp

{
− t

Pp
σ2rαp − πλm

(
Pm

Pp

) 2
αm

r2
αp
αm

×
(
B−

2
αm +

2pm
(αm − 2)

B−
2

αm

(1 + 1
Bt
)
2F1

[
1, 1, 2− 2

αm
,

1

1 + 1
Bt

])

−πλpr2
(
1 +

2pp
(αp − 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

αp

,
1

(1 + 1
t
)

])}
dr. (3.28)

If the network is interference limited (i.e., if the noise can be ignored) and αm =

αp = α, simplified expressions for F̄m(t) and F̄p(t) can be obtained as follows.

F̄m(t) = U−1m

{
1 +

2pm
(α− 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

α
,

1

1 + 1
t

]
+
λp
λm

(
Pp

Pm
B

)2/α

×
(
1 +

2pp
(α− 2)

1

(1 + B
t
)
2F1

[
1, 1, 2− 2

α
,

1

1 + B
t

])}−1
, (3.29)

F̄p(t) = U−1p

{
1 +

2pp
(α− 2)

1

(1 + 1
t
)
2F1

[
1, 1, 2− 2

α
,

1

1 + 1
t

]
+
λm
λp

(
Pm

PpB

)2/α

×
(
1 +

2pm
(α− 2)

1

(1 + 1
Bt
)
2F1

[
1, 1, 2− 2

α
,

1

1 + 1
Bt

])}−1
. (3.30)

Remark: The results for the case of neither biasing nor resource partitioning can

be found by substituting B = 1 in the above results.

3.4 Simulation and Numerical Results

In this section, we present numerical analysis and validation of our analytical re-

sults. Unless otherwise stated, we choose L = 20, λm = 1BS/km2, Pm
max = 46
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Figure 3.1: Validation of the analytical result for average user data rate (3.11) via
Monte Carlo simulations for different values of user density λu, pico cell density
λp, and association bias and resource partitioning fraction (B, μ).

dBm, P p
max = 30 dBm, σ2 = −109 dBm, αm = 3.5 and αp = 4. The degree of

resource partitioning is expressed by the fraction μ = Lr/L.

The average user data rate (3.11) is validated in Figure 3.1 via Monte Carlo sim-

ulations on a square window of 20× 20 km2. This figure reveals that the analytical

results match the simulation results quite well. The small gaps are mainly due to

the approximation for the cell area distribution.

Before numerically analyzing the average user data rate, we first analyze the

conditional coverage probabilities (3.15)-(3.17) so that the data rate trends can be

better understood. Figure 3.2 shows that the coverage probability of unbiased pico

users increases with the increase in bias because when more macro users are of-

floaded to the pico tier, the cell load pm of the macro tier decreases and so does the

interference from the macro tier. Similarly, for macro users and range-expanded

pico users, apart from the users’ geometry, the variation in the coverage probability

with bias is mainly due to the change in pm and pe. The coverage probability of each

user type decreases as the user density increases because more BSs become active
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Figure 3.2: Impact of association bias B, user density λu and resource partitioning
fraction μ on conditional coverage probabilities of macro user and both types of
pico user (unbiased and range-expanded): λp = 4λm, τ = 0.5.

to serve the increased number of users, and the increase in BS activity increases

the network interference. We can observe that the resource partitioning fraction μ

directly impacts the coverage probability. As μ decreases, more subchannels be-

come available for the macro users and unbiased pico users. As a result, pm and

po decreases, consequently increasing the coverage probabilities of macro and un-

biased pico users due to the decrease in interference. The coverage probability of

range-expanded users, on the other hand, decreases due to the increase in pe.

In Figure 3.3, the average user data rate of biased association with and without

resource partitioning is compared against that of unbiased association with differ-

ent load conditions. In our model, the network load is directly proportional to the

user density. The user data rate decreases with an increasing load due to the in-

crease in interference and the decrease in the users’ share of resources. In biased

association without resource partitioning, the SINR of the offloaded users degrades.
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Figure 3.3: Effect of CRE with and without resource partitioning on user data rate,
as user density is varied: λp = 4λm

However, in a lightly loaded network, they are offloaded to BSs offering the higher

share of resources, and thus, the user data rate improves compared to that with un-

biased association. However, when the network is heavily loaded, the decrease in

SINR dominates, and the unbiased association outperforms the biasing. The SINR

degradation of the offloaded users can be compensated by resources partitioning.

The resource partitioning fraction of 0.2, for example, is shown to outperform no-

resource-partitioning scenario in terms of average user data rate in Figure 3.3 in any

load condition.

Since resource partitioning costs the macro tier its available resources, the re-

source partitioning fraction μ must be coordinated within the network for the op-

timal user data rate. The optimal pair (B, μ) for the given network parameters is

investigated in Figure 3.4. The pair is found to be strongly dependent on the user

density (i.e., the network load). For λu = 30λm, the optimal pair is (29dB, 0.45),

while for λu = 100λm, the optimal pair is (30dB, 0.1).

With resource partitioning, for the given value of μ, the average link spectral

efficiency Cm of a typical macro user increases with the increase in bias because
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Figure 3.4: Average user data rate vs. association bias B for different values of
resource partitioning fraction μ in lightly loaded (left) and heavily loaded (right)
network conditions: λp = 4λm, αm = αp = 4, σ2 = 0.

more macro users with low SINR (the users far from the serving macro BS) are of-

floaded to pico cells, and the interference from other macro cells also decreases due

to the decrease in the macro cell load. Note that the interference from the pico tier

is invariant to biasing because the pico cell load in the resource group Sc is inde-

pendent of bias. Meanwhile, the share of the radio resources received by the macro

users also increases. Thus, the contribution of the macro users towards the average

data rate increases with the increase in bias. However, after a certain association

bias, this contribution eventually decreases due to the decreasing fraction of macro

users. Similarly, the contribution from the range-expanded pico users initially in-

creases with an increase in bias due to the increasing fraction of range-expanded

users, but eventually decreases after a certain bias due to the decrease in the av-

erage link spectral efficiency Ce and the increase in the number of users sharing

the resources. The decrease in Ce occurs because more users with low SINR (the

users far from the prospective pico BS) are associated with the pico cell, and in the

meantime, the interference from other pico cells increases due to the increase in the

pico cell load in the resource group Sr. On the other hand, the fraction of unbi-
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ased pico users is invariant to biasing and hence, so is the share of radio resources

received by the unbiased users. However, with increasing bias, the contribution to

the average data rate from these unbiased users significantly increases because of

the decreasing macro-tier interference as a result of the decrease in the macro cell

load. Overall, the average data rate initially increases with the increase in bias, but

decreases beyond a certain association bias, and hence, the optimal bias exists.

Figure 3.5 reveals that for the case with resource partitioning, the optimal bias

increases with increasing μ because more resources are reserved for the offloaded

users. For λu = 30λm (a lightly loaded network), the optimal bias lies in the range

of 19 dB and above as μ increases from 0.1, whereas it lies in the range of 30 dB

and above for λu = 100λm (a heavily loaded network).

With no resource partitioning (i.e., μ = 0), the contribution from the macro

users to the average user data rate varies with bias in the same way as in the case of

resource partitioning. The contribution from the pico users, however, has a different

variation as both the unbiased and range-expanded users are now served from the

same pool of L subchannels. The average link spectral efficiency Cp of a randomly

selected pico user (either unbiased or range-expanded) initially drops as more users

with poor SINR (users with higher average received power from the nearest macro

BS as compared to the nearest pico BS) are associated with the pico cell. However,

beyond a certain bias, the decreasing macro-tier interference causes Cp to improve.

If the increasing fraction of pico users dominates the initial drop in Cp and the

decreasing share of radio resources, the contribution from the pico users to the

average data rate increases with increasing bias. Otherwise, the contribution may

drop initially, but eventually increases as Cp improves. When the number of pico

users sharing the resources become large, the contribution towards the average user

rate subsequently decreases. The initial drop in the contribution from the pico users

towards average user data rate is the reason for the initially low rate of increase in

the average user data rate for λu = 100λm in Figure 3.5.

The optimal bias values for λu = 30λm and λu = 100λm are found to be 39

dB and 29 dB, respectively, with μ = 0 in Figure 3.4. Thus, with no resource

partitioning, the optimal bias decreases with increasing user density, as large bias
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Figure 3.5: Average user data rate vs. resource partitioning fraction μ for differ-
ent values of association bias B in lightly loaded (left) and heavily loaded (right)
network conditions: λp = 4λm, αm = αp = 4, σ2 = 0.

values will make the pico cells overly congested with poor SINR users in a heavily

loaded network.

The variation of the average user data rate with the resource partitioning fraction

μ for the given bias value is plotted in Figure 3.5. As previously explained while

analyzing the conditional coverage probabilities in Figure 3.2, the cell loads pm and

po increase with increasing μ. The average spectral efficiency of a typical macro

user thus decreases with increasing μ due to the increasing interference from the

macro and pico tiers as a result of the increasing cell load, and so does the average

spectral efficiency of a typical unbiased pico user. This effect, together with the

decrease in the average share of the radio resources received by the users, causes

the average data rate of both the macro and unbiased pico users to decrease with

the increasing μ. On the other hand, as more subchannels are available for the

range-expanded pico users with increasing μ, their average data rate increases. The

net result is the initial increase in the average data rate with increasing μ and the

subsequent decrease beyond a certain value of μ. With the full-load assumption,

the spectral efficiency would be independent of μ, and the data rate would vary due
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Figure 3.6: Effect of pico cell density λp on the optimal choices of association bias
B and resource partitioning fraction μ in lightly loaded (left) and heavily loaded
(right) network conditions: αm = αp = 4, σ2 = 0.

to only the change in the users’ share of the radio resources.

Figure 3.5 shows that in a lightly loaded network (λu = 30λm), the optimal

resource partitioning fraction shifts towards higher values as association bias in-

creases, whereas in a heavily loaded network (λu = 100λm), it shifts towards lower

values. Thus, in a heavily loaded network, when a large number of macro users

are offloaded to pico cells, allocating more resources to serve these offloaded users

highly degrades the rate of the remaining macro users and unbiased pico users in-

stead of improving the average data rate. Hence, a lower resource partitioning frac-

tion is desirable.

In Figure 3.6, we analyze how small cell density affects the optimal choices of

the association bias and resource partitioning fraction. It is clearly visible from the

figure that, irrespective of the user density and association bias, the average user

data rate always increases with an increase in pico cell density as the number of

users served by each BS decreases, and thus, users get access to a larger fraction of

resources. With no resource partitioning, whether the network is lightly or heavily
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loaded, the optimal bias is found to increase as the pico cell density increases. The

optimal bias increased from 39 dB to 42 dB for λu = 30λm and 29 dB to 36 dB for

λu = 100λm when λp changed from 4λm to 6λm. With resource partitioning, the

optimal pair (B, μ) changed from (29dB, 0.45) to (36dB, 0.4) for λu = 30λm and

(30dB, 0.1) to (33dB, 0.2) for λu = 100λm as λp increased from 4λm to 6λm. When

λp further increased to 8λm, the optimal pairs for λu = 30λm and λu = 100λm

were found to be (38dB, 0.3) and (34dB, 0.25) , respectively (not shown in the

figure). Thus, as in the case with no resource partitioning, the optimal bias increases

with increasing pico cell density in both the lightly and heavily loaded network

conditions. The optimal μ, however, decreases with increasing pico cell density in

a lightly loaded network.

3.5 Conclusion

We developed an analytical framework to evaluate the downlink performance of cel-

lular HetNets with CRE and resource partitioning in a multi-channel environment,

while taking the cell load into account. The incorporated cell load model effectively

captured the impact of user offloading and resource partitioning on network inter-

ference. The performance was evaluated in terms of the average user data rate that

could be achieved over the entire network. We observed that if CRE is supported by

resource partitioning, the average user data rate can be highly increased. However,

the bias value B and resource partitioning fraction μ must be carefully tuned. With

the optimal pair (B, μ), the gain can be as high as 115%. Our analysis showed that

the optimal pair must be updated in accordance with the changing network load.
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Chapter 4

Performance Analysis of SDMA with
Inter-tier Interference Nulling in
HetNets

The downlink performance of two-tier (macro/pico) multi-antenna HetNets em-

ploying SDMA technique is analyzed in this chapter1. The number of users simul-

taneously served with SDMA by a BS in a resource block depends on the number

of active users in its cell, with the maximum served users limited to Lmax. Due to

the feasibility of deploying a large number of antennas at the macro BS because of

its physical size, we propose to utilize the excess spatial degrees of freedom for in-

terference nulling to pico users from their corresponding nearest (dominant) macro

BSs. The precoding matrix at the macro BS thus, not only considers user multiplex-

ing in its own cell, but also interference nulling to selected pico users. The SINR

coverage probability, rate distribution and average data rate of a typical user are then

derived. Our results demonstrate that the proposed interference-nulling scheme has

strong potential for improving performance. However, the critical system param-

eters such as the association bias and number of dedicated antennas at the macro

BS for serving its own users must be carefully tuned. The optimal L∗max for both

the macro and pico tier which maximize the average data rate is also investigated

and is found to outperform both SU-BF and full-SDMA. Finally, the impact of CSI

quantization error due to limited feedback is analyzed.

1A part of this chapter has been accepted for publication in the proceedings of the IEEE International
Conference on Communications (ICC) 2016, Kuala Lampur, Malaysia [95]. A journal version has
been submitted to the IEEE Transactions on Wireless Communications [96].
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4.1 Introduction and Motivation

In Chapter 3, we analyzed the gain in the average data rate due to the load balancing

realized by CRE, together with resource partitioning method of interference coordi-

nation in single-antenna HetNets. As multi-antenna techniques are well-known to

improve the spectral efficiency of wireless systems, the data rates can be further im-

proved by deploying multiple antennas in HetNets. Multi-antenna communication

has been an integral feature of cellular standards LTE (3GPP Release 8) [32] and

LTE-Advanced (3GPP Release 10) [33]. BSs equipped with multiple antennas can

utilize the additional spatial degrees of freedom for diversity, signal power boosting

through beamforming, multiplexing (single-user or multi-user), interference sup-

pression/mitigation or a combination of these.

Multi-antenna techniques in general for isolated links without any interfering

source have been extensively studied. Some examples of diversity- and array-

gain oriented techniques are space-time coding [34, 35], and SNR maximization

through coherent processing at the multi-antenna transmitter/receiver, known as

beamforming [97]. The potential of multi-antenna systems to transmit indepen-

dent data streams simultaneously over spatial sub-channels, a technique known as

spatial multiplexing is explored in [36], and the trade-off between the diversity

and multiplexing gain is analyzed in [98]. Multi-user spatial multiplexing, also

known as SDMA which allows multiple users to be served simultaneously on the

same time/frequency resource has also been analyzed [37, 99]. Cellular systems,

however, are interference limited. Moreover, the interference scenarios in HetNets

are rather complex compared to those in conventional networks. The effectiveness

of spatial multiplexing is demonstrated to diminish in the presence of interference

in [100]. However, if the available spatial degrees of freedom due to multiple anten-

nas are intelligently utilized to suppress/mitigate interference along with diversity

and multiplexing, the performance of HetNets can be improved. The interactions

between multi-antennas techniques and HetNets for enhanced data rate have not

been sufficiently explored yet, as very few attempts have been made to study their

coexistence. In this chapter, we develop a tractable framework for analyzing down-
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link multi-antenna HetNets employing ZF precoding for SDMA along with an in-

terference nulling scheme for inter-tier interference coordination. The developed

framework considers generic SDMA and thus, allows SU-BF and full-SDMA to be

analyzed as special cases.

4.1.1 Previous Related Work and Contributions of the Chapter

The SINR coverage of SU-BF is compared with ZF precoding based closed-loop

SDMA under the perfect CSI assumption for a two-tier multi-antenna HetNet in

[101] by considering a single fixed-radius circular macro cell with multiple femto

cells of fixed radii, distributed according to PPP within the macro cell. However,

since BS-user association is not considered and macro-tier interference is ignored,

the insights in [101] may not be accurate for practical HetNets. The coverage prob-

ability and average link spectral efficiency, spatially averaged over a given cell of

known radius and guard region are derived for ZF precoding in multi-antenna Het-

Net in [102]. Unlike the spatial averaging over a given cell in [102], system-wide

spatial averaging is considered in [103] and the upper bounds on coverage proba-

bility of ZF SDMA and SU-BF in a multi-tier HetNet are derived. The research

in [103] is further extended in [104] to derive the ordering results for the coverage

probability and rate per user performance of SDMA, SU-BF and single-antenna

transmission by using tools from stochastic orders. While the analyses in [103,104]

are based on maximum instantaneous SINR based BS-user association, which may

lead to unnecessary handovers, known as the ping-pong effect, BS-user association

rules that are intended to maximize the average receive SINR (and thus, the SINR

coverage), and biased association for optimal rate coverage are proposed in [105].

The performance of SDMA, SU-BF and single-antenna transmission are then com-

pared. In all of these works [101–105], each cell of a tier is assumed to be serving

the same number of users with SDMA, say L, and it can be any arbitrary integer in

the interval [1, Ki], where Ki is the number of antennas at a BS of the ith tier. This

assumption is not suitable for cellular networks since the number of users in a cell,

which depends on user distribution, is generally different from that in another cell.

An open-loop SDMA with each antenna serving an independent data stream to its
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user with the limiting requirement that the number of users in each cell must be at

least equal to the number of transmit antennas is analyzed in [106] for two-tier cel-

lular HetNets with MMSE receivers.The performance of an open-loop SDMA with

ZF and MMSE receivers in single-tier cellular networks with a similar limitation

is analyzed in [107]. In this chapter, rather than fixing the number of users served

with SDMA to an arbitrary value, we set the limit only on the maximum number of

users served, say Lmax. If the number of users is below the limit, all the users are

served; otherwise only Lmax users chosen randomly are served.

One of the key challenges in cellular HetNets is inter-cell interference manage-

ment. Due to the huge disparities in transmit power between macro and small-

cell nodes such as picos and femtos, and proactive user offloading from macro to

small cells, interference management between the macro and pico/femto tiers is

very important because the performance of the small-cell users on the cell edge

could be severely degraded. While interference management techniques such as

ABSF [21, 24, 47, 48] and frequency-domain resource partitioning [25, 85] can be

used, interference can be more efficiently managed without compromising time-

frequency resources by using multiple antennas. In this chapter, we analyze a

ZF-precoding based interference-nulling method for inter-tier interference manage-

ment. Due to the physical size of macro BSs, it is more feasible to have a larger

number of antennas at the macro BS than at the low-power BSs. Thus, the idea is

to utilize the extra degrees of freedom at the macro BSs to suppress the interference

from the macro tier to small-cell users through nulling. Compared to other multicell

processing techniques for interference mitigation such as joint transmission [108]

and transmission point selection [109], which require both user data and CSI to be

shared between the coordinated BSs, interference nulling requires only CSI to be

shared. In [110] interference nulling to U offloaded pico users by each macro BS

is analyzed, where the optimal U for maximum rate coverage is also investigated.

However, unlike [110] which considers a single served user per resource block in

each cell of both the macro and pico tiers, we consider a user-distribution dependent

SDMA scheme. SU-BF with interference nulling to a fixed number of neighboring-

cells users at each BS of any tier for general multi-tier HetNets is analyzed in [111],
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without specifying how these users are selected. SU-BF with interference nulling

in single-tier cellular networks is studied in [30, 31]. Although SU-BF with inter-

ference nulling has been relatively well analyzed, to the best of our knowledge, this

thesis is the first work to analyze a user-distribution dependent SDMA scheme with

interference nulling in cellular HetNets. The main contributions of this chapter are

summarized as follows.

1. We develop a tractable framework to analyze a user-distribution dependent

SDMA scheme in a two-tier (macro/pico) multi-antenna HetNet with a ZF

precoding transmission, in which the number of users simultaneously served

by a BS in a resource block depends on the number of active users in its

cell, with the maximum number of served users limited to Lm
max for the macro

tier and Lp
max for the pico tier. The performance of SU-BF and full-SDMA

can be analyzed by taking Ll
max = 1 and Ll

max = Kl, respectively, for each

l ∈ {m, p}, where Km and Kp are the number of antennas at the macro and

pico BS, respectively.

2. An interference-nulling scheme for suppressing macro-to-pico interference

is investigated, in which a ZF precoder at each active macro BS nulls the

interference to at most Km − Tmin active pico users while serving its at most

Lm
max scheduled users, where Tmin is the number of dedicated antennas at each

macro BS for serving its own users. An active macro BS b receives requests

for interference nulling from those active pico users, each of which has b as

its nearest interfering macro BS.

3. Unlike most of the previous work, we do not assume all the BSs of each tier

to be simultaneously active all the time. In this work, BS activity depends on

user distribution.

4. In multi-antenna HetNets, since different BSs employ different precoders,

the BS-user association is not as simple as in single-antenna networks. In

[110, 111], antenna precoding is ignored in BS-user association by assuming

that the reference signal used for association is transmitted from single an-
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tenna with full transmit power. Various association rules for coverage proba-

bility maximization and load balancing are proposed in [105]. However, they

are based on the assumption that a deterministic fixed number of users are

served with SDMA in each cell. Hence, these association rules do not ap-

ply to our proposed SDMA scheme, and a different biased-nearest-distance

based association rule is introduced in this chapter, where the bias value ac-

counts for antenna precoding and transmit power disparities, as well as load

balancing.

5. We derive the SINR and rate distributions, as well as the average data rate

of a typical user. Tmin is an important design parameter because it deter-

mines the spatial degrees of freedom available for the macro users, and also

the probability that the macro interference to a typical pico user is nulled.

The optimal value of Tmin for a given performance metric is thus numeri-

cally investigated in this chapter. The numerical results demonstrate that the

proposed interference-nulling scheme has strong potential for performance

improvement if Tmin is carefully tuned. The optimal values of Lm
max and Lp

max

which maximize the average data rate are also investigated and are found to

outperform both SU-BF and full-SDMA.

6. Finally, the impact of the CSI quantization error due to limited feedback for

the special case of Lm
max = Lp

max = 1 is also investigated.

The chapter is organized as follows. Section 4.2 presents the network model, user

association policy, proposed interference-nulling scheme and precoding matrices.

Section 4.3 derives the SINR coverage probability. The rate distribution and average

user data rate are derived in Section 4.4. In Section 4.5, the impact of limited

feedback is investigated. The analytical results are validated through Monte-Carlo

simulations in Section 4.6, along with extensive numerical analysis for assessing

the impact of various parameters on network performance. Finally, Section 4.7

concludes the chapter.
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4.2 System Model

We consider the downlink of a two-tier multi-antenna HetNet comprising macro and

pico BSs spatially distributed on R2 plane as independent homogeneous PPPs Φm

with density λm and Φp with density λp, respectively. The macro BSs are equipped

withKm transmit antennas, and the pico BSs withKp antennas. Similarly, users are

assumed to be distributed according to an independent PPP Φu with density λu, and

each has a single receive antenna. The two network tiers share the same spectrum

with the universal frequency reuse.

The transmission scheme is SDMA with ZF precoding applied at each BS to

serve multiple users simultaneously in each RB. We assume only one RB per time

slot. As the BSs and users are independently distributed on theR2 plane, the number

of users in different cells is different. Thus, in our proposed SDMA scheme, a

typical active macro cell with Nm ≥ 1 users serves Mm = min(Nm, L
M
max) users

simultaneously in a given time slot, where LM
max is the maximum number of users

it can serve. If Nm > LM
max, the BS choses LM

max users for service randomly, else,

all Nm users are served. Similarly, Mp = min(Np, L
P
max) users are simultaneously

served by a typical active pico cell in a given time slot, which has Np ≥ 1 users,

and LP
max is the maximum number the pico cell can serve. The macro and pico BSs

transmit to each of their users with power Pm and Pp, respectively.

4.2.1 User Association

According to the user association rule introduced in [105], a typical user at the ori-

gin is associated with the nearest pico BS if Pp

√
ΔpτpX

−α
p ≥ Pm

√
ΔmτmX

−α
m , and

otherwise, is associated with the nearest macro BS, where Xm = min
xm∈Φm

‖xm‖ and

Xp = min
xm∈Φp

‖xp‖ are the distances from the origin to the nearest macro and pico

BSs, respectively. If associated with the macro tier, Δm is the average desired chan-

nel gain from the nearest macro BS, and τp is the average interference channel gain

from the nearest pico BS. Similarly, Δp and τm are the corresponding parameters,

if associated with the pico tier. The average gains of the desired and interference

channels depend on the number of users served with SDMA. This association rule
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is thus not suitable for our proposed SDMA scheme, where the number of users

served with SDMA in each cell is a function of the number of users in that cell.

The number of users, on the other hand, is determined by the association rule. The

above rule however can be equivalently expressed as follows: a user is associated

with the pico tier only if

Xm ≥
(
Pm

Pp

) 1
α
(
1

η

) 1
α

Xp ⇒ Xm ≥ ρXp, (4.1)

where ρ = (Pm

Pp

1
η
)

1
α , η =

√
Δpτp
Δmτm

. This rule can be perceived as biased nearest

distance association, where the biasing is due to the transmit power disparity be-

tween the macro and pico tiers, the difference in average channel gains to a typical

user from the nearest macro and pico BSs, and for load balancing as well. We will

investigate the optimal value of η for the average data rate in Section Section 4.6.

This value, in turn, determines the optimal ρ.

Given that Xm and Xp are Rayleigh RVs with mean 1/(2
√
λm) and 1/(2

√
λp),

respectively [57], the probability that a typical user at the origin is associated with

the pico tier is

Ap = P(Xm ≥ ρXp) =
λp

λp + λmρ2
, (4.2)

and the probability that this user is associated with the macro tier is Am = 1−Ap.

These tier association probabilities are also valid for any randomly selected user.

As per the given association scheme, the total set of users in the network, Φu can be

divided into two disjoint subsets: Φm
u and Φp

u, the set of macro and pico users, re-

spectively. Am and Ap can be interpreted as the average number of users belonging

to Φm
u and Φp

u, respectively. As we are interested in the number of users in a typical

cell, rather than the actual locations of users, Φm
u and Φp

u can be equivalently mod-

eled as independent PPPs with density Amλm and Apλp respectively. Since each

macro user is always associated with the nearest macro BS and each pico-user with

the nearest pico BS, the network can be viewed as a superposition of two indepen-

dent Voronoi tessellations of macro and pico tiers. The distribution of the number

of users associated with a typical macro and pico BS is derived next.

Lemma 6. Let the number of users in a randomly chosen macro and pico cell be
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denoted by Um and Up, respectively. Their PMFs are given by

P(Ul = n) =
3.53.5Γ(3.5 + n)(Alλu/λl)

n

Γ(3.5)n!(Alλu/λl + 3.5)n+3.5
, n ≥ 0, ∀l ∈ {m, p}, (4.3)

Proof. Given that the area of a typical macro/pico Voronoi cell is Y , Ul is Poisson

distributed with mean AlλuY . The PMF of Ul in (4.3) is obtained by integrating

the conditional distribution of Ul over the probability density function (PDF) of Y

approximated as Gamma(3.5, (3.5λl)−1) [94].

A BS without any user associated does not transmit at all and is inactive. The

following corollary gives the PMFs of the number of users in a typical cell of macro

and pico tiers, under the condition that it is active.

Corollary 1. The PMFs of the number of users in a randomly chosen active cell of

the macro and pico tiers are given by

P(Nl = n) =
P(Ul = n)1(n ≥ 1)

pl
, ∀l ∈ {m, p}, (4.4)

where pm and pp are the probabilities that a typical BS of the macro and pico tiers,

respectively, is active, and are given by

pl = 1− P(Ul = 0) = 1−
(
1 + 3.5−1

Alλu
λl

)−3.5
, ∀l ∈ {m, p}. (4.5)

Let the sets of active macro and active pico BSs be denoted by Ψm and Ψp,

respectively. Ψm and Ψp are thinned versions of the original PPPs Φm and Φp,

respectively, and hence are independent PPPs with densities pmλm and ppλp, re-

spectively.

By using corollary 1, the PMFs of the number of users simultaneously served

by a typical active macro BS and a typical active pico BS in a given time slot

Ml = min(Nl, L
l
max) for Ll

max > 1 can be obtained as

P(Ml = n) =

⎧⎪⎪⎨
⎪⎪⎩
P(Nl = n), 1 ≤ n < Ll

max

1−
Ll

max−1∑
k=1

P(Nl = k), n = Ll
max,

∀l ∈ {m, p}, (4.6)

For the special case of Ll
max = 1, P(Ml = 1) = 1, ∀l ∈ {m, p}.
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4.2.2 Interference Nulling

We assume that Km is typically much larger than Kp. By using the interference

nulling strategy, the additional spatial degrees of freedom of macro BSs can be uti-

lized to suppress the strong macro interference to pico users. Thus, we propose that

each served pico user requests its nearest active macro BS to perform interference

nulling. As interference nulling costs macro BSs their available degrees of freedom

for their own users, we assume that each macro BS can handle at most Km − Tmin

requests only, in order to ensure that a macro BS has at least Tmin ≥ LM
max antennas

dedicated for serving its own users. Hence, if Qm requests are received by a typical

active macro BS, it will perform interference nulling to O = min(Qm, Km − Tmin)

pico users. For Qm > (Km − Tmin), the BS will randomly choose Km − Tmin pico

users. Hence, not all interference-nulling requests are satisfied.

The number of interference-nulling requests Qm received by a typical active

macro BS is equal to the number of served pico users within a typical Voronoi cell

Υ of the tessellation formed by Ψm. Although the number of pico users served by a

typical active pico BS cannot exceed Lp
max, Qm is unbounded because the number of

active pico BSs within Υ is Poisson distributed with mean ppλp/(pmλm). In order

to derive the PMF of Qm, we first derive E[Mp] = Apϑpλu/(ppλp), where

ϑp =
Lp

maxppλp
Apλu

− 3.53.5

Γ(3.5)

Lp
max−1∑
k=1

[
Γ(3.5 + n)

n!

(Apλu/λp)
n−1(Lp

max − k)

(Apλu/λp + 3.5)n+3.5

]
. (4.7)

Next, we approximate the set of pico users requesting interference coordination Ψp
u

as a PPP with density Apϑpλu so that E[Qm] = Apϑpλu/(pmλm). Note that for

Lp
max = 1, ϑp = ppλp

Apλu
. By using this approximation, the PMF of Qm is derived

below as the number of points of the PPP Ψp
u within a typical Voronoi cell Υ with

an average area (pmλm)−1.

Lemma 7. The PMF of the number of interference nulling requests received by a

typical active macro BS is given by

P(Qm = n) =
3.53.5Γ(3.5 + n)

(
Apϑpλu

pmλm

)n
Γ(3.5)n!

(
Apϑpλu

pmλm
+ 3.5

)n+3.5 , n ≥ 0. (4.8)
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As explained earlier, not all interference nulling requests received by an active

macro BS get satisfied because Km − Tmin is the upper limit on the number of

requests the BS can handle. Let χ denotes the set of pico users whose interference

nulling requests to their corresponding nearest active macro BSs are satisfied. In

the following lemma, we derive the probability that a randomly chosen pico user in

service belongs to χ.

Lemma 8. The probability ϕ that the interference-nulling request made by a ran-

domly chosen pico user to its nearest active macro BS is fulfilled is given by

ϕ =
(Km − Tmin)pmλm

Apϑpλu

(
1−
(
1 + 3.5−1

Apϑpλu
pmλm

)−3.5)

− 3.53.5

Γ(3.5)

Km−Tmin∑
n=1

Γ(3.5 + n)
(

Apϑpλu

pmλm

)n−1
(Km − Tmin − n)

n!
(

Apϑpλu

pmλm
+ 3.5

)n+3.5 (4.9)

Proof. Let Q′m denotes the number of other requests received by the macro BS,

which received nulling request from a randomly chosen pico user. Then, condi-

tioned onQ′m, ϕ = 1 ifQ′m+1 ≤ Km−Tmin; otherwise, ϕ = (Km−Tmin)/(Q
′
m+1).

Thus, ϕ can be expressed as

ϕ =

Km−Tmin−1∑
n=0

P(Q′m = n) +

∞∑
n=Km−Tmin

Km − Tmin

n + 1
P(Q′m = n)

=

∞∑
n=1

Km − Tmin

n
P(Q′m = n− 1)−

Km−Tmin∑
n=1

(
Km − Tmin

n
− 1

)
P(Q′m = n− 1).

(4.10)

By using the fact that the conditional PDF f
′

Y (y) of the area of a Voronoi cell given

that a randomly chosen user belongs to it is equal to cyfY (y), where fY (y) is the

unconditional PDF and c is a constant such that
∫∞
o
f
′

Y (y)dy = 1 [21], the PMF of

Q′m can be derived as P(Q′m = n) = (n + 1)P(Qm = n + 1)/E[Qm], n ≥ 0. Eqn.

(4.9) then follows by substituting the PMF of Q′m in (4.10), where the first term is

further simplified by using
∑∞

n=1 P(Qm = n) = 1− P(Qm = 0).

4.2.3 Channel Model and Precoding Matrices

For independent unit-mean Rayleigh multipath fading between any transmit-receive

antenna pair and standard power law path-loss with exponent α, the received signal
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zm at a typical user u located at the origin if u ∈ Φm
u is given by

zm =
√
PmD

−α
2

m h∗bm,1Wbmsbm +
∑

q∈{m,p}

√
Pq

∑
xq∈Ψq\bm

||xq||−α
2 g∗xq,1Wxqsxq + nm,

(4.11)

where bm is the serving macro BS at a distanceDm, which is servingM ′
m other users

simultaneously, hbm,1 ∼ CN (0Km×1, IKm) and gxq,1 ∼ CN (0Kq×1, IKq) are the

desired and interference channel vectors from the tagged BS bm and the interfering

BS at xq , respectively, nm ∼ CN (0, σ2) is the AWGN, sbm = [sbm,i]1≤i≤M ′

m+1 ∈
C(M ′

m+1)×1 is the signal vector transmitted from bm to its M ′
m+1 served users with

the symbol sbm,1 intended for u, and Wbm = [wbm,i]1≤i≤(M ′

m+1) ∈ CKm×(M ′

m+1) is

the corresponding precoding matrix.

Let the channel vectors from the tagged BS bm to its M ′
m users other than

u be represented by [ hbm,i ]2≤i≤M ′

m+1, and the interference channel vector from

the tagged BS to O = min(Qm, Km − Tmin) pico users chosen for interference

nulling by F = [ fi ]1≤i≤O ∈ CKm×O. Under the perfect CSI assumption, ZF

precoding vectors Wbm = [wbm,i]1≤i≤(M ′

m+1) are designed such that |h∗bm,jwbm,j|2
is maximized for each j = 1, 2, . . . ,M ′

m + 1, while satisfying the orthogonality

conditions h∗bm,jwbm,i = 0 for ∀i �= j and f∗i wbm,j = 0, ∀i = 1, 2, . . . ,O, ∀j =

1, 2, . . . ,M ′
m + 1. It can be achieved by choosing wbm,i in the direction of the

projection of hbm,i on Null
(
[ hbm,j ]1≤j≤(M ′

m+1),j �=i, [ fi ]1≤i≤O
)
. The nullspace is

Km −M ′
m − O dimensional. Under Rayleigh fading, the desired channel power

βbm = |h∗bm,1wbm,1|2 ∼ Gamma(Δm, 1), where Δm = Km − M ′
m − O [112].

Given that an interfering macro BS at xm is serving Mm users simultaneously,

Wxm = [wxm,i]1≤i≤Mm ∈ CKm×Mm , and it is calculated independent of gxm,1.

Thus, g∗xm,1wxm,1, g∗xm,1wxm,2, . . . , g∗xm,1wxm,Mm are i.i.d. complex Gaussian RVs,

and their squared norms are i.i.d. exponential RVs. The interference channel power

ζxm = ||g∗xm,1Wxm||2 ∼ Gamma(Mm, 1), as it is a sum of Mm i.i.d. exponential

RVs [104].

A possible choice of Wbm = [wbm,i]1≤i≤(M ′

m+1) is the normalized columns of

H̃bm(H̃
∗
bmH̃bm)

−1, which is a pseudo inverse of H̃
∗
bm , where H̃bm = [h̃bm,i]1≤i≤(M ′

m+1) ∈
CKm×(M ′

m+1), h̃bm,i = (IKm − F(F∗F)−1F∗)hbm,i, being the projection of hbm,i on
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the nullspace of F = [ fi ]1≤i≤O.

Similarly, the received signal zp at u when u ∈ Φp
u is

zp =
√
PpD

−α
2

p h∗bp,1Wbpsbp +
∑

q∈{m,p}

√
Pq

∑
xq∈Ψq\{vm,bp}

||xq||−α
2 g∗xq,1Wxqsxq + ξ + np,

(4.12)

where

ξ =

{
0, if u ∈ χ√
PmV

−α
2

m g∗vm,1Wvmsvm , if u /∈ χ; (4.13)

bp is the serving pico BS at a distance Dp, which is serving M ′
p other users simul-

taneously; np ∼ CN (0, σ2) is AWGN, vm is the nearest active macro BS to u at

a distance Vm, which receives an interference-nulling request from u. The ZF pre-

coding vectors Wbp = [wbp,i]1≤i≤(M ′

p+1) are given by the normalized columns of

Hbp(H
∗
bpHbp)

−1, where Hbp = [hbp,i]1≤i≤(M ′

p+1) ∈ C
Kp×(M ′

p+1) is the channel matrix

from the tagged BS bp to its M ′
p + 1 served pico users. The desired channel power

βbp = ||h∗bp,1Wbp ||2 = |h∗bp,1wbp,1|2 ∼ Gamma(Δp, 1), where Δp = Km −M ′
p, and

the interference channel power ζxp = ||g∗xp,1Wxp||2 ∼ Gamma(Mp, 1) given that

the interfering pico BS at xp is serving Mp users simultaneously.

4.2.4 Distance to the Serving BS and the BS Receiving Interfer-
ence Nulling Request

The distance Dl to the serving BS from a typical user u ∈ Φl
u is a RV, and the

corresponding PDFs for each l ∈ {m, p} are derived in the following lemma.

Lemma 9. The PDF fDm(r) of the distanceDm between the serving macro BS and

a typical user u when u ∈ Φm
u is given by

fDm(r) =
2πλm
Am

r exp(−π(λm + λp/ρ
2)r2), (4.14)

and the PDF fDp(r) of the distance Dp between the serving pico BS and a typical

user u when u ∈ Φp
u is given by

fDp(r) =
2πλp
Ap

r exp(−π(λmρ2 + λp)r
2). (4.15)
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Proof. Given that u ∈ Φm
u , Dm is the distance to the nearest macro BS from u. The

cumulative distribution function (CDF) FDm(r) = P(Dm ≤ r) is thus given by

FDm(r) = P(Xm ≤ r|u ∈ Φm
u ) =

P(Xm ≤ r, u ∈ Φm
m)

P(u ∈ Φm
u )

=
1

Am

∫ r

0

P

(
Xp >

y

ρ

)
fXm(y)dy. (4.16)

By differentiating (4.16) with respect to r, we obtain

fDm(r) =
dFDm(r)

dr
=

1

Am

P

(
Xp >

r

ρ

)
fXm(r). (4.17)

The final expression of fDm(r) in (4.14) is obtained by using the probability distri-

butions ofXm andXp, which are Rayleigh RVs with mean 1/(2
√
λm) and 1/(2

√
λp),

respectively. The PDF fDp(r) in (4.15) is similarly derived.

Another quantity of interest is the distance Vm between a typical pico user in

service and its nearest active macro BS to which it requests interference nulling.

Lemma 10. The conditional PDF of the distance Vm between a typical user u ∈ Φp
u

and the macro BS to which it request interference nulling, given that its distance to

the serving pico BS is Dp = r, is given by

fVm|Dp(r1|r) = 2πpmλmr1 exp
(−πpmλm(r21 − ρ2r2)

)
, r1 > ρr. (4.18)

Proof. Given that u ∈ Φp
u, Vm is the distance to the nearest active macro BS. The

conditional CCDF of Vm is thus given by

F̄Vm|Dp(r1|r) = P(X ′
m ≥ r1|u ∈ Φp

u, Dp = r) = P(X ′
m ≥ r1|Xm > ρr), (4.19)

where X ′
m = min

xm∈Ψm

‖xm‖ is the distance from the origin to the nearest active

macro BS. The condition Xm > ρr implies that no points of Φm are within a circle

of radius ρr. Thus, no points of Ψm as well are within ρr because Ψm is the

thinned version of Φm. Since X ′
m is the distance to the nearest active macro BS,

P(X ′
m ≥ r1) = P(No active macro BS is closer than r1). Thus, given that no active

macro BS is closer than ρr, the probability of no active macro BS closer than r1 is

equal to the probability that no points of Ψm are within an annulus centered at the
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origin with inner radius ρr and outer radius r1. The conditional CCDF F̄Vm|Dp(r1|r)
thus can be expressed as

F̄Vm|Dp(r1|r) = exp
(−πpmλm(r21 − ρ2r2)

)
. (4.20)

The conditional PDF of Vm in (4.18) is obtained by differentiating (4.20) with re-

spect to r1.

4.3 SINR Coverage Analysis

The SINR coverage probability is defined as the probability that the SINR of a

typical user is greater than a threshold γ, which is a minimum SINR level re-

quired to establish the connection. Mathematically, the SINR coverage is defined

as P(γ) = P(SINR > γ), where the SINR of a typical user is given by SINR =∑
l∈{m,p} 1(u ∈ Φl

u) SINRl. From (4.11) and (4.12) and the discussion that follows,

the SINR of a typical user u at the origin when it belongs to Φl
u can be expressed as

SINRl =
PlβblD

−α
l

Ibl,m + Ibl,p + σ2
, ∀l ∈ {m, p}, (4.21)

where Ibl,m and Ibl,p are the interference powers from the macro and pico tiers,

respectively when u ∈ Φl
u, l ∈ {m, p}, and are given by

Ibm,m = Pm

∑
xm∈Ψm\bm

ζxm||xm||−α,

Ibm,p = Pp

∑
xp∈Ψp

ζxp||xp||−α,

Ibp,m =

⎧⎪⎪⎨
⎪⎪⎩
Pm

∑
xm∈Ψm\vm

ζxm||xm||−α if u ∈ χ

Pm

∑
xm∈Ψm

ζxm||xm||−α if u /∈ χ,

Ibp,p = Pp

∑
xp∈Ψp\bp

ζxp||xp||−α. (4.22)

By using the law of total probability, the SINR coverage probability of a typical

user u is

P(γ) = Pm(γ)Am + Pp(γ)Ap, (4.23)
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where Al = P(u ∈ Φl
u), l ∈ {m, p} is the tier association probability derived in

Section 4.2.1, and Pm(γ) = P(SINRm > γ|u ∈ Φm
u ), and Pp(γ) = P(SINRp >

γ|u ∈ Φp
u) are the conditional coverage probabilities of the user u when associ-

ated with the macro and pico tiers, respectively. In order to evaluate the coverage

probability, we first derive the LT of the total interference power received by u.

Lemma 11. The LT LIbp
(s) of the total interference power Ibp = Ibp,m + Ibp,p

received by u when u ∈ Φp
u conditional on Dp = r and Vm = r1 is given by

LIbp
(s) =

(
ϕL1

Ibp,m
(s) + (1− ϕ)L2

Ibp,m
(s)
)
LIbp,p

(s), (4.24)

where L1
Ibp,m

(s) = LIbp,m
(s|u ∈ χ), and L2

Ibp,m
(s) = LIbp,m

(s|u /∈ χ) are the LTs

of Ibp,m conditional on u ∈ χ and u /∈ χ, respectively, and LIbp,p
(s) is the LT of

Ibp,p. The LTs are given by

L1
Ibp,m

(s) = exp

{
− πpmλmr

2
1

( Lm
max∑

i=1

P(Mm = i)

× 2F1

[
i,− 2

α
,
α− 2

α
,−Pms

rα1

]
− 1

)}
, (4.25)

L2
Ibp,m

(s) = exp

{
− πpmλmρ

2r2
( Lm

max∑
i=1

P(Mm = i)

× 2F1

[
i,− 2

α
,
α− 2

α
,− Pms

ραrα

]
− 1

)}
, (4.26)

LIbp,p
(s) = exp

{
− πppλpr

2

( Lp
max∑

i=1

P(Mp = i)

× 2F1

[
i,− 2

α
,
α− 2

α
,−Pps

rα

]
− 1

)}
, (4.27)

where 2F1(a, b, c, z) is the Gauss Hypergeometric function [113].

Proof. The proof is given in Appendix B.1.

Similarly, the LT of Ibm = Ibm,m + Ibm,p conditional on Dm = r can be derived

as LIbm
(s) = LIbm,m

(s)LIbm,p
(s), where

LIbm,q
(s) = exp

{
− πpqλq�

2
m,q

( Lq
max∑

i=1

P(Mq = i)

× 2F1

[
i,− 2

α
,
α− 2

α
,− Pq

�α
m,q

s
]
− 1

)}
, ∀q ∈ {m, p}, (4.28)
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with �m,m = r and �m,p = r/ρ.

Having derived the LTs, we now evaluate the conditional coverage probability

when u ∈ Φl
u, Pl(γ) = P

(
Plβbl

D−α
l

Ibl+σ2 > γ|u ∈ Φl
u

)
, ∀l ∈ {m, p}. Conditioned on

Dl = r, Vm = r1 and Δl = n, we have

Pl(γ|r, r1,Δl = n) =

n−1∑
l=0

(γrα/Pl)
l

l!
EIbl

[
(Ibl + σ2)l exp

(
−γr

α

Pl
(Ibl + σ2)

)]
(4.29)

=

n−1∑
l=0

(−s)l
l!

dl

dsl

(
e−sσ

2LIbl
(s)
) ∣∣∣∣s= γrα

Pl

, (4.30)

where the first equality follows from the distribution Gamma(n, 1) of βbl for a given

Δl = n, and the second is obtained by applying the differentiation property of LT.

The LTs in (4.25)-(4.28) are composite functions. Thus, (4.30) requires evaluating

lth derivatives of composite functions. These derivatives can be computed by us-

ing Faà di Bruno’s formula. In this paper, Faà di Bruno’s formula is expressed in

terms of integer partition. Please note that in contrast to set partition version used

in [107], the integer partition version greatly reduces the number of summations,

thereby reducing the complexity of the numerical computation. Before introducing

the formula, we first introduce the required integer partition notations.

4.3.1 Integer Partition and Faà di Bruno’s Formula

Integer partition is a partition of a positive integer n as a sum of positive integers.

The set of all possible partitions of n is represented by Ωn, and the number of

partitions is denoted by P(n). For example, the integer 4 can be partitioned in 5

distinct ways,

Ω4 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1}}.

Thus, P(4) = 5. Let ωn
i denotes the number of elements in the ith partition pni of

n. Also, let μn
ij denotes the number of positive integer j ∈ {1, 2, . . . , n} in that

partition, and anik denotes the kth element (k ∈ {1, 2, . . . , ωn
i }).

Example: For the second partition of integer 4 in Ω4, i.e., p42 = {3, 1}, we have

ω4
2 = 2, μ4

21 = 1, μ4
22 = 0, μ4

23 = 1, μ4
24 = 0, a421 = 3, a422 = 1. For any partition

pni , we have the properties
∑n

j=1 jμ
n
ij = n and

∑n
j=1 μ

n
ij = ωn

i .
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Faà di Bruno’s formula for the lth derivative of the composite function y(t(s))

in terms of integer partition can be expressed as

y(l)s (t(s)) =

P(l)∑
o=1

clo y
(ωl

o)
t(s) (t(s))

l∏
q=1

(
t(q)s (s)

)μl
oq , (4.31)

where

clo =
l!∏ωl

o
k=1 a

l
ok!
∏l

q=1 μ
l
oq!
,

and y(k)t(s)(t(s)) is the kth derivative of the function y(t(s)) with respect to t(s).

Theorem 2. The coverage probability of a typical pico user u in the interference-

limited scenario, i.e., σ2 = 0, is given by

Pp(γ) = ϕT1(γ) + (1− ϕ)T2(γ), (4.32)

where T1(γ) = P(SINRp > γ|u ∈ Φp
u, u ∈ χ) is the conditional coverage proba-

bility of a typical pico user u when u ∈ χ, which can be computed as

T1(γ) = 2pmλm
λp
Ap

∫ 1
ρ

θ=0

⎡
⎣Lp

max−1∑
k=0

P(M
′

p = k)

Kp−k−1∑
l=0

γl

l!
θαl+1

P(l)∑
o=1

clo(−1)ω
l
o

l∏
q=1

(
pmλmδ

q Ξm
q (δ, θ, γ) +

ppλp
θαq−2

Ξp
q (1, 1, γ)

)μl
oq

Γ(ωl
o + 2)

(
pmλm Ξ

m
0 (δ, θ, γ) + ppλpθ

2 Ξp
0 (1, 1, γ)

+(1− pm)λmρ
2θ2 + (1− pp)λpθ

2
)−(ωl

o+2)
]
dθ, (4.33)

and T2(γ) = P(SINRp > γ|u ∈ Φp
u, u /∈ χ), the conditional coverage probability

of a typical pico user u when u /∈ χ, can be computed as

T2(γ) =
λp
Ap

Lp
max−1∑
k=0

P(M
′

p = k)

Kp−k−1∑
l=0

γl

l!

P (l)∑
o=1

clo(−1)ω
l
o

l∏
q=1

(
pmλmδ

q

ραq−2
Ξm
q

(
δ,
1

ρ
, γ

)
+ ppλp Ξ

p
q (1, 1, γ)

)μl
oq

Γ(ωl
o + 1)

(
pmλmρ

2 Ξm
0

(
δ,
1

ρ
, γ

)
+ ppλp Ξ

p
0 (1, 1, γ)

+(1− pm)λmρ
2 + (1− pp)λp

)−(ωl
o+1)

. (4.34)
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The function Ξl
q(ς, κ, ε) in the above equations is defined as

Ξl
q(ς, κ, ε) =

Ll
max∑

i=1

(
(i)q(− 2

α
)q

(α−2
α
)q

2F1

[
i+ q,− 2

α
+ q,

α− 2

α
+ q,−ςκαε

]
P(Ml = i)

)
,

(4.35)

(a)q is a Pochhammer symbol, and δ = Pm/Pp.

Proof. The proof is given in the Appendix B.2.

Remark 1. The number of other users served by the BS which is serving the typical

user u ∈ Φl
u is given by M ′

l = min(U ′l , L
l
max − 1), where U ′l is the number of

other users in the Voronoi cell to which the user u belongs. The PMF of U ′l can be

derived in the same way as Q′m in the proof of Lemma 3, and is given by P(U
′

l =

n) = (n+ 1)P(Ul = n+ 1)/E[Ul]. The PMF of M ′
l is thus different from (4.6) and

is given by

P(M ′
l = n) =

⎧⎪⎪⎨
⎪⎪⎩
P(U ′l = n), 0 ≤ n < Ll

max − 1

1−
Ll

max−2∑
k=1

P(U ′l = k), n = Ll
max − 1,

∀l ∈ {m, p}.

(4.36)

For the special case of Ll
max = 1, P(M ′

l = 0) = 1, ∀l ∈ {m, p}.

Theorem 3. The coverage probability of a typical macro userPm(γ) in the interference-

limited scenario is given by

Pm(γ) =
λm
Am

Lm
max−1∑
k=0

P(M ′
m = k)

Km−k∑
n=Tmin−k

P(Δm = n|M ′
m = k)

n−1∑
l=0

γl

l!

P(l)∑
o=1

clo(−1)ω
l
o

l∏
q=1

(
pmλmΞ

m
q (1, 1, γ) + ppλp

ραq−2

δq
Ξp
q

(1
δ
, ρ, γ

))μl
oq

Γ(ωl
o + 1)

(
pmλmΞ

m
0 (1, 1, γ) +

ppλp
ρ2

Ξp
0

(
1

δ
, ρ, γ

)

+(1− pm)λm + (1− pp)
λp
ρ2

)−(ωl
o+1)

, (4.37)

where the conditional PMF of Δm conditioned on M ′
m = k for Tmin < Km is given
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by

P(Δm = n|M ′
m = k) =

⎧⎪⎨
⎪⎩1−

Km−Tmin−1∑
v=0

P(Qm = v), n = Tmin − k

P(Qm = Km − k − n), Tmin − k + 1 ≤ n ≤ Km − k.
(4.38)

For the special case of Tmin = Km which implies no interference nulling, Δm =

Km −M ′
m, thus P(Δm = Km − k|M ′

m = k) = 1.

Proof. Pm(γ) is derived in the same way as T2(γ). However, since Δm = Km −
M ′

m−min(Qm, Km−Tmin) is a function of the two RVs M ′
m and Qm, decondition-

ing with respect to Δm is achieved in two steps, first averaging over the conditional

PMF of Δm for the given M ′
m, and then averaging over the PMF of M ′

m. The

conditional PMF of Δm is derived as follows:

For Tmin < Km,

Δm = Km −M ′
m −min(Qm, Km − Tmin)

= max(Km −M ′
m −Qm, Tmin −M ′

m)

=

{
Tmin −M ′

m if Qm ≥ Km − Tmin

Km −M ′
m −Qm otherwise.

(4.39)

Thus,

P(Δm = n|M ′
m = k) =

{
P(Qm ≥ Km − Tmin), n = Tmin − k

P(Qm = Km − k − n), 0 ≤ (Km − k − n) < Km − Tmin.

(4.40)

Further simplification results in (4.38).

Remark 2. For the special case of Lm
max = Lp

max = 1,

Pp(γ) = Pp(γ|M ′
p = 0) = ϕT1(γ|M ′

p = 0) + (1− ϕ)T2(γ|M ′
p = 0), (4.41)

Pm(γ) = Pm(γ|M ′
m = 0), (4.42)

where for each l ∈ {m, p},

Ξl
q(ς, κ, ε) = Ξq(ς, κ, ε) =

(1)q(− 2
α
)q

(α−2
α
)q

2F1

(
1 + q,− 2

α
+ q,

α− 2

α
+ q,−ςκαε

)
.

(4.43)
76



4.4 Rate Analysis

In this section, we analyze the achievable downlink rate of a typical user. We derive

the CCDF of downlink rate, also defined as the rate coverage, and the average rate

of a typical user.

With adaptive modulation so that the Shannon limit can be achieved and inter-

ference treated as noise, the data rate of a typical user u is given by

R =
∑

l∈{m,p}
SlW log2(1 + SINRl)1(u ∈ Φl

u), (4.44)

where Sl is the fraction of resources received by u when u ∈ Φl
u. For each l ∈

{m, p}, given that U ′l is the number of other users in the cell to which the user

u belongs, the total users in the tagged cell are U ′l + 1. We assume one RB per

time slot with total bandwidth W , and at most Ll
max users served simultaneously

in each RB through spatial multiplexing. Thus, if the total number of users in the

tagged cell is less than Ll
max (i.e., U ′l + 1 < Ll

max), each user can utilize the entire

bandwidth W without sharing; thus, Sl = 1. However, if U ′l + 1 is no less than

Ll
max (i.e., U ′l + 1 ≥ Ll

max), we assume that the time-frequency resources are shared

equally among the total users; thus, Sl = Ll
max/(U

′
l + 1). Hence, the fraction of

resources received by u ∈ Φl
u hence can be expressed as

Sl = min

(
Ll

max

U ′l + 1
, 1

)
.

Theorem 4. The CCDF of the downlink rate of a typical user u,R(υ) = P(R > υ)

can be expressed as R(υ) = AmRm(υ) + ApRp, where Rl(υ) = P(SlW log2(1 +

SINRl) > υ) is the rate distribution of u ∈ Φl
u, and is given by

Rl(υ) =

Ll
max−2∑
k=0

Pl

(
2υ/W − 1 |M ′

l = k
)
P(U ′l = k)

+
∑

k≥Ll
max−1

Pl

(
2

υ
W

(k+1)

Ll
max − 1

∣∣M ′
l = Ll

max − 1

)
P(U ′l = k) (4.45)

Proof. By using (4.44), we have

P(R > υ) =
∑

l∈{m,p}
P(u ∈ Φl

u)P(SlW log2(1+SINRl) > υ) = AmRm(υ)+ApRp,
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where Al = P(u ∈ Φl
u) and

Rl(υ) = P(W log2(1 + SINRl) > υ, U ′l ≤ Ll
max − 2)

+ P

(
Ll

max

U
′

l + 1
W log2(1 + SINRl) > υ, U ′l ≥ Ll

max − 1

)

=

Ll
max−2∑
k=0

P(SINRl > 2υ/W − 1|U ′l = k)P(U ′l = k)

+
∑

k≥Ll
max−1

P(SINRl > 2
υ
W

(k+1)

Ll
max − 1|U ′l = k)P(U ′l = k). (4.46)

Since M ′
l = min(U ′l , L

l
max − 1),

P(SINRl > γ|U ′l = k) =

{
P(SINRl > γ|M ′

l = k), 0 ≤ k ≤ Ll
max − 2

P(SINRl > γ|M ′
l = Ll

max − 1), k ≥ Ll
max − 1.

Equation (4.45) then follows immediately where Pl(γ|M ′
l = k) = P(SINRl >

γ|u ∈ Φl
u,M

′
l = k) is the conditional SINR coverage probability of u ∈ Φl

u for

given M ′
l = k.

For the special case of Ll
max = 1, the rate distribution of u ∈ Φl

u further simpli-

fies to

Rl(υ) =
∑
k≥0

Pl

(
2

υ
W

(k+1) − 1
)
P(U ′l = k). (4.47)

After deriving the rate distribution, which gives us an idea of the average fraction

of users in the network with a rate greater than a given threshold at any time, next

we derive the average rate that can be achieved by any randomly chosen user.

Theorem 5. The average data rate R̄ = E[R] of a typical user u is given by R̄ =

AmR̄m + ApR̄p where R̄l = E[SlW log2(1 + SINRl)] is the average data rate of u

when it belongs to Φl
u, and is given by

R̄l =
W

ln 2

∫ ∞

0

1

1 + y

[ Ll
max−2∑
k=0

Pl (y |M ′
l = k )P(U ′l = k)

+Ol Pl

(
y
∣∣M ′

l = Ll
max − 1

) ]
dy, ∀l ∈ {m, p}, (4.48)
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where

Ol =
Ll

maxλl
Alλu

(
1−
(
1 + 3.5−1Alλu/λl

)−3.5)

− 3.53.5

Γ(3.5)

Ll
max−1∑
k=1

Γ(3.5 + k)
(

Alλu

λl

)k−1
Ll

max

k!(Alλu

λl
+ 3.5)3.5+k

, ∀l ∈ {m, p}. (4.49)

Proof. From (4.44), E[R] =
∑

l∈{m,p}
P(u ∈ Φl

u)E[SlW log2(1+SINRl)] = AmR̄m+

ApR̄p, where

R̄l = W

Ll
max−2∑
k=0

E [log2(1 + SINRl)|U ′l = k]P(U ′l = k)

+W
∑

k≥Ll
max−1

Ll
max

k + 1
E [log2(1 + SINRl)|U ′l = k]P(U ′l = k) (4.50)

E[log2(1 + SINRl)] can be computed as 1/(ln 2)
∫∞
0

P(SINRl > y)(1 + y)−1 dy.

Also, we have M ′
l = min(U ′l , L

l
max − 1). Thus,

R̄l =
W

ln 2

∫ ∞

0

1

1 + y

[ Ll
max−2∑
k=0

P(SINRl > y|M ′
l = k)P(U ′l = k)

+

( ∑
k≥Ll

max−1

Ll
max

k + 1
P(U ′l = k)

)
︸ ︷︷ ︸

Ol

P(SINRl > y|M ′
l = Ll

max − 1)

]
, (4.51)

where Ol can be further simplified as

Ol =

∞∑
k=1

Ll
max

k
P(U ′l = k − 1)−

Ll
max−1∑
k=1

Ll
max

k
P(U ′l = k − 1). (4.52)

Equation (4.49) is obtained by substituting P(U
′

l = k) = (k + 1)P(Ul = k +

1)/E[Ul], k ≥ 0, where the first summation is simplified by using
∑∞

k=1 P(Ul =

k) = 1− P(Ul = 0).

For the special case of Ll
max = 1, the average data rate of u ∈ Φl

u further

simplifies to

R̄l = Ol
W

ln 2

∫ ∞

0

Pl (y)

1 + y
dy. (4.53)
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4.5 Impact of Limited Feedback on the Performance
of Interference Nulling

The results so far have been derived based on the perfect CSI assumption. However,

in practical systems, the CSI is never perfectly accurate. In frequency division

duplex systems, the downlink CSI is fed back by the users to serving BSs. Due

to the limited feedback, the BSs receive quantized CSI. In this section, we analyze

the impact of the quantization error due to limited feedback on the performance

of interference nulling. As the focus is on interference-nulling performance, we

consider Lm
max = Lp

max = 1.

4.5.1 Limited Feedback Model for Lm
max = Lp

max = 1

The feedback model is similar to the one used in [30, 31], where the quantized

channel direction information (CDI) is fed back by using a quantization codebook

of 2B unit norm vectors, where B is the number of feedback bits. The codebook

is known at both the transmitter and the receiver. Each user feeds back the index

of the codeword closest to its channel direction, measured by the inner product.

For example, a typical user, when it belongs to the macro tier, uses the codebook

Cm = {cm,j : j = 1, 2, . . . , 2Bm} of size 2Bm to quantize the channel direction

h̃bm,1 =
hbm,1

||hbm,1|| from its serving maco BS bm. The quantized channel direction is

ĥbm,1 = arg max
cm,j∈Cm

∣∣∣h̃∗bm,1cm,j

∣∣∣ .
Similarly, the typical user, when it belongs to the pico tier, uses the codebook Cp =
{cp,j : j = 1, 2, . . . , 2Bp} of size 2Bp to quantize the channel direction from its

serving pico BS bp, and the codebook Cm = {cm,j : j = 1, 2, . . . , 2Bm} to quantize

the channel direction from its nearest active macro BS vm. Other pico users which

request vm for interference nulling, as well as the user served by vm, also employ

codebooks of size 2Bm , but the codebooks differ from user to user to avoid the

possibility of receiving the same quantization vector index from different users.

The codebooks are generated by using random vector quantization [114], where

each vector cm,j is independently chosen from the isotropic distribution on theKm−
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dimensional unit sphere, and each vector cp,j from the isotropic distribution on the

Kp− dimensional unit sphere.

Since the precoding vectors are now based on quantized CDIs, for the typi-

cal user u ∈ Φm
u served by the macro BS bm, the desired channel power gain

β̂bm ∼ Gamma(Δm, κm), where Δm = Km − min(Qm, Km − Tmin), κm = 1 −
2BmBeta(2Bm , Km

Km−1) [30]. However, as the precoding vector of the interfering BS

at xq ∈ Ψq\bm, q ∈ {m, p} is independent of the channel to the typical user u, the

interference channel power gain ζ̂xq is still distributed as Gamma(1, 1), i.e., Exp[1].

Similarly, for the typical user u ∈ Φp
u served by the pico BS bp, the desired channel

power gain β̂bp ∼ Gamma(Δp, κp), where Δp = Kp, κp = 1−2BpBeta(2Bp , Kp

Kp−1).

The interference channel power gain from each interfering BS other than vm is dis-

tributed as Exp[1]. If vm does not apply interference nulling, the interference chan-

nel power gain from vm, ζ̂vm is also distributed as Exp[1]. However, if vm applies

nulling, unlike the perfect CDI case, where the interference from vm is completely

nulled, there will be residual interference due to the quantization error. The inter-

ference channel power gain in this case is approximated as an exponential RV with

mean κI = 2−
Bm

Km−1 [30]. Thus,

ζ̂vm ∼
{

Exp[1/κI ], if u ∈ χ
Exp[1], if u /∈ χ. .

The SINR of the typical user u can be expressed as

SINRl =
Plβ̂blD

−α
l

Îbl,m + Îbl,p + σ2
, ∀l ∈ {m, p}, (4.54)

where

Îbl,m = Pm

∑
xm∈Ψm\bl

ζ̂xm||xm||−α, Îbl,p = Pp

∑
xp∈Ψp\bl

ζ̂xp||xp||−α. (4.55)

Theorem 6. With limited feedback, the coverage probability of a typical pico user

u in the interference-limited scenario, i.e., σ2 = 0 is given by

Pp,LF (γ) = T1,LF (γ)ϕ+ T2,LF (γ)(1− ϕ), (4.56)

where T1,LF (γ) is the coverage probability of a typical pico user u with limited
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feedback when u ∈ χ, given by

T1,LF (γ) =2pmλm
λp
Ap

∫ 1
ρ

θ=0

Kp−1∑
l=0

(
γ

κp

)l

θαl+1
l∑

v=0

(δκI)
l−v

v!(1 + δκIγ/κpθα)l−v+1

P(v)∑
o=1

cvo(−1)ω
v
o

l∏
q=1

(
pmλmδ

qΞq

(
δ, θ,

γ

κp

)
+

ppλp
θαq−2

Ξq

(
1, 1,

γ

κp

))μv
oq

Γ(ωv
o + 2)

(
pmλmΞ0

(
δ, θ,

γ

κp

)
+ ppλpθ

2Ξ0

(
1, 1,

γ

κp

)
+(1− pm)λmρ

2θ2 + (1− pp)λpθ
2
)−(ωv

o+2)
dθ, (4.57)

and T2,LF (γ) = T2 (γ/κp) is the coverage probability of a typical pico user u with

limited feedback when u /∈ χ, expressed in terms of the corresponding probability

for perfect CSI, T2(·). Similarly, with limited feedback, the coverage probability

of a typical macro user u in the interference-limited scenario is given Pm,LF (γ) =

Pm (γ/κm) where Pm(·) is the corresponding probability for perfect CSI.

Proof. The proof is given in Appendix B.3.

Note that T2,LF (γ) and Pm,LF (γ) reduce to T2(γ) and Pm(γ), respectively, i.e.,

the perfect CSI case if κm = κp = 1. Similarly, if κp = 1 and κI = 0, by using

00 = 1, T1,LF (γ) also reduces to T1(γ).

After deriving the coverage probabilities for limited feedback, the rate coverage

and average rate can be obtained by using Theorem 3 and 4, respectively, with Pl(·)
replaced by Pl,LF (·).

4.6 Simulation and Numerical Results

In this section, we first validate our analytical results via Monte Carlo simulations

on a square window of 20× 20 Km2. After validation, we present some numerical

analysis to provide insights on the optimal performance. Unless otherwise stated,

we set δ = Pm/Pp = 100, λm = 1BS/Km2 and W = 1 MHz. We focus on the

interference-limited scenario, and hence ignore noise (i.e., σ2 = 0).

In Figure 4.1, the average data rate from Theorem 5 is validated for different

system configurations. We assumed perfect CSI in this case. The analytical and
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Figure 4.1: Validation of the average user data rate (Theorem 5) for per-
fect CSI via Monte Carlo simulations for different values of λp, η and
(Km, L

m
max, Tmin, Kp, L

p
max).

simulation results match with each other quite well in the figure. Note that the

validation of Theorem 4 for perfect CSI naturally validates the conditional SINR

distributions derived in Theorem 2 and 3. In Figure 4.1, the average data rate de-

creases with an increase in user density λu because of the increase in interference

and the decrease in users’ share of resources. The interference power increases with

an increase in user density because more BSs become active, and the average chan-

nel power gain from an interfering BS, which is a function of the number of users

simultaneously served in a given time slot, also increases as this BS has to serve

more users, until the number of users exceeds Ll
max.

We next validate the data rate distribution from Theorem 4 in Figure 4.2 for both

the perfect CSI and limited feedback scenarios, thereby validating the SINR distri-

bution for limited feedback in Theorem 6 as well. The impact of limited feedback

on the performance will be discussed later.

In Figure 4.3, we analyze the impact of interference nulling on the SINR cover-

age probability of a typical user, where Tmin = Km implies no interference nulling

employed. The figure reveals that with properly chosen Tmin, the SINR coverage
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CSI and limited feedback via Monte Carlo simulations: Km = 12, Kp = 4, Lm

max =
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max = 1, Tmin = 2, λu = 10λm, α = 3.5, η = 15dB.

can be improved with interference nulling. For example, if the required SINR level

for a typical user to be under coverage is 0 dB, the average fraction of users under

coverage improves from 61% to 70% with interference nulling for the λu = 6λm,

η = 15 dB case in Figure 4.3. The performance gain, however, decreases with

an increasing threshold. At smaller values of thresholds, as interference nulling

improves the SINRs of poor cell-edge pico users lacking coverage due to strong

interference from their corresponding nearest active macro BSs, the coverage prob-

ability of the pico users significantly improves. On the other hand, we know that the

SINR of a typical macro user degrades due to interference nulling as it costs the user

its available degree of freedom. At lower values of SINR thresholds, the degrada-

tion in SINR is, however, not significant enough to impact its coverage probability.

Thus, the overall gain in coverage probability is high at smaller threshold levels.

However, at larger threshold values, the users under coverage are basically those in

the cell interior. Thus, interference nulling may not significantly improve the al-
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Figure 4.3: Impact of Tmin on coverage probability: Km = 14, Lm
max = 4, Kp =

6, Lp
max = 4, λp = 6λm, α = 3.5.

ready high SINR of cell-interior pico users, resulting in very minimal improvement

in pico coverage probability. The SINR degradation of macro users due to interfer-

ence nulling, which do not have any significance on macro coverage probability at

lower thresholds eventually causes the coverage probability to degrade after certain

level. This degradation further reduces the overall gain in coverage probability due

to interference nulling.

To further clarify the above discussion, the coverage probability of a typical pico

user, which always has the interference from its nearest active macro BS nulled,

T1(γ) is compared against that of a pico user without any nulling at all, T2(γ) in

Figure 4.4. It is clearly visible that the gain in pico coverage probability due to

interference nulling decreases with an increasing threshold value. In Figure 4.3,

as compared to the case with λu = 6λm, η = 15 dB, the performance gain in the

overall coverage probability for λu = 10λm, η = 25 dB is relatively low. However,

in Figure 4.4, both cases have similar gains in pico coverage probability due to

interference nulling given that the nulling is performed for each pico user. Thus,

the reason for the lower performance gain for higher user density λu and higher η is
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the lack of sufficient resources for interference nulling. For λu = 6λm and η = 15

dB, with Tmin = 6, 83% of the pico users have interference from their corresponding

nearest active macro BSs nulled. In contrast, for higher user density of λu = 10λm

and higher η of 20 dB, with Tmin = 7, the fraction of interference nulled pico users

reduces to 53%.

Next, we investigate the optimal value of η to maximize the average user data

rate. η controls the number of users offloaded from the macro to the pico tier to

obtain a balanced distribution of the user load across tiers for the optimal user data

rate by better utilizing the radio resources in each tier. Meanwhile, since Tmin de-

termines the spatial degrees of freedom available for serving the macro users, as

well as the number of interference-nulled pico users, Tmin must be tuned according

to user offloading. Thus, η and Tmin must be jointly tuned to maximize the average

user data rate. The optimal pair (η, Tmin) for the given network configuration is in-

vestigated in Figure 4.5. The optimal pair is found to be (10 dB, 8) and (11 dB, 6)

for pico density λp = 4λm and λp = 6λm, respectively.

Figure 4.5 shows that the optimal Tmin decreases with the increase in pico den-
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sity for the given user density. Since the number of interference-nulling requests

received by a typical active macro BS is equal to the number of served pico users

within a typical Voronoi cell of active macro BSs, for the given user density the

number increases with the increase in the pico cell density. To ensure the resources

Km − Tmin are sufficient for increased requests without degrading the average user

rate, Tmin is reduced by the required amount.

The variation in the average rate with Tmin for the given value of η is plotted

in Figure 4.6. The average rate of the macro users increases with an increasing

Tmin because the spatial degrees of freedom available at each macro BS for serving

its own users increase with an increasing Tmin. In contrast, the average pico rate

decreases with an increasing Tmin because the number of pico users which get the

interference from their corresponding nearest active macro BSs nulled decreases

with an increasing Tmin. The net result is the initial increase in the average rate

with an increasing Tmin and the subsequent decrease beyond a certain value of Tmin.

As we can observe, the optimum Tmin shifts towards lower values as the value of

η increases. For example, for η = 3 dB, the optimum Tmin is 7, which decreases
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max = 4, α = 4.

to 6 for η = 11 dB and to 5 for η = 16 dB. With an increasing η, more users are

offloaded to the pico tier. Thus, allocating more antenna resources for interference

nulling is desirable.

In Figure 4.7, the CCDF of the data rate of a typical user corresponding to the

optimal pair (η, Tmin) which maximized the average data rate in Figure 4.5 for λp =

4λm and λp = 6λm is plotted. Let the 5th percentile rate R95, which corresponds

to the 5th percentile of the users with rate less than R95 (i.e., R(R95) = 0.95), be

considered as the cell edge data rate. For λp = 4λm and η = 10 dB, Tmin = 8, which

maximized the average data rate is found to improve the cell edge data rate from

7.2 × 104 bits/sec to 1.12 × 105 bits/sec as compared to that without interference

nulling. Similarly, for λp = 6λm, the cell edge data rate improves from 9.6 × 104

bits/sec to 1.68 × 105 bits/sec if interference nulling with Tmin = 6 is employed

corresponding to η = 11 dB.

In Figure 4.8, the average data rate is assessed for different values of Lm
max and

Lp
max with and without interference nulling employed. The curve corresponding
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to the interference nulling employed is plotted by computing the average rate with

optimum Tmin for each corresponding value of Lm
max and Lp

max. Note that ifLl
max = 1,

each active BS in the tier l ∈ {m, p} serves a single user chosen randomly in each

time-slot, and this multi-antenna technique is known as SU-BF. On the other end, if

Ll
max = Kl, each active BS serves a maximum ofKl users usingKl antennas, which

can be referred to as full-SDMA. Although full-SDMA in general means serving

Kl users with Kl antennas, in our case, the number of served users min(Nl, Kl) can

be less than Kl.

As Figure 4.9 reveals, the average data rate in the network can be significantly

improved by selecting a proper value of Lm
max compared to either SU-BF or full-

SDMA, and similarly a proper value of Lp
max. For the case with no interference

nulling employed, in which all the antennas at each macro BS are used for serving

its own users, the variation of Lm
max has little or no impact on the average rate from

Lm
max = 7 to Lm

max = 12. This result can be observed for each given value of

Lp
max because beyond Lm

max = 7, the number of macro users simultaneously served
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by a macro BS in each time-slot is limited by the number of users in that cell,

rather than Lm
max. This explanation is further corroborated by the fact that with

interference nulling employed, the optimum Tmin beyond Lm
max = 7 is found to be

the corresponding Lm
max itself, which is the minimum possible value of Tmin. Since

beyond Lm
max = 7, the number of macro users in a cell is typically less than Lm

max,

allocating antenna resources more than Lm
max for macro users would waste resources

as the performance can be improved through interference nulling by utilizing those

surplus resources.

For each possible value of Lp
max, the optimal pair (Lm

max, Tmin) which maximizes

the average data rate is found to be (6, 7). Since the average rate slightly degrades

for Lp
max = 4 as compared to Lp

max = 3 (not shown in the figure), overall the optimal

values of Lm
max,Tmin, and Lp

max are 6, 7, and 3, respectively.

After numerically analyzing the proposed SDMA scheme with interference nulling

for the perfect CSI, we now investigate the impact of limited feedback on the per-

formance. As explained in Section 4.5, each macro user feeds back Bm CSI bits
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to its home BS. In contrast, each pico user feeds back Bp CSI bits to its home BS

and Bm CSI bits to its nearest active macro BS if the BS is performing interference

nulling to the user. In Figure 4.9, the rate coverage performance for SU-BF with

interference nulling is plotted against Tmin for perfect CSI and limited feedback. Ir-

respective of the value of Bp, the performance loss due to limited feedback bits Bm

decreases with an increasing Tmin because the number of interference nulled pico

users decreases with increasing Tmin, where Tmin = Km implies zero interference

nulled users. Thus, the performance loss due to the residual interference resulting

from CSI imperfection also decreases. The consistent gap between the performance

curves for Bp = 20 and Bp = 10 with Bm kept constant at 30 throughout the Tmin

axis in Figure 4.9 indicates that the performance loss due to the limited number of

Bp does not depend on Tmin. This result makes sense as Bp is the number of bits fed

back by a pico user to its serving pico BS, and thus, has nothing to do with Tmin.

In Figure 4.10, the impact of the number of feedback bitsBm and Bp on the rate

coverage performance with and without interference nulling is investigated. As the
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number of feedback bits increases, the performance approaches the one with the

perfect CSI. Clearly, the impact of limited feedback bits Bm on the performance

is very high for the interference-nulling scenario as compared to the one without

nulling. Bm > 16, which is more than sufficient for the non-coordination case,

appears to be insufficient for interference nulling case to reap the full benefits of

nulling. Nevertheless, nulling does improve even with limited feedback as com-

pared to the non-coordination case. With no interference nulling employed, the

feedback bits Bm are only required for signal power boosting to the single user

being served in the cell and such processing is found to be less sensitive to CSI

errors as compared to interference nulling. If we observe the rate coverage curve

against Bp for the non-coordination case, Bp > 20 is near perfect. However, we

can observe a performance gap for interference nulling case even beyond Bp = 20

because of the limitation in Bm, which is considered to be 40 in this case.
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4.7 Conclusion

The downlink performance of multi-antenna HetNets with SDMA was analyzed, in

which the ZF precoding matrix at macro BS also considered interference nulling

to certain pico users. Further, the number of users served with SDMA in each cell

was a function of user distribution. Our results showed that the SINR and rate cov-

erage of victim pico users (those suffering strong interference from macro BS) can

be significantly improved with the proposed interference nulling scheme if Tmin is

carefully chosen. The optimal choice of Tmin was found to be coupled with asso-

ciation bias as Tmin determines the antenna resources available for serving macro

and interference nulling to pico users. The optimal (Tmin, η, ) for the average data

rate performance metric was thus investigated. The optimal values of Lm
max and Lp

max

which maximize the average data rate was also investigated and were found to out-

perform both SU-BF and full-SDMA. The impact of CSI quantization error on the

performance of interference nulling due to limited feedback was also analyzed. It

was observed that interference nulling is highly sensitive to CSI errors as the resid-

ual interference due to CSI imperfection significantly degrades the performance.

However, depending on the degree of CSI imperfection, the performance may still

be better than that without interference nulling.
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Chapter 5

Analysis of Error Probability in
Interference Limited Wireless
Networks

In this chapter1, we present mathematical frameworks for error performance analy-

sis in interference-limited networks such as cellular networks. Due to the increas-

ing irregularity in the spatial deployment of nodes in the emerging HetNets, we

employ the stochastic geometry approach by abstracting the node locations as a

homogeneous PPP. First, we characterize the average error probability of an in-

tended communication link with a given transmitter-receiver separation, which is

subject to interference from these Poisson distributed nodes. More specifically, we

develop uniform approximation (UA) for average error probability analysis, which

is highly accurate over the whole range of the signal-to-interference ratio (SIR). Er-

ror probability UAs for both single-antenna and MRC receivers are derived in this

chapter. Next, we evaluate the average error probability of any typical user in the

network, which is served by the node providing the maximum received power. The

Mellin transform (MT) based method is proposed in this case, which often yields a

closed-form solution. An example of binary phase shift keying (BPSK) modulation

is shown.
1This chapter has been published in the proceedings of the IEEE International Conference on Com-
munications (ICC) 2015 [115].
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5.1 Introduction

In large wireless networks with numerous nodes spatially distributed over very large

areas, such as cellular networks, the performance limiting factor is interference

rather than noise. The interference is a direct function of the spatial configuration

of the network on which the wireless propagation characteristics such as path loss,

shadowing and multipath fading are dependent upon. As cellular networks emerge

towards heterogeneous deployments, which are characterized by unplanned/random

locations of the nodes, the interference scenario becomes more complex, and com-

putation of the spatially averaged performance metrics becomes critical to derive

useful design insights. In Chapter 3 and Chapter 4, we analyzed the coverage and

achievable data rate of single- and multi-antenna HetNets for different BS-user as-

sociation and interference coordination schemes by using tools from stochastic ge-

ometry and point process theory. Apart from the coverage and rate, the effectiveness

of a wireless network is also characterized by its reliability, measured with metrics

such as error probability.

While coverage and rate performance of HetNets have been extensively ana-

lyzed [16–19, 48], the average error performance of such networks in the pres-

ence of co-tier and cross-tier interference is barely analyzed. There are only few

important work towards error probability analysis in the presence of interference

from randomly located network nodes [49–51, 67]. The authors in [49, 67] devel-

oped a comprehensive framework to characterize the error performance of a given

transmitter-receiver link subject to interference from network nodes distributed ac-

cording to a homogeneous PPP. However, the computation requires Monte-Carlo

simulations to average over the network interference which is shown to be a stable

RV. This requirement is eliminated in [50] where the authors derived a single-

integral expression for the average error probability. Since no closed-form solution

is available for the integral, it has to be evaluated numerically. It was further ex-

tended to multi-antenna receivers in [51], where the results were obtained in the

form of two-fold integral that reduces to a single integral only under special cases.

As an alternative to these semi-analytical solution and complex integral expres-
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sions, in this chapter, we develop a UA approach to average error probability anal-

ysis of the desired link in the Poisson field of interferers. In cellular networks

with frequency reuse 1, which is the main characteristic of next-generation wireless

standards such as LTE-Advanced for higher spectral efficiency, the performance is

limited by interference, rather than noise. We thus focus on interference-limited

scenarios and derive error probability UAs for both single-antenna and MRC re-

ceivers. The approximation is named “uniform” to reflect its excellent accuracy

over the whole range of SIR. We originally proposed the concept of UA for wire-

less performance analysis in [116, 117].

After deriving UA for the average error probability of a given link with a deter-

ministic transmitter-receiver distance r0 in Section 5.2, we next evaluate the aver-

age error probability of any typical user in a downlink cellular network with max-

imum received power based BS-user association in Section 5.3. In this case, the

transmitter-receiver distance is no longer deterministic. The error performance of

downlink cellular networks for the shortest-distance based BS-user association is

analyzed in [118]. The mathematical framework we develop in this chapter for

interference-limited scenario is, however, more simple and easily provides insights

on important system parameters.

5.2 Uniform Approximation for Average Error Prob-
ability in Poisson Field of Interferers

5.2.1 System and Channel Model

We consider a 2-dimensional network in which a transmitter S (located at xs ∈ R2)

intends to communicate with a receiver D (located at the origin o without loss of

generality). The distance between S and D is fixed at ||xs − o|| = r0. Other nodes

in the network which are transmitting in the same channel as S and thus, interfering

with S − D communication, are spatially distributed according to a homogeneous

PPP Φ = {x1, x2, x3, . . .} with density λ, where xi ∈ R
2 is the location of the ith

interferer. For simplicity of analytical expressions, we assume that the transmis-

sions from the interfering nodes are synchronized. The results for asynchronous
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case can be easily derived and will be briefly discussed.

We first consider the case where each node in the network including S and D

has a single antenna. With multipath fading superimposed on power-law path loss

and shadowing, the channel power gain between a transmitter at x ∈ R2 and the

receiver D at the origin can be modeled as

Ωx = eσgx |hx|2||x− o||−α, (5.1)

where eσgx captures the shadowing effect modeled by log-normal distribution with

gx ∼ N (0, 1), σ is the shadowing standard deviation, hx = |hx| exp(jψx) is the

complex multipath fading coefficient with E[|hx|2] = 1, and α is the power loss

exponent. In (5.1), gx and hx are independent RVs.

If the source S transmits with power P0 and each interfering node with power

PI , then according to the channel model (5.1), the complex received signal at D is

given by

Y =
√
P0
e

σ
2
gxshxs

r
α/2
0

s0 + Z +W, (5.2)

where

Z =
√
PI

∑
xi∈Φ

e
σ
2
gxihxi

r
α/2
i

si (5.3)

is the aggregate interference signal, ri = ||xi − o|| is the distance between the ith

interferer at xi and the receiver D, W ∼ CN (0, N0) is complex AWGN noise, and

s0 = a0 exp(jθ0), si = ai exp(jθi) are the complex modulated symbols transmitted

from S and the ith interferer, respectively with E[|s0|2] = E[|si|2] = 1. While all

the interfering nodes are assumed to be using the same linear modulation scheme,

the transmitter S employs an arbitrary linear modulation. We assume the sequences

{gxi
}, {hxi

} and {si} are i.i.d.. If the phase ψxi
of multipath fading coefficient hxi

is uniformly distributed in (0, 2π), then, as shown in [49], Z is a CS complex stable

RV whose distribution is given by

Z ∼ Sc
(
μz =

4

α
, βz = 0, ηz

)
2 (5.4)

2The real and imaginary components of a CS complex stable RV Sc(μ, β = 0, η) are both
S (μ, β = 0, η).
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for α > 2, where ηz = πλC−14/αe
2σ2/α2

P
2/α
I E

[| ξi|4/α],
Cx =

{
1−x

Γ(2−x) cos(πx/2) , x �= 1
2
π
, x = 1,

and ξi = |hxi
|ai cos(θi+ψxi

). If the interfering nodes transmit asynchronously, each

with an independent random delay ti ∼ U(0, T ) relative to S, then ξi is given by

ξi = |hxi
| [ai tiT cos(θi + ψxi

) + a′i(1− ti
T
) cos(θ′i + ψxi

)
]

[49], where ai exp(jθi)

and a′i exp(jθ
′
i) are the successive symbols transmitted from the ith interferer during

[0, T ].

The CS complex stable RV Z in (5.4) can be decomposed as [49]

Z =
√
BG, (5.5)

where

B ∼ S
(
μB =

2

α
, βB = 1, ηB = cos

(π
α

))
, (5.6)

G ∼ CN (0, PIν), ν = 4eσ
2/α
(
πλC−14/αE

[| ξi|4/α])α/2 . (5.7)

Thus, conditioned on B, Z +W ∼ CN (0, PIνB +N0). For the particular case of

hxi
∼ CN (0, 1), i.e., Rayleigh fading, E

[| ξi|4/α] can be easily computed. Since

conditioned on si, ξi = [|hxi
|ai cos(θi + ψxi

)] ∼ N (0, a2i /2), we have,

E
[| ξi|4/α] = Γ(1/2 + 2/α)√

π
E[a

4/α
i ]. (5.8)

In the presence of the CSI of the S −D link only, the receiver employs simple

coherent demodulation. The conditional error probability is thus given by the error

expression for coherent detection in AWGN noise, denoted by h(γ) (for example,

h(γ) = Q(
√
2γ) for BPSK modulation) with

γ =
P̄0e

σgxs |hxs|2r−α0

P̄IνB + 1
, (5.9)

where P̄0 = P0/N0 and P̄I = PI/N0 are the noise normalized transmit powers

of the node S and the interfering nodes, respectively. P̄0 and P̄I are referred to as

the SNR and interference-to-noise ratio (INR), respectively. In interference-limited

scenario, γ can be expressed as γ = ρX , where ρ = P̄0e
σgxsr−α0 /(P̄Iν) is a non-

random quantity, referred to as SIR, and X = |hxs|2/B is a RV. Note that for the

fixed S −D link, the shadowing coefficient gxs is assumed to remain constant.
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5.2.2 Average Error Probability

The average probability of error can be expressed as (C.2). Since the unavailability

of the PDF fX(x) in closed form is the main obstacle in deriving the closed-form

expression for (C.2), we exploit the MT information of h(γ) and fX(x) to derive

UA for (C.2). UA is a rational function that matches the asymptotics of Pe(ρ) as

ρ→ 0 and ρ→∞, simultaneously (see Appendix C.3).

The MT of fX(x) is given by

FX(s) = F|hxd
|2(s)FB(2− s), (5.10)

where F|hxd
|2(s) and FB(s) are the MTs of the PDFs of |hxd

|2 and B, respectively.

The MT of the stable RV B with parameters given in (5.6) is given by [119]

FB(s) =
Γ(1 + α

2
− α

2
s)

Γ(2− s)
. (5.11)

If the MTs F|h0|2(s) and H(s) are known and have only first-order poles, the UA

can be easily derived by using (C.10) for any linear modulation and any fading

model with the required coefficients computed according to Proposition 1 in Ap-

pendix C.2.

Performance with BPSK Modulation in Rayleigh Fading

In the following example, we consider the case where the transmitter S employs

BPSK modulation, and the S−D link is Rayleigh faded. In this case, FX(1−s) =
Γ(1−α

2
s) andH(s) = Γ(s+1/2)

2s
√
π

. Thus, FX(1−s) has poles at s = 2/α, 4/α, 6/α, . . .,

while H(s) has poles at s = 0,−1/2,−3/2, . . .. The first positive pole at s = 2/α

indicates that the diversity order is 2/α. The diversity order, thus, depends on the

power loss exponent α. The coefficients b(0) and c(l) required to compute the UA

can be obtained by using Proposition 1 in Appendix C.2.

Example: For α = 4, we have τ = 1/2, δ = 1, and the required coefficients

b(0) and c(l) are given by

b(0) =
1

2
√
π
, c(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

l = 0

(−1)(l+1)/2Γ [l]√
πΓ [(l + 1)/2]

l = 1, 3, . . .

0 otherwise.

(5.12)
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Figure 5.1: Average BER of S − D link with BPSK modulation for different den-
sities of interfering nodes (α = 4, r0 = 1 Km, gxd

= 0 INR = 20 dB, σdB = 10)

The UA can be readily computed by using (C.10).

The average bit error rate (BER) of the S − D link when S as well as all the

interfering nodes employ BPSK modulation, and all the links (desired and interfer-

ing) undergo independent Rayleigh fading, is depicted in Figure 5.1 for different

densities of interfering nodes, 0.1Km−2, 0.4Km−2 and 1Km−2. Both the UA and

Monte Carlo simulation results are plotted against the SNR. The parameters used

are α = 4, r0 = 1 Km, gxs = 0 (no shadowing on the desired link), INR = 20 dB,

σdB = 10, i.e., σ = ln 10. Note that noise is not ignored in the simulation results.

The excellent match between the UAs and the simulated results shows thats the

error performance can be accurately evaluated with the UA method in interference-

limited scenario. The Figure 5.1 shows that the error performance improves with

the decrease in node density due to the decrease in total interference power.
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Performance with Nr-branch MRC Receiver in all Rayleigh Fading

Let the receiver D be equipped with Nr antennas and employ MRC. If {hxs,l =

|hxs,l| exp(jψxs,l), l = 1, 2, . . . , Nr} are i.i.d. fading coefficients from S to each

receive antenna of D, and similarly, {hxi,l = |hxi,l| exp(jψxi,l), l = 1, 2, . . . , Nr}
are i.i.d. fading coefficients from ith interferer, the resultant signal after combining

the received signals at each antenna can be expressed as

Y =
√
P0
e

σ
2
gxs
∑Nr

l=1 |hxs,l|2
r
α/2
0

s0 + Z +W, (5.13)

where

Z =
√
PI

∑
xi∈Φ

e
σ
2
gxi
∑Nr

l=1 h
∗
xs,lhxi,l

r
α/2
i

si (5.14)

is the resultant interference, and W =
∑Nr

l=1 h
∗
xs,l
nl is the resultant noise. Since

{nl ∼ CN (0, N0), l = 1, 2, . . . , Nr} are i.i.d. complex Gaussian noise, conditioned

on {hxs,l}, W ∼ CN (0, N0

∑Nr

l=1 |hxd,l|2) . Z can again be shown to be a circularly

symmetric (CS) complex stable RV, which can be decomposed according to (5.5)

with B and G given by (5.6) and (5.7), respectively. However, ξi in this case is

given by

ξi =

Nr∑
l=1

|hxs,l||hxi,l|ai cos(θi + ψxi,l − ψxd,l). (5.15)

Thus, conditioned on B and {hxs,l}, Z +W ∼ CN (0, PIνB +N0

∑Nr

l=1 |hxs,l|2).
If the interference links are Rayleigh faded, then conditioned on {hxs,l},

E
[| ξi|4/α] = Γ(1/2 + 2/α)√

π
E[a

4/α
i ]

Nr∑
l=1

|hxs,l|2. (5.16)

In the interference-limited scenario, γ can again be expressed as γ = ρX , where

ρ =
P̄0e

σgxsr−α0

P̄Iκ
, X =

∑Nr

l=1 |hxs,l|2
B

,

κ = 4eσ
2/α
(√

πλC−14/αΓ
(
1
2
+ 2

α

)
E

[
a
4/α
i

])α/2
. The error probability UA can be

similarly obtained as in the single-antenna receiver case with the help of the MT

information of h(γ) and fX(x).
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If {hxs,l, l = 1, 2, . . . , Nr} undergo i.i.d. Rayleigh fading, then

FX(1− s) =
Γ(Nr − s)Γ(1− α

2
s)

(Nr − 1)!Γ(1− s)
,

which have poles at s = 2/α, 4/α, 6/α, . . ., and at s = Nr, Nr + 1, Nr + 2, . . .,

along with zeros at s = 1, 2, 3, . . .. For exponentially decaying h(γ) as γ → ∞,

H(s) has only negative poles. The first positive pole at s = 2/α thus indicates that

the diversity order is given by 2/α, irrespective of the number of antennas at the

receiver D.

The required parameters to compute UA for the average error probability of

BPSK modulation for α = 4 are τ = 1/2, δ = 1 and

b(0) =
Γ(Nr − 1/2)

2πΓ(Nr)
,

c(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

l = 0

(−1)(l+1)/2Γ(Nr + l/2)Γ(l)√
πΓ
(
(l + 1)/2

)
Γ(Nr)Γ(l/2 + 1)

l = 1, 3, . . .

0 otherwise.

(5.17)

Note that when α = 4, the poles at s = 1, 2, 3, . . . are canceled by the zeros and the

effective poles of FX(1− s) are s = 1/2, 3/2, . . . and s = Nr, Nr+1, Nr+2, . . ..

The UA and simulation results for the average BER in all-Rayleigh-fading sce-

nario with BPSK modulation at each node are plotted against SNR in Figure 5.2

for different values of Nr. Figure 5.2 clearly reveals that the diversity order of the

system is the same for each value of Nr. However, the error performance improves

by having more receive antennas.

5.3 Average Error Probability of Downlink Cellular
Networks

While the above analysis is suitable for evaluating the average error probability of

a particular user whose distance from the serving node is known, in this section, we

are interested in evaluating the average error probability of any randomly selected

user in a cellular network. We consider a single-tier downlink cellular network with

frequency reuse 1.
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Figure 5.2: Average BER of BPSK modulation with Nr-branch MRC receiver in
Rayleigh fading (α = 4, r0 = 1 Km, gxd

= 0, λ = 0.4Km−2, INR = 10 dB,
σdB = 10)

5.3.1 System Model and Error Probability Analysis

The BSs are spatially distributed according to a homogeneous PPPΦ = {x1, x2, x3, . . .}
on R2 of intensity λ, each employing the same modulation scheme and transmit-

ting with the same power P . Rayleigh fading with power law path loss is assumed

between any transmitter-receiver pair. Each user in the network is associated with

the BS offering the maximum received power. A typical user o at the origin is thus

associated with a BS located at xb = argmax
xi∈Φ

|hxi
|2r−αi , where ri = ||xi− o|| is the

distance from o to ith BS and hxi
is the fading coefficient of the channel between o

and the ith BS. The BSs other than xb is the set of interfering nodes for the user o,

and is still a homogeneous PPP of intensity λ because for a homogeneous PPP, the

reduced Palm distribution is equal to the distribution of PPP itself [57].

We consider the interference-limited scenario and analyze the error probability
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at the user o. The error probability is valid for any randomly chosen user according

to Slivnyak’s theorem (Section 2.3). By using the mathematical framework outlined

in Section 5.2.1, the conditional error probability is given by h(γ) with

γ =
1

ν

max
i∈Φ

|hi|2r−αi

B
, (5.18)

where ν = 4
(√

πλC−14/αΓ
(
1
2
+ 2

α

)
E

[
a
4/α
i

])α/2
, and the RV B is given by (5.6).

Let V = max
xi∈Φ

|hxi
|2r−αi . The cumulative distribution function (CDF) of V can be

derived as

FV (v) = P

(
max
xi∈Φ

hxi
r−αi < v

)

= EΦ

[ ∏
xi∈Φ

(1− exp(−vrαi ))
]
. (5.19)

By using the PGFL of PPP given by (2.7), we have

FV (v) = exp

(
− 2πλ

∫ ∞

0

exp(−vrα)r dr
)

= exp

(
− πλ

v2/α
Γ

(
2

α
+ 1

))
. (5.20)

The corresponding PDF of V can thus be obtained as

fV (v) =
2πλ

α
Γ

(
2

α
+ 1

)
v−2/α−1e−πλΓ(

2
α
+1)v−2/α

. (5.21)

The RV V can be expressed as V = (πλΓ(2/α + 1))α/2U , where the PDF of U is

given by fU(u) = 2
α
u−2/α−1exp(−u−2/α). γ can finally be expressed as γ = ρX ,

where ρ = 1
4

[ √
πΓ( 2

α
+1)

C−1
4/α

Γ( 1
2
+ 2

α)E
[
a
4/α
i

]
]α/2

and X = U
B

.

The average error probability is then given by (C.2). If we closely observe ρ

and X , we can see that in interference-limited cellular networks, the average error

probability is independent of the BS density λ and the SNR P̄ = P/N0. Thus, the

error probability cannot be improved by increasing SNR because doing so would

increase the interference power as well. On the other hand, if we increase λ, the gain

in the desired received signal power due to closer distance between the user and the

serving BS is counter-balanced by the increase in interference power. However, by

increasing λ, more users can be simultaneously served, and the network capacity

naturally improves without affecting the error performance of the network.
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Unlike in Section 5.2, ρ is now the function of α and ai only. For the typical val-

ues of α in the range 2 < α ≤ 6 and E[a2i ] = 1, the range of ρ is much more limited

than the range 0 < ρ <∞ in Section 5.2. Thus, the use of the UA approach, which

basically matches the high-SIR (ρ → ∞) and low-SIR (ρ → 0) asymptotics, may

not make much sense in this case. However, one can still use the MT information

of fX(x) and h(γ) to evaluate (C.2).

Equation (C.2) can be transformed via the Parseval formula (C.6), where c lies

in the fundamental strip of both H(s) and FX(1 − s). The MT FX(s) is given by

FX(s) = FU(s)FB(2− s), where FU(s) can be derived as

FU(s) =

∫ ∞

0

us−1fU(u)du = Γ
(
−α
2
s+

α

2
+ 1
)
, (5.22)

and FB(s) is given by (5.11). We can apply the residue theorem to obtain a series

representation of (C.6), which can often be expressed in terms of the generalized

Hypergeometric function pFq[a1, . . . , ap; b1, . . . , bq; z] [113], thus yielding a closed-

form expression.

5.3.2 Average Error Probability in BPSK Modulation

For BPSK modulation, (C.6) can be expressed as

Pe =
1

2πj

∫ c+j∞

c−j∞

Γ(s+ 1/2)

2s
√
π

Γ
(
α
2
s+ 1

)
Γ(1− α

2
s)

Γ(1− s)
ρ−sds. (5.23)

The poles to the left of the contourR(s) = c are s = 0,−(k + 1/2),−2(k + 1)/α,

where k = 0, 1, 2, . . .. For α �= 4 in the range 2 < α ≤ 6, the poles are simple.

Thus, by closing the contour to the left, and then applying the residue theorem, we

have

Pe =
1

2
+

∞∑
k=0

(−1)k+1

2
√
π

Γ(−α
2
k − α

4
+ 1)Γ(1 + α

2
k + α

4
)

k!(k + 1
2
)Γ(k + 3

2
)

ρk+
1
2

+

∞∑
k=0

(−1)k+1

2
√
π

Γ(− 2
α
k − 2

α
+ 1

2
)Γ(k + 2)

k!(k + 1)Γ(1 + 2
α
k + 2

α
)
ρ

2(k+1)
α

=
1

2
+

∞∑
k=1

(−1)kα
4
√
π

Γ(−α
2
k + α

4
+ 1)Γ(α

2
k − α

4
)

Γ(k)Γ(k + 1
2
)

ρk−
1
2

+

∞∑
k=1

(−1)k
2
√
π

Γ(− 2
α
k + 1

2
)

Γ( 2
α
k + 1)

ρ
2k
α (5.24)
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for α �= 4. Both the infinite series in (5.24) can be expressed as a finite sum of

generalized Hypergeometric functions. Let the first infinite series in (5.24) be de-

noted by T1. Let α/2 = c/d, where c and d are integers. For example, c = 7 and

d = 5 for α = 2.8. The positive integer k is then partitioned as k = dp− q, where

q = 0, 1, . . . , d− 1 and p = 1, 2, . . .. T1 then can be expressed as

T1 =
d−1∑
q=0

∞∑
p=1

(−1)dp−q
2
√
π

c

d

Γ(−cp + c
d
q + c

2d
+ 1)Γ(cp− c

d
q − c

2d
)

Γ(dp− q)Γ(dp− q + 1
2
)

ρdp−q−
1
2

=
d−1∑
q=0

∞∑
p=0

(−1)dp+d−q

2
√
π

c

d

Γ[−c(p + 2(d−q)−1
2d

− 1
c
)]Γ[c(p+ 2(d−q)−1

2d
)]

Γ[d(p+ d−q
d
)]Γ[d(p+ d−q+1/2

d
)]

ρdp+d−q− 1
2

=

d∑
r=1

∞∑
p=0

(−1)dp+r

2
√
π

c

d

Γ[−c(p + 2r−1
2d
− 1

c
)]Γ[c(p+ 2r−1

2d
)]

Γ[d(p+ r
d
)]Γ[d(p+ r+1/2

d
)]

ρdp+r− 1
2 , (5.25)

where the last equality is obtained by setting d−q = r, and then reversing the order

of summation. Applying eqn. (2.3) and eqn. (2.5) of [120], and further simplifying,

we obtain

T1 =

d∑
r=1

(−1)r
2
√
π

c

d
ρr−

1
2
Γ[− c(2r−1)

2d
+ 1]Γ[− c(2r−1)

2d
]

Γ(r)Γ(r + 1
2
)

∞∑
p=0

[(−1)c+d]p(ρd)p

(d2d)pp!

× (1)p

( r
d
)p(

r
d
+ 1

d
)p . . . (

r
d
+ d−1

d
)p(

r+1/2
d

)p(
r+1/2

d
+ 1

d
)p . . . (

r+1/2
d

+ d−1
d
)p
. (5.26)

According to the definition of generalized Hypergeometric function [113, 9.141],

the infinite series in p can be expressed as the Hypergeometric function 1F2d(·; ·; ·).
The second infinite series in (5.24) can be similarly reduced to a finite sum of gen-

eralized Hypergeometric functions. The average error rate of BPSK modulation for

α �= 4 can finally be expressed as
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For α = 4, (5.23) has double poles at s = −1/2,−3/2,−5/2, . . . to the left of

the contour R(s) = c. In order to avoid residue computation with double poles,

(5.23) is expressed as follows for α = 4 by substituting s = −s and utilizing the

properties of the Gamma function [113]:

Pe = − 1

2πj

∫ −c+j∞

−c−j∞

Γ
(−s+ 1

2

)
Γ(−2s+ 1)Γ

(
s+ 1

2

)
21−2sπs

ρsds, (5.28)

which then has simple poles at s = −1/2,−3/2,−5/2, . . . to the left of the contour

R(s) = −c. Again by applying the residue theorem, followed by reducing the

infinite series to a single generalized Hypergeometric function, the average error

rate for α = 4 can finally be expressed as

Pe =
1

2π
√
ρ

3F0

[
1, 1,

1

2
;−1

ρ

]
. (5.29)

10 15 20 25 30 35 40
10

−1

10
0

SNR (dB)

A
ve

ra
ge

 B
E

R

 

 
simulation (λ=0.01)
simulation (λ=0.1)
simulation (λ=0.4)
Analytical (interference−limited)

Figure 5.3: Average BER of a typical user in a downlink cellular network with
BPSK modulation (α = 3).
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In Figure 5.3, the simulated BER of a typical user is plotted against SNR with-

out ignoring the impact of noise for three different BS densities 0.01BS/Km2,

0.1BS/Km2 and 0.4BS/Km2. Our analytical result based on the interference-limited

assumption is also plotted in the figure, where the result is independent of both λ

and SNR. The figure reveals that the simulation and analytical results converge once

the network becomes interference limited. If the value of λ is large, as is expected

in future networks for higher capacity, the network becomes interference limited

even at smaller values of SNR.
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Figure 5.4: Average BER versus power loss exponent (α) in downlink cellular net-
work.

The impact of the power loss exponent, α in the average BER of a downlink

cellular network is assessed in Figure 5.4. The error rate initially drops with the

increase in α due to the decrease in the aggregate interference power received at

a typical user. However, the received power from the serving BS also decreases
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at the same time. Eventually, when the decrease in the desired signal power due

to the increase in α becomes more significant than the decrease in the aggregate

interference power, the error rate starts increasing.

5.4 Conclusion

The contributions of the chapter are two-fold:

1. We developed UA for the error probability of an intended link subject to

interference from the surrounding nodes distributed according to a PPP. Both

single-antenna and MRC receivers were analyzed. The diversity order of the

system is found to be 2/α, independent of the number of receive antennas.

2. We introduced the MT based approach to error probability analysis of a typi-

cal user served by the BS providing the maximum received power in a cellular

network. The BS locations were modeled as a PPP. A closed-form expression

for the average BER of BPSK modulation in Rayleigh fading was derived.

The average error probability is found to be independent of SNR and BS

density.
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Chapter 6

Outage Probability of Underlay
Cognitive Relay Networks with
Spatially Random Nodes

This chapter1 considers an underlay cognitive relay network coexisting with a pri-

mary digital TV broadcasting network, in which the secondary user transmissions

are power constrained to limit the interference on any primary receiver in the net-

work. The primary receivers and secondary relays are randomly located due to

irregular deployments and/or mobility and thus, their spatial distributions are mod-

eled by two independent PPPs. We analyze an opportunistic relaying scenario and

develop a relay-selection scheme by considering the interference constraints on all

the primary receivers in the network. We then analytically evaluate the relaying per-

formance in terms of the outage probability by using tools from stochastic geometry

and point process theory, and finally compare the performance against that of direct

communication. Closed-form expressions are derived for the outage probabilities

of both the relay and direct links, along with their high SNR asymptotics.

6.1 Introduction

Deployment of HetNets has emerged as the most cost-effective approach to cope

with the exponential growth in cellular data traffic. However, despite the tremen-

dous improvement in the spectral efficiency offered by HetNets, more radio spec-

1This chapter has been published in the proceedings of the IEEE Global Communications Confer-
ence (GLOBECOM) 2014, Austin, Texas [121].

110



trum than currently available will be needed to accommodate the unrelenting de-

mand for mobile data in future cellular networks. It has been shown in [42] that

a large portion of the currently deployed spectrum is sparsely utilized. Cognitive

radio is an emerging technique that can potentially alleviate the spectrum-scarcity

problem by exploiting the underutilized portions of the radio spectrum. Cogni-

tive radio allows the unlicensed (secondary) users to access the licensed (primary)

users spectrum with minimal or no impact on primary user communications. The

VHF/UHF TV spectrum is the most promising candidate for cognitive access due

to its lower propagation loss and the availability of large amount of underutilized

spectrum [122]. A cellular network operating in its regular licensed spectrum can

utilize the TV spectrum for additional capacity through cognitive secondary usage.

Among the various approaches to primary-secondary spectrum sharing– inter-

weave, overlay and underlay [40], underlay method is appealing for its low im-

plementation complexity. It supports primary-secondary concurrent transmissions

only at the cost of the knowledge of the interference channel gains to primary users,

unlike the overlay system, which requires knowledge of primary users’ codebooks

and their messages as well [40]. In this chapter, we analyze the underlay approach

to secondary usage of underutilized TV spectrum. Since the underlay system must

operate under strict transmit power constraints to ensure that the resultant interfer-

ence on each primary receiver is below a predefined threshold, the coverage range

is limited. Cooperative relaying, in this case, is a natural choice to achieve the

adequate radio-reception quality at distant users. We propose a novel cooperative

relay transmission scheme with interference constraints and then evaluate the gain

in outage probability (the commonly used measure for quality of reception in wire-

less communications).

In particular, we consider opportunistic relaying by idle users in underlay cog-

nitive radio networks. Generally, in practical networks, the users are expected to be

highly mobile and their locations vary with time. The secondary relays are thus as-

sumed to be randomly and independently located in the network area, and are thus

spatially modeled by a PPP. The PPP is a widely used spatial model for networks

with a possibly infinite number of nodes randomly and independently distributed in
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a finite or infinite area [58]. The PPP-based modeling of the locations of primary

and secondary users is adopted in [61] to evaluate the aggregate interference caused

by the secondary users on the primary system in underlay cognitive radio networks,

and in [60] to analyze the performance of different cognitive radio MAC protocols.

The coexisting primary system is a digital TV broadcasting network. Differ-

ent standards have been developed for digital TV broadcasting such as European

Digital Video Broadcasting (DVB-T for terrestrial and DVB-H for handhelds), the

North American Advanced Television Systems Committee (ATSC) and Integrated

Services Digital Broadcasting-Terrestrial (ISDB-T), most of which are based on

OFDM for robustness against multipath distortion [123]. Due to the broadcast na-

ture, any underlay secondary transmission must satisfy the interference constraints

on all the TV receivers in the network. We assume that the TV receivers, either

fixed or mobil,e take unplanned/unknown positions, and their spatial distribution is

modeled by a PPP.

6.1.1 Previous Work and Contributions of the Chapter

Substantial research work on underlay cognitive relay networks has been reported in

the literature [124–127]. The outage probability of a cognitive single-relay network,

in which the transmit power is constrained according to the interference threshold

at the primary receiver, is analyzed in [124] under Nakagami-m fading. Optimal

power allocation schemes, which maximize the overall rate of a cognitive single-

relay network are investigated in [125], while adhering to the interference power

constraint on the primary receiver. The conventional relay selection schemes are

redefined in [126] and [127] for a cognitive multiple-relay network to incorporate

the interference constraint in terms of the required outage probability of the pri-

mary transmission and the maximum tolerable interference power at the primary

receiver, respectively. Joint relay selection and power allocation to maximize the

system throughput under interference constraint is investigated in [128]. However,

these studies consider a fixed number of relay nodes and either ignore the effect of

path loss and thus the spatial configuration of the relays or assume the relay loca-

tions to be deterministic (known a priori). These assumptions are not suitable for
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analyzing cognitive radio networks with inherent mobility of the secondary users.

Further, in these work, no two primary receivers have the same transmitter and thus,

any secondary transmission needs to satisfy the interference constraint at only one

primary receiver. In contrast to these work, we focus on the following aspects in

this chapter.

1. Considering the multicasting primary network, we take into account the spa-

tial distribution of primary receivers and derive the outage probability of the

direct link between an underlay secondary source node and its destination,

while satisfying the interference constraints on all the primary receivers.

2. We next consider the opportunistic relaying between the source-destination

pair and derive the outage probability of the relay link, while taking into

account the spatial distribution of the relays.

3. The relay-selection scheme is designed by considering not only the source-

relay and relay-destination links, but also the stringent interference constraints

on all the primary receivers.

4. We finally compare the outage probability of the relay link with that of the

direct link.

The rest of the chapter is organized as follows. The system model and the relay-

ing scheme are presented in Section 6.2. In Section 6.4, the outage probabilities of

the direct link and the relay link are derived in closed forms along with their high

SNR asymptotics. The analytical results are verified through Monte Carlo simula-

tions in Section 6.5. Finally, some concluding remarks are presented in Section 6.6

6.2 System Model

We consider a cognitive radio system consisting of primary and secondary net-

works. The multicasting primary network consists of a primary transmitter and a

number of primary receivers, which are spatially distributed according to a homo-

geneous PPP Φp = {y1, y2, y3 . . .} on R2 with density λp, where yi is the location
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of the ith receiver. The wireless communication between a secondary source node

S (located at the origin o without loss of generality) and a secondary destination

node D (located at ld ∈ R2) is considered, where the distance between S and D,

||o− ld|| is fixed at L. The S −D communication occurs either directly or through

opportunistic relaying by a set of idle users in the secondary network. The spatial

distribution of the idle users on R2 is denoted by Φs = {x1, x2, x3, . . .}, where xi

is the location of the ith user. Φs is assumed to be a homogeneous PPP with den-

sity λs. A realization of the primary receivers and secondary relays spatially dis-

tributed according to independent PPPs is shown in Figure 6.1. From the definition

of PPP [57, 59], the number of primary receivers Np and the number of secondary

relays Ns in a given area A are independent Poisson random variables (RVs) with

mean Aλp and Aλs, respectively. Also, the numbers of primary receivers in disjoint

areas are independent, and so are the numbers of secondary relays.

The primary multicast network is assumed to be based on OFDM, and thus,

each primary receiver occupies a number of frequency channels called subcarriers.

A secondary transmission uses a frequency channel from the primary spectra. Each

frequency channel undergoes independent flat fading. We assume that all the pri-

mary and secondary nodes have a single antenna for transmission and reception.

The single antenna model leads to simple analytical results with insights into im-

portant system parameters. The extension to various multiple antenna techniques to

analyze their impact on the performance could be an important direction for future

research.

6.3 Channel Model and Transmission Schemes

Independent Rayleigh multipath fading is assumed between any pair of nodes and

across frequency channels. A general power-law path loss model with loss expo-

nent α is also considered in which the signal power decays at the rate of r−α with

distance r from the transmitter. Consequently, the channel power gain of the jth

frequency channel between a pair of nodes at x and y is given by hjxy||x − y||−α,

where hjxy is the fading power gain, which is exponentially distributed with unit
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mean. The value of α is typically in the range of 1.6 to 6 [12], where α = 2 is for

free space propagation.

6.3.1 Direct Mode

Let the direct S−D communication occur over frequency channel n. The source S,

while transmitting, must ensure that the interference imposed on each primary re-

ceiver is below a predefined threshold Ī . If this constraint is satisfied for the primary

receiver to which it generates the largest interference power, then the constraint is

satisfied for all other receivers. Let HSn = max
y∈Φp

hnoy ||o − y||−α be the largest in-

terference channel gain associated with S on the nth frequency channel. Then, the

transmit power of S on this frequency channel is constrained as PSn ≤ Ī/HSn . The

information about the largest interference channel can be acquired through primary

receiver detection algorithms [129] or through beacons [130]. If S transmits with

the maximum allowable power, the received SNR at the destination D is

SNRSD(o, ld) =
Ī

N0HSn

hnold L
−α, (6.1)

whereN0 is the noise variance. The interference signal from the primary transmitter

is treated as Gaussian noise [40].

6.3.2 Relaying Mode

In the relaying mode, the S − D pair communicate through an intermediate node

selected from the set of available idle secondary users. The relaying protocol used

is decode-and-forward (DF), with the assumption that there is no decoding error

if the received SNR is greater than the threshold γth. Although all the idle users

distributed over R2 are considered as the candidate relays for the selection of the

best relay in our analysis, this method is equivalent to considering only the idle

nodes within a circle of radius R >> L as the candidate relays. As the path loss

becomes more pronounced than fading when the relays move away from the S−D
link, the nodes beyondR are less likely to be chosen. The relays operate in the half-

duplex mode, and hence, the information transmission from S to D requires two

time-slots. We assume that each candidate relay uses a different frequency channel
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among the primary spectra [127]. Relay selection, thus, involves the selection of the

primary spectrum as well, and the system also gains from multispectrum diversity

[131]. If the source S transmits with the maximum allowable power PSj max =

Ī/HSj
on the jth frequency channel used by the candidate relay Rj at x ∈ Φs, the

received SNR at Rj in the first time-slot is given by

SNRSRj
(o, x) =

Ī

N0HSj

hjox ||o− x||−α. (6.2)

The source S can successfully transmit information to any candidate relay at which

the received SNR is greater than the threshold γth. These nodes are the potential

relays (represented by the triangles in Figure 6.1) to retransmit the successfully

decoded message to the destination D in the second time-slot. Let Φ̂s denote the

set of potential relays, i.e.,

Φ̂s = {x ∈ Φs, SNRSRj
(o, x) ≥ γth}. (6.3)

The transmit power of a potential relay Rj at x ∈ Φ̂s is constrained as PRj
≤

Ī/HRj
, where HRj

= max
y∈Φp

hjxy ||x − y||−α is the largest interference channel gain

associated with Rj . Under the proposed relaying scheme, the best node from the

set Φ̂s is selected. While in a conventional relay network, the relay that has the best

channel to the destination would be selected, our selection criterion considers the

interference constraint as well. We denote the location of the selected relay by ζ ,

i.e.,

ζ = argmax
x∈Φ̂s

hjxld ||x− ld||−α
HRj

. (6.4)

The corresponding received SNR at the destination D from the relay link when the

selected relay transmitted with the maximum allowable power is

SNRRJD(ζ, ld) =
Ī

N0HRJ

hJζld ||ζ − ld||−α, (6.5)

where J is the index of the selected relay.

6.4 Performance Analysis

The outage probability is chosen as the performance metric for the given system.

To derive the outage probabilities of both the relay and the direct links, we first
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Figure 6.1: Spatial distribution of the primary receivers and the secondary re-
lays according to independent PPPs. The asterisks are the primary receivers
(λp = 0.15/π); the dots are the idle secondary users which serve as candidate
relays (λs = 0.5/π); the triangles are the potential relays, i.e., the relays at which
the received SNRs are greater than γth = 5 dB; and the square is the selected relay
as per the proposed scheme. The S − D distance L = 4, the path-loss exponent
α = 4 and the noise normalized interference threshold Ī = 10 dB.

derive the distribution of Z = max
y∈Φ

hcy ||c − y||−α, where c ∈ R2, {y ∈ Φ} are

the points of a homogeneous PPP Φ on R
2 with density λ, and {hcy; y ∈ Φ} are

independent exponentially distributed RVs with unit mean. We can observe that

Z does not depend on the exact coordinates of the points y ∈ Φ, but rather on

their distances from c. Let us define Φl � {l = ||c− y||; y ∈ Φ} as the transformed

points ofΦ by mapping the 2-D space into a positive real line with a function f such

that f(b(c, l)) = [0, l] (i.e., each point of a closed disc b(c, l) on R2 of radius l and

center c is mapped into the closed interval [0, l] on R+). From the mapping theorem

(Section 2.3), Φl is also a PPP of density λ(l) given by
∫
[0,l]

λ(l) dl =
∫
b(c,l)

λ dx.

Thus, λ(l) = 2πλl.
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Probability Distribution of Z

The probability distribution of Z = max
y∈Φ

hcy ||c− y||−α can be derived as follows:

FZ(z) = P

(
max
y∈Φ

hcy ||c− y||−α < z

)

= EΦ

[∏
y∈Φ

P
(
hcy ||c− y||−α < z|y) ]

= EΦl

[∏
l∈Φl

(1− exp(−zlα))
]
, (6.6)

where the second equality follows from the independence of RVs {hcy; y ∈ Φ} and

(6.6) from the fact that hcy ∼ Exp[1] and the transformation of Φ to Φl. Now, by

using the PGFL of PPP given by (2.7), we have

FZ(z) = exp

(
− 2πλ

∫ ∞

0

exp(−zlα)l dl
)

= exp

(
− πλ

z2/α
Γ

(
2

α
+ 1

))
, (6.7)

where (6.7) results from the definition of the Gamma function [113, 8.310]. Equa-

tion (6.7) reveals that the distribution of Z is independent of c. In the following sec-

tion, we use the notation Z(λ, α) to denote the distribution of max
y∈Φ

hcy ||c− y||−α,

c ∈ R2.

The transmit power of any secondary node k given by Pk = Ī/Hk, where Hk ∼
Z(λp, α) is, thus, independent of the location of the node. The average transmit

power of a secondary node can be obtained as

P̄ =

∫ ∞

0

Ī

z
dFHk

(z) = Ī
Γ(α/2 + 1)

(πλpΓ(2/α+ 1))α/2
. (6.8)

6.4.1 Outage Probability of the Direct Mode

The outage probability of the direct S −D link, Pd = P(SNRSD(o, ld) < γth) can

be obtained by using the SNR expression (6.1) as follows:

Pd = P

(
Īhnold L

−α

N0HSn

< γth

)

= Ehn
old

[
P

(
HSn >

Īhnold
N0γthLα

∣∣∣∣hnold
)]

, (6.9)
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where HSn = max
y∈Φp

hnoy ||o − y||−α ∼ Z(λp, α). By applying the CDF derived in

(6.7), followed by the expectation over hnold ∼ Exp[1], Pd can be simplified as

Pd = 1−
∫ ∞

0

exp
(−β L2u−2/α

)
e−u du

= 1− Γ

(
1, 0, β L2,

2

α

)
, (6.10)

where Γ(·, ·, ·, ·) is the extended incomplete Gamma function [132, Eq. 6.2], β =

(Γ(α/2 + 1)γth/ρ)
2/α, and ρ = P̄ /N0 is the average transmit SNR. The asymptotic

performance as SNR → ∞, thus, can be analyzed with the asymptotic β → 0. By

using exp(−x) = 1 − x as x → 0, the asymptotic outage probability of the direct

link is given by

Pd ∼ b L2 (γth/ρ)
2/α +O(ρ−4/α) as ρ→∞, (6.11)

where b = Γ (−2/α + 1) (Γ (α/2 + 1))2/α.

6.4.2 Outage Probability of the Relaying Mode

The analysis of the outage probability of the relay link given by Pr = P(SNRRJD <

γth) involves Euclidean distances from the randomly located relays to the source

and the destination. Therefore, it is mathematically convenient to use a polar coordi-

nate system, where x ∈ R2 is represented as x = (r, θ). We take the coordinate axes

to be oriented such that ld = (L, 0). The corresponding distances from the relay

located at x to the source and the destination are then given by dS(x) = ||o−x|| = r

and dD(x) = ||x − ld|| =
√
r2 + L2 − 2rL cos θ, respectively. According to (6.4)

and (6.5), the relay link outage probability can be expressed as

Pr = P

(
Ī

N0HRJ

hJζld ||ζ − ld||−α < γth

)

Pr = P

(
max
x∈Φ̂s

hjxldd
−α
D (x)

HRj

<
γthN0

Ī

)
. (6.12)

By utilizing the independence of RVs {HRj
; x ∈ Φ̂s}, we have

Pr = EΦ̂s

[ ∏
x∈Φ̂s

Ehj
xld

(
P

(
HRj

>
Īhjxld

N0γth d
α
D(x)

∣∣∣∣hjxld, x
))]

= EΦ̂s

[ ∏
x∈Φ̂s

(
1−
∫ ∞

0

exp
(−βd2D(x)v−2/α) e−v dv

)]
, (6.13)

119



where (6.13) follows from the fact that HRj
∼ Z(λp, α) and hjxld ∼ Exp[1]. In

order to compute Pr, we need to first identify the properties of the set of potential

relays Φ̂s. Since the SNRs at the candidate relays (6.2) are independent, the set

Φ̂s in (6.3) is formed by independent thinning of the original process Φs, i.e., by

selecting a point x of the process Φs with probability p = P(SNRSRj
(o, x) ≥ γth)

independently of the other points in the process. Since Φs is a PPP, the thinned

process Φ̂s is also a PPP [57] with density λ̂s(x) given by

λ̂s(x) = λsP(SNRSRj
(o, x) ≥ γth)

= λs

∫ ∞

0

exp
(−β r2u−2/α) e−u du

= λsΓ

(
1, 0, β r2,

2

α

)
, (6.14)

where (6.14) is derived by using the fact that P(SNRSRj
(o, x) ≥ γth) = 1 − Pd

with the receiver location ld = x. The average number of potential relays can be

obtained as

Λ̂s =

∫ 2π

0

∫ ∞

0

λ̂s rdr dθ

= λs

∫ ∞

0

e−v
∫ 2π

0

∫ ∞

0

exp
(−βr2u−2/α) rdr dθ du

=
πλs
β
Γ

(
2

α
+ 1

)
, (6.15)

where the second equality is obtained by substituting the integral expression for

λ̂s(x), followed by the change in the order of integration. Since Φ̂s is a PPP of

intensity λs(x), by using the PGFL of a PPP, the Pr in (6.13) can be simplified as

Pr = exp

(
−
∫
R2

λ̂s(x)

∫ ∞

0

exp
(
−βd2D(x)v−

2
α

)
e−v dv dx

)
= exp (−λsΥ(β)) , (6.16)

where

Υ(β) =

∫ ∞

u=0

e−u
∫ ∞

v=0

e−v exp
(
−βL2v−

2
α

)
×
∫ ∞

r=0

r exp
(
−β(v− 2

α + u−
2
α )r2

)
×
∫ 2π

θ=0

exp
(
2 β Lv−

2
α r cos θ

)
dθ dr dv du. (6.17)
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Equation (6.16) is obtained by substituting the integral expression for λs(x), fol-

lowed by the conversion of Cartesian to polar coordinates and the change in the

order of integration. The integral with respect to θ in (6.17) can be solved by us-

ing [113, Eq. 8.431.3] as follows:

Υ(β) = π

∫ ∞

u=0

e−u
∫ ∞

v=0

e−v exp
(
−βL2v−

2
α

)
×
∫ ∞

r=0

2 r exp
(
−β(v− 2

α + u−
2
α )r2

)
× I0

(
2βLv−

2
α r
)
dr dv du, (6.18)

where I0(·) is the zeroth order modified Bessel function of the first kind. The inte-

gral with respect to r can be reduced to the form I = ∫∞
0

2r
2σ2 exp

(
− r2+s2

2σ2

)
I0
(

s
σ2 r
)
dr

by substituting 2βLv−2/α = s/σ2 and β(v−2/α + u−2/α) = 1/(2σ2) so that I inte-

grates to unity. Υ(β) can then be simplfied as

Υ(β) =
π

β

∫ ∞

u=0

e−u
∫ ∞

v=0

e−v

(v−2/α + u−2/α)

× exp

(
− βL2

v2/α + u2/α

)
dv du, (6.19)

which can be accurately approximated by using the Gauss-Laguerre quadrature rule

[133, Eq. 25.4.45]. The outage probability of the relay link can finally be expressed

as

Pr ≈ exp

⎛
⎜⎜⎝−λsπβ

n∑
i=1

n∑
j=1

wiwj

exp

(
− βL2

ϑ
2/α
j +ϑ

2/α
i

)
(ϑ
−2/α
j + ϑ

−2/α
i )

⎞
⎟⎟⎠ , (6.20)

where ϑi(i = 1, 2, . . . , n) are the nodes of Gauss-Laguerre quadrature and wi(i =

1, 2, . . . , n) are the corresponding weights. The exponential decrease in the outage

probability of the relay link with the increasing density λs of the relay nodes can

be observed. The asymptotic outage probability of the relay link can be obtained as

follows by using exp(−x) = 1− x as x→ 0 for the last exponential in (6.19):

Pr ∼A exp
(
−λsπI1 (Γ(α/2 + 1))−2/α (ρ/γth)2/α

)
× (1 +O(ρ−2/α)

)
as ρ→∞, (6.21)
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Figure 6.2: The outage probability versus threshold γth for different levels of inter-
ference threshold Ī when Λs = 0.5 and L = 2.

where A = exp (λsπL
2I2) and I1, I2 are given by

I1 =
∫ ∞

u=0

e−u
∫ ∞

v=0

e−v

v−2/α + u−2/α
dv du, (6.22)

I2 =
∫ ∞

u=0

e−u
∫ ∞

v=0

e−v

(v−2/α + u−2/α)(v2/α + u2/α)
dv du, (6.23)

which can be readily computed for the given value of α.

6.5 Numerical and Simulation Results

In this section, we validate our analytical results through Monte Carlo simulations

and assess the impact of various parameters on the performance of the proposed

system. The path loss exponent α is assumed to be 4. The interference threshold Ī

is normalized by the noise powerN0. We define Λp and Λs as the average number of

primary receivers and candidate relays, respectively, within a circle of unit radius,

i.e.,Λp = πλp,Λs = πλs. Unless stated otherwise,Λp is set to 0.15. To compute the

analytical outage probability of the relay link by using (6.20), we choose n = 30.
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Figure 6.3: The outage probability versus average transmit SNR ρ when γth = 10
dB and L = 2.

The outage probability versus the threshold γth is plotted in Figure 6.2 for both

the direct and relaying modes. The figure shows an excellent match between the

analytical and simulation results. Significant improvement in the outage perfor-

mance by using the relaying mode over direct transmission is clearly visible. If the

primary receivers can tolerate more interference, the secondary nodes can transmit

with higher power, and the outage performance naturally improves. Thus, the out-

age probability at a given value of γth is lower for Ī = 20 dB than that for Ī = 10

dB.

The outage probability as a function of the average transmit SNR ρ is presented

in Figure 6.3. The high-SNR asymptotes derived in (6.11) and (6.21) for the direct

link and the relay link, respectively, are plotted in the figure along with the analyti-

cal and simulation curves. At ρ = 40 dB, the gain in using the relaying mode over

the direct mode, G = Pd/Pr, is about 10.6 dB for Λs = 0.5 and 14 dB for Λs = 0.6.

Figure 6.4 assesses the impact of the S − D distance L on the outage perfor-

mance. As expected, the outage performance of both the direct and relaying modes

improves when the S − D distance shrinks. When the density of relays is small
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and the average transmit SNR is low as well, the source may not have any potential

relay node available for retransmission. In this case, the outage performance of the

direct mode is better than that of the relaying mode. However, if the density of the

relays is sufficient, the relaying mode outperforms the direct transmission.

Figure 6.5 shows the required average density of the relay nodes Λs as the func-

tion of the average density of the primary receivers Λp to maintain a given outage

probability of the relaying mode. Equation (6.8) shows that the average transmit

power of the secondary node is inversely proportional to Λp. As the transmit power

of the secondary node decreases with the increasingΛp, the outage probability tends

to increase. However, one can maintain the desired outage probability by increasing

Λs.

6.6 Conclusion

In this chapter, we analyzed the outage in a dual-hop underlay secondary network

coexisting with the primary TV broadcasting network. The spatial distributions
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of the secondary relays and primary receivers were modeled as independent PPPs.

An opportunistic relaying scenario with a relay selection scheme that satisfies the

interference constraint on any primary receiver was investigated. The impact of

various parameters on the outage performance was analyzed. We found that the

gain in using the relay transmission over the direct mode increases with the density

of the relay nodes. The required density of the relay nodes for the desired outage

probability increases with the density of the primary receivers. The required density

of the relay nodes however, decreases if the primary receivers can tolerate more

interference.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions and Concluding Re-
marks

• Chapter 3 presented a refined analytical modeling of HetNets by incorporat-

ing a proper notion of the cell load, which effectively captured the impact of

the user density and available resources on network interference. The biased-

received-power based BS-user association scheme (popularly known as CRE)

for load balancing complemented by the resource partitioning method of in-

terference coordination was analyzed for multi-channel downlink. The per-

formance gain due to the load balancing and interference coordination was

evaluated in terms of the average user data rate. It was observed that if the

bias value and resource partitioning fraction are carefully tuned, the gain can

be as high as 115%. However, the parameter tuning must be updated in ac-

cordance with the changing network load.

• Chapter 4 analyzed the downlink performance of multi-antenna HetNets with

SDMA, in which the number of users simultaneously served with SDMA in

each cell is a function of the user distribution. The ZF precoding matrix at

each macro BS was designed such that while enabling user multiplexing in its

own cell, the interference nulling to certain pico users was also considered.

The results indicated that the SINR as well as the rate coverage of the victim

pico users (those suffering strong interference from macro BS) can be signif-

icantly improved with the proposed interference nulling scheme. However,
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since interference nulling costs the macro BS its available degrees of free-

dom for serving its own users, the number of antennas dedicated for serving

its own users, Tmin must be carefully chosen. The optimal choice of Tmin was

found to be coupled with the association bias. The optimal combination of

Tmin and association bias for average data rate performance metric was thus

numerically investigated in this chapter. The optimal L∗max for both macro

and pico tier which maximize the average data rate were also investigated.

L∗max was found to outperform both the SU-BF (Lmax = 1) and full-SDMA

(Lmax = K) techniques in terms of the average data rate. The impact of im-

perfect CSI on the performance was also analyzed. It was observed that the

detrimental impact due to CSI imperfection is stronger for the interference

nulling scheme as compared to the SNR maximization beamforming scheme.

• Chapter 5 introduced the UA approach to error probability analysis of an in-

tended radio link subjected to interference from surrounding nodes which are

distributed according to a PPP. UAs for both single-antenna and MRC re-

ceivers were developed. For MRC receivers, the diversity order of the system

was found to be 2/α, independent of the number of receive antennas, where

α is the path-loss exponent. An MT based approach for error probability

analysis of a typical user served by the BS providing the maximum received

power in cellular network was also presented in this chapter. The closed-form

expression for the average BER of BPSK modulation in Rayleigh fading was

derived. The average error probability was found to be independent of the

SNR and BS density.

• Chapter 6 analyzed an underlay cognitive relay network coexisting with TV

broadcasting network. An opportunistic relaying scheme in which the se-

lected relay satisfies the interference constraint on any TV receiver was in-

vestigated and the impact of various parameters on the outage performance

was analyzed. It was concluded from the analysis that the gain in using the

relay transmission over the direct mode increases with the density of the re-

lay nodes. Their required density for the desired outage probability increases
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with the density of the primary receivers. The required density, however,

decreases if the primary receivers can tolerate more interference.

7.2 Future Research Directions

• Due to the inherent irregularity in the spatial distribution of BSs in HetNets,

the BS locations can be modeled as spatial point process. The most popular

model for this purpose has been the homogeneous PPP, as it provides useful

insights due to its analytical tractability. However, this model may not accu-

rately characterize different deployment scenarios. For example, the opera-

tors may deploy more BSs in the areas of higher traffic-demand/population-

density. Also, although the BSs may be randomly deployed, two BSs may

not be arbitrarily close to each other. Thus, the spatial modeling of BSs needs

to be refined. While repulsive point processes are suitable for the second

scenario mentioned above [134, 135], the first deployment scenario can be

modeled as a clustered process [136].

Along with the refinement in spatial modeling of BSs, the analytical model

must accurately capture other important network characteristics such as cell

load. Most of the analysis in the literature ignores cell load by considering a

fully-loaded network (e.g. [16,19,21,47]). We got rid of fully loaded assump-

tion and characterized cell load as the function of user density and available

resources. We modeled user distribution as a homogeneous PPP, which may

not accurately captures network performance for scenarios where users could

be concentrated at areas of social attractions such as shopping malls. To ac-

commodate such scenarios, spatial user distribution modeling with adjustable

statistical properties has been recently investigated in [137]. While refining

the spatial modeling of BSs as well as the user distribution, the researchers

must be careful not to completely lose the analytical tractability.

• In Chapter 4, we considered multi-antenna BSs with single-antenna receivers.

Future work could consider multi-antenna receivers performing receive com-

bining and/or interference cancellation. The impact of imperfect CSI for the
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special case of Lm
max = Lp

max = 1 could be extended to general Lm
max and Lp

max.

• The analytical framework presented in Chapter 5 for the average error prob-

ability analysis of the downlink communication of a typical user considered

a single-tier cellular network with maximum-received-power based BS-user

association. An important extension of this work would be to consider multi-

tier HetNets with various BS-user association and interference coordination

schemes. Even the error probability analysis requires the proper characteri-

zation of the cell load because the interference from a BS is a direct function

of its load.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 4

We have

tl =

{
1 if N ′

l + 1 ≤ Lκ(l)
Lκ(l)

(N ′l+1)
otherwise.

(A.1)

Thus, Tl = E [tl] can be derived as

Tl =

Lκ(l)−1∑
n=0

P(N ′
l = n) +

∞∑
n=Lκ(l)

Lκ(l)

n + 1
P(N ′

l = n)

=
∞∑
n=1

Lκ(l)

n
P(N ′

l = n− 1)−
Lκ(l)∑
n=1

(
Lκ(l)

n
− 1

)
P(N ′

l = n− 1). (A.2)

We know, the probability that a typical user belongs to a given cell is directly pro-

portional to the area of the cell. Thus, the conditional PDF of the area of a Voronoi

cell given that a typical user belongs to it is given by fA′(a) = cafA(a), where

fA(a) is the unconditional PDF, and c is a constant such that
∫∞
0
fA′(a)da = 1. The

PMF of N ′
l can then be similarly derived as in Lemma 2 as

P(N ′
l = n) =

3.53.5Γ(4.5 + n)(Ulλu/λζ(l))
n

Γ(3.5)n!(Ulλu/λζ(l) + 3.5)n+4.5
, n ≥ 0, ∀l ∈ {m, o, e}, (A.3)

where λζ(m) = λm and λζ(o) = λζ(e) = λp. The final expression for tl in (3.13)

is obtained by substituting the PMF of N ′
l in (A.2), where the first term is further

simplified by using P(N ′
l = n − 1)/n = λζ(l)/(Ulλu)P(Nl = n), followed by∑∞

n=0 P(Nl = n) = 1.
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A.2 Proof of Lemma 5

The average link spectral efficiency Cl of the user u when u ∈ Φl
u can be expressed

as

Cl =
1

ln 2

∫ ∞

0

ln (1 + t)fl(t)dt

= − 1

ln 2

∫ ∞

0

ln (1 + t)dF̄l(t),

where fl(t) is the conditional PDF of the SINR of the user u, given that u ∈ Φl
u.

The second equality is obtained by expressing fl(t) in terms of CCDF F̄l(t) =

P(SINRl > t) as fl(t) = −dF̄l(t)
dt

. Equation (3.14) is then obtained by using inte-

gration by parts.

By using the SINR expression (3.8), the SINR distribution of the typical user u

conditioned on u ∈ Φm
u can be derived as follows:

F̄m(t) = P

(
PmhbmD

−αm
m

Ibm,m + Ibm,o + σ2
> t

)
, (A.4)

where Ibm,m = Pm

∑
xm∈Ψm\bm

hxm ||xm||−αm and Ibm,o = Pp

∑
xo∈Ψo

hxo ||xo||−αp . By utilizing

the fact that hbm ∼ Exp(1) and the independence between Ibm,m and Ibm,o, F̄m(t)

can be further expressed as

F̄m(t) =

∫ ∞

0

exp

(
−tσ

2

Pm
rαm

)
LIbm,m

(
t

Pm
rαm

)
LIbm,o

(
t

Pm
rαm

)
fDm(r)dr,

(A.5)

where LIbm,m
(·) and LIbm,o

(·) are the Laplace transforms of Ibm,m and Ibm,o, respec-

tively, and fDm(r) is the PDF of the distanceDm between the user u and the serving

BS bm. The cumulative distribution function (CDF) of Dm, FDm(r) = P(Dm ≤ r)

can be expressed as

FDm(r) =P(Rm ≤ r|u ∈ Φm
u ) =

P(Rm ≤ r, u ∈ Φm
u )

P(u ∈ Φm
u )

=
1

Um

∫ r

0

P(Rp ≥
(
BPp/Pm)

1/αpRαm/αp
m |Rm = y

)
fRm(y)dy. (A.6)

After using the distributions ofRp andRm, which are derived in the proof of Lemma

1, the required PDF fDm(r) can be obtained as

fDm(r) =
dFDm(r)

dr
=
2πλm
Um

re−πλmr2 exp
(
− πλp

(BPp

Pm

) 2
αp
r

2αm
αp

)
. (A.7)
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The Laplace transform LIbm,l
(s) = E [exp(−sIbm,l)], ∀l ∈ {m, o} at s = t/Pmr

αm

can be derived as

LIbm,l

(
t

Pm

rαm

)
= EΨl

[ ∏
xl∈Ψl\bm

Ehxl

[
exp

(
−tPζ(l)

Pm

rαmhxl
||xl||−αζ(l)

)]]
,

∀l ∈ {m, o}, (A.8)

where Pζ(m) = Pm, Pζ(o) = Pp, αζ(m) = αm, and αζ(o) = αp. By using the PGFL of

PPP Ψl with density plλζ(l), followed by the expectation with respect to exponential

RV hxl
, we have

LIbm,l

(
t

Pm
rαm

)
= exp

(
−
∫ ∞

ηl

(
1− 1

1 + t
Pζ(l)

Pm
rαmy−αζ(l)

)
2πplλζ(l)y dy

)
,

∀l ∈ {m, o}, (A.9)

where λζ(m) = λm and λζ(o) = λp; ηm and ηo are the distances from the user u to

the closest interferer in the macro and pico tiers, respectively, given that the user

u is served by the macro BS bm at a distance Dm = r. Thus, ηm = r and ηo =

(BPp/Pm)
1/αprαm/αp . Now, with the change in variables (tP−1m Pζ(l)r

αm)−2/αζ(l)y2 =

u and further simplification, we get

LIbm,l

(
t

Pm

rαm

)
= exp

(
−πplλζ(l)(tP−1m Pζ(l)r

αm)2/αζ(l)

∫ ∞

νl

1

1 + uαζ(l)/2
du

)
,

∀l ∈ {m, o}, (A.10)

where νm = t−2/αm and νp = (t/B)−2/αp . The integral in the above equation can

be solved in terms of the Gauss Hypergeometric function as [17, eqn. (24)]∫ ∞

νl

1

1 + uαζ(l)/2
=

2

(αζ(l) − 2)

νl

(1 + ν
αζ(l)/2

l )
2F1

[
1, 1, 2− 2

αζ(l)

,
1

1 + ν
αζ(l)/2

l

]
(A.11)

The final expression for F̄m(t) in (3.15) is obtained by substituting (A.7) and (A.10)

into (A.5). The conditional SINR distribution for a typical unbiased and range-

expanded pico user, (3.16)-(3.17), can be similarly derived.

The simplified expressions for F̄m(t), F̄o(t) and F̄e(t) in (3.18)-(3.20) can be

obtained by substituting σ2 = 0, αm = αp = α in (3.15)-(3.17), and then solving

the integrals as
∫∞
0
r exp(−βr2)dr = 1/(2β).
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Appendix B

Proofs for Chapter 4

B.1 Proof of Lemma 6

The LT of Ibp = Ibp,m + Ibp,p is given by LIbp
(s) = E[e−sIbp ] = LIbp,m

(s)LIbp,p
(s),

where the LT LIbp,q
(s) = E [e−sIbp,q ], ∀q ∈ {m, p} can be derived as

LIbp,q
(s) = E

Ψ̂q

∏
xl∈Ψ̂q

Eζxq

[
exp(−sPqζxq ||xq||−α)

]
, (B.1)

where Ψ̂p = Ψp\bp, Ψ̂m = Ψm\vm if u ∈ χ, else Ψ̂m = Ψm. Given Mq, ζxq ∼
Gamma(Mq, 1). By performing the expectation over this conditional distribution,

followed by the PGFL of PPP with density pqλq, and finally the expectation over

the PMF of Mq, we have

LIbp,q
(s) = exp

{
−πpqλq�2

p,q

( Lq
max∑

i=1

2F1

[
i,− 2

α
,
α− 2

α
,− Pq

�α
p,q

s
]
P(Mq = i)−1

)}
,

(B.2)

where �p,q is the lower bound on the distance to the closest interferer from u in

the tier q ∈ {m, p}. Thus, �p,p = r, and �p,m = r1 if u ∈ χ; otherwise, �p,m =

ρr. By using the law of total expectation, LIbp,m
(s) = ϕLIbp,m

(s|u ∈ χ) + (1 −
ϕ)LIbp,m

(s|u /∈ χ).

B.2 Proof of Theorem 2

By substituting (4.24) into (4.30), followed by Δp = Kp −M ′
p, and then averaging

over the joint PDF fDp,Vm(r, r1) of Dp and Vm expressed as fVm|Dp(r1)fDp(r), we
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get

Pp(γ|M ′
p = k) = ϕT1(γ|M ′

p = k) + (1− ϕ)T2(γ|M ′
p = k), (B.3)

where

T1(γ|M ′
p = k) =

∫ ∞

r=0

∫ ∞

r1=ρr

Kp−k−1∑
l=0

(−s)l
l!

dl

dsl

(
L1

Ibp,m
(s)LIbp,p

(s)
) ∣∣∣∣s= γrα

Pp

× fVm|Dp(r1|r)fDp(r) dr1 dr, (B.4)

and T2(γ|M ′
p = k) is given by a similar expression with L1

Ibp,m
(s) replaced by

L2
Ibp,m

(s). However, since the LT inT2(γ|M ′
p = k) is not a function of r1, averaging

over the PDF of Dp only is required. We thus derive T1(γ) first, as T2(γ) then

follows immediately. Let y(s) = e−πs, and t(s) = pmλmr
2
1 Ξ

m
0

(
1, 1, Pm

rα1
s
)
+

ppλpr
2 Ξp

0

(
1, 1, Pp

rα
s
)

. The LT in (B.4) can be expressed as L1
Ibp,m

(s)LIbp,p
(s) =

eπ(pmλmr21+ppλpr2)y(t(s)), the lth derivative of which can be evaluated by applying

Faà di Bruno’s formula (4.31). By using y(ω
l
o)

t(s) (t(s)) = (−π)ωl
o exp(−πt(s));

dq

dsq
Ξl
0

(
1, 1,

Pl

�α
l

s

)
=

(
− Pl

�α
l

)q

Ξl
q

(
1, 1,

Pl

�α
l

s

)
, (B.5)

which follows from the property of the Gauss Hypergeometric function; and the

properties of integer partition
∑l

q=1 qμ
l
oq = l and

∑l
q=1 μ

l
oq = ωl

o, we have

dl

dsl

(
L1

Ibp,m
(s)LIbp,p

(s)
) ∣∣∣∣s= γrα

Pp

=

P(l)∑
o=1

clo(−π)ω
l
o(−Pp)

lr
2ωl

o−αl
1 exp

{
πr21

(
pmλm + ppλp

( r
r1

)2)}

× exp

{
−πr21

(
pmλm Ξ

m
0

(
δ,
r

r1
, γ
)
+ ppλp

( r
r1

)2
Ξp
0 (1, 1, γ)

)}

×
l∏

q=1

(
pmλmδ

qΞm
q

(
δ,
r

r1
, γ
)
+ ppλp

( r
r1

)−αq+2

Ξp
q (1, 1, γ)

)μl
oq

. (B.6)

The final expression for T1(γ) in (4.33) is obtained by changing the order of inte-

gration, followed by substituting r
r1
→ θ, r1 → r1, then integrating with respect to

r1, and finally averaging over the PMF of M ′
p.

For T2(γ), the lth derivative is the same as (B.6) with r1 replaced by ρr. Af-

ter evaluating the derivative, we simply integrate with respect to r, followed by

averaging over the PMF of M ′
p to obtain the final expression for T2(γ) in (4.34).
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B.3 Proof of Theorem 6

Due to limited feedback, even when a typical pico user u belongs to χ, it receives

residual interference Y = Pmζ̂mV
−α
m from its nearest active macro BS, where ζ̂m ∼

Exp[1/κI ]. Thus, the LT of total macro tier interference when u ∈ χ is given by

LÎbp,m
(s|u ∈ χ) = L1

Ibp,m
(s)E[e−sY ] = L1

Ibp,m
(s)(1 + sPmκIr

−α
1 )−1, (B.7)

where L1
Ibp,m

(s) is the LT of total macro tier interference with perfect CSI, given by

(4.25). The LT of total pico tier interference LÎbp,p
(s) is equal to LIbp,p

in (4.27).

Since β̂bp ∼ Gamma(Kp, κp),

T1,LF (γ|r, r1) =
Kp−1∑
l=0

(−s)l
l!

dl

dsl

(
L1

Ibp,m
(s)LIbp,p

(s)(1 + sPmκIr
−α
1 )−1

) ∣∣∣∣s= γrα

κpPp

=

Kp−1∑
l=0

(−s)l
l!

l∑
v=0

(
l

v

)
dv

dsv

(
L1

Ibp,m
(s)LIbp,p

(s)
)

× dl−v

dsl−v
(1 + sPmκIr

−α
1 )−1

∣∣∣∣s= γrα

κpPp

, (B.8)

where the second equality follows from Leibnitz’s theorem for differentiation of

product [133, p. 12]. The vth derivative of L1
Ibp,m

(s)LIbp,p
(s) at s = γrα

κpPp
is given

by (B.6) with l replaced by v and γ replaced by γ/κp. The (l − v)th derivative of

(1 + sPmκIr
−α
1 )−1 can be obtained as

dl−v

dsl−v
(1 + sPmκIr

−α
1 )−1

∣∣∣∣s= γrα

κpPp

=
(−PmκIr

−α
1 )l−v(l − v)!

(1 + γPmκI

κpPp
( r
r1
)α)l−v+1

. (B.9)

After substituting the derivatives, the final expression of T1,LF (γ) in (4.57) is ob-

tained in the same way as T1(γ) in Theorem 2 by averaging over the joint PDF of

fDp,Vm(r, r1).

T2,LF (γ) and Pm,LF (γ) can be derived in the same was as T2(γ) and Pm(γ)

for perfect CSI in Theorem 2 and 3, respectively, because the LTs of interference

powers are the same as those of perfect CSI case. The only differences that should

be taken care of are the probability distributions of β̂bp and β̂bm . With limited feed-

back, β̂bp ∼ Gamma(Δp, κp) and β̂bm ∼ Gamma(Δm, κm). Since β̂bp and β̂bm

can be expressed as β̂bp = κpβbp and β̂bm = κmβbm , where βbp ∼ Gamma(Δp, 1)
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and βbm ∼ Gamma(Δm, 1) are the corresponding channel power gains with perfect

CSI, T2,LF (γ) is given by (4.34) with γ replaced by γ/κp, and similarly Pm,LF (γ)

by (4.37), with γ replaced by γ/κm.
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Appendix C

Uniform Approximations for Error
Probability Performance in fading,
noise and interference

In this appendix1, the concept of uniform approximation (UA) for average error

performance analysis of wireless communications is introduced. The average per-

formance analysis of wireless communications impaired by fading, noise and inter-

ference typically requires averaging the performance metric h(γ) over the statisti-

cal distribution of the instantaneous SNR/SINR γ. However, the exact closed-form

solution may not always be possible due to analytical intractability. Sometimes, al-

though analytically tractable, the solution may be very complex to provide any use-

ful insight into system performance. Thus, simple approximation which serves as

an alternative to exact solution and provides important insights into critical system

parameters is highly desirable. Various approximations have thus been developed

in the literature [3,138–141]. In contrast to these approximations, the beauty of the

UA is its excellent accuracy over the whole range of SNR/SIR.

A very generalized result for the error probability UA of wireless transmissions

over flat fading channels is developed in this appendix, which can be applied for the

following typical scenarios in wireless communications.

• The additive impairment is AWGN.

1Contents of this appendix have been published in the IEEE Transactions on Communications [117]
and also in the proceedings of the IEEE International Conference on Communications (ICC) 2012
[116].
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• The additive impairment is dominated by interference.

Theoretically, the UA is valid for any transmission scheme, any modulation, and

any fading channel as long as the following assumptions are valid.

AS1) The instantaneous SNR/SIR at the receiver can be expressed as γ = ρX ,

where ρ is a deterministic quantity, andX is a nonnegative RV which depends

on the desired and interference channel gains, and the transmission/reception

techniques.

AS2) The PDF fX(x) accepts a polynomial expansion2 fX(x) =
∑K−1

k=0 a(k)x
k+t+

O
(
βK+t+1

)
as x→ 0+, where a(0) > 0, and t is the polynomial growth rate

of fX(x) at 0. In [3], the authors approximated the PDF with a monomial term

fX(x) = a(0)xt + O(xt+1) as x → 0+ to quantify the high-SNR (ρ → ∞)

average error probability of wireless transmissions impaired by fading and

AWGN in terms of the array gain and diversity gain as (2.14).

AS3) The conditional error probability function denoted by h(γ) decays exponen-

tially as γ → ∞ and admits a polynomial expansion as γ → 0+. From

(C.1), such decay implies that the MT H(s) has poles in the left half-plane

only. This phenomenon shows up in common h(γ) including Q(
√
κγ) =∫∞√

κγ
1
2π
e−u

2/2du, which represents the error probability of various coherent

digital modulation and demodulation schemes. Similarly, h(γ) = pe−qγ or

exponential sums/integrals represent the error probability of non-coherent de-

modulation schemes [70, 71].

Before deriving the error probability UA, we first need to lay the necessary

groundwork, which includes mainly the asymptotics of error probability as ρ→ 0+

and ρ → ∞. The asymptotics are derived in Proposition 1 by using the MT-based

method. The basics of MT are thus introduced first in Appendix C.1, followed by

Proposition 1 in Appendix C.2 and finally, our main result for error probability UA

in Appendix C.3.

2If g(x) =
∑
∞

n=0
anx

n as x → 0+, we write g(x) = SN (x) + O(xN+1) as x → 0+, where
SN (x) =

∑N

n=0
anx

n, to express that the difference |g(x) − SN (x)| is smaller than C|xN+1| for
some constant C as x→ 0+. Thus, the partial sum SN (x) is an asymptotic of f(x) with an error
term O(xN+1) as x→ 0+. Similar series of x−n forms an asymptotic expansion as x→∞.
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C.1 Basics of Mellin Transform

Let g(y) be a function defined on the positive real axis 0 ≤ y < ∞. The MT of

g(y) on the complex plane is

M[g(y); s] = G(s) =
∫ ∞

0

ys−1g(y) dy, (C.1)

for some complex s [142]. G(s) is holomorphic (a function that is complex differ-

entiable in a neighborhood of every point in its domain) in a vertical strip called the

fundamental strip. For example, for M[exp(−y); s] = Γ(s), the fundamental strip

is 0 ≤ �(s) < ∞. More generally, if g(y) = O(y−u) as y → 0+ and O(y−v) as

y →∞ with u < v, the fundamental strip is u ≤ �(s) < v.

Crucially, the MT maps the asymptotic expansions of g(y) at y = 0 and ∞ to

the poles of G(s). In order to understand this result, suppose g(y) decays rapidly as

y →∞, and g(y) =
∑N−1

n=0 dny
n +O(yN) as y → 0+. The MT is then given by

G(s) =
∫ 1

0

ys−1
(
g(y)−

N−1∑
n=0

any
n

)
dy +

∫ 1

0

ys−1
N−1∑
n=0

dny
n dy +

∫ ∞

1

ys−1g(y) dy

=

∫ 1

0

ys−1
(
g(y)−

N−1∑
n=0

dny
n

)
dy +

N−1∑
n=0

dn
s+ n

+

∫ ∞

1

ys−1g(y) dy.

The first integral converges in the larger half-plane �(s) > −N and the second

for all complex s. Thus, we see that G(s) is singularity-free for all �(s) > 0 with

simple poles of residue dn at s = −n (n = 0, . . . , N−1) and no other singularities.

C.2 Error Probability Asymptotics from Mellin Trans-
forms

The average probability of error can be expressed as

Pe(ρ) =

∫ ∞

0

h (ρx) fX(x) dx, (C.2)

where fX(x) is the PDF of X , and h(x) is a conditional error expression that re-

quires averaging over noise, fading and other effects. Generically, the asymptotic

of Pe(ρ) as ρ → ∞ is given by Pe(ρ) =
∑

n≥0 dnρ
−vn where dn and vn are

real number sequences, with vn positive and increasing. Similarly, as ρ → 0+,
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Pe(ρ) =
∑

n≥0 d
′
nρ

un where d′n and un are real number sequences, with un positive

and increasing. For coherent modulations, un is not an integer sequence because the

conditional error is a function of
√
ρ. In contrast, for non-coherent and differential

modulations, un is an integer sequence. To treat all such cases in a unified way, we

use the following definition.

Definition 1. The asymptotics of Pe(ρ) (C.2) as ρ → 0+ and ρ → ∞ can be

expressed as

Pe(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1∑
l=0

c(l)yl +O(yM1+1) as y → 0+

M2∑
l=0

b(l)

yδ+l
+O(y−(δ+M2+1)) as y →∞

(C.3)

where y = ρτ for a positive real number τ such that both expansions have integer

powers of y, whereas the series in terms of ρ may not necessarily have integer

powers.

MT is a natural tool for the study of asymptotics. We consider the MT of a

general h(γ) expressed as a sum of either a finite or an infinite number of terms

derived from a common base function. For example, with base function Q(
√
γ),

we consider h(γ) =
∑

n≥0 ϑnQ(
√
κnγ), which is powerful enough to cover all co-

herent linear modulations, union bound on block and convolutional coded systems

and others. With suitable base functions, differential and non-coherent modulation

can also be treated. With this generalized h(γ), we next show how the asymptotics

of Pe(ρ) as ρ→ 0+ and ρ→∞ can be obtained from the left- and right-sided poles

of the MT productH(s)FX(1− s) with respect to its fundamental strip.

Proposition 1. Consider a generalized conditional error probability given by the

sum

h(γ) =
∑
n

ϑng(κnγ), (C.4)

where g(γ) is a general base function. If G(s) and FX(s) are the MTs of g(γ)

and the PDF fX(x), respectively, let Π(s) = G(s)FX(1 − s)
∑

n ϑnκ
−s
n has an

increasing sequence of right-sided poles p̃0, p̃1, . . . and a decreasing sequence of
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left-sided poles q̃0, q̃1, . . . with respect to the fundamental strip. All the poles are

assumed to be first-order ones. Then, the asymptotics of Pe(ρ) can be expressed as

(C.3), where δ = p̃0/τ and the non-zero coefficients are given by

{
c (| q̃l| /τ)

b ((p̃l − p̃0)/τ)

}
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
lim
s→q̃l

[
(s− q̃l)G(s)FX(1− s)

∑
n

ϑnκ
−s
n

]

lim
s→p̃l

[
(p̃l − s)G(s)FX(1− s)

∑
n

ϑnκ
−s
n

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (C.5)

Otherwise, the coefficients are zero.

Proof. The error probability (C.2) is a type of convolution and thus can be trans-

formed via the Parseval formula [142] as

Pe(ρ) =
1

2πı

∫ c+ı∞

c−ı∞

1

ρs
H(s)FX(1− s) ds, (C.6)

where the parameter c is chosen to be in the fundamental strip 〈u, v〉 where both

H(s) and F(1 − s) are holomorphic. For h(γ) given in (C.4), the MT H(s) =
G(s)∑ϑnκ

−s
n .

To find the asymptotic of (C.6) as ρ→ 0+, we may consider a large rectangular

contour to the left of the fundamental strip with sides �(s) = c and �(s) = −M
for−M < u. Given that the functions G(s) and FX(1− s) decrease faster than any

negative power of |s|, and that the series
∑
akϑ

−s
k is of, at most, polynomial growth

in the extended strip 〈−M,u〉 as |s| → ∞, the integrand in (C.6) when evaluated

along the top and bottom lines of the rectangle has a negligible contribution. In

contrast, the integral along the vertical line �(s) = −M is bounded by O(ρM)

[142]. By applying the residue theorem,

Pe(ρ) =
∑
s∈HM

Res

{
1

ρs
G(s)FX(1− s)

∑
ϑnκ

−s
n

}
+O(ρM),

where HM is the set of poles enclosed by the rectangular contour, and M is as large

as we want it to be.

One can similarly consider a large rectangular contour to the right of the funda-

mental strip with sides �(s) = c and �(s) = M for M > v to get the asymptotic

expansion as ρ → ∞. However, there is an additional negative sign due to the

contour being clockwise. By assuming first-order poles, we get the (C.5) and this

completes the proof.
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Remarks:

1. Since H(s) = G(s)∑ϑnκ
−s
n , and the term

∑
ϑnκ

−s
n does not have any

poles, the poles of H(s) are simply those of the base function. For ex-

ample, consider an error bound for a digital modulation given by h(γ) =∑
ϑnQ(

√
κnγ), where ϑn and κn represent the number of the nearest neigh-

bors and their distances. The poles of H(s) are then from the MT of Q(
√
x)

and are not dependent on the ϑn and κn values. The poles are thus contributed

by G(s) andFX(1−s). These in general yield left-sided and right-sided poles,

respectively, which in turn determine the asymptotics.

2. The first right-sided pole p̃0 makes the dominant contribution to error proba-

bility performance as ρ→∞. The high-SNR average error probability (2.14)

analyzed in [3] for fading channels further impaired by AWGN can thus be

expressed in terms of MT as

Gd = p̃0,

Gc = lim
s→p̃0

[
(p̃0 − s)G(s)F (1− s)

∑
n

ϑnκ
−s
n

]−1/p̃o
.

(C.7)

Gc and Gd are the array gain and diversity gain, respectively. As per AS3,

H(s) contributes left-sided poles only. The diversity order is thus given by the

first right-sided pole of FX(1 − s). Note that the monomial fX(x) ≈ a(0)xt

corresponds to FX(1 − s) having a pole at s = 1 + t. Thus, while [3] is

derived from fX(x), our result is based on FX(s).

To sum up, Proposition 2 states that the positive poles of FX(1 − s) describe

the asymptotic of Pe(ρ) as ρ → ∞ whereas the negative poles of FX(1 − s) and

H(s) together describe the asympotic ρ→ 0+. The first positive pole of FX(1− s)
gives the diversity order. These asymptotics form the basis for the error probability

UA, which will be developed subsequently. Specifically, only b(0) and δ from the

series corresponding to ρ → ∞ and c(l), l = 0, 1, 2, . . . ,M1 from ρ → 0+ series

are needed. Since b(0) corresponds to the first right-sided pole p̃0, we have

b(0) = a(0)H(p̃0), (C.8)
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where a(0) = lims→p̃0 [(p̃0 − s)F (1− s)] is the residue of FX(1 − s) at s = p̃0,

which is also the coefficient of the monomial approximation to fX(x) = a(0)xt

considered in [3]. As per this monomial, p̃0 = t + 1. As b(0) and δ are closely

related to a(0) and t, either set of parameters may be used to develop the error

probability UA.

If FX(1 − s) has positive poles only (this condition is satisfied for most of the

popular fading models and diversity-combining systems in the absence of interfer-

ence), it can be shown that the coefficients c(l), l = 0, 1, 2, . . . given by the first

equality in (C.5) depend directly on the moments of X . This point will be verified

by an example in the following section.

Although we focus on the use of MT to obtain these coefficients, they can also

developed via the PDF or the moment generating function (MGF) of X . We briefly

comment on these alternative approaches below.

1. PDF: a(0) and t are given by the monomial expansion of fX(x) near 0. Simi-

larly, by using the PDF f(β), the moments μn =
∫∞
0
βnf(β)dβ can be easily

obtained.

2. MGF: If MGF is readily available, it is fairly simple to extract a(0) and

t by the monomial expansion of MX(s) near s = ∞ [3]. Fortunately, the

fractional moments are also simple to compute from the MGF [143]. Con-

sider an Nr-branch MRC system in i.i.d. Rayleigh fading as an example. The

MGF of X is MX(s) = (1 + s)−Nr , which can be expanded for s → ∞
as MX(s) = s−Nr + O

(
s−(Nr+1)

)
, and hence, a(0) and t are obtained to be

1/Γ(Nr) and Nr − 1, respectively [3].

The fractional moments of X , μl/2, l = 1, 3, 5, . . . can be computed by using

[143] as

μl/2 = E[X l/2] = Γ(λ)−1
∫ ∞

0

tλ−1ζ(−t)dt,

where λ is chosen to be 1/2 such that n = l/2 + λ is a positive integer while

satisfying 0 < λ < 1; ζ(s) = dnMβ(s)

dsn
.
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By using the above equation, μl/2 can be obtained as

μl/2 =
Γ(Nr + n)

Γ(1/2)Γ(Nr)

∫ ∞

0

y−1/2(1 + y)−(Nr+n)dy =
Γ(Nr + l/2)

Γ(Nr)
,

where the last equality is obtained by using [144, eq. (3.191.3)].

C.3 Uniform Approximation

An error probability UA is a rational function that matches the asymptotics of Pe(ρ)

as ρ → 0+ and ρ → ∞, simultaneously [145]. That is, if the UA is expanded into

two series of ρ−n and ρk, then those expansions will match the appropriate terms of

(C.3).

Definition 2. A rational function r(y) is given by

r(y) =
p0 + p1y + p2y

2 + . . .+ pLy
L

q0 + q1y + q2y2 + . . .+ qKyK
, (C.9)

where L and K are are the degrees of the numerator and the denominator, respec-

tively. To fit this rational function into Pe(ρ) (C.2), the coefficients p0, p1, . . . pL and

q1, q2, . . . , qK are determined from the asymptotics in (C.3). The values of L and K

depend on the number of the low- and high-SNR terms used to construct r(x). If

L < K, the rational function is called proper, which is the case in our applications.

Proposition 2. The UA for the error probability Pe(ρ) (C.2) is given by

Pe(ρ) = r(y) + ε(y), (C.10)

where r(y) is a rational function defined in (C.9), y = ρτ , K = L + δ, L ≥ 2

is an integer, p0 = 1 and q0 = 1/c(0). The denominator coefficient vector q =

(q1, q2, . . . , qK)
T is given by

q = −1/c(0)W−1 (c̃(1) c̃(2) . . . c̃(K − 1) c̃(K)
)T
, (C.11)

where c̃(l) = c(l + L− 2) and W = {wij}, i = 1, . . . , K, j = 1, . . . , K with

wij =

{
c̃(i− j)− b(0) i = 1, 2; j = i+K − 2

c̃(i− j) otherwise.
(C.12)
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The numerator coefficient vector p = (p1, p2, . . . , pL)
T is given by

pi =

⎧⎪⎨
⎪⎩
c(i)/c(0) +

i∑
k=1

qkc(i− k) i = 1, . . . L− 2

b(0) qK−j j = 0, 1; i = L− j.

(C.13)

The error term ε(y) of (C.10) is O
(
yK+L−1) as y → 0+ and O

(
x−(δ+1)

)
as

x→∞.

Proof. To construct UA, we require the rational function r(y) in (C.9) to satisfy

both the asymptotics in (C.3) simultaneously. Let us use only the first term of the

asymptotic corresponding to y →∞. As y →∞, we find that

pL−1yL−1 + pLy
L

qK−1yK−1 + qKyK
=

b(0)

yK−L

if pL−1 = b(0) qK−1 and pL = b(0) qK , where K − L = δ. These conditions thus

determine the values of pi for i = L − 1, L as expressed in (C.13). To satisfy the

asymptotic corresponding to y → 0+, we must have( ∞∑
l=0

c(l)yl

)(
q0 +

K∑
k=1

qky
k

)
= p0 +

L∑
l=1

ply
l. (C.14)

By comparing the coefficients of yl on both sides of (C.14) for l = L−1, L, . . . , K+

L− 2, we get

c(L− 2 + i)q0 +
K∑
j=1

c(L− 2 + i− j) qj =

{
pL−2+i i = 1, 2

0 i = 3, . . .K.
(C.15)

It follows from (C.14) that c(0)q0 = p0. Thus, if we set p0 = 1, we get q0 = 1/c(0).

After substituting for q0, pL−1 and pL, (C.15) can be given in matrix form (C.11).

The solution of (C.11) completely determines the denominator of r(y). Again, by

the comparing the coefficients of yi on both sides of (C.14) for i = 1, 2, . . . , L− 2,

we get the values of pi for i = 1, 2, . . . L− 2 as expressed in (C.13).

Proposition 2 is a general result for average error probability, applicable to a

variety of modulation schemes, fading channels and interference scenarios. The

basic inputs required are τ , several coefficients (c(l), l = 0, 1, 2, . . .) of the ρ→ 0+

series and the first coefficient b(0) and δ of the ρ→∞ series.
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We next demonstrate the UA approach to average error probability analysis of

an Nr branch MRC diversity system in i.i.d. Rayleigh fading. We consider the

scenario where the received signal is impaired mainly by AWGN, as well as the

scenario with interference dominating the impairment, rather than noise.

C.3.1 Error Performance of Nr branch MRC in i.i.d. Rayleigh
fading

Case 1: Received signal impaired by noise

For Nr branch MRC system, when no interference is present, and the perfor-

mance is impaired mainly by AWGN, the receive SNR can be expressed as γ = ρX ,

where ρ is the average receive SNR and X is a channel dependent RV, whose PDF

is

fX(x) =
xNr−1e−X

(Nr − 1)!
. (C.16)

Its MT is FX(s) =
Γ(Nr+s−1)
(Nr−1)! .Thus, FX(1 − s) has simple right-sided poles at

s = Nr, Nr+1, . . .. As per Proposition 1, these poles describe the high-SNR Pe(ρ).

Since the first pole is at s = Nr, the diversity order isNr. For coherent modulations

with generic h(x) = Q (
√
κx), H(s) has simple poles at s = 0,−1/2,−3/2, . . ..

These poles describe the low-SNR expansion of Pe(ρ). The non-integer poles of

H(s) indicate that the low-SNR expansion involves
√
ρ. We thus substitute y =

√
ρ

with τ = 1/2. Then, δ = 2p̃0, and the necessary coefficients computed according

to proposition 1 are as follows:

b(0) = a
2p̃0−1Γ(p̃0 + 1/2)

p̃0
√
πκp̃0

c(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

l = 0

(−1)(l+1)/2(κ/2)l/2F (l/2 + 1)√
π l Γ [(l + 1)/2]

l = 1, 3, . . .

0 otherwise.

(C.17)

where p̃0 = Nr, a = 1/Γ(Nr), and the moments μn = F(n + 1) = Γ(Nr +

n)/Γ(Nr). For single branch (Nr = 1) case, the following simple UA can be

obtained for coherent BPSK:

Pe(ρ) =
1 + y + 0.5 y2

2 + 4 y + 5 y2 + 4 y3 + 2 y4
+ ε(y), (C.18)
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where y =
√
ρ. Note that the UA (C.18) matches the first three low-SNR terms and

the first high-SNR term. Similar UAs for any other Nr can be readily derived. To

test their accuracy, the UAs for the BER of BPSK modulation whenNr = 1, 2, 4 are

plotted along with the exact result [71, Sec. 14.4], and the conventional high-SNR

result [3] in Figure C.1. Notice that the UA coincides with the exact BER for the

entire range −10 ≤ ρ < 30 dB, while the high-SNR result diverges from the exact

as the SNR decreases. Clearly, the UA provides an excellent approximation over

the whole range of the SNR.
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Figure C.1: The exact BER of MRC system, the high-SNR approximation [3] and
the UA (C.10). In the UA, L = 2.

Case 2: Received signal impaired by interference

Let us consider an Nr branch MRC system in the presence of NI co-channel

interferers, with interference dominating the noise. The SIR in this case is given by

γ =
Ω0X0∑NI

l=0ΩlXl

(C.19)

where X0 and Xl, l = 1, 2, . . . , NI are the channel gains of the desired and NI
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interference links, respectively, with the corresponding average received powers Ω0

and Ωl, l = 1, 2, . . . , NI . For the sake of demonstration purpose, we assume that all

interferers have identical powers i.e. Ωl = ΩI , (l = 1, 2, . . . , NI). Then, γ can then

be expressed as γ = ρX , where ρ = Ω0/ΩI and β = X0/Z, Z =
∑NI

l=1Xl. The

MT of fX(x) is then given by

FX(s) = FX0(s)FZ(2− s).

In Rayleigh fading, X0 and Z are central chi square RVs with 2Nr and 2NI degrees

of freedom, respectively [146], and their MTs are FX0(s) = Γ(s+Nr − 1)/Γ(Nr)

and FZ(s) = Γ(s+NI − 1)/Γ(NI). Thus, we have

FX(s) =
Γ(s+Nr − 1)Γ(1 +NI − s)

Γ(Nr)Γ(NI)
.

FX(1 − s) has positive poles at s = Nr, Nr + 1, . . . and negative poles at s =

−NI ,−(NI+1), . . .. Note thatFX(1−s) in this case has both positive and negative

poles, whereas in the former cases, FX(1 − s) has only positive poles. As the

first positive pole is at s = Nr, the diversity order is Nr. The negative poles of

FX(1 − s) together with those of H(s) thus describe the asymptotic of Pe(ρ) as

ρ → ∞. The asymptotic ρ → 0+ includes powers of
√
ρ and thus requires that

τ = 1/2. Accordingly, from (C.5), we obtain the following coefficients:

b(0) =
2Nr−1Γ(NI +Nr)Γ(Nr + 1/2)√

πNrκNrΓ(Nr)Γ(NI)

c(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

l = 0

(−1)(l+1)/2(κ/2)l/2Γ(l/2 +Nr)Γ(NI − l/2)√
π l Γ [(l + 1)/2] Γ(Nr)Γ(NI)

l = 1, 3, . . .

(−1)(l+2−2NI )/2(κ/2)l/2Γ(l/2 +Nr)Γ((1− l)/2)√
π lΓ [(l + 2− 2NI)/2] Γ(Nr)Γ(NI)

l = 2NI , 2(NI + 1), . . .

0 otherwise.
(C.20)

The UA for the average error rate Pe(ρ) can now be readily computed by using

Proposition 2. Note that the spatial distribution of the interfering nodes are not

considered in this example. In Chapter 5, we derived error probability UA in the

presence of interference, where the interfering nodes are spatially distributed ac-

cording to a PPP.
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