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Abstract 

Managing the land properly should lead us to conserve the soil which is a critical substance for 

sustaining our life and the global society. Quantifying the effects of land management and land-

use conversion on soil physical and biological properties can aid to identify best management 

practices that can reverse the trend of declining soil quality. Additionally, underlying 

heterogeneity in soil properties can impose and amplify existing management challenges in 

common land use systems. Therefore, this study was conducted to identify sensitive soil quality 

indicators among contrasting land managements and also to characterize the spatial 

heterogeneities of key soil attributes using ordinary kriging (OK), regression-kriging (RK), 

cokriging (coK), and regression-cokriging (RcoK) geostatistical approaches. Our results 

demonstrated an improved hierarchical fractal aggregation (Dm) in soils covered by perennial 

legumes and grasses (Dm = 0.97) compared to nonfractal aggregation under fallow phases (Dm 

= 0.99). Our results proved that complex crop rotations including perennials enhanced soil 

quality which was concurrently associated with higher crop production. Long-term cattle manure 

additions had strong positive effect on nutrient cycling, while balanced fertilization beneficially 

influenced soil-water relationships and physical condition. Our results suggest that the Dm value, 

S-index, plant available water (PAW), soil organic C (SOC) concentration, and microbial 

biomass C (MBC) are highly responsive soil quality indicators, and hence, useful for evaluating 

management options. Collectively, our results indicate that conversions from either natural forest 

or native grassland to cultivated lands detrimentally alter the soil structural characteristics 

through substantially lowering macroporosity, saturated water content, and S-index. Such land-

use conversions into cultivated lands also appear to increasing MBC in soils. Furthermore, fungi 

and Gram-negative bacteria were found to be distinctive biomarkers in the natural forest and 
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native grassland soils, respectively, perhaps suggesting a paradigmatic shift in microbial 

community composition when long-term cultivation is established. Comparison of OK, RK, coK, 

and RcoK approaches at our field scale revealed that the combination of kriging with certain 

terrain covariates [e.g., elevation and depth-to-water (DTW)] as implemented in the coK method 

delivers enhanced soil mapping while reducing prediction uncertainty. 

Keywords: geostatistics, land-use, mass fractal dimension, NPKS fertilization, predictive 

mapping, secondary variable, soil quality evaluation 
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Introduction 

Land management practices can largely impact various soil properties which in turn are 

intrinsically linked to the sustainability of agroecosystem functions and productivity (Di et al., 

2013; Garrigues et al., 2012). Moreover, an enhanced soil quality can build resiliency in land-

based production systems. This will bolster buffering and adaptation capacities in 

agroecosystems which in turn enable managing the detrimental impacts of escalating climate 

variability (de Paul Obade and Lal, 2014; Garrigues et al., 2012). In an attempt to reverse the 

trend of declining soil quality, it is essential to focus on quantifying the effects of contrasting 

land management options and land-use conversions on soil properties (D’Hose et al., 2014; 

Geisseler et al., 2016). In addition, spatial heterogeneity in soil properties can represent 

management challenges to policymakers and producers where soil properties could differ from 

one sampling point to other nearby sampling points within the same management unit 

(Nyamadzawo  et al., 2008; Robertson et al., 1993). Therefore, there is a need for comprehensive 

understanding and documentation of the spatial structure of soil properties and its linkage with 

ecosystem functions such as nutrient cycling and water regulation.  

Conceptually, soil quality depends on the extent to which soils fulfill the role or goal for 

what they are being used (Karlen et al., 2003). Certain management choices such as rotation type 

and nutrient regime influence multiple specific functions of the soil. Earlier studies have 

suggested the implementation of diversified rotations as a part of conservation agriculture 

strategies to enhance soil quality (Munkholm et al., 2003; Ehlers and Claupein, 1994). They also 

reported that soil quality can be benefited by balanced fertilization recommendations 

(Chakraborty et al., 2011). In addition, common land use systems have been shown to have 

wide-ranging impacts on individual soil properties (Hebb et al., 2016; Teferi et al., 2016). 
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Conversion of native grasslands to annual croplands can lead to the physical disruption and loss 

of soil structure, thereby reducing macroporosity and increasing bulk density (Bodhinayake et 

al., 2002; Li et al., 2007; Jones et al., 2016). However, significant soil quality changes may 

generally be realized and noticeable over the long term due to the inherently slow rates of soil 

change with time (de Paul Obade and Lal, 2014), and therefore, there is a paucity of information 

regarding the long-term integrated effects of contrasting land managements and land-use changes 

on soil quality.  

Soil quality cannot be directly measured and its assessment is typically inferred from 

observed or modelled soil physical, chemical, or biological attributes (Lal, 2001). Therefore, an 

on-going methodological challenge is to identify a relevant, standard set of specific properties as 

meaningful indicators of the soil quality which are sensitive to management-induced changes 

(Ahamadou and Huang. 2013). Conceptually, soil quality depends on the extent to which soils 

fulfil the role or goal for what they are being used (Karlen et al., 2003). Therefore, it is vital to 

identify a new soil health metrics to integrate and document changes in soil properties and 

associated several soil functions. In addition, such quantification of soil functions in various land 

uses can also inform the potential outcome of valuable ecosystem services including carbon 

sequestration, water cycling and filtration as well as grain and forage productivity. 

Development of soil quality changes is gradual, and it typically takes a reasonable time to 

achieve a long-term steady state after a change of management (Chakraborty et al., 2011). 

Therefore, we focused on the comparative effects of contrasting natural ecosystems and 

agricultural systems in long-term study sites to detect changes that are likely absent or may not 

be evident in the short term. Moreover, a comprehensive soil characterization entails multiple 

attributes and functions (O’Sullivan et al., 2015). Hence, we investigated a wide range of soil 
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properties (e.g., aggregation, water conductivity, macroporosity, carbon and nitrogen, and 

microbial communities) and their responses to various land managements to test and identify the 

sensitivity of soil quality indicators to contrasting agroecosystems. New information on soil 

quality responses to land managements can improve methods by which land owners will be 

better able to measure and manage soil quality, and this may eventually lead to more sustainable 

agroecological systems.  

Site-specific management endeavors to manage spatial and temporal variability within 

fields in order to optimize profitability, sustainability, and environmental protection (Duffera et 

al., 2007; Lowenberg-DeBoer and Swinton, 1997). Soil classification and survey have been 

traditionally used to document and characterize the spatial variation by generating maps of soil 

classes that represents soil properties estimated within a defined region or generalized mapping 

unit (Webster, 1985). Different geostatistical methods have been recently applied to interpolate 

soil properties from sparse sampling points into continuous surfaces by modeling the spatial 

correlation with minimum variance (Cambardella et al., 1994; Hengl et al., 2004; Lark, 2002; 

Wang et al., 2009). However, insufficient attention has been paid to comparing the spatial 

structure of specific soil properties such as plant available water (PAW), soil organic carbon 

(SOC), and microbial biomass carbon (MBC) which are closely related to key soil functions such 

as soil pore water relationships and nutrient cycling. Different geostatistical methods have been 

employed to map soil properties whether merely based directly on available measured data (e.g., 

ordinary kriging) or based on spatial distribution of a secondary variate (e.g., cokriging, 

regression cokriging) (Mirzaee et al., 2016; Wang et al., 2013; Hengl et al., 2004; Odeh et al., 

1995). However, there are discrepancies across these available reports regarding the performance 

of these various geostatistical methods, and hence, the existing literature substantiates the need 
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for further comparison of these various geostatistical approaches under contrasting 

agroecosystems and for multiple biophysical attributes. 

We hypothesized that soil quality will increase (e.g., higher macroporosity and microbial 

biomass carbon) in the following pattern: cropland < native prairie and the spatial variability of 

soil quality indicators is higher in native prairie comparing with irrigated cultivated land. 

Regarding contrasting land managements, we hypothesized that soil quality increases in the 

following pattern: controls with no nutrient added < Nitrogen fertilizer < Manure. Also, crop 

rotations including leguminous crops would increase soil quality more than simple wheat-fallow 

rotations. 

The aims of this study were to: i) determine the long-term effects of contrasting land 

managements (i.e., crop rotations and nutrient regimes) and divergent land-use types (native 

grassland versus cultivated land) on selected soil physical, chemical and biological properties, ii) 

identify soil quality indicators that can provide robust metrics of sustainability by testing whether 

they can detect and distinguish among contrasting land managements and land-use systems, iii) 

capture and upscale new spatial knowledge of key soil biophysical attributes (i.e., PAW, SOC, 

and MBC) from point measurement to field landscapes by extracting their spatial variability 

patterns while comparing several geostatistical approaches (i.e., OK, coK, RK, and RcoK).  



5 
 

CHAPTER ONE  



6 
 

Quantifying the Sensitive Soil Quality Indicators across contrasting Long-term Land Management 

Systems: Crop Rotations and Nutrient Regimes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

1. Abstract 

Managing the land properly can lead us to conserve the soil which is a critical substance for 

sustaining our life and the global society. However, measuring the quality of the soil explicitly is 

still a challenge. Therefore, this study was conducted to identify suitable soil quality indicators 

among contrasting land managements (i.e., simple vs. complex crop rotations; manure vs. 

balanced fertilization) at long-term experimental fields. The fractal structure of soils was 

documented by the mass-diameter relationship of soil aggregates using 3D laser scanning. 

Hydraulic conductivity (K), pore size fractions, and S-index were determined from moisture 

retention curves using a HYPROP system. Soil microbial community structure was also 

characterized using phospholipid fatty acid (PLFA) analysis. Our results demonstrated an 

improved hierarchical fractal aggregation in soils covered by perennial legumes and grasses 

(Dm= 0.97) compared to nonfractal aggregation under fallow phases (Dm= 0.99). In addition, 

across nutrient managements, balanced fertilization was the only management exhibiting 

significantly enhanced fractal aggregation. Moreover, complex crop rotations and balanced 

fertilization also improved S-index, saturated water content (sat. WC), and plant available water 

(PAW) compared to their counterparts (Ps< 0.05). Similarly, significant differences between 

simple and complex rotations were evident for microbial community composition and biomass 

carbon (MBC) with 1.5 times higher MBC in the soils under complex rotations compared to both 

the adjacent forest soil and the simple 2-yr rotations. Our results proved that complex crop 

rotations including perennials enhanced soil quality, and this outcome was associated with higher 

crop productivity. Both balanced fertilization and manure had contributed to improving soil 

functions where cattle manure had stronger positive effect on nutrient cycling, while the 

balanced fertilization beneficially influenced water relationships and physical condition in the 
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soil. Our results suggest that the Dm, S-index, PAW, soil organic C, and MBC are highly 

responsive indicators useful for evaluating management options that also influence agricultural 

productivity.  

Keywords: grain yield, mass fractal dimension, NPKS fertilization, PLFA, soil quality evaluation  
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2. Introduction 

Enhancing and sustaining the quality of soils is essential to ensure agricultural 

productivity, water availability and an overall environment quality (de Paul Obade and Lal, 

2014; Garrigues et al., 2012). Moreover, an enhanced soil quality can build resiliency in land-

based production systems to enable buffering and adaptation capacities that can diminish the 

detrimental impacts of escalating climate variability and frequency of extreme weather events 

such as droughts or flooding (de Paul Obade and Lal, 2014; Garrigues et al., 2012). Likewise, 

agricultural management practices can largely impact the quality of the soil which in turn is 

intrinsically linked to the sustainability of agroecosystem functions and productivity (Di et al., 

2013).  

In an attempt to reverse the trend of declining soil quality, recent studies focused on  

identifying suitable soil management practices (D’Hose et al., 2014; Sharma et al., 2008). 

However, soil quality cannot be directly measured and soil quality information is typically 

inferred from observed or modelled soil physical, chemical, or biological attributes (Lal, 2001). 

Therefore, an on-going methodological challenge is to identify a relevant, standard set of specific 

properties as meaningful indicators of the soil quality which are sensitive to management-

induced changes (Ahamadou and Huang. 2013). Conceptually, soil quality depends on the extent 

to which soils fulfil the role or goal for what they are being used (Karlen et al., 2003). Therefore, 

within the context of agricultural production, high soil quality is rather equivalent to long-term 

high productivity and system resiliency without significant soil or environmental degradation 

(Karlen et al., 2006). 

Crop rotation is one of the fundamental management factors influencing soil quality and 

thus the overall sustainability of cropping systems (Munkholm et al., 2013). Many reports have 
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suggested the use of diverse rotations as part of the conservation agriculture concept to enhance 

the soil quality particularly in weakly structured soils (Munkholm et al., 2003; Ehlers and 

Claupein, 1994). However, significant soil quality changes may only be realized and noticeable 

over the long term due to the inherently slow rates of soil change with time (de Paul Obade and 

Lal, 2014), and therefore, there is a paucity of information regarding the long-term integrated 

effects of contrasting rotation types and different nutrient management regimes on soil quality.  

Appropriate fertilizer application is an important management practice to manage soil 

fertility in croplands (Sradnick et al., 2013). Soil quality can also benefit from balanced 

fertilization recommendations as indicated by Chakraborty et al. (2011), who reported increasing 

contents of soil organic matter, microbial biomass, and plant nutrient elements. It has been 

suggested that soil quality is directly linked to microbial activity, as microbial metabolic 

capabilities are linked to nutrient cycling and other key soil functions (Sradnick et al., 2013). The 

majority of the existing nutrient studies focused mostly on fertility and microbial aspects of the 

soil. Nevertheless, organic matter can be formed and accrued in soils due to recurrent fertilizer 

applications in the long-term which stimulate plant productivity (including roots and harvest 

residues) as well as microbial and faunal activities in the soil (Chakraborty et al., 2011; Hati et 

al., 2008). Consequently, implementation of long-term balanced fertilization in cropland could 

hypothetically improve also soil physical conditions by increasing water holding capacity, 

macroporosity, infiltration capacity, aggregation and decreasing the bulk density (Hati et al., 

2008; Metzger and Yaron., 1987).  

Certain management choices such as rotation type and nutrient regime influence various 

specific functions of the soil, and hence, measuring merely one physical or biological property of 

the soil could not reveal the entire impacts of management options. Therefore, it is vital to 
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identify and model critical indicators of soil quality and agro-ecosystem sustainability (de Paul 

Obade and Lal, 2014). There is also a need for new soil health metrics to integrate and document 

changes in soil properties and associated soil functions. In addition, such quantification of soil 

functions in croplands can also inform the potential outcome of valuable ecosystem services 

including carbon sequestration, water cycling and filtration as well as grain and forage 

productivity.     

Development of soil quality changes is gradual, and it typically takes a reasonable time to 

achieve a long-term steady state after a change of management (Chakraborty et al., 2011). 

Therefore, our study is focusing on the comparative effects of contrasting crop rotations and 

nutrient managements in long-term agricultural field experiments to detect changes that are 

likely absent or may not be evident in the short term. Moreover, a comprehensive soil 

characterization entails multiple attributes and functions (O’Sullivan et al., 2015). Hence, we 

investigated a wide range of soil properties responses (e.g., aggregation, water conductivity, 

macroporosity, carbon and nitrogen, and microbial communities) to various land managements 

to test and identify the sensitivity of soil quality indicators to contrasting agroecosystems. New 

information on soil quality responses to land managements can improve methods by which land 

owners are better able to measure and manage soil quality, and this may eventually lead to more 

sustainable agroecological systems.  

Specific objectives of this study were to: i) determine the long-term effects of contrasting 

crop rotations and nutrient managements on soil physical and biological properties, and ii) 

identify soil quality indicators that can provide robust metrics of sustainability by testing whether 

they can detect and distinguish among contrasting land managements and also by examining the 

associations among these soil quality measures and other soil properties and crop productivity.  
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3.  Materials and Methods 

3.1. Study sites 

The study was conducted at two sites, the University of Alberta Breton Plots, located 

approximately 100 km southwest of Edmonton (53.089°N, 114.442°W) and the Agriculture 

Agri-Food Canada’s Lethbridge Research Centre located approximately 500 km south of 

Edmonton (49.705°N, 112.775°W). The Breton plots were established on Orthic Gray Luvisol, 

and the Lethbridge plots were established on Orthic Dark Brown Chernozemic soil according to 

the Canadian System of Soil Classification (Soil Classification Working Group, 1998) 

(AGRASID, 2015). The granulometric distribution for Breton loamy soil was: sand (1000–50 

μm size diameter) 362, silt (50–2 μm) 444, and clay (<2 μm) 194 g kg-1 soil and for Lethbridge 

loamy soil was: sand 432, silt 304, and clay 264 g kg-1 soil. Based on 20 years data from Breton 

and Lethbridge on-site permanent weather stations (Alberta - Weather Conditions and Forecast, 

2016), the mean annual precipitation is 547 and 402 mm in Breton and Lethbridge plots, 

respectively. The annual average of air temperature was 2.1 °C in Breton and 5 °C in Lethbridge. 

3.2. Soil sample collection and analysis 

In Breton long-term classical plots, two rotations were selected for this study including a 

2-yr wheat–fallow rotation and a 5-yr wheat–oat–barley/hay–hay1–hay2 rotation which were 

established in 1930. The hay phases included alfalfa and bromegrass since 1967 to present. Each 

rotation was managed with three nutrient managements including balanced fertilization (N-P-K-

S fertilizer), manure, and control receiving no nutrient addition. Detailed information about 

fertilization rates for each crop phase has been previously described by Dyck et al. (2012). Our 

field sample collections were conducted in early spring 2015. We collected soil samples at the 

fallow phase in 2-yr rotation, oat and Hay2 phases within the 5-yr rotation because this sampling 
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timing allowed for examination of the carry over effects from the immediate preceding growing 

seasons: wheat2yrR, wheat5yrR, and Hay1-5yrR, respectively. As a reference benchmark in the 

Breton site, we also collected soil samples at an adjacent natural forest. A total of ten sampling 

plots were conducted at the Breton site. At the Lethbridge long-term experiment (known as 

Rotation 120) we also sampled two rotations: a 2-yr wheat–fallow rotation (established in 1985) 

and a 6-yr fallow–wheat1–wheat2–alfalfa1–alfalfa2–alfalfa3 rotation [established in 1951(Lafond 

and Harker, 2012)]. The alfalfa phases included alfalfa and crested wheat grass. This experiment 

is arranged in a randomized complete block design with 4 replicates. All the phases of the two 

rotations were sampled except for alfalfa2 in the 6-yr rotation for a total of 28 sampling plots. 

Within each field sampling plot, undisturbed soil samples were collected using stainless 

steel cylindrical cores (8 cm inner diameter) with three samples per plot for Breton, and two for 

Lethbridge. Soil undisturbed clods (~ 500 cm3) were also excavated from each plot with a shovel 

at the 5 cm depth (three samples per plot for Breton, and two for Lethbridge). Clods were 

wrapped in aluminum foil and plastic sampling bags to prevent significant moisture loss, and 

placed in a plastic container to minimize disturbance during transport from the field. For 

chemical and microbial analyses, we also collected disturbed soil samples in each field plot by 

composing 4 subsamples taken using a 2 cm inner diameter push probe (three samples per plot 

for Breton, and one for Lethbridge). These disturbed samples were placed in the Whirl-Pak® 

(Nasco, Fort Watkins, Wisconsin) sterile sampling bags and were transported in an icebox to the 

laboratory. Samples for microbial characterization were kept frozen at −86 °C until they were 

freeze-dried in preparation for analysis. Within each sampling plot, all soil samples were taken at 

randomly selected sampling points and at the depth increment of 5-10 cm. 
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Using the undisturbed clods, mass fractal dimension of soil aggregates was determined 

using multistripe laser triangulation scanning (3D Scanner Ultra HD, NextEngine, California). 

Fractal dimension is a measure of how soil aggregates are hierarchically organized in soils. 

Larger aggregates have a lower mass to volume ratio as explained by the porosity exclusion 

principle (Hirmas et al., 2013); denser micro-aggregates are bonded to form macro-aggregates 

with greater porosity. The procedure for measuring fractal dimension is described in detail by 

Hirmas et al, 2013. Briefly, a parent clod (~500 cm3) was progressively broken down into five 

smaller size classes (i.e. 4-8, 2-4, 1-2, 0.5-1, and 0.25-0.5 cm diameter). Two aggregates from 

each class were randomly selected and scanned to obtain a 3D image to determine aggregate 

volume. We assessed the precision of our volume measurements using repeated laser scanning 

(n= 20). The method performed well for determining multiple volumes ranging from 0.1 to 270 

cm3 as shown by coefficient of variations lower than 5% and standard deviations lower than 0.04 

cm3. 

Fractal dimension was obtained using the following equation:  

 ( )                                  [1] 

where  (v) is the mass of aggregates (g) with volume v (cm3),  𝑚 is a constant representing the 

mass of aggregate unit volume, and 𝐷𝑚 is the fractal dimension. Lower 𝐷𝑚 values imply 

increasing hierarchical aggregation, and hence development of improved soil structure. 

Using the undisturbed cores, water retention was determined with the evaporation method 

(Schindler et al., 2010) using a HYPROP device (UMS GmbH, Munich, Germany) for tensions 

< 1000 hPa. Matric potential was automatically recorded every minute for the first hour and each 

10 minute afterwards by two tensiometers at two depths within the saturated soil cores. The 
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gravimetric water content of the samples was recorded twice daily for up to 14 days. Data points 

of the retention and unsaturated hydraulic conductivity (unsat. K) curves were calculated with 

the HYPROP 2011 software (UMS GmbH, Munich, Germany) based on the mean tension 

potential of the two tensiometers and water contents. 

The water content for moderate to dry moisture ranges was evaluated with a WP4-T 

potentiometer (Decagon Devices, Inc., PullmanWA, USA) based on the chilled-mirror dew point 

technique (Schelle et al., 2013).  Seven different amounts of water were added to 5 mg dry 

weight of soil in plastic cups. Each sample cup represents one point on the curve. The cups were 

closed tightly and samples allowed equilibrating for 24 hours. When the water potential of the 

sample was in equilibrium with the vapor pressure of the WP4-T measurement chamber, water 

tension was recorded. Sample weight was determined immediately after measurement and 

related to the oven-dry weight (at 105 °C) to obtain the corresponding water content. The 

constrained van Genuchten (1980) model was fitted to the results from the evaporation method 

and WP4-T measurements. 

   (      )   (   )            [2]  

where  g is the volumetric water content (cm3 cm-3),    and    are the saturated and residual 

water content (cm3 cm-3), respectively,  𝑚 is the matric potential (hPa),   (hPa-1) is a reciprocal 

suction that is characteristic for the soil, and 𝑛 and m (𝑚    
 

 
) are dimensionless variables 

that describe the shape of the curve. 

Soil pore size distribution data was computed from the soil water retention data for 

tensions of approximately -30, -60, and -330 hPa using the procedure outlined in Hernandez-

Ramirez et al. (2014). These tensions correspond to pore diameters of 100, 50, and 9 μm. Pore 

volume fractions were quantified from the change in volumetric water content using these pore 
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diameters as class boundaries. Plant available water was also calculated as the volumetric water 

content between field capacity (-330 hPa) and permanent wilting point (-15000 hPa). 

Dexter (2004) introduced the S-index as an index of soil physical quality where S is the 

slope of the water retention curve at the inflection point when logarithm of water suction (h) is 

plotted against water content. S-index is calculated from the modelled van Genuchten parameters 

as follows: 

   𝑛 (     ) (  
 

 
)
 (   )

                             [3] 

The hydraulic conductivity (k) was calculated according to the Darcy-Buckingham law 

(Schindler et al., 2010):  

                                                            ( )  
  

        
                                                           [4] 

where h is the mean pressure head averaged of both tensiometers, ΔV is the soil water volume 

difference, A is surface area, ΔT is time interval, and im is the hydraulic gradient calculated 

based on the pressure head readings. Unsaturated hydraulic conductivity was calculated as the 

conductivity of the sample at the tension of approximately 100 hPa. At the end of each 

measurement campaign, the soil samples were oven dried at 105 °C for 24 h to derive the total 

porosity and the bulk density assuming a particle density of 2.65 g cm-3. 

After grinding a portion of the composited, disturbed samples, we determined the content 

of soil organic carbon (SOC) and soil total nitrogen (STN) by dry combustion method using a 

Costech ECS 4010 Elemental Analyzer (Costech Analytical Technologies Inc., Valencia, CA, 

USA). Soil pH was measured using a 1:2 soil to water ratio (Mclean, 1982). 

Using composited samples, we characterized soil microbial communities using 

phospholipid fatty acid (PLFA) analysis. Polar lipids were extracted from freeze-dried samples 



17 
 

using a modified Bligh and Dyer protocol (Hannam et al., 2006). The resulting fatty-acid methyl 

esters were separated using an Agilent 6890 Series capillary gas chromatograph (Agilent 

Technologies, Wilmington, DE, USA). Individual peaks were identified and quantified (nmol g-

1) using the MIDI peak identification software (MIDI, Inc., Newark, DE, USA). The 

standardized X: Y ω Z nomenclature for fatty acids was used to identify PLFAs, where X is the 

number of carbon atoms, Y is the number of double bonds, and Z is the position of the first 

double bond from the aliphatic end (ω) of the molecule.  Prefixes “i” and “a” indicate branching 

at the second and third carbon atom, respectively, from the ω end, and the suffix “c” corresponds 

to a c transfiguration. Taken together, all of the PLFA biomarkers were considered to be 

representative of the total PLFA of the soil microbial community. 

 

3.3. Statistical analysis 

We used non-metric multi-dimensional scaling (NMS) ordinations to identify potential 

patterns in the soil microbial community compositions. The ordination technique presents the 

advantage of not requiring normal distribution, nor does it assume linear relationships among 

variables (McCune and Grace, 2002). NMS organizes complex datasets in a reduced dimensional 

space (typically two or three dimensions) as to reveal similarities or dissimilarities in the original 

dataset structure. An optimal NMS solution results from the iterative search for the best 

representation within the reduced space. The strength of the NMS solution is expressed by the 

stress value, which indicates differences between the original data structure and the NMS 

solution. Generally, a NMS solution with a stress value <10 is determined to be reliable. All 

analyses were conducted using PCORD software (version 5, MjM Software Design, Gleneden 

Beach, OR, USA).  
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All PLFAs with <20 carbons were used for analysis of the microbial communities. Data 

groupings were tested for significant differences in the NMS analysis using a multi-response 

permutation procedure (MRPP). Analyses were completed using the Sorensen distance. In 

addition to the probability value p, the MRPP test generates a T value, which indicates separation 

among groups, with a larger T reflecting a stronger separation, and an A value, which is an index 

of within-group homogeneity compared to random expectation, with a larger A indicating greater 

homogeneity (McCune and Grace, 2002). Moreover, indicator species analyses were performed 

using the data groupings shown to be different by MRPP. This statistical method generates an 

indicator value based on the abundance and frequency of a particular PLFA in a given data 

grouping. A larger indicator value represents a stronger relationship between the PLFA and the 

given data grouping. The statistical significance of the indicator value was tested against a 

randomized Monte Carlo test. 

Using Bartlett’s and Shapiro-Wilk’s tests, Lethbridge data were tested and passed 

normality and equal variance tests. Analyses of variance (ANOVA) with mixed models were 

used to test differences among rotations and phases (fixed effect) with plot as a random source of 

variation for the Lethbridge site. When there was a significant effect in the ANOVA models (p < 

0.05), Tukey HSD tests were subsequently run to compare means and identify any grouping 

structure. Plots at Breton site do not have an experimental design to allow for conventional 

parametric statistical tests. Therefore, we used nonparametric Dunn's test following by rejection 

of a Kruskal–Wallis test to test differences in Breton plots between rotations and among phases 

and also the three different nutrient managements. All statistical analyses were completed using 

R software and an alpha critical level of 5 %. 
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Linear regression was used to assess the scaling relationship of mass-volume for all soil 

clods and aggregates. Data were natural log transformed to reduce bias of large clods on fitted 

parameters (Hirmas et al., 2013). A t-test determined if the regression coefficients [i.e., slopes of 

mass fractal dimension (𝐷 )] of the linear regressions were significantly different from a value 

of 1 (i.e., the non-fractal constant for mass versus volume is 1; Ho: β1 = 1).  

Fitted soil moisture retention curves and hydraulic conductivity were modelled from the 

measured data.  Root mean square error (RMSE) was used as a criterion for model selection. 

Parameters for the van Genuchten (VG) model (Tables 1A, 1B, 2A, and 2B) and hydraulic 

conductivity were first derived from each individual measured data set and subsequently 

analyzed to statistically test for differences between rotations and among phases and also the 

three different nutrient managements. 

Pearson correlation was used for all dataset to assess the association among all available 

properties and soil quality metrics.   
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4. Results 

4.1. Fractal dimension (Dm) 

Linear regression analyses revealed the clear existence of fractal aggregation in the soils 

under forest and extended complex crop rotations (Fig. 1). Furthermore, Tukey test detected a 

significant difference in fractal aggregation between forest and simple rotation (P < 0.05; Table 

1B).  

We also conducted Dm estimations separately for each crop rotation phases. Soils were 

not significantly fractal at fallow phases of both simple and complex rotations in Lethbridge 

(0.987 and 0.993, respectively). Similarly, the wheat phase in the simple wheat-fallow rotation 

was also nonfractal in Breton (0.992). On the contrary, the wheat phases in complex rotations 

exhibited clear fractal aggregation (Fig. 1A and 1B; Dm values significantly different than one). 

This result demonstrates an overall improved hierarchical fractal aggregation in soils managed 

with rotation including perennial legumes and grasses. In addition, among manure, balanced 

fertilization, and control, the balanced fertilization was the only nutrient regime that exhibited 

significantly fractal aggregation (Dm= 0.965, P = <0.001 for test Ho: β1 = 1; Fig. 2). 

4.2. Water retention characteristics, pore size distribution, S-index, and hydraulic parameters 

Overall means of the van Genuchten (VG) parameters for the moisture retention curves 

differed between forest and croplands (Table 1A), but there was no significant difference neither 

between the simple and complex rotation nor among the phases of the rotations. Root mean 

square errors for the moisture curve of each land use system ranged from 0.005 to 0.021 cm3 cm-

3 indicating effective fitting of the VG model to measured data.  

Saturated water content and PAW were 1.3 times higher in forest than the croplands 

(Table 1A). When comparing the two crop rotation types, they differed significantly with up to 8 
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% greater saturated water content in complex rotation soils compared to simple rotation; 

however, there was no significant difference among rotation phases at both sites. Plant available 

water (PAW) also differed between rotations, with 1.2 times greater PAW in complex rotation 

than simple rotation (P < 0.05) at the Breton site (Table 1A). With regards to nutrient 

managements, the saturated water content was greater in plots receiving long term applications 

of fertilizer or manure compared to the control treatment with no nutrient addition (P < 0.01). 

Consequently, it became evident that PAW was 7-18% higher where balanced fertilization was 

recurrently applied. 

Clear significant difference was found in the S-index (i.e., slope of moisture curves at 

their inflection point) between forest and cropland (P < 0.001) (Table 1A). Additionally, crop 

rotation affected the S-index, with a 10% numerical increase in S-index for the complex rotations 

compared to simple rotations (Tables 1A and 2A) although this tendency was not statistically 

significant. Furthermore, balanced fertilization had greater S-index than manure additions (0.024 

vs. 0.022; P < 0.05).  

Pore size distribution results did not translate into differences in soil pore fractions 

among land managements, with the unique exception of significantly more abundant small pores 

(< 9 μm diameter) in balanced fertilization than the control soil (Table 1B). With respect to the 

phases of the complex rotation, a greater presence of large pores (>100 μm diameter) in soils 

under perennial legumes than other cropping phases indicates an overall tendency for increased 

soil space for roots, air, and water in these soils.  

Root mean square error values of modelled hydraulic conductivity (K) were high over all 

measured soils (0.218 cm day-1; Tables 1A and 2A) indicating modest fitting in part as a result of 

extrapolation into the saturated zone of the retention curve. Unsaturated hydraulic conductivity at 
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100 hPa did not differ among land managements, with the only exception of the manured soils 

which had about half unsat. K compared to both the balanced fertilization and control soil (P < 

0.001; Table 1B). Conversely, saturated hydraulic conductivity (sat. K) was more than 1.5 times 

faster in complex rotations than the simple rotations. Forest soil was also clearly different than 

cropland soils with 26 times faster sat. K (P < 0.001). 

Complex rotation had a lower soil bulk density than simple rotation (P < 0.001; Tables 

1A and 2A). Bulk density was also much lower in soils receiving manure compared to the 

control soil. As expected, total porosity revealed the reverse responses to rotation and nutrient 

management (Ps < 0.001).  

4.3. Soil microbial biomass C, microbial communities, pH, SOC, STN, and C:N 

At the Breton site, MBC was nearly 1.5 times greater in the complex rotation compared 

to the forest and simple rotation soils (P < 0.05; Table 1B). Lethbridge soils exhibited a similar 

tendency with 19% numerically greater MBC concentration in the complex crop rotation than in 

the simple rotation (Table 2B). Different phases of rotations also did not significantly influence 

MBC. Nevertheless, when focusing on our nutrient management comparisons at the Breton site, 

a sharp increase in MBC was observed when contrasting the control fields with a basal 

concentration of 1982 nmol g-1 versus a peak of 3018 nmol g-1 in the manured soils (P < 0.05). 

The ordinations attained a low stress (≤ 13) after 70–90 iterations indicating resolution 

convergence. Solution for the microbial communities in Breton soils was two-dimensional and 

the axes explained more than 90% of the data variance. Analysis of the microbial communities 

led to a three-dimensional solution for the Lethbridge site, where the two axes presented in Fig. 3 

accounted for 61% of the variance.  
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Separations between forest and croplands and also between the simple and complex 

rotations in both experimental sites were significant for the PLFA data (as a proxy to microbial 

community structure) as evidenced by the p-values smaller than the 0.01 obtained from the 

MRPP analyses (Table 3). Similarly, the A value, which indicates within-group homogeneity, 

was 0.15 for the microbial communities among all treatments. With regards to rotation phases, 

not only there was no significant difference among the phases within the complex rotations but 

also the wheat phases in the simple and the complex rotations were also similar with each other 

(Table 3). These inferences were further supported by the evident overlaps of the data clusters of 

the phases within the complex rotations as shown on the NMS graphic visualizations (Fig. 3). 

However, the fallow phases in both simple and complex rotations at the Lethbridge site resulted 

in two distinctive clusters clearly separated on the NMS visualization (Fig. 3B), yielded fairly 

large T value (> 3.2) and p value lower than 0.001 in the pairwise comparisons (Table 3). 

Significant PLFA biomarkers were detected in both Breton and Lethbridge sites (Tables 4 

and 5). The presence of Gram-negative bacteria associated with 16:1ω9c, 18:1ω5c, and 19:0 Cyc 

ω8c PLFAs (Zelles, 1999) was seen in croplands, while forest was characterized by unique 

protozoa and fungal biomarkers (20:4ω6c and 18:3ω6c PLFAs, respectively). 

The SOC and STN concentrations were affected by rotations and nutrient management 

(Tables 1B and 2B). Both SOC and STN were significantly higher in the complex crop rotations. 

Manure addition also had significantly greater SOC and STN than both inorganic balanced 

fertilization and the control soils. Although the soil C:N ratio did not statistically differ across 

cropping systems, this parameter was 1.5 times wider in the forest soil than the croplands (P < 

0.001; Table 1B). 
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The pH was lower in the complex 5-yr crop rotation than simple 2-yr rotation particularly 

in the Breton site. Long-term application of inorganic balanced fertilization decreased the pH by 

a magnitude difference of roughly one pH unit (Table 1B). 

4.4. Correlation analyses among soil properties  

Several associations were found among soil parameters within the different land 

managements. Fractal aggregation – Dm value – was inversely correlated to abundance of large 

pores, sat. WC, sat. K, SOC, and S-index (-0.35 > ρ > -0.47; P < 0.05; Table 6) in Breton soils 

while there was no significant correlation between Dm value and other soil properties in 

Lethbridge site. Soil MBC was inversely correlation with C:N ratio and pore size fraction of 9-50 

μm diameter. The MBC had also inverse association with S-index in particular in the Breton site 

(-0.35; P < 0.05). 

4.5. The linkage between plant productivity and soil quality 

In our study, comparison of wheat grain yields in simple wheat-fallow rotation versus in 

complex rotation indicated a rotation effect trending towards numerically higher yield levels with 

the complex rotation (Fig. 4). This yield difference was 40 and 14% for Breton and Lethbridge 

sites, respectively. The balanced fertilization also had higher grain yields than manure – on 

average 3500 and 2500 kg dry matter ha-1 for balanced fertilization and manure, respectively. It 

is noteworthy that these two nutrient managements had 2 to 3 times greater wheat yield 

compared to the control field.  
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5. Discussion 

5.1. Land managements influence soil quality.  

5.1.1. Complex crop rotation improves soil quality and plant productivity.  

Complex crop rotations improve overall soil quality compared to simple rotations as 

evidenced by enhanced SOC, STN, MBC, sat. WC, PAW and fractal aggregation (Tables 1B and 

2B; Fig. 1). The higher values of PAW and sat. WC in our complex long rotations which 

included alfalfa as a legume phase are directly associated with the greater soil porosity in this 

rotation type. Perennial legumes have heavy tap roots that burrow deep into the ground, lifting 

soil for better tilth and water holding capacity (Danga et al., 2009). Our results showed that in 

complex long rotations with better soil structure and water availability, microbial biomass was 

1.3 times more abundant than in the simple 2-yr rotations (Tables 1B and 2B). Soil moisture 

content and availability directly impact the presence and activity of microorganisms. In general, 

microbial activity and growth in soils decrease as the soil becomes dry (Curtin et al., 2012; Paul 

and Clark, 1989). In addition, more diverse and extended crop rotations would improve the 

quality and quantity of the plant residues that can be incorporated into the soil, which 

subsequently become available to microbial communities as substrates (Tiemann et al., 2015). 

When microbial abundance and activity are increased, soil aggregation is typically enhanced 

(Bossuyt et al., 2001). In keeping with this notion, our Dm value results reveal that the complex 

rotations – which increased MBC – had also improved soil aggregation and structure as indicated 

by significantly fractal Dm, while the simple rotations did not exhibit these responses (Fig. 1). 

Furthermore, enhanced formation of soil aggregates can feedback into storing and protecting 

additional organic carbon and nitrogen in the soil (Oades, 1984). Such increased SOC and STN 

suggest an enhanced soil fertility status (Tiemann et al., 2015). Leguminous crop phases are 

frequently linked to increases in N availability as well as aggregate formation and stability 
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(McDaniel et al., 2014). In our study, complex rotations including perennial legume phases had 

much greater hierarchical aggregation (i.e., lower Dm), SOC, and STN than simple wheat-fallow 

rotations. Having higher soil aggregation in more diverse rotations can also increase abundance 

of larger soil pores, which had a direct contribution to our higher saturated water content and 

hydraulic conductivity under the complex rotation types. We further postulate that such 

enhancement in soil aggregation could also improve surface water infiltration, providing 

adaptation to drought and resistance to erosion (Bot and Benites, 2005). 

Soil health is the foundation of productive farming practices. More diverse and extended 

crop rotations contribute to enhanced productivity (Smith et al., 2008; Wienhold et al., 2006). In 

our study, comparison of wheat grain yields in simple wheat-fallow versus complex rotations 

indicated an effect trending towards numerically higher yield levels with complex rotations (Fig. 

4). This specific finding can reinforce the notion that the beneficial effects of diverse rotations on 

plant productivity may be associated with the enhancement of soil quality by protecting SOC and 

soil aggregation, storing available water, and providing a favorable microclimate conditions for 

biological activities including the decomposition and recycling of plant residues into available 

nutrients. 

 As noted above, there were no clear differences across the two assessed rotation phases 

within the complex rotations (i.e., wheat vs. hay) for various soil properties in particular for the 

Breton site. It became evident that implementation of complex rotations in the long term (i.e., 

more than 80 and 60 years in Breton and Lethbridge, respectively) provide the benefits derived 

from the perennial legumes and grasses to all the phases within these rotations. These differences 

among rotation phases were still slightly distinguishable in the Lethbridge site probably because 

this experiment has been established more recently than Breton. For instance, we notice that 
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PAW was significantly increased in the second year of wheat in Lethbridge (6-yr wheat2), and 

this effect was specifically attributed to a higher volume of medium and small pores (i.e., < 9 μm 

in diameter; Table 2B). Higher PAW in this rotation phase might be the result of two consecutive 

wheat crops as wheat is known to have a dense and far reaching root system favoring ample soil 

aggregation and C input within the rhizosphere which may subsequently feedback into increasing 

water retention and availability (Norman et al., 2016). 

Our comparative results between croplands and the adjacent native forest support the 

notion that conversion of forest to agricultural land can result in a significant alteration in soil 

properties including depletions of soil structure and SOC concentrations, thereby declining 

porosity, saturated hydraulic conductivity, and plant available water (Beheshti et al., 2012). 

Annual tillage and cropping practices can cause soil compaction and having lower SOC which 

would lead to the predominance of micro-aggregates (Ashagrie et al., 2007; Yang et al., 2009). 

Our results show that cropping, in particular the 2-yr simple rotations, had a significant effect on 

deteriorating soil structural quality (i.e., S-index, saturated water content, bulk density; Tables 

1A and 2A). Furthermore, agricultural equipment traffic may lead to compaction in the soil 

(Schwen et al., 2011); this effect can be inferred in our study from the pronounced loss of large 

pores (i.e., > 100 μm in diameter). Congruently, this decrease in the volume of large pores was 

associated with degradation of key soil structure parameters (i.e., declining fractal aggregation, 

S-index, and SOC; Table 6). Significant losses in SOC concentration, porosity, and soil structure 

following conversion of forest to cropland would detrimentally impact critical soil functions such 

as greenhouse gases mitigation (Beheshti et al., 2012).  

In our study, microbial biomass-C (MBC) concentration was much enriched in the 

complex rotation soils compared to both forest and simple rotation (Table 1A). Provided that the 



28 
 

management as well as the quantity and quality of organic matter inputs in forest vs. complex 

rotation are different, microbial biomass growth and accumulation seem to be facilitated in soils 

recurrently receiving nutrients – in particular manure – and covered by perennial legumes and 

grasses (Ohtonen et al., 1997). By contrast, the boreal forest soils could remain nutrient limited 

(Quideau et al., 2013) which would prevent such MBC accumulation even though when the 

assessed native forest ecosystem received much lesser disturbance than the croplands. The 1.5 

times wider C:N ratio in our forest soils underpins the nutrient limitation hypothesis as 

postulated by Quideau et al. (2013). In general, the capacity of organic matter to decompose can 

be assessed by C:N ratio (Kaye and Hart, 1998). High C:N ratio in soils has been found in 

systems that have recalcitrant organic matter that decomposes very slowly and N is unavailable 

and tightly bound within the organic compounds (Inglett et al., 2011). Moreover, fungal biomass 

is known to have relatively high C:N ratio, and fungi development can be inhibited by increased 

N availability (Inglett et al., 2011). Therefore, N-limiting conditions in this native forest 

ecosystem can potentially explain our finding of fungal biomarker in the forest soil, whereas 

Gram-negative bacteria were the characteristic biomarkers of the cropland soils. Bossuyt et al 

(2001) also reported a clear difference between fungal and bacterial populations with fungi 

dominating in the low-quality residue treatment and bacteria dominating in the high-quality 

residue treatment.  

5.1.2. Long-term inorganic balanced fertilization leads to enhanced soil structure. 

Fertilization is an important means for improving crop productivity by meet nutrient 

requirements (Hati et al., 2011). This positive effect of nutrient additions using manure or 

inorganic fertilizers was confirmed in our study (Fig. 4). Organic amendments such as cattle 

manure can greatly contribute to the soil fertility (Sradnick et al., 2013). This response can be 
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attributed in part to the combined effect of a great number and diversity of microbes and an 

additional input of organic carbon and nitrogen resulting in increased soil fertility compared to 

inorganic fertilization (Chakraborty et al., 2011; Sradnick et al., 2013). This is consistent with 

our study where SOC, STN, and MBC were much higher in manured soils compared to fertilized 

soils receiving balanced rates of inorganic N, P, K, and S nutrient inputs (Table 1B).  

Inorganic fertilization can also facilitate the addition of crop nutrient requirements and 

the long-term accretion of organic residues and organic matter in the soils through enhanced 

biomass production and root growth (Hati et al., 2011). In our study, improved fractal 

aggregation and structural quality (i.e., lower Dm value and higher S-index) in soils receiving 

balanced fertilization compared to manured fields indicates that the balanced fertilization can 

develop hierarchical aggregation leading to an overall, enhanced soil physical quality to greater 

extent than manure additions. Furthermore, we found that plant available water capacity was 7% 

higher in soils where long-term balanced fertilization has been applied, which also reflects a 

better soil structure and pore connectivity (Table 1A). This implies an enhanced capacity of the 

soil to intake, maintain and move available water within the topsoil during the growing season. 

Considering the fact that water is one of the most crucial limiting factor impacting crop yields 

(Oweis et al., 2004; Kiani et al., 2016a), the higher crop productivity in our balanced fertilized 

fields points out that water availability may be a key factor driving crop productivity under this 

nutrient management.  

Soils are known to integrate multiple attributes and functions (O’Sullivan et al., 2015). 

Different land managements can affect distinct specific functions of the soil. Both balanced 

fertilization and manure additions contributed to improving certain specific soil functions better 

than the control soils; cattle manure had an even stronger effect on enhancing nutrient cycling as 
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indicated by increased SOC, STN, and MBC, while balanced fertilization influenced beneficially 

the pore water relationships and physical conditions of the soil as shown by a lower Dm value as 

well as higher S-index and PAW (Tables 1A, 1B, 2A, and 2B; Fig. 2). Our study extends the 

existing literature by documenting these clear but divergent differences in soil structure versus 

microbial functions across contrasting nutrient sources. 

Long-term application of urea decreased the soil pH considerably, while manure 

amendments markedly increase the contents of SOC, STN, and other available nutrients, and 

reduced soil acidification (Chakraborty et al., 2011; Dong et al., 2012). Very acid soils (pH less 

than 5) cause microbial activity and numbers to be considerably lower than neutral soils 

(McCauley et al., 2009). Moreover, available studies have shown that certain microorganisms, 

such as nitrifying bacteria and nitrogen-fixing bacteria associated with many legumes, generally 

perform poorly when soil pH falls below 6 (Sylvia et al., 1998). This could be a reason for the 

lower response of SOC, STN, and MBC to balanced fertilization compared to manure addition in 

the Orthic Gray Luvisol soils of Breton where the naturally-acidic soil pH originated via 

pedogenesis under native forest vegetation gradually becomes even more acidic with long-term 

balanced fertilization (Dyck et al., 2012). 

5.2. Fractal aggregation, S-index, MBC, SOC, and PAW showed clear sensitivity to management. 

Indicators of soil quality can inform how well goals related to soil functions are being 

achieved. Indicators should be self-explanatory, sufficiently sensitive for its purpose, readily 

available, and relatively easy to compute (Bremer, 2004). Soil quality depends on the 

interactions of physical, chemical and biological characteristics and a proper assessment of soil 

quality requires measurement of a high number of parameters (Marzaioli et al., 2010). Specialists 

have agreed to search for a minimum data set to reduce the cost of soil quality assessment (Liu et 
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al., 2014). Overall, our findings indicate soil indicators including soil organic carbon, microbial 

biomass-C, S-index, and fractal aggregation are dynamic and highly responsive to contrasting 

land managements. Our synthesis is consistent with comparisons of soil quality indicators for 

land managements by de Paul Obade and Lal (2014) and Gülser (2006). 

Examination of aggregate size distribution gives essential information for assessing the 

formation and development of soil aggregation and structure (Gülser, 2006). In our study, mass-

volume fractal dimension of aggregates was strongly influenced by crop rotation types. Soils 

under the complex long rotations exhibited significantly fractal aggregation (Dm < 1) while the 

simple rotation was not (Fig. 1). Hierarchical aggregation peaked under the perennial legume and 

grass phases, followed by wheat crops. No hierarchical aggregation was found under fallow 

phases. Additionally, the significant inverse correlation between Dm values and macroporosity 

(i.e., >100 μm in diameter; Table 6) indicates better soil physical quality when macroaggregates 

and macroporosity are concurrently abundant in soils. Likewise, increments in SOC contents due 

to more diverse and longer rotations in our study were clearly associated with a marked increase 

in the proportion of large aggregates exhibiting favorable reduced densities. A significant inverse 

correlation between the Dm value and SOC content further substantiates this mechanistic linkage 

(Table 6). Our study is one of the few available reports evaluating the effectiveness of fractal 

aggregation model for detecting soil quality changes as a function of contrasting land 

management options. 

 Focusing on our nutrient regime comparison, fractal aggregation approach effectively 

detected that balanced fertilization was the only nutrient regime exhibiting significant fractal 

aggregation which may be due to the greater amount of crop residues and roots derived from 

higher plant productivity (Fig. 2). Aggregation of soil particles into larger units such as peds or 
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aggregates has major impacts on transport processes in soils. The significant inverse 

relationships between Dm value versus saturated hydraulic conductivity, macropore volume, and 

saturated water content corroborates the ability of fractal aggregation approach to detect and 

inform water filtering, movement and storage capacity functions in the soil. These results show 

that fractal aggregation is a robust method to assess the structure and quality of the soil as 

affected by land managements.  

The soil physical parameter S is an index to assess soil structural quality (e.g., pore size 

distribution, compaction, PAW) (Dexter, 2004; Naderi-Boldaji and Keller, 2016). An S-index 

value of 0.035 is considered as a threshold separating soils of favorable structure (> 0.035) from 

those with relatively deficient structure (< 0.035), and soils with much lower S-index (< 0.02) 

are considered to have very degraded structure (Dexter, 2004). In our study, the increase in S-

index when comparing complex rotation vs. simple rotation, and also the significant increase 

when contrasting forest vs. cropland as well as balanced fertilization vs. manure further supports 

the clear sensitivity and utility of this integrated metric of soil physical quality. The multiple 

significant inverse correlations of S-index with Dm value, bulk density, and PWP as well as the 

several direct correlations of S-index with sat. WC, PAW, sat. K, volume of pores larger than 9 

micrometer in diameter, and SOC consistently show that the S-index can be a meaningful, 

suitable indicator for soil structural and water movement assessment in our assessed fine-

textured soils. Similar to in our study, Reynolds et al. (2009) had previously reported good 

agreement between S-index and their physical quality results including field capacity, plant 

available water, air permeability, and macroporosity for rigid to moderately expansive loamy 

soils. 
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The structural and functional relationships of soil microbial communities have been 

considered as indicators for soil quality (Bastida et al., 2008). Soil microbial biomass is 

ascertained as one of the most sensitive indicators of changes in soil quality (Stenberg, 1999). In 

our study, the 1.3-fold increase in MBC in the complex versus simple rotations, and also in the 

manure soils further supports the clear sensitivity and usefulness of this integrated metric of soil 

quality. The MBC also correlated well with other soil attributes such as S-index, sat. K, medium 

pore volume, and C:N ratio. It is noteworthy that forest soil exhibited improved soil S-index 

compared to croplands, but by contrast, the microbial biomass carbon declined in natural forest. 

These findings imply that distinct soil functions are affected by different land uses in different 

directions. 

As noted above, cattle manure had strong effect on improving soil nutrient cycling 

function while balanced fertilization beneficially impacted soil physical conditions. This 

comparative result across management choices and key soil functions emphasizes the importance 

of considering several soil quality indicators for assessing multiple soil functions. This outcome 

also highlights the usefulness of Dm value, S-index, PAW, SOC, STN, and MBC as an insightful 

set of soil quality indicators.  

It is noteworthy that although the forest soil has the highest SOC concentration and also 

this soil has strong fractal aggregation compared to the cropland soils, the microbial biomass 

carbon is the lowest. This result could be in part explained by the type of organic carbon 

substrates suitable for microbes to grow is different from the type of organic carbon which helps 

the soil structure improvement. Labile soil organic C is usually described as the fraction of SOC 

with a turnover time of less than a few months or years and this C pool is considered to be 

readily decomposable components that act as a primary energy source for most soil 
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microorganisms (Zou et al., 2005). Perhaps the most representative labile soil microbial 

components are carbohydrates (González-Chávez et al. 2010). On the other hand, recalcitrant C 

has a longer turnover time (i.e., decades to centuries) and an interesting group of these organic 

compounds are those produced by arbuscular-mycorrhizal fungi which are also known to have a 

strong participation in soil aggregate formation and stability (González-Chávez et al. 2010). 

These notions can collectively imply that the majority of SOC in forest is recalcitrant C rather 

than labile soil C. This recalcitrant C can contributes to the improvement of soil structure, and 

consequently, leading to enhanced hierarchical fractal aggregation as in our study (Dm < 1). 

Moreover, indicator analysis of microbial species determined fungi as a distinctive biomarker in 

our forest soil which further supports our interpretation of fungal-facilitated formation of macro-

aggregation in forest soils (Table 5). In addition, protozoa was another biomarker in forest soil 

which is a microfauna and it is more directly linked to soil aggregation and porosity than other 

microbes. Collectively, these results emphasize the importance of quantifying both MBC and 

fractal aggregation (Dm) as key indicators to reveal and document a comprehensive assessment 

of soil quality. Future studies can focus on examining the effects and mechanisms of different 

types of organic C input and availability on the various key soil functions including microbial-

mediated nutrient cycling, aggregation formation, and pore water relationships.  
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6. Conclusion 

Long-term implementation of more diverse and extended crop rotations contributed to 

soil quality by improving soil aggregation, increasing porosity, and accruing soil organic matter, 

nitrogen and microbial biomass, which in turn interacted collectively to provide substantial 

benefits on plant water availability, soil water conductivity, and crop productivity. The various 

crop phases of the assessed rotations did not caused pronounced differences in terms of most of 

the measured soil properties, with the only noticeable exception of fractal aggregation which 

revealed clear differences across phases of the crop rotations. Fallow phases exhibited non-

fractal aggregation, while the most fractal soils were found under the perennial leguminous 

phases of these rotations. Overall, the inclusion of perennial plants in the crop rotation amply 

benefited soil structural parameters. 

Although long-term nutrient additions contributed in general to improving soil functions 

compared to the control fields that received no nutrient additions, cattle manure addition had 

even stronger effect specifically on improving nutrient cycling functions while the balanced 

fertilization benefited directly water availability and overall soil physical condition. 

A collective assessment of the measured physical and biological properties of forest and 

cropland soils can indicate that the distinctive fungal presence in the forest soils is associated 

with a well-defined hierarchical soil aggregation. Moreover, this is contrasting with the 

noticeable presence of Gram-negative bacteria as the characteristic biomarker in cropland soils. 

Fractal aggregation (Dm value), S-index, PAW, SOC, and MBC were identified as a valuable 

representative subset of highly responsive indicators of soil quality which are useful for 

comparing management options that influence agricultural productivity. It is suggested to 
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explore the applicability of these indicators in an even wider range of land managements and 

agroecological conditions. 
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9. Tables and figures 

Table 1A. Effect of crop rotation and nutrient management on selected soil attributes at the 5 to 10 cm soil increment depth from Breton site. Within a column, 
treatment means with different letters differ, P < 0.05.  

Crop rotation Bulk Density Porosity sat. Water Content  θFC  θPWP PAW       θs         θr          n α  S-index RMSE Ө RMSE K 

  (g cm-3) _________________________ (cm3 cm-3) _____________________________   (hPa-1)   (cm3 cm-3)  (cm d-1)  
Forest 0.77 c 0.71 a 0.59 a 0.30 a 0.08 c 0.23 a 0.62 a 0.001 1.17 a 0.35 a 0.030 a 0.021 0.094 
SEM 0.085 0.032 0.015 0.008 0.003 0.010 0.016  0.008 0.046 0.002   

5-yr rotation 1.28 b 0.52 b 0.47 b 0.29 ab 0.09 b 0.19 b 0.47 b 0.001 1.18 a 0.08 b 0.024 b 0.015 0.127 
SEM 0.017 0.007 0.007 0.005 0.002 0.005 0.007  0.004 0.011 0.000   

2-yr rotation 1.40 a 0.47 c 0.44 c 0.27 b 0.11 a 0.16 c 0.43 c 0.001 1.19 a 0.06 b 0.022 b 0.010 0.111 
SEM 0.048 0.018 0.013 0.005 0.005 0.005 0.013  0.006 0.016 0.000   

P-value <0.001 <0.001 <0.001 0.03 <0.001 <0.001 <0.001  0.35 <0.001 <0.001   
Phases of 5-yr rotation 

            5-yr-Hay 1.27 a 0.52 a 0.46 a 0.27 a 0.09 a 0.18 a 0.46 a 0.001 1.19 a 0.08 a 0.024 a 0.012 0.148 
SEM 0.024 0.009 0.010 0.008 0.003 0.011 0.010  0.009 0.021 0.001   

5-yr-Wheat 1.31 a 0.50 a 0.47 a 0.29 a 0.09 a 0.20 a 0.47 a 0.001 1.18 a 0.08 a 0.023 a 0.015 0.123 
SEM 0.033 0.012 0.013 0.007 0.005 0.007 0.015  0.005 0.020 0.001 

  P-value 0.33 0.34 0.45 0.11 0.93 0.17 0.70  0.34 0.79 0.65 
  Nutrient managements 

       
  

   Manure 1.27 b 0.52 a 0.47 a 0.28 ab 0.10 a 0.18 ab 0.46 ab 0.001 1.17 b 0.10 a 0.022 b 0.014 0.157 
SEM 0.034 0.013 0.009 0.006 0.004 0.007 0.008  0.003 0.021 0.000   

Balanced 
fertilization 1.33 ab 0.50 ab 0.47 a 0.29 a 0.09 a 0.19 a 0.47 a 0.001 1.19 a 0.08 a 0.024 a 0.013 0.127 

SEM 0.039 0.014 0.012 0.006 0.005 0.008 0.015  0.008 0.019 0.001   
Control 1.41 a 0.47 b 0.42 b 0.26 b 0.10 a 0.16 b 0.42 b 0.001 1.20 a 0.05 a 0.022 ab 0.009 0.076 

SEM 0.037 0.014 0.010 0.006 0.007 0.009 0.013  0.004 0.012 0.001 
  P-value 0.04 0.04 0.003 0.03 0.22 0.03 0.02   0.004 0.21 0.03323     

θFC: field capacity water content; θPWP: permanent wilting point water content; PAW: plant available water; θs: saturated volumetric water content; θr: residual water content; n: 
a shape parameter related to the curve smoothness; α: a negative inverse of the air entry potential; S-index: the slope at the inflection point; RMSE: root mean square error of 
modelled θ and K data.  
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Table 1B. Effect of crop rotation and nutrient management on selected soil attributes at the 5 to 10 cm soil increment depth from Breton site. Within a column, 
treatment means with different letters differ, P < 0.05. Ks: saturated hydraulic conductivity; Unsat. K: hydraulic conductivity at 100 hPa; SOC: soil organic 
carbon; STN: soil total nitrogen; C:N: carbon to nitrogen ratio; MBC: microbial biomass carbon. 

Crop rotation Ks unsat. K 
at 100 hPa 

Pore Volume (cm3 cm-3) pH STN SOC C:N MBC Dm 
>100  100-50  50-9  <9  

  ____  (cm d-1)  _____ ___________  (µm diameter)  ____________ 
 (% m/m) (% m/m)  nmol g-1 soil  

Forest 2506 a 0.027 a 0.30 a 0.03 a 0.07 a 0.30 a 5.00 b 0.21 a 3.62 a 17.3 a 1849 b 0.920 b* 
SEM 1238 0.008 0.035 0.001 0.005 0.008 0.17 0.020 0.41 0.42 207 0.049 

5-yr rotation 110 b 0.039 a 0.14 b 0.03 a 0.06 a 0.29 ab 5.15 b 0.19 a 2.19 b 11.2 b 2641 a 0.969 ab* 
SEM 31 0.005 0.008 0.002 0.002 0.005 0.12 0.009 0.11 0.12 176 0.030 

2-yr rotation 76 b 0.037 a 0.11 b 0.02 a 0.06 a 0.27 b 6.17 a 0.13 b 1.47 c 11.4 b 1912 b 0.991 a 
SEM 22 0.009 0.016 0.002 0.002 0.005 0.11 0.023 0.28 0.34 153 0.047 

P-value <0.001 0.62 <0.001 0.15 0.42 0.03 <0.001 0.003 <0.001 <0.001 0.01 0.01 

Phases of 5-yr rotation 
         

 

5-yr-Hay 134 a 0.041 a 0.15 a 0.03 a 0.07 a 0.27 a 4.89 a 0.19 a 2.20 a 11.3 a 2627 a 0.956 a* 
SEM 56 0.010 0.011 0.002 0.003 0.008 0.21 0.017 0.21 0.19 268 0.035 

5-yr-Wheat 119.a 0.043 a 0.12 a 0.03 a 0.06 a 0.29 a 5.17 a 0.17 a 1.92 a 10.7 b 2718 a 0.976 a* 
SEM 61 0.009 0.015 0.002 0.003 0.007 0.18 0.008 0.09 0.12 322 0.033 

P-value 0.86 0.91 0.21 0.47 0.12 0.11 0.32 0.45 0.23 0.01 0.83 0.12 
Nutrient managements 

         
 

Manure 112 a 0.019 b 0.15 a 0.02 a 0.06 a 0.28 ab 5.80 a 0.21 a 2.43 a 11.3 a 3018 a 0.987 a 
SEM 49 0.003 0.015 0.002 0.002 0.006 0.15 0.007 0.10 0.24 324 0.044 

Balanced  
fertilization 132 a 0.044 a 0.1 a 0.03 a 0.07 a 0.28 a 4.80 b 0.15 b 1.64 b 10.9 a 2258 ab 0.965 a* 

SEM 60 0.009 0.012 0.002 0.003 0.006 0.26 0.011 0.12 0.17 177 0.029 
Control 76 a 0.065 a 0.11 a 0.03 a 0.07 a 0.26 b 5.64 a 0.13 b 1.53 b 11.3 a 1982 b 0.985 a 

SEM 25 0.010 0.015 0.003 0.003 0.006 0.18 0.023 0.28 0.32 199 0.035 
P-value 0.74 <0.001 0.09 0.10 0.15 0.03 0.004 0.002 0.004 0.49 0.02 0.26 

* indicates that the Dm value is significantly different from 1 at P<0.05 or it is fractal. 
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Table 2A. Effect of crop rotation type on selected soil attributes at the 5 to 10 cm soil depth increment from Lethbridge site. Within a column, treatment means 
with different letters differ, P < 0.05.  

Crop rotation Bulk Density Porosity sat. Water Content θFC θPWP PAW θs θr n α S-index RMSE Ө RMSE K 

  (g cm-3) _________________________ (cm3 cm-3) _____________________________  (hPa-1)  (cm3 cm-3)  (cm d-1)  

6-yr rotation 1.39 b 0.48 a 0.47 a 0.27 a 0.14 b 0.14 a 0.47 a 0.004 a 1.20 a 0.05 a 0.026 a 0.007 0.23 
SEM 0.02 0.01 0.007 0.01 0.00 0.00 0.01 0.00 0.008 0.01 0.00   

2-yr rotation 1.48 a 0.44 b 0.43 b 0.28 a 0.15 a 0.13 a 0.44 a 0.006 a 1.20 a 0.04 a 0.023 a 0.008 0.27 
SEM 0.01 0.01 0.013 0.01 0.00 0.01 0.01 0.00 0.007 0.01 0.00   

P-value 0.007 0.006 0.02 0.84 0.006 0.24 0.06 0.94 0.77 0.17 0.12   
Phases of 2-yr rotation            
2-yr-Wheat 1.46 a 0.45 a 0.43 a 0.27 a 0.15 a 0.12 a 0.43 a 0.008 a 1.19 a 0.03 a 0.022 a 0.008 0.31 

SEM 0.01 0.004 0.018 0.011 0.003 0.014 0.016 0.008 0.009 0.006 0.000   
2-yr-Fallow 1.50 a 0.43 a 0.44 a 0.28 a 0.15 a 0.13 a 0.46 a 0.004 a 1.20 a 0.04 a 0.024 a 0.010 0.21 

SEM 0.02 0.009 0.020 0.010 0.009 0.014 0.020 0.004 0.008 0.003 0.002   
P-value 0.19 0.12 0.57 0.62 0.92 0.72 0.29 0.67 0.90 0.52 0.21   

Phases of 6-yr rotation           
6-yr-Fallow 1.38 a 0.48 a 0.50 a 0.27 ab 0.14 a 0.13 ab 0.52 a 0.011 a 1.21 a 0.07 a 0.028 a 0.010 0.75 

SEM 0.02 0.01 0.016 0.014 0.008 0.009 0.021 0.011 0.024 0.020 0.003   
6-yr-Wheat1 1.32 a 0.50 a 0.48 a 0.26 ab 0.13 a 0.13 ab 0.47 a 0.005 a 1.19 a 0.08 a 0.025 a 0.007 0.54 

SEM 0.01 0.009 0.017 0.002 0.001 0.004 0.009 0.003 0.012 0.012 0.003   
6-yr-Wheat2 1.50 a 0.43 a 0.45 a 0.31 a 0.14 a 0.17 a 0.45 a 0.0001 a 1.19 a 0.02 a 0.024 a 0.008 0.17 

SEM 0.02 0.01 0.012 0.013 0.009 0.009 0.013 0.000 0.010 0.006 0.002   
6-yr-Alfalfa2 1.38 a 0.48 a 0.47 a 0.26 b 0.13 a 0.13 ab 0.48 a 0.009 a 1.24 a 0.04 a 0.029 a 0.005 0.11 

SEM 0.01 0.02 0.011 0.011 0.004 0.012 0.011 0.008 0.019 0.008 0.002   
6-yr-Alfalfa3 1.44 a 0.46 a 0.44 a 0.27 ab 0.14 a 0.13 b 0.44 a 0.0005 a 1.19 a 0.04 a 0.023 a 0.006 0.12 

SEM 0.02 0.02 0.019 0.007 0.004 0.005 0.018 0.001 0.007 0.013 0.001   
P-value 0.18 0.15 0.09 0.05 0.21 0.05 0.06 0.78 0.34 0.11 0.22   

θFC: field capacity water content; θPWP: permanent wilting point water content; PAW: plant available water; θs: saturated volumetric water content; θr: residual water content; n: 
a shape parameter related to the curve smoothness; α: a negative inverse of the air entry potential; S-index: the slope at the inflection point; RMSE: root mean square error of 
modelled θ and K data.  
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Table 2B. Effect of crop rotation on selected soil attributes at the 5 to 10 cm soil depth increment from Lethbridge site. Within a column, treatment means with 
different letters differ, P < 0.05. Ks: saturated hydraulic conductivity; Unsat. K: hydraulic conductivity at 100 hPa; SOC: soil organic carbon; STN: soil total 
nitrogen; C:N: carbon to nitrogen ratio; MBC: microbial biomass carbon. 

Crop rotation Ks unsat. K 
at 100 hPa 

Pore Volume (cm3 cm-3) 
pH STN SOC C:N MBC Dm 

>100 100-50  50-9 <9  

  ____  (cm d-1)  _____ ___________  (µm diameter)  ____________ 
 (% m/m) (% m/m)  nmol g-1 soil  

6-yr rotation 104 a 0.070 a 0.08 a 0.03 a 0.09 a 0.27 a 7.20 a 0.16 a 1.94 a 11.9 a 707 a 0.984 a* 
SEM 47 0.01 0.01 0.00 0.00 0.01 0.089 0.00 0.09 0.44 36 0.016 

2-yr rotation 57 a 0.077 a 0.05 a 0.03 a 0.08 a 0.28 a 7.29 a 0.13 b 1.61 b 12.0 a 576 a 0.986 a* 
SEM 19 0.03 0.01 0.00 0.00 0.01 0.086 0.00 0.08 0.37 50 0.015 

P-value 0.51 0.73 0.17 0.29 0.27 0.81 0.5667 <0.001 0.03 0.91 0.05 0.83 

Phases of 2-yr rotation 
    

     
 

2-yr-Wheat 47 a 0.042 a 0.07 a 0.03 a 0.08 a 0.27 a 7.25 a 0.14 a 1.67 a 12.1 a 535 a 0.987 a* 
SEM 17 0.017 0.010 0.002 0.004 0.011 0.128 0.005 0.14 0.717 52 0.019 

2-yr-Fallow 139 a 0.125 a 0.03 a 0.03 a 0.08 a 0.28 a 7.33 a 0.13 a 1.54 a 11.8 a 617 a 0.984 a 
SEM 54 0.052 0.023 0.004 0.010 0.010 0.131 0.006 0.09 0.308 87 0.012 

P-value 0.12 0.14 0.21 0.23 0.86 0.62 0.64 0.36 0.47 0.67 0.45 0.81 
Phases of 6-yr rotation 

    
     

 
6-yr-fal 99 a 0.072 a 0.09 a 0.05 a 0.09 a 0.27 ab 7.19 a 0.14 c 1.73 a 12.0 a 625 a 0.993 a 

SEM 52 0.009 0.042 0.006 0.005 0.014 0.168 0.003 0.057 0.270 36 0.019 
6-yr-wh1 1083 a 0.050 a 0.11 a 0.03 ab 0.09 a 0.26 ab 7.24 a 0.15 bc 2.11 a 13.5 a 655 a 0.989 a* 

SEM 292 0.008 0.013 0.002 0.006 0.002 0.213 0.006 0.283 1.362 87 0.005 
6-yr-wh2 35 a 0.052 a 0.03 a 0.02 b 0.07 a 0.31 a 7.12 a 0.18 ab 1.84 a 10.2 a 737 a 0.985 a* 

SEM 23 0.022 0.017 0.002 0.009 0.013 0.270 0.006 0.190 0.657 36. 0.004 
6-yr-alf2 329 a 0.093 a 0.08 a 0.04 ab 0.10 a 0.26 b 7.06 a 0.19 a 2.06 a 11.0 a 792 a 0.975 a 

SEM 139 0.023 0.016 0.004 0.005 0.011 0.282 0.006 0.258 1.034 141 0.025 
6-yr-alf3 562 a 0.074 a 0.08 a 0.02 b 0.09 a 0.27 ab 7.40 a 0.15 bc 1.96 a 12.7 a 723 a 0.979 a 

SEM 326 0.026 0.016 0.003 0.008 0.007 0.052 0.008 0.188 0.693 69 0.017 
P-value 0.19 0.58 0.40 0.013 0.29 0.04 0.82 <0.001 0.71 0.12 0.64 0.42 

* indicates that the Dm value is significantly different from 1 at P<0.05 or it is fractal. 
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Table 3. Multi-response permutation procedure results for microbial community structure (PLFA) in both sites. Only comparisons that were found to be 
significantly different are presented. 

Comparisons T A p 
Breton    
Among treatments -7.198 0.146 <0.001 * 
2-yr R-Wheat vs. 5-yr R-Hay -3.982 0.094  0.003 * 
2-yr R-Wheat vs. Forest -5.054 0.158  0.001 * 
5-yr R-Wheat vs. Forest -5.214  0.160 <0.001 * 
5-yr R-Hay vs. Forest -4.455 0.133 0.002 * 

Lethbridge 
   

Among treatments -4.335 0.148 <0.001* 
2-yr R-Fallow vs. 6-yr R-Alfalfa3 -3.578 0.163 0.006 * 
2-yr R-Fallow vs. 6-yr R-Fallow -3.242 0.174 0.001 * 
T: separation among groups; P: probability value; A: homogeneity within groups 
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Table 4. Distinctive indicator species analysis for microbial community structure (PLFA) associated with treatments in Breton site. Each value represents the 
mean indicator with standard deviation in parentheses, and the highest indicator value is in bold. Only PLFAs that were found to be significantly different among 
groups are presented. 

PLFA 
 Indicator Value Monte Carlo 

Taxa biomarker Mean 2-yr R-Wheat 5-yr R-Wheat 5-yr R-Hay Forest P < 0.05 
16:1ω9c Gram - 18.3 (6.64) 29 7 15 0 0.049 
19:0 Cyc ω8c Gram - 26.0 (4.56) 2 26 42 7 <0.001 
20:4ω6c (6,9,12,15) protozoa 21.2 (6.11) 1 3 12 43 0.005 
15:00 general bacteria 19.7 (6.59) 1 0 7 67 <0.001 
16:1ω11c Gram - 26.2 (4.2) 8 17 11 36 0.023 
18:3ω6c (6,9,12) fungi 17.1 (7.07) 1 0 8 52 0.002 
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Table 5. Distinctive indicator species analysis for microbial community structure (PLFA) associated with treatments in Lethbridge site. Each value represents the 
mean indicator with standard deviation in parentheses, and the highest indicator value is in bold. Only PLFAs that were found to be significantly different among 
groups are presented. 

PLFA 
 Indicator Value Monte Carlo 

Taxa 
biomarker Mean 2-yr R-

Wheat 
2-yr R-
Fallow 

6-yr R-
Fallow 

6-yr R-
Wheat1 

6-yr R- 
Wheat2 

6-yr R-
Alfalfa2 

6-yr R-
Alfalfa3 P < 0.05 

14:0 ISO Gram + 19.9 (7.25) 0 0 37 37 0 2 9 0.035 
18:1ω5c Gram - 15.6 (0.38) 14 8 16 15 17 15 14 0.002 
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Table 6. Pearson correlation coefficients (r-values) for relationships among soil properties in both sites. 

 MBC C:N SOC TSN pH <9 µm 9-50 µm 50-100 µm >100 µm Ks S-index α n θs PAW Sat. WC BD 

Breton                  

Dm 0.27 n -0.51** -0.36* -0.13 n 0.30 n 0.02 n -0.25 n -0.21 n -0.44 ** -0.35 * -0.46** -0.51** 0.02 n -0.47** -0.12 n -0.39* 0.44* 

BD 0.15 n -0.74** -0.71** -0.46** 0.33* -0.32 n -0.23 n -0.33 n -0.95** -0.76** -0.77** -0.88** 0.26 n -0.92** -0.53** -0.90**  
Sat. WC -0.09 n 0.66** 0.63** 0.43** -0.37* 0.58** 0.15 n 0.36* 0.77** 0.61** 0.77** 0.79** -0.37* 0.97** 0.73**   
PAW 0.03 n 0.40* 0.43** 0.33* -0.47** 0.87** -0.01 n 0.18 n 0.31 n 0.23 n 0.50** 0.33* -0.20 n 0.64**    
n -0.33* -0.21 n -0.38* -0.38* -0.14 n -0.22 n 0.40* -0.03 n -0.28 n -0.15 n 0.27 n -0.41*      
S-index -0.35* 0.57** 0.42* 0.18 n -0.49** 0.32 n 0.43** 0.41* 0.66** 0.54**        
Ks -0.32 n 0.54** 0.43** 0.19 n -0.12 n 0.12 n 0.32 n 0.03 n 0.77**         
9-50 µm -0.45** 0.16 n -0.004 n -0.13 n -0.33* -0.09 n            
TSN 0.29 n 0.28 n 0.85**               
SOC -0.02 n 0.72**                
C:N -0.40*                 

Lethbridge 
                 

Dm -0.17 n -0.07 n -0.25 n -0.29 n -0.13 n -0.14 n -0.30 n 0.08 n 0.28 n -0.09 n -0.03 n 0.27 n 0.03 n -0.005 n -0.14 n -0.04 n -0.19 n 

BD -0.02 n -0.09 n -0.07 n -0.01 n 0.27 n 0.61** -0.26 n -0.55** -0.85** -0.38* -0.53** -0.75** -0.39* -0.62** 0.28 n -0.65**  

Sat. WC -0.10 n 0.12 n 0.22 n 0.22 n -0.01 n -0.12 n 0.55** 0.75** 0.19 n 0.02 n 0.80** 0.41* 0.49* 0.97** 0.19 n   

PAW 0.11 n 0.09 n 0.43* 0.53** 0.18 n 0.85** -0.22 n -0.23 n -0.49* -0.23 n -0.005 n -0.34 n -0.17 n 0.10 n    

n -0.22 n -0.07 n 0.12 n 0.26 n -0.05 n -0.42* 0.64** 0.69** 0.12 n -0.43* 0.90** -0.01 n      

S-index -0.19 n 0.02 n 0.21 n 0.29 n -0.01 n -0.30 n 0.70** 0.83** 0.12 n -0.32 n        

Ks 0.39* -0.02 n -0.07 n -0.07 n -0.16 n -0.32 n -0.21 n -0.15 n 0.56**         

9-50 µm -0.37* 0.11 n 0.17 n 0.14 n -0.09 n -0.36 n            

TSN 0.35 n -0.004 n 0.66**               

SOC -0.11 n 0.74**                

C:N -0.45*                 
* and ** indicate significant correlation at P < 0.05 and P < 0.01, respectively. 
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Fig. 1. Mass fractal dimension (Dm, unitless) of the natural log transformed aggregate mass (g) versus natural log normalized aggregate volume (cm3) for phases 
within simple and complex rotations and adjacent forest (A. Breton, B. Lethbridge). Dm values are derived as slopes of linear regressions. Shown p-values are for 
regression coefficients against one as the non-fractal constant for mass vs. volume; Ho: β1 = 1. Lower Dm values imply increasing development of hierarchical 
aggregation, and hence improved soil quality. Fifures A and B have different y-axes scales. 
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Fig. 2. Mass fractal dimension (Dm, unitless) of the natural log transformed aggregate mass (g) versus natural log normalized aggregate diameter (cm) for two 
nutrient managements (A. balanced fertilization, B. control). The n value is the number of scanned aggregates. Dm values are derived as slopes of linear 
regressions. Shown p-values are for regression coefficients against one as the non-fractal constant for mass vs. volume; Ho: β1 = 1. 
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Fig. 3. NMS ordination biplots for phospholipid fatty acid (PLFA) analysis for phases within simple and complex rotations and adjacent forest (A. Breton, B. 
Lethbridge). 89 iterations, stress= 13, and 2-dimensional solution for Breton and 69 iterations, stress= 11, 3-dimensional solution for Lethbridge. 
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Fig. 4. Wheat grain yield (kg dry matter ha-1) for simple and complex rotations in 2014 (A. Breton site, B. Lethbridge site). The wheat grain yield in complex 
rotation of Lethbridge site is the yield of first year of wheat at the mentioned rotation. There are three nutrient regimes in Breton, and the NPKS is refereed in this 
study as balanced fertilization.  
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10. Figure captions 

Fig. 1. Mass fractal dimension (Dm, unitless) of the natural log transformed aggregate mass (g) 
versus natural log normalized aggregate volume (cm3) for phases within simple and complex 
rotations and adjacent forest (A. Breton, B. Lethbridge). Dm values are derived as slopes of linear 
regressions. Shown p-values are for regression coefficients against one as the non-fractal 
constant for mass vs. volume; Ho: β1 = 1. Lower Dm values imply increasing development of 
hierarchical aggregation, and hence improved soil quality. Fifures A and B have different y-axes 
scales. 

Fig. 2. Mass fractal dimension (Dm, unitless) of the natural log transformed aggregate mass (g) 
versus natural log normalized aggregate diameter (cm) for two nutrient managements (A. 
balanced fertilization, B. control). The n value is the number of scanned aggregates. Dm values 
are derived as slopes of linear regressions. Shown p-values are for regression coefficients against 
one as the non-fractal constant for mass vs. volume; Ho: β1 = 1. 

Fig. 3. NMS ordination biplots for phospholipid fatty acid (PLFA) analysis for phases within 
simple and complex rotations and adjacent forest (A. Breton, B. Lethbridge). 89 iterations, 
stress= 13, and 2-dimensional solution for Breton and 69 iterations, stress= 11, 3-dimensional 
solution for Lethbridge. 

Fig. 4. Wheat grain yield (kg dry matter ha-1) for simple and complex rotations in 2014 (A. 
Breton site, B. Lethbridge site). The wheat grain yield in complex rotation of Lethbridge site is 
the yield of first year of wheat at the mentioned rotation. There are three nutrient regimes in 
Breton, and the NPKS is refereed in this study as balanced fertilization.  



57 

 

CHAPTER TWO  



58 

 

Spatial Heterogeneities of Plant Available Water, Soil Organic Carbon, and Microbial Biomass 

under Divergent Land Uses: Comparing Regression-Kriging, Cokriging, and Regression-Cokriging 

Approaches 
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1. Abstract 

Improved knowledge of the spatial patterns of soil organic carbon (SOC), microbial biomass 

carbon (MBC), and plant available water (PAW) can underpin the identification and inventory of 

beneficial ecosystem functions and services in predominant land-use system types. However, 

little research has been done to address and account for the field variability of these key soil 

properties. This study characterized the spatial heterogeneities of PAW, SOC concentration, and 

MBC and evaluated their spatial prediction using ordinary kriging (OK), regression-kriging 

(RK), cokriging (coK), and regression-cokriging (RcoK) geostatistical approaches. Using a 

nested cyclic sampling design, we sampled a total of 112 point locations (5–10 cm soil depth 

increment) in two fields: a native grassland (NG) site and an irrigated cultivated (IC) site located 

near Brooks, Alberta. Converting the native grassland to irrigated cultivated land altered soil 

pore distribution by reducing macroporosity (by 25 %) which also led to lower saturated water 

content and half of the hydraulic conductivity in IC compared to NG. This land-use conversion 

also decreased the relative abundance of Gram-negative bacteria, while increasing the MBC 

concentration (601 vs. 812 nmol g-1 soil) in particular the proportion of Gram-positive bacteria. 

Across field sites and measured properties, the best fitted spatial model was Gaussian. The IC 

showed stronger degree of spatial dependence and longer range of spatial auto-correlation (~ 23 

% increase) revealing a homogenization of the spatial variability of soil properties likely as a 

result of intensive, repeated agricultural activities. Comparison of OK, RK, coK, and RcoK 

approaches indicated that cokriging (coK) method had the best performance as demonstrated by 

profound improvements in the accuracy of spatial estimations of PAW, SOC concentration, and 

MBC. It seems that the combination of kriging with certain terrain covariates such as elevation 

and depth-to-water delivers enhanced capability for effectively incorporating explicit ancillary 
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information into predictive soil mapping. Overall, identification and depiction of spatial patterns 

of soil properties in agricultural lands can generate a bird's eye view for land owners to design 

and improve management practices which lead to sustainable production. 

Keywords: geostatistics, grassland, PLFA, predictive mapping, secondary variable, soil 

properties, uncertainty  
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2. Introduction 

Site-specific land management endeavors to decipher and interpret spatial and temporal 

variabilities within fields in order to optimize profitability, sustainability, and environmental 

protection (Duffera et al., 2007; Lowenberg-DeBoer and Swinton, 1997). Heterogeneity in soil 

properties across the landscape can represent a management challenge to producers and 

policymakers in particular when land-use changes commonly occur (Nyamadzawo  et al., 2008; 

Robertson et al., 1993). Not only there is a paucity of information regarding the comparative 

impacts of contrasting land use systems on soil functions but also the required information about 

whether different land-use types influence the spatial variation of soil properties is still elusive. 

Therefore, there is a need for comprehensive understanding of the spatial structure of soil 

properties that are linked with relevant ecosystem functions across competing land uses types 

(e.g., native grassland versus cultivated land).  

Soil classification and survey have been traditionally used to document and characterize 

the spatial variation by generating maps of soil classes that represents soil properties estimated 

within a defined region or generalized mapping unit (Webster, 1985). Different geostatistical 

methods have been recently applied to interpolate soil properties from sparse sampling points 

into continuous surfaces by modeling the spatial correlation with minimum variance 

(Cambardella et al., 1994; Hengl et al., 2004; Lark, 2002; Wang et al., 2009). Qiu et al. (2016) 

demonstrated the use of spatial sampling and variography in an annual crop field to identify 

fertility management zones which can greatly improve nutrient use efficiencies relative to any 

uniform management. Moreover, earlier studies have revealed that the spatial variability of soil 

properties across the landscape of an ecosystem may be controlled by the underlying variabilities 

in topography (Su et al., 2006), vegetation types (Nyamadzawo  et al., 2008; Stutter et al., 2004), 
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cultivation (Wang et al., 2013), texture (Qiu et al., 2016) and parent material (Liu et al., 2006; 

Stutter et al., 2004). However, insufficient attention has been paid to deciphering and comparing 

the spatial structure of specific soil properties such as SOC, MBC, and PAW which are 

implicitly related to key ecosystem functions such as soil carbon sequestration, nutrient 

transformations and pore water release. 

When a spatial interpolation is only based directly on available measured data, ordinary 

kriging (OK) is commonly applied. This OK approach uses weighted averages to estimate 

unsampled locations as a linear combination of statistically-neighboring observations (Mirzaee et 

al., 2016; Wang et al., 2013). By contrast, regression-kriging (RK) method is the summation of 

regression values and kriging values derived from the regression residuals (Hengl et al., 2004; 

Odeh et al., 1995). The RK method has been often employed to map soil properties through 

using such predictor variables when other data of correlated environmental variables are 

available (Eldeiry and Garcia, 2010; Hengl et al., 2007, 2004; Knotters et al., 1995; Motaghian 

and Mohammadi, 2011; Odeh et al., 1995). Several studies have demonstrated the advantage of 

RK compared to OK (Hengl et al., 2004; Mirzaee et al., 2016; Motaghian and Mohammadi, 

2011; Odeh et al., 1995). Conversely, other reports have found that RK technique outperform 

neither OK (Eldeiry and Garcia, 2010; Li, 2010) nor cokriging (coK) (Motaghian and 

Mohammadi, 2011). These inconsistencies across the existing literature substantiate the need for 

further comparison of these various geostatistical approaches under a wide range of ecosystems 

and for multiple biophysical attributes. 

When the spatial distribution of a secondary variate (e.g., terrain covariates such as 

elevation) has been sampled more intensely than the primary variate, cokriging (coK) method 

can be implemented (Davis, 2002). Incorporating those co-variables into interpolation 
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procedures may provide an opportunity to obtain higher prediction accuracy while using limited 

existing data from the primary variate. Moreover, if the primary variate is difficult or expensive 

to measure, cokriging can greatly improve interpolation estimates without the need for more 

intensely measurements of the primary variate (Wang et al., 2013). The performance of coK with 

different auxiliary variables has been previously examined while focusing on soil attributes 

(Ceddia et al., 2015; Hernández-Stefanoni et al., 2011; Simbahan et al., 2006; Wang et al., 2013). 

These studies reported the advantage of coK method as it accounts for both the auto correlations 

and cross correlations among all involved variables including the target variable and the 

secondary variables, which is not fully achieved in RK method.  

Recently, several studies have focused on hybrid geostatistical procedures, which 

typically combine two conceptually different approaches (i.e., deterministic and stochastic) to 

model spatial variation of soil properties (Hengl et al., 2007; Mirzaee et al., 2016). One of these 

hybrid promising geostatistical methods is regression-cokriging (RcoK) which is a combination 

of regression values and cokriging conducted on the regression residuals simultaneously 

incorporating covariates. However, compared with other methods such as OK, coK, and RK, the 

RcoK has been rarely evaluated for modeling purposes of the field variation of soil properties. 

More precise maps of the spatial variability of soil attributes in native prairie and 

cultivated lands may facilitate the strategic implementation of best management practices which 

can lead to sustainable production systems embedded in multifunctional landscapes (Knotters et 

al., 1995; Wang et al., 2013). Such improved mapping applications will further facilitate the 

incorporation and extrapolation of this new, spatially-explicit knowledge into valid predictions 

for comparable landscapes and land-use systems. The aims of this study were: i) to upscale new 

spatial knowledge of key soil biophysical attributes (i.e., PAW, SOC concentration, and MBC) 
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from point measurement to field landscapes by extracting their spatial patterns and examining 

the influence of contrasting land use types (native grassland versus cultivated land) on multiple 

soil properties, and ii) to compare the ability of different geostatistical approaches (i.e., OK, coK, 

RK, and RcoK) for predicting PAW, SOC concentration, and MBC concentration while 

evaluating terrain remotely-sensed data as potential co-variables.  
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3.  Materials and Methods 

3.1. Study sites 

This study was conducted in two fields: a native grassland (NG) (north-west corner: 50º 

53' 54.4'' N, 111º 57' 40.2'' W) and an irrigated cultivated (IC) land (north-west corner: 50º 54' 

26.5'' N, 111º 58' 41.1'' W) sites at the University of Alberta Mattheis Research Ranch located 

within the dry mixed grass prairie natural sub-region of Alberta, Canada. The climate is 

continental, sub-humid, characterized by long cold winters and short summers (Mollard et al., 

2014). Mean annual precipitation and temperature are 354 mm and 4.2 °C, respectively (Hewins 

et al., 2016). The sites had a Rego Brown Chernozemic soil classification based on Agricultural 

Region of Alberta Soil Inventory Database (AGRASID, 2015) with a loamy sand texture. The 

granulometric distribution for native grassland soil was: sand (1000–50 μm size diameter) 865, 

silt (50–2 μm) 75, and clay (<2 μm) 60 g kg-1 soil and for irrigated cultivated land soil was: sand 

831, silt 101, and clay 68 g kg-1 soil. 

The native grassland (NG) was dominated by crested wheat grass (Gropyron cristatum), 

smooth brome grass (Bromus inermis), and kentucky blue grass (Poa pratensis). This NG site 

also had various native species present such as Poa sandbergii, Stipa comate, Carex praticola, 

Equisetum hyemale, Artemesia frigida, Artemesia ludoviniaca, Heterotheca villosa, and Achillea 

millefolium. The land is currently used as cattle ranch on a rotational grazing basis for 

approximately 6 months each year, beginning in early May. The cultivated land (IC) site is 

irrigated by a center pivot system with annual crops such as wheat and oat grown under 

conventional tillage practices for at least two decades, and this site was seeded to introduced 

pasture for grazing in spring 2014. The dominant plant species in this recently established 

pasture were alfalfa, red clover, kentucky blue grass, and crested wheat grass. 
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3.2. Soil sample collection  

Collection of all field samples took place on 6 and 7 June 2015 at both sites. Using a 

cyclic sampling design (Hudelson and Clayton, 2015; Orr et al., 2014), a 170 m×100 m (1.7 ha) 

plot was established at each site for data collection (Fig. 1). From the right upper corner to the 

left upper corner, the sampling intervals were 10, 35, 85, and 100 m distances, and from the top 

boundary of the field plot to the bottom boundary, distances were 10, 35, 85, 95, 120, and 170 m 

(for a total of 36 measurement points). A cyclic sampling design can increase the sampling 

efficiency by optimizing the placement of sampling points to provide the most information for 

geostatistical analysis with the number of samples possible (Bogaert and Russo, 1999). This 

design maximizes sampling efficiency by reducing over-sampling at small lag distances (Orr et 

al., 2014). Moreover, allowing for the possibility of important variability occurring and very fine 

spatial scales, a nested design was also employed within the overall cyclic sampling pattern. For 

this nest, a cycle of {0.5, 2, 4.5 m} was applied in both cardinal directions (i.e., west to east and 

north to south) (n = 20). There are also two additional sampling points which were strategically 

located in the plot to increase the sampling efficiency and to capture the most information for 

geostatistical analysis. There were 56 sampling points in each site for a total of 112 measured 

points in this study. A differential global positioning system device was used to locate the 

sampling points (latitude and longitude) with better than 20 cm accuracy. This sampling protocol 

allows us to measure lag distances between 0.5 and 197 m in the plot. Also, our nested cyclic 

sampling design demonstrated to have sufficient pairs of data points (at least 20 pairs per lag 

class) even for active lag distances of up to 140 m; this facilitates the adequate development of 

variogram models when assuming uniform size of lag classes as narrow as 5 m distance interval 

(Fig. 2). 
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3.3. Soil sample analysis 

One undisturbed soil sample was collected using stainless steel cylindrical cores (8 cm 

inner diameter) in each sampling point to quantify water retention and hydraulic conductivity. 

For chemical and microbial analyses, one additional disturbed soil sample was taken in each 

sampling point by composing 4 subsamples taken using a 2 cm inner diameter push probe. 

Disturbed samples were put in Whirl-Pak® (Nasco, Fort Watkins, Wisconsin) sterile sampling 

bags and were preserved and transported in an icebox to the laboratory. Samples for microbial 

characterization were kept frozen at −86 °C until they were freeze-dried in preparation for 

analysis. All soil samples were taken at the selected sampling points at the depth increment of 5-

10 cm. 

Using the undisturbed cores, water retention was determined with the evaporation method 

(Schindler et al., 2010) using a HYPROP device (UMS GmbH, Munich, Germany). Matric 

potential was automatically recorded by two tensiometers at two depths within the saturated soil 

cores. The gravimetric water content of the samples was recorded twice daily for up to 14 days. 

Data points of the retention and unsaturated hydraulic conductivity curves were calculated with 

the HYPROP 2011 software (UMS GmbH, Munich, Germany) based on the mean tension 

potential of the two tensiometers and water contents as detailed in Kiani et al. (2016b). 

The soil water retention for moderate to dry moisture ranges was evaluated with a WP4-T 

potentiometer (Decagon Devices, Inc., Pullman WA, USA) based on the chilled-mirror dew 

point technique (Schelle et al., 2013).  Seven different amounts of water were added to 5 g dry 

weight of soil in plastic cups. The cups were closed tightly and samples allowed equilibrating for 

24 hours. When the water potential of the sample was in equilibrium with the vapor pressure of 

the WP4-T measurement chamber, water tension was recorded. Sample weight was determined 
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immediately after measurement and related to the oven-dry weight (at 105 °C) to obtain the 

corresponding water content. The constrained van Genuchten (1980) model was fitted to the 

results from the evaporation method (HYPROP) and WP4-T measurements. At the end of each 

measurement campaign, the soil samples were oven dried at 105 °C for 24 h to derive bulk 

density and total porosity assuming a particle density of 2.65 g cm-3. 

Macroporosity was computed from the soil water retention data subtracting the saturated 

water content from the water content at field capacity (FC; -33 kPa water potential) which 

corresponds to pore diameters larger than 9 μm. Plant available water was also calculated as the 

differential volumetric water content between field capacity (-33 kPa) and permanent wilting 

point (PWP; -1500 kPa). 

With the aim of extracting an integrated indicator of soil quality, S-index was calculated 

as the magnitude of the slope of the soil water retention curve at the inflection point when the 

curve was expressed as gravimetric water content versus natural logarithm of pore water tension 

head (Dexter, 2004). 

After grinding a portion of the composited, disturbed samples, we determined the 

concentrations of soil organic carbon (SOC) and soil total nitrogen (STN) by dry combustion 

method using a Costech ECS 4010 Elemental Analyzer (Costech Analytical Technologies Inc., 

Valencia, CA, USA). The SOC density was calculated by multiplying SOC concentration (g C 

kg-1 soil) × bulk density (g cm−3) × soil thickness (cm) × 10 (conversion factor). Soil pH was 

measured using a 1:2 soil to water ratio (Mclean, 1982). 

Using composited samples, we characterized soil microbial communities using 

phospholipid fatty acid (PLFA) analysis. Polar lipids were extracted from freeze-dried samples 

using a modified Bligh and Dyer protocol (Hannam et al., 2006). The standardized X: Y ω Z 
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nomenclature for fatty acids was used to identify PLFAs, where X is the number of carbon 

atoms, Y is the number of double bonds, and Z is the position of the first double bond from the 

aliphatic end (ω) of the molecule.  Prefixes “i” and “a” indicate branching at the second and third 

carbon atom, respectively, from the ω end, and the suffix “c” corresponds to a c transfiguration. 

Adding them together, all of the PLFA biomarkers were considered to be representative of the 

total PLFA concentration of the microbial community in our soils. 

Candidate terrain covariates were derived from airborne LiDAR (Light Detection and 

Ranging) measurements with vertical accuracy of 30 cm. Available LiDAR spatial resolution 

was 2 m x 2 m with horizontal accuracy of 50 cm. The LiDAR method uses light in the form of a 

pulsed laser to measure variable distances to the Earth. A LIDAR measurement system basically 

consists of a laser, a scanner, and a specialized GPS receiver. Topographic LIDAR typically uses 

a near-infrared laser to map the land (Gatziolis and Andersen, 2008). The LiDAR-derived data in 

our study included terrain elevation (Fig. 4), curvature, slope, aspect, hill shade, and depth to 

water (DTW) using ArcGIS 10.3 (ArcGIS©). DTW was obtained from the wet-areas delineation 

algorithms across the landscape, using the flow channels and shorelines (Murphy et al., 2011).  

3.3. Classical statistical analysis 

The datasets were analyzed to determine the descriptive parameters, i.e., maximum, 

minimum, mean, median, and standard deviation (SD). The Kolmogorov–Smirnov test, together 

with skewness and kurtosis values, was used to evaluate the normality of the datasets. For data 

that failed the normality test, a suitable transformation was performed to achieve a normal 

distribution for use in further statistical analyses. 

A two-sample t-test (α critical value = 0.05) using R software determined whether the 

means of soil properties differed significantly under different land use types. Spearman rank 
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correlations were used to determine the existence and strength of relationships among soil 

properties and with covariates.  

All PLFAs with < 20 carbons were used for analysis of the microbial communities. Data 

groupings were tested for significant differences in the NMS analysis using a multi-response 

permutation procedure (MRPP). In addition to the probability value (P), the MRPP test generates 

a T value, which indicates separation among groups, with a larger T reflecting a stronger 

separation, and an A value, which is an index of within-group homogeneity compared to a 

random expectation, with a larger A indicating greater homogeneity. Moreover, indicator species 

analyses were performed using the data groupings shown to be different by MRPP. This 

statistical method generates an indicator value based on the abundance and frequency of a 

particular PLFA in a given data grouping. A larger indicator value represents a stronger 

relationship between the PLFA and the given data grouping. The statistical significance of the 

indicator value was tested against a randomized Monte Carlo test. All analyses were conducted 

using PCORD software (version 5, MjM Software Design, Gleneden Beach, OR, USA).  

The approach by Metcalfe et al (2008) was used to find the optimal sample size (Nopt) 

for each measured soil properties:  

     [
     

𝐷
]
 

 [1] 

where tα is the Student's t-value at a chosen critical level (α = 0.05 in this study). CV is the 

coefficient of variation, equal to the standard deviation normalized by the sample mean (given in 

%). Also known as mean value accuracy, D is essentially the margin of error, expressed as 

percentage of the mean. We assessed D of 5, 10, 20, or 40% in our data. Upon conducting 

sampling using Nopt samples, a 95% of the time, the true mean value could be found within ± 5, 

10, 20, or 40% from the estimated mean.  
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3.4. Geostatistical analysis 

Geostatistics uses a semivariogram to quantify and model spatial autocorrelation, and 

subsequently, to provide parameters for optimal spatial interpolation, which is known as kriging 

method (Webster and Oliver, 2007). Our measured data was used to calculate the experimental 

semivariogram, which is then, fitted by authorized theoretical models, i.e. linear, Gaussian, 

spherical and exponential. The best-fitted model was considered to be the one having the 

smallest residual sum of squares (RSS) and the largest coefficient of determination (R2). Three 

major parameters could be derived from the fitted model, i.e. nugget (C0), sill (C+C0) and 

autocorrelation range, which can characterize the spatial structure of variables of interest at a 

given scale. The total variance (sill, C+C0) is expressed as the summary of the structural 

variance (C, variance explained by spatial autocorrelation) and the nugget effect (C0, variance 

occurring at a smaller scale than the field sampling and from the experimental error) (Liu et al., 

2013). The spatial autocorrelation range represents the maximum distance within which variables 

exhibit internal spatial dependence. To determine the magnitude of spatial dependence, the 

percentage of total variance (sill) explained by random variance (C0) was calculated as a nugget 

ratio (Cambardella et al., 1994).  

In our study, regression (R), ordinary kriging (OK), regression-kriging (RK), cokriging 

(coK), and regression-cokriging (RcoK) methods were used for the spatial interpolation of PAW, 

SOC concentration, and MBC in the 5–10 cm soil depth increment across our native grassland 

and cultivated land sites. The general equation of OK (Eq. [2]) and coK (Eq. [3]) methods are 

(Webster and Oliver, 2007): 

  ̂(  )  ∑   
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where   ̂(  ),  (  ),  (  ), and N are the predicted value, primary variable, secondary variable, 

and the number of soil samples, respectively. The   ,   , and   , are kriging weights. The RK 

(Eq. 4) (Odeh et al., 1995) and RcoK (Eq. 5) combined a deterministic component (i.e., linear 

regression) as first step followed by stochastic spatial interpolation: 

  ̂(  )   (  )  ∑   

 

   
  (  ) [4] 

  ̂(  )   (  )  ∑   

 

   
  (  )   ∑   

 

   
  (  ) [5] 

where the  (  ) is the estimation data by regression model,  (  ) is the interpolated residuals, 

and the  (  ) is the secondary variable. The   ,   , and    are the kriging weights. The residuals 

for each soil property were obtained by subtracting the measured data from the estimated values 

(derived from the regression) (Heuvelink et al., 2016). Then, variograms (and cross-variogram) 

were fitted on the regression residuals to inform optimal kriging or cokriging.  

The criteria used for contrasting the performance of the evaluated geostatistical methods 

were coefficient of determination (R2), standard error of prediction (SE predict), mean prediction 

error (MPE), and root mean square prediction error (RMSPE) calculating as follows: 
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where SD is the standard deviation of the measured data. The geostatistical analysis was 

performed with the GS+ software (version 10.0) and the distribution contour plots were produced 

with SigmaPlot software (version 11.0) without using any data smoothing function.  
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4. Results 

4.1. Classical statistical analyses of soil properties  

The overall means of Van Genuchten (VG) parameters for our soil moisture retention 

curves consistently differed between native grassland (NG) and irrigated cultivated (IC) land 

(Table 1). Saturated water content was 11% higher in native grassland (P < 0.05), while PAW 

was found to be three times greater in cultivated land, and this outcome was driven by a 1.3-

times significantly higher water content at field capacity (FC) for IC than in NG soils (Table 1). 

Additionally, a reciprocal 1.3-times greater presence of draining pores (macropores; > 9 μm 

diameter) in these sandy soils under perennial native grasses (NG > IC) implies faster water 

infiltration, conductivity, redistribution and percolation across the NG soil profiles. A clear 

significant difference was also found in S-indexes (i.e., slope of moisture curves at their 

inflection point) between native grassland and irrigated cultivated land, with magnitudes of 0.11 

for NG vs. 0.06 for IC (P < 0.05; Table 1). Regarding the fitting performance of our VG models, 

root mean square errors for the moisture curve of each land use system ranged from 0.003 to 

0.020 cm3 cm-3 indicating effective fitting of the VG models to measured data. 

Our NG soil exhibited two-fold faster hydraulic conductivity under unsaturated 

conditions (unsat. K at -10 kPa water tension) than the IC soil (P < 0.05; Table 1). Conversely, 

this clear effect of land use on water movement capacity did not translate into differences in 

hydraulic conductivity at saturation. Root mean square error values of modelled hydraulic 

conductivity (K) were high across all our data sets (0.21 cm day-1; data not shown) indicating 

modest fitting which is in part a result of extrapolation into the saturated zone of the water 

retention curve. 
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The MBC concentration was significantly greater in cultivated land with a concentration 

of 812 nmol g-1 versus 601 nmol g-1 in the native grassland soils (P < 0.05; Table 1). Separation 

between native grassland and cultivated land was significant for the PLFA data (as a proxy to 

microbial community structure) as evidenced by our MRPP analyses (all Ps < 0.001). Similarly, 

the A value, which indicates within-group homogeneity, was 0.04 for the microbial communities 

between two sampling sites. Although the A value shows that within-group variability is 

considerable, the large T value (15.6) indicates distinctive separation between two groups. The 

indicator species analysis detected six significant PLFAs in our native grassland soils, but no 

specific biomarker was detected for the cultivated soils (Table 5). In further detail, the presence 

of Gram-negative bacteria associated with 15:1 i, 17:1 a, and 17:1ω8c PLFAs, and also a unique 

actinobacteria biomarker (17:0 10 methyl) were evident only in the native grasslands. 

Although both SOC concentration and SOC density showed no statistically differences 

between land uses, STN concentrations were significantly higher in the cultivated land (Table 1).  

As a result, soil C:N ratio mirrored this difference between land use systems; this parameter was 

12% narrower in IC soil than PG (P < 0.05; Table 1), perhaps revealing less limiting nitrogen 

status in IC soils after decades of intense cropping history including N fertilization and 

introduction of legumes.  

4.2. Variographic analyses of soil properties  

The mean and median were used as central tendency estimates, while the minimum, 

maximum, skewness, kurtosis, and standard deviation (SD) values were used as descriptors of 

variability from each separate site. We observed that water content at FC, PAW, sat. K, SOC, 

STN, and MBC were highly positively skewed (Table 1) as shown by distinctive asymmetry in 

their distributions. In addition, the distribution of water content at FC, PAW, sat. K, SOC, and 
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STN peaked more than a Gaussian distribution according to the Kurtosis values. The highly 

skewed distributions of PAW and SOC particularly in our native grassland may be in part 

considered evidence of spatial heterogeneity with extreme values characteristic of landscapes 

where agricultural management (e.g., tillage, irrigation) have not smoothed natural variation 

features. The relatively high variability of terrain curvature (at 2 m by 2 m resolution and using 

eight surrounding neighbors) in the native grassland site can support this notion. Likewise, the 

standard deviation of terrain elevation in NG was double in NG vs. IC (Table 1 and Fig. 4). The 

recurrent, random addition of cattle manure during field grazing in NG may have also led to 

accumulation patches of enriched SOC as well.  

As part of our variogram development, active lag distance values were found to be from 

60 to 110 m throughout the fitting procedures. The class intervals were applied in a way to have 

at least 20 pairs in each class, and at least 3 classes within the domain of the autocorrelation 

range. The typical size of the lag class interval ranged from 4 to 10 m. For model selection 

purposes, each experimental variogram, secondary variogram, and cross-variogram was fitted 

with a Gaussian, spherical, and exponential models, and the optimal model was chosen to attain 

both lower RSS and higher R2 (Table 4). Overall, Gaussian model had the best fitting results for 

almost all variograms and cross-variograms. 

Candidate predictors for PAW, SOC concentration, and MBC were pre-screened based 

on Spearman correlation coefficients among the available data and each of the dependent 

variables of interest, a low variance inflection factor (VIF), and their significance of predictors in 

the regression models (Table 2). The optimal predictor for PAW was SOC in both land uses (Fig. 

3). With respect to SOC concentration, all S-index, α, porosity, and Sat. WC (with VIFs < 2) 

were suitable predictors in native grassland, while θFC was best predictor for SOC concentration 

in cultivated land. The optimum set of predictors for MBC was C:N ratio, S-index, and Sat. WC 
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in the NG soils, whereas C:N ratio was the best predictor for MBC in our IC soils (Table 2; Fig. 

3).  

With the aim of selecting suitable covariates, we assessed our three soil properties of 

interest (i.e., SOC concentration, PAW, and MBC) alongside with highly correlated terrain 

variables (Table 3) to examine which candidate covariate(s) led to the lowest RSS and highest R2 

as derived through fitted cross-variograms. Using covariates consistently resulted in a substantial 

reduction in RSS of the variographies for all assessed soil properties. Of the assessed terrain 

attributes, the best covariate for PAW was terrain slope in native grassland and elevation in 

cultivated land (Fig. 4). Interestingly, DTW was the optimal covariate for both SOC 

concentration and MBC in both land-use systems implying an overarching influence of terrain 

wetness on these two key soil biological responses irrespective of the land management 

scenarios.  

The autocorrelation range was typically 40 to 126 m (Table 4), and the longest 

autocorrelation ranges were observed with coK and RcoK methods where terrain covariates 

contributed to these spatial prediction. Congruently, the nugget ratio exhibited prominent 

reductions when applying the terrain covariates (Table 4), likely indicating also tighter spatial 

structure and increased predictability. 

The standard error of the predictions had the lowest value in coK and highest value in RK 

for all soil variables (Table 4). Furthermore, both coK and RcoK methods had low RMSPE 

(Table 4), which suggests that the two approaches are similarly good interpolators. The goodness 

of fit (R2 values) between the measured and predicted data also indicated that coK performed 

best across all variables at both land uses. Moreover, correlation analyses showed that the 

associations between variables’ regression residuals and selected terrain covariates were very 
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weak or even inexistent when compared to the relatively stronger correlations between the same 

terrain covariates and our observed experimental values; this divergence correlation result was 

particularly evident for PAW in NG and for SOC in IC (Table 2). Because the regression 

residuals trended losing relatedness to the observed values, the cokriging step within the RcoK 

method could not contribute effectively to further reduce the uncertainty of prediction when 

compared to the coK approach which provided consistently lower uncertainty as detailed above 

(Table 4). 

Of the evaluated geostatistical approaches, OK had the weakest fit in the native 

grassland, while in the cultivated land, R had the lowest performance. This might suggest that in 

the cultivated land, the variation in soil properties is more spatially structured which could not be 

sufficiently captured with linear regression approaches. In further details, the mapped means of 

PAW, SOC concentration, and MBC (Fig. 5) changed amply within different distance ranges 

over our NG field, which indicates that the correlations of the covariates with the primary variate 

vary with spatial locations in this relatively heterogeneous prairie site. Moreover, similar patterns 

were observed for the cultivated land (data not shown). We also found that OK, RK, coK, and 

RcoK approaches differed with respect to their spatial patterns of prediction errors. The 

estimated uncertainty of soil PAW was very high with OK and RK method, but clearly reduced 

with both coK and RcoK (Fig. 6). As indicated above, PAW typically exhibits high spatial 

variability by nature, and hence, approaches that demonstrate systematically reductions in PAW 

uncertainty are avidly sought-after for improving predictive mapping.     

The optimal number of samples for various soil properties was calculated on the basis of 

power function (Eq. [1]; Table 1). The Nopts varied over the measured variables and land uses. 

Based on an α critical value of 5%, bulk density, porosity, saturated water content, C:N ratio, and 
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pH needed the least amount of minimum samples (i.e., 6-29 samples), while the saturated and 

unsaturated hydraulic conductivity, plant available water, and microbial biomass carbon required 

the largest amount of samples (≥ 153 samples) at both field sites. Overall, the cultivated land’s 

optimal number of samples was higher than in native grassland for all of the soil properties 

except for PAW, SOC, and STN which exhibited the reverse outcome. 
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5. Discussion 

5.1. Soil quality changes in contrasting land use systems. 

Compared to cultivated land, native grassland had greater saturated water content and 

doubled the hydraulic conductivity (at -10 kPa water potential). This outcome directly reflects 

the higher abundance of macropores in native grassland soils (Table 1) which can readily intake, 

store and transport ample amounts of water at low tensions. However, in an apparent 

incongruency, plant available water (PAW) was almost triple in the irrigated cultivated land 

(0.069 vs. 0.024 m3 m-3) which can be largely attributing to a greater volume of smaller-size 

pores in these IC soils. This cultivated land was formerly used as a cropland continuously for 

more than two decades, and it had been recently converted to introduced pasture in the summer 

prior to our field sampling. Our results can imply that previous annual cropping activities, such 

as tillage and recurrent equipment traffic, can have led to soil compaction which is known to 

alter soil pore distribution by reducing macroporosity (Pagliai et al., 2004). Moreover, animal 

treading may further compress large pores into relatively smaller pores near the ground surface 

(Drewry et al., 2008). We postulate that this creation of smaller and more frequent size pores as a 

long term response to management change could have increased PAW in the cultivated land. 

A greater MBC in cultivated land could further support our hypothetical explanation for 

higher volume of smaller pores in IC (Table 1). Even in coarse-textured soils, microorganisms 

can influence the formation aggregates and stabilization of structure (Six et al., 2004) provided 

that microbes inhabit the pore space between microaggregates (20-250 μm size) (Chenu, 1989). 

It seems plausible that a facilitation of increased microaggregation mediated by microbial 

activity in combination with small pores derived from soil compaction resulted in higher PAW 

and higher water content at field capacity in our cultivated land soil. Daynes et al. (2013) also 



81 

 

showed the PAW increased in the presence of living plant roots and soil microbes because of 

maximization in the distribution of relatively finer pores that are capable of holding water 

available for vegetation.  

The S-index value is a promising indicator of soil physical quality. It is well established 

that an S-index ≥ 0.05 indicates “very good” soil physical or structural quality, and 0.035 ≤ S-

index < 0.050 indicates “good physical quality” (Dexter, 2004; Tormena et al., 2008). Our S-

index results showed good to very good soil structural quality (0.031 ≤ S-index ≤ 0.197) for 

native grasslands (Table 1). On the other hand, it has been documented that well-sorted loamy 

sand texture as found in our field sites is typically associated with a narrow pore-size 

distribution, lack of inter-aggregate spaces, and a low accumulation of organic C (relative to fine 

and medium textured soils) (Reynolds et al., 2009). As a result, the soil water release curve in 

grassland is very steep at its inflection point (n was 1.5 times higher in NG). As also concluded 

by Dexter et al (2008), large S-index values for soils exhibiting no continuous pore networks 

(e.g., well-graded sands and sandstones) mainly reflect soil matrix attributes rather than soil 

structural characteristics. Consequently, it appears that S-index should be interpreted cautiously, 

and in conjunction with other indicators, when attempting to quantify the physical quality of 

rigid to moderately expansive soils (Reynolds et al., 2009). Additionally, it is noteworthy that 

although our NG soil has higher S-index compared to the IC soils, microbial biomass carbon was 

substantially lower in NG soils (Table 1). Kiani et al. (2016b) also reported the same trend in 

long-term cropping systems, concluding that specific beneficial soil functions (such nutrient 

cycling vs. water availability vs. structure development) can be influenced in different directions 

by same land managements; this finding emphasizes the importance of integrally assessing 
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several soil quality indicators simultaneously for inferring multiple soil functions and the status 

of ecosystem services and soil quality in land-use systems. 

Our native grassland soil was characterized by the presence of Gram-negative bacteria, 

actinobacteria, and anaerobic bacteria as main biomarkers (Table 5). Steenwerth et al. (2002) 

also indicated Gram-negative bacteria and 16:1 2OH as unique biomarkers of grazed perennial 

grassland. They reported greater abundance of Gram-positive (i17:1) in cultivated sites than in 

perennial grasslands which is also consistent with our findings (data not shown). It seems that 

converting the native grassland to cultivated land decreased the relative abundance of Gram-

negative bacteria, while increasing the proportion of Gram-positive bacteria. These results are 

consistent with Geisseler et al (2016) who also reported higher Gram-negative bacteria in natural 

grassland and higher Gram-positive bacteria in cropland.  

Differences in microbial community structure between grassland and cultivated land are 

most likely related to variations in the quantity and quality of carbon substrates being supplied to 

the soil (Khalili et al., 2016; Grayston et al., 2004). The grassland and cultivated land have 

differences in plant community composition that are likely to exert strong selective pressures on 

the soil microbial community. Soil microbial biomass carbon was also significantly higher in the 

cultivated land than the native grassland (Table 1). Khalili et al. (2016) reported that total 

microbial biomass was significantly greater in grasslands than shrublands. In general, different 

vegetation types may result in differences in soil aeration, soil moisture and the quality of 

resources available to microbes. Grazing and associated manure and urine addition may also 

impact the large abundance of MBC in cultivated land. Our study extends the existing literature 

by documenting clear differences in soil pore water interactions and microbial functions across 

competing land uses types. 
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5.2. Gaussian model fits better for PAW, SOC, and MBC variographies. 

Autocorrelation range values of measured soil properties assessed at 5–10 cm soil layer 

varied between the two sites (Table 4). Focusing on results from OK approach, the 

autocorrelation range values for SOC concentration and PAW were generally higher for 

cultivated land soil and both variables had lower CV in cultivated land as well (Table 4). A 

similar observation was also reported by Wang et al (2009) for soil total nitrogen when they 

compared the spatial patterns of STN under farmland and grassland systems at a watershed scale. 

In our results, this trend was reverse for MBC as its autocorrelation range was longer in native 

grassland, and the goodness of fit (r2) for semivariogram model was very low for NG (< 0.1). 

Variability in range values could arise from features such as landscape position and history of 

management (Webster, 1985). 

The OK approach revealed that PAW, SOC concentration, and MBC were strongly 

spatially dependent in cultivated land (nugget ratio < 18%; Table 4) entailing that predictable 

field segments can capture a significant proportion of the spatial variability (Duffera et al., 

2007). These soil properties were less spatially dependence in native grassland (Table 4). 

Glendell et al (2014) also found a stronger degree of spatial dependence of total carbon and C:N 

ratio in agricultural land (< 24%) than in grasslands (37 to 71%). The stronger degree of spatial 

dependence and longer auto-correlation range in cultivated lands indicates a homogenization of 

the spatial variability of soil properties (Glendell et al., 2014; Li et al., 2010; Qiu et al., 2016). 

This effect could be a result of intensive, long term agricultural activities such as tillage, 

irrigation, fertilization, and harvest which were applied uniformly across this field. 

Spatial structures varied across the assessed parameters. Of the three key soil properties 

of our interest (i.e., PAW, SOC, and MBC), SOC exhibited the strongest spatial dependency at 
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both field sampling sites (Table 4). Such strong spatial dependency may be controlled by the 

variations in both intrinsic and extrinsic factors such as heterogeneity of soil development, soil 

texture, type of vegetation, land use and management (Cambardella et al., 1994; Stutter et al., 

2004; Qiu et al., 2016). In our study, spatial dependence was more likely associated with the 

differences in land use management and vegetation. A similar inference was also reported by 

Nyamadzawo et al. (2008) as they found that the strong spatial dependency of total carbon 

concentration was associated with the land management and vegetation in their reclaimed 

minesoils seeded to grass and trees.  

In general, the best fitted model option for PAW, SOC concentration, and MBC was 

Gaussian model based on the output with lower RSS and higher R2 (Table 4). In our study, the 

type of optimal theoretical models did not differ between the grassland and the cultivated land 

except for SOC concentration in the cultivated land for which the spherical model had better 

fitting outcome. Glendell et al (2014) reported spherical model as the best fit for soil total carbon 

for both agricultural land and grassland. Other studies also showed that spherical model fits 

better when conducting SOC concentration variography (Cambardella et al., 1994; Glendell et 

al., 2014; Nyamadzawo et al., 2008; Wang et al., 2013).  

5.3. Co-kriging approach enhances spatial predictions. 

In our study, we systematically explored several geostatistical methods to provide a 

detailed spatial-resolution prediction and visualization of PAW, SOC concentration, and MBC in 

soils of native grasslands and the cultivated lands. Comparison of R, OK, RK, coK and RcoK 

approaches based on their R2 and standard error of prediction indicated that coK method had the 

best performance, demonstrating a profound improvement in the accuracy of spatial estimations 

of SOC concentration and MBC when DTW was incorporated as a covariate (Table 4). Soil 
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moisture availability directly impacts the activity of microorganisms in a way that their activity 

decreases as the soil becomes dry (Curtin et al., 2012). With regards to SOC, previous studies 

also showed a significant positive relationship between water availability and SOC (Kiani et al., 

2016b). Water availability could increase the production of plant biomass and residues that can 

be incorporated into the soil and feedback in the long-term into additional organic carbon 

accrual. Furthermore, when focusing on PAW, the coK method had also the best performance 

among the evaluated approaches when terrain slope and elevation were the selected covariates 

for native grassland and cultivated land, respectively. The MPE also showed that bias estimation 

was considerably reduced when the coK was applied for spatial prediction (Table 4). Our results 

are consistent with earlier reports showing a clear advantage of coK over ordinary kriging for 

predicting spatial variation of SOC stock (Ceddia et al., 2015), saturated hydraulic conductivity 

(Motaghian and Mohammadi, 2011), and topsoil gravel and subsoil clay (Odeh et al., 1995). 

Furthermore, the low correlation values (ρ < 0.2) between the predicted standard deviations 

derived from coK method and the terrain covariates shows that the remaining spatial 

uncertainties of PAW, SOC concentration, and MBC are very unrelated to characteristics of the 

landscapes at both sites (Table 3). This unique finding can reinforce the notion that other key 

determinant factors different than topography such as vegetation type, parent material and 

management system are also main underlying causes for our observed spatial variability patterns.  

At our sites, PAW, SOC concentration, and MBC were not only strongly spatially 

dependent but they had also autocorrelation ranges exceeding 70 m based on the coK approach, 

which can indicate spatial relatedness that can bridge several separated segments across larger 

landscapes. Such relatively large autocorrelation range values encompassing several spatial 
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segments or map units can suggest that these soils are related to one another by their similar 

landscape positions or landforms on the wider terrain (Cambardella et al., 1994). 

Graphic visualization of the mean and uncertainty for predicted values across our field 

sites provides opportunities to identify spatial patterns and to conduct comparisons amongst 

geostatistical approaches (Hengl et al., 2004). Overall, our mean maps for selected soil properties 

(PAW, SOC concentration, and MBC) showed similarities in estimated values when comparing 

OK with coK method, and RK with RcoK (data not shown); however, a major difference became 

evident when contrasting standard deviation maps derived from OK and RK versus those from 

coK and RcoK (Fig. 6). It is noticeable that the incorporation of covariates substantially reduces 

the estimated uncertainty of the predictions by about half. In further details, OK and RK 

uncertainty maps showed abrupt textural changes with sharp increases in predicted standard 

deviation particularly in field areas distant from our measured points. Conversely, coK and RcoK 

maps exhibited much lower, coherent uncertainty patterns across the space even in areas away 

from our measured sampling points. Our study is one of the few available reports evaluating 

various combinations of regression and kriging or cokriging for modeling the spatial structure of 

key soil properties at field scale and across competing land-use systems. 

Relative to basic OK, both coK and RcoK procedures performed similarly well (r2s > 0.7) 

and were both capable of greatly improving accuracy and precision of prediction for PAW, 

SOM, and MBC (Table 4 and Fig. 5 and 6). However, considering the fact that mappers aiming 

at implementing RcoK will need to physically measure or have access to predictor data layers 

such as C:N ratio or saturated water content (sat. WC), coK approach appears to be a more 

reasonable, readily deployable approach. Moreover, our coK estimates at field scale were based 

on terrain attributes derived from LiDAR data which is current available and can effectively 
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cover extensive areas, whereas RcoK entails access or generation of additional predictor data 

which can demand abundant resources and time. Overall, these results encourage further 

development of cokriging models in conjunction with rigorous selection of effective terrain 

covariates.  

If there would have been no covariates available for our study sites, OK would be the 

more accurate method for native grassland, whereas RK for cultivated land, based on their 

relatively lower RMSPE results (Table 4). Eldeiry and Garcia (2010) reported that OK 

performed better than RK for generating accurate soil salinity maps when applied to LANDSAT 

images. They concluded that the better performance of OK over RK may be attributed to the fact 

that autocorrelation among soil salinity data are higher than cross correlation between soil 

salinity and the LANDSAT bands. On the other hand, other studies found that RK was a more 

suitable method than OK for accurately mapping the spatial distribution of soil properties such as 

soil organic matter (Mirzaee et al., 2016), subsoil clay and topsoil gravel (Odeh et al., 1995). 

This is plausible because the regression predictors in these studies accounted for substantial 

proportion of soil properties variability in the spatial models (Hengl et al., 2004; Hernández-

Stefanoni et al., 2011). However, we detected no advantage of RK over OK under all scenarios 

in our study. These inconsistencies across existing studies may be driven by the nature and 

spatial scale of the selected regression predictors; for example, higher performance of RK has 

been reported when predictor data were extracted from satellite images at relatively coarse 

spatial resolution (Hengl et al., 2004; Mirzaee et al., 2016; Odeh et al., 1995).  

Our geostatistical analyses suggest that the regression component per se had not much 

contribution in reducing mapping uncertainty based on the spatial context of our study (Table 4). 

Moreover, we can infer that the prediction improvement derived from using RcoK was mostly 
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due to the contributing effect of terrain covariates at high spatial resolution [i.e., 2 m × 2 m cell, 

and 30 cm accuracy for ground elevation (Fig. 4)]. In general, the combination of specific terrain 

covariates with kriging techniques provided an enhanced ability for incorporating ancillary 

information into predictive soil mapping. It is suggested to undertake additional validation of our 

findings in new, independent field sites; such efforts will evaluate the robustness and usefulness 

of our derived spatial models over comparable landscapes and leading to the optimization of 

these predictive mapping tools. 

5.4. Optimization of field sampling designs 

Our intensive field measurements were used to derive guidelines for improving future 

sampling designs. As predictable, the minimum sample sizes required to detect certain confident 

interval increased with increasing targeted mean value accuracy (Table 1) (Fóti et al., 2014; 

Herbst et al., 2009). Our sampling size (n= 56) was adequate for quantifying SOC and MBC at 

90% confidence interval in native grasslands; about 50 samples are required as a minimum size 

for detecting mean differences of 10% in these properties in this land-use system. For PAW in 

NG, desirable precision of estimations will required a much larger sample size. By contrast, at 

our cultivated land site, suitable sample sizes for identifying mean differences of 10% were just 

33 for SOC, as high as 145 for MBC, and up to 230 for PAW. Conversely, after studying a 

topographically-uniform annual cropland in New Zealand, Qiu et al. (2016) reported a much 

lower minimum sample size for their SOC measurements where 11 samples were needed to 

achieve a 95% confidence interval. These contrasting results highlight the compound impact of 

landscape heterogenity on increasing sampling requirements for attaining precise quantification 

of soil properties. Amongst the soil properties assessed in our study, the largest minimum sample 

size requirements were estimated for saturated hydraulic conductivity, followed by PAW, and 
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MBC which is in part driven by the inherently ample spatial variability of these properties. As a 

recommendation when designing an efficient collection of independent soil samples in future 

field samplings, distances between the closest sampling locations should be larger than our 

autocorrelation ranges (Table 4). 
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6. Conclusion 

This study examined several geostatistical methods for capturing and predicting field 

spatial variability of PAW, SOC concentration, and MBC. Our results showed that combining 

kriging with selected terrain covariates (coK) accounted for 74 to up to 94% of the variation for 

PAW, SOC concentration, and MBC in particular when incorporating DTW, elevation, or slope 

as contributing covariates. Moreover, analysis of accuracy also supported the usefulness of 

integrating such high spatial-resolution topographic information derived from remote sensing 

into geostatistical coK and RcoK methods as these approaches resulted in profound 

improvements of prediction ability compared to OK and RK methods.  

Gaussian was established as the more effective variographic model across most of our 

datasets. The cultivated land (IC) emerged with stronger degrees of spatial dependence and 

longer auto-correlation range perhaps suggesting a homogenization or smoothing of the spatial 

variability of soil properties as a result of intensive agricultural activities which have been 

repeated in the long term under this land use system. Conversion of native grassland to cultivated 

lands also altered detrimentally the soil structural characteristics through substantially lowering 

macroporosity, saturated water content, and S-index, and reducing in half the hydraulic 

conductivity under unsaturated conditions. This land use conversion also appears to decrease the 

relative abundance of Gram-negative bacteria, while increasing MBC concentration and the 

proportion of Gram-positive bacteria. Overall, identification of spatial patterns of soil properties 

in agricultural lands provides holistic visualization tools to land owners for implementing and 

improving management practices which will eventually lead to more sustainable production. 

Such knowledge will also underpin the design of multi-functional landscapes that account for 

and target areas of greater intensity and convergence “hot spots” of diverse ecosystem services. 
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There is a need to continue developing explicit spatial upscaling information of specific soil 

properties that are linked to key ecosystem functions under a broader variety of land-use 

systems, at other soil depths than in our study, and in fine-textured soils.  
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9. Tables and figures 

Table 1. Descriptive statistics of soil properties at native grassland (NG) and irrigated cultivated land (IC) and 
optimal sample sizes at various confidence intervals. 

Attributes  Sites Mean  Median  Min Max Kurtosis  Skewness  SD 
Optimum sample size  

D=5% D=10
% 

D=20
% 

D=40
% Bulk density  

(g cm-3) 
NG 1.44 a 1.44 1.14 1.63 -0.30 -0.41 0.11 9 2 1 0 
IC 1.43 a 1.43 1.09 1.65 -0.40 -0.39 0.14 14 4 1 0 

Porosity  
(m3 m-3) 

NG 0.455 a 0.46 0.38 0.57 -0.24 0.42 0.042 13 3 1 0 
IC 0.460 a 0.46 0.38 0.59 -0.37 0.34 0.051 19 5 1 0 

Sat. WC 
(m3 m-3) 

NG 0.474 a 0.47 0.34 0.57 1.81 -0.50 0.041 12 3 1 0 
IC 0.422 b 0.43 0.29 0.56 -0.20 -0.20 0.058 29 7 2 0 

ӨFC 
(m3 m-3) 

NG 0.118 b 0.11 0.08 0.37 29.85 4.82 0.039 168 42 11 3 
IC 0.154 a 0.14 0.07 0.36 3.89 1.63 0.051 168 42 11 3 

ӨPWP 
(m3 m-3) 

NG 0.094 a 0.10 0.00 0.16 5.18 -1.07 0.023 94 23 6 1 
IC 0.085 a 0.08 0.01 0.17 0.04 0.57 0.034 249 62 16 4 

PAW 
(m3 m-3) 

NG 0.024 b 0.01 0.00 0.21 12.09 3.08 0.035 3431 858 214 54 
IC 0.069 a 0.05 0.01 0.27 1.95 1.25 0.053 921 230 58 14 

Macroporosity (m3 
m-3) 

NG 0.355 a 0.36 0.20 0.44 3.78 -1.36 0.044 23 6 1 0 
IC 0.268 b 0.27 0.14 0.45 2.59 0.20 0.075 121 30 8 2 

α  
(hPa-1) 

NG 0.020 b 0.02 0.01 0.02 2.81 1.29 0.002 14 4 1 0 
IC 0.024 a 0.02 0.01 0.07 6.17 1.98 0.011 339 85 21 5 

n NG 3.04 a 3.06 1.22 4.72 -0.22 0.08 0.77 99 25 6 2 
IC 1.97 b 1.97 1.24 3.16 -0.54 0.37 0.48 91 23 6 1 

Θr  
(m3 m-3) 

NG 0.091 a 0.10 0.00 0.14 5.12 -1.90 0.025 120 30 7 2 
IC 0.072 b 0.07 0.00 0.17 -0.77 0.20 0.046 625 156 39 10 

Θs  
(m3 m-3) 

NG 0.468 a 0.47 0.34 0.56 1.62 -0.62 0.041 12 3 1 0 
IC 0.427 b 0.44 0.30 0.53 -0.29 -0.30 0.053 24 6 1 0 

S-index NG 0.106 a 0.106 0.031 0.197 0.82 0.37 0.031 133 33 8 2 
IC 0.055 b 0.054 0.023 0.099 -0.84 0.26 0.019 190 47 12 3 

Ks  
(cm d-1) 

NG 6.70 a 3.68 0.46 52.20 13.81 3.36 8.75 2623 656 164 41 
IC 8.36 a 2.39 0.30 120.20 24.92 4.64 18.60 7607 1902 475 119 

Unsat. K  
(cm d-1) 

NG 0.18 a 0.19 0.05 0.35 0.29 0.14 0.06 153 38 10 2 
IC 0.08 b 0.03 0.00 0.40 2.50 1.85 0.10 2710 677 169 42 

SOC concentration 
(% m/m) 

NG 1.05 a 0.97 0.66 3.13 19.42 3.75 0.36 182 46 11 3 
IC 1.09 a 1.03 0.70 2.65 10.11 2.56 0.32 131 33 8 2 

SOC density NG 748 a 698 497 1878 12.17 2.94 220 133 33 8 2 
(g m-2 soil) IC 779 a 737 473 1961 15.21 2.7 242 148 37 9 2 
STN  
(% m/m) 

NG 0.09 b 0.08 0.05 0.28 9.68 2.51 0.04 248 62 15 4 
IC 0.11 a 0.10 0.06 0.24 7.92 2.13 0.03 109 27 7 2 

C:N NG 11.47 a 11.85 9.17 14.20 -1.18 0.05 1.36 22 5 1 0 
IC 10.15 b 9.91 8.18 13.50 0.90 1.10 1.22 22 6 1 0 

pH NG 5.97 a 5.94 5.08 7.42 3.23 0.89 0.37 6 1 0 0 
IC 6.03 a 6.02 5.18 6.86 -0.38 -0.17 0.40 7 2 0 0 

MBC  
(nmol g-1 soil) 

NG 601 b 527 178 1223 0.91 1.01 212 201 50 13 3 
IC 812 a 621 268 2388 2.05 1.49 481 578 145 36 9 

Elevation  
(m) 

NG 722.0 721.9 720.6 723.2 -0.88 -0.04 0.5 0 0 0 0 
IC 723.1 723.1 722.5 724.0 -0.19 0.20 0.3 0 0 0 0 

Curvature (m−1) NG 0.01 0.00 -14.0 31.75 13.52 1.24 2.54 > 
1000 

> 1000 > 1000 > 1000 
IC 0.01 0.00 -6.5 8.75 0.61 0.16 1.87 > 

1000 
> 1000 > 1000 > 1000 

Slope (◦) NG 2 1 0 8 3.66 1.71 1.1 770 193 48 12 
IC 1 1 0 4 3.71 1.54 0.6 714 178 45 11 

Aspect (◦) NG 155 131 0 360 -1.04 0.41 100 648 162 41 10 
IC 177 167 0 360 -1.14 0.12 100 492 123 31 8 

Hill shade (◦) NG 179 179 161 194 1.66 -0.34 4 1 0 0 0 
IC 180 179 172 191 1.22 0.20 2 0 0 0 0 

DTW  
(m) 

NG 1.03 1.02 0.00 2.36 -0.54 0.12 0.46 314 79 20 5 
IC 0.36 0.33 0.00 1.36 1.23 1.03 0.24 679 170 42 11 

NG: native grassland; IC; irrigated cultivated land; SD: standard deviation; D: margin of error (as in Eq. [1]); θFC: field capacity water content; 
θPWP: permanent wilting point water content; PAW: plant available water; θs: saturated volumetric water content; θr: residual water content; n: a 
shape parameter related to the curve smoothness; α: a negative inverse of the air entry potential; S-index: the slope at the inflection point; Ks: 
saturated hydraulic conductivity; Unsat. K: hydraulic conductivity at 10 kPa; SOC: soil organic carbon; STN: soil total nitrogen; C:N: carbon to 



101 

 

nitrogen ratio; MBC: microbial biomass carbon; DTW: depth to water. Number of samples (N) for soil properties is 56 per site, while N for 
terrain covariates is 7162 in the NG site and 6194 in the IC site.  
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Table 2. Spearman correlation coefficients (ρ -values) for relationships among selected soil properties at native grassland (NG) and irrigated cultivated land (IC). 
Land use and soil property Porosity sat. WC θ FC θ PWP α n S-index unsat. K pH C:N SOC concentration MBC 

Native grassland (NG) 

PAW 0.278* 0.362** 0.547** -0.326* 0.043 n -0.932** -0.796** 0.239 n -0.074 n -0.391** 0.605** 0.201 n 

SOC concentration 0.451** 0.257 n 0.417** -0.195 n -0.138 n -0.622** -0.585** 0.155 n 0.0349 n -0.548** - 0.329* 

MBC 0.197 n 0.234 n 0.142 n 0.016 n -0.010 n -0.290* -0.335* 0.106 n 0.120 n -0.221 n 0.329* - 

Irrigated cultivated land (IC) 

PAW 0.118 n -0.13 n 0.543** -0.556** 0.104 n -0.934** -0.690** 0.258 n 0.430** 0.417** 0.393** -0.283* 

SOC concentration 0.164 n 0.282* 0.571** -0.0002 n -0.166 n -0.304* -0.169 n 0.286* 0.019 n 0.491** - -0.168 n 

MBC -0.047 n 0.038 n -0.335* 0.061 n 0.007 n 0.263* 0.182 n -0.161 n -0.208 n -0.447** -0.168 n - 
* and ** indicate significant correlation at P<0.05 and P<0.01, respectively. 
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Table 3. Spearman correlation coefficients (ρ -values) for relationships among soil properties of interest and terrain 
covariates (as derived from Light Detection and Ranging; LiDAR) at native grassland (NG) and irrigated cultivated 
land (IC). 

 Attributes Elevation Curvature Slope Aspect Hill shade DTW 

Observed values  

Native grassland             

PAW -0.199 n -0.278* -0.345** 0.320* 0.118 n -0.212 n 

SOC concentration -0.454** -0.195 n -0.216 n 0.131 n -0.056 n -0.468** 

MBC -0.053 n 0.052 n -0.183 n 0.107 n 0.009 n -0.274* 

Irrigated cultivated land           

PAW -0.547** 0.159 n  0.083 n 0.111 n 0.016 n 0.122 n 

SOC concentration -0.355** -0.035 n 0.139 n 0.139 n 0.175 n 0.255* 

MBC 0.394** -0.157 n -0.206 n 0.051 n 0.064 n -0.476** 

       

Regression residuals  

Native grassland             

PAW 0.196 n -0.240 n -0.246 n 0.157 n 0.120 n 0.106 n 

SOC concentration -0.298* -0.105 n -0.011 n -0.098 n -0.114 n -0.261* 

MBC -0.027 n 0.068 n -0.141 n 0.069 n 0.024 n -0.269* 

Irrigated cultivated land           

PAW -0.443** 0.214 n  0.094 n 0.115 n -0.072 n 0.108 n 

SOC concentration -0.024 n 0.017 n 0.150 n 0.252 n 0.185 n 0.148 n 

MBC 0.168 n -0.204 n -0.113 n 0.049 n 0.031 n -0.295* 

       

Standard deviation of coKriging 

Native grassland             

PAW -0.006 n 0.001 n 0.008 0.003 n -0.045** -0.003 n 

SOC concentration 0.036 ** -0.001 n 0.032 ** -0.018 n -0.001 n -0.015 n 

MBC -0.003 n 0.003 n 0.015 n 0.005 n -0.044 ** 0.031** 

Irrigated cultivated land            

PAW 0.028* -0.005 n  0.018 n 0.023 n 0.014 n -0.016 n 

SOC concentration -0.010 n -0.007 n 0.007 n -0.013 n -0.026* -0.009 n 

MBC 0.019 n -0.003 n 0.006 n 0.19 n 0.003 n -0.024* 
* and ** indicate significant correlation at P<0.05 and P<0.01, respectively. 
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Table 4. Deterministic and variographic (semivariogram and cross-semivariogram) models, fitting statistical indicators, and resulting validation parameters as a 
function of five geostatistical approaches in both native grassland (NG) and irrigated cultivated land (IC). 

Attributes 
 

Prediction 
Method 

Regression equation;  
§Predictors; ¤Covariates 

Variography Validation Parameters 

Model Residual 
SS r2 Auto-correlation 

Range (m) 
C0/(C0+C) 

(%) R2 SE 
predict MPE RMSPE 

NG            

PAW 

R                   (         ) - - - - - 0.68 1.96 -0.38 2.11 
OK - G 116.0 0.70 50 29.4 0.04 1.57 -0.14 3.56 
RK §SOC G 2.1×10-3 0.05 40 26.3 0.68 1.97 -0.17 2.07 
coK ¤Slope G 1.43 0.63 90 18.0 0.85 0.97 -0.02 1.53 
RcoK SOC *Slope G 0.32 0.66 79 24.9 0.85 1.33 0.03 1.38 

            

SOC 
concentration 

R       (   )           (              ) 
  (        )    (       )    (           ) - - - - - 0.60 0.13 -1.02 1.05 

OK - G 0.03 0.43 47 16.0 0.06 0.15 -0.01 0.35 
RK §S-index, α, P, Sat. WC G 1.1×10-3 0.15 60 20.1 0.50 0.19 0.17 0.31 
coK ¤DTW G 2.4×10-3 0.73 99 9.3 0.92 0.08 -0.01 0.12 
RcoK (S-index, α, P, Sat. WC) *DTW G 3.8×10-4 0.67 70 2.6 0.71 0.19 -0.03 0.20 

            

MBC 

R       (   )          (          ) 
  (             )    (            ) - - - - - 0.15 66.34 -31.3 196 

OK - G 5.4×108 0.70 99 41.0 0.11 94.97 -8.41 202 
RK §C:N, S-index, Sat. WC G 6.8×108 0.56 85 36.8 0.26 105.07 -7.58 181 
coK ¤DTW G 673.0 0.91 113 2.2 0.74 63.47 -4.37 121 
RcoK (C:N, S-index, Sat. WC) *DTW G 794.0 0.86 126 1.0 0.80 66.37 -3.52 101 

            
            IC            

PAW 

R                  (        ) - - - - - 0.20 2.39 -0.77 4.79 
OK - G 497.0 0.63 64 13.9 0.40 2.80 -0.40 4.12 
RK §SOC G 135.0 0.68 76 35.3 0.29 3.64 -0.14 4.69 
coK ¤ELEV G 0.82 0.72 90 0.1 0.94 1.12 -0.08 1.33 
RcoK SOC *ELEV G 1.35 0.58 105 0.1 0.84 1.70 -0.09 2.17 

            

SOC 
concentration 

R       (   )            (           ) 
 

- - - - - 0.26 0.13 -0.03 0.27 
OK - S 0.05 0.31 63 0.1 0.74 0.14 0.00 0.16 
RK §ӨFC G 0.03 0.34 67 11.3 0.43 0.22 -0.02 0.25 
coK *DTW G 1.05×10-3 0.20 70 10.1 0.76 0.18 -0.01 0.18 
RcoK (ӨFC) *DTW G 5.3×104 0.20 52 1.8 0.67 0.24 -0.01 0.24 

            

MBC 

R       (   )          (          ) 
 

- - - - - 0.15 134.43 -97.6 452 
OK - G 1.9×1011 0.07 35 17.7 0.53 235.00 42.49 330 
RK §C:N G 1.1×1011 0.34 30 36.2 0.41 270.34 33.22 370 
coK ¤DTW G 1042.0 0.77 80 0.2 0.87 141.74 5.88 184 
RcoK C:N *DTW G 777.0 0.74 80 0.3 0.79 168.01 9.76 230 
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C0/(C0+C) : nugget to sill ratio; G: gaussian; S: spherical ;  R: regression; OK: ordinary kriging; RK: regression-kriging; coK: cokriging; RcoK: regression-cokriging; PAW: plant available water; SOC: 
soil organic carbon; MBC: microbial biomass carbon; DTW: depth to water; ELEV: elevation; P: porosity; θFC: field capacity water content; Sat. WC: saturated water content; α: a negative inverse of 
the air entry potential; S-index: the slope at the inflection point; C:N: carbon to nitrogen ratio. Units for all presented variables are as detailed in Table 1. 
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Table 5. Distinctive phospholipid fatty acid (PLFA) indicator species analysis associated with whether native grassland (NG) or irrigated cultivated land (IC). 
Each value represents the mean indicator with standard deviation in parentheses, and the highest indicator value is in bold. Only PLFAs that were found to be 
significantly different among groups are presented. 

PLFA Taxa biomarker 
Indicator Value Monte Carlo 

Mean NG IC P < 0.05 
14:00 Bacteria in general 41.8 (2.65) 53 26 0.0012 
15:1 i Gram - 41.8 (2.62) 50 28 0.0044 

17:1 a Gram - 15.5 (2.86) 31 2 <0.001 

17:1ω8c Gram - 50.4 (0.84) 54 45 <0.001 

17:0 10 methyl Actinobacteria (Gram+) 49.7 (1.31) 53 43 <0.001 

16:1 2OH Anaerobic bacteria 50.3 (1.11) 52 46 0.0226 
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Fig. 1. Nested cyclic sampling design. The sampling intervals were every 10, 35, 85, 100 m for west to east direction and every 10, 35, 85, 95, 120, 170 m 
for north to south direction (n = 36; main panel). A 0.5, 2, 4.5 m cycle was applied in both directions for the smaller scale nest (n = 20) as showed in the 
inset. There are also two additional sampling points (highlighted in green) which were strategically located in the field plots to increase the sampling 
efficiency. 
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Fig. 2. Number of pairs of measured data points for each lag class assuming a uniform lag class size of 5 m distance interval. The dash line shows the 70% of the 
total distance which is taken as the maximum allowable active lag distance.    
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Fig. 3. (A) Square root of plant available water (PAW; m3 m-3) versus soil organic carbon concentration (SOC; g C kg-1 soil) for native grassland (NG) site, and 
(B) logarithmic microbial biomass carbon (MBC; nmol g-1 soil) versus carbon to nitrogen ratio (C:N; unitless) for irrigated cultivated (IC) site.  
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Fig. 4. Terrain elevation derived from airborne LiDAR (Light Detection and Ranging) with vertical accuracy of 30 cm and spatial resolution of 2 m x 2 m [A. 
native grassland (NG), B. irrigated cultivated land (IC)]. The green dots are the locations of the 56 measured points in each field site. As customary, terrain 
elevation units are in meters above mean sea level. 
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Fig. 5. Mean maps of (a) plant available water (PAW; m3 m-3), (b) soil organic carbon concentration (SOC; % m/m), and (c) microbial biomass carbon (MBC; nmol 
g-1 soil) concentration by cokriging (coK) method in native grassland. The green dots are the locations of 56 measured points. 
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Fig. 6. Generalized visualization of the uncertainty prediction [standard deviation (SD)] for plant available water 
(PAW; m3 m-3) using (a) ordinary kriging (OK), (b) regression-kriging (RK), (c) cokriging (coK), and (d) regression-
cokriging (RcoK) approaches in an irrigated cultivated land site. The green dots are the 56 measured points.  
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10. Figure captions 

Fig. 1. Nested cyclic sampling design. The sampling intervals were every 10, 35, 85, 100 m for west to east 
direction and every 10, 35, 85, 95, 120, 170 m for north to south direction (n = 36; main panel). A 0.5, 2, 4.5 m 
cycle was applied in both directions for the smaller scale nest (n = 20) as showed in the inset. There are also two 
additional sampling points (highlighted in green) which were strategically located in the field plots to increase 
the sampling efficiency. 

Fig. 2. Number of pairs of measured data points for each lag class assuming a uniform lag class size of 5 m 
distance interval. The dash line shows the 70% of the total distance which is taken as the maximum allowable 
active lag distance.   

Fig. 3. (A) Square root of plant available water (PAW; m3 m-3) versus soil organic carbon concentration (SOC; 
g C kg-1 soil) for native grassland (NG) site, and (B) logarithmic microbial biomass carbon (MBC; nmol g-1 
soil) versus carbon to nitrogen ratio (C:N; unitless) for irrigated cultivated (IC) site.  

Fig. 4. Terrain elevation derived from airborne LiDAR (Light Detection and Ranging) with vertical accuracy of 
30 cm and spatial resolution of 2 m x 2 m [A. native grassland (NG), B. irrigated cultivated land (IC)]. The 
green dots are the locations of the 56 measured points in each field site. As customary, terrain elevation units 
are in meters above mean sea level. 

Fig. 5. Maps of (a) plant available water (PAW; m3 m-3), (b) soil organic carbon concentration (SOC; g C kg-1 soil), 
and (c) microbial biomass carbon (MBC; nmol g-1 soil) concentration by cokriging (coK) method in native 
grassland. The green dots are the locations of 56 measured points. 

Fig. 6. Generalized visualization of the uncertainty prediction [standard deviation (SD)] for plant available 
water (PAW; m3 m-3) using (a) ordinary kriging (OK), (b) regression-kriging (RK), (c) cokriging (coK), and (d) 
regression-cokriging (RcoK) approaches in an irrigated cultivated land site. The green dots are the 56 measured 
points. 
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Conclusion 

Different land managements and land use systems significantly influenced various soil 

properties. Long-term implementation of more diverse and extended crop rotations contributed to 

soil quality by improving soil aggregation, increasing porosity, and accruing soil organic matter, 

nitrogen and microbial biomass, which in turn interacted collectively to provide substantial 

benefits on plant water availability, soil water conductivity, and crop productivity. The various 

crop phases of the assessed rotations did not caused pronounced differences in terms of most of 

the measured soil properties, with the only noticeable exception of fractal aggregation which 

revealed clear differences across phases of the crop rotations. Fallow phases exhibited non-

fractal aggregation, while the most fractal soil was found under the perennial leguminous phases 

of these rotations. Overall, the inclusion of perennial plants in the crop rotation amply benefited 

soil structural parameters. With respect to nutrient managements, although long-term nutrient 

additions contributed in general to improving soil functions compared to the control fields that 

received no nutrient additions, cattle manure addition had even stronger effect specifically on 

improving nutrient cycling functions while the balanced fertilization benefited directly water 

availability and overall soil physical condition. Finally, a collective assessment of the measured 

properties of various land-use systems indicate that conversion of forest to agricultural land and 

native grassland to cultivated lands alter the soil structural characteristics through substantially 

lowering macroporosity, saturated water content, and S-index. This land use conversion also 

appears to increasing MBC concentration in croplands and irrigated cultivated lands compared 

with forest and native grassland while fungi in the forest soils and gram negative bacteria in 

native grassland were distinctive biomarkers. 
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Perennial legumes have heavy tap roots that burrow deep into the ground, lifting soil for 

better tilth and water holding capacity. Our results demonstrated an improved soil physical 

structure in soils covered by perennial legumes and grasses compared to annual cropping 

indicates an overall tendency for increased soil space for roots, air, and water in these soils.  

Fractal aggregation (Dm value), S-index, PAW, SOC, and MBC were identified as a 

valuable representative subset of highly responsive indicators of soil quality which are useful for 

comparing management options that influence agricultural productivity and sustainability of 

agroecosystems. Our study found high consistency and sensitivity of Dm approach to specific 

management options; fractal aggregation approach effectively detected that balanced fertilization 

was the only nutrient regime exhibiting significantly improved fractal aggregation which may be 

due to the greater amount of crop residues and roots derived from a higher plant productivity 

under this nutrient management. These results also demonstrated that fallow phases of both 

simple and complex rotations were not significantly fractal. It is noteworthy that our two 

reference ecosystems (i.e., natural forest and native grassland) exhibited improved soil S-index 

compared to their counterparts (i.e., managed agroecosystems such as irrigated cultivated lands 

and croplands), but by contrast, the microbial biomass carbon declined in both natural forest and 

native grasslands. Once more, these findings imply that distinct soil functions are affected by 

different land use in different directions, emphasizing the importance of considering several soil 

quality indicators for assessing multiple soil functions. It is suggested to explore the applicability 

of the mentioned subset of indicators in a wider range of land managements. 

The optimal number of samples for detecting management effects on various soil 

properties varied over the measured variables and land uses at the depth increment of 5-10 cm. It 
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is suggested to examine the optimal number of samples for various soil properties in other soil 

depths. 

The cultivated land (IC) emerged with stronger degrees of spatial dependence and longer 

auto-correlation range perhaps suggesting a homogenization or smoothing of the spatial 

variability of soil properties as a result of intensive agricultural activities repeated in the long 

term under this specific land use system. Using a nested cyclic sampling design, Gaussian was 

established as the more effective variographic models across most of our datasets. This study 

examined several geostatistical methods to predict field spatial variability of PAW, SOC, and 

MBC concentration. Our results showed that combining kriging with selected terrain covariates 

accounted for 74 to up to 94% of the variation for PAW, SOC, and MBC in particular when 

incorporating DTW, elevation, or slope as contributing covariates. Moreover, analysis of 

accuracy also supported the usefulness at integrating this high spatial-resolution topographic 

information derived from remote sensing into geostatistical coK and RcoK methods as these 

approaches resulted in profound improvements of prediction ability compared to OK and RK 

methods. It is suggested to conduct an additional validation of our findings in independent field 

sites (independent data sets for interpolation and validation) over comparable landscapes. 

Overall, more precise maps of the spatial variability of soil attributes in divergent land uses 

facilitate strategic implementation of best management practices which can lead to sustainable 

production systems embedded in multifunctional landscapes. It is recommended to continue 

developing explicit spatial upscaling information for specific soil properties that are linked to 

key ecosystem functions at other soil depths than in our study, in fine-textured soils, and under a 

broader variety of land-use systems. 
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Appendices 

 
Table A. Deterministic and variographic (semivariogram and cross-semivariogram) models, fitting statistical indicators, and resulting validation parameters for 
SOC density (g C m-2) as a function of five geostatistical approaches in both native grassland (NG) and irrigated cultivated land (IC). 
 

SOC 
density  

Prediction 
Method 

Regression equation;  
§Predictors; ¤Covariates 

Variography Validation Parameters 

Model Residual 
SS r2 Auto-correlation 

Range (m) 
C0/(C0+C) 

(%) R2 SE 
predict MPE RMSPE 

NG 

R       (       )         (          ) - - - - - 0.88 74.93 -2.70 75.87 

OK - G 2.2×109 0.44 45 26.1 0.03 84.05 -8.06 219.00 
RK §STN S 1.5×10-3 0.53 56 45 0.88 74.95 -2.30 75.88 
coK ¤DTW G 707 0.73 81 4 0.87 59.51 0.43 86.52 
RcoK STN *DTW G 133 0.20 80 0.4 0.93 54.67 -0.38 55.76 

            

IC 

R       (       )        (          ) 
  (         )  - - - - - 0.85 87.89 -5.27 92.67 

OK - G 2.1×1010 0.41 65 0.1 0.55 136.93 -5.07 162.93 
RK §STN, PAW G 4.3×107 0.54 11 7 0.85 90.58 -7.85 94.20 
coK ¤ELEV G 5253 0.41 75 0.2 0.98 31.67 0.22 31.82 
RcoK (STN, PAW) * ELEV G 110 0.64 100 0.1 0.99 18.46 -1.72 18.97 
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Fig. A. NMS ordination biplots for phospholipid fatty acid (PLFA) analysis for native grassland (NG, red symbol) 
and irrigated cultivated land (IC, green symbol) at Mattheis sites. 53 iterations, stress= 16, 3-dimensional solution.  
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Fig. B. Logarithmic soil organic carbon concentration (SOC; % m/m) versus terrain depth to water (DTW, m) and 

logarithmic microbial biomass carbon (MBC; nmol g-1 soil) versus DTW for native grassland (NG) and 

irrigated cultivated (IC) sites. X axes are presented at different scales for the two field sites. 
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