
Be strong and courageous. Do not be afraid, and do not be dismayed.

— אֱלה³י יְהוָה 1250 B.C.

University of Alberta

Time and Throughput Efficient Scheduling for Data Gathering in Wireless Sensor
Networks

by

Evandro de Souza

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Evandro de Souza
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.

To the Only One worthy
to receive glory and honor and power

Abstract

Wireless sensor networks have become a very important tool for monitoring physical and

environmental conditions over a wide area. These networks are distributed collections of

small sensor nodes. Typically, sensor nodes collect data that must converge to a single

sink location, possibly across multiple hops. The data on the way to sink location can be

aggregated inside the network. This aggregation convergecast process requires significant

coordination between the sensor nodes in the selection of routes, and in the scheduling of the

times for data transmission. Both impose considerable restrictions on the communication

protocols.

In this thesis, we study problems of routing and scheduling in wireless sensor networks

when precedence and resource constraints requirements are present. Instead of looking for

a schedule and logical topology that have been designed for a generic network or traffic

demand, we study collision-free scheduling and logical topology solutions for applications

restricted by both constraints.

We propose a model for the aggregation convergecast problem using constraint satisfaction

to extract characteristics of optimal solutions and to expose the limitations of current solu-

tions in the literature. Using the characteristics observed, we propose the construction of a

logical topology that balances the effects of both constraints on the data collection schedule

length. A typical solution for the problem encompasses two phases, a initial aggregation

tree selection, followed by the node transmission schedule. We show that the scheduling

part can be modeled as a Mixed Graph Coloring, and we propose a scheduling solution.

Departing from the emphasis on schedule length (delay) minimization, we study the prob-

lem of throughput-oriented solutions, where the data collection rate is of higher importance,

instead of delay. We relax the restriction that all precedence between nodes must be sat-

isfied within a single collection period, and use pipelining to increase the data collection

throughput.

Acknowledgements

The successful conclusion of this PhD is not fruit of the isolated effort of a single person,
but it is the combined investment of several people, even before it started.

Foremost, I acknowledge the effort and dedication of my family: my parents, my wife and
son. My father (Delci Barbosa de Souza) and my mother (Eda Maiolino de Souza) never
faulted on providing me with the stimulus and resources to continue my studies. Their
dedication is still a solid example to me. My wife Nilcéia is the best person I ever met.
Her unconditional love and support made it possible for me to achieve today’s success. She
shared my achievements and failures. Her unconditional support strengthened me through
the ups and downs of this journey. My son Gabriel is my reminder that life is not only study
and work.

I would like to express my deepest gratitude to my advisors Dr. Ioanis Nikolaidis and Dr.
Pawel Gburzynski for their excellent supervision throughout the years. The countless hours
of discussion and paper revision, as well as out-of-the-box thinking, bore several fruits,
and finally, the completion of my Thesis. I extend my gratitude to the supervisory and
examining committee members.

I am also thankful to several fellow PhD students that directly or indirectly helped me during
my PhD program: Amin Jorati, Baljeet Malhorta, Benyamin Shimony, Feng Chen, Filipe
Mesquita, Ken Bauer, Levi Santana, Nicholas Boers, Sajib Barua, and Saman Vaisipour.

Finally, I would like to thank the University of Alberta who provided me with financial
support and opportunity as Teaching Assistant. The contact with undergraduate students
and experienced professors enriched my professional experience.

Table of Contents

1 Introduction 1
1.1 Wireless Sensor Network Applications . 1
1.2 Previous State-of-Art . 4
1.3 Thesis Organization . 5

2 Background and Assumptions 8
2.1 Requirements and Constraints . 8
2.2 Solution Parts . 12

2.2.1 Logical Topology . 12
2.2.2 Schedule . 14

2.3 Design Objectives . 16
2.4 Models . 17

2.4.1 Interference . 17
2.4.2 Network and Application Models 18
2.4.3 Optimization Problem . 19

3 A Constraint Satisfaction Model for Aggregation Convergecast 21
3.1 Introduction . 21
3.2 Constraint Programming Overview . 22

3.2.1 CSP Elements . 23
3.2.2 Gecode: Generic Constraint Development Environment 26
3.2.3 Modeling and Search Space Reduction 26
3.2.4 Constraint Programming in Networking 28

3.3 Aggregation Convergecast Tree . 28
3.4 Variables and Constraints . 29
3.5 Results . 32
3.6 Conclusions . 37

4 Augmenting the Two-Phase Approach Using Convergecast Restrictions 40
4.1 Introduction . 40
4.2 Background Basics . 42
4.3 Topology Selection . 44

4.3.1 Interference-Aware Aggregation Trees 44
4.3.2 Trees for Combined Interference and Precedence Constraints 47

4.4 Scheduling Model . 50
4.4.1 The Mixed Graph Coloring Problem 50
4.4.2 ACS as a MGC . 51

4.4.3 ACS Bounds . 51
4.4.4 Obtaining the Chromatic Number 53
4.4.5 A Branch-and-bound Algorithm 55

4.5 Experiments and Discussion . 58
4.5.1 Balancing Precedence and Resource Constraints 59
4.5.2 Generalization of Aggregation Convergecast Scheduling Model . . 64

4.6 Previous Work . 67
4.7 Conclusions . 71

5 Pipelined Aggregation Convergecast 72
5.1 Introduction . 72
5.2 Related Work . 75
5.3 Preliminary Definitions . 75
5.4 Pipeline Scheduling Algorithm . 78

5.4.1 Complexity Analysis . 84
5.5 Experiments . 85

5.5.1 Discussion . 86
5.5.2 Optimal Solution for Small Networks 92
5.5.3 Energy Consumption . 93

5.6 Conclusion . 96

6 Conclusion and Future Work 98
6.1 Contributions . 99
6.2 Future Work . 102
6.3 Future Directions . 105

Bibliography 108

Appendix A Graph Theory Concepts 116

List of Tables

2.1 Aggregation Convergecast Parameters . 19

3.1 Examples of Gecode constraints . 26
3.2 Model Variables . 30
3.3 Computational results from random graphs 35
3.4 Minimal Tree Size for 15-node graphs . 36

4.1 Scheduling Class Parameters . 67
4.2 Scheduling Implicit Parameters . 67
4.3 Multiprocessor Task Equivalence . 68
4.4 SLT vs. BDMRST (200 nodes, α = 1.25, single channel) 69
4.5 SLT vs. BDMRST (200 nodes, α = 2.25, single channel) 69

5.1 Pipelined Aggregation Convergecast Optimal Solutions 92

List of Figures

1.1 Factory Sensor Net . 2
1.2 The Movement of MTBE in the Environment 3

2.1 Convergecast Framework . 9
2.2 Hierarchical Topologies . 12
2.3 Tree construction criteria . 13
2.4 Aggregation Convergecast with Precedences in a Single-Round 14
2.5 Pipelined Aggregation Convergecast . 15
2.6 Interference Model . 18

3.1 Schedule solution for example 8-node graph. 29
3.2 Types of interference . 31
3.3 Schedule Length Comparison . 33
3.4 Tree Size Comparison . 34
3.5 Graph 20 Nodes - Density 0.400 . 38

4.1 Use of a conflict graph to create a schedule for ACS 43
4.2 Interference Measurements . 45
4.3 Tree cost using Xarc metric. 48
4.4 Reduction from AGS to MGC and Complete Edge Orientation. 52
4.5 Conflict Sets . 56
4.6 Schedule generated by each tree created using different α 60
4.7 Tree Size of trees using different α . 61
4.8 Interference Weight Count for Trees using different α 62
4.9 Comparison of average schedule obtained and lower bound for different α . 63
4.10 Disjunctive Graph for Job-Shop problem 65
4.11 Simple job-machine conversion . 68
4.12 Job-machine conversion by clique decomposition 68

5.1 Throughput improvement using pipelining 74
5.2 Execution of Algorithm 4 . 82
5.3 Pipeline of Algorithm 4 . 83
5.4 Schedule Length . 87
5.5 Aggregate Throughput . 87
5.6 Snapshot Collection Delay . 88
5.7 Maximum In-Degree . 88
5.8 Throughput vs. Delay . 89
5.9 Schedule Length vs. Delay . 89

5.10 500 Nodes: Throughput vs. TX Range . 90
5.11 500 Nodes: Delay vs. TX Range . 90
5.12 Tree Radius . 91
5.13 Relationship between Schedule and Maximum Node Degree 94
5.14 Energy Consumption Rate According to Node Density 95

6.1 Schedule Length for Dynamic Strategies and WIRES 104
6.2 Node degree in the Routing Topologies 105

List of Acronyms

ACS Aggregation Convergecast Scheduling
ACSPIPE Aggregation Convergecast Scheduling Pipeline
BDMRST Bounded-Degree Minimum Radius Spanning Tree
BFS Breadth-First search
BSPT Balanced Shortest Path Tree
CBS Constraint-Based Scheduling
CDS Connected Dominating Set
COP Constraint Optimization Problem
CP Constraint Programming
CPU Central Processing Unit
CSP Constraint Satisfaction Problem
DAG Directed Acyclic Graph
DAS Distributed Aggregation Scheduling
DFS Depth-First Search
GECODE Generic Constraint Development Environment
ILP Integer Linear Problem
LAST Light Approximation Shortest Path Tree
LDS Limited Discrepancy Search
LSP Longest Shortest Path
MAC Media Access Control
MDB Minimum Delay Broadcast
MCA Minimum Cost Arborescence
MGC Mixed Graph Coloring
MIMO Multiple Input Multiple Output
MINT Minimum Interference Network Topology
MIT Minimum Interference Tree
MTBE Methyl Tert-Butyl Ether
MTS Multiprocessor Task Scheduling
NP Nondeterministic Polynomial Time
PAS Postorder Aggregation Scheduling

SDA Shortest Data Aggregation
SISO Single Input Single Output
SLT Shallow Light Tree
SPT Shortest Path Tree
TDMA Time-Division Multiple Access
TS Tree Size
UDG Unit Disk Graph
X-MAC Low Power MAC
WIRES Weighted Incremental Ranking for convergEcast with aggregation Scheduling
WSN Wireless Sensor Networks

Chapter 1

Introduction

1.1 Wireless Sensor Network Applications

Wireless sensor networks (WSN) are distributed collections of small devices. Each de-

vice is equipped with a processing capability to execute small applications, a wireless radio

transceiver to exchange information with other devices, and sensors to collect information

about the environment. Sensor network applications include military sensing, physical se-

curity, environment monitoring, building and structures monitoring, among others [29].

By their nature, wireless sensor networks have resource and performance constraints. The

nodes are usually battery powered, which imposes a severe energy restriction to the applica-

tions. The processor usually also has a limited processing capability. Wireless communica-

tion has its own limitations. Multi-hop communication may be required to compensate for a

node’s short transmission range, which increases the possibility of congesting the wireless

media.

These limitations demand an integrated design approach, a combination of algorithms and

protocols such that the use of scarce resources can be optimized toward a specific goal.

Therefore, customized solutions are desirable, instead of using solutions optimized for an

unspecified communication pattern [40, 77, 84] or a generic data demand [21].

Let us consider the case of monitoring a region subject to fast changing environmental con-

ditions, like when background radiation level increases, indicating the presence of radiation

sources [80, 90] or when a contaminant spill alert is triggered and its underground transport

has to be monitored [11, 42] (exemplified on Figures 1.1 and 1.2). Under these circum-

stances, a monitoring network has to be designed with specific requirements in mind. A

1

minimum delay data collection may be necessary for analysis and rapid response; wireless

may be the only possible way to interconnect monitoring sensors to the collecting point;

very little or no mobility is required from the sensors, which are placed in predetermined

points on the monitored area or surrounding a possible toxic contaminant area; a contin-

uous data flow may be necessary to be collected for analysis; in-network aggregation of

sensed data (combination of flows of information in intermediate nodes before the collec-

tion point) may be required to reduce the amount of traffic and reduce the energy used in

the transmissions; different queries may be issued to evaluate the extent of affected areas

and any specifics of the hazard condition (ex. pH, redox condition in groundwater, etc); and

may not be necessary to know the exact reading of a specific sensor, but an average or the

maximum value over a region.

Figure 1.1: Factory Sensor Net

The same scenario may require an application with a different set of requirements and goals.

Instead of collecting data in the minimum amount of time, an application may be interested

in taking periodic samples of the monitored area, transmit them to a central controller,

where the variation of the observed condition are reconstructed and analyzed. The quality

of the reconstruction does not rest more on the collection delay, but on the throughput of

field measurement snapshots arriving at the central controller. Data aggregation can still be

used, however the system optimization criteria and requirements are different.

Using the previous scenario and applications as example, one could design an algorithmic

solution for data collection, using the same design for applications with different goals,

without understanding which constraints are appropriate for each application, and how the

outcome would be affected. This understanding is especially relevant for problems whose

solution encompasses more than one aspect, as is the case with network application, where

2

Figure 1.2: The Movement of MTBE in the Environment
Taken from [1]

a joint routing and scheduling solution is required.

Similarly, one could also design a solution addressing only specific restrictions, without

efficiently combining another relevant constraint. This biased design leads to inefficiencies,

as one constraint has not been taken into account. This incomplete approach precludes

the overall solution from achieving its best performance. For example, a selected logical

topology may not work as well as it could, because it was selected to minimize the effect of

only one constraint.

The existence of suitable models, with comprehensive and clear constraints, is a necessary

tool to help design applications and evaluate their performance. Some research in wireless

sensor networks is restricted to formally defining the problem, in some mathematical form

(like Integer Linear Problem (ILP)), without comparing the model output with the output

produced by their proposed algorithm [26, 76].

The environment monitoring example presented before calls for distinct requirements: (1)

the use of some form of in-network data aggregation to decrease the amount of data trans-

mitted; (2) keeping the schedule length short, for the sake of quick application response, or

for the sake of collection throughput; (3) the need of a balanced routing and scheduling so-

lution, because of their interdependency. The importance of the all-to-one communication

pattern in wireless network applications, the incomplete understanding of the constraints re-

stricting data collection performance, and the challenge of balancing routing and scheduling

in a single solution raised our interest in aggregation convergecast. It clearly combines the

selection of a suitable logical topology (routing), with the selection of a feasible node trans-

3

mission schedule (scheduling), while having to satisfy a set of different, and sometimes

conflicting, constraints.

1.2 Previous State-of-Art

We found some limitations on the literature throughout the course of our research about

aggregation convergecast applications. The main limitations are described next.

• Absence of suitable models

Even though some effort has been done in the literature to provide a mathematical

model [48, 76] for aggregation convergecast, studies fall short to effectively use the

proposed models. A thorough investigation of the problem using such proper and

complete models could show hidden characteristics, and expose how the outcome

of the aggregation convergecast would be affected in face of changes in the design

objectives.

• Incomplete understanding of constraints

A direct consequence of the absence of suitable models is an incomplete understand-

ing of how and, in which circumstances, each constraint influences the solution.

Hence, a solution that addresses only one constraint may lead to results far from

the best possible solution that a problem can offer; or, in circumstances where its

influence is smaller, another influential constraint is overlooked. One example of this

limited approach is the use of the precedence constraint (when a node only trans-

mits after has received from all its children) at expense of the resource constraint

(interference for wireless networks).

• Restricted framework to design solutions

The incomplete understanding of the constraints induces a restricted framework to de-

sign solutions. If the importance of a type of constraint is lessened, only frameworks

that accentuate the other constraint are used. In our problem, this had happened with

precedence and resource constraints. Likewise, if one component of a joint routing

and scheduling solution is given preference over another part, the design is restricted

only to this part of the solution. This bias can be seen in the solutions for aggre-

gation convergecast in the literature. Virtually all studies propose solutions based

on two phases approach, each phase favoring one of the components of the solution

(aggregation tree and transmission scheduling). The majority of the studies address

4

the routing part first. No attempt was done to see the outcome of the problem if

the scheduling part is addressed first, and its impact on the results. Besides, as the

problem is partitioned in two phases, there is a possibility that each phase be mod-

eled separately, and studied as an independent problem, even though they are not

independent.

• No Use of Parallelism

The solutions found in the literature exploit any available opportunity to use spatial

parallelism of the transmissions as a form of increasing the throughput and reduc-

ing delay. However, the use of temporal parallelism, such as pipelining, is rarely

mentioned. Pipelining can be understood as a form of temporal concurrency, where

different nodes in a path toward the sink can transmit at the same time data from sep-

arate collection rounds. This form of parallelism has the potential of increasing even

more the application performance under certain circumstances.

Our research is a step forward in addressing these limitations. First, it proposes a perva-

sive model using Constraint Programming [33], to express separately each constraint. Such

model allows us to explore unclear aspects of the aggregation convergecast problem, and

highlights some logical topology shortcomings. Our study also contributes by extending

the classic conflict graph model [21] to attend the specific characteristics of the aggrega-

tion convergecast restrictions. Second, it addresses the effects of precedence and resource

constraints when non-conservative flows (when packets are aggregated or multiplied during

data collection) are present. We tackle both restrictions by balancing their influence on the

creation of a logical topology (aggregation tree). Third, our research expands the solution

frameworks by studying the effect of each restriction individually and their combination

on the logical topology and on the scheduling. Another approach followed to broaden the

solution options is by creating algorithms that address first the scheduling and subsequently

the routing. Finally, our research proposes the use of pipelining in aggregation converge-

cast, eliminating the requirement of having a single snapshot being completely collected in

a single schedule period.

1.3 Thesis Organization

We introduce in Chapter 2 notation, models, concepts and terminology used over the re-

maining of the thesis. We describe the concepts of in-network data processing, scheduling,

5

logical topology and wireless interference. We reveal the restrictions involved in develop-

ing a solution for aggregation convergecast, and the two elements by which a solution is

composed. Criteria for evaluating results are presented in the end.

In Chapter 3, we model the routing and transmission scheduling problem for aggregation

convergecast in wireless sensor networks as a Constraint Satisfaction Problem with the

objective of obtaining the shortest possible schedule for a TDMA frame that allows the

complete collection of data to the sink. All transmissions required for a completed data

collection to the sink node are to be scheduled in a single TDMA frame. Constraints related

to the topology, to the interference, and to the application logic, as well as their relationships

are modeled. We compare the solutions found running our model in a constraint solver and

the solutions found by existing algorithms in the literature.

Chapter 4 is dedicated to the creation of a solution that combines precedence constraints

with the constraints caused by interference in shared wireless medium, expressed as re-

source constraints. In the first part, we propose an aggregation tree construction that is the

synthesis of a tree tailored to precedence constraints and another tree tailored to resource

constraints. In the second part, we show that the scheduling component of the aggrega-

tion convergecast can be modeled as a mixed graph coloring problem. In the mixed graph,

arcs represent the precedence constraints and edges represent the resource constraints. The

mixed graph chromatic number corresponds to the optimal schedule length. Bounds for the

mixed graph coloring are provided and a branch-and-bound strategy is subsequently devel-

oped. We derive numerical results using the branch-and-bound strategy. The results allow

a comparison against the current state-of-the-art heuristics for the problem.

In Chapter 5, we study the aggregation convergecast problem from a different perspec-

tive. In contrast to studies that attempt to minimize the data collection delay, we aim to

increase the frequency (higher throughput) of snapshots received at the sink. To achieve

higher throughput, we use a form of concurrent collection of multiple snapshots through

the network, also known as pipeline. The use of pipeline forces us to abandon the usual

restriction of requiring that all precedence constraint be satisfied in a single schedule pe-

riod. This restriction is employed throughout the aggregation convergecast literature. In

our solution, we opt for a scheduling formulation based on sink reachability constraints.

Our solution reverses the usual order of steps found in existing algorithms, and produces

a schedule before the construction of the logical tree topology. We compare our results

against an algorithm that uses precedence constraints, and against another algorithm that

6

uses a variation of pipelining.

We conclude our thesis in Chapter 6. We present our contributions for knowledge advance-

ment in the aggregation convergecast problem. Among the contributions are some insights

that may require further investigation. The insights may open some exploration avenues

about new ways to construct an algorithmic solution. One of these avenues was explored

by Jakob’s work [60], with our participation. He addressed the problem of finding a time

efficient schedule and topology for aggregation convergecast in wireless sensor networks

by reversing the bottom-up to a top-down approach. After explaining the results of Jakob’s

work, we present future directions that our research may take.

Appendix A groups the notation, definitions and algorithms of Graph Theory used in the

thesis, serving us as guide reference and refresher to the reader.

7

Chapter 2

Background and Assumptions

2.1 Requirements and Constraints

Sensor network limitations require that applications be efficient according to some design

objectives. The most critical objective is energy conservation. Other areas can be impor-

tant as well, like collection latency, throughput, sensing coverage and path redundancy. In

the case of the application presented in Chapter 1, there are two objectives that we want to

address closely: first, the collection of information must be executed as quickly as possible

(latency), and second, the collection must be performed as frequently as possible (through-

put). The priority of each one is dependent of the application needs. One common appli-

cation characteristic is the need for a continuous flow of information, instead of a isolated

and single collection. The need for a continuous flow of information demands that the data

be periodically sensed and collected.

Let us consider the specific scenario described in Chapter 1. In that scenario an application

issues different requests and receives the corresponding responses. The application requires

a combined design of logical topology and node transmission schedule.

It would be inefficient for the nodes to contact the collecting station directly for the re-

sponse, yet it is important that information from each node is collected. Therefore, a node

will need to transmit to one of its neighbors for its sensed information to reach the collect-

ing node (see at Figure 2.1). This many-to-one communication paradigm, where data flows

from many nodes towards a single point, is known as convergecast [35].

When the number of nodes is large, the amount of data generated might be voluminous,

demanding significant communication and processing capability. Consequently, methods

8

for combining data at intermediate nodes are necessary for the reduction of the amount of

data that needs to be forwarded to the sink.

This scheme where data is combined at intermediate nodes is called in-network data pro-

cessing. This process allows intermediate nodes to execute (partially) this aggregation ac-

tivity. If the information flows are merged or aggregated, they will not retain their original

size. When information flows do not retain their original data volume we call then non-

conservative flows. This whole process of converging data to a single point and distilling

data on the way is called aggregation convergecast.

The execution of data aggregation, closer to the data sources, is a interesting way to reduce

data collection volume, especially when there are strong temporal and spatial correlation on

the sensed data. The use of aggregation convergecast may have a significant impact on en-

ergy consumption and network efficiency, because it reduces the number of transmissions,

increasing the expected network lifetime [43]. The reduction on the number of transmis-

sions also results in shorter schedules, because there are fewer packet transmissions to be

scheduled.

Figure 2.1: Convergecast Framework

In wireless sensor networks, the communication between two nodes is performed through

wireless media. Technological restrictions may not allow that two nodes access the wire-

less media at the same time. This limitation is due to the interference caused by a node

9

transmission to other nodes not intended to be receiving this transmission. Interference is a

form of resource constraint that limits the solution of aggregation convergecast.

An application may also have to ensure that all nodes in the network have opportunity to

contribute with their sensed information without incurring into additional transmissions.

This requirement can be fulfilled by restricting the time a node can transmit to only after its

predecessors have already transmitted. This mechanism is called precedence constraint.

The aggregation convergecast problem can be simplified to the case of a single snapshot

(data collection from all sensors) to be completely processed in a single round, single-

round constraint. If the data collection must be completed in a single round, a reduction on

the number of time slots has the effect of decreasing the collection latency and increasing

the throughput.

However, the single-round constraint may be too restrictive for some applications. If the

objective of an application is to have the highest collection throughput, independent of the

collection latency, the requirement of having to complete a snapshot collection in a single

round must be relaxed, and a form of pipelining should be adopted. Pipelining can be

understood as a form of concurrency, where different nodes in a path toward the sink can

transmit at the same time. Pipelining allows that a new data collection begins before the

previous one has been finished, such that there are more than one data collection being

executed at the same time.

A trivial, but essential requirement present in any feasible aggregation convergecast solution

is that there must exist at least one path from each sensor node to the sink, otherwise the

communication between some nodes and the sink would not be possible. We call this

restriction reachability constraint. An aggregation tree naturally satisfies this requirement.

This requirement will be further discussed in Chapter 5.

Our thesis studies the use and interaction of these mechanisms: non-conservative flows, re-

source constraints, precedence constraints, pipelining and reachability constraints. These

mechanisms affect the selection of the logical routing topology and the scheduling of trans-

missions in an aggregation convergecast solution. Let us formally define them.

1. Non-conservative flows

The flow conservation property states that the total flow f out of a vertex u toward

any vertex v other than the source s or sink t is zero (using the skew property [32])

10

∑
u∈V

f(u, v) = 0, v ∈ V −{s, t}. If the sum is not equal to zero, than we have a non-

conservative flow. When the sum is negative, there is more data exiting then entering.

If the sum is positive, there is more data entering the node than exiting.

2. Resource constraints

Resource constraint is defined as a restriction where a resource has limited capacity

to provide the service being requested. In our context, the use of wireless commu-

nication brings the possibility of different conflicts for the use of wireless media.

These conflicts cause failures which are summarized by the term interference. From

the point of view of communication (and our work), the most important failure is the

inability to receive. It happens when a message is not possible to be decoded by the

intended receiver.

3. Precedence constraints

Precedence constraint is defined as a restriction where an event can only occur after

another event or set of events have already taken place. Precedence constraint is also

called non-circular if a given event cannot be a predecessor of itself. In our context,

it means that a node only transmits after a precedence restriction has been satisfied.

4. Pipelining

Pipelining is a form of parallelism that explores the possibility of concurrent trans-

missions among nodes belonging to the same aggregation path. If nodes on a path

toward the sink is understood as serial stages in an assembly line, pipelining allows a

node (stage) to be scheduled (executed) as soon as its transmission (execution) does

not conflict with the aggregation (assembly) of the previous instance (product).

5. Reachability constraints

For a directed graph D = (V,A), the reachability relation of D is the transitive

closure of its arc set A, which is to say the set of all ordered pairs (s, t) of vertices in

V for which there exist vertices {v0, v1, · · · , vd} such that (vi−1, vi) ∈ A, ∀i 1 ≤

i ≤ d, [96]. In our context, we reduce the transitive closure to the arc set A′ of

ordered pairs (s, t = sink). We are only interested if each vertex is able to reach a

single special vertex, called sink.

11

2.2 Solution Parts

The aggregation convergecast solution is composed of two parts: the routing part and the

scheduling part. The routing part is expressed by a logical topology structure, or the nodes

and links where the sensed information flows toward the sink. The scheduling part rep-

resents the selection of the time when each transmission event (communication from one

node to another through a specific link) takes place, in order for the sensed information to

reach its destination. Both parts are closely related.

2.2.1 Logical Topology

One crucial ingredient for a WSN application is a carefully selected logical topology. De-

pending on which is the objective: minimize the collection latency per round, or maximize

the data collection throughput, a specific logical topology may be more appropriate. The

connections of the logical topology have to be selected such that they favor the selected

objective.

(a) Tree-Based (b) Cluster-Based

Figure 2.2: Hierarchical Topologies

Most studies propose the use of hierarchical structures. A tree-based approach, illustrated

on Figure 2.2(a), is a classic strategy, based on a hierarchical organization of the nodes in

the network. Tree-based topology is the simplest way to aggregate data flowing from the

sources to the sink. It defines a preferred direction to be followed when aggregating data

back to the sink. In this approach, a spanning tree, rooted at the sink, is constructed, then, it

is used to transmit queries generated by the sink to the nodes and to transmit back responses

from the nodes.

12

Trees can be constructed according to a variety of criteria. One of the most prevalent

schemes used is Shortest Path Trees (SPTs), where the hop-count from a node to the sink

is the minimum possible. It is exemplified in Figure 2.3(a). This approach is particularly

suitable to design aggregation functions and to perform efficient energy management. Of-

ten, optimal paths are calculated in a centralized way at the sink, by exploiting different

assumptions on the data correlation, and selecting the best aggregation points by means of

cost functions. Several works use this scheme [6, 24, 38, 75, 76]. From the point of view of

scheduling, the drawback of this scheme is that it only considers hop-count as the criterion

for creating a logical topology (precedence constraints), without regarding interference ef-

fects on the scheduling (resource constraints). An alternative is the use of non-SPT topolo-

gies (Figure 2.3(b), where the number of hop-counts from some nodes to the sink are not

minimal.

(a) SPT Topology (b) Non-SPT Topology

Figure 2.3: Tree construction criteria

The second common scheme is based on clusters, Figure 2.2(b). Cluster-based schemes

also consist of a hierarchical organization of the nodes in the network. However, nodes

are now subdivided into clusters. Special selected nodes, referred as cluster-heads (green

nodes in Figure 2.2(b)), are elected in order to disseminate data locally and to transmit

aggregated results back to the sink. Cluster-heads are frequently used to perform some

13

control function over the members of its cluster. DAS and PAS [112, 113] are examples

of this scheme. Cluster-based topologies suffer from the same drawback of SPT-based

topologies; and even worse, they create a bottleneck at the cluster-heads. The combination

of precedence constraints and interference forces the serialization of transmissions from the

cluster members to the cluster-head.

2.2.2 Schedule

Scheduling is the process of assigning a specific time to an activity to be executed. It

can be periodic, meaning that after all activities are executed a new cycle starts again. In

the wireless sensor network context, it consists of assigning a specific time for a node to

transmit to another node.

In the absence of further requirement, a trivial schedule solution would be for one node to

transmit after another, sequentially. This would result in a schedule length n− 1. But WSN

applications generally require another design objective such as throughput maximization,

or network lifetime maximization. Such objectives preclude the use of this trivial solution.

Figure 2.4: Aggregation Convergecast with Precedences in a Single-Round

Formally, a schedule can be defined as a set S = T1, T2, ..., Tl, where Ti represents the

set of simultaneous transmissions executed on the time slot i, and l represents the length

14

of the frame (or cycle). A schedule is considerate valid with respect to some interference

model if the model allows to schedule all transmissions from S without failure (i.e. without

collisions) [107]. This problem is NP-Hard [84]. Figure 2.4 depicts an example of schedul-

ing with single-round constraints, where all precedence constraints are satisfied in a single

period. The design objective is to achieve the smallest schedule length. Figure 2.5 presents

an example of pipelined scheduling, relaxing the single-round constraints.

1

2

3

4

5

6

7

8

9

10

11 S={T1,T2,T3}

T1=(4,6,7,11)

T2=(1,3,8,9)

T3=(2,5,10)

T3

T2 T1

T2

T1

T2

T1

T3

T1

T2T3

Time Frame

Schedule

T1 T2 T3

Figure 2.5: Pipelined Aggregation Convergecast

There are two common types of scheduling in the literature: Link Scheduling [8, 56] and

Node Scheduling [40, 85, 109]. In link scheduling, the activation of a specific undirected

link uv is the element used to define a transmission. In node scheduling, nodes are used to

define the activation, and at least one of their neighbors receives the transmission.

Some wireless scheduling studies add additional restrictions. In the absence of a specific

application to address, an abstract traffic demand is created, and the solution must fulfill

this demand. The scheduling then varies according to the demand definition.

Some studies try to obtain the highest possible throughput, using all links/nodes available on

the communication graph [14]. They do not consider any specific logical topology because

all links are supposed to be used. They also do not have a specific control entity to receive

all information collected.

15

Other studies create a specific traffic demand, generally expressed in terms of arbitrary

source-destination pairs, or in terms of transmission rate, or in terms of amount of data to

transmit. Then, they search for the minimal possible schedule length l [22, 63].

These described studies have a common trace: the absence of a combination of resource

constraints (interference) and precedence constraints. In aggregation convergecast, these

requirements are present and restrict possible scheduling solutions. If the precedence con-

straints are not present, the scheduling problem becomes a classical graph coloring problem

[84], which has several heuristic solutions [41].

Another group of studies tries to obtain a solution based on a specific application and its

restrictions. They search for a schedule which optimizes a specific design objective. The

difference between this last group and the previous ones is the specificity of solution de-

manded by the application, instead of being a generic solution using all links and nodes or

to accommodate a uncorrelated traffic demand. We approach the scheduling from the point

of view of this last group.

2.3 Design Objectives

The data collection may have different objectives, depending on the application require-

ments. An application for the scenario presented in Chapter 1 can set the data collection

to achieve different design objectives: one objective can be to minimize the data collection

latency, and another design objective can be to maximize the data collection throughput.

It is also possible to design the system to improve both objectives together in a multi-criteria

optimization, or yet achieve first the best of a first objective, then try to optimize the next

one. The relevance of the objectives used in our thesis are described next.

• Latency Minimization

The minimization the data collection latency is relevant when an application is re-

quested to take actions based on deadlines, such as mission-critical and event-based

applications [59]. Minimization of latency may be attained by minimizing the sched-

ule length, however, it may depend of other of characteristics of the input network,

and also other restrictions.

• Throughput Maximization

Throughput maximization can be an important objective for large, dense networks

16

and for applications that require efficient delivery of large amounts of data. This

objective can be characterized by the rate at which collected information can be de-

livered to the sink [78].

The most used method to minimize the data collection latency and to maximize throughput

is the minimization of the schedule length. Small schedule length translates into quicker

data collection. If a complete data collection must be achieved in a single period, both

objectives are optimized at the same time, otherwise, they are decoupled, and a smaller

schedule length increases the throughput, but not necessarily the latency. The schedule

length minimization is, by far, the most used method to achieve such objectives.

2.4 Models

2.4.1 Interference

The use of wireless communication brings the possibility of different types of radio com-

munication failures [109]. The first type of failure occurs when a node attempts to send

multiple messages at once, or it tries to decode multiple messages at the same time. From

the point of view of communication, however, the most important failure is the inability to

receive. It happens when a message is not sufficiently decoded by the intended receiver.

Every transmission involves a sender node u and a receiver node v. If there is a concurrent

transmission from a third nodew, then the radio waves emitted byw interfere with the trans-

mission from node u at receiver node v. The transmission quality is affected negatively. In

the worst case, the receiver node v is unable to correctly interpret the transmission from

node u. This is called interference. There are two widely accepted models to characterize

interference in a wireless network, namely, the physical model and the protocol model [94].

The interference model is important to specify the relationship between the routing topology

and the scheduling of the transmissions. The routing topology will influence/restrict the

scheduling space (when a node can transmit) by the model of interference as well as the

scheduling will influence/restrict the routing topologies (paths select to transmit information

to the sink).

Figure 2.6 captures the essence of the model. Figure 2.6(a), 2.6(b), and 2.6(c) are the cases

where there is some type of conflict. In Figure 2.6(a), the transceiver v can not transmit to

transceiver w and receive from transceiver u at the same time. Figure 2.6(b) shows the case

17

u

v

w

(a)

u

w

v

(b)

w

uz

v

(c)

u w

v zz

(d)

Figure 2.6: Interference Model

where two transceivers u and w try to execute a transmission to the same transceiver v at

the same time, causing conflict. The transceiver v, in Figure 2.6(c), can not receive from

transceiver u if transceiver w transmits at the same time to transceiver z, because it causes

conflict. If in the three initial cases there is conflict, Figure 2.6(d) depicts a situation where,

even though transceivers u and w are in transmission range, they can execute transmission

concurrently, because the recipient of their respective transmission are out of range of each

other.

2.4.2 Network and Application Models

Let a wireless sensor network application be defined as an undirected connected graph

G = (V,E), where V represents the set of nodes and E represents the set of edges. Let

|V | = n be the number of nodes on the network and |E| = m be the number of links

wirelessy connecting nodes in the network. Let i be the unique identifier of each node, and

xposi and yposi its Cartesian coordinates. Each node i transmits with a power pwri. Let

s ∈ V be a central entity that coordinates all other nodes on the network. It is assumed that

s has full knowledge of the network in terms of node positions, transmission power, time

and application. The time is slotted.

Let S = {A(1), A(2), · · · , A(r), · · · , A(l)} be the schedule such that A(r) is the set of

active arcs −→uv ∈ E, where u represents the transmitter node and v represents the intended

receiver node during the slot r = {1, · · · , l}, where l represents the schedule length. Each

complete execution of the schedule S accounts for one period pj . The logical topology used

is defined by T =
⋃l
r=1A(r).

18

All nodes have precise knowledge about time, such that each node u transmits exactly on

its allowed time slot r. There is no partial transmission or segmentation, such that every

transmission from node u to node v begins and ends during the time slot r. Each time slot

r has a duration of one time unit.

Each node i is composed of one transceiver capable of half-duplex communication. In

simulations we adopt the (Unit Disk Graph) UDG model, where all nodes operate at a

single frequency, at the same power level. The transmission range dtr is fixed and equal

for all nodes. When the distance between nodes u and v is duv ≤ dtr, node u can transmit

and be received by v, and symmetrically, when node v transmits it will be received by u.

The interference range is assumed to be equal to the transmission range. The only reason

for a communication failure is due to interference. We assume link activation model [28]

where interference only matters at the receiver node. The scheduling solution needs to

be collision-free at each intended receiver, without need of carrier sense or other conflict

resolution protocol. All nodes are static.

The time used for the execution of the in-network data processing operation is negligible.

The aggregation is executed during the time slot when a node is receiving a transmission.

At each period pj , each node i generates a new sensor datum. A complete network-wide

aggregation regularly is completed in one period pj since the first period (non-pipelined),

otherwise it is declared that a complete network-wide aggregation is completed using more

than one period pj (pipelined). Every node must transmit in one and only one time slot

during a snapshot collection.

2.4.3 Optimization Problem

The formal optimization formulation for the aggregation convergecast problem has the pa-

rameters listed in Table 2.1. It follows the formal description of the problem presented in

[76]. A optimization model for the pipelined aggregation convergecast problem is presented

in Chapter 5.

xt(vi)(vi, vj) is a boolean variable, which, if evaluated to 1, indicates that arc −−→vivj is active

and a transmission from node vi to node vj takes place at time t(vi); if evaluated to 0,

indicates that this arc is not active at time t(vi). The optimization problem is defined as

follows.

19

Table 2.1: Aggregation Convergecast Parameters

n Number of nodes
vi Node i

vs Sink node
t(vi) Transmission time of node vi
r(vi) Recipient of transmission from node vi
l Maximum transmission time t (or schedule length)
Γ1(vi) One-hop neighbour set of node vi
xt(vi)(vi, vj) Transmission from node vi to node vj at time t(vi)

minimize l

such that:

∑
j∈Γ1(vi)\{vs}

l∑
t=1

xt(vi,vj) = 1 (2.1)

∑
j∈Γ1(vi)\{vs}

l∑
t=t(vi)

xt(vj ,vi) = 0 (2.2)

∑
j∈Γ1(r(vi))

x
t(vi)
(r(vi),vj) = 0 (2.3)

∑
j∈Γ1(r(vi)),vj 6=vi

∑
w∈Γ1(vj)

x
t(vi)
(vj ,vw) = 0 (2.4)

Restriction 2.1 enforces a single transmission per node, except for the sink node. Restriction

2.2 ensures that, once a node transmits, it can no longer be the recipient of any transmission

in the same period. Restriction 2.3 imposes that a node can not transmit and receive in

the same time slot (half-duplex). Restriction 2.4 express the requirement that can be no

interference at the receiver node. The problem formulated above has been proved to be hard

by Chen et al.[24], even if restricted to Unit Disk Graphs (UDGs). Therefore, proposed

solutions in the literature are heuristic approximations, or exhaustive search using some

combinatorial tool.

20

Chapter 3

A Constraint Satisfaction Model for
Aggregation Convergecast

3.1 Introduction

In this Chapter, we consider the modeling of aggregation convergecast problem in wire-

less sensor networks. We express the problem constraints in a manner compatible with a

constraint programming solver, and extract solutions for small size instances.

Contrary to general purpose computing and networking systems, wireless sensor network

systems are usually conceived with a specific application in mind. The application is typi-

cally the measurement and reporting of certain physical quantities. Little re-configuration

takes place in the post-deployment phase. Generality and flexibility are sacrificed in the

interest of reduced cost. This is to no small measure because of the limited node resources.

In this spirit, wireless sensor networks usually form their own isolated and specialized net-

work, allowing us to develop protocols tailored specifically to the application running on

them.

There is the potential for several combination of paths to aggregate the data in the aggrega-

tion convergecast problem. The union of those paths can be represented by a spanning tree,

which we call the aggregation tree. Determining the spanning tree and its corresponding

optimal makespan schedule has been shown to be an NP-hard problem [24].

The existing approximation heuristics decompose the problem into two steps: a spanning

tree construction, followed by scheduling, using some heuristic [24, 76, 112]. Shortest Path

Trees has been the favorite aggregation tree. However, as of today, there has been no clear

indication as to whether SPTs could result in an optimal schedule. The difficulty of course

21

for making any statement about the potential of SPTs is that the quality of the outcome

of all proposed approximations is a function of both the aggregation tree as well as of the

second stage, i.e., of the schedule construction heuristic (given an aggregation tree). In

other words, it has been unclear whether the SPT alone or the subsequent scheduling phase

is to be blamed when inefficient schedules are produced.

In this Chapter, we attempt to elucidate the tradeoffs behind the selection of the optimal

tree. To this end, we do not restrict the family of aggregation trees in any way, and we do

not perform any approximations, thus allowing us to observe if indeed the SPTs appear in

better, or even optimal, schedules than what the current literature produces. The evidence

suggests that the resultant aggregation trees is almost never SPTs and point to alternative

considerations that would be useful when constructing aggregation convergecast scheduling

heuristics.

This Chapter is conceived to present the aggregation convergecast problem in a standardized

Constraint Satisfaction Problem (CSP) form that ensures no misunderstandings about the

nature of the underlying optimization objective and constraints.

Section 3.2 presents an overview of Constrain Programming paradigm. It is followed by

Section 3.3, where we provide an overview of aggregation convergecast trees. Section 3.4

explains what are the variables and constraints used in our aggregation convergecast CP

model. Section 3.5 describes our findings using the model, and Section 3.6 provides the

conclusions.

3.2 Constraint Programming Overview

Constraint programming (CP) is a paradigm for solving combinatorial problems that has

roots on a wide range of ideas from artificial intelligence, computer science, databases, pro-

gramming languages, and operations research. Constraint programming is currently used

on many domains, such as scheduling, planning, vehicle routing, configuration, networks,

and bioinformatics [89]. Constraint programming is a paradigm where the idea is to specify

what the problem is by means of constraints rather than defining in detail the steps of how

to calculate the solution. Constraints are just relations, and a constraint satisfaction problem

states which relations should hold among the given decision variables. Once the problem

has been modeled, the search for solutions is left to a constraint solver.

22

Constraint solvers take a CSP, represented in terms of decision variables and constraints,

and find an assignment to all the variables that satisfies the constraints. An method is used

that alternates search and inference. Inference consists of propagating the information con-

tained in one constraint to related constraints. Such inference (usually called constraint

propagation) is useful since it may reduce the search space. The search encompasses the

search of the solution space using techniques like backtracking or branch-and-bound algo-

rithms.

In the following, we give a short overview on some notation and definitions related to

constraint programming. Most definitions follow the ones used in [33, 89].

3.2.1 CSP Elements

A constraint satisfaction problem consists of:

• a set of variables X = {x1, · · · , xk}

• a finite domain set D(xi) of possible values for each xi variable

• a finite constraints set restricting the values that the variables can simultaneously

assume

The CSP elements allow the programmer to model a problem by creating variables, limiting

them to a certain domain, and defining relations between two or more of them in the form

of constraints.

Constraints

A constraint C on X is a subset of the Cartesian product of the domains of the variables in

X . C is a subset of D(x1)× · · · ×D(xk). The tuple (d1, · · · , dk) ∈ C is a solution of the

problem. The domain D(xi) of a variable xi is often a set of integers or an enumerated set

of values. Another possibility are set variables whose values are sets. Each solution assigns

the value di to the variable xi, for all 1 ≤ i ≤ k. We also say that the assignment of a

solution satisfies C. If C = ∅, then there exists no assignment that satisfies C.

A solution to a CSP is an assignment of a value d ∈ D(x) to each x ∈ X , such that all

constraints are satisfied simultaneously. Solving a CSP is to decide whether a CSP has a

solution or not, to find some solution of the CSP, or to enumerate all solutions. Often for

23

a CSP, it is not enough to just find a feasible solution, but to find the optimum solution in

relation to a certain criteria. This leads us to the Constraint Optimization Problem (COP).

A very relevant COP is Constraint-Based Scheduling (CBS), described in [12].

Constraint Propagation

The limitations created by the constraints are implemented as propagators. Constraint

solvers, employ propagation, a process whereby values that do not hold for the constraints,

are removed from being possible values of the corresponding variables. The objective of the

propagation is to reduce the domain of the variables to either achieve a solved assignment

or fail.

Every time that a variable xi is assigned, or the domain D(xi) is modified, the propagators

associated to the modified variable are executed. The propagator checks if, with the reduc-

tion of the domain of xi, it is possible to prune the domains of other variables, meaning

that values from other domains can be removed without changing the set of solutions. This

process is called filtering. If a propagator is able to filter other domains, then this action

may trigger the execution of other propagators or another execution of the same propaga-

tor. This process is repeated until the domains reach a stable state or one of the domains

becomes empty.

In most cases, propagation alone is insufficient to solve a problem. Note that the result of

the propagation could be to fail, i.e., when one or more of the variables have no values left

in their domain. A problem is considered solved if each variable has exactly one value to

choose from. However, a problem can be distributable, if it is neither solved nor failed, or,

there are more than one possible values on the domain of the variables. To further reduce

the domain of a distributable case, branching is used. Branching is a way to reduce the

domains of the variables without losing accuracy by removing solutions. Branching takes a

copy of the variables, domains and constraints and adds a new constraint to it.

Search

The search techniques to explore the search space are backtracking search and local search.

A backtracking search performs a depth-search traversal of a search tree. A node fork-

ing represents alternative choices that are available to be examined to find a solution. The

constraints are used to trim forked subtrees with no solution. Backtracking is necessary to

24

assure that, if a solution exists, it will be found. During the execution of the exploration pro-

cess, values are assigned to variables according to the rules defined by the branchers. This

process only deals with the choices created by the branchers. By using only choices desig-

nated by the branchers, a search strategy is generic and can be reused for other problems.

The variables are assigned one after another. Filtering takes place after each assignment. If

the domain of a variable becomes empty, a backtrack step is performed and the next search

node is checked out. This is repeated until a value has been successfully assigned to each

variable, or the domain of the first variable in the search tree is empty.

The most common tree traversal technique is depth-first search. One problem with the

depth-first search is, if a bad assignment is used in the initial stages of the search, then we

have to visit all nodes of the possibly huge subtree before the bad decision can be reverted.

One alternative is to use of Limited Discrepancy Search (LDS) [58]. LDS systematically

searches all paths that differ from the heuristic path in at most a small number of decision

points, or discrepancies.

Optimization

Constraint optimization problems are solved using a branch-and-bound search. Initially,

a depth-first search is performed to find a valid solution (d1, · · · , dk) to the underlying

constraint satisfaction problem. The corresponding solution value s = f(d1, · · · , dk) of the

objective function generates an upper bound for the solution. Now, a new constraint is added

to the set of constraints to enforce the upper bound just found f(x1, · · · , xk) < z. The

current solution is invalidated, a backtracking step is performed, and the depth-first search

continues with the additional constraint. If the new CSP is unsatisfiable, then (d1, · · · , dk)

is the optimal solution with value of z. The lack of a new solution ends the process. If

the new CSP has a solution, then we have a new upper bound and the process of adding

a new upper bound is repeated, until an unsatisfiable CSP is reached. The unsatisfiability

proves the optimality of the last valid solution. As the search for the optimal solution can

be quite long, it is also possible to define some timeout for the whole process, and get the

best solution that can be found within the given time.

25

3.2.2 Gecode: Generic Constraint Development Environment

The described process takes place usually using some specialized CP solver, a highly op-

timized software for exactly this purpose. Several commercial and open source constraint

solvers, based on different programming languages, are available. Among the C++ based

solvers are: the widely known ILOG solver, from IBM [69], and the open source GEneric

COnstraint Development Environment, Gecode [92]. Gecode is the CP Solver used in

this Chapter, because it is free, well documented, and open for extension of its function-

ality. Gecode is very portable, written in standard compliant C++ and runs on a wide

range of hardware (32bit and 64bit) and operating systems (e.g., Unix/Linux, MacOS X,

Windows). Extensive reference documentation is available. Considering the performance,

Gecode seems to be very competitive even with commercial state-of-the-art solvers. Gecode

can be easily extended with new propagators (as implementations of constraints), variable

domains, branching strategies, and search engines. Gecode’s flexibility owes primarily to

the fact that it offers a variety of models for the formulation of constraint programs: as

domain constraints, as relation constraints, as distinct constraints. In Gecode, constraint

optimization problems are solved using branch-and-bound [31], or depth-first search. A

non-exhaustive list of constraints provided by Gecode are presented in Table 3.1.

Table 3.1: Examples of Gecode constraints

Domain constraints Constrain integer values and variable arrays to values from a given do-
main.

Relation constraints Enforce relations between variables and between variables and integers
values, like (>,<,=, 6=).

Arithmetic constraints Enforce arithmetic operations, like min(x, y), max(x), sqr(x) =
y, mod(y) = c.

Linear constraints Post linear constraints to a variable or array, like
|x|=1∑
i=0

ai · xi = c.

Counting constraints Count how often values are taken by an array.
Graph constraints Enforce some graph property using some variable. Example: circuit(x)

Bin-packing constraints Constrain how many items can be packed into bins.
Distinct constraints Constrain that integer variables take pairwise distinct values.

3.2.3 Modeling and Search Space Reduction

Modeling is the process of transforming problem requirements into a CP solver acceptable

and efficient format. This process can be described by a continuous improvement cycle,

which tries repeatably to answer certain questions:

• Which are the variables to represent the problem? This is the most basic question,

26

which must be revised frequently, because often the first model is not the most effi-

cient.

• How to represent the constraints of the problem? A initial ILP representation might

help, but it can be improved using different propagators.

• Is there any relationship between the variables? Often, the problem particularities

may provide relationships that are not evident at first.

• What is the optimization criterion? The criterion depends on the design objective

selected.

• Is the branch heuristic selected efficient for the problem? Constraint programming

framework has a flexible search strategy. Some branching heuristics may have differ-

ent effects during the search.

Searching is the most time consuming part of finding a solution when using a CP model.

After a correct and stable model is obtained, it is necessary to find ways to reduce the search

space, and incorporate them into the model, or into the search strategy. Some intuitions are

presented below in the form of questions:

• Is there a more concise model representation, with less variables? It is not unusual to

realize that a variable can be eliminated because it can be obtained by the combination

of others variables.

• What are the variables’ lower and upper bounds? The variable domain may be elu-

sive. Frequently, the first bound selected is too loose. Some restrictions, intrinsic to

the problem addressed, can be applied. One way to obtain domain reduction is to use

deterministic bounds derived from other works. If an optimal solution is required,

it does not help to search in a solution space when it is known that better solutions

exist.

• What is the most efficient propagator for each constraint? A constraint does not have

a unique implementation. The selection of a propagator that better suits the problem

reduces the search time.

• Is it possible to reduce the solution space with new constraints? In some cases, re-

dundant constraints may prune the search space faster due the constraint propagation.

• Is the sequence of variables to branch compatible with the problem? The sequence

27

of the variables to branch affects your search efficiency.

• Are there any equivalent solutions produced by the model? Equivalent or symmetrical

solutions waste time in the search process. Additional constraints may be added to

eliminate redundancies.

3.2.4 Constraint Programming in Networking

The main characteristics and techniques used in Constraint Programming are described in

Section 3.2. The use of CP in networking related studies is not so rare. Recently, CP

has been used to some degree to tackle network problems. In [74], CP is used to create

a declarative constraint solving platform for policy-based channel selection and routing

for multi-radio wireless mesh networks. It permits the specification of policy rules and

operation constraints for channel selection and routing.

Voekler [107] studies the problem of scheduling with topology control in wireless net-

works. He considers networks with fixed transmission power, and networks with freely ad-

justable transmission power. He uses CP as a tool for solving scheduling problems subject

to physical interference model. X-MAC [18] is a MAC protocol used for energy consump-

tion reduction of sensor nodes by controlling the use of the radio transceiver. It is studied in

[115] using CP to obtain appropriate parameters and to automatically adapt them to changes

in network conditions and application requirements. Resource allocation problems in wire-

less mesh networks have also been approached as CP problems [22]. Simonis [95] presents

a number of problems for network design, planning and analysis and show how they can be

addressed with CP solutions.

3.3 Aggregation Convergecast Tree

One typical example of aggregation convergecast is presented on Figure 3.1. A base com-

munication graph with the top node as the sink (where all sensed information should con-

verge) is presented in Figure 3.1(a). Figure 3.1(b), shows a solution using SPT. The number

next to the arrows represents the time slot when a link is allowed to transmit. This solution

needs a time frame length of 6 time slots. Even for this small example, it is possible to

obtain a better schedule, as presented on Figure 3.1(c), where the schedule length has only

4 time slots, but the solution uses a non-SPT topology as aggregation tree.

28

(a) Base Graph (b) SPT Schedule (c) Optimal Schedule

Figure 3.1: Schedule solution for example 8-node graph.

Previous works use SPT as the aggregation tree. In [24], the algorithm SDA follows the

shortest data aggregation philosophy. It aggregates data along shortest paths towards the

sink, incrementally constructing smaller and smaller shortest path trees. The algorithm DAS

[112] constructs aggregation trees using connected dominating sets. The WIRES algorithm

[76] uses a heuristic to obtain a variation of the SPT that produces better schedules, however

it is still a SPT-based solution.

The number of the transmissions for a non-SPT topology will be the same as those of

the SPT, because the aggregation convergecast problem already minimizes the number of

transmissions (only one transmission will be performed by each node). However a SPT does

not inherently account for the interference caused by node transmissions which, as we will

see, impacts, as expected, the schedule length. So, it is preferable to select an aggregation

tree that also minimizes the effects of the interference, and this tree is very likely not to be

a SPT.

3.4 Variables and Constraints

The problem is modeled as an undirected graph G = (V,E), where V is the set of nodes

andE is the set of edges representing all communications links available in the transmission

range of the nodes. The number of nodes in the graph is represented by n. A fixed node

s ∈ V is designated as sink. The graph G and the sink node are the inputs for the CP

solver. LSP represents the number of hops of the longest shortest path to the sink. If each

29

graph edge has weight 1, then LSP will represent the heaviest (across all nodes) shortest

path from a node u to the sink. In this model, node u represents any node ∈ V or the

transmitter node on a communication link, while v represents the receiver node. N(u)

represents the (one-hop) neighbor set of node u.

Table 3.2: Model Variables

Variable Size Domain Meaning
PP[u] n 1 · · ·n Parent of node u
RR[u] n 1 · · ·n Rank of node u
SH[u] n 1 · · ·n Schedule of node u
CC[t] n 1 · · ·n Parallel TXs on slot t
makespan 1 1 · · ·n Optimization criteria

The model to represent the aggregation convergecast is composed of several variables, de-

scribed in Table 3.2. The variable PP is defined for each node and represents the parent

of the node in the definition of the tree. Each node must have only one parent. Each node

transmits only once and only to its parent. The variable RR is defined for each node and

represents the number of hops to the sink using the selected tree. This variable is used to

ensure that loops are avoided. The variable SH is defined for each node and represents the

time slot in which the node transmits. The variable CC is defined for each time slot and

represents the number of concurrent transmissions in the slot. CC is used to optimize the

search process. The minimum time frame length is the final objective, so a minimization

process is necessary, i.e., not just the generation of a feasible solution. The optimization

criteria is represented by the variable makespan, which stands for the length of the TDMA

schedule. It is trivial to observe that the value of SH variables need not be larger than

n (the number of nodes) since this is the maximum number of time slots necessary when

no concurrent transmission are possible. By the same token, the values of RR, PP and

makespan are upper bounded by number of nodes n.

PP [u] = v ⇒ RR[u] = RR[v] + 1 (3.1)

PP [u] 6= v

{
u→ v /∈ E
u 6= sink

(3.2)

The above constraints are the topology constraints and have the objective of limiting the

communication graph, such that the final results is a spanning tree of the original graph,

rooted at the sink node. Constraint 3.1 specifies that the rank of the node u must be the

30

rank of its parent node v plus one. Constraint 3.2 restricts the nodes that can be parent of

node u to only those which have a direct link to it.

PP [u] = v ⇒ SH[u] 6= SH[j]


j ∈ N(v)\{u}
u→ v ∈ E
v → j ∈ E

(3.3)

Constraint 3.3 captures the requirement that there can be no interference at the receiver

node, based on the link activation model [28]. As before, the restriction is only valid when

a specific link u→ v is valid (i.e., if the edge exists).

U V

J1

J2

K

J3

Figure 3.2: Types of interference

The Figure 3.2 shows the conflicts that are avoided between links that share the same neigh-

bor using this constraint. The link transmission u→ v conflicts with with link transmission

j1 → k because node j1 is neighbor of node v and its transmission would jam the reception

on node v, represented by the dashed line. The link transmission j2 → v is not allowed

because it not possible to node v receive two transmissions at the same time. The last con-

flict (representing the half duplex requirement), between link transmission u → v and link

transmission v → j3, is not restricted by the interference constraint, but we do not intro-

duce an additional constraint to handle it, since it is subsumed by an application constraint,

Constraint 3.7. Constraint 3.7 states that if a node is parent (like node v) of another node

(like node u), it should transmit after it (toward node j3), i.e., in a later time slot.

RR[u] = 0
PP [u] = u

}
for (u = sink) (3.4)

SH[sink] > SH[u] {u ∈ V \{sink}} (3.5)

SH[sink] > LSP (3.6)

31

PP [u] = v ⇒ SH[u] < SH[v] (3.7)

This set of constraints is related to the aggregation convergecast application. Constraints

3.4 and 3.5 define the unique role of the sink node. It is the beginning of the rank count,

parent of itself, and it must be scheduled (this is a pseudo-transmission to itself acting as

the end delimiter of the schedule) after any other node on the tree. Constraint 3.6 restricts

the domain of the schedule of the sink node, by ensuring that it cannot be smaller than the

longest shortest path. Constraint 3.7 captures the requirement that a parent node can only

transmit after it has received transmissions from all its children.

CC[t] ≥ CC[t+ 1] (3.8)

The above constraint deals with the fact that there are multiple possible feasible solutions for

the same schedule length. The difference between them is not relevant to the optimization

process, but searching all solutions wastes a great amount of computation.

makespan = max(SH) (3.9)

Branching:
{
PP [u]
SH[u]

}
(3.10)

Constraint 3.9 defines how the schedule length is computed. Complementing the model, in

Constraint 3.10, it is indicated which variables must be branched, and the order for such

branching. The model only requires the branching of variable PP , which defines the tree

to be selected, and variable SH , which defines the schedule for each node.

3.5 Results

Using the model presented in the previous section, it is possible to obtain solutions for the

aggregation convergecast problem. Sample graphs were generated by randomly placing

nodes on a square region with constant and uniform transmission range, forming Unit Disk

Graphs (UDG). Groups of 10, 15, 20 and 25-node graphs were produced. On each group,

the graph density ranges from 0.250 to 0.425 approximately. The graph density is defined

32

 0

 5

 10

 15

 20

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425

S
ch

ed
ul

e
Le

ng
th

Graph Density

SDA
DAS

WIRES
CP

LSP

(a) 15-Node Graphs

 0

 5

 10

 15

 20

 25

 30

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425

S
ch

ed
ul

e
Le

ng
th

Graph Density

SDA
DAS

WIRES
CP

LSP

(b) 25-Node Graphs

Figure 3.3: Schedule Length Comparison

33

 20

 25

 30

 35

 40

 45

 50

 55

 60

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425

Tr
ee

 S
iz

e

Graph Density

SPT
CP

(a) 15-Node Graphs

 40

 50

 60

 70

 80

 90

 100

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425

Tr
ee

 S
iz

e

Graph Density

SPT
CP

(b) 25-Node Graphs

Figure 3.4: Tree Size Comparison

34

as the ratio of the number of links on the graph over the maximum possible number of

links (for a completely connected graph with same number of nodes). Using graphs with

different densities allows us to analyse scenarios with different levels of interference. Also,

the aggregation tree size is defined as
∑n

i=1 h(i,sink), where h is the number of hops from

node i to the sink node using the selected tree. That is, the aggregation tree size is the

sum of each node’s hop-count to the sink along the aggregation tree. It is trivial to show

that the smallest aggregation tree size for a graph is achieved by its SPT. A more complete

description of the graphs used is presented on Table 3.3.

Table 3.3: Computational results from random graphs

Nodes Density Degree Edges WIRES CP
10 0.2667 2.4000 12 5 5
10 0.2889 2.6000 13 5 5
10 0.3111 2.8000 14 5 5
10 0.3333 3.0000 15 6 5
10 0.3556 3.2000 16 6 5
10 0.3778 3.4000 17 6 5
10 0.4000 3.6000 18 6 5
10 0.4222 3.8000 19 5 4
15 0.2571 3.6000 27 8 7
15 0.2762 3.8667 29 9 8
15 0.2952 4.1333 31 7 6
15 0.3238 4.5333 34 8 6
15 0.3524 4.9333 37 9 7
15 0.3714 5.2000 39 8 7
15 0.4000 5.6000 42 9 7
15 0.4286 6.0000 45 9 7
20 0.2526 4.8000 48 9 8
20 0.2737 5.2000 52 8 7
20 0.3000 5.7000 57 10 7
20 0.3263 6.2000 62 9 7
20 0.3526 6.7000 67 11 7
20 0.3737 7.1000 71 11 8
20 0.4000 7.6000 76 13 9
20 0.4263 8.1000 81 11 11
25 0.2533 6.0800 76 11 7
25 0.2733 6.5000 82 11 9
25 0.3033 7.2800 91 12 10
25 0.3233 7.7600 97 13 10
25 0.3467 8.3200 104 11 10
25 0.3733 8.9600 112 13 12
25 0.4033 9.6800 121 13 10
25 0.4233 10.1600 127 12 11

Some of the existing (two-phase) aggregation convergecast scheduling heuristics are used

for comparison purposes. The Balanced Shortest Path Tree (BSPT) [76] is used as the

aggregation tree for all examples. For the second phase, three heuristic-based scheduling

35

Table 3.4: Minimal Tree Size for 15-node graphs

Density WIRES SPT Size CP Min TS
0.2571 8 42 7 43
0.2762 9 48 8 49
0.2952 7 32 6 34
0.3238 8 36 7 36

6 41
0.3524 9 34 8 35

7 36
0.3714 8 34 7 36
0.4000 9 27 8 28

7 29

algorithms were selected: SDA [24], DAS [112] and WIRES [76].

CP solvers have the downside of spending a large amount of time to obtain an optimal

solution, mainly in the search phase. As the number of constraints and candidate trees is

related to the number of nodes and links, the time required for obtaining results can be

prohibitive. Therefore, the CP results presented may not be optimal, but nonetheless they

required fewer time slots than the heuristics produced.

The results obtained are depicted in Figure 3.3. Note that the results obtained using the

CP model are closer to the minimal schedule possible (expressed by the LSP, used here to

illustrate the lower bound for the convergecast scheduling problem) for the given graphs.

Figure 3.4 presents the tree size difference between BSPT, and the tree obtained from the

best result using the CP model. It is noticeable that tree size obtained with the CP model is

larger than the SPT, suggesting that it is not a good strategy to use SPT for this application.

Table 3.4 depicts the minimum schedule length for 15-node graphs possible to obtain when

we relax the tree size to be larger than the minimum possible size (SPT). Even though this

conclusion seems intuitive, it is remarkable that the algorithms in the literature continue

using SPT as base for their aggregation convergecast tree.

The difference between schedule length obtained by the previous aggregation convergecast

algorithms compared to better solutions from the CP model is related to the characteristics

of the tree selected for the aggregation path. Shortest path trees use the minimal number

of hops from a node to the sink node, independent of whether doing so might prove to be

detrimental to the scheduling phase. This is typically the case when some bottleneck node

is present on the graph, or specially when cliques are present. What we noticed is that SPT

36

tends to use the clique internal edges to reach the nodes inside a clique because it produces,

in most cases, the minimal path length to the sink. However, when the clique–internal

edges are used, the nodes belonging to the same clique can not transmit in parallel. Even

worse, if all clique–internal links are directed toward a single node (because it is the shortest

path to the sink), the number of time slots cannot be reduced to less than the number of

nodes in that clique. The final effect is that the overall number of time slots on the schedule

cannot be smaller than the maximal clique on that graph.

Smaller schedules, found by the CP model, are possible by selecting links directed away

from cliques (not using most of the clique internal edges) or bottleneck nodes (lots of in-

coming edges), increasing the size of the tree in order to avoid the serialization of the

transmissions of nodes belonging to the same clique. This is the reason for the surprising

relation between the results in Figure 3.3 and Figure 3.4. Whereas the tree can be signifi-

cantly costlier (for example, the 25-node tree for 0.3 density presents the most pronounced

difference) a shorter schedule can be achieved, even if the schedule is shorter by a couple

of slots. One has to take into account that a couple slots difference might not appear as

a small difference in the absolute sense, but relatively speaking it can represents a 10%

(or even more) improvement over the schedule length produced by the best heuristic. Of

course, due to the computation needs of the constraint solver, we cannot confirm if a similar

proportional improvement is possible for larger networks.

Figure 3.5 presents the solution achieved with the WIRES algorithm (on part (a)) of 13 time

slots, and a solution obtained by the CP Model (on part (b)) of 9 time slots. The links with

arrow indicate the aggregation path and the number beside the nodes shows the time slot

when that node transmits to its parent. Notice how the clique in the upper right hand area

is being partly avoided and how longer paths are effectively used reducing the in-degree of

intermediate nodes in the aggregation tree.

3.6 Conclusions

We model aggregation convergecast scheduling as a Constraint Satisfaction Problem with

the objective of obtaining the shortest possible schedule for a TDMA frame that allows the

complete collection of data to the sink. Constraints related to the topology, the interference,

and the application logic, as well as their relationships are modeled. We observe that SPT

is very likely not the best choice for aggregation tree. While computational limitations

37

(a) Tree and Schedule using WIRES, Tree Size: 43, Schedule Length: 13

(b) A solution from CP Model, Tree Size: 57, Schedule Length: 9

Figure 3.5: Graph 20 Nodes - Density 0.400

38

do not allow us to derive results for large networks, the produced results provide valuable

insights as to the shape that the optimal schedules and corresponding aggregation trees

possess. Using non-SPT topologies that avoid the use of internal links to large cliques, has

the potential to produce shorter schedules, improve the number of concurrent transmissions

and hence the throughput of the solution. The advantage of topologies with longer paths

suggests that other restrictions, beyond precedence, are important to obtain closer to the

optimal solutions.

39

Chapter 4

Augmenting the Two-Phase
Approach Using Convergecast
Restrictions

4.1 Introduction

We explore in this Chapter the aggregation convergecast restrictions, their influence and

how to use them for our benefit. A solution for the aggregation convergecast scheduling

problem must satisfy the many-to-one aggregation process (expressed by precedence con-

straints), combined with the impact of the shared wireless medium (expressed by resource

constraints). Both sets of constraints influence the routing and scheduling.

Several ways to aggregate the same data are possible, and each one of them may be thought

of as represented by a different spanning tree, which we call an aggregation tree. Leaf

nodes send their measurement to their parents. Interior nodes of the tree expect the results

from all their children, and then perform the aggregation operation on the values coming

from their children (and their own value) and finally send the aggregation result to their

parent. In short, aggregation convergecast adds precedence constraints (parents transmit

after receiving from all their children) to reduce overall traffic load. Additionally, due to the

nature of wireless media, a node transmission also interferes with neighboring nodes who

could transmit in the same time slot t. This restriction is termed resource constraint.

In the previous Chapter 3, we demonstrated that the selection of the aggregation spanning

tree is important to reduce the schedule length and, while an SPT contributes to obtain a

small schedule length by reducing the distance between the sink node and all remaining

40

nodes on the network, it is unsuccessful in attaining the optimal schedule length. It is

therefore conjectured that we need to search beyond the shortest path criterion to construct

an aggregation tree. The inadequacy of SPTs is reinforced by the tree size metric (sum

of the path lengths from all nodes to the sink) of the optimal solution obtained using the

constraint satisfaction model of Chapter 3 which found the optimal aggregation tree sizes

to be consistently larger than the tree size of the SPT. Under the light of the observations

made in Chapter 3, all previous work in this area, that adopt SPTs, needs to be revisited.

Specifically, since Aggregation Convergecast Scheduling (ACS) can be viewed as subjected

to two types of constraints (precedence constraints induced by the aggregation process, and

resource constraints to express collision/interference avoidance), we can remark that SPT

is a topology that reduces the impact on the schedule length caused by the precedence con-

straints (by reducing the number of hops from any node to the sink). Alone, this approach

is inadequate for addressing the resource constraints. It is therefore instructive to balance

precedence constraints and resource constraints. Towards this end, we will define the other

extreme, i.e., a logical topology that captures the minimization of interference, and then

propose a synthesis between this and SPT to construct trees that balance the impact from

the two sets of constraints.

Additional to the nature of the spanning aggregation tree needed by ACS, it is necessary to

address the scheduling part. Previous work on ACS complexity characterization has demon-

strated that ACS is NP-hard [24]. Consequently, heuristics have been developed based on

the decomposition of the problem in two steps: a spanning tree construction (usually SPT),

followed by the slot-by-slot scheduling. As we will show in this Chapter, the scheduling

step (given a spanning aggregation tree) is an NP-complete problem in its own right. In fact,

it turns out that the scheduling step is a Mixed Graph Coloring (MGC) problem. Through

the relation of ACS to MGC and other related varieties of scheduling problems, we will

adopt corresponding solution strategies.

In this Chapter, we propose an aggregation tree construction suitable for aggregation con-

vergecast that is a synthesis of a tree tailored to precedence constraints and another tree

tailored to resource constraints. Additionally, we show that the scheduling component can

be modeled as a mixed graph coloring problem. Specifically, the extended conflict graph

is introduced, and through it, a mapping from aggregation convergecast to mixed graphs is

described. In the mixed graph, arcs represent the precedence constraints and edges repre-

sent the resource constraints. The mixed graph chromatic number corresponds to the opti-

41

mal schedule length. Bounds for the graph coloring are provided and a branch-and-bound

strategy is subsequently developed from which we derive numerical results that allow a

comparison against the current state-of-the-art heuristic.

The rest of this Chapter is organized as follows. In Section 4.2 we introduce concepts

that will be used throughout the Chapter. In Section 4.3, we present how to obtain an

interference-aware logical topology, and how to blend it with another tree that minimizes

the precedence constraints to form a single convergecast tree. In Section 4.4 we show how

an aggregation convergecast scheduling problem can be represented as a MGC problem,

establishing that ACS is NP-complete given a spanning aggregation tree and leading us to

a branch-and-bound algorithm to search for the minimal MGC solution. By combining the

results about the construction of the convergecast tree and the branch-and-bound algorithm,

a series of computational experiments and discussion of their results is presented in Section

4.5. The most relevant works in this area are summarized in Section 4.6. Finally, the

conclusions of the Chapter are presented in Section 4.7.

4.2 Background Basics

We will frequently refer to the conflict graph view of the network. Essentially, a way to

achieve a conflict-free schedule is using conflict graphs derived from the topology (com-

munication) graphs [21]. Each vertex in the conflict graph represents a link in the commu-

nication graph, and each link in the conflict graph represents the conflict between two links

of the communication graph, which cannot be scheduled successfully (i.e., without result-

ing in a collision) in the same time slot. The basic idea of the conflict graph representation

is that every independent vertex set on the conflict graph can be scheduled simultaneously,

i.e., in the same slot. Therefore, the coloring of a conflict graph defines a valid schedule

[9].

However, a valid coloring of the conflict graph is insufficient for providing a valid solution

to ACS. The reason is that the conflict graph does not capture the precedence constraints

of ACS. To illustrate this limitation, consider Figure 4.1. Specifically, Figure 4.1(a) shows

the optimal schedule solution and the corresponding aggregation tree for ACS on a given

(physical topology) graph. The labels next to each arc indicate the arc’s id and its respec-

tive transmission timeslot. In Figure 4.1(b) we show the conflict graph corresponding to the

same physical topology as before, and a valid coloring of the conflict graph. The coloring

42

N1

N3N2

N8

N5

N4

N6 N7

A2(T1)

A7(T0)

A1(T4) A3(T3)

A4(T2)

A5(T3)

A6(T0)

Optimal Schedule

T0: A7, A6

T1: A2

T2: A3, A4

T3: A5

T4: A1

(a) Aggregation Convergecast Tree

A3

A4A1

A5

A2

A7

A6

Valid Coloring

T0: A4, A6

T1: A2

T2: A3, A7

T3: A5

T4: A1

(b) Conflict Graph

Figure 4.1: Use of a conflict graph to create a schedule for ACS

alone does not provide a specific sequence in which all similarly colored edges are to be

activated. For example, suppose the (arbitrary) order is blue, gray, green, orange, light blue,

then the sequence of transmissions is as depicted at the bottom of 4.1(b). This sequence

violates the precedence constraints as it can be seen by the fact that transmission A4 is

scheduled before transmission A7. To overcome the limitations of conflict graphs, we will

extend the model, subsequently calling it the extended conflict graph, and we will treat it

as a Mixed Graph Coloring (MGC) problem in Section 4.4. In the same section, we show

that the aggregation convergecast scheduling part can be converted into a mixed graph col-

oring problem, which is a NP-Complete problem [87, 88]. With this model, it is possible

to see that ACS has the same restrictions (precedence and resource constraints) as schedul-

ing problems in other fields, such as Job-Shop Scheduling [101] and Multiprocessor Task

Scheduling [15]. We use our understanding of the problem restrictions (precedence and

resource constraints) to convey an enumeration process to search for the chromatic number

of a mixed graph. This process finds progressively smaller schedule lengths for ACS.

43

4.3 Topology Selection

4.3.1 Interference-Aware Aggregation Trees

Clearly, interference is a component that affects the schedule length, because long schedule

lengths may be necessary to accommodate transmissions without collision. We also note

that there always exist a trivial feasible solution to the scheduling problem: one where one

and only one node transmits in each time slot1. The question is if it is possible to obtain an

aggregation tree that accounts for interference in its logical topology to reduce the effects of

interference on the schedule. The answer has been partially explored in [109], which deals

with the problem of finding low-interference topologies, topologies that minimize interfer-

ence according to certain metric. There, two different interference metrics are presented:

an edge-based metric and node-based metric. The edge-based metric counts all nodes that

are within transmission range of either source or the destination nodes as the ones that may

suffer interference. This interference metric is illustrated in Figure 4.2(a). A second way to

represent interference is depicted on Figure 4.2(b), called node-based. This second metric

counts from how many elements a node n receives interference.

Both metrics are limited, from the tree selection point of view, because neither takes into

account the direction of flow. To this end, we adopt a new interference metric, more suitable

to ACS. The new interference metric accounts for interference that would be caused if an

arc −→uv is selected. This new interference metric is presented on Figure 4.2(c). Note that,

under this definition, interference is not symmetric, because the interference caused by arc
−→uv is not necessarily the same as the interference caused by arc −→vu. Formally, we have:

Xarc(
−→uv) = in degree(v) (4.1)

The rationale behind this interference metric is that the arc direction matters. When a highly

connected node receives a transmission, nodes in its vicinity can not transmit (neighbors are

“blocked” in that time slot). However, when the same node transmits, some of its neighbors

may also transmit. On Figure 4.2(c), if node v transmits to node w, node j can transmit

to node k. This difference was not captured in other interference metrics, because they

did not assume knowledge of the applications’ communication needs (i.e., where to send a

transmission next, that is, direction) but rather adopted a node-centered view. Furthermore,
1This solution happens to be the optimal in the special case of a completely connected communication

graph. However, in general, this is not the case.

44

e

(a) Xedge(e) = 8

n

(b) Xnode(n) = 4

u

v

w

j

k

(c) Xarc(~uv) = 6

Figure 4.2: Interference Measurements

the traditional algorithms (Kruskal and Prim [32]) to obtain a spanning tree T from graph

G = (V,E) where the total weight is minimized, use an undirected graph. The total tree

weight is obtained by w(T) =
∑

(u,v)∈T w(u, v). These algorithms are inadequate for

constructing the minimum interference tree (MIT) because the edge weight varies according

to the direction selected.

Consider a directed graph G = (V,A), where V is the set of nodes and A is the set of

arcs. Associated with each arc −→uv in A is a cost c(−→uv). Let |V | = n and |A| = m.

The problem is to find a rooted directed spanning tree, TD(V, S) where S ⊆ A such that∑
c(−→uv) for ∀−→uv ∈ S is minimized. The rooted directed spanning tree is defined as a

graph which connects, without cycles, all nodes with n− 1 arcs (each node except the root)

and has one and only one incoming arc. This formulation places the MIT construction in

the class of branching problems, also known as minimum cost arborescence [10, 50]. An

algorithm for solving this problem has been achieved independently by Chu and Liu [30]

and Edmonds [39], while Karp [61] provided a combinatorial optimality proof. An efficient

45

implementation has been developed by Gabow et al.[46]. It is polynomially solvable [10].

Specifically, convergecast is an in-branching problem [10]. Therefore, a slight modification

on Edmonds’ algorithm is enough to obtain a MIT. The modification consists of changing

the interference measurement used as weight on each arc to be the in-degree of the arc

source. Upon termination of the algorithm, the resulting tree will be the transpose of MIT.

The algorithm pseudocode is presented in Algorithm 1.

Algorithm 1: Minimum Interference Tree
Input: Undirected Connected Graph G = (V,E), and source node s
Output: Minimum Interference Tree TMIT

1 STEP 1: GEDM ←− create a DAG such that:
2 (a) Transform each edge e ∈ E into two arcs, one in each direction
3 (b) Remove sink’s incident arcs
4 (c) Arc weight wuv = Xarc(

−→vu)
5 STEP 2: TEDM ←− Edmonds(GEDM , s)
6 STEP 3: TMIT ←− T TEDM
7 STEP 4: Return TMIT

Complexity Analysis

We note that, with respect to the run-time complexity of Minimum Interference Tree, STEP

1 part (a) is executed inO(|E|) because each edge should be changed; for part (b) the worst

case is O(|E|) when the initial graph is full mesh; and for part (c), each edge must have its

weight evaluated, which requires run-time of O(|E|). Therefore, the run-time complexity

of STEP 1 is O(|E|).

The analysis of STEP 2 involves the run-time complexity of Edmonds’ algorithm. Accord-

ing to Tofigh [104], Tarjan described an implementation of Edmonds’ algorithm in [102]

that runs in O(|E|log|V |). With a simple modification, the algorithm can run in O(|V |2),

which is more suitable for dense graphs. An implementation error is corrected by Camerini

et al.in [20]. Gabow et al.[46] give an O(|V |log|V | + |E|) implementation for optimum

spanning arborescence. The authors of [46] note that is not possible to improve on the time

complexity for any Edmonds’ algorithm implementation because the algorithm can also be

used to sort n numbers, and sorting n numbers requires O(n log n) time. Since it always

has to inspect every edge of the graph, we cannot expect to find a better run-time complex-

ity for Edmonds’ algorithm than O(|V |log|V | + |E|). Therefore, we will assume that the

run-time complexity for Edmonds’ algorithm is O(|V |log|V |+ |E|).

46

Finally, STEP 3 is a trivial operation running in O(E). We conclude that the Minimum

Interference Tree has a run-time complexity which is dominated by the execution of Ed-

monds’ algorithm, i.e., O(|V |log|V |+ |E|).

4.3.2 Trees for Combined Interference and Precedence Constraints

Using the interference metric of Definition 4.1, we calculate the total tree interference cost

c(T) =
∑
c(−→uv) of each tree presented on Figure 4.3. Each graph represents a different

logical topology organization. Figure 4.3(a) is a dominating set tree, Figure 4.3(b) repre-

sents a shortest path tree, while Figure 4.3(d) is a minimum interference tree. Finally, for

reference, Figure 4.3(c) is an optimal tree obtained through a constraint satisfaction model.

The tree total interference cost, according to Xarc metric, is presented below each graph.

The schedule length obtained by each logical topology follows nicely the tree total interfer-

ence cost, nevertheless MIT (on Figure 4.3(d)) is not the logical topology with minimum

schedule length.

Just by looking at the provided example, it should be clear that even if the total interference

cost is minimal, the schedule is not the shortest possible. A careful observation of Figure

4.3(d) shows that the long path from node F (or G) to node A is the cause of this longer

schedule length. The fact that a MIT (or minimization of resource constraint) alone does

not allow optimal solution is consistent with what happens when a SPT (or minimization

of precedence constraints) is used alone. The logical conclusion is that both constraints

must be addressed in a balanced manner, leading us to logical topologies that express a

combination of the characteristics of SPT (Figure 4.3(b)) and MIT (Figure 4.3(d)).

The search for a logical topology that has both, approximately the minimum cost and ap-

proximately the shortest paths from all nodes u to a root node is not new in communication

or circuit design [2, 27]. However, to the best of our knowledge, it has not been applied to

scheduling problems to reduce the schedule length, using an interference metric as cost.

One approach to obtaining a suitable logical topology is the construction of Light Approx-

imate Shortest-Path Trees (LASTs) from a given directed weighted graph, using the algo-

rithm proposed by Khuller [62]. LASTs approximate simultaneously the cost of a minimum

spanning tree (MST) and the distances of a SPT rooted at a source node, thus yielding a tree

with low total cost as well as a short distance to the source node. This kind of tree is also

called Shallow Light Tree (SLT). An algorithm to obtain such tree was initially proposed

47

1

4

6

23

5

7

(a) DST Treecost = 39 (b) SPT Treecost = 29

(c) Optimal Treecost = 24

1

1

3 2

4

25

A

B C D

E F G

H

(d) MIT Treecost = 21

Figure 4.3: Tree cost using Xarc metric.

by Awerbuch et al.[7]. SLT minimizes simultaneously both weight and depth, combined by

means of a parameter.

Some modifications of the SLT algorithm are necessary to apply it to our context. One

modification is the addition of STEP 7 (of Algorithm 2), because we need that the arcs

48

converge to the root (sink node). Another modification is regarding the α parameter. In

ACS, the important metric is the schedule length, which is outside the scope of the tree

construction algorithm. It is therefore assumed that the selection of α is performed for an

indirect purpose, i.e., based on the impact the constructed topology has on the subsequently

constructed schedule length (detailed in the next section). The α parameter forces, for a

given node v, to select the path PMIT
v s (i.e. path over the MIT) if the weight of this path

is not α-times the weight of the path PSPTv s (i.e. the corresponding path over the SPT). In

the context of our problem, it means that a path with smaller sequence of precedence is

preferable if the interference weight count of the path defined by the minimum interference

tree is more than α-times the interference weight count of the path using smaller sequence

of precedences. An algorithm sketch containing all the steps, from the initial undirected

graph to the final aggregation tree, is presented next, in Algorithm 2.

Algorithm 2: Aggregation Convergecast Tree
Input: Undirected Connected Graph G = (V,E), and source node s
Output: Aggregation Convergecast Tree TACT
1 STEP 1: Create a directed graph GD with arc cost cuv = Xarc(

−→uv)
2 STEP 2: Find the min cost arborescence TMIT from (GD, s, c)
3 STEP 3: Find the shortest path tree TSPT from (GD, s)
4 STEP 4: Find a preorder sequence of TMIT , using s as start node
5 STEP 5:
6 begin
7 H ←− TMIT ;
8 α←− parameter that controls the SPT vs. MIT tradeoff;
9 foreach node v in the preorder sequence of TMIT do

10 find a shortest-path PHs v in H ;
11 find a shortest-path PG

D

s v in TSPT ;
12 if c(PHs v) > α · c(PGD

s v) then
13 add all arcs in the path PG

D

s v to H ;
14 end
15 end
16 end
17 STEP 6: Find the shortest-path tree TSLT of H with root node s ;
18 STEP 7: TACT ←− T TSLT ;
19 STEP 8: Return TACT

Complexity Analysis

The run-time complexity of Aggregation Convergecast Tree is as follows: STEP 1 has

run-time complexity of O(|E|). Edmonds’ algorithm is used in STEP 2, and has run-time

49

complexity of O(|V |log|V |+ |E|).

STEP 3 has to determine a shortest path tree in a directed graph. Its complexity is dependent

on the algorithm used to accomplish this task. The Bellman-Ford algorithm has a run-

time complexity ofO(|V ||E|) [32], while Dijkstra’s algorithm depends on how the priority

queue is implemented [32]. We will assume a run-time complexity of O(|V |2) [32]. The

preorder sequence required on STEP 4 is also of run-time complexity O(|V |2).

The dominant run-time complexity is STEP 5. Lines 7 is linear to |V |, i.e., O(|V |), while

Line 8 is constant O(1). Lines 10 and 11 both exhibit the same run-time complexity of

O(|V |2) because of the shortest path tree algorithm necessary. As they are inside the loop of

Line 9, their resulting run-time complexity is O(|V |3). Line 13 is not always executed, but

when executed, it has a worst case of O(|V |2). In total, STEP 5 has a run-time complexity

of O(|V |3).

STEP 6 implements another shortest path tree algorithm with a run-time of O(|V |2), and

STEP 7 has a run-time complexity of O(|V |). Therefore, the Aggregation Convergecast

Tree algorithm has run-time complexity of O(|V |3).

4.4 Scheduling Model

4.4.1 The Mixed Graph Coloring Problem

Let GM = (V,A,E) be a mixed graph, where V = {v1, v2, · · · , vn} is a non-empty set

of vertices. A represents the set of arcs, where (vl, vq) is an oriented arc from source l

to destination q. E denotes the set of edges, where [vi, vj] represents an edge connecting

vertices vi and vj . N denotes the set of natural numbers. The number of vertices of GM is

|V | = n, where n ∈ N.

The function ϕ : V → N is called coloring of the mixed graph GM . The mixed graph

coloring (MGC) problem assigns positive integers to vertices of a mixed graph such that,

if two vertices vi and vj are linked by an edge [vi, vj] then their colors have to be different

ϕ(i) 6= ϕ(j), and if two vertices vl and vq are linked by an arc (vl, vq), then the color of the

start-vertex has to be smaller than the color of the end-vertex ϕ(l) < ϕ(q). A k-coloring of

a mixed graphGM is a function ϕ : X → {1, 2, · · · , k} such that [vi, vj] ∈ E, ϕ(i) 6= ϕ(j)

and for (vl, vq) ∈ A, ϕ(l) < ϕ(q). There exists a number of different ϕ functions. The

smallest possible number k is called chromatic number of the mixed graph GM , and it is

50

denoted by γ(GM). A coloring ϕ : V → {1, 2, · · · , γ(GM)} of the mixed graph GM is

optimal. A mixed graph GM must be acyclic, otherwise no proper k-coloring is possible.

The idea of mixed graph was introduced by Sotskov and Tanaev in 1976 [53].

4.4.2 ACS as a MGC

It is straightforward to notice the correspondence between ACS and MGC. The arcs of

the mixed graph can represent the precedence constraints and the edges can represent the

resource constraints among the transmissions. Additionally, a time slot in the schedule may

be represented by a color assignment, which, in the case of an arc, can only increase, and

in case of an edge, must be different. A precedence constraint corresponds to an arc in the

mixed graph. The union over all arcs forms a tree rooted at a single vertex, the sink node s.

As remarked earlier, the coloring of a conflict graph [9, 21] is inadequate because conflict

graphs lack the capacity to express the precedence constraints requirements of ACS. How-

ever, it is possible to represent ACS through mixed graphs derived from conflict graphs.

Specifically, when a link activation (expressed by a node in the conflict graph) is required

to be executed after another link activation (another node in the conflict graph), an arc is

introduced in a mixed graph to express this precedence. This new extended conflict graph

is the missing piece for a complete representation of ACS. In other words, the extended

conflict graph is a mixed graph.

An example of reduction of the ACS problem to a mixed graph is presented in Figure 4.4.

An aggregation convergecast tree is depicted in Figure 4.4(a). The link activations (arcs) of

the aggregation tree are labeled fromA1 toA7, and each time two nodes are in transmission

range, the possible interference is represented by a dotted line. The same labels used to

name link activations on the aggregation tree are applied on the vertices of the mixed graph,

Figure 4.4(b). If a link activation can only be executed after another (e.g. A4 can only

schedule after A7), this dependence is represented by an arc in the mixed graph. Dotted

lines in the mixed graph represent a constraint between two activations. An immediate

consequence of the mapping to MGC is that the ACS scheduling stage (that is, even if we

are given the aggregation tree) is an NP-Complete problem [87, 88].

51

N1

N3N2

N8

N5

N4

N6 N7

A2

A7

A1 A3

A4 A5 A6

(a) Aggregation Convergecast Tree

A3

A4A1

A5

A2

A7

A6

(b) Mixed Graph Reduction or Extended Conflict
Graph

A3

A4A1

A5

A2

A7

A6

(c) Mixed Graph after orienting all conflict edges

Figure 4.4: Reduction from AGS to MGC and Complete Edge Orientation.

4.4.3 ACS Bounds

Through its relation to MGC, we can provide some properties for ACS. The bounds pre-

sented here are applicable to the Strong Mixed Graph Coloring Problem [88]. A coloring

52

exists if and only if the mixed graph GM does not contain any directed circuit (which is a

requirement trivially satisfied for ACS instances given that its logical topology is a tree).

The absence of directed circuits is a necessary and sufficient condition for a mixed graph to

admit a strong mixed coloring.

Let P be a directed path in GM . |P | is the number of vertices on this path, and n(GM) the

number of vertices on the longest path P on graph GM . Let vi be a vertex in the mixed

graph. We denote in(vi) as the inrank of vi, which is the length of the longest directed

path in GM ending in vi. Likewise, out(vi) is the length of the longest directed path in

GM starting in vi. This is the outrank of vi. Also, the number of arcs incident to a vertex

vi ∈ GM is represented by ∆(GM (vi)). Next, we present some propositions applicable to

the aggregation convergecast problem.

Proposition 1. Let l(GM) be the number of vertices on one of the longest directed path

in GM and ∆(GM) the maximum arc in-degree of a vertex in GM . Then, γ(GM) ≥

max{l(GM),∆(GM)}

Proof. Different colors must be assigned to each vertex on the same directed path, con-

sequently γ(GM) ≥ l(GM). In addition, all arcs incident on the same vertex must get

different colors, otherwise a node could receive transmissions at the same time. Therefore

γ(GM) ≥ ∆(GM). Thus, γ(GM) ≥ max{l(GM),∆(GM)}.

Proposition 2. LetG0
M = (V,A, ∅) be a partial graph fromGM . If γ(G0

M) is the chromatic

number of G0
M , or the length of one of the longest directed path in γ(G0

M), then γ(GM) ≥

γ(G0
M). γ(G0

M) is the lower bound and can be determined in polynomial time.

Proof. This proposition is a direct consequence of complexity results from Ries [87] and

Garey&Jonhson [49].

Proposition 3. The chromatic number γ(GM) is equal or smaller to the cardinality of set

V . In other words, |V | is the upper bound of γ(GM).

Proof. From [57] it is known that γ(GM) ≤ γ(GcM) + |V | − γ(GoM), where GcM is the

mixed graph without orientations, and GoM is the subgraph generated by the set Vo consist-

ing of the vertices vi, which have at least one incident arc. However, ∀vi, vi ∈ V , therefore

V = Vo, and consequently γ(GcM) = γ(GoM). Thus, γ(GM) ≤ |V |.

53

4.4.4 Obtaining the Chromatic Number

Let us define the set Q = {1, · · · , n} as the set of transmissions of the aggregation con-

vergecast problem. In Figure 4.4(a) it would have been represented by a set of vertices.

The set of transmissions is partially ordered because of the precedence constraints of the

problem. The arcs in the extended conflict graph represent this partial order of the trans-

mission set. However, the partial order does not completely define a transmission schedule.

The definition is possible only after the precedence between vertices (or transmissions) that

are in conflict is resolved. That is, after we assign direction (converting them to arcs) to

edges in the mixed graph. Three possibilities exist for each edge. Namely, given an edge

represented by two vertices [i, j] ∈ E, either vertex i is scheduled before vertex j, or vertex

j is scheduled before vertex i, or the orientation of this edge is irrelevant because the or-

der was already established by the arcs (precedence constraints). The selection among the

three possibilities will be determined through an objective function (detailed later), which

we will call F . Therefore, the problem now is to find a feasible schedule to minimize the

value of the objective function F , by orienting the edges that admit orientation in the mixed

graph. For instance, the choice of the arc (i, j) defines the precedence of transmission i

over transmission j. An example of this process is presented on Figure 4.4(c), where the

green arcs represent the edges that were oriented, and the dotted blue lines represent edges

not oriented, because their orientation is irrelevant to the schedule.

Theorem 1. Let P (GM) be the set of all digraphs, created by orienting each edge of the

mixed graphGM . The digraphGs ∈ P (G) defines a feasible schedule if and only ifGs has

no circuits.

Proof. This theorem is straightforward to derive because if a digraph has a circuit, it does

not define a feasible schedule. See also [101].

Let P̊ (G) be the set of all digraphs without circuits taken from the set P (G). Each digraph

Gs ∈ P̊ (G) defines a unique valid schedule of node transmissions. The task of obtaining

the chromatic number is now to select a digraph Gs whose objective function F (Gs) (the

chromatic number of Gs) attains the minimum value among all feasible digraphs Gs ∈

P̊ (G). The cardinality of the set P̊ (G) has an upper bound of λ(P̊ (G)) ≤ 2|E|, that is the

maximum number of combinations of edge orientations.

In essence, the process of obtaining a valid schedule from a mixed graph consists of remov-

54

ing each relevant edge [i, j] ∈ G(M) and replacing it by the arc (i, j) or the arc (j, i). The

sequence of operations defines a sequence of transformations applied on edges. The proof

that such sequence of transformations generates a valid digraph is presented in [97].

Theorem 2. The digraph Gs ∈ P (G) defines a feasible schedule for ACS if and only if two

conditions hold:

1. It is the result of a sequence of transformations applied to the original extended

conflict graph;

2. The digraph Gs on the extended conflict graph contains no circuits.

Proof. As we have seen before, an extended conflict graph represents the constraints of

the aggregation convergecast scheduling problem, and Gs will be a valid schedule after the

relevant edges have been oriented.

4.4.5 A Branch-and-bound Algorithm

Next we define a way to select or search for a digraph Gs ∈ P̊ (G) that minimizes the

objective function F noting that a sequence of transformations T 1, T 2, · · · , Tω defines an

enumeration of all possible digraphsGs ∈ P (G). Each transformation consists of removing

an edge and introducing an arc on the mixed graph, such that, each transformation outputs

a different mixed graph GkM , where k = {1, 2, · · · , ω}. l(GkM) may be different for each

k, as well as its chromatic number γ(GkM).

To this end we wish to obtain a sequence of transformations such that a digraph Gs that

minimizes F can be found as fast as possible and, additionally, we avoid transformations

that could create a mixed graph GkM with cycles. We will define conflict edges sets in

increasing level of conflict, following the substance of the method outlined by Andreev et

al.[5]:

• Late conflict set (LC): [vi, vj] ∈ LC if out(vi) = out(vj)

• Early conflict set (EC): [vi, vj] ∈ EC if in(vi) = in(vj)

• Both conflict set (BC): [vi, vj] ∈ BC if out(vi) = out(vj) and in(vi) = in(vj)

• Strong conflict set (SC): [vi, vj] ∈ SC if out(vi) = out(vj) = in(vi) = in(vj) and,

vi and vj are in a critical path.

55

A3

A4A1

A5

A2

A7

A6

A1 A2 A3 A4 A5 A6 A7
IN 2 0 1 1 0 0 0

OUT 0 1 0 1 1 1 2

Conflicts:
• Late: {13, 24, 25, 26, 45, 56}
• Early: {25, 26, 27, 56, 57}
• Both: {25, 26, 56}
• Strong: Ø

Figure 4.5: Conflict Sets

It is easy to see that, if an edge [vi, vj] belong to any conflict edge set, then its orientation

produces a circuit-free mixed graph GkM . The reason is that an edge is only in a conflict set

if it has the same inrank or outrank, on both incident vertices, and a circuit is only possible

if two vertices, with different inrank or outrank are connected.

The edge selection order is defined by the sequence of these sets. First we should select

edges in SC, then BC, then EC, and finally in LC. SC has the highest conflict level because

the orientation of an edge on this set will certainly increase l(GkM). The next set, BC,

contains edges with two types of conflict at the same time. Finally, we selecte edges from

sets EC and LC. An example of the sets is depict at Figure 4.5.

A branch-and-bound approach is appropriate for the search of the optimal value of the

enumeration of the set P (G), using the lower and upper bounds described in Propositions

1 and 3. A branch-and-bound search node corresponds to a mixed graph GkM obtained

from a transformation T k. A search node can branch into up to two descendants, one for

each orientation of the conflict edge selected to be transformed to an arc. Each branch-

ing descendant corresponds to a different mixed graph, constructed by the addition of the

arc created by the orientation of the conflict edge. The two new mixed graphs will be

GM (V,Ak ∪ [vi, vj], E\(vi, vj)) and GM (V,Ak ∪ [vj , vi], E\(vi, vj)). Ak describes the

current set of arcs of the mixed graph GkM .

The branching process stops if the conflict edge sets are empty. When no more conflict

edges exist, a feasible schedule for the problem has been found. In this case, the sched-

56

ule length will be l(GkM). Each transmission of the aggregation convergecast tree can be

scheduled at the time slot defined by in(vi) of the mixed graph GkM .

Assuming lopt(GM) is the smallest schedule length found so far during the enumeration

process, and because each search node represents a specific lower bound l(GkM) that can be

found in polynomial time (Proposition 2), we check, if the lower bound for the current node

is greater or equal to the smallest found so far, and if yes, there is no reason to continue

branching any further. This is because the addition of a new arc (from the transformation

process) can only increase the lower bound. This criterion constitutes an effective method

to prune the search space.

The exploration of the search tree can be performed in different ways. A simple one is

to execute a Depth First Search (DFS) where, after a search node is branched, the search

always continues in one of the branched search nodes, until a stop criterion is met. A second

method uses a sort of guided search, where the branch-and-bound algorithm tries to guess

what would be better branch to explore first, based on some heuristic. The complete process

is described in Algorithm 3.

Complexity Analysis

The Aggregation Convergecast Scheduling algorithm is composed of initialization steps

(Line 1 to Line 5) performed before the main search process (Line 6 to 24). The main step

of the initialization is executed in Line 1, where the TransformAggConvInstance function

creates the mixed graph GM . This function is composed of three parts, each one with a

particular run-time complexity. Initially it is necessary to create the mixed graph vertex

set VM using the aggregation Tree TAGG. As the number of edges of the tree is equal to

the number of vertices minus one, the run-time complexity of this first part is O(|V |). The

second part consists of creating the arc set AM from the precedences of tree TAGG. The

second part requires a run-time complexity of O(|V |2) because for each vertex V we must

check if there exists an arc with its neighbors. The worst case requires that we check against

all other vertices. The third part produces the set EM , which represents the interference

conflicts between the transmissions. In order to check the interference, it is necessary to

determine for each vertex in V , if its 1-hop neighbors have arcs coming from its 2-hop

neighbors. This operation has a run-time complexity of O(|V |3). Therefore, the run-time

complexity of Line 1 isO(|V |3). Lines 2 and 3 are simple operation executed in linear time

O(|V |). Lines 4 and 5 are simple operations requiring O(|1|).

57

Algorithm 3: Aggregation Convergecast Scheduling
Input: Undirected Graph G = (V,E) and Aggregation Tree TAGG
Output: Schedule S
1 GM (VM , AM , EM)←− TransformAggConvInstance(G,TAGG)
2 UB ←− |VM | /* upper bound for schedule */
3 Ef ←− EM /* set of edges */
4 N0 ←− CreateSearchNode(GD(VM , AM), Ef)
5 Q←− enqueue(N0)
6 while Q 6= Ø do
7 Nk(G

k
D, E

k
f)←− unqueue(Q)

8 Ranks←− CalculateInOutRanks(GkD)

9 if l(GkD) < UB then
10 CE ←− CalculateConflictEdgeSets(Ranks)
11 if CE = Ø then
12 if l(GkD) < UB then
13 UB ←− l(GkD)
14 S ←− GetInRank(Ranks)

15 end
16 else
17 ij ←− SelectHighestConflictEdge(CE)

18 Nk+1 ←− CreateSearchNode(GkD(VM , A
k
M ∪
−→
ij), Ekf \ ij)

19 Q←− enqueue(Nk+1)

20 Nk+2 ←− CreateSearchNode(GkD(VM , A
k
M ∪
−→
ji), Ekf \ ij)

21 Q←− enqueue(Nk+2)

22 end
23 end
24 end
25 return S

From Line 6 to 24 we have the algorithm’s core enumeration process. The run-time com-

plexity depends on the maximum possible size of the search tree. As it is presented in

Theorem 1, the cardinality of the set P̊ (G) is upper bounded by λ(P̊ (G)) ≤ 2|E|, that

is the maximum number of combinations of edge orientations. Therefore, the run-time

complexity of this part is O(2|EM |), a clear exponential run-time complexity. The conclu-

sion is that Aggregation Convergecast Scheduling algorithm has a run-time complexity of

O(2|EM |).

4.5 Experiments and Discussion

A sequence of numerical experiments were carried out to explore both the aggregation tree

selection and the results derived from the branch-and-bound solver for ACS. We generated

58

connected graphs generated for a fixed number of nodes n={40, 50, 60}, with varying

number of edges by varying the transmission range, txr, and specifically for txr={0.20,

0.25, 0.30} distance units, with the nodes placed in a square area with side equal to one

distance unit. A number of runs where produced for each parameter setting. The sink node

is randomly selected out of the n nodes. Using these input graphs, aggregation trees are

generated using α={1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00}. The α selected

range encompasses our interest zone: the most probable values for which the combination

of shortest path and minimum interference trees will produce short schedules. For the

branch-and-bound scheduling, we used a timeout of 3,600s (1 hour) of computation time

on a single processor of a Dual Core AMD Opteron(tm) 280 2.4GHz CPU. With the branch-

and-bound timeout value used, and depending on the input graph, in some cases all runs in

a group terminate, while in others no run can terminate within the given time. If a run could

not terminate in the given time, we report the best solution found up to the termination

of execution, noting that the optimal value could (given more processing time) have been

lower.

Figure 4.6 presents average and 95% confidence interval of the schedule produced by trees

generated using several α values. The points for WIRES correspond to the results of the

WIRES algorithm [76] given the same input, used here as a baseline of current state-of-art

solution for the ACS problem. The points for MIT correspond to the results of the use of

the Minimum Interference Tree (MIT), also used here for comparison purposes.

Figures 4.7 and 4.8 present the results of Tree Size and Interference Weight Count, as the

number of nodes, transmission range and α change. The average results of SPT and MIT

are also used for purposes of comparison.

Figure 4.9 presents the change of the schedule length as α changes with respect to the

schedule lower bound. The points represent the average schedule length for a given α.

4.5.1 Balancing Precedence and Resource Constraints

We explained in the beginning that the aggregation convergecast scheduling problem is

composed of two types of constraints, precedence and resource/interference constraints.

Therefore, we must balance both requirements to obtain results closer to optimal, based on

the control afforded to us by the α parameter. Figure 4.6 shows that there indeed exists an α

such that the combination of both sets of constraints produces a schedule length smaller than

59

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

● ●
●

● ●

●
● ● ●

●
●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(a) n = 40, txr = 0.20

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

●

● ● ●
● ●

●
●

●

●
●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(b) n = 40, txr = 0.25

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

●
● ● ● ● ● ● ● ●

●●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(c) n = 40, txr = 0.30

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

● ●
●

●

●
●

● ● ●

●
●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(d) n = 50, txr = 0.20

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

●
●

● ●
●

● ●
●

●●
●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(e) n = 50, txr = 0.25

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

● ●
●

●
● ● ● ●

●

●

●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(f) n = 50, txr = 0.30

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

●

●
●

●

●
● ● ● ●

●
●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(g) n = 60, txr = 0.20

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●

●
●

● ●
●

●

● ●

●

●

●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(h) n = 60, txr = 0.25

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

●●

●

●
●

● ●
●

● ●

●

●

W
IR

ES

SP
T

SL
T

1.
00

SL
T

1.
25

SL
T

1.
50

SL
T

1.
75

SL
T

2.
00

SL
T

2.
25

SL
T

2.
50

SL
T

2.
75

SL
T

3.
00

M
IT

Topologies

S
ch

ed
ul

e
le

ng
th

(i) n = 60, txr = 0.30

Figure 4.6: Schedule generated by each tree created using different α

the schedule length obtained when only one restriction (precedence or resource constraint)

is minimized. The results also show that there exists a valley around α’s optimal value.

This optimal α value depends on the input instance: the size of the network in terms of ver-

tices and edges (the more the transmission range the more the edges). The parameter that

seems to cause greater shift on the optimal value of α is the transmission range (hence, edge

density) because it captures the impact of interference, even though higher density can de-

crease the impact of the precedence component; while if the transmission range is smaller,

it will decrease the interference component, and increase the precedence component (i.e.,

longer paths), but not at the same rate. It is noticeable in Figures 4.6(a) to 4.6(i) that the

60

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

● ●
●

●
●

●
● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(a) n = 40, txr = 0.20

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

● ● ●
● ● ●

●
● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(b) n = 40, txr = 0.25

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

● ●
●

● ●
● ●

● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(c) n = 40, txr = 0.30

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●
●

●
●

●
● ● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(d) n = 50, txr = 0.20

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

● ●
●

●
● ● ●

● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(e) n = 50, txr = 0.25

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●
●

●
●

● ●
● ●

●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(f) n = 50, txr = 0.30

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●
●

●
●

●
●

●
●

●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(g) n = 60, txr = 0.20

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●
●

●
●

●
●

●
●

●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(h) n = 60, txr = 0.25

50

100

150

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●
●

●
●

●
●

●
●

●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

Tr
ee

 S
iz

e

(i) n = 60, txr = 0.30

Figure 4.7: Tree Size of trees using different α

best α shifts right (increasing in value) following the increased importance of the resource

constraint in dense graphs. On the other hand, in sparse graphs, smaller α produces better

schedule lengths. Therefore, for sparse graphs, SPT is a competitive solution, because the

weight of the precedence constraints is higher.

The effect of the different values for α on the tree size are shown in Figure 4.7 where the two

dotted lines indicate the average tree size of SPT and MIT. These are the limits expected

for the input parameters. The range between the maximum and minimum values do not

change a lot as the transmission range (and hence, density) increases, however it is clear

that the tree size will be smaller when there is a longer transmission range. Furthermore,

61

100

150

200

250

300

350

400

450

SPT Average

MIT Average

●
● ●

● ● ● ● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(a) n = 40, txr = 0.20

100

150

200

250

300

350

400

450

SPT Average

MIT Average

●

●
●

● ● ● ● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(b) n = 40, txr = 0.25

100

150

200

250

300

350

400

450

SPT Average

MIT Average

●

●

●

● ●
● ● ●

●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(c) n = 40, txr = 0.30

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●
●

● ● ● ● ● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(d) n = 50, txr = 0.20

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●

●

●
●

● ● ● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(e) n = 50, txr = 0.25

200

250

300

350

400

450

500

550

600

650

SPT Average

MIT Average

●

●

●

●
●

●
● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(f) n = 50, txr = 0.30

250

300

350

400

450

500

550

600

650

700

750

800

850

900

SPT Average

MIT Average

●
●

● ● ● ● ● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(g) n = 60, txr = 0.20

250

300

350

400

450

500

550

600

650

700

750

800

850

900

SPT Average

MIT Average

●

●

●
● ● ●

● ● ●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(h) n = 60, txr = 0.25

250

300

350

400

450

500

550

600

650

700

750

800

850

900
SPT Average

MIT Average

●

●

●
● ●

● ● ●
●

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Alpha

In
te

rf
er

en
ce

 W
ei

gh
t C

ou
nt

(i) n = 60, txr = 0.30

Figure 4.8: Interference Weight Count for Trees using different α

if the transmission range is kept constant as the number of nodes vary, the SPT average

changes little, while MIT average shifts significantly. Given the same number of nodes and

transmission range, the modification of the α parameter has an almost linear impact on the

tree size.

Figure 4.8 illustrates the influence of α selection on the interference weight count with

respect to two aspects. First, the gap between interference weight averages for MIT and

SPT topologies widens as txr increases. This effect is far less pronounced on the tree size.

The second one is (differently from the almost linear change on the tree size) a non-linear

impact on the interference weight when α changes. This last aspect means that a small

62

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(a) n = 40, txr = 0.20

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(b) n = 40, txr = 0.25

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(c) n = 40, txr = 0.30

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(d) n = 50, txr = 0.20

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(e) n = 50, txr = 0.25

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(f) n = 50, txr = 0.30

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(g) n = 60, txr = 0.20

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(h) n = 60, txr = 0.25

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

LB Average

Schedule Average

1.00
1.25

1.50
1.75

2.00
2.25

2.50
2.75

3.00

Tree Topologies by Alpha

S
ch

ed
ul

e
Le

ng
th

(i) n = 60, txr = 0.30

Figure 4.9: Comparison of average schedule obtained and lower bound for different α

variation of the α parameter is enough for a large variation on the amount of transmissions

that could be blocked (to satisfy interference constraints).

In the set of graphs presented in Figure 4.9, the lower line represents the contribution of

precedence constraints on the schedule length, understood as the baseline of what would

have been the schedule length if no interference (resource) constraints existed2. The upper

line is the actual schedule obtained through our runs. The gap between the lines represents

the contribution of the resource (interference) constraints on schedule length. Clearly, de-
2An alternative view of the same is that this line would represent the schedule length achieved if multiple

frequency channel transceivers were used by each node.

63

pending on the value of α selected, SPT and MIT will be combined such that this gap is

somehow compressed, otherwise the upper line would just follow the lower line by a con-

stant distance, from the smallest to the highest α used. When the influence of resource

constraints is smaller, as it happens with small txr, the gap is small and constant. The

schedule average line follows closely the trend of the lower bound.

An important open question is what should be the ”best” value for α such that the schedule

is minimized, given a number of nodes, the location of the sink, their transmission ranges

and the area of deployment. A closed form for the optimal α has proved to be beyond our

abilities for the time being. However, two aspects may be used to confine the search for the

best α. The first is that the best α value is higher for higher interference weight. The second

aspect possible to explore is the presence of a single ”inflexion point” on the schedule length

around this best value. As soon as the trend of the schedule length decreasing as α increases,

we can be fairly certain that we have outside the range in which the optimal α is located.

These two aspects could be the basis of an “outer loop” for an iterative optimization strategy

the best α value can be found, and consequently, the optimal schedule length. Finally, we

remark a significant caveat: the timeout used for the branch-and-bound and the fact that

most instances did not fully terminate within the alloted time means that the absolute results,

especially for dense graphs, could change if more processing resources were allocated. This

could cause the best α to shift in some cases. Nevertheless, the results could only improve,

decreasing even more the schedule length.

4.5.2 Generalization of Aggregation Convergecast Scheduling Model

In Section 4.4, we explain how to model aggregation convergecast scheduling problem as

a Mixed Graph Coloring problem, and how precedence and resource constraints fit on this

model. In this part, we explain the equivalence of aggregation convergecast scheduling

to similar (with the same constraints) scheduling problems. The literature of aggregation

convergecast research seems dissociated of scheduling theory. An association is not found

in the literature and it was never addressed by researchers.

Scheduling Theory covers a vast literature [83]. Let’s focus initially in one well known

problem: the Deterministic Job-Shop Scheduling. A Job-Shop consists of a multi-stage

processing system where a set of machines M = {M1,M2, · · · ,Mm} has to process a set

of given jobs J = {J1, J2, · · · , Jn}. Each job Ji is composed of ni ordered operations

(O(i,1), O(i,2), · · · , O(i,ni)). Associated to each operation Oij is a processing requirement

64

pij . A release time ri may be associated to the first operation of job Ji, indicating when this

job can start. Each operation Oij is associated to a set of machines µij ⊆ {M1, · · · ,Mm}.

Oij can be executed on machines in µij set. For the specific case of Job-Shop Scheduling,

all µij are one element set, indicating a dedicated machine to execute a specific operation

Oij . A technological route is a sequence of machines (Mi,1,Mi,2, · · · ,Mi,ni) that is used

to process the job Ji. Some conditions are assumed:

• At any time, each machine Mj ∈ M either processes one and only one job from the

set J or is idle.

• At any time, each job Ji ∈ J is either been processed by one machine from set M ,

or is waiting to be processed, or is already completely processed.

• The technological route for processing each job Ji ∈ J is fixed before scheduling.

The objective of the scheduling is to determine a sequence for the set of all operations L =

{L1, · · · , Lq} on the corresponding machines for which the value of the given objective

function F is minimal. A usual objective is to minimize the makespan. The example of Fig-

ure 4.10 presents a job shop of 3 jobs (J1, J2, J3) and 4 machines (M1,M2,M3,M4). The

job J1 is composed of operations {O(1,1), O(2,1), O(3,1)}, J2 has operations {O(2,2), O(1,2),

O(4,2), O(3,2)}, and J3 has {O(1,3), O(2,3), O(4,3)} operations.

2,2

1,1

1,3

2,1

2,3

4,2

3,1

4,3

3,2

Source Sink

1,2

J1

J1 J1

J2 J2 J2

J3

J3 J3

M1

M1

M1

M2

M2M2

M3

M4

Figure 4.10: Disjunctive Graph for Job-Shop problem

It is not hard to see that the job shop scheduling problem have also precedence and resource

constraints. The precedence constraints is defined by sequence of operations (O(i,1), O(i,2),

· · · , O(i,ni)) that each job Ji has to follow. The resource constraints is established by the

impossibility that a given machine Mj execute more than one operation Oij per time. This

machine/resource restriction is expressed by a Disjunctive Graph using a clique among all

the operations that must be executed by the same machine. In Figure 4.10, the set of jobs

65

{(2, 1), (2, 2), (2, 3)} are all executed by machineM2. The Disjunctive Graph expresses the

same restrictions conveyed by the extended conflict graph (Figure 4.4) of the aggregation

convergecast scheduling problem.

Both, aggregation convergecast scheduling and job shop scheduling induce mixed graphs

which represent restrictions of each problem. In principle, both problems can be scheduled

by an algorithm similar to the branch-and-bound algorithm presented before. However,

each problem induces different mixed graph classes. For instance, each machine of the

job shop scheduling create disjointed cliques, representing the resource constraint of the

machine. Besides, each machine has no relation with another machine. In aggregation con-

vergecast, the resource constraint created by use of wireless media is blurred. An operation

in Job-Shop scheduling is associated to a single machine (µij set is unitary), which may

not be true for aggregation convergecast. Another different is that Job-Shop Scheduling

has disjointed technological routes. They are independent paths of precedence constraints

that only converge in the last step. By his part, Aggregation Convergecast precedence paths

forms a tree, merging different branches along the way, instead of only in the end. There-

fore, even though some similarities exist, both problems induce different mixed graphs.

The set µij of operation Oij is not necessarily unitary, but can be a subset of the machines

available. If more than one machine is required at a time by operation Oij , the problem is

called Multiprocessor Task Scheduling (MTS). A clarification is necessary. There are two

categories of MTS problems [55]: the first considers that a job needs to be executed by a

given number of processor simultaneously, but choice of the processor is open; the second

category imposes that every job requires a number of dedicated processors 3. Aggregation

Convergecast falls on the second category.

In [15], Brucker presents a classification for classes of scheduling problems. A prob-

lem can be categorized according to a three-field classification α | β | γ, where α spec-

ifies the machine environment, β expresses the jobs characteristics, and γ determines

the optimality criterion. According to this classification, the aggregation convergecast is

a MPTm|intree, pi = 1|Cmax scheduling problem. The parameters of this classification

is explained in Tables 4.1 and 4.2. Studies of this problem can be found in [3, 23, 36, 70].

An aggregation convergecast scheduling problem can easily be transformed into a machine-

job representation. The machine in the Multiprocessor Task Scheduling represents the con-
3The first problem is known as Pm|setj |Cmax, while the second is Pm|fixj |Cmax, [23]

66

Table 4.1: Scheduling Class Parameters

Symbol Description
MTPm Multiprocessor tasks environment with m machines
intree The precedence relations between jobs forms an inward rooted tree
pi = 1 The processing time of a task is 1 (Unit-Time Processing)
Cmax The scheduling objective minimizes the makespan max{Ci|i =

1, · · · , n}, where Ci represents the finishing time of job Ji

Table 4.2: Scheduling Implicit Parameters

Symbol Description
β1 = ∅ No preemption is allowed
β5 = ∅ No deadline is specified for each job Ji
ri = 0 The release time of all jobs is assumed to be at the beginning of the

schedule
ni = 1 Each job Ji is composed only one operation {Oi,1}

flict for the execution of each task. This conflict is represented by the edges and arcs on

the extended conflict graph. An immediate equivalence is to transform each edge and arc

into an independent machine, as described in Figure 4.11. The number of machine can be

reduced by decomposing the graph into cliques, and naming each clique as a machine, as

done in Figure 4.12, and described in Table 4.3.

4.6 Previous Work

Several researchers have addressed the ACS problem [24, 38, 73, 76, 114]. The decomposi-

tion we adopt of ACS into an aggregation tree construction (using some heuristic) followed

by a feasible schedule construction (using another heuristic) is the sequence adopted by a

number of papers [24, 76, 112]. Typically, the tree construction is a form of expressing

precedence constraints with limited (if any) representation of the interference constraints,

while the scheduling stage expresses the impact of interference constraints. An explicit si-

multaneous use of both precedence and resource/interference constraints has not yet been

explored. The use of an SPT as the aggregation tree reflects the concern of minimizing

the effects of the precedence constraints on the schedule length, but it is oblivious to the

resource constraints.

We compared our approach with the recent state-of-the-art works in the literature, [76],

where the authors present a heuristic based on using BSPT (Balanced Shortest Path Tree)

67

A3

A4A1

A5

A2

A7

A6A0

M1

M16

M2
M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

Figure 4.11: Simple job-machine
conversion

A3

A4A1

A5

A2

A7

A6A0

M7

M1

M2
M3

M4

M5

M6

Figure 4.12: Job-machine conversion by
clique decomposition

Task Machines Prec
A0 M3 ∅
A1 M1,M3 A0

A2 M1,M2,M6 A3

A3 M2,M3 A0

A4 M1,M5 A1

A5 M1,M4,M7 A3

A6 M2,M7 A3

A7 M4,M5,M6 A4

Table 4.3: Multiprocessor Task
Equivalence

as the aggregation tree. The idea is to select a SPT such that it balances the number of

children among the parents at each graph layer, whereby the number of children is a proxy

of the potential interference. While this approach has the potential to decrease the overall

interference weight, its restriction to particular SPT varieties precludes additional improve-

ment, given the SPT pathologies outlined in Chapter 3.

The combination of precedence and resource constraints with the objective of minimizing

the makespan through a merging of SPT and MIT trees (and therefore using more than one

criterion to optimize the aggregation tree) has been recognized by other authors as well. In

[51], a bi-criteria optimization [86] is used to combine SPT and MIT. The authors formu-

late the optimal aggregation tree construction as a bi-criteria optimization where, given a

threshold on the maximum node degree, the objective is to minimize the maximum number

68

of hops (radius) of the tree. This problem is known as the Degree-Bounded Minimum Di-

ameter Spanning Tree [68]. Initially, a backbone tree is constructed by arbitrarily choosing

a local root from hexagon grid cells. These local roots are connected using a BFS (Breast

First Search) approach, starting from the sink node. This constitutes the SPT side of the

approach. After that, local spanning trees are created in each cell with the non-root nodes

such that in each cell no node exceeds a maximum degree ∆∗. The spanning trees are con-

structed using a edge weight similar to Xedge(e) in Figure 4.2(a) from Section 4.3. Even

though our work and [51] have similarities, the objectives are different. The objective of

[51] is to create a tree for a pipelined schedule, which removes the concern about prece-

dence constraints. Therefore, the radius of the resulting tree is not a decisive concern to

their objective. For comparison purposes, we run some simulations, using the scheduler

described in [52] on a set of input graphs.

Table 4.4: SLT vs. BDMRST (200 nodes, α = 1.25, single channel)

BDMRST
Schedule

SLT Schedule BDMSRT Ra-
dius

SLT Radius BDMRST Max
Degree

SLT Max De-
gree

14 16 28 13 6 13
13 16 16 17 6 9
16 18 18 17 8 13
15 17 26 17 6 8
12 14 23 14 5 9

The results on Table 4.4 show that for an α = 1.25 the tree created using BDMRST pro-

duces smaller schedules length. However, this results is for a pipelined schedule, where

precedence constraints do not exist. If precedence is a requirement, as in ACS, the schedule

length would be very different. The column with the BDMRST radius reveals a deep tree.

If this deep tree was used for ACS, the BDMRST schedule would have been at least as long

as the reported tree radius. Interestingly, it is possible to obtain a SLT similar to BDMRST

by determining a suitable value for α. For example, results for an α = 2.25 are presented

in Table 4.5.

Table 4.5: SLT vs. BDMRST (200 nodes, α = 2.25, single channel)

BDMRST
Schedule

SLT Schedule BDMSRT Ra-
dius

SLT Radius BDMRST Max
Degree

SLT Max De-
gree

13 11 24 26 7 8
15 16 21 28 7 14
12 11 26 22 6 6
13 13 27 25 5 8
13 11 23 24 6 7

In [76], Malhotra et al., alongside the introduction of WIRES against which we compared

the numerical results in the previous section, they also remark that for a given routing tree,

69

the lower bound on the schedule length ismaxi∈V (ξi + hi), where ξi and hi are the number

of children and hop distance from the sink, respectively, for node i. A heuristic is used to

schedule transmissions from the nodes toward the sink. The idea is to rank all eligible

nodes in decreasing order of their weights (number of non-leaf neighbors). A higher weight

gives a higher relative priority to a node to be scheduled in the current time slot over other

eligible nodes. Such heuristic has the effect of releasing (transmitting) earlier the node that

is blocking more nodes from transmitting. It also creates a collision-free schedule.

In [52], Ghosh et al.address the multi-channel scheduling problem. Given a tree T from a

graphG, andK orthogonal frequencies, a frequency is assigned to each one of the receivers,

and a time slot to each of the edges in T , such that the schedule length is minimized.

The part of [52] relevant to our work for comparison purposes is the time slot assignment.

The authors opt for a greedy time slot assignment scheme for the whole network. The

deployment region is divided into a set of grid cells. Each cell needs γi time slots. If

the set of time slot γi represents a unique color, then the whole network can be schedule

using at most four different colors. As precedence is not required for the schedule, the total

number of time slots required is 4 times the maximum number of slots in any set. Other

works on aggregation convergecast pose different requirements than what we assume here.

For example, one group [37, 93] aims to perform aggregation convergecast scheduling,

but with variable transmission power, such that the original communication graph may

change. Another group [72, 112] seeks a distributed algorithm to execute the aggregation

and scheduling.

Finally, we point out the uniqueness in our approach of obtaining the MIT on the way

to producing the SLT. By adopting a “directed” link activation model (instead of a node

activation model) to capture the interference metric, we have formulated the scheduling

problem in a way specifically suitable to ACS. Our MIT topology differs from works such

as [13, 45, 108] where an initial minimum interference topology was attained by control-

ling transmission power. In ACS, the MIT is an overlay/logical topology whose selection

reduces the interference for the purposes of the schedule length. Conceivably, the MIT

may be constructed after a minimum interference topology (using transmission power con-

trol) has been first selected. However, our MIT algorithm is suitable for ACS compared

to flow-based minimum interference routing (where individual flows are preserved and not

aggregated) [44, 67], because, the aggregation implies non-conservative flow model, which

is clearly not the case with conservative flow-based minimum interference algorithms.

70

4.7 Conclusions

The precedence and resource constraints were explored in depth. Existing solutions priori-

tize one constraint over another instead of approaching the problem as a case of bi-criteria

optimization. We propose a method to combine both constraints such that the resulting log-

ical topology is a synthesis of properties of a shortest path tree (minimum precedence con-

straint tree) and properties of a minimum interference tree (minimum resource constraint

tree).

Additionally, it is shown that aggregation convergecast scheduling can be modeled as a

mixed graph coloring. This led us to the definition of an extended conflict graph represen-

tation for the aggregation convergecast. Arcs represent the aggregation paths, and edges

represent interference conflict between two transmissions. The chromatic number and rel-

evant properties for the mixed graph are presented. A branch-and-bound method to obtain

the schedule length is developed. Extensive simulation results show that the right balance

between precedence constraints and resource constraints produces schedule lengths shorter

than current state-of-the-art heuristics can attain. We also observe that the aggregation con-

vergecast scheduling is focused to a single collection of all sensor data to the sink, and

hence centered on completing the collection in the shortest amount of time.

71

Chapter 5

Pipelined Aggregation Convergecast

5.1 Introduction

The aggregation convergecast scheduling problem is concerned with determining the best

aggregation tree in terms of schedule length required to collect a single snapshot of data

from the nodes to the sink. Essentially, the output of aggregation convergecast scheduling

is a schedule of transmissions and a corresponding aggregation tree.

In aggregation convergecast, leaf nodes transmit their measurements to their parent nodes.

Interior nodes of the tree perform the aggregation operation on the values arriving from

their children (and their own value) and transmit the aggregation result to their own parent

node. The restriction of forcing parent nodes to wait for the results from all their designated

children to be received before they produce and transmit the aggregation result, is called

precedence constraint.

The solution approach used in most of the relevant literature is to decompose the problem

into two phases: the first one constructs an aggregation tree (i.e., determines the routing),

and the second determines the transmission time of each node (i.e., scheduling). Both

phases rely on heuristics. Two points are (sometimes implicitly) assumed: (a) that it is

necessary to define an aggregation tree first in order to obtain a schedule (the two phase ap-

proach), and (b) the (strict) enforcement of precedence constraints as having to be satisfied

within one schedule cycle.

Aggregation convergecast schedule has, thus far, been interested in a single (isolated) col-

lection of all sensor data to the sink, and hence focused on completing the collection in

the shortest amount of time. While this approach is desirable for some classes of applica-

72

tions, it does not serve other applications, such as the continuously running data aggregation

queries. Continuously running queries may prefer the ability to collect frequent samples

from the entire sensor field, to allow a finer temporal reconstruction of the observed phe-

nomenon. Such applications demand higher sampling rate, i.e., a higher rate of snapshots

being collected per unit of time, and hence higher throughput data collection. In fact, we

may be willing to accept a longer lead–in time for the first snapshot to be collected as long

as the collections can be performed at a higher rate. To this end, we consider relaxing

assumption (b) mentioned in the previous paragraph.

Specifically, the solution proposed in this Chapter considers satisfying the totality of prece-

dence constraints over a timespan of multiple, consecutive, scheduling cycles. In contrast,

the characteristic of a single data collection cycle is that within each scheduling cycle a

single snapshot is allowed to be transmitted. Compared to previous schemes, our main idea

is to produce a short scheduling cycle. However, a single such cycle will be insufficient

to complete the data aggregation of a single snapshot of data from all sensors. Multiple

such cycles are needed to complete a single snapshot aggregation, but the upside is that

within a scheduling cycle, several data aggregation snapshots may be collected/aggregated

in parallel, i.e., a form of pipelining of many snapshots by interleaving their collection over

time.

The intuition is that pipelining should be possible because of the extent that spatial reuse of

the medium in a multi-hop wireless network is possible. This ”spatial” dimension can be

roughly thought as representing stages of a pipeline. An example of the benefits of using

pipelining is presented in Figure 5.1. The throughput of 1/7 (Figure 5.1(b)) without using

pipelining increases to 1/4 (Figure 5.1(c)) using pipelining. For example, in Figure 5.1(c),

node 13 cannot transmit the aggregation (for one particular snapshot) within a scheduling

cycle, as node 12 (which feeds 13) is set for transmit (in schedule order) after node 13,

hence the precedence constraint of 11 and 12 transmitting to 13 before 13 can transmit is

satisfied across two schedule cycles. The tree topology depicted in Figure 5.1 is, relatively

speaking, trivial to pipeline. As we will see in subsequent sections, our pipelining technique

applies to arbitrary connected graphs.

Our proposal involves the unconventional approach of constructing the schedule before

finalizing the exact form of the precedence constraints, i.e., before determining the data

aggregation tree, which in turn requires that the schedule construction phase guarantees that

every node can reach the sink. We compare our results using pipelining against a previously

73

2

1

3

4

5

T1

T1

T2

T2

T3 T4

T4

T5

T2

T1

T4

T6 T7

6

7

8

9

10

11

12

13

(a) Communication Graph

T1

1

2

T2

3

4

9

T3

5

T4

6

T5

8

12

T6

11

T7

13

T8 T9

7

T10 T11 T12 T13 T14

Schedule length

10

1

2

3

4

9

5 6 8

12

11 13

7

10

(b) Non-Pipelined Schedule (1/7 snapshots/slot)

T1

1

2

T2

3

4

9

T3

5

T4

6

T5

12

T6 T7 T8 T9

7

T10 T11 T12

Schedule length

10

8 11

13

1

2

3

4

9

5 6

12

7

10

8 11

13

1

2

3

4

9

5 6

12

7

10

8 11

13

(c) Pipelined Schedule (1/4 snapshots/slot)

Figure 5.1: Throughput improvement using pipelining

proposed algorithm that also uses pipelining, as well as against an algorithm that, although

lacking pipelining, exhibits the ability to produce very short schedules. The results confirm

the potential to achieve a substantial throughput increase at the cost of increased latency.

The remaining of the Chapter is organized as follows. In Section 5.2, related work is pre-

sented. Section 5.3 contains the aggregation convergecast related definitions. The proposed

74

algorithm is described and discussed in Section 5.4. Extensive simulations and consequent

results are presented in Section 5.5. Energy consumption is addressed in a separated part.

Finally, Section 5.6 concludes the Chapter.

5.2 Related Work

We consider three relevant aspects for the purposes of study in the current Chapter: the

relaxation of precedence constraints in a single cycle, the sequence (order of steps) to obtain

a solution (node scheduling first, aggregation tree later); and, the use of pipelining. With

respect to the first aspect, most works explicitly force parent nodes to only transmit after

they have received the transmission from all their designated children in the same cycle [76],

while other works use the same restriction implicitly [4, 111]. On the second aspect, to the

best of our knowledge, all previous algorithms decide first about aggregation tree, and later

about the node’s transmission time/schedule. On the third aspect, we did not locate in the

literature a solution proposing pipelining, except for [52]. Even though, Ghosh et al. use

pipelining, they first commit to an aggregation tree, and create a pipelined schedule over

this tree. We did not find a single work that jointly combines the three aspects mentioned.

Since the closest to our work is [52], we provide a summary of its operation. The ag-

gregation tree constructed is called a Bounded-Degree Minimum-Radius Spanning Tree

(BDMRST). The aggregation tree uses bi-criteria optimization to combine a Shortest Path

Tree and a Minimum Interference Tree. The optimal aggregation tree construction is for-

mulated as follows: given a threshold on the maximum node degree, the objective is to

minimize the maximum number of hops (radius) in the tree. Subsequently, the aggregation

tree is used as the basis for multi-channel scheduling. The WSN deployment area is divided

into a set of square grid cells. First, frequencies are assigned to receivers of the tree on each

cell, then a greedy time slot assignment scheme is employed for each cell. The scheduling

algorithm does not require the precedence constraint, instead, a pipeline is established for

the sink to receive aggregated data from all nodes.

5.3 Preliminary Definitions

Definition 5.3.1. Let snapshot st be defined as the union of the sensed values produced by

n sensors at a particular time instant t.

75

Definition 5.3.2. The collection delay ∆c is the difference between the time t when a snap-

shot (sensing by all nodes simultaneously and across all nodes of the network) is taken and

the time when the sink has received all the data related to this snapshot.

Definition 5.3.3. Precedence constraint is the restriction that once a node transmits, for the

purpose of a particular single snapshot data collection, it can no longer be the destination

for any transmissions related to this same snapshot.

The way precedence constraints were captured in previous works resulted in significant

reduction on the solution space of possible schedules, because of only allowing solutions

where the collection latency, ∆c, (from snapshot “capture” to arrival at the sink) was the

same as the length of the schedule cycle, l. For pipelined aggregation convergecast we

introduce some additional definitions:

Definition 5.3.4. An aggregation convergecast employs pipelining if the sensors can be-

gin to transmit data of the next snapshot stk+1 before the previous snapshot stk has been

completely received by the sink.

Definition 5.3.5. Inter-snapshot delay δs is the time difference as perceived by the sink

between a snapshot stk and the next snapshot stk+1 being completely received.

The rate at which snapshots are created should match the rate at which they are delivered

to the sink. Hence, δs is a property of the particular schedule which, in turn, defines how

frequently the snapshots can be generated. Also, after an initial transient time where no

snapshot has completely been received by the sink, we reach a steady-state, whereby the

pipeline is kept utilized and reception of snapshots is periodically completed at the sink. It

is trivial to note (by contradiction) that in steady-state the inter-snapshot delay is equal to

the schedule length δs = l.

The purpose of pipeline is to have more than one snapshot propagating through the network

during each schedule period, and hence ∆c ≥ δs(= l), noting that in previous works these

three quantities were equal.

Definition 5.3.6. Aggregated Throughput C is the ratio of the amount of data of one snap-

shot over the inter-snapshot delay, C = n
δs

. It can also be understood as the rate of com-

pleted data snapshot collections per unit of time, as perceived by the sink node.

The solution strategy we advocate for pipelined aggregation convergecast, tries to reduce l

by constructing a “tight” schedule and subsequently constructing an aggregation tree that

76

“fits” with the schedule. This inversion of order (compared to previous work on aggregation

convergecast) comes with particular requirements for what interference model can be used

during the schedule construction phase. Two such models are commonly used: node activa-

tion and link activation models [54]. It is commonly understood that in the node activation

model, when a node is scheduled to transmit, there should be no transmission by any of

its 1st and 2nd hop neighbors. The appeal of the node activation model is that we do not

need to commit who is the intended recipient (1st hop neighbor) of the transmission node,

i.e., it is a model that allows us to decide on a schedule before we decide on routing. This

flexibility comes at the cost of low throughput [54].

In the link activation method, an edge (without direction) or an arc (with direction) is what

is scheduled. In the case of an edge, no direction is designated. Then, it is necessary

to block edges up to 2 hops away from both vertices from being active at same time to

avoid collisions. This form of blocking is even higher then in the node activation model.

More useful is the case of directed (arc) link activation. In this case, the arc’s source node

transmits, and must be received in a collision–/interference–free manner only by the arc’s

destination node. Hence, arc link activation models achieve higher throughput than node

activation [54]. It comes also at a price. Namely, it is necessary to commit first to a desired

direction (routing) before deciding when an arc is active (scheduling).

In the proposed approach, because routing follows the schedule construction, we will not

use the link activation model and will opt for a node activation model with full knowledge

of the fact that doing so risks the reduction of overall throughput. As we will see in the

following, any such reduction is apparently compensated by the throughput increase gained

by pipelining.

In summary, we define the schedule S = {S(1), S(2), · · · , S(r), · · · , S(l)} be the se-

quence of concurrent transmissions S(i) taking place in slot i. S(i) is the set of nodes that

transmit in slot i, also called the set of active nodes in the i–th slot. Assume vj ∈ S(i) is a

node transmitting in slot i, we denote by avj the outgoing arc towards the sink of the trans-

mission of node vj . It follows that the aggregation tree is defined by T =
⋃
v∈V−{s} av.

In previous aggregation convergecast schemes, av was fixed by means of a pre-computed

aggregation tree, while in the pipelining proposed here, av is determined by a particular

spanning tree construction phase subsequent to the scheduling phase.

An additional complication of our approach is that the direction that sensed data can be

77

forwarded toward the sink could be restricted by the interference due to scheduled trans-

missions. Hence, we need to incorporate some notion of interference’s impact during the

schedule construction. This is accomplished by enforcing a very mild requirement we call

the reachability constraint. It essentially states that no interference from scheduled trans-

missions is possible to disrupt the ability of any node in the network to have at least one path

from itself to the sink. Note that this property does not imply any optimality with respect

to such a path. However, as the reader may have noticed, long paths are not fundamentally

against our objectives because we are ready to accept increased latency in favor of higher

throughput.

Definition 5.3.7. A schedule S respects the Reachability Constraint if there exists at least

one directed path Pv s from each node v to the sink node s where each intermediate node

in sequence of the path can receive the transmission without collisions.

5.4 Pipeline Scheduling Algorithm

We have now all the elements necessary to propose a solution. The schedule is to be cre-

ated without paying attention to precedence constraints, but by merely ensuring that there

exists reachability between all nodes and the sink. The purpose is to create a short schedule,

which translates to high throughput. Once the schedule is completed, we produce the ag-

gregation tree (a guarantee exists that at least one such tree exists due to reachability being

satisfied) that exhibits the smallest possible collection latency cost. The described approach

represents a radical departure from previous solutions. Algorithm 4 shows our approach.

Initially, the input graph must be transformed into a directed graph, with two arcs per edge.

Another preliminary action is the removal of all outgoing arcs from the sink, because the

sink does not transmit. These actions are executed by the function TransfGraph in Line 1.

Line 2 selects an order by which the vertices will be processed. We consider three heuristics.

Each heuristic may employ multiple decision criteria. The first heuristic applies tree criteria.

The first criterion, (a), is to select the vertex whose outgoing arc has the largest number of

common neighbors between itself and the destination vertex. The rationale behind this

heuristic is to identify the vertices inside large cliques on the graph and schedule them

sooner, because they could remove more conflicting arcs (explained latter). As more than

one vertex may have the same number of common neighbors, the second criterion, (b), is

to give preference to vertices further away (hop distance) from the sink. The rationale is

78

Algorithm 4: Pipelined Aggregation Convergecast
Input: G(V,E), sink
Output: T, sched

1: G′(V,A)← TransfGraph(G)
2: Vo ← OrderV ertices(G′)
3: for (i = 1 to |Vo|) do
4: reachable← false
5: sched(vi)← 0
6: while (reachable = false) do
7: reachable← true
8: sched(vi)← sched(vi) + 1
9: Ac ← ConflictArcs(G′, sched, vi)

10: reachable← Reachability(G′, Ac, vi)
11: if (reachable = true) then
12: G′ ← G′(V,A\Ac)
13: end if
14: end while
15: end for
16: for (j = 1 to |A(G′)|) do
17: w[arcj]← SchedDifference(arcj)
18: end for
19: G∗ ← G′(V,AT)
20: TMCA ←MinCostArborescence(G∗, w, sched)
21: T ← (TMCA)T

to remove more arcs far from the sink first and leave the region close to the sink (where

all paths must inescapably converge) with more path options. If still there is a tie, the third

criterion, (c), selects first vertices of higher ID. The second heuristic is a variation of the

first one whereby the criteria of hop distance from the sink is applied first (criterion (b)), and

then the criterion of the number of common neighbors (criterion (a)), and then, in the event

of a tie, the order is decided based on higher ID (criterion (c)). Finally, the last heuristic

selects randomly a vertex order.

Once a vertex order is defined, the algorithm processes nodes following the order selected,

trying to assign each vertex to transmit at the earliest possible timeslot. This is executed in

lines 3 to 8. A vertex vi is taken from the queue to be processed. A tentative schedule for

node vi is stored in sched(vi), representing the slot index within the schedule cycle. The

boolean variable reachable is used to indicate if the sink node is reachable by all vertices

on the graph.

Once a tentative schedule (i.e., slot in which to transmit) is selected for vertex vi, it is

79

time to verify if this selection does not break the reachability restriction. First, the algo-

rithm determines which are the conflicting arcs. Conflicting arcs are those that would not

be possible to be used because their activation would violate the primary or secondary in-

terference constraints. The conflicting arcs are determined by the function ConflictArcs in

Line 9. Clearly, the interference is applied here to restrict the paths available to reach the

sink instead of restricting the time slots available for vertex transmission.

Line 10 is used to verify if the removal of the conflicting arcs, identified in Line 9, would

break the reachability constraint. Function Reachability checks if the sink node is reachable

from each vi’s 1-hop and 2-hop neighbors.

Let Γ1(vi) be the set of vi’s one-hop neighbours, and Γ2(vi) the set of two-hop neighbours.

Let the set of nodes in vi’s local region (inclusive of vi) be defined as N (vi) = {vi ∪

Γ1(vi) ∪ Γ2(vi)}.

Definition 5.4.1. Convergecast Reachability is the property according to which all vertices

u ∈ V in the directed graph G′(V,A) can reach the sink node.

Lemma 1. A directed graph G′, which satisfies the convergecast reachability, maintains

this property when vertex vi is additionally scheduled, if and only if all w ∈ N (vi) can

reach the sink after vi is scheduled. This can be trivially verified by inspecting the reacha-

bility of the nodes in N (vi).

Proof. A vertex transmission only affects incoming arcs to the vertices in {vi ∪ Γ1(vi)},

because these are the vertices affected by the primary and secondary conflicts. An incoming

arc to Γ1(vi) comes from at most vertices in Γ2(vi). An interruption in a directed path

Pu = {−→uw,−−→w, z1,
−−−→z1, z2, · · · ,

−−−−−→
zk, sink} (starting in vertex u) also interrupts all directed

paths where Pu is a subset. Only vertices for which all their possible paths to the sink cross

vertices in N (vi) may have their reachability affected, as they would otherwise have an

alternative path that does not involve N (vi). Assuming that at least one vertex of its path

is in N (vi), then checking if all vertices in N (vi) maintain their reachability to the sink is

sufficient to guarantee that the remaining vertices in V also preserve their reachability to

the sink. The contrary is also true, because N (vi) ⊂ V . Therefore, a directed graph G′

maintains the convergecast reachability property by inspecting only whether the vertices in

N (vi) maintain their reachability to the sink subject to vi’s schedule.

80

The reachability verification can be performed using Breadth First Search (BFS), based on

Lemma 1. Each vertex in N (vi) is selected as root. If no reachability violation occurs,

the tentative schedule is valid, and is committed. If the reachability restriction still holds,

all the conflicting arcs Ac, identified before, are removed from graph G′. The removal is

executed in Lines 11 to 13. If a reachability violation happens, no arc is removed, and the

same vertex vi is processed again with a new tentative schedule (at the next slot). If the

search for a schedule slot for vi without producing reachability violation turns up fruitless,

i.e., all slots thus far defined for the schedule have been exhausted, then the schedule length

expands by one slot (by virtue of Line 8) and vertex vi is trivially scheduled for transmission

in that slot.

Once a schedule is defined for all vertices, we need the aggregation tree, preferably one

that minimizes the delay. The intermediate result so far is a directed subgraph with the

transmission time for each vertex. Each vertex might have more than one path to reach the

sink node. After node vi transmission, the information content is only forwarded further to

the sink after node vi’s destination transmission. This slack time between the source vertex

u transmission and the destination node v transmission can be used to differentiate between

two or more possible candidates, say v′ and v′′, i.e., whether to use arc
−→
uv′ or arc

−−→
uv′′.

Therefore, we calculate the slack times for all nodes in Lines 16-18 and use them as the

weight of each arc. If the destination vertex is scheduled after the source vertex, the time

difference will be w[−→uv] = sched(v)− sched(u). If vertex v is scheduled before vertex u,

we make use of the fact that the information collection is periodic, and that the schedule is

periodically repeated. If the destination vertex has already transmitted in the current cycle,

the time slack lasts until v’s transmission on the next cycle. Therefore, the time slack will

be w[−→uv] = max(sched) − sched(u) + sched(v) + 1. Here max(sched) indicates the

length of the schedule cycle (in slots).

Each arc has now a weight expressing the time elapsed from the arc’s source transmission

to the time it is forwarded by the arc’s destination (or the delay associated to the “use” of

this arc). Our objective now is to find an aggregation tree that minimizes the overall delay.

How can such minimum weight tree be obtained? The traditional algorithms (Kruskal and

Prim [32]) to obtain a spanning tree T use an undirected graphs. Therefore these algorithms

cannot be directly used. The problem is related to computing a rooted directed spanning

tree. The rooted directed spanning tree is a graph which connects, without any cycle, all

nodes with n − 1 arcs (each node except the root) and each node has one and only one

81

incoming arc. This formulation belongs to a class of branching problems, also known as

minimum cost arborescence (MCA) [10]. An algorithm for solving this problem has been

proposed by Edmonds [39]. The MCA algorithm is capable of obtaining a result even if the

input graph has cycles.

1

2

8

3 4

5 6 7

(a) Input Graph

2

4 1

12

3

2

3

(b) Graph scheduled (Line 15)

2

4 1

12

3

2

3

1

1

1

1

1

2

2

2

2

3

3

(c) MCA input (Line 19)

2

4 1

12

3

2

3

(d) Final result (Line 21)

Figure 5.2: Execution of Algorithm 4

More specifically, convergecast can be seen as an in-branching problem [10]. Therefore,

82

T1

3

6

T2

1

5

7

T3

4

8

T4

2

T5

3

6

T6

1

5

7

T7

4

8

T8

2

T9

3

6

T10

1

5

7

T11

4

8

T12

2

T13

3

6

T14

1

5

7

T15

4

8

T16

2

Snapshot 1

begins

Snapshot 1

ends

Snapshot 2

begins

Snapshot 2

ends

Schedule length

Collection time

 Inter-snapshot delay

Figure 5.3: Pipeline of Algorithm 4

a slight modification on Edmonds’ algorithm is enough to obtain an aggregation tree. The

modification consists in changing the direction of the arcs obtained after Line 18, using

the same weights obtained before. This operation is executed in Line 19. In Line 20, the

minimum cost arborescence algorithm is used and an outward tree is obtained. The last

step is executed in Line 21, and consists in reverting back the arc’s direction. In the end, we

have the schedule obtained in Line 15, and the aggregation tree obtained on Line 21.

An example of execution of the algorithm is presented on Figure 5.2. Figure 5.2(a) contain

the input graph with node IDs. The result of the first phase is depicted in Figure 5.2(b).

The number inside the circles indicates the timeslot selected for each node transmission.

The dotted arcs indicate the conflicting arcs removed during the schedule selection. Figure

5.2(c) represents the status after execution of Line 19, where the directed graph is ready to

be used by MCA algorithm. The number besides each arc indicates the time slack. The final

result of the pipeline aggregation convergecast algorithm is depicted on Figure 5.2(d). The

aggregation convergecast execution is depicted in Figure 5.3. In this example, one snapshot

propagation may span three schedule cycles (only two snapshots are shown in the Figure),

therefore, up to three snapshots are propagating at the same time through the network.

83

The box of the sink node is depicted in gray because it does not actually transmit. Sink’s

presence on Figure 5.3 is provided to delineate when a snapshot is completely received.

5.4.1 Complexity Analysis

The run-time complexity of Pipelined Aggregation Convergecast is as follows: Line 1 has

run-time complexity of O(|V |). Line 2 may have different run-time complexity depending

of the heuristic used. The first heuristic ACSPIPE 1 is the more demanding, because it has

to transverse each edge of the graph and get the first and second neighborhood of each of its

endpoints in order to define how many common neighbors the endpoints have. Therefore,

its run-time complexity is O(|E||V |2). The second heuristic ACSPIPE 2 is executed in

O(|E| + |V |) because a BFS is enough to define which layer each vertex belongs to. The

last heuristic ACSPIPE 3 needs a run-time complexity of no more than O(|V |) to get a

random vertex. The vertex ordering, using weights from the heuristics, can be executed in

O(|V |2). The execution of ACSPIPE 1 heuristic represents the worst case. Therefore, the

run-time complexity of Line 2 is O(|E||V |2).

The scheduling part is executed from Line 3 to Line 15. Line 3 shows that each vertex must

be picked to be scheduled Thus, it is executed |V | times. Line 6 indicates that each vertex

may be rescheduled n times, until there is no conflict with the previous scheduled vertices.

The estimation of the magnitude of n is hard. However, we know that n ≤ |V |, because

|V | is the schedule length’s upper bound, or the maximum number of timeslots to be tested

on each vertex. Line 9 obtains the conflicting arcs surrounding vertex v. It is possible to

discover the conflicts inspecting v’s first and second neighbors and verifying their scheduled

time. Therefore, it is necessary at most |V |2 steps. The reachability verification, executed in

Line 10, can be done by BFS on O(|E|+ |V |). Line 12 is a simple arc removal, which has

a run-time complexity of O(|E|). The remaining lines of the scheduling part are executed

with run-time complexity of O(1). The worst case run-time complexity of the scheduling

part is O(|V |4).

The algorithm last block defines the routing part. The slack time, calculated in Line 16 and

Line 17, has run-time complexity ofO(|E|). Line 19 and Line 21 are simple arc inversions,

each one executed in O(|E|). The analysis of Line 20 involves the run-time complexity of

Edmonds’ algorithm, used to obtain the minimum cost arborescence. According to Tofigh

[104], Tarjan described an implementation of Edmonds’ algorithm in [102] that runs in

O(|E|log|V |). With a simple modification, the algorithm can run in O(|V |2), which is

84

more suitable for dense graphs. An implementation error is corrected by Camerini et al.in

[20]. Gabow et al.[46] give an O(|V |log|V |+ |E|) implementation for optimum spanning

arborescence. The authors of [46] note that is not possible to improve on the time complex-

ity for any Edmonds’ algorithm implementation because the algorithm can also be used to

sort n numbers, and sorting n numbers requires O(n log n) time. Since it always has to

inspect every edge of the graph, we cannot expect to find a better run-time complexity for

Edmonds’ algorithm thanO(|V |log|V |+ |E|). Therefore, we will assume that the run-time

complexity for Edmonds’ algorithm is O(|V |log|V |+ |E|).

Based on the analysis of the 3 parts of the Pipelined Aggregation Convergecast algorithm,

setup and vertex order definition (Lines 1-2), scheduling part (Lines 3-15), and routing part

(Lines 16-21), the run-time complexity of our algorithm is O(|V |4).

5.5 Experiments

We evaluate our algorithm performance using a set of connected graphs generated by plac-

ing sensors in a square region of size 200 × 200. The sensor positions are uniformly ran-

domly distributed over the area. The sink node position is also random. Each node has

transmission range of R = 25, unless otherwise noted. We used sets of nodes ranging

from 200 to 800 nodes. Each point in the figures represents the average value for a set

of ten graphs with the same number of sensors. The error bars represent 95% confidence

intervals.

We implemented the three version of node ordering described in Section 5.4. The first

algorithm ACSPIPE 1 represents the ordering by common neighbor count first. ACSPIPE 2

indicates the ordering by farthest layer first, and ACSPIPE 3 is the random order.

We use WIRES [76] and BDMRST [52] algorithm for comparison. WIRES represents a

solution using aggregation convergecast without pipelining where all the precedence con-

straints are satisfied without a single schedule cycle, and it is designed using the traditional

two phase approach. BDMRST uses pipelining, but pre-selects an aggregation tree with

some characteristics. As BDMRST algorithm uses a multi-channel scheduler, we limit the

algorithm to a single channel.

Figure 5.4 shows the schedule length produced by each algorithm, while Figure 5.5 presents

the aggregate throughput. The collection delay is portrayed in Figure 5.6. The aggregation

85

tree produced by each algorithm is characterized in Figure 5.7 by means of the maximum

node in-degree.

Figure 5.8 exhibits the tradeoff between throughput and delay by each algorithm. Similarly,

Figure 5.9 shows the relation between the schedule length and the collection delay. The

points on both graphs are average values of sets with the same number of nodes.

5.5.1 Discussion

It has been repeatedly observed that, in general, scheduling data transmissions on wireless

networks reveals tradeoffs between throughput and delay [79, 105]. The situation is no

different with aggregation convergecast. The impact of trying to minimize latency is clearly

seen in Figure 5.6, where WIRES exhibits the lowest data collection latency because of the

linkage between delay and throughput (one is the reciprocal of the other). This linkage

results in limited aggregate throughput, as shown in Figure 5.5. The removal of emphasis

from latency by means of allowing the precedence constraints to be satisfied over multiple

cycles expands the solution space. ACSPIPE and BDMRST can explore a larger solution

space and new tradeoff possibilities. The aggregate throughput improves, but collection

delay is penalized.

Networks with large number of nodes may have an additional limitation to achieve better

aggregated throughput. If the transmission range is fixed, the throughput is limited by two

factors: (a) in smaller and dense areas, the interference will constitute the major influence

to restrict a smaller schedule length, (b) for wider and sparse areas, with uniform node

dispersion, the number of hops from each node to the sink is the most influential factor on

the increase of the schedule length. In both cases, the number of time slots necessary tends

to be large, and the overall throughput will decrease. In both cases, the use of pipelining

may be beneficial, because more than one snapshot may propagate through the network per

time.

Precedence constraints are not the only element to restrict the solution space in our exper-

iments. The pre-selection of an aggregation tree with some predefined characteristics by

BDMRST’s (bounded-degree and minimum radius) also restricts the solution space. The

effect of bounded-degree is observed on Figure 5.7. The end result is a solution superior

to WIRES in aggregate throughput, but inferior to ACSPIPE. Besides, BDMRST’s collec-

tion latency is not significantly better than ACSPIPE’s (Figure 5.6). It is fair to say that

86

10

20

30

40

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

200 300 400 500 600 700 800
Nodes

S
c
h

e
d

u
le

 L
e

n
g

th

Algorithm

●
●

●

ACSPIPE1

ACSPIPE2

ACSPIPE3

BDMRST

WIRES

Figure 5.4: Schedule Length

10

15

20

25

30

35

40

●●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

200 300 400 500 600 700 800
Nodes

A
g

g
re

g
a

te
d

 T
ro

u
g

h
p

u
t

Algorithm

●
●

●

ACSPIPE 1

ACSPIPE 2

ACSPIPE 3

BDMRST

WIRES

Figure 5.5: Aggregate Throughput

87

200

400

600

●

●

●
●
●
●

●

●
● ●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●●

●

●●●

●
●

●

●●

●

●
●

●

200 300 400 500 600 700 800
Nodes

C
o

lle
c
ti
o

n
 D

e
la

y

Algorithm

●
●

●

ACSPIPE 1

ACSPIPE 2

ACSPIPE 3

BDMRST

WIRES

Figure 5.6: Snapshot Collection Delay

10

20

30

40

●●
●

●●
●

●●
● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●

●● ●●
● ●●●

200 300 400 500 600 700 800
Nodes

M
a

x
im

u
m

 I
n

D
e

g
re

e

Algorithm

●
●

●

ACSPIPE1

ACSPIPE2

ACSPIPE3

BDMRST

WIRES

Figure 5.7: Maximum In-Degree

88

10

15

20

25

30

35

40

●
●

●

●

● ●
●●

● ●

● ● ●

100 200 300 400 500
Collection Delay

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t

Algorithm

●

ACSPIPE 3

BDMRST

WIRES

Figure 5.8: Throughput vs. Delay

10

20

30

40

●

●

●
●

●

●

●

●

●

●●

●

●

100 200 300 400 500
Collection Delay

S
c
h

e
d

u
le

 L
e

n
g

th

Algorithm

●

ACSPIPE 3

BDMRST

WIRES

Figure 5.9: Schedule Length vs. Delay

89

30

40

50

60

●

●

●

●

●

15 20 25 30 35
Transmission Radius

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t

Algorithm

●

ACSPIPE 1

ACSPIPE 2

ACSPIPE 3

Figure 5.10: 500 Nodes: Throughput vs. TX Range

200

300

400

500

600

●

●

●

●

●

15 20 25 30 35
Transmission Radius

C
o

lle
c
ti
o

n
 D

e
la

y

Algorithm

●

ACSPIPE 1

ACSPIPE 2

ACSPIPE 3

Figure 5.11: 500 Nodes: Delay vs. TX Range

90

20

40

60

80

100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

200 300 400 500 600 700 800
Nodes

T
re

e
 R

a
d

iu
s

Algorithm

●
●

●

ACSPIPE1

ACSPIPE2

ACSPIPE3

BDMRST

WIRES

Figure 5.12: Tree Radius

the intention of BDMRST’s authors is to use their solution in a multi-channel environment,

with enough frequencies to eliminate secondary conflicts. Therefore, the only obstacle to

improve schedule length is the tree radius (in which BDMRST shows better results than

ACSPIPE). If this condition (existence of enough frequencies to eliminate all secondary

conflicts) is not met, clearly BDMRST is limited, because it restricts the potential aggre-

gate throughput, without substantial gain in the collection latency.

An interesting behavior to notice among ACSPIPE heuristics is that the second heuristic

(that gives priority to vertices further away from the sink) presents a slightly different result.

After 350 nodes, the aggregation throughput (Figure 5.5) is inferior than the other two. This

fact is also reflected in the tree radius (Figure 5.12), where the tree depth is smaller. Even

with a shorter tree, the collection delay is not much better. The observation suggests that

the longer the tree radius, the smaller is the pipelining schedule. WIRES straight line shape

shown in Figure 5.9 is consequence of the previously proposed schemes, where ∆c = l.

We also observed that ACSPIPE presents a natural decrease of aggregate throughput when

the transmission radius increases (Figure 5.10). A larger transmission range increases the

91

interference, consequently more time slots are necessary to overcome the contention, and

the collection delay will consequently increase (Figure 5.11).

5.5.2 Optimal Solution for Small Networks

We also evaluate the results produced by our algorithm against the optimal solution for small

networks. As the problem has two main criteria (schedule length and collection delay) we

search for a optimal solution that has, at first, the smallest possible schedule length, and

latter, among the solutions with the smallest schedule length, we selected the solutions with

the smallest collection delay. The result is described in Table 5.1.

The experiments used 10-node graphs, with a variable number of links (listed in the second

column of Table 5.1). The remaining columns describe the results for different circum-

stances, initially for the optimal solution (Optimal), then solutions using the first heuristic

for node order (ACSPIPE 1), and, finally, solutions using the second heuristic node order

(ACSPIPE 2). The last column lists the time spent on full search of the optimal solution.

Each algorithm is divided into two columns SCH and DLY, representing schedule length

and collection delay respectively. Both columns represent timeslot units.

The optimal results were generated using the Algorithm 4, but trying all V ! possible node

orders. The results shows that heuristic ACSPIPE 1 and ACSPIPE 2 produce schedule

lengths very close to the optimal. However, distance between collection delay of the optimal

solution and collection delay using the proposed heuristics suggests that there are some

room for improvement.

Table 5.1: Pipelined Aggregation Convergecast Optimal Solutions

Links Optimal ACSPIPE 1 ACSPIPE 2 T(sec)
SCH DLY SCH DLY SCH DLY

S0 31 7 7 7 14 7 7 909
S1 26 6 6 6 12 6 11 817
S2 24 4 6 5 11 5 10 660
S3 31 6 6 6 18 6 16 829
S4 27 5 6 5 10 6 11 713
S5 35 5 6 6 6 6 6 822
S6 21 4 6 5 9 4 12 517
S7 21 6 8 6 19 6 12 707
S8 16 4 5 4 15 4 11 417
S9 20 7 7 7 14 7 7 630

92

5.5.3 Energy Consumption

Wireless sensor networks have resource constraints. Nodes are usually battery powered,

then energy storage becomes a major limitation for a long-lived sensor network operation.

The main source of energy drain is packet transmission and reception. Therefore, an algo-

rithm that produces routing and scheduling solution that requires lesser transceiver opera-

tions will preserve more energy. Even though data aggregation scheme is per se an efficient

energy saving scheme, the number of transmissions and receptions per node continues to

play a important role. As we are using data aggregation in all algorithms, this aspect will

not be our focus. We want to know which algorithmic solution produces a logical topology

and schedule that minimizes the energy use.

Several models capturing the energy consumption have been proposed [67, 106]. They

captures several aspects of problem. However, we want a simpler model where the influence

of the logical topology and schedule length over time are the only aspects present. We

designed a simplified energy model presented next.

E(vi, a, T) = deg(vi, a) ∗ T

l(a)
(5.1)

Equation 5.1 expresses the amount of energy units spent by the node vi during T time slots,

when the algorithm a is executed. The execution of algorithm a produces a solution where

node vi has degree deg(vi, a) in the logical topology, and the schedule length is l(a) time

slots on each cycle. The energy used by node vi reflects the influences of logical topology

and schedule length. The interpretation is straightforward. Logical topologies with nodes

having smaller degrees may use less energy units for transmission and reception, because

there will be less receptions to be executed by the transceiver. However, a topology with

low-degree nodes may end up spending more energy units than a high-degree topology

during a fixed amount of time T if it is used more frequently (schedule part). The reason

why it might happen is because of a smaller schedule length. A smaller cycle requires that

a node transmits and receives packets more often, consequently using more energy.

Nodes with the smallest degrees are those who use the smallest amount of energy. They

are leaves in the logical topology. Leaves only spend energy for its transmission, because

they have no children to spend energy in the reception. The amount of energy consumed

by them over time is only dependent of the schedule length. By other hand, nodes with the

highest energy consumption are those with the highest degree.

93

5

10

15

20

25

30

35

40

● ●●●● ●
●

●●
●
●

●
●

10 15 20 25 30 35 40 45
Schedule Length

M
a

x
im

u
m

 N
o

d
e

 D
e

g
re

e
Algorithm

●

ACSPIPE 3

BDMRST

WIRES

Figure 5.13: Relationship between Schedule and Maximum Node Degree

We are interested in the rate by which energy is spent over time by each algorithm. Accord-

ing to the energy model described in Equation 5.1, this rate is given by the ratio between

node degree (logical topology) and the maximum schedule length. For the sake of compar-

ison, we use nodes with the largest degree, because they express the energy consumption

rate that a node may have. The results are expressed on Figures 5.13 and 5.14.

Figure 5.13 presents the relationship between the two factors that influence node’s energy

consumption. Each point in the graph represents the average value of schedule length and

maximum node degree. The lines on each algorithm group is a linear regression of the

average values, and the shade represents the confidence interval of 95%. Figure 5.14 shows

the energy consumption rate for the maximum degree nodes on each algorithm, for different

94

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

●

●
●

●
●

● ●

● ●

●
●

● ●

23

15

9
26

16

11

29

17

12

30

19

12

32

21

13

34

21

14

36

22

15

37

22

15

38

23

16

39

23

16

40

25

16

40

25

17

41

25

17

200 250 300 350 400 450 500 550 600 650 700 750 800
Nodes

M
a

x
im

u
m

 E
n

e
rg

y
 C

o
m

s
u

m
p

ti
o

n
 R

a
te

 p
e

r
N

o
d

e Algorithm
a

●a

a

ACSPIPE 3

BDMRST

WIRES

Figure 5.14: Energy Consumption Rate According to Node Density

node densities. The number near to each point is the average throughput achieved by the

algorithm on the particular node density.

The BDMRST algorithm has a constant maximum node degree (as designed), and the low-

est energy consumption rate among all protocols. Despite all that, the throughput is lower

than ACSPIPE. Our algorithm closely follows the topological characteristics of BDMRST,

with small maximum degree. This is a welcomed characteristic. This property is not ex-

plicitly encoded in the algorithm, as it is the case with BDMRST. In our case, it comes as an

intrinsic and attractive feature. ACSPIPE energy consumption rate is higher than BDMRST

because it is able to achieve higher throughput rate. Both protocols (BDMRST and AC-

SPIPE) decrease their energy consumption rate as the node density increases. WIRES

95

presents a completely different dynamic. The selection of a logical topology that exclu-

sively addresses the influence of precedence constraints on the solution produces a different

relation between node degree and schedule length. The result is seen on Figure 5.13. The

final consequence is an increase on the energy consumption rate as node density increases.

For WIRES, the yielded logical topology (SPT) plays a big role on the energy consumption

results. Its emphasis in minimizing precedence constraints may also lead to longer schedule

lengths [99].

The use of pipeline definitely affects the energy rate required to execute a solution for the

aggregation convergecast problem. The algorithm we propose produces low node degree

topologies. Even though the energy consumption rate might be higher than other algorithm,

the rate is higher due to a higher throughput achieved, therefore, more node activity per

time.

5.6 Conclusion

This Chapter examines the influence of pipelining on the solution of the aggregation con-

vergecast problem. By expanding the satisfaction of precedence constraints over multiple

schedule cycles and by transferring multiple data collection snapshots in parallel, we are

able to attain higher throughput which is necessary for certain classes of sensor network

applications.

We propose a different approach to account for interference during the schedule construc-

tion phase. Specifically, it is used to account for the possibility that it restricts the paths

available from nodes to the sink but without committing to a particular spanning (aggre-

gation) tree. This is in sharp contrast to using interference with a given aggregation tree

to limit the time slots when a node is allowed to transmit. Essentially, the only limitation

for a node to be allowed to transmit in a time slot is to ensure that it does not preclude the

existence of a directed path connecting some other node to the sink. We call this restriction

reachability constraint.

We designed a new algorithm that uses pipelining and is based on preserving reachability

during schedule construction. We compared it with two other algorithms, one from the tra-

ditional two-phase (routing first, scheduling second) variety and another that uses pipelining

but with a pre-defined aggregation tree. Even though the proposed algorithm is not provid-

ing the optimal throughput, our approach is able to present solutions with high throughput,

96

albeit at the cost of latency.

Under a different light, our work is nothing more but another expression of the well–known

tradeoff of throughput versus latency. It has been recognized that for fixed random net-

works, higher throughput can only be obtained at the cost of increasing delay [47]. In this

respect, the novelty of our contribution is in demonstrating how to structure the solution

space for aggregation convergecast scheduling such that the interplay of throughput versus

delay can be captured.

97

Chapter 6

Conclusion and Future Work

In this Thesis we address the aggregation convergecast problem, when non-conservative

flows and precedence constraints are present, and when a pipelining approach is used. We

start creating a constraint programming model of the aggregation convergecast problem.

We reveal that, most of the time, the optimal aggregation tree has tree size greater then a

shortest path tree [99]. This revelation induces the need to search for an aggregation tree

that better captures the nature of the restrictions acting in the problem. We propose that

the aggregation tree should be the combination of a shortest path tree, which minimizes the

precedence constraints, with a minimum interference tree, which minimizes the resource

constraints [98]. Together, both trees form a shallow light tree, which incorporates and

balances both constraints. After obtaining this new tree, the next step is the selection of

a feasible and minimum schedule, using the aggregation tree obtained. We show that the

process to acquire the minimum schedule of a (directed) aggregation tree is a NP-Complete

problem, similar to Mixed Graph Coloring. We propose a mapping from the aggregation

convergecast problem to the mixed graph coloring problem. We named it extended conflict

graph. The extended conflict graph captures both precedence and resource constraints. The

extended conflict graph allows the search for the optimal solution using a branch-and-bound

algorithm. The results show that smaller schedules are indeed possible, if shallow light trees

are used.

Next, we take the risk of departure from the traditional requirements of aggregation con-

vergecast and drop the requirement that a data aggregation collection must be completed in

only one schedule cycle [100]. The departure is done exploring the use of pipeline in the

scheduling. Not only we remove the one period requirement, but also we invert the long

held approach of obtaining first the aggregation tree and latter the schedule. We investi-

98

gate the possibility of selecting the schedule for the problem first and latter choosing the

aggregation tree. This inversion is possible because we introduce the notion of reachability

constraints, such that a schedule is only accepted if it respects the reachability constraint, in

other words, if each node can reach the sink node by at least one path.

6.1 Contributions

The most important contributions of this research are detailed below:

X Aggregation Convergecast CP Model

We model aggregation convergecast as a Constraint Satisfaction Problem to obtain

the shortest possible schedule for a TDMA frame that allows the complete data col-

lection to the sink in single period, without interference. We use constraints related

to topology, interference, and application logic, as well as their relationships. Our

model is efficient compared to other model implementations for wireless networks

available in the literature [21, 91].

X Insufficiency of Precedence Constraints as Unique Criterion for Optimal Aggre-

gation Trees

We observe that aggregation trees obtained exclusively by the minimization of prece-

dence constraint criterion (like SPT) is very likely not the best choice for an ag-

gregation tree. While computational limitations do not allow us to derive results for

large networks, the results for smaller networks provide us valuable insights about the

missing requirements to construct the optimal schedules and corresponding aggrega-

tion trees. The missing piece turn out to be the resource constraint criterion, origi-

nated from the wireless interference. Selecting non-SPT topologies, and avoiding the

use of internal links of large cliques, have the potential to produce shorter schedules,

improve the number of concurrent transmissions and enhance the throughput of the

solution.

X Algorithm to Balance Precedence and Resource Constraints in the Aggregation

Tree

We explore in depth the use of precedence and resource constraints. Existing solu-

tions prioritize one constraint over another instead of approaching the problem as a

case of bi-criteria optimization. We propose a method to combine both constraints

such that the resulting logical topology is a synthesis of the properties of a shortest

99

path tree (minimum precedence constraint tree) and properties of a minimum interfer-

ence tree (minimum resource constraint tree). We derive the minimum interference

tree from the idea of minimum cost arborescence, and use a interference measure-

ment count as weight, while for the shortest path tree, we used a balanced shortest

path tree algorithm. The merge of both trees is executed using a modified version of

the Light Approximate Shortest-Path Trees, also known as Shallow Light Tree. The

final result balances the contribution of each requirement, such that the final tree is

closer to the optimal solution.

X Relation of Aggregation Convergecast Scheduling and Mixed Graph Coloring

We present the relation of Aggregation Convergecast Scheduling and Mixed Graph

Coloring problems. This relation allows us to show the complexity of the Aggrega-

tion Convergecast Scheduling. If an aggregation tree is given, the scheduling is yet

NP-Complete. Using this relation, previous common knowledge about Aggregation

Convergecast can be formally shown.

X Extended Conflict Graph Concept

The conflict graph is a representation derived from the topology (communication)

graph for the purpose of achieving a conflict-free schedule. The basic idea of the

conflict graph representation is that every independent vertex set on the conflict graph

can be scheduled simultaneously, i.e., in the same slot. Therefore, the coloring of a

conflict graph defines a valid schedule. Unfortunately, this representation is insuf-

ficient to produce an independent vertex set on the conflict graph because prece-

dence constraints have to also be satisfied. We widen the concept of a conflict graph

and create an extended conflict graph, which encompasses transmission conflicts and

precedence relations. Specifically, when a link activation (expressed by a node in the

conflict graph) is required to be executed after another link activation (another node

in the conflict graph), an arc is introduced in a mixed graph to express this prece-

dence. Consequently, it is possible to represent the scheduling part of Aggregation

convergecast, as a Mixed Graph Coloring problem.

X Branch-and-Bound Algorithm for Aggregation Convergecast Scheduling

We propose a branch-and-bound algorithm, based on an enumeration strategy, to ob-

tain the optimal solution of Aggregation Convergecast Scheduling. Using the pro-

posed algorithm, we demonstrate, through numerical results, that the convergecast

aggregation tree, balancing precedence and resource constraints, can achieve better

100

quality results than the current state-of-the-art algorithms.

X New Paradigm for the Two-Phase Approach in Aggregation Convergecast

Traditionally, aggregation convergecast problem has being tackled by dividing the

problem into two phases: first, a routing solution (the aggregation tree) which es-

tablishes the direction of transmissions, followed by the scheduling solution. The

preferred scheduling process has been link activation model. We propose the inver-

sion of these two phases and the adoption of the node activation model. In this new

paradigm, it is not necessary to define first the logical topology and latter schedule

transmissions, instead, schedule precedes the selection of the aggregation tree. This

order inversion allows that interference restricts the directions (routing) that aggre-

gated information can follow in order to reach its destination. We show that the use

of node activation as a practical approach, being less computationally demanding

than link activation. The result of a node schedule selection is a subset of suboptimal

spanning trees, from whom it is possible select the optimal one. In contrast, the use

of link activation is more demanding because, in general, a communication graph has

more links than nodes.

X Pipelined Aggregation Convergecast Problem

We propose a variation of aggregation convergecast problem by relaxing the restric-

tion of having to satisfy all precedence constraints within one single cycle. The use of

a pipelined solution become possible by relaxing this restriction. This modification

on the problem formulation allows aggregation convergecast solutions with higher

throughput which are necessary for some classes of sensor applications. We define

pipelining similarly to an assembly line composed of multiple serial stages. A final

product must go through all stages. The construction of a new product can start on

the initial stages as soon as its execution does not conflict with the assembly of the

previous product, such that the assembly line can output a new product sooner than

the system latency.

X Algorithm for Pipelined Aggregation Convergecast using Reachability Constraints

We propose an algorithm for pipelined aggregation convergecast. The algorithm does

not require the selection of the logical topology in the first stage. Even though the

logical topology is not initially select, the final solution preserves low node degree, a

desirable topological property. We demonstrate, through numerical results, our pro-

posed algorithm performance versus the state-of-the-art solution of aggregation con-

101

vergecast without pipeline, and also versus another pipelined aggregation converge-

cast where the logical topology is pre-selected. Even though the proposed algorithm

is not providing the optimal throughput, our approach is able to present solutions with

high throughput, at expense of some increase on delay.

6.2 Future Work

We present in Chapter 3 some evidence pointing out that SPT may not be the most suitable

aggregation tree to achieve results close to the optimal. The presence of cliques in the com-

munication graph also hinder SPT from creating a schedule with small number of time slots.

We must add that most algorithmic solutions in the literature [24, 48, 76, 110, 113], after

obtaining an aggregation tree, address the scheduling phase using a bottom-up approach,

where the leaves in the logical topology are scheduled first, removed from the schedulable

nodes, and a new set of nodes (taken from the new leaves created by the removal of pre-

viously scheduled leaves) are ready to be scheduled. This bottom-up approach privileges

lower layer nodes of the graph, scheduling them first. The two-phase approach is exten-

sively discussed in this Thesis. Routing and scheduling are not directly linked in a single

heuristic or process.

The aggregation convergecast has a natural propensity to be viewed as a all-to-one and

bottom-up problem. This view influences the heuristics proposed to address it. A differ-

ent problem may have a different perspective. A different view is found in Minimal Delay

Broadcast (MDB) [65, 82] problem. MDB has also a natural bias, however in the oppo-

site direction: it presents a top-down and one-to-all pattern, which tends to influence its

heuristics.

An evident work extension for our Thesis is to explore heuristics/algorithms for aggre-

gation convergecast using a broadcast perspective. Such perspective includes a top-down

algorithm and may combine routing and scheduling in a single heuristic. A top-down ap-

proach would create the aggregation tree and the schedule in a joint approach, relaxing the

assumption previously held that SPT create close to optimal solutions. This work exten-

sion was investigated and we had the opportunity to co-participate in its execution. This

work was developed by Matthias Jakob in his Master Thesis: Time-efficient Scheduling for

Aggregation Convergecast in Wireless Sensor Networks [60]. We briefly present his main

results and its consequences.

102

The idea of the Jakob’s proposed Minimum Interference Network Topology (MINT) al-

gorithm is to create an aggregation tree concurrently to selecting the transmission time,

similarly to the way algorithms create broadcast trees. The algorithm starts with a single

node as the current tree. This single node is the root of a growing tree. The natural choice

is the sink node. The timeslot is set to one. Then, a candidate arc set is selected using arcs

pointing to not yet connected nodes. The current timeslot is greedily filled with candidate

arcs, if they do not interfere with previously scheduled ones. If further selection of arcs

for the current timeslot is restricted by interference, the slot counter is increased and a new

candidate arc set is obtained. The algorithm ends when there is no more arcs to be added. A

simple reversion on the timeslot numbers is required to get the actual schedule assignment

for aggregation convergecast.

We will only mention here the most successful strategy to select which candidate arcs will

be first to be activated in the current timeslot. The most successful strategy is a dynamic

one, where weights are attributed to each arc. The arc weight value is dependent not only

on properties of the communication graph (such as node degree), but also on the current

state of the algorithm construction. This dynamic and combined approach achieves the best

results. Block count is a dynamic strategy which directly evaluates candidate arcs in relation

to other candidates. This dynamic strategy is calculated as the amount of remaining arcs

that would be blocked if the arc is added to the current timeslot. The arc with the lowest

block count is added first, regardless if the arc has high or low source/destination degree,

or child count. Figure 6.1 shows the comparison between several dynamic strategies. The

low block count heuristic leads to the best results in comparison with other strategies. For

comparison purposes, Figure 6.1 also has the results for WIRES algorithm.

The short schedule length results obtained using the low block count dynamic strategy

produces a different tree shape than SPT: the outward fanning nodes, so characteristic to

SPT solutions, do not appear with such consistency as when SPT is used. This fact results

in a more homogeneous transmission distribution over the network. The low block count

heuristic reduces the number of arcs used by each node (node degree), and cause a longer

maximum path, as predicted by our results in Chapter 3, and also explored in Chapter

4. WIRES uses a form of SPT which balances node degree. However, the level of node

degree balanced achieved by WIRES is inferior than the balance achieved in Jakob’s work.

The reason is that WIRES balances only nodes in the same layer, not nodes in the whole

network. Figure 6.2 displays the node degree in the routing topologies of BSPT (used by

103

200 400 600 800 1,000 1,200 1,400
0

20

40

60

80

100

120

140

160

180

Nodes

Ti
m

es
lo

ts

Block High
WIRES
Random
Dest Low
Block Low

Figure 6.1: Schedule Length for Dynamic Strategies and WIRES
Taken from [60]

WIRES) and MINT (used by Jakob’s algorithm). A larger point indicates a higher node

degree.

This work extension confirms our observations about the limitation of using of SPT. Free

from SPT limitation, this work explores a top-down approach to address the aggregation

convergecast, similar to algorithms designed to minimum delay broadcast problem. The

process resembles an outward arborescence process, which attempts to minimize network

interference in every step of the topology construction. The schedule is committed as the

tree is expanded. At the end of the tree construction, the schedule is reversed and the

aggregation convergecast solution is ready. This aggregation convergecast solution breaks

the insistence of two phase approach, where routing is addressed first.

104

(a) BSPT-WIRES (b) MINT

Figure 6.2: Node degree in the Routing Topologies
Taken from [60]

6.3 Future Directions

X Real Setting Implementation

This Thesis assumes a number of simplifying assumptions to reduce the complexity

of selecting routing and scheduling for WSN applications. The new insights brought

to light about routing and scheduling can be used to experiment on network simula-

tors, or real settings. Real implementations avoid misleading or unrealistic conclu-

sions [64].

X Machine-Job Representation by Clique Decomposition

It has been shown on Chapter 4 that an aggregation convergecast scheduling problem

can be transformed into a machine-job representation. Multiprocessor Task Schedul-

ing is the model that allows a direct representation of the restrictions of the aggrega-

tion convergecast scheduling problem. A machine in MTS represents the conflict for

the execution of each task. This conflict is represented by the edges and arcs on the

extended conflict graph. An immediate equivalence is to transform each edge and arc

into an independent machine. The transformation can be executed by decomposing

the extended conflict graph into cliques [71, 103], and naming each clique as a ma-

chine. The transformation is not explored in our Thesis and can be used as bridge

between these two problems. Kramer et al.[16, 17, 66] have developed several algo-

rithm for scheduling MTS problems, which we have the potential to use to address

105

aggregation convergecast problems.

X Pipelinization of Single-Period Solutions

There is a considerable amount of algorithms devoted to provide a solution for the

aggregation convergecast problem restricted to the case where a complete snapshot

collection must be executed in a single schedule period. It is not inconceivable to

imagine that schedules under single-period restriction could be pipelinezed. The

pipelinization would be the process of creating a pipelined schedule using as basis the

aggregation tree and the not-pipelined schedule, instead of constructing a new solu-

tion from scratch. The possibility of obtaining significant results from the pipelineza-

tion process is more likely in large networks, where the longest shortest path is likely

to have a large amount of hops.

X Pipelined Aggregation Convergecast Hardness

Aggregation convergecast problem has a singular characteristic of combining two

distinct aspects in a single solution: logical topology and scheduling. Chen et al.[25]

proposed an elusive proof for the case of aggregation convergecast when the prece-

dence constraints are confined to a single period. In [81], the authors provide a proof

for aggregation convergecast hardness, however it accounts only for the scheduling

part. It has being difficult to encompass in a single proof all aspects of aggregation

convergecast. The difficulty lays in trying to format the proof as a network design

problem [49], while it is also a sequencing and scheduling problem [49], or vice

versa. For instance, graph coloring can be reduced to several scheduling problems.

However, in the case of aggregation convergecast, defining the logical topology (or

the connection between two colored nodes in graph coloring) is also part of the prob-

lem. Pipelined aggregation convergecast is a variation of the original aggregation

convergecast problem, and it has the same difficult. A definitive hardness proof is

still open to be provided.

X Multiple-Radio Reception from MIMO Technologies

The use of MIMO (Multiple Input, Multiple Output) Technologies [19] promisses

performance enhancement. This technology may allow capacity gains over SISO

(Single Input, Single Output) when MIMO is used in spatial multiplexing fashion. It

could mean that single-radio nodes may cooperate on data transmission, or transceivers

that could receive multiple transmissions concurrently. The possibility of multiple re-

ception by the same node changes the model used on this Thesis, in particular in how

106

interference is understood and modeled. The consequence would be the possibility

of schedules considering that a node may understand a transmission while receiving

another transmission not intended for himself.

X Multiple Phase Framework

A unified framework, composed of multiple phases: the request and the response

of periodic data collection of sensed data, can be considered. One example of this

framework is the dissemination of a request using some form of broadcast, and the re-

sponse, in the form of a aggregation convergecast. A combined framework, coalesc-

ing request and response phases, can be examined to see if it can provide scheduling

gains.

107

Bibliography

[1] Occurrence of the gasoline additive mtbe in shallow ground water in urban and agri-
cultural areas. Technical Report 114, US Geological Survey, March 1995.

[2] C.J. Alpert, T.C. Hu, J.H. Huang, A.B. Kahng, and D. Karger. Prim-Dijkstra trade-
offs for improved performance-driven routing tree design. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, 14(7):890–896, July 1995.

[3] A. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis. Scheduling independent
multiprocessor tasks. In Rainer Burkard and Gerhard Woeginger, editors, Algorithms
- ESA ’97, volume 1284 of Lecture Notes in Computer Science, pages 1–12. Springer
Berlin / Heidelberg, 1997. 10.1007/3-540-63397-9.

[4] Min Kyung An, Nhat X. Lam, Dung T. Huynh, and Trac N. Nguyen. Minimum
latency data aggregation in the physical interference model. Computer Communica-
tions, 35(18):2175 – 2186, 2012.

[5] George V. Andreev and Yuri N. Sotskov. A branch and bound method for mixed
graph coloring and scheduling. In Proceedings of the 16th International Conference
on CAD/CAM Robotics & Factories of the Future (CARS & FOF 2000), volume 1,
pages 1–8, Port of Spain / Trinidad and Tobago, June 2000.

[6] V. Annamalai, S.K.S. Gupta, and L. Schwiebert. On tree-based convergecasting
in wireless sensor networks. In Wireless Communications and Networking, WCNC
2003, volume 3, pages 1942–1947, March 2003.

[7] Baruch Awerbuch, Alan Baratz, and David Peleg. Cost-sensitive analysis of com-
munication protocols. In Proceedings of the ninth annual ACM symposium on Prin-
ciples of distributed computing, PODC ’90, pages 177–187, New York, NY, USA,
1990. ACM.

[8] D. J. Baker and Anthony Ephremides. The architectural organization of a mobile
radio network via a distributed algorithm. Communications, IEEE Transactions on,
29(11):1694–1701, 1981.

[9] Amol Bakshi and Viktor K. Prasanna. Algorithm design and synthesis for wire-
less sensor networks. Parallel Processing, International Conference on, 0:423–430,
2004.

[10] Jorgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms and Ap-
plications, chapter Branchings, pages 339–372. Springer-Verlag London Limited,
2010.

[11] Kevin Barnhart, Inigo Urteaga, Qi Han, Anura Jayasumana, and Tissa Illangasekare.
On integrating groundwater transport models with wireless sensor networks. Ground
Water, 48(5):771–780, August 2010.

[12] Roman Bartk. Constraint-based scheduling: An introduction for newcomers. In In
Intelligent Manufacturing Systems 2003, pages 69–74. IFAC Publications, Elsevier
Science, 2003.

108

[13] Marc Benkert, Joachim Gudmundsson, Herman Haverkort, and Alexander Wolff.
Constructing minimum-interference networks. Computational Geometry, 40(3):179
– 194, 2008.

[14] D.M. Blough, G. Resta, and P. Santi. Approximation algorithms for wireless link
scheduling with SINR-based interference. Networking, IEEE/ACM Transactions on,
18(6):1701 –1712, December 2010.

[15] Peter Brucker. Scheduling Algorithms. Springer, 5th edition, 2007.

[16] Peter Brucker and Andreas Krmer. Shop scheduling problems with multiprocessor
tasks on dedicated processors. Annals of Operations Research, 57:13–27, 1995.
10.1007/BF02099688.

[17] Peter Brucker and Andreas Krmer. Polynomial algorithms for resource-constrained
and multiprocessor task scheduling problems. European Journal of Operational Re-
search, 90(2):214 – 226, 1996.

[18] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han. X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks. In SenSys ’06:
Proceedings of the 4th international conference on Embedded networked sensor sys-
tems, pages 307–320, New York, NY, USA, October 2006. ACM.

[19] J. Burdin and J. Dunyak. Enhancing the performance of wireless sensor networks
with mimo communications. In Military Communications Conference, 2005. MIL-
COM 2005. IEEE, pages 2321–2326 Vol. 4, 2005.

[20] P. M. Camerini, L. Fratta, and F. Maffioli. A note on finding optimum branchings.
Networks, 9(4):309–312, 1979.

[21] A. Capone, G. Carello, I. Filippini, S. Gualandi, and F. Malucelli. Routing, schedul-
ing and channel assignment in wireless mesh networks: Optimization models and
algorithms. Ad Hoc Networks, 8(6):545–563, August 2010.

[22] Antonio Capone, Giuliana Carello, Ilario Filippini, Stefano Gualandi, and Federico
Malucelli. Solving a resource allocation problem in wireless mesh networks: A
comparison between a CP-based and a classical column generation. Networks,
55(3):221–233, May 2010.

[23] Jianer Chen and Chung-Yee Lee. General multiprocessor task scheduling. Naval
Research Logistics (NRL), 46(1):57–74, 1999.

[24] Xujin Chen, Xiaodong Hu, and Jianming Zhu. Minimum data aggregation time
problem in wireless sensor networks. In Mobile Ad-hoc and Sensor Networks, vol-
ume 3794 of Lecture Notes in Computer Science, pages 133–142. Springer Berlin /
Heidelberg, 2005.

[25] Xujin Chen, Xiaodong Hu, and Jianming Zhu. Data gathering schedule for minimal
aggregation time in wireless sensor networks. Int. J. Distrib. Sen. Netw., 5(4):321–
337, July 2009.

[26] Zhengyu Chen, Geng Yang, Lei chen, and Jin Wang. An algorithm for data aggre-
gation scheduling with long-lifetime and low-latency in wireless sensor networks.
International Journal of Future Generation Communication and Networking, 5(4),
December 2012.

[27] J. Cheriyan and R. Ravi. Approximation algorithms for network problems.
http://www.gsia.cmu.edu/andrew/ravi, September 1998. Lecture Notes.

[28] I. Chlamtac, A. Farago, and Hye Yeon Ahn. A topology transparent link activation
protocol for mobile CDMA radio networks. Selected Areas in Communications,
IEEE Journal on, 12(8):1426–1433, October 1994.

[29] CY Chong and SP Kumar. Sensor networks: Evolution, opportunities, and chal-
lenges. Proceedings of the IEEE, 91(8):1247–1256, August 2003.

109

[30] Y.J. Chu and T.H. Liu. On the shortest arborescence of a directed graph. Scientia
Sinica, 14:1396–1400, 1965.

[31] Jens Clausen. Branch and bound algorithms - principles and examples. Department
of Computer Science, University of Copenhagen, March 1999.

[32] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press and McGraw-Hill Book
Company, 2001.

[33] Rina Dechter. Constraint Processing. Morgan Kaufmann, 340 Pine Street, San
Francisco, 2003.

[34] Reinhard Diestel. Graph Theory. Springer-Verlag, Heidelberg, July 2010.

[35] M. Ding, X. Cheng, and G. Xue. Aggregation tree construction in sensor networks. In
Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 4,
pages 2168–2172, October 2003.

[36] Maciej Drozdowski. Scheduling multiprocessor tasks - an overview. European Jour-
nal of Operational Research, 94(2):215 – 230, 1996.

[37] Hongwei Du, Zhao Zhang, Weili Wu, Lidong Wu, and Kai Xing. Constant-
approximation for optimal data aggregation with physical interference. Journal of
Global Optimization, pages 1–14, 2012. 10.1007/s10898-012-9939-7.

[38] O. Durmaz Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapudi. Fast data
collection in tree-based wireless sensor networks. Mobile Computing, IEEE Trans-
actions on, PP(99):1, February 2011.

[39] Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau
of Standards, 71B:233–240, 1967.

[40] A. Ephremides and T.V. Truong. Scheduling broadcasts in multihop radio networks.
Communications, IEEE Transactions on, 38(4):456–460, April 1990.

[41] Sinem Ergen and Pravin Varaiya. Tdma scheduling algorithms for sensor networks.
Technical report, University of California, Berkeley, July 2005.

[42] Deborah Estrin. Embedded networked sensing for environmental monitoring: Ap-
plications and challenges. Sensor Networks Seminar, 2004.

[43] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network aggregation techniques for
wireless sensor networks: a survey. Wireless Communications, IEEE, 14(2):70–87,
April 2007.

[44] Gustavo B. Figueiredo, Nelson L. S. da Fonseca, and José A. S. Monteiro. A mini-
mum interference routing algorithm with reduced computational complexity. Com-
put. Netw., 50(11):1710–1732, August 2006.

[45] Martin Fussen, Roger Wattenhofer, and Aaron Zollinger. On interference reduction
in sensor networks. Technical reports 453, ETH, Department of Computer Science,
2004.

[46] Harold Gabow, Zvi Galil, Thomas Spencer, and Robert Tarjan. Efficient algorithms
for finding minimum spanning trees in undirected and directed graphs. Combinator-
ica, 6:109–122, 1986.

[47] A.El. Gamal, J. Mammen, B. Prabhakar, and D. Shah. Throughput-delay trade-
off in wireless networks. In INFOCOM 2004. Twenty-third AnnualJoint Confer-
ence of the IEEE Computer and Communications Societies, volume 1, pages 4 vol.
(xxxv+2866), Mar 2004.

[48] Shashidhar Gandham, Ying Zhang, and Qingfeng Huang. Distributed time-optimal
scheduling for convergecast in wireless sensor networks. Computer Networks,
52(3):610 – 629, 2008.

110

[49] Michael R. Garey and David S. Johnson. Computers and Intractability : A Guide to
the Theory of NP-Completeness. W.H. Freeman & Company, January 1979.

[50] Leonidas Georgiadis. Arborescence optimization problems solvable by Edmonds’
algorithm. Theoretical Computer Science, 71:233–240, May 2003.

[51] A. Ghosh, O.D. Incel, V.S.A. Kumar, and B. Krishnamachari. Bounded-degree
minimum-radius spanning trees for fast data collection in sensor networks. In IN-
FOCOM IEEE Conference on Computer Communications Workshops , 2010, pages
1 –2, march 2010.

[52] A. Ghosh, O.D. Incel, V.S.A. Kumar, and B. Krishnamachari. Multichannel schedul-
ing and spanning trees: Throughput;delay tradeoff for fast data collection in sensor
networks. Networking, IEEE/ACM Transactions on, 19(6):1731–1744, Dec 2011.

[53] V. Gordon, M. Kovalyov, G. Levin, Y. Shafransky, Y. Sotskov, V. Strusevich, and
A. Tuzikov. Vyacheslav tanaev: contributions to scheduling and related areas. Jour-
nal of Scheduling, pages 1–16, Mar 2011. 10.1007/s10951-011-0230-4.

[54] Jimmi Grönkvist. Assignment methods for spatial reuse tdma. In Proceedings of
the 1st ACM international symposium on Mobile ad hoc networking & computing,
MobiHoc ’00, pages 119–124, Piscataway, NJ, USA, 2000. IEEE Press.

[55] Yongpei Guan, Wen-Qiang Xiao, Raymond K Cheung, and Chung-Lun Li. A multi-
processor task scheduling model for berth allocation: heuristic and worst-case anal-
ysis. Operations Research Letters, 30(5):343 – 350, 2002.

[56] B. Hajek and G. Sasaki. Link scheduling in polynomial time. Information Theory,
IEEE Transactions on, 34(5):910 –917, sep 1988.

[57] Pierre Hansen, Julio Kuplinsky, and Dominique de Werra. Mixed graph col-
orings. Mathematical Methods of Operations Research, 45:145–160, 1997.
10.1007/BF01194253.

[58] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. pages
607–613. Morgan Kaufmann, 1995.

[59] Ozlem Incel, Amitabha Ghosh, and Bhaskar Krishnamachari. Scheduling algorithms
for tree-based data collection in wireless sensor networks. In Sotiris Nikoletseas
and Jos D.P. Rolim, editors, Theoretical Aspects of Distributed Computing in Sensor
Networks, number 4 in Monographs in Theoretical Computer Science, pages 407–
445. Springer Berlin / Heidelberg, 2011.

[60] Matthias Jakob. Time-efficient scheduling for aggregation convergecast in wireless
sensor network. Master’s thesis, Ludwig Maximilians Universitat Munchen, Aug
2012.

[61] R. M. Karp. A simple derivation of Edmonds’ algorithm for optimum branchings.
Networks, 1(3):265–272, 1971.

[62] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning trees and
shortest-path trees. Algorithmica, 14:305–321, 1995.

[63] S. Kompella, J.E. Wieselthier, A. Ephremides, H.D. Sherali, and G.D. Nguyen.
On optimal SINR-based scheduling in multihop wireless networks. Networking,
IEEE/ACM Transactions on, 18(6):1713 –1724, December 2010.

[64] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan, and Chip El-
liott. Experimental evaluation of wireless simulation assumptions. Technical Report
TR2004-507, Dartmouth College, Computer Science, Hanover, NH, June 2004.

[65] Dariusz Kowalski and Andrzej Pelc. Optimal deterministic broadcasting in
known topology radio networks. Distributed Computing, 19:185–195, 2007.
10.1007/s00446-006-0007-8.

111

[66] Andreas Kramer. Scheduling Multiprocessor Tasks on Dedicated Processors. PhD
thesis, Fachbereich Mathematik/Informatik - Universitat Osnabruck, Feb 1995.

[67] S. Kwon and N. B. Shroff. Energy-efficient interference-based routing for multi-
hop wireless networks. In INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pages 1 –12, april 2006.

[68] Jochen Knemann, Asaf Levin, and Amitabh Sinha. Approximating the degree-
bounded minimum diameter spanning tree problem. Algorithmica, 41:117–129,
2005. 10.1007/s00453-004-1121-2.

[69] Philippe Laborie. Ibm ilog cp optimizer for detailed scheduling illustrated on three
problems. In Proceedings of the 6th International Conference on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, CPAIOR ’09, pages 148–162, Berlin, Heidelberg, 2009. Springer-Verlag.

[70] Chung-Yee Lee, Lei Lei, and Michael Pinedo. Current trends in de-
terministic scheduling. Annals of Operations Research, 70:1–41, 1997.
10.1023/A:1018909801944.

[71] Hanns-Georg Leimer. Optimal decomposition by clique separators. Discrete Math-
ematics, 113(1-3):99 – 123, 1993.

[72] Deying Li, Qinghua Zhu, Hongwei Du, and Jianzhong Li. An improved distributed
data aggregation scheduling in wireless sensor networks. Journal of Combinatorial
Optimization, pages 1–20, 2012. 10.1007/s10878-012-9504-9.

[73] Xiang-Yang Li, XiaoHua Xu, ShiGuang Wang, ShaoJie Tang, GuoJun Dai, JiZhong
Zhao, and Yong Qi. Efficient data aggregation in multi-hop wireless sensor networks
under physical interference model. In Mobile Adhoc and Sensor Systems, 2009.
MASS ’09. IEEE 6th International Conference on, pages 353 –362, Oct 2009.

[74] C. Liu, X. Li, S. Muthukumar, H. Gill, T. Saeed, B. Loo, and Prithwish Basu. A
policy-based constraint-solving platform towards extensible wireless channel selec-
tion and routing. In ACM Workshop on Programmable Routers for Extensible Ser-
vices of TOmorrow (PRESTO), December 2010.

[75] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG:
a tiny aggregation service for ad-hoc sensor networks. SIGOPS Operating Systems
Review, 36:131–146, December 2002.

[76] Baljeet Malhotra, Ioanis Nikolaidis, and Mario Nascimento. Aggregation converge-
cast scheduling in wireless sensor networks. Wireless Networks, 17:319–335, Feb
2011.

[77] T. Moscibroda and R. Wattenhofer. The complexity of connectivity in wireless net-
works. In INFOCOM 2006. 25th IEEE International Conference on Computer Com-
munications. Proceedings, pages 1 –13, April 2006.

[78] Thomas Moscibroda. The worst-case capacity of wireless sensor networks. In Pro-
ceedings of the 6th international conference on Information processing in sensor
networks, IPSN ’07, pages 1–10, New York, NY, USA, 2007. ACM.

[79] M.J. Neely and E. Modiano. Capacity and delay tradeoffs for ad hoc mobile net-
works. Information Theory, IEEE Transactions on, 51(6):1917 – 1937, Jun 2005.

[80] R.J. Nemzek, J.S. Dreicer, and D.C. Torney. Distributed sensor networks for de-
tection of mobile radioactive sources. In Nuclear Science Symposium Conference
Record, 2003 IEEE, volume 3, pages 1463–1467, October 2003.

[81] Meng-Shiuan Pan and Yu-Chee Tseng. Quick convergecast in zigbee beacon-enabled
tree-based wireless sensor networks. Computer Communications, 31(5):999 – 1011,
2008. Mobility Management and Wireless Access.

112

[82] David Peleg and Tomasz Radzik. Time-efficient broadcast in radio networks. In
Arie Koster and Xavier Muoz, editors, Graphs and Algorithms in Communication
Networks, Texts in Theoretical Computer Science. An EATCS Series, pages 311–
334. Springer Berlin Heidelberg, 2010. 10.1007/978-3-642-02250-0-12.

[83] Michael Pinedo. Scheduling: Theory, Algorithms and Systems. Springer, fourth
edition, Jan 2012.

[84] S. Ramanathan and E.L. Lloyd. Scheduling algorithms for multihop radio networks.
Networking, IEEE/ACM Transactions on, 1(2):166 –177, April 1993.

[85] R. Ramaswami and K.K. Parhi. Distributed scheduling of broadcasts in a radio net-
work. In INFOCOM ’89. Proceedings of the Eighth Annual Joint Conference of the
IEEE Computer and Communications Societies. Technology: Emerging or Converg-
ing, IEEE, pages 497 –504 vol.2, april 1989.

[86] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt, III. Many
birds with one stone: multi-objective approximation algorithms. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, STOC ’93, pages
438–447, New York, NY, USA, 1993. ACM.

[87] Bernard Ries. Coloring some classes of mixed graphs. Discrete Applied Mathemat-
ics, 155(1):1 – 6, 2007.

[88] Bernard Ries and D. de Werra. On two coloring problems in mixed graphs. European
Journal of Combinatorics, 29(3):712 – 725, 2008.

[89] Francesca Rossi, Peter van Beek, and Toby Walsh. Introduction to constraint pro-
gramming. In Handbook of Constraint Programming, volume 2 of Foundations of
Artificial Intelligence. Elsevier, 2006.

[90] Nathan Carl Rowe. Distributed radiation monitoring via a secure wireless sensor
platform. Master’s thesis, University of Tennessee, Knoxville, December 2008.

[91] R. Sappidi, A. Girard, and C. Rosenberg. Maximum achievable throughput in a
wireless sensor network using in-network computation for statistical functions. Net-
working, IEEE/ACM Transactions on, PP(99):1, 2012.

[92] Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling and Program-
ming with Gecode. KTH - Royal Intitute of Technology, Sweden, 3.4.2 edition,
October 2010.

[93] Weiping Shang, Pengjun Wan, and Xiaodong Hu. Approximation algorithm for min-
imal convergecast time problem in wireless sensor networks. Wireless Networks,
16:1345–1353, 2010. 10.1007/s11276-009-0207-9.

[94] Yi Shi, Y. Thomas Hou, Jia Liu, and Sastry Kompella. How to correctly use the
protocol interference model for multi-hop wireless networks. In Proceedings of the
10th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc ’09, pages 239–248, New York, NY, USA, 2009. ACM.

[95] Helmut Simonis. Challenges for constraint programming in networking, 2005.

[96] Steven S. Skiena. The Algorithm Design Manual. Springer-Verlag New York, Inc.,
1998.

[97] Yu.N Sotskov. Mixed multigraph approach to scheduling jobs on machines of differ-
ent types. Optimization, 42(3):245–280, 1997.

[98] Evandro Souza and Ioanis Nikolaidis. An exploration of aggregation convergecast
scheduling. Ad Hoc Networks. Accepted for Publication.

[99] Evandro Souza and Ioanis Nikolaidis. Modeling aggregation convergecast schedul-
ing using constraints. In Proceedings of the 14th ACM international conference on

113

Modeling, analysis and simulation of wireless and mobile systems, MSWiM ’11,
pages 231–234, New York, NY, USA, 2011. ACM.

[100] Evandro Souza and Ioanis Nikolaidis. On the application of pipelining in aggrega-
tion convergecast scheduling. In 14th IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (IEEE WoWMoM 2013), Madrid, Spain,
June 2013.

[101] V. S. Tanaev, Y. N. Sotskov, and V. A. Strusevich. Scheduling Theory. Multi-Stage
Systems, volume 285 of Mathematics and Its Applications. Kluwer Academic Pub-
lishers, P.O. Box 17,3300 AA Dordrecht, The Netherlands., 1994.

[102] R. E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

[103] Robert E. Tarjan. Decomposition by clique separators. Discrete Mathematics,
55(2):221 – 232, 1985.

[104] Ali Tofigh. Optimum branchings and spanning aborescences. http://www.cvut.cz/,
September 2009. Advanced Algorithms course notes, Available at Czech Technical
University in Prague, http://www.cvut.cz.

[105] S. Toumpis and A.J. Goldsmith. Large wireless networks under fading, mobil-
ity, and delay constraints. In INFOCOM 2004. Twenty-third Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, volume 1, pages 4 vol.
(xxxv+2866), Mar 2004.

[106] S. Upadhyayula and S.K.S. Gupta. Spanning tree based algorithms for low latency
and energy efficient data aggregation enhanced convergecast (dac) in wireless sensor
networks. Ad Hoc Networks, 5(5):626 – 648, 2007.

[107] Markus Volker. Scheduling and Topology Control in Wireless Sensor Networks. PhD
thesis, Institut fur Theoretische Informatik, Universitat Karlsruhe, October 2008.

[108] P. von Rickenbach, S. Schmid, R. Wattenhofer, and A. Zollinger. A robust interfer-
ence model for wireless ad-hoc networks. In Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, page 8 pp., april 2005.

[109] Dorothea Wagner and Roger Wattenhofer. Algorithms for Sensor and Ad Hoc Net-
works, volume 4621 of Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg, 2007.

[110] Peng-Jun Wan, Scott C.-H. Huang, Lixin Wang, Zhiyuan Wan, and Xiaohua Jia.
Minimum-latency aggregation scheduling in multihop wireless networks. In Pro-
ceedings of the tenth ACM international symposium on Mobile ad hoc networking
and computing, MobiHoc ’09, pages 185–194, New York, NY, USA, 2009. ACM.

[111] Guanyu Wang, Qiang-Sheng Hua, and Yuexuan Wang. Minimum latency aggrega-
tion scheduling for arbitrary tree topologies under the sinr model. In Ad-hoc, Mobile,
and Wireless Networks, volume 7363 of Lecture Notes in Computer Science, pages
139–152. Springer Berlin / Heidelberg, 2012.

[112] B. Yu, J. Li, and Y. Li. Distributed data aggregation scheduling in wireless sensor
networks. In INFOCOM 2009, IEEE, pages 2159 –2167, Apr 2009.

[113] Xingbo Yu, Sharad Mehrotra, and Nalini Venkatasubramanian. Sensor scheduling
for aggregate monitoring in wireless sensor networks. In Proceedings of the 19th In-
ternational Conference on Scientific and Statistical Database Management, SSDBM
’07, page 24, Washington, DC, USA, July 2007.

[114] Jianming Zhu and Xiaodong HU. Improved algorithm for minimum data aggre-
gation time problem in wireless sensor networks. Journal of Systems Science and
Complexity, 21:626–636, 2008. 10.1007/s11424-008-9139-1.

114

[115] Marco Zimmerling. Automatic Parameter Optimization of Sensor Network MAC
Protocols. PhD thesis, Faculty of Computer Science, Technische Universitat Dres-
den, Uppsala, Sweeden, August 2009.

115

Appendix A

Graph Theory Concepts

This appendix reviews the notation, definitions and elementary algorithms of Graph The-
ory, as they are applied in the context of this Thesis. The concepts follow the standard
understanding in the literature [34, 10].

Definition A.1. (Undirected) Graph
A graph is defined as a tuple G = (V,E) consisting of a finite set V of vertices (or nodes),
and a finite edge set E. An edge is a tuple e = [u, v] with u and v being distinct elements
of V . The edge set E defines a logic relation on V , and edges represent connections (or
links) between vertices.

Definition A.2. Directed Graph
A directed graph (or just digraph) D consists of a non-empty finite set V of elements called
vertices and a finite set A of ordered pairs of distinct vertices called arcs. We call V the
vertex set and A the arc set of D. We will often write D = (V,A) which means that V and
A are the vertex set and arc set of D, respectively. The order (size) of D is the number of
vertices (arcs) in D; the order of D will be sometimes denoted by |D|. The notations (u, v)
represent an arc from vertex u directed to vertex v.

Definition A.3. Simple Graph
Simple graphs are graphs or digraphs not containing self loops or multiple edges. A self
loop is an edge originating from and ending in the same vertex. Multiple edges join the
same two vertices. A graph containing these elements is referred to as a multi graph or
pseudo graph. If not stated otherwise, graphs throughout this thesis are considered to be
simple graphs

Definition A.4. Planar Graph
An undirected graph G = (V,E) is planar if there exists a mapping f which maps G to
<2 in the following way: each vertex is mapped to a point in <2 and distinct vertices are
mapped to distinct; and each edge (u, v) ∈ E is mapped to a simple (that is, not self-
intersecting) curve Cuv from f(u) to f(v) and no two curves corresponding to distinct
edges intersect, except possibly at their endpoints.

Definition A.5. Unit Disk Graph
A unit disk graph is the intersection graph of a family of unit disks in the Euclidean plane. In
a unit disk graph, there is an edge between two vertices u and v if and only if the Euclidean
distance between u and v is at most 1. Equivalently, each vertice is identified with a disk of
unit radius r = 1 in the plane, and is connected to all nodes within (or on the edge of) its
corresponding disk.

116

Definition A.6. Path
A path is a sequence of distinct vertices P = {v0, · · · , vk} of a graph G = (V,E) with
edges [vi, vi+1] ∈ E for 0 ≤ i < k. When there is a path P between two vertices they
are referred to as connected by this path in G. The length of a path is the number of edges
of the path. The path between u and v with the lowest possible length is called the shortest
path from u to v. If P = {v0, · · · , vk−1} is a path and k ≤ 3, the the P ′ = P + [vk−1, v0]
is called a cycle. A directed path is a path of a directed graph, where a sequence of arcs
connects a sequence of vertices, always is the same direction.

Definition A.7. Connected Graph
A connected graph is a graph G = (V,E) where each pair of vertices of V is connected by
a path in G.

Definition A.8. Degree
The degree of a vertex u of a graph G is the number of edges incident to the vertex u. In
a directed graph D, the number of arcs in A, whose tail vertex is u is called out-degree,
while the number of arcs in A whose head vertex is u is known as in-degree.

Definition A.9. Clique
In an undirected graph, clique is a subset of its vertices such that every two vertices in the
subset are connected by an edge. A maximal clique is a clique that cannot be extended by
including one more adjacent vertex, that is, a clique which does not exist exclusively within
the vertex set of a larger clique. A maximum clique is a clique of the largest possible size
in a given graph. The clique number of a graph G is the number of vertices in a maximum
clique in G.

Definition A.10. Reachability
Reachability is the ability to get from one vertex in a directed graph to some other vertex.
For a directed graph D = (V,A), the reachability relation of D is the transitive closure of
its arc set A. Transitive closure is the set of all ordered pairs (u, v) of vertices in V for
which there exist a directed path from vertex u to vertex v.

Definition A.11. Tree
A tree is an undirected connected graph T = (V,E) without cycles. A tree can have a
special vertex, called the root of the tree, and is then called rooted tree T = (V,E, s).

Definition A.12. Spanning Tree
A spanning tree of a graph G = (V,E) is a subgraph T = (V,E′) of G where E′ is a
subset of E(G). Every spanning tree of G has exactly |V | − 1 edges and for each vertex
there is a unique path to the root vertice. A subgraph TD of a connected directed graph D
is a spanning oriented tree ofD if the underlying graph TD is a spanning tree in underlying
graph D. A subdigraph TD of a digraph D is an in-branching or out-branching if TD is
a spanning oriented tree of D and TD has only one vertex s of out-degree (in-degree) zero.
The vertex s is the root of TD .

Definition A.13. Arborescence
An arborescence is a cycle free directed graph where all vertices can be reached by a single
path from a root vertice (or all vertices can reach the root vertex). An out-arborescence
rooted at s is an oriented tree TD which is not necessarily spanning such that s ∈ V (T) and
every vertex u ∈ {V (T) − s} has in-degree 1. An in-arborescence with root s is defined
analogously.

Definition A.14. Shortest Path Tree
A spanning tree connecting each vertice u from a connected, undirected graph G = (V,E)
with a root s by the shortest possible path is called a shortest path tree (SPT). Analogously,
a Non-SPT is a spanning tree connecting each vertice u to the root s where at least one
path P (ui, · · · , s) does not have minimal length.

117

Definition A.15. Breadth First Search
Given a graph G = (V,E) and a distinguished root vertex s, breadth-first search system-
atically explores the edges of G to discover every vertex u that is reachable from s. Search
starts at a root vertex s and continues breadth wise, which means that vertices are visited
with increasing level. The union of edges used for the breadth first search and the vertex set
of the graph result in a spanning tree of the graph where vertices are connected to the root
by a shortest path.

118

	Introduction
	Wireless Sensor Network Applications
	Previous State-of-Art
	Thesis Organization

	Background and Assumptions
	Requirements and Constraints
	Solution Parts
	Logical Topology
	Schedule

	Design Objectives
	Models
	Interference
	Network and Application Models
	Optimization Problem

	A Constraint Satisfaction Model for Aggregation Convergecast
	Introduction
	Constraint Programming Overview
	CSP Elements
	Gecode: Generic Constraint Development Environment
	Modeling and Search Space Reduction
	Constraint Programming in Networking

	Aggregation Convergecast Tree
	Variables and Constraints
	Results
	Conclusions

	Augmenting the Two-Phase Approach Using Convergecast Restrictions
	Introduction
	Background Basics
	Topology Selection
	Interference-Aware Aggregation Trees
	Trees for Combined Interference and Precedence Constraints

	Scheduling Model
	The Mixed Graph Coloring Problem
	ACS as a MGC
	ACS Bounds
	Obtaining the Chromatic Number
	A Branch-and-bound Algorithm

	Experiments and Discussion
	Balancing Precedence and Resource Constraints
	Generalization of Aggregation Convergecast Scheduling Model

	Previous Work
	Conclusions

	Pipelined Aggregation Convergecast
	Introduction
	Related Work
	Preliminary Definitions
	Pipeline Scheduling Algorithm
	Complexity Analysis

	Experiments
	Discussion
	Optimal Solution for Small Networks
	Energy Consumption

	Conclusion

	Conclusion and Future Work
	Contributions
	Future Work
	Future Directions

	Bibliography
	Appendix Graph Theory Concepts

