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Abstract

The problem of stress assignment is to identify which syllables are phonetically

more prominent than the others in a word. It is not only of theoretical interests

to linguists but also very important to Text-to-Speech systems in terms of both ac-

curacy and naturalness of pronunciation. Besides providing an in-depth survey of

existing stress assignment algorithms in the fields of linguistics and speech gener-

ation, this thesis presents a ranking approach to stress assignment for both letters

and phonemes. The final system is language independent and clearly outperforms

all previous systems. When combined with a current state of art Letter-to-Phoneme

system, error rate in stress assignment is reduced by up to 40%.
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Chapter 1

Introduction

1.1 Problem Description

Lexical stress, which is also called accent, refers to special emphasis, usually a

higher tone and/or a longer duration, given to certain syllables in words. The

problem of stress assignment is to identify the degree of stress for the syllables.

Languages differ from each other in their stress systems. In some languages, the

location of stress is entirely predictable. However, this is not the case for the others.

Some languages have only two levels of stress, while others have more than two

levels. There is a long history of research into this problem and many linguists have

stated rules that explain the location of stress for either specific or a broad family of

languages.

The problem has recently started to draw the attention of the computer speech

community. The reasons are two fold. First of all, producing correct stress pat-

terns is not a luxury for computer generated speech. Rather, it is very important in

terms of both accuracy and naturalness of the speech. Secondly, it is well known

that lexical stress affects word recognition rate of human (Joanne and Linda, 2006;

Tagliapietra and Tabossi, 2005; Colombo, 1991). This agrees with research work

(Rogier C. van Dalen and Rothkrantz, 2006; Wang and Seneff, 2001) in speech

recognition, where increase can be found in recognition rate with help from a stress

detection model.

Given the importance of stress patterns to pronunciation, researchers have begun

to look for good stress assignment algorithms, which gives arise to the problem of
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automatic stress assignment in letter-to-phoneme(L2P) systems. An L2P system,

which converts an input word from its surface form to phonetic representation, is

a part of Text-to-Speech(TTS) system. The phonetic transcription serves as input

of a synthesis module, which generates actual sound signals. A complete phonetic

transcription of a word does not contain only phonetic symbols but also prosodic

information such as the location of syllabic accent.

Early L2P systems usually contained an independent word prosodic model for

the task of stress assignment. Stress location was predicted in a pipeline process

based on previously generated phonemes. However, this approach was proven to

have worse performance than a joint approach (van den Bosch, 1997; Black et

al., 1998). In the joint approach, output phoneme set was expanded in a way that

stressed and unstressed phonemes are viewed as different symbols. Following this

convention, some most recent works (Jiampojamarn et al., 2007; Bisani and Ney,

2002; Marchand and Damper, 2006) have ignored the problem of stress assignment.

Besides notating stress on phonemes, it is helpful and sometimes even necessary

to notate it on letters. First and foremost, although native speakers usually have a

good grip on stress locations, second-language learners often have difficulties in

memorizing them. For instance, location of stress is often explicitly marked in

textbooks for students of Russian. Moreover, in some languages such as Spanish,

orthographic markers are obligatory for words with irregular stress.

Moreover, L2P systems can also benefit from orthographic stress markers. First

of all, pronunciation of vowels is known to correlate closely with stress . Taking

“accurate” and “acute” as an example, the first vowel letter “a” is pronounced as [æ]

when stressed, while [@] when not stressed. Secondly, the orthographic stress mark-

ers also serve as a global constraint, avoiding problems such as assigning multiple

primary stress or no primary stress for a single word.

In a word, lexical stress is not only an interesting topic for linguists but also of

great importance to the speech synthesis and recognition community. However, cur-

rent algorithms for stress assignment are either language dependent or have rather

poor performance. In the demand of existing data driven and language indepen-

dent L2P systems, a better and more general stress assignment algorithm is highly

2



desirable.

1.2 Approaches to the Problem

To work in tandem with recent L2P systems, which normally employ a data driven

approach, I took a data driven approach to the problem. Existing approaches to au-

tomatic stress assignment can be roughly divided into two categories: The first cate-

gory includes approaches that employ rule based methods, where the level of stress

depends on some contextual rules. Instead of being compiled manually, those rules

are learned and stored automatically. The approaches in the second category try to

capture some statistics of stress patterns using a generative model. For example,

the stress level of a specific phoneme/syllable can be determined by frequency of

stressed/unstressed phonemes (Pearson et al., 2000) or the probability of transitions

between stressed and unstressed syllables (Demberg et al., 2007). Unfortunately,

either category has its own drawbacks. The approaches that focus on local context

usually ignore some global constraints, while those that look at global context are

not able to utilize rich local context features.

To address the first issue, I formulated the task of stress assignment as a se-

quence prediction problem. It has been proven by previous research that there is a

structure within the stress patterns. For example, each word only has one primary

stress, and in metrical phonology, lexical stress is studied in a tree based framework.

To cope with the second issue, I took a discriminative approach to sequence pre-

diction. Taking advantages of a limited number of possible stress patterns for each

word, I trained an SVM ranker to select the most likely pattern from a small pool of

alternatives. The resulting system takes words as input and produces stressed form

of the words in three main steps: At the first step, an input word is divided into a

sequence of substrings. The substring sequence is then coupled with all possible

stress patterns in order to generate features that can be used by an SVM ranker to

produce a score. After the pattern with the highest score has been chosen, a map-

ping process is introduced to map stress markers back to the input words. By using

an SVM ranking approach, I can include arbitrary features over the entire input and

3



output sequences. Overall, the SVM ranker achieves exceptional performance.

To improve stress assignment in L2P conversion, I took two different approaches

to incorporate the stress model with an existing L2P system. Firstly, following Web-

ster (2004), I put stress markers on letters, which will provide the L2P system with

additional input information. Alternatively, I took phonemes generated by the L2P

system as input and placed stress markers on phonemes directly. Both resulting

systems set a new standard for the state of art of predicting both phonemes and

stress.

1.3 Contributions

This thesis makes a number of substantial contributions. First of all, it presents

a language stress assignment algorithm that achieves exceptional performance in

Germanic languages. Unlike previous systems that only work for a specific lan-

guage, the proposed algorithm does not rely on any specific linguistic knowledge,

and performs well on English, German, and Dutch. Most importantly, the results

are much higher than those reported previously.

Secondly, when combined with a state of the art L2P system (Jiampojamarn et

al., 2008), word accuracy considering stress and phonemes is improved from 78%

to 86% for English, 81% to 88% for dutch, and 86% to 90% for German, which is

up to a 40% reduction in error rate. Moreover, experiment results also show that the

combined system clearly beats a publicly available TTS system.

Thirdly, the substrings based approach to stress assignment can work on both

letters and phonemes. It also sets a norm for predicting stress on letters when perfect

syllabification is not available.

Finally, the thesis conducts a thorough review of the task of stress assignment in

the field of linguistics and computer speech, giving a clear image of various stress

assignment algorithms and current sate of the art of automatic stress assignment for

L2P systems.

4



1.4 Outline

The thesis is organized as follows. Chapter 2 provides some linguistic background

of lexical stress. Chapter 3 introduces SVM and its related extensions, which finally

leads to the SVM ranking algorithm. In Chapter 4, a thorough literature review of

previous approaches to stress assignment is presented. Following that, I discuss

how the SVM ranking algorithm is applied to the problem of stress assignment

for letters and phonemes in chapter 5 and chapter 6 respectively. Then, in chapter

7, two different approaches are compared to combine the stress assignment model

with a state of the art L2P system. In the end, chapter 8 concludes this thesis.

5



Chapter 2

Linguistic Background

In many languages, certain syllables in words are phonetically more prominent in

terms of duration, pitch, and loudness. This phenomenon is referred to as stress.

Unless otherwise specified, stress is discussed at the word level in this thesis.

Before I go deeply into some important linguistic theories of stress, I would like

to first clarify some terminologies in this thesis. First and foremost, word is used to

express a conceptual linguistic unit, which includes both orthographic (grapheme)

and phonetic forms (phoneme).

Stress is a phonetic concept and usually notated in the phonetic form of a word.

For example, in IPA (International Phonetic Alphabet), a raised mark " shows the

points of primary stress, while a lower mark ­ is used for secondary stress. The stress

markers are placed immediate before stressed syllables: [­pri"sid]. In this thesis, the

task of notating stress on phonemes is referred to as phonetic stress assignment.

Sometimes, it is also desirable to mark stress on letters. There are several good

reasons for doing this. First of all, most people are not familiar with phonetic

symbols in the IPA. Secondly, it is beneficial to beginners of a language in terms

of correcting their pronunciation. And last but not least, some languages explicitly

notate stress for words with irregular stress patterns. For orthographic forms, vowel

letters bearing the stress are marked with an acute accent indicating primary stress

and a grave accent for secondary stress (e.g. prècéde). I call the task of notating

stress on letters orthographic stress assignment.

The objective of putting stress markers on letters in this thesis, which is to

improve the performance of stress assignment in letter to phoneme conversion, is

6



merely engineering driven. Since it is not a trivial task to decide syllable bound-

aries (Bartlett et al., 2008), I put stress markers on vowel letters and phonemes that

actually bear the stressed sound whenever a perfect syllabification is not available.

2.1 The Lexical Stress

Linguists often discuss lexical stress on the syllable level. Syllables are viewed as

basic constructing units of streams of speech. For instance, the word “water” can

be divided into two syllables “wa” and “ter.” Here, “wa” is merely the written form

of the first syllable, as a syllable also refers exclusively to a phonetic entity. The

notion of stress is used to express the prominence of a syllable. It is important to

bear in mind that stress is a relational concept. Whether a syllable is stressed or not

is evaluated on the basis of its neighbors. Therefore, when a syllable is stressed, it

is phonetically more prominent than its neighbors—generally louder and/or longer.

Stress can have different degrees. Some languages only have a single degree of

stress, while others may have multiple degrees. In the case that a syllable is stressed

but still weaker than the primary stressed one, a secondary stress is assigned to that

syllable. English is commonly known to have two degrees of stress. For instance,

word “precede” has second stress on the first syllable and primary stress on the

second syllable. Regardless of the difference in degrees of stress, it is generally

agreed that each word can have one and only one primary stress.

Similar to other variations, placement of stress is different across languages.

Some languages have fixed stress—stress position can be predicted by fairly simple

rules. For example, in Finnish and Hungarian stress is always on the first sylla-

ble, while in Polish stress always falls on the penult (the syllable before the last).

However, in other languages such as English, Russian, and Dutch, stress position

is variable. Rules that try to predict the stress position are much more complicated,

and there are always exceptions that can not be covered.

As each word consists of one or more syllables, with some of them being

stressed at different levels, we can substitute each syllable for an integer that in-

dicates the syllable’s stress level. The resulting sequence is called stress pattern.

7



In this paper, I use 1, 2, and 0 to represent primary stress, secondary stress, and

no stress respectively. For instance, the stress pattern for “water” is 1-0. There are

several interesting phenomena regarding the stress pattern. First of all, Clopper

(2002) showed that people have strong preferences for a small subset of stress pat-

terns. Furthermore, the number of unique stress patterns of each length is small; for

example, in my training data there are only 71 unique stress patterns in English, 80

in German and 88 in Dutch.

2.2 Linguistic Theories of Lexical Stress

In linguistic theories, each language has its own stress system. However, they are

divided into two main categories. The most obvious difference between the two

categories lies in those systems which can be described by phonological rules and

those whose placement of stress purely depends on the infrastructure of words. For

languages which fall into the former category, linguists can find rules that govern

stress positions for most words. Learners do not need to memorize stress positions

separately except for a small number of words. People usually call systems of this

kind fixed stress systems. In the other category, placement of stress is believed

to interact closely with morphological changes, syllable positions, and even part of

speech. There are no general stress assignment rules for those systems, and peo-

ple have to remember the stress pattern for each word. Those systems are usually

referred to as free stress systems. Nonetheless, those systems are of great interest

to linguists and many theories on stress assignment, which are usually called stress

assignment algorithms, have been developed.

2.2.1 Transformational Cycle

Previously, linguists believed that, in the same way as grammar, which can be used

to parse sentences, there is also a set of rules for lexical stress. Chomsky and Halle

(1968) introduced the concept of Transformational Cycle for English phonology.

The operation of a transformational cycle consists of two major processes: the

grammatical transformation of a string and cyclical application of phonology rules

8



Figure 2.1: Formatives of compound word blackboard with surface structure
marked, adapted from (Chomsky and Halle, 1968).

depending on the structure of the transformed string.

In the grammatical transformation process, a syntactic component converts a

string into structured word affixes (formatives) with surface structure marked by.

An example is shown in Figure 2.1, where the compound word blackboard is di-

vided into two formatives: black with mark A (an adjective) and board with mark

N (a noun).

In the second process, phonological rules are applied sequentially. The order

and selection of rules are determined by the structure and the syntactic tags of the

transformed string. After each rule is applied, the innermost brackets will be re-

moved. For instance, after applying the rule “In monosyllables, the vowel receives

primary stress” we have a new representation:

[N##bla1ck##bo1ard##]N

finally, by applying the rule “Assign primary stress to a primary-stressed vowel in

the following context1”,

−− . . . V 1 . . . ]N

the string will become

##bla1ck##bo2ard##

1V stands for vowel and the dash indicates the position of the segment to which the rule applies.
In this case, the position followed by a primary stressed vowel.
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Figure 2.2: Distinctive features of letter i, adapted from (Chomsky and Halle, 1968).
A plus sign indicates a particular feature is fired, and vice versa

In more complex contexts, a simple feature such as “V” is not enough. Rules

are augmented by more features: distinctive features. Those features are viewed as

characteristics that differentiate one utterance from another. For instance a feature

vector of the sound “i” is shown in figure 2.2

2.2.2 Metric Tree Algorithm

Inspired by the alternation of stress used in poetries to form rhythmic patterns, pho-

nologists began to study lexical stress in the framework of metrics and developed

a new theory called metrical phonology (Prince, 1977). Later, Hayes (1981) de-

scribed some metrical parameters that can be used to categorize languages accord-

ing to their word-level stress patterns. Metrical phonology can be applied to analyze

stress patterns at word, phrase, and even sentence level. The most important tool in

metrical phonology is metrical tree, whose leaves are individual syllables.

A metrical tree is constructed in a bottom-up manner. At each level of construc-

tion, rules are applied to determine the relative prominence of all related branches.

At the bottom level, syllables are first grouped together according to their weights2.

2The weight of syllable is language dependent. Usually a syllable with long vowel or coda is
viewed as heavy, while a syllable with short vowel or without coda is light
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Figure 2.3: Common stress feet with their names in Greek, from (Spencer, 1996).
The empty circle ◦ indicates a stressed syllable, while the dot · indicates an un-
stressed one.

Such a group of syllables is called stress foot. It is viewed as an important rhythmic

unit in the study of metrical phonology. By definition, foot refers to a group of syl-

lables consisting of exactly one syllable that is phonetically more prominent than

the others. The more prominent syllable is called the stressed syllable in the foot,

and the others are called unstressed syllables. One way to represent foot follows

the tree diagram as shown in figure 2.3. The unstressed syllables are optional in a

stress foot. A foot where unstressed syllables are absent is called degenerate foot.

The concept of stress foot can be applied to both fixed and free stress system.

For instance, in those languages where syllables are always stressed alternately,

every two syllables starting from the right or left hand side can form a binary stress

foot. In the end, either the rightmost foot or the leftmost foot is more prominent

than the others, and the stressed syllable in it receives the primary stress. In a

more complicated case, syllable weight comes into play. The most prominent foot

consists of either the rightmost or the leftmost syllables that are heavy.

In free stress systems, there is no single rule that can explain stress patterns

across all words. Rather, a metrical tree needs to be constructed in a bottom up

manner. At each level, a set of rules are applied to determine which branch is
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Figure 2.4: Formation of a simple metric tree, from (Spencer, 1996)

more prominent. For example, given two sibling nodes, the second is strong if, and

only if, it branches. Another example is one of the most familiar rules for English

called ESR (English Stress Rule): The final syllable is stressed when it is heavy,

otherwise the penult is stressed. Figure 2.4 gives an example of how rules are

applied at different levels of a tree to determine the stress location.

According to the illustration, stress is first assigned to the syllable “na” accord-

ing ESR, and then by applying SR(strong retraction), stress is shifted to “de”.

2.2.3 Relative Frequency as a Determinant of Stress

It is well known that language is alive. Like any other living species, language

changes all the time. It takes no more than a thousand years for a language to

become unintelligible for our new generations. A language can change in all its

aspects, including stress patterns. Therefore, any fixed rules for predicting stress

positions will have no chance to survive the rapid changes. A better solution would

be to find out some underlying mechanics that govern all those changes. Far from

being a stress assignment algorithm, the following theory I am going to present

sheds some light on such mechanics.

Zipf (1929) argued that frequency of use can serve as a determining factor of

phonetic changes. To be more specific, he maintained that the degree of stress of

any words or syllables is inversely proportional to their use in the streams of speech.

In other words, if a word or a syllable is very frequently used, it will not be given

any special attention, and thus will not be stressed.
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Prefix Frequency
ge- 443,639
be- 226,827
ver- 195,412
er- 122,662

an- 85,473
zu- 75,218
vor- 59,132
aus- 52,778
un- 49,831
ent- 48,456
da- 48,252
ein- 45,645

Table 2.1: Most frequent German prefixes together with their frequency of use,
adapted from (Zipf, 1929)

Think about a simple example : “Mr Smith”. Which word will be stressed?

Normally, the answer is “Smith”. The reason, according to Zipf’s theory, lies in

that “Mr” is used much more frequently than “Smith” in the streams of speech.

The theory also applies when it comes to syllabic accent. Taking an English word

“worker” as an example, the frequency of the stressed syllable “work” is much

lower than that of the second syllable “er” in spoken language. Interestingly, this

phenomenon is not only found in English, but also in many other languages. In table

2.1, a list of German word prefixes together with their frequency in the streams of

speech are presented.

As shown in the table, the first four prefixes with very high frequency are never

stressed. As the frequency of the prefix decreases, some begin to attract stress.

However, there are always some exceptions. For example, “ent”, with relatively

low frequency, is never stressed. This phenomenon might be explained by the fact

that shifts of stress take place over a long time. At present, the shift has not hap-

pened for that syllable. Compound words are good examples for such an explana-

tion. Zipf stated that at the beginning of compounding, a prefix is only attached

to a small number of words and is always stressed, making itself more noticeable.

However, as the process goes, a prefix might be attached to more and more words,
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which significantly increases its use in the streams of speech and loses its power of

attracting stress.

Although this theory is not about stress assignment, it gives a deep insight into

underlying mechanics that govern the shifts of stress positions.

2.3 Summary

In this chapter, I briefly introduced some important linguistic concepts of lexical

stress: the syllable, the relational concept of stress, and different stress systems.

Based on that, I discussed three linguistic theories of lexical stress. From the fea-

ture based algorithm to the theory of relative frequency, the underlying rules gov-

erning the stress positions in free stress systems have been explored. Given the fact

that stress exhibits some regularities in terms of relative frequency and contextual

features, I am convinced that modern machine-learning techniques can be applied

to predict stress positions based on some statistics of such features.
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Chapter 3

SVM Ranker

One contribution of this thesis is to formulate stress assignment as a sequence pre-

diction problem and use Support Vector Machine(SVM) to train a model discrimi-

natively in a ranking formulation. In this chapter, I will first give a short introduction

to SVM as well as some of its variations. Then I will show how SVM can be applied

to ranking problems.

3.1 The Support Vector Machine

Support Vector Machine refers to a class of max margin classifiers that are trained

discriminatively. SVM views training data as two types of examples: positive and

negative. Each of the examples is represented by a vector of features. Theoretically,

there is no limit on the number of features, which allows rich feature representation

of the training examples. The task of an SVM is to find a weight vector that sep-

arates the positive examples from the negative ones as far as possible. Before I go

deeply into the detailed mathematic theories that support the above idea, it is easier

to start with a simple example in the paradigm of linear classifiers.

Diagnosis is a good example of classification. In health services, diagnosis

happens when a doctor comes to a conclusion on which disease a specific patient

suffers from based on a set of syndromes. Suppose that a doctor needs to identify

whether a patient suffers from strep throat based on only two syndromes: tonsil

size and body temperature. The doctor decides to make a judgement on the basis of

some historical data as shown in Figure 3.1, where black points represent positive
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Figure 3.1: An example showing two sets of examples separated by a hyperplane

examples, and white points represent negative ones. In this figure, each point is

described by only two variables (Body Temperature,Tonsil Size), which are called

as features. If we draw a dash line (which is usually called hyperplane) in between,

the two set of examples can be separated perfectly. Therefore, when making a

decision, the doctor can simply classify any new case that falls below the dash line

as a negative case, otherwise a positive case.

Maximize the Margin In Figure 3.1, it is easy to find many other hyperplanes

to perfectly separate the two types of examples. The question then comes down

to which hyperplane should be chosen. The most obvious criterion is that, the

chosen hyperplane should perform better classification on unobserved data. From

empirical experiences, intuition tells us to favor the plane that is as far as possible

from both types of examples. The reason lies in that we never know what true

distributions of the two types of examples are. The data used to plot Figure 3.1 is

merely a limited amount of examples sampled from the true distributions. A plane
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Figure 3.2: An example showing margin between the two sets of examples

that can perfectly separate the sampled examples might not be able to separate the

examples in the true distributions well. By choosing a hyperplane that is far from

each class of the observed examples, we hope that the plane chosen can separate

the true distributions better.

The distance between the two types of examples is called margin. As shown in

Figure 3.2, the margin is identified by the two parallel dashed lines, which represent

support vectors. the solid line between the two dashed lines is the desired hyper-

plane. The position of the hyperplane is determined by the weight vector w, which

is perpendicular to the plane. The distance between the two dash lines is inversed

proportional to the norm of the weight vector ||w||. Thus, to maximize the margin

is equivalent to minimizing the norm of the weight vector ||w||. SVM is designed

to find out such a weight vector under some constraints. In this case, constraints are

that the two types of examples fall below and above the two dashed lines respec-

tively. Mathematically, this concept can be described using the following formula

3.1.
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Figure 3.3: A none linear separable example

Min
1

2
||w||2, s.t. yi(w · xi − b) ≥ 1, 1 ≤ i ≤ n, yi ∈ {1,−1} (3.1)

The 1/2 is for mathematical convenience in solving the problem. The problem

is convex and can be solved by standard quadratic programming techniques.

When it comes to classification, one can simple apply the trained w and b to a

new instance x according to 3.2.

sign[w · x− b] (3.2)

3.1.1 SVM Extensions

However, in real scenarios, problems are often much more complicated than binary

classification. The simple SVM presented in the previous section has to be modified

to cope with more challenging problems.
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Soft-Margin SVM In reality, a clear cut between two classes as shown in Fig-

ure 3.1 rarely exists. For instance, it is common for an experienced doctor to make

a false judgement at the first glance of any new cases. This is because features are

usually informative but not specific(determining). That is, they can help a doctor

make a judgement but can not be used as basis of final decision. The reasons are two

fold: First of all, diseases share a lot of common features such as fever and swollen

tonsils; Secondly, due to individual differences, syndromes exhibits various levels

of severity. Given the above complications, points in Figure 3.1 are rearranged as

shown in Figure 3.3, where no straight lines can be found to separate the two set of

examples. The problem thus becomes non-linear separable.

If the same constraints were still to be used as shown in formula 3.1, there

would never be a solution when the space is non-linear separable. To deal with

this problem, SVM introduces a slack variable ξi for each training instance. The

variable can be viewed as a measure of tolerance to misclassification. With the

slack variables, an SVM looks for a linear separation within an acceptable range of

errors. To accommodate the change, not only the norm of weight vector ||w||, but

also the total error from misclassification will be minimized during training. The

accordingly mathematic representation of the soft-margin SVM is given in formula

3.3

Min
1

2
||w||2 + C ·

∑
i

ξi, s.t. yi(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ n, yi ∈ {1,−1}
(3.3)

The parameter C, which controls the total amount of acceptable error, can be

tuned using a development set.

Multi-class SVM Another challenge that complicates the application of SVM is

the multi-class problem. Think about the diagnosis problem again. Since most

syndromes are not specific, a doctor usually needs to make a decision among sev-

eral possible candidates when finalizing a diagnosis. Rather than making a binary

judgement on each individual candidate, comparisons are made among all candi-

date. In the end, the most likely one is chosen as the final answer. Similarly, when
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applying SVM to multi-class classification, an instance will not only be considered

as positive or negative. Instead, all possible classes are evaluated simultaneously.

To implement the above idea, constraints during training are changed as shown in

formula 3.4,

Min
1

2
||w||2+C·

∑
i

ξi, s.t. ∀ykw(Ψ(xi, y
′)−Ψ(xi, yk)) ≥ 1(y′ 6= yk)−ξi, 1 ≤ i ≤ n,

(3.4)

where y′ is the only true label for each instance, and Ψ is a mapping of an instance

to its feature vector through a possible label yk. The new constraints ensure that the

true labels receive higher scores than the false ones within the tolerance of ξ.

When it comes to classification, instead of using the sign to determine the class,

the label with the highest score is chosen as the final prediction. In contrast to 3.2,

the rule for multi-class classification is given in 3.5

y = argmaxyk
wΨ(x, yk) (3.5)

3.2 Ranking SVM

Multi-class SVM assumes that the set of class labels is fixed. That is, the set of pos-

sible class labels is the same for each training instance. Furthermore, it assumes that

only one class label is chosen as a final prediction. However, real world problems

might not always satisfy these two assumptions. Often, the set of possible class la-

bels is undefined. Moreover, when the selection pool is large, there is usually more

than one ideal answer.

Modern search engines constantly face the above two problems. For a particu-

lar user query, a search engine is expected to return a set of candidates ordered by

their relevance to key words in the query. However, limited by general heuristics

that can be used to retrieve documents from a large number of web pages, a less

relevant document might receive a high rank, while a more relevant one is over-

looked. Therefore, search engine users usually click through top k pages until they

finally find what they want. This suggests that, a search engine can be improved by
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re-ranking the top k pages by some smarter knowledge. This is not the first time

that the concept of re-ranking is introduced. In machine translation community, this

technique has been widely used. The task of ranking is usually accomplished by a

separate ranker.

A ranker is different from a multi-class classifier mainly in two ways. First of

all, each input of a ranker consists of a set of examples while that of a classifier is

a set of class labels. Secondly, the output of a ranker is an ordered set of the input

examples. In contrast, the output of a multi-class classifier is a class label. Joachims

(2002) first applied SVM to the ranking problem. Similarly, during training, a SVM

is still going to minimize the norm of weight vector and the training errors. The

only change made is in constraints. In ranking formulation, each training instance

x consists of a set of examples (or class labels) e1, e2 . . . , en together with their

rank relations r∗ (∀(ei, ej) ∈ r∗, ei is ranked higher than ej). Each relation poses a

constraint, resulting multiple constraints for one training instance. The constraints

for n training instances are shown in formula 3.6.

∀(ei, ej) ∈ r∗ : w(Ψ(x1, ei)−Ψ(x1, ej)) ≥ 1− ξi,j,1

∀(ei, ej) ∈ r∗ : w(Ψ(x2, ei)−Ψ(x2, ej)) ≥ 1− ξi,j,2

...
∀(ei, ej) ∈ r∗ : w(Ψ(xn, ei)−Ψ(xn, ej)) ≥ 1− ξi,j,n

(3.6)

To rank a set of examples e1, e2 . . . , en for a new instance xnew in testing, scores

can be calculated by formation 3.7.

wΨ(xnew, ei) i ∈ 1 . . . n (3.7)

In this thesis, I will show that the SVM ranker can also be applied to the stress

assignment problem. If we view each word as an instance, all of its possible stress

patterns will serve as input and output of the ranker. Then, an SVM is trained so

that the correct stress pattern for a particular word receives a higher rank than all

the other alternatives.
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3.3 Summary

The chapter introduced SVM and several of its related extensions, which finally

lead to the discussion of SVM ranker. The benefits of using SVM ranker in the

task of stress assignment are threefold: First of all, taking each stress pattern as a

single unit avoids producing nonsensical patterns, such as multiple or none primary

stress in a word; Secondly, any helpful linguistic features can be easily added to the

model; Lastly, the SVM maximizes the classification objective, which usually leads

to better performance.
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Chapter 4

Previous Work

The problem of stress assignment has remained as an interesting problem since

the first time it was introduced. Some famous theories about lexical stress include

Chomsky’s transformational cycle (Chomsky and Halle, 1968) and Liberman’s

metrical theory (Prince, 1977), which have been introduced in chapter 2. The

objective of this chapter is to give an overview of existing automatic approaches to

stress assignment and their performance.

A direct comparison with works from linguistics is nonsensical, as researches

in linguistics do not focus on how stress patterns of out of vocabulary(OOV) words

can be predicted, but try to develop a theory that gives explanations to most in vo-

cabulary words. Even in the field of computational linguistics there are also several

factors that impede fair comparisons. First of all, stress assignment model is viewed

as a part of L2P systems. When it comes to evaluations of those systems, some only

look at phoneme accuracy, while others focus on overall performance (phoneme and

stress). Occasionally, results of stress assignment are evaluated independently. Sec-

ondly, different types of corpus in use further complicate a fair comparisons across

various works. The main reason lies in that the degree of challenge varies from one

corpus to another. Thirdly, even using the same corpus, a different split of data for

training and testing can result in a significant change in performance. Therefore,

it is necessary to be aware that the numbers reported from different works are not

always directly comparable.

Existing approaches to stress assignment can be roughly divided into two cate-

gories: rule based approaches and sequence based approaches. In the first category,
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the level of stress is predicted by specific phonological rules for each syllable, letter,

or phoneme independently. In the second category, assignment of stress is viewed

as a sequence prediction problem. In the following sections, I will first introduce

related works belong to the first category. However, a preference is given to works

from the second category as they are closely related to my approach and sometimes

even serve as important inspirations. Moreover, they also appear to have much

better performance. In the end, I will present some other works that appear to be

less significant, yet still provide some interesting insights into the problem of stress

assignment.

4.1 Rule Based Approaches

4.1.1 Stress Assignment by Weight Patterns

Early rule based approaches date back to 1980s, when Church (1985) applied a

table lookup technique to stress assignment. Church (1985) argued that stress could

not be predicted by just looking at a five or six character long context window.

Therefore, the work sought to invent a framework for dealing with long distance

dependencies across syllables, which turned out to be a table loop-up approach.

The resulting system took 4 linguistic features into consideration: syllable weight,

part of speech, morphology, and etymology, among which, syllable weight was

viewed as a key determinant. Syllable weight was used as an intermediate level

connecting orthography and stress patterns as shown below.

• Orthography → Weight

• Weight → Stress

Originally, syllable weight was a binary feature (Heavy(H)orLight(L)), which

was determined by some linguistic rules (e.g. a syllable is heavy if it is close or

has long vowel). Each word then could be associated with a weight pattern, for

instance, obey → LH . The process of mapping from weight pattern to stress pattern

was accomplished by looking up in a weight table. Table 4.1.1 gives an example.
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Weight
Part of Speech
Verb Noun

H 1 1
L 1 1

HH 31 10
HL 10 10
LH 01 10
LL 10 10

HHH 103 310
HHL 310 310
HLH 103 100
HLL 310 100
LHH 103 010
LHL 010 010
LLH 103 100
LLL 010 100
etc.

Table 4.1: Weight table showing weight patterns and corresponding stress patterns,
adapted from (Church, 1985)

The number in the stress patterns indicated different stress levels: 1 for primary

stress, 2 for secondary, and 3 for tertiary. Normally, people agree that there are two

levels of stress in English, the concepts of tertiary and quaternary usually disagree

with each other.

In order to resolve some conflicts introduced by the original table, weight fea-

tures were changed to multi valued. Besides syllable weight, morphology and et-

ymology were also considered. For morphology, a morphological parser was used

to parse word affix into different levels and associate each of them with a weight.

In the end, word etymology knowledge was used to treat native and loan words

differently.

4.1.2 Decision Trees

Black et al. (1998) discussed issues in building general letter to sound rules. The

rules that convert letters to phonemes were constructed automatically through clas-

sification and regression trees CRT, which was also called decision trees DT. Given

an input vector X with m attributes a1, . . . , am, a trained decision tree outputs a
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Figure 4.1: A simple example of decision tree

class label for X . For L2P problems, each input vector X represents a single letter.

The attributes of the vector are usually surrounding letters. As shown in Figure 4.1,

a decision tree takes an input vector and selectively asks questions regarding a spe-

cific attribute at decision nodes until a leaf node(also a class lable) is reached. The

order of which attribute is examined is determined by how informative an attribute

is. There are a number of advantages for using decision trees. First of all, the final

representations are intuitive and interpretable. Secondly, they do not depend on as-

sumptions of data distribution, which are suitable for exploring various less studied

problems. Lastly, they scale well and can be trained efficiently.

The issue of stress assignment was addressed and compared in two different

ways. In a joint approach, stress was predicted with phonemes jointly in the same

tree. That is, stressed and unstressed phonemes were treated as different class la-

bels. Whether an output phoneme is stressed or not relies on letters within a context

window (4 in the left and 4 in the right) and part of speech.

On the other hand, a separate stress prediction model was also constructed, us-
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Actual Predicted
unstressed stressed %

unstressed 7390 378 95.1%
stressed 512 8207 94.1%

total correct 15597/16487 (94.6%)

Table 4.2: Accuracy of stress prediction evaluated per syllable on Oxford advanced
learner dictionary, Adapted from (Black et al., 1998)

ing features such as syllable position, vowel height, vowel length. The results of

stress prediction using the second approach are shown in Table 4.2

Although the stress assignment algorithm alone can achieve a very high accu-

racy per syllable, results on the same data set from Table 4.3 suggest that it is better

to predict stress jointly with phonemes.

L2P+S LTPS
LNS 96.36% 96.27%
Letter – 95.80%
WNS 76.92% 74.69%
Word 63.68% 74.56%

(LNS=letter/phone ignoring stress, WNS=word ignoring stress)

Table 4.3: Comparisons of stress predicton between a pipeline and a joint system,
Adapted from (Black et al., 1998). L2P+S is a pipeline system, while L2PS is a
joint system

4.1.3 Stress Assignment by Context Free Grammar

Coleman (2000) used probabilistic context free grammar to model the theory of

metrical phonology. Words were analyzed at different levels. For instance, a word

could be simple, containing only one prosodic word; or compound, with multiple

prosodic words. A prosodic word could be further decomposed into stress feet.

Each stress foot compromised one or more syllables, which were headed by a

stressed syllable. A syllable could be further divided into onset and rime to de-

termine its weight. Analysis was done in a bottom up manner using context free

grammar. Part of its productions used are presented in Figure 4.2

Given such a set of grammars, any standard parsing algorithms could be applied

to construct a metric tree. The grammar was designed to ensure that all the words in
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Figure 4.2: A subset of rules in the context free grammar for stress assignment

a machine-readable dictionary could be parsed. Then a development cycle was in-

troduced to perfect the grammar, including adding and modifying them to increase

prediction accuracy. However, the induced deterministic grammar had rather poor

performance, with only 67% of words correct.

Most of mistakes arose from structural ambiguity—a word could be parsed into

several trees. To disambiguate possible parses, probabilistic context free grammar

was used. Rule probabilities were estimated from the training data using Maximum

Likelihood Estimation MLE. Then quality of parses were then evaluated by the

likelihood of the parses. According to the report, the probabilistic grammar had a

significant improvement (from 67% to 75%) over the deterministic one.

4.2 Stress Assignment as Sequence Prediction

4.2.1 Joint n-gram Approach

Demberg et al. (2007) applied a joint n-gram model to the L2P problem, in-

cluding stress assignment and syllabification. As shown in Equation 4.1, a joint

n-gram model uses Viterbi algorithm to seek the most likely phoneme sequence

pn
1 : p1, p2, . . . pn given a sequence of letters ln1 : l1, l2, . . . ln. Each letter-phoneme

pair < l; p > is viewed as a state, whose probability is dependant on previous k

states < l; p >i−1
i−k (previously generated letter-phoneme pairs).
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pn
1 = argmax

n∏
i=1

P (< l; p >i | < l; p >i−1
i−k) (4.1)

When syllabification and stress assignment were treated as a joint process in

L2P conversion, a state pair was changed into a tuple containing four tags < l; p; b; a >,

where b indicated a syllable boundary and a stood for a stressed phoneme. The

probability of each state was estimated using MLE. Due to major data sparse prob-

lems, probabilities of unobserved states were estimated by a variant of Modified

Kneser-Ney Smoothing (Chen and Goodman, 1996)

The most significant contribution of the work was the introduction of phono-

logical constraints. Particularly, in stress assignment, they found out that 15-20%

of words were incorrectly stressed, among which 37% had more than one primary

stress, about 27% were not assigned any stress, and 36% were stressed in a wrong

position. This meant that almost 2/3 of the errors in stress assignment were caused

by violation of an important phonological constraint—each word has only one pri-

mary stress. To incorporate this constraint into the model, an additional flag A was

added. The conditional probability of each state then became:

P (< l; p; b; a >i | < l; p; b; a >i−1
i−k, A) (4.2)

The transition probability is 0 if a constraint is violated, e.g. when the A flag indi-

cates that a stress has been assigned and ai indicates another accent.

They tested their model on CELEX German (Baayen et al., 1996). The training

data contained 240k words, and the testing data contained 12,326 words. Different

from traditional random splitting stratagem, the test data was carefully designed

so that the inflections of a word were either all in the training set or all in the

test set. Stem overlap between training and test set only occurred in compounds

and derivations. Experiment results showed that the constraint was very effective,

reducing error rate of stress assignment on letters from 30% to 9.9%.
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4.2.2 Global Statistics

Although the one word one primary stress constraint works very well for German,

it is not applicable in some other languages such as English. It is well known that

words in English have multiple levels of stress, and there seems to be no constraints

on secondary stress: that is, a word may have none, one, or more than one secondary

stress.

Pearson et al. (2000) compared a few approaches to stress assignment and in-

troduced a new method called global statistics. Instead of predicting stress level for

each vowel phoneme sequentially, the method selected the most likely stress pattern

for each input word as a whole. The idea of stress prediction as sequence selection

was based on a limited number of possible stress patterns. The authors found out

that, in the 19,000 word Cybertalk dictionary, there were only 118 stress patterns.

For the 95,000 word Comlex dictionary, the number was 151. Moreover, 95% of

the stress patterns had less than 5 syllables and some of them appeared much more

frequently than the others.

There were two main components in the system. The first one was a frequency

table of all stress patterns, containing counts of each stress pattern observed in

the training data. The second one was a frequency table for vowels. Each line

contained a vowel phoneme and its counts for each stress level. When it came to

stress assignment, all possible stress patterns for a word were enumerated. Then,

for each possible pattern, a product of pattern frequency and counts of each vowel

at a specific stress level indicated by the pattern, was computed. In the end, the

pattern with the highest product was chosen as the final prediction.

The Global Statistics reported a much higher accuracy than decision trees. The

former achieved 81.0% word accuracy on STLs Cybertalk dictionary, while the lat-

ter one only got 67.3% accuracy. To take the local context ignored by the Global

Statistics into account, a combined approach was introduced. In the combined ap-

proach, product of counts from Global Statistics was used to optimize phoneme

sequences generated by a decision tree. Experiment results showed that the com-

bined method was even superior, increasing word accuracy from 81.0% to 87.1%.
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4.3 Other Related Work

Early implementations of the metrical phonology theory for word stress assignment

date back to 1980s. Williams (1987) described a pipeline system based on the met-

rical phonology for British English. At initial stage, a syllabification unit borrowed

an algorithm described in (O’Connor and Trim, 1953) to divide phoneme strings

into syllables in comply with the Maximum Onset Principle (Selkirk, 1982). A

mapping process then mapped syllables from phonetic representations to class la-

bel, such as consonant(C),long vowel(V). Afterwords, a pattern matching approach

was taken to parse the syllables into stress foot(Section 2.2.2) according to their

weights. The next step was to choose the foot that bears the primary stress or sec-

ondary stress, which was accomplished according to a set of rules(e.g. given two

sister nodes, the second is strong if, and only if, it branches). Finally, the syllable

bearing the stress was determined, which is always the first syllable within a foot.

Test was taken using 1055 unique words, among which 706 were regular according

to Fudge’s criteria (Fudge, 1984). On average, 80% of words were assigned with

a correct stress pattern by the system. The accuracy for regular words was 92%,

while only 54% for irregular words.

Bagshaw (1998) took a table lookup approach that was originally proposed

by Church (1985) to the problem of stress assignment. The method worked on

syllabified phoneme sequences. A table stored mappings between sequence of syl-

lable weight and stress pattern. Therefore, the first stage of the algorithm was to

decide the syllable weight. The weight of a syllable was distinguished at a three

level granularity :reduced, light and heavy, according to phonemic structure of the

syllable and the type of its nucleus. As defined by (Bagshaw, 1998), reduced syl-

lables contain a reduced vowel (or syllabic consonant). Light syllables are those

containing a short vowel that is not followed by any consonants within the same

syllable. Heavy syllables consist of either a long vowel or diphthong, or short vowel

plus at least one following consonant. After each syllable’s weight was decided, a

lookup table was used to choose a corresponding stress pattern. Moreover, part-

of-speech tag of a certain word also influenced the mapping. For example, a word
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tagged as a verb (past tense) with a weight sequence LRHH (light, reduced, heavy,

heavy) was assigned the stress sequence PUSU (primary stress, unstressed, sec-

ondary stress, unstressed), whereas a common noun (plural) with the same weight

sequence LRHH was assigned SUPU. The method reported a 64.97% - 83.26% per

syllable accuracy for English.

It is well known that stress patterns usually correlate with morphological pro-

cess, that is, a morphological change often results in shift of stress positions. For

instance, the word phótograph has its primary stress on the first syllable, while

in its corresponding noun photógraphy, the primary stress falls on the second

syllable. Inspired by this phenomenon, Webster (2004) proposed an automatic

morphologically-based stress prediction algorithm to improve L2P accuracy. Dif-

ferent from many other works, the algorithm predicted which letter receives primary

stress rather than phoneme. However, secondary stress was not considered. In train-

ing phase, a word was first decomposed into pseudo morphemes(orthographic pre-

fix and suffix), which was claimed as a patent, and therefore was not explained in

details. A greedy algorithm was then used to iteratively find the prefix or suffix that

correlates strongest with a particular stress location. For prefix, location indicated

the number of vowel letters from beginning of a word. For suffix, location was

counted from the end of a word. For example, in German, the prefix ver correlates

strongly with location 2 and in English, suffix ation highly correlates with location

3. The algorithm itself achieved an accuracy of 80.3% for English and 81.0% for

German. In combination with a decision tree, the stress location was added as an

additional feature. In the combined approach, the accuracy for English and German

was increased to 87.1% and 92.2% respectively.

The affect of orthographic affix on stress positions is also noticed in (Arciuli and

Thompson, 2006). This work first investigated the limitation of current Text-To-

Speech systems(TTS) in terms of stress assignment. They ran a stimuli through a

TTS system and examined the phoneme output. Results showed that the system cor-

rectly assigned stress for only 64% of words. In another test, which involved human

participants, results suggested that the TTS system did not assign stress adequately.

Based on findings from research in psychology (Joanne and Linda, 2006), they de-
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signed a neural network to predict stress locations depending on words’ beginnings

and endings. They only chose words with 2 syllables from CELEX (Baayen et al.,

1996) for training and testing. The selected words were then all represented by their

beginnings and endings. Beginnings were defined as all the letters up to and includ-

ing the first vowel or vowel cluster. For example, the beginning of word saucy is

sau. Endings were defined reversely from the end of a word. For instance, the

ending of word saucy is y. Words with long beginnings or endings were excluded.

Then a neural network with 216 inputs, 28 hidden nodes, and 4 outputs was used to

predict stress. A word accuracy of 86% was reported. However, the limitation of

this approach was also obvious. First of all, words selected in the experiment have

only less than 3 syllables. Secondly, only primary stress was considered.

4.4 Summary

Early approaches to automatic stress assignment directly borrowed language spe-

cific rules, which were normally complicated and not well structured. More recent

data driven approaches tended to learn pronunciation rules automatically but ig-

nored many important linguistic constraints. Later, people began to view stress

assignment as a sequence prediction problem that took care of some global con-

straints and achieved significantly better results. However, they are still far from

perfect and can be greatly improved by the method to be presented in the following

chapter.
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Chapter 5

Orthographic Stress Assignment

Marking vowel letters bearing stress is one of the objectives of this thesis. To ac-

complish the task, I designed a system that takes words in their written form as

input and outputs words with markers on specific vowels bearing the stress. Instead

of classifying stress level for each individual letter, the challenge is formulated as a

sequence prediction problem within a powerful discriminative ranking framework.

This chapter will present the system and experimental results in details. As the

approach is data driven, I will begin with explaining how the dataset for training,

developing, and testing is prepared. Then, I will outline the three main components

of the system in Section 5.2. Afterward, each sub-system: word splitting, SVM-

ranking, and pattern to vowel mapping is introduced. Finally experimental results

and analysis are provided.

5.1 Dataset

The Dataset used for this thesis is prepared from CELEX (Baayen et al., 1996).

CELEX is a product of the Max Planck Institute for Psycholinguistics in the Nether-

lands. The dictionary consists of three languages (English, Dutch, and German),

and includes both orthographic and phonetic forms of words. The English section

of CELEX is compiled from the Oxford Advanced Learner’s Dictionary (1974) and

the Longman Dictionary of Contemporary English (1978). It contains 160,595 En-

glish words of British English. The German portion of CELEX is based on the

Bonnlex and Molex computer dictionaries, as well as a German spelling lexicon. It
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contains 365,530 words. The Dutch CELEX is derived from Van Dale’s Compre-

hensive Dictionary of Contemporary Dutch (1984) and the Groene Boekje Word

List of the Dutch Language (1954), and most of the dictionary entries from the

Institute for Dutch Lexicology’s 42.4 million-token corpus. It contains 381,292

entries.

Not all the entries in CELEX are suitable for the task of stress assignment.

Therefore, some preprocessing is required to cleanup the unsuitable items. First

of all, only words with at least three letters are kept. Then entries with the same

written forms are removed. This is to ensure that there are no overlapping between

training and testing set. However, sometimes words with same written forms can

have different stress patterns due to their part of speech. For instance, présent

is stressed on the first syllable when tagged as a noun, while stressed on second

syllable presént when classified as a verb. In this case, only one of the two is

selected for either training or testing. Moreover, since the focus is on stress assign-

ment for single words, phrases and words with hyphens are removed. Finally, any

unpronounceable abbreviations, such as lbw or BBC are also discarded. The final

English dataset contains approximately 65K words. When similar preprocessing is

performed for Dutch and German, the datasets have about 299K and 296K words

respectively.

Another preprocessing step is to move stress markers from phonemes to letters.

In CELEX, stress markers are provided in the form of phonetic representations of

each word. If a certain syllable is stressed, there will be a stress marker at the

beginning of that stressed syllable. To map the stress markers to letters, each stress

marker is first moved to the vowel phoneme of each syllable and then mapped to the

letters using an automatically generated letter-to-phoneme alignment. Whenever a

stressed phoneme is aligned with two consecutive vowel letters (e.g. ee in meet),

the stress marker is always placed on the first vowel letter.

Finally, some attentions need to be paid to diacritics. A diacritic is a small

sign added to a letter to alter its pronunciation. It is well known that there are 26

alphabetic letters in English. However, some languages have more basic letters.

For example, in German, some vowel letters have two dots above them: ä, ü, ö.
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Word Substrings Pattern Word’
w → s → t → w̄

worker → wor-ker → 1-0 → wórker
overdo → ov-ver-do → 2-0-1 → òverdó
react → re-ac → 0-1 → reáct

Table 5.1: The steps in our stress prediction system (with orthographic and pho-
netic prediction examples): (1) word splitting, (2) support vector selection of stress
patterns, and (3) pattern-to-vowel mapping.

In CELEX, those letters are represented with original English letters followed by a

special symbol such as #. Traditionally, when writing German with English letters,

people tend to replace diacritics with some other letters: ä → ae, ü → ue, ö → ue.

However, doing so is not advantageous to my system. Therefore, I take another

convention. That is, stripping off all those special symbols that stand for diacritics.

5.2 System Outline

The stress assignment system takes any input word in written form w and maps

it to the stressed form w̄ with stress markers on any letter bearing the stress. The

process is divided into three steps:

(1) First, a word w is mapped to a sequence of substrings (s).

(2) Then, a particular stress pattern (t) is chosen for each substring sequence, which

will be used together with the substring sequence to construct a feature vector.

A support vector machine (SVM) is applied to rank the possible patterns for the

substring sequence .

(3) Finally, the predicted stress pattern is used to produce the stressed-form of the

word w̄. .

Table 5.1 gives examples of words and stress patterns at each stage of the process.

Details of the three steps will be presented in the following sections.
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5.3 Word Splitting

At the first step of the process, an input word is transformed into its substring rep-

resentation s :s1-s2-...-sN . The substrings are crucial as they are used to define

the feature vector of each input word. While the ultimate goal is to assign stress

markers to specific letters, taking substrings instead of individual letters as basic

units produce more informative features. Admittedly, there are many ways to split

a word into substrings. However, a good splitting scheme is not easy to choose. I

will first introduce the methods used in different systems and then compare them

with another alternative that is not taken.

SUBSTRING Since stress markers are assigned to individual vowels bearing the

stress, it is natural to come up with an algorithm that extracts substrings centered

by each vowel letter in a word. In this system, each substring consists of exactly

one vowel letter and its neighboring consonants. Given the above description, some

issues might come up. First of all, the choice of vowel letters might be arguable.

In this thesis, a, e, i, o, u, y are viewed as vowel letters. Although y is not always

viewed as a vowel, I do not want to state rules for those special cases in each lan-

guage, which will make the system less language independent. Another issue that

is questionable is why only neighboring consonants are taken. The answer is using

short substrings helps with the data sparse problem. For instance, by looking at only

neighboring consonants, words fryer, and dryer are all transformed to ry − er.

The learning algorithm then can generalize better from training data. However,

there is always a dilemma between generalization and specification.

The substrings are good approximations of real syllables. First of all, each of the

substrings has a nucleus, which is the only vowel letter. Secondly, most of them also

have pseudo onset or coda, which is represented by the neighboring consonants.

The number of substrings generated by this splitting technique always equals

the number of vowel letters in the original input word. However, this number is

not always the same as the number of syllables in the word, as in the case ron −
no − un − ce, which should be divided into three substrings pro − noun − ce

according to a perfect syllabification. Intuitively, this has some negative effects on
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the performance of the model as the number of substrings produced is always equal

to or greater than the true number of syllables and hence increases the length of

sequence to be predicted. But in general, it performs well.

ORACLESYL ORACLESYL splits a word according to gold orthographic syllab-

ifications. For instance, the word pronounce is spit as pro − noun − ce. The

ORACLESYL is regarded as a gold standard. The purpose of using ORACLESYL

is to find out the maximum performance of my stress assignment algorithm and to

evaluate how much the SUBSTRING splitting method hurts the prediction.

There is also another variation of ORACLESYL, which is to discard the conso-

nants that are not next to any vowels in a syllable. This stratagem shows significant

improvement in SUBSTRING. However, the gain for ORACLESYL is not obvious

and sometimes even negative.

VOWEL-GROUP VOWEL-GROUP is a splitting scheme used at the initial stage of

research that lead to this thesis. In VOWEL-GROUP splitting system, it is assumed

that all the syllables have onset, nucleus, and coda. Therefore, each substring con-

sists of one or more vowel letters and their neighboring consonants. Taking the

word pronounce as an example, the VOWEL-GROUP will split the word into sub-

string sequence ron− noun− ce. At the very beginning, not only the neighboring

consonants were taken. Instead, a greedy method was used to include as many con-

sonants as possible till the first vowel was met. For instance, pronounce was spit

as pron− nounc− ce.

The most significant difference between SUBSTRING and VOWEL-GROUP lies

in the number of resulting substrings. While SUBSTRING always produces equal

or more substrings than the actual number of syllables, VOWEL-GROUP constantly

generates equal or less substrings. This is because VOWEL-GROUP always puts

contingent vowels into one substring. For instance the word reality has 4 syllables

re − a − li − ty. However, it is converted to only three substrings real − li − ty

by VOWEL-GROUP. Table Table 5.2 gives three examples of substring sequence

generated by three different systems.
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Word System Substrings

pronounce
SUBSTRING ron-no-un-ce
ORACLESYL pro-noun-ce

VOWEL-GROUP ron-noun-ce

Table 5.2: Examples of substring sequence generated by different systems).

Although fewer substrings makes the prediction easier, the issues in choosing a

fair evaluation standard finally forced this approach to be abandoned. First of all,

it is problematic to evaluate based on the output patterns. For instance, if reality

is split into three substrings real − li − ty, the stress will be mapped to the first

substring real. But suppose the gold standard syllabification is available, the stress

actually falls on the second substring. Is it justifiable to say that a system makes a

correct prediction if the output pattern is 1−0−0 in the former case? The answer is

no. If that was positive, a system can achieve 100% accuracy by just splitting each

word into only one substring and always outputs 1 as final prediction, which is ob-

viously self-cheating. A fair evaluation should be independent of splitting method,

which is achieved by mapping stress markers to vowels according to output pat-

terns. However, the mapping process introduces a lot of errors in VOWEL-GROUP

as it is hard to decide which vowel in a vowel groups receives stress such as ea in

real and reality.

5.4 Stress Prediction with SVM Ranking

After creating a substring sequence s = s1-s2-...-sN , the next step is to choose an

output sequence t = {t1-t2-...-tN} that encodes the level of stress for each substring

in s. The level of stress is represented by different numbers: ‘0’ for no stress, ‘1’

for primary stress, and ‘2’ for secondary stress.

Normally, such problems can be solved in a traditional sequence prediction

framework using HMM , CRF (Lafferty et al., 2001). Those sequence prediction

algorithms conduct a search in output space. The output sequence is predicted step

by step from the very beginning depending on some input features and transition

probabilities. The goal is to find a most likely output sequence for a given input
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Word Length 1 2 3 4 5 6 7 8 9 10 11

Number of Patterns
English 1 4 9 14 13 13 11 6
German 1 2 3 4 5 6 7 8 8 5 2
Dutch 1 2 3 4 5 6 7 8 9 7 2

Table 5.3: Number of possible stress patterns for English, German, and Dutch
words at different length(measured by the number of syllables).

sequence. However, when it comes to stress prediction, One can take advantages of

some important observations of stress patterns and choose the best one as a whole.

The Key observation is: unlike normal sequence prediction problem, where the

size of output space is almost unbounded, the number of possible stress patterns is

rather limited. In 55k English words, the number of unique patterns observed is

only about 70. Within 250k German and Dutch words, the number is only about

50. This observation implies that, after seeing enough stress patterns in training,

one hardly encounters a new stress pattern that has never been seen before. There-

fore, by considering only the stress patterns that have been observed in training,

the system can safely limit the output space to a rather small number of candidates.

Given this fact, any input substring sequence only has a small set of possible stress

patterns. Table 5.3 presents the number of possible patterns for words at different

lengths. The length is measured by the number of syllables.

To choose the correct pattern from a set of possible candidates, we just need

to find a function that is able to assign scores to each of the sequence and pick

the one with the highest score as the final answer. This can be fit into a ranking

framework. While previous works have used various methods to generate a list

of candidates (Collins and Koo, 2005), my system simply chooses stress patterns

observed in training data as candidates for any substring sequence.

5.4.1 Ranking Formulation

SVM is a supervised machine learning algorithm which requires tagged positive

and negative training examples. Given such examples, an SVM will learn a weight

vector to separate the positive examples from the negative ones. In this task, an

SVM is expected to learn to separate the correct stress pattern from a set of alterna-
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tives. Given an input substring sequence s = s1-s2-...-sN of length N , there is only

one positive stress pattern t, which is extracted during the word splitting process

according to the stress markers provided in the training set. The positive training

pair (s, t) is then augmented with a set of negative training pairs, which consist of

all other possible patterns with length N seen in training phase.

After creating those training examples, an SVM is trained to choose the correct

pattern t from a set of candidates T. A linear scoring scheme is adopted, in which

the score for each pair is a linear combination of feature-weight products. To cal-

culate the score, each training pair is first mapped to a feature vector Φ(s, t) (see

Section 5.4.2). The score for a particular (s, t) combination is a weighted sum of

these features, λ ·Φ(s, t), where λ is a weight vector to be learned by the SVM.

The core idea of SVM is to minimize the norm of weight vecotr ||λ|| subjects

to a set of constraints. Let tj be the stress pattern for the jth training sequence sj ,

both of length N . At training time, the weights, λ, are chosen such that for each sj ,

the correct output pattern receives a higher score than the other patterns of the same

length: ∀u ∈ TN ,u 6= tj,

λ ·Φ(sj, tj) > λ ·Φ(sj,u) (5.1)

The set of constraints generated by Equation 5.1 are called rank constraints(see

Section 3.2). They are created separately for every (sj, tj) training pair. Essentially,

each training pair is matched with a set of automatically-created negative examples.

Each negative has an incorrect, but plausible, stress pattern, u.

At test time, each input word will first be split into a sequence of substrings of

length N . Then for each possible stress pattern t ∈ TN , a score is computed by

λ ·Φ(s, t). In the end, the pattern with the highest score will be chosen.

5.4.2 Feature Engineering

One of the most important advantages of using SVM is the ability to use an arbi-

trary number of features. It has been successful in similar settings learning with

thousands of sparse features. Intuitively, the choice of features have a deep impact
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on the performance of the ranker. Table Table 5.4 shows the feature templates used

to create the features Φ(s, t) for the SVM ranker.

Substring si, ti
si, i, ti

Context si−1, ti
si−1si, ti
si+1, ti
sisi+1, ti
si−1sisi+1, ti

Stress Pattern t1t2 . . . tN

Table 5.4: Feature Template

The features selected are based on some linguistic theories on syllabic accent.

First of all, the Substring features are inspired by the idea that stress is a property

of syllables. That is, some syllables are stressed more frequently than others. This

has been studied extensively in Zipf (1929), which claimed that stress usually falls

on syllables with relative low frequency in the streams of speech and vice versa.

Obvious examples include “tion” in English, and “ge” in German. Therefore, if a

substring is often stressed in the training data, it is also very likely to be stressed

in new contexts. However, the Substring feature alone is not enough to capture

the relationships between syllables. As emphasized in Section 2.1, stress is a rel-

ative concept. That is, a stressed syllable is phonetically more prominent than its

neighbors. To capture this regularity, context features are included.

The most interesting feature might be the pattern feature t1t2 . . . tN . Humans

usually prefer certain sequences, which has been demonstrated by research in se-

quence tagging, machine-translation, and so on. This also applies when it comes

to stress prediction. Clopper (2002) showed that people have strong preference to

certain stress patterns. I confirm this by extracting statistics of stress patterns from

the training data. Table 5.5 is an excerpt from the extracted statistics, showing

two most frequently used stress patterns in English for any length shorter than 6

syllables. The percentage indicates the relative frequency in a group with the same

length.

From the table it is easy to find that the two most frequently used patterns ac-
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Pattern Frequency Percentage
1 6256 100.00

1-0 17566 83.74
0-1 2662 12.69

1-0-0 8856 53.90
0-1-0 5171 31.47

0-1-0-0 3075 37.95
2-0-1-0 2246 27.72

2-0-1-0-0 983 34.48
0-1-0-0-0 999 33.93

Table 5.5: Stress patterns and their relative frequency.

count for at least over 60% of the frequency within each group. This phenomenon

indicates that it might be a good idea to take the whole pattern as a feature. Note

that, in traditional sequence prediction problems, the sequence features are approx-

imated by concatenation of n-gram subsequences. This is because it is usually im-

possible to enumerate all possible output sequences in structure prediction. How-

ever, thanks to the limited number of possible stress patterns, my system can take

the whole sequence as a feature, which is more precise and informative.

All the features are binary. That is, if a feature is found in the sequence-pattern

pair (s, t), it will be 1, otherwise 0. For example, if a substring tion is unstressed

in a (s, t) pair, the Substring feature {ti = 0, si = tion} will be true. It is the same

for the Context feature si+1, ti. For instance, in English, the penultimate syllable

is always stressed if the final syllable is tion. Whenever this happens, the context

feature {ti = 1, si+1 = tion} will be true.

A simple way to verify whether the selected features are informative or not is

to look at the learned weights of those features. Figure 5.1 presents the top 20

features with highest weight values. To make it easier to interpret, those features

are extracted based on ORACLESYL splitting. The weights were learnt using 55k

English words.

The 20 features can give good explanations to some very common examples.

For instance, the feature with the highest weight is ti = 1, si =, si+1 = tion.

This indicates that when the following syllable is tion, it is highly possible that its
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Figure 5.1: Top 20 features with their weights. Learned from 55k training examples
based on oracle splitting

previous syllable si receives the primary stress regardless what the syllable si is. It

seems that, in English, the penult syllable is always stressed when the last syllable

is tion. In these features, one can also find very common prefix such as re, de, and

co, which usually receives secondary stress. Moreover, among the top 20 features,

there are also very frequently used stress patterns. Each of them is among the top 2

frequently used patterns in the group of the same length. It is also interesting to find

that not a single Substring feature appears in the top 20 list. This might support

the claim that stress is a relational concept.
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5.5 Mapping

In order to make evaluation independent from splitting methods, the final step is to

map stress markers back to input words according to predicted stress pattern. For

SUBSTRING, stress markers are mapped back to individual vowels. The fact that

the number of substrings always equals the number of vowels in the word makes

the mapping process straight-forward. Each vowel in original word is associated

with exactly one substring and one digit in output stress patterns. For example, if

the SVM ranker chooses the stress pattern—0-1-0-0 for substring sequence ron-no-

un-ce, a correct stress-marked word—pronóunce, will be produced. In contrast, if

a wrong stress pattern (e.g. 0-0-1-0) is chosen, the final output (pronoúnce) will be

wrong.

The mapping process for ORACLESYL is slightly different. If stress markers

were still mapped to vowel letters, extra errors would be introduced as the system

has no way of knowing which vowel letter bears the stress. Instead, with perfect syl-

labification boundaries, the system simply puts a stress marker in front of a stressed

syllable. If a pattern is correctly predicted, there is no problem mapping stress

markers back to the right syllable.

5.6 Experiments and Results

In this section, I will evaluate the performance of my system on orthographic stress

assignment for three free stress languages: English, German, and Dutch. I will first

describe the experiment set up, then introduce different systems to be compared,

and provide results and analysis in the end.

5.6.1 Experiment Setup

The English, German, and Dutch data is extracted from CELEX. After the data is

cleaned by the methods described in Section 5.1, a random splitting stratagem is

taken to split the corpora randomly: 85% for training, 5% for development, and

10% for testing. The development set is used to tune the C parameter for the SVM.

Due to much richer morphological changes, the German and Dutch corpora contain
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4 times more words than English. To make results on German and Dutch compa-

rable with English, the training, development, and testing set is reduced by 80%

for each. The resulting training, development, and testing set for each of the three

languages contains around 55K, 3k, and 6k words respectively.

The core component of the system is an SVM ranker. Fortunately, a free and ef-

ficient implementation (Joachims, 1999) is available. The version supports learning

ranking functions, which is originally introduced in (Joachims, 2002) for applica-

tions like search engines and recommender systems.

5.6.2 Comparison Approaches

4 different systems are evaluated on the same data set:

1) SUBSTRING uses the vowel-based splitting method to split words into sub-

strings. Then it trains an SVM as described in Section 5.4.1 and performs

predictions based on the learned weights.

2) ORACLESYL splits the input word into syllables according to the CELEX gold-

standard. The SVM training and prediction are the same with SUBSTRING.

However, the final mapping process is slightly different from SUBSTRING.

3) ORACLEVOWELSPLIT uses gold-standard syllables, but discards consonants

that are not adjacent to the vowel. It is very similar to SUBSTRING, except its

substrings only include consonants that are within the corresponding syllable,

whereas SUBSTRING’s substrings may include a consonant from a neighboring

syllable.

4) TOPPATTERN is a naive baseline system. It uses the vowel-based splitting

method to produce a substring sequence of length N . Then it simply chooses

the most common stress pattern among all the stress patterns of length N . The

mapping process is the same as that in the SUBSTRING

CELEX provides secondary stress annotation for English. I therefore evalu-

ate on both primary and secondary stress (P+S) in English and on primary stress

assignment alone (P) for English, German, and Dutch.
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System Eng Ger Dut
P+S P P P

SUBSTRING 93.5 95.1 95.9 91.0
ORACLESYL 94.6 96.0 96.6 92.8
ORACLEVOWELSPLIT 95.8 97.2 96.3 91.8
TOPPATTERN 65.5 67.6 64.1 60.8

Table 5.6: Stress prediction word accuracy (%) on letters for English, German, and
Dutch. P: predicting primary stress only. P+S: primary and secondary.

The accuracy is evaluated at word level. A word is viewed as correct only if the

whole output stressed word w̄ matches the gold standard. The accuracy indicates

what percentage of predicted patterns match the gold standard patterns.

5.6.3 Results

The performance on letters (Table 5.6) is quite excellent. SUBSTRING predicts

primary stress with accuracy above 95% for English and German, and equal to

91% in Dutch. It is a bit surprising that Dutch has the lowest score as it appears

to be the most predictable language in terms of L2P conversion when stress is not

considered (Jiampojamarn et al., 2007).

The performance of ORACLESYL is clearly better than the SUBSTRING: con-

stantly around 1% higher for each language. Note that even 1% at this level means

substantial reduction in error rate. There are two main factors that might contribute

to this: first of all, perfect syllables provide more informative features. For in-

stance, while one of the most common postfixes tion is always treated as one

single substring in ORACLESYL, it is always split into two substrings ti and on

in SUBSTRING; Secondly, the length of substrings generated by ORACLESYL is

shorter, which results in even fewer stress patterns. This can be verified by look-

ing at the number of unique of patterns observed in training set. By examining the

number of stress patterns generated from the English training set, I found that there

were only 76 unique patterns for ORACLESYL, while the number for SUBSTRING

was 103.

I also examined how much an incorrect split of input words can influence predic-

tion accuracy. The phrasing “incorrect” here means that the number of substrings is
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not equal to the number of syllables. To investigate this, I conducted a comparison

of accuracies between two different cases. In the first case, the number of substring

produced by SUBSTRING equals the number of syllables, while in the second case,

it is not. Table 5.7 gives an overview of the comparison considering both primary

and secondary stress for English.

Nsub = Nsyll Nsub 6= Nsyll Total
Correct 3269 2857 6126
Wrong 193 230 423

Accuracy(%) 95.4 92.5 93.5

Table 5.7: Comparisons of accuracies between two cases: Number of substrings
equals number of syllables; Number of substrings does not match the number of
syllables.

When looking at the accuracy when Nsub = Nsyll only, the SUBSTRING even

outperforms the ORACLESYL. However, when Nsub 6= Nsyll, the accuracy drops

significantly. Based on the results from Table 5.7, it can be concluded that majority

of loss in SUBSTRING against ORACLESYL results from its inability to split input

words in accordance with the true syllable boundaries.

In Section 5.4.2, I talked about the importance of pattern features. Different

from how this feature is used in traditional sequence prediction problem, each pat-

tern is viewed as a binary feature in the ranking problem. Similarly, they also have

a substantial impact on the performance as shown in Figure 5.2

Another interesting point is to compare performance of ORACLESYL with

ORACLEVOWELSPLIT. In using ORACLEVOWELSPLIT, one might expect that

shorter syllables help the model generalize better. While ignoring consonants that

are not next to any vowels in a syllable helps reduce the error rate by almost 22%

for English, the effect is counterproductive for both German and Dutch.

The reported primary stress accuracy in Table 5.6 was calculated by ignoring

secondary stress. However, the system was trained for both. An alternative way is

to train a system for primary stress only. One can expect the accuracy on primary

stress to be improved as predicting both is inherently more difficult than predicting

only primary stress. Interestingly, results from Table 5.8 suggest that focusing on
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Figure 5.2: Pattern features show benefits for all three languages on letters

primary stress only does not really help improve the accuracy.

System Predict P Predict P+S
SUBSTRING 95.1 95.1
ORACLESYL 95.8 96.0

Table 5.8: Primary stress only accuracy (%) on letters for English

Nevertheless, SUBSTRING’s accuracy on letters also represents a clear improve-

ment over previous work. Webster (2004) reports 80.3% word accuracy on letters

in English and 81.2% in German.

The most comparable work is Demberg et al. (2007), which achieves 90.1%

word accuracy on letters in German CELEX, assuming perfect letter syllabification.

However, the only difference lies in that Demberg et al. (2007) take a different data

splitting method. Demberg et al. (2007) found that the word accuracy is much

higher if the data is split just randomly. This is caused by overlapping of word

stems. A word can have a number of inflections in morphological rich languages

such as German. For instance, the verb arbeiten can have many inflections such

as arbeite, arbeitet, arbeitete, and so on, depending on the personals and tenses.

However, all those inflections share the same word stem arbeiten. Most of time,

such inflections don’t change the stress pattern. If an algorithm has seen arbeiten
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Figure 5.3: Comparisons of random splitting and lemma splitting on three lan-
guages for letters. System compared: SUBSTRING, Training Size: 55k.

in training, it is very likely to make a correct prediction for arbeite. Demberg et

al. (2007) took a more challenging splitting method to make sure that there is no

stem overlapping between training and testing. In CELEX, lemma is used to refer

to word stem. Words sharing the same stem all have the same lemma ID. To make

a more convincing comparison, I split the data so that lemma IDs in training and

testing are disjoint. With 250k training instances, the SUBSTRING obtains 92.3%

accuracy. Furthermore, assuming perfect syllabification, the ORACLESYL has a

94.3% word accuracy, a 40% reduction in error rate.

To find out how much the lemma splitting could influence the performance,

I compared results on two datasets for three languages. Results are shown in Fig-

ure 5.3. As expected, the word accuracy for each language drops substantially when

the training and testing set is split disjointly by lemma ID.

5.6.4 Learning Curves

Finally, I examined the relationship between training data size and performance by

plotting learning curves for letter stress accuracy (Figure 5.4). I kept all the devel-

oping and testing data as the same size as in Section 5.6.1 but gradually increased

the training size for German and Dutch up until 250k.
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Figure 5.4: Letter stress assignment learning curves for English, German, and
Dutch

5.7 Conclusions

Most previous work on orthographic stress assignment either only care about indi-

vidual letters or have weakness in incorporating certain phonetic constraints. In-

spired by Pearson et al. (2000), I introduced a discriminative ranking approach to

select a correct stress pattern for each word from a set of alternatives. Instead of

working with individual letters, I proposed a way to split input words into substrings

that resemble syllables. The algorithm can be easily adapted to real syllables when

a good syllabification algorithm or perfect syllabification is available.

To better understand the power of the discriminative ranking approach, this

chapter has also conducted a detailed analysis on feature selection The substring

and context features are very effective in representing the prominence of individual

syllables depending on their neighbors. The pattern feature not only serves as a

language independent constraint but also helps select the most likely sequence.

Overall, my system’s performance is exceptional, with at least 40% reduction

of error rate compared with earlier systems. Moreover, the language independent

features allow it to excel in English, German, and Dutch.
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Chapter 6

Phonetic Stress Assignment

Stress assignment on phonemes is another task as defined in the problem descrip-

tion. The system takes phonemes as input and assigns stress markers to vowel

phonemes bearing the stress. With this task definition, the SVM ranking approach

described in the previous chapter can be easily adapted to the phoneme domain.

In this chapter, I will first compare differences between orthographic stress as-

signment and phonetic stress assignment. Based on that, I will discuss changes

made to adapt the system to the phoneme domain. In the end, experiment results

and analysis are provided.

6.1 Differences in Phoneme Domain

The task of stress assignment actually becomes easier in phoneme domain. Same

as stress assignment on letters, the task is defined as marking specific vowels that

bear the stress. Fortunately, in phonetic representations, each syllable only has one

vowel phoneme. For instance, the word pronounce is phonetically transcribed as

[pr@nAUns] in IPA. The two vowel sounds are transcribed as [@] and [AU] respec-

tively. In contrast, the orthographic form has 4 vowel letters. Admittedly, there are

more vowel phonemes than vowel letters(e.g. a,e,i,o,u,y) as shown in Figure 6.1.

However, the SUBSTRING will still greatly benefit from the convention of the pho-

netic transcription. First of all, knowing the set of vowel phonemes, the number of

substrings generated is always equal to the number of syllables in a word as there
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Figure 6.1: 24 Englis vowels in DISC format together with example words and
corresponding IPA transcription. Adapted from (Baayen et al., 1996)

is exactly one vowel phoneme in each syllable 1. Secondly, the number of possi-

ble patterns also becomes smaller as the average length of the substring sequence

becomes shorter. Therefore, I expect better performance on phonemes.

1There are also some exceptions. In English, a syllable might not have any vowel phoneme
but syllabic consonants. However, those exceptions can be ruled out by referring to a table like
Figure 6.2
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Figure 6.2: Englis syllabic consonants in DISC format together with example words
and corresponding IPA transcription. Adapted from (Baayen et al., 1996)

Word Substrings Pattern Word’
w → s → t → w̄

æbstrækt → æb-ræk → 0-1 → æbstrǽkt
prisid → ri-sid → 2-1 → prı̀sı́d

Table 6.1: The steps in the stress prediction system (with examples in phonetic
representations): (1) word splitting, (2) support vector ranking of stress patterns,
and (3) pattern-to-vowel mapping.

6.2 Adapt SVM Ranker to The Phoneme Domain

The most significant change made to the system is the set of vowels for each of the

three languages. In the letter domain, a, e, i, o, u, y are constantly treated as vowels

for all the three languages. In the phoneme domain, each language has its own set of

vowels. However, besides the changes made to vowel set, no additional changes are

made to the system. The system still works in the three-step framework as shown

in Table 6.1

Similarly, 4 different systems are compared:SUBSTRING, ORACLESYL,

ORACLEVOWELSPLIT, and TOPPATTERN. The choice between different splitting

methods becomes much easier as the number of substrings produced by all systems

is always equal to the number of actual syllables.

6.3 Experiments and Results

The training, development, and testing data are the same as those used in the in

previous chapter except that phonetic transcriptions are used. In CELEX, stress
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System Eng Ger Dut
P+S P P P

SUBSTRING 96.2 98.0 97.1 93.1
ORACLESYL 95.4 96.4 97.1 93.2
ORACLEVOWELSPLIT 96.7 97.5 96.9 92.8
TOPPATTERN 66.8 68.9 64.1 60.8

Table 6.2: Stress prediction word accuracy (%) on phonemes for English, German,
and Dutch. P: predicting primary stress only. P+S: primary and secondary.

markers are put right at the beginning of each syllable. The mapping of stress

markers to specific phonemes is straight-forward, given there is only one vowel

phoneme in each syllable. The accuracy is also evaluated at word level. Table 6.2

provides results for English, German, and Dutch.

The performance of SUBSTRING is excellent. It achieves 98.0% accuracy in

predicting primary stress for English, 97.1% for German, and 93.1% for Dutch.

It also predicts both primary and secondary stress in English with high accuracy,

96.2%. Performance is much higher than the baseline accuracy, which is between

60% and 70%.

As expected, the performance on phonemes is always better than that on letters:

almost 25% reduction in error rate for each language. The ORACLESYL does not

outperform in all three languages anymore as SUBSTRING can also split a word in

accordance with the actual number of syllables. Therefore, perfect syllabification

might not be needed for stress assignment on phonemes.

The system represents a major advance over the previous state-of-the-art in pho-

netic stress assignment. For predicting stressed/unstressed syllables in English,

Black et al. (1998) obtained a per-syllable accuracy of 94.6%. Bagshaw (1998)

obtained 65%-83.3% per-syllable accuracy using Church (1985)’s rule-based sys-

tem. In contrast, my systems achieves 96.2% per-word accuracy for predicting both

primary and secondary stress.

Numbers of previously reported word accuracy are also much lower. For pre-

dicting both primary and secondary stress, Coleman (2000) reported 69.8% word

accuracy. The most comparable work is Pearson et al. (2000), in which the global

statistics achieved 81% word accuracy while the joint approach improved it to 87%.
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Figure 6.3: Pattern features show benefits for all three languages on phonemes

Same as letters, the stress pattern feature also has a significant impact on the

system’s performance. Figure 6.3 compares word accuracy on phoneme side with

respect to the appearance of pattern feature.

To make all results comparable with those on letters. I also replicated the exper-

iments on lemma splitting set, the results are shown in Figure 6.4. Without much

surprise, the numbers on dataset split by lemma id are all lower than on those split

randomly.

6.4 Conclusions

I successfully adapted SVM Ranking approach to the problem of stress assign-

ment on phonemes. Except for the minor changes made to accommodate phoneme

symbols for different languages, the rest of the system remains the same. The rank-

ing approach to stress assignment clearly outperforms previously reported systems

such as Black et al. (1998), Coleman (2000), and Pearson et al. (2000) on English.

Moreover, it is again proved to be language independent by showing excellent per-

formance on both German and Dutch.
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Figure 6.4: Comparisons of random splitting and lemma splitting for three lan-
guages on phonemes. System compared: SUBSTRING, Training Size: 55k.
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Chapter 7

Combining with Letter to Phoneme
Conversion

Improving the stress assignment of L2P systems is one of the main objectives of

this thesis. Letter to phoneme conversion seeks to convert orthographic form of

words to their phonetic forms, which are represented by a set of phonetic sym-

bols. Lexical stress is important to L2P systems in terms of both naturalness and

accuracy of pronunciation. However, I found the problem of stress assignment was

overlooked in many existing L2P. Some only predict primary stress markers (Black

et al., 1998; Webster, 2004; Demberg et al., 2007), while those that predict both

primary and secondary stress generally have poor performance (Bagshaw, 1998;

Coleman, 2000; Pearson et al., 2000). This chapter will discuss how to incorporate

my stress prediction model with a current state of art L2P system (Jiampojamarn

et al., 2008). I will first briefly introduce the L2P system under exploration, then

compare two different ways to incorporate my lexical stress model, and last, show

the improvements made.

7.1 The L2P System

The system is a data-driven sequence predictor that is trained with supervised learn-

ing. The score for each output sequence is a weighted combination of features. The

features include all letter n-grams that fit within a context window, HMM-like tran-

sition features that express the likelihood of the output phoneme sequence, and

linear-chain features that bind the phoneme sequence with the letter n-grams. The

58



feature weights are trained using the Margin Infused Relaxed Algorithm (MIRA) (Cram-

mer and Singer, 2003), a powerful online discriminative training framework. Like

other recent L2P systems (Bisani and Ney, 2002; Marchand and Damper, 2006;

Jiampojamarn et al., 2007), this approach does not consider modelling of stress

patterns.

7.2 Combining Stress and Phoneme Generation

As discussed in Chapter 4, various approaches have been tried to generate stressed

phonemes. First of all, the most direct way is to treat it as a post process. That

is, phonemes are first generated regardless of stress. Then a separate stress predic-

tion model will predict the stress based on the phonemes. Many earlier systems

took this approach (Bagshaw, 1998; Coleman, 2000). Unfortunately, the perfor-

mance was poor. Secondly, both van den Bosch (1997) and Black et al. (1998)

argued that stress should be predicted at the same time as phonemes. This can be

accomplished by simply expanding the output set to distinguish stressed and un-

stressed phonemes. The joint process appears to be superior to the post process and

is adopted in several recent works. For instance, Demberg et al. (2007) produced

phonemes, stress, and syllable-boundaries within a single joint n-gram model. Pear-

son et al. (2000) generated phonemes and stress together by jointly optimizing a

decision-tree phoneme predictor and a stress predictor based on counts of stressed

and unstressed phonemes. Thirdly, Webster (2004) first assigned stress to letters

based on correlations between stress positions and word affixes. In this sense, the

input set was expanded. Then the stress markers were used as extra features to

predict both phonemes and stress jointly.

Inspired by the above approaches, I adopt two different ways to incorporate

my stress prediction model with any L2P Systems. One way is to provide stressed

word forms as described in Webster (2004); the other is to generate stress as a post

process. In experiments, 4 different systems are compared 1.

1) JOINT: The L2P system’s input sequence is letters, the output sequence includes
1Dou et al. (2009) described a constraint approach, which filtered the output of the JOINT system

by removing phoneme sequences whose stress patterns have never been observed
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System Eng Ger Dut
P+S P P P

JOINT 78.9 80.0 86.0 81.1
POSTPROCESS 86.2 87.6 90.9 88.8
LETTERSTRESS 86.5 87.2 90.1 86.6
ORACLESTRESS 91.4 91.4 92.6 94.5
Festival 61.2 62.5 71.8 65.1

Table 7.1: Combined phoneme and stress prediction word accuracy (%) for En-
glish, German, and Dutch. P: predicting primary stress only. P+S: primary and
secondary.

phonemes+stress.

2) POSTPROCESS: The L2P system’s input is letters, the output is phonemes. It

then applies the SVM stress ranker (Chapter 6) to the phonemes to produce the

full phoneme+stress output.

3) LETTERSTRESS: The L2P system’s input is letters+stress, the output is phonemes+stress.

It creates the stress-marked letters by applying the SVM ranker(Chapter 5) to the

input letters as a pre-process.

4) ORACLESTRESS: The same input/output as LETTERSTRESS, except it uses the

gold-standard stress on letters.

The first approach uses only local information to make predictions (features

within a context window around the current letter), which is used to compare with

the power of my ranking approach to stress assignment. To compare with pre-

vious approaches, I also generated stress and phonemes using the popular Festi-

val Speech Synthesis System 2 (version 1.96, 2004) and reported its accuracy on

phoneme+stress.

7.3 Experiments

The experiment data is the same as those used in Chapter 5 and Chapter 6. Word

accuracy results for predicting both phonemes and stress are provided in Table 7.1.

2http://www.cstr.ed.ac.uk/projects/festival/
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First of all, the JOINT approach, which simply expands the output set, is 4%-

8% worse than all other comparison systems across the three languages. These

results clearly indicate the drawbacks of predicting stress using only local infor-

mation. Most errors made by the JOINT approach include generating nonsensical

stress patterns, such as multiple primary stress or no primary stress. In English,

both LETTERSTRESS and POSTPROCESS perform best, while POSTPROCESS is

the highest on German and Dutch. Given the above results, it is hard to claim which

is the best way to incorporate stress into a L2P system. The answer could depend

on the performance of L2P systems, stress assignment algorithms, and languages.

Results using the oracle letter stress show that given perfect stress assignment on

letters, phonemes and stress can be predicted very accurately, in all cases above

91%.

Unfortunately, I found that the accuracy of phoneme prediction alone is quite

similar among all the systems. The gains over the JOINT on combined stress

and phoneme accuracy are almost entirely due to more accurate stress assignment.

However, utilizing the oracle stress on letters markedly improves phoneme predic-

tion in English (from 88.8% to 91.4%). This can be explained by the fact that

English vowels are often pronounced differently depending on their stress status.

Predicting both phonemes and stress is a challenging task, and each of the com-

bined systems represents a major improvement over previous work. The accuracy

of Festival is much lower even than the JOINT approach, but the relative perfor-

mance on the different languages is quite similar.

The most directly comparable work is van den Bosch (1997), which also pre-

dicts primary and secondary stress using English CELEX data. However, the re-

ported word accuracy was only 62.1%. Three other papers report word accuracy on

phonemes and stress, using different data sets. Pearson et al. (2000) reported 58.5%

word accuracy for predicting phonemes and primary/secondary stress. Black et al.

(1998) reported 74.6% word accuracy in English, while Webster (2004) reported

68.2% on English and 82.9% in German (all primary stress only). Finally, Demberg

et al. (2007) reported word accuracy on predicting phonemes, stress, and syllabifi-

cation on German CELEX data. They achieved 86.3% word accuracy.
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7.4 Conclusions

The problem of stress assignment has been overlooked in previous L2P systems. I

investigated several different approaches to stress assignment in L2P systems and

chose two different ways to incorporate my stress prediction model into a state of art

L2P system. Experiment results show that my stress prediction model can greatly

improve the performance of the existing L2P system. Moreover, the resulting sys-

tem also achieves a major advance over all previous systems.
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Chapter 8

Conclusions and Future Work

This thesis described a powerful data driven method for automatic stress assign-

ment. Taking benefits from a discriminative ranking approach, my system out-

performs all existing systems on English, German, and Dutch for both letters and

phonemes.

Viewing stress assignment as a ranking problem, the system naturally takes lin-

guistic constraints on lexical stress into account, avoiding generation of nonsensical

stress patterns. When the problem is so formulated, an SVM ranker turns out to be

an excellent formalism for choosing the correct stress patterns from a limited set of

alternatives. The SVM ranker not only allows for an extensive feature set, but also

searches for the optimal solution as long as adequate training data is available.

The substring features are language independent, which allows the system to

work without syllabifications. However, I showed that the system could achieve

even better result with perfect syllabification. The learnt feature weights also agreed

with some previous theories on lexical stress. That is, each syllable has its own

probability of being stressed. Moreover, whether it will receive primary or sec-

ondary stress depends on the stress probability of other syllables and its location in

the word.

When working in tandem with a state of the art L2P system, the system re-

duced the total error of stress assignment by up to 40%. Furthermore, the combined

system also achieved a major advance over all previously reported systems.

There are also several limitations of this work that need to be addressed in the

future. First of all, part of speech, which is usually viewed as an important feature in
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stress assignment, was not considered in this thesis. Further work needs to be done

to include this feature when it plays an important role in a specific task. Secondly,

the two approaches that integrated the stress model into a L2P system were simple

solutions. From previous research experiences, a joint approach that maximizes

probability of both phoneme and stress sequences is expected to give even better

results than a pipeline system.
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Appendix A

Implementation Details

The implementation details and usage of the system are presented in three main

steps as discussed in Chapter 5.

A.1 Word Splitting

A.1.1 Letters

Two different ways were presented to split words into substring sequences:

SUBSTRING and ORACLESYL. They have been implemented by

letterexamples.pl and lettersybexamples.pl respectively.

The letterexamples.pl does not only generate substring sequences but also stress

patterns. It converts stressed word forms to their corresponding stress patterns and

substring sequences as shown below.

pro′nounce → 0− 1− 0− 0 ro− no− un− ce

The input contains stressed word forms, with a single quote sign ’ for primary stress

and double quote sign ” for secondary stress. If the word does not contain any

stress markers, the output stress patterns will be all 0s. The following is a sample

command for running the script.

cat inputfile | ./letterexamples.pl > outputfile

The lettersybexamples.pl generates both stress patterns and substring sequences

on the basis of perfect orthographic syllabification. Therefore, a syllabification
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SUBSTRING ORACLESYL

English ephonexamples.pl ephonsybexamples.pl
German gphonexamples.pl gphonesybxamples.pl
Dutch dphonexamples.pl dphonsybexamples.pl

Table A.1: Scripts for splitting words in their phonetic forms).

database needs to be prepared according to the format as shown in the following

example.

pronounce pro− noun− ce

The script takes maximum 3 arguments to run. Following is a sample command.

./lettersybexamples.pl databasefile inputfile (chunk) > outputfile

The first argument is the name of the syllabification database file. The inputfile

should contains words in their stressed forms. The last argument is optional. When

it equals to ”chunk”, consonants not neighboring any vowel letters in a syllable will

be discarded.

A.1.2 Phonemes

The above two scripts work for all three languages. However, since each language

has its own set of phonetic symbols, different scripts have been written. They are

presented in Table A.1 according to their purposes.

The scripts in the SUBSTRING column can be run as the following example:

cat inputfile | ./ephonexamples.pl > outputfile

The inputfile should contain phoneme strings with stress markers.

The scripts in the ORACLESYL column can be run as:

./lettersybexamples.pl inputfile > outputfile

The inputfile contains syllabified phonetic strings with stress markers: pr@−n6n−
s. The hyphen stands for the syllable boundary.
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Arguments Explanation
-r Set 1 to re-create the feature vectors.
-c Regularization parameter of SVM
-k Kernel, 0 for now
-t Amount of data used for training : but

0 means use all.
-s Name of data sets to use. Ordered as:

training development testing

Table A.2: Explanations for SVM ranker arguments
.

A.2 SVM Ranking

The example files generated by word splitting corpus are used to train an SVM

ranker. First of all, features are extracted for training, developing, and testing by

a shell program—featureExtraction.new.sh. The following command gives an

example.

./featureExtraction.new.sh trainfile devfile testfile

The trainfile, devfile, and testfile files are outputs of word splitting scripts dis-

cussed in the previous section.

Then an SVM ranker is ready to be trained and tested by running runSVM.sh.

The files passed to this script have to be the same as those passed to

featureExtraction.new.sh. The arguments passed to an SVM can be modified by

changing runSVM.sh. Details are explained in Table A.2.

A.3 Mapping

The mapping process transfers unstressed form of words into their stressed form

according to output stress patterns. Based on the definition of SUBSTRING and

ORACLESYL splitting method, mappings are straightforward. Each number in the

output stress patterns corresponds uniquely to either a single vowel letter or a syl-

lable of the input words depending on the splitting method used.
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