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Abstract 

Folding is the process by which biomolecules spontaneously self-assemble 

into specific, complex, three-dimensional structures from simple one-dimensional 

polypeptide chains. Folding is a critical process in biology as there exists a tight 

link between the structure and function of biomolecules, and misfolding into the 

wrong structure often leads to disease. Traditional studies of folding have used 

ensemble measurements to monitor how the statistics of the folded and unfolded 

states, respond to perturbations to the stability of the states. Ensemble studies have 

yielded important results and indeed, are the primary basis for our current 

understanding of folding reactions. However, due to the asynchronous nature of 

folding reactions, such studies are incapable of probing transition paths.  

Transition paths comprise those parts of a folding trajectory where the 

molecule passes through the high-energy transition states separating the folded and 

unfolded states. The transition states determine the folding kinetics and mechanism 

but are difficult to observe because of their brief duration. Single-molecule 

experiments have in recent years, begun to characterize transition paths in folding 

reactions, allowing the microscopic conformational dynamics that occur as a 

molecule traverses the energy barriers, to be probed directly.  

In this thesis, I present the first direct measurements of transition-path 

trajectories. I then show how, using single-molecule force spectroscopy, I have 

been able to make the first-ever measurements of several transition-path properties 

including: the local velocity along the paths, the path shapes, and the transition state 
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dynamics inferred by them. I discuss how these measurements have been related to 

theories of folding as diffusion over an energy landscape, to deduce properties such 

as the diffusion coefficient, and how they further our understanding of folding. The 

richly detailed information available from transition path measurements holds great 

promise for an improved understanding of microscopic mechanisms in folding.  
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were published as K. Neupane, N.Q. Hoffer, M.T. Woodside “Measuring the 

velocity along transition paths during the folding of single biological molecules.” 

Phys. Rev. Lett., 121:018102 (2018). Sections 6.5- 6.7 were published as K. 

Neupane, N.Q. Hoffer, M.T. Woodside “Testing Kinetic Identities Involving 

Transition-Path Properties using Single-Molecule Folding Trajectories.” J. Phys. 

Chem. B, 122:11095-11099 (2018). For these papers, I participated in the design 

of the research, sample preparation, measurements, analysis, and the writing of 

the paper. 

Chapter 7 was originally published as A.G.T. Pyo, N.Q. Hoffer, K. Neupane, 

M.T. Woodside, “Transition-path properties for folding reactions in the limit of 

small barriers” J. Chem. Phys. 149:115101 (2018). For this paper, I participated 

in the sample preparation, and measurements as well as aided in the development 

of the theory. 

Chapter 8 was originally published in the manuscript N.Q. Hoffer, K. Neupane, 

A.G.T. Pyo and M.T. Woodside, “Measuring the average shape of transition paths 

during the folding of a single biological molecule” Proc. Natl. Acad. Sci. 116:8125-

8130 (2019). For this paper, I participated in the design of the research, sample 

preparation, measurements, analysis, and the writing of the paper. 

  



v 

 

Dedication 

To Raven, 

ask simple questions, demand simple answers. 
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Chapter 1 

Introduction 

1.1 Biomolecular folding 

Folding is the process by which biological macromolecules such as nucleic 

acids and proteins, spontaneously self-assemble into specific, complex, three-

dimensional structures, from simple one-dimensional polypeptide chains. These 

polypeptide chains consist of amino acids in the case of proteins and nucleotide 

bases in nucleic acids. Folding into the correct structure is crucial, as there exists a 

tight link between the structure and function of biomolecules. The complexity of 

these structures came as a surprise when the first atomic-resolution protein crystal 

structures were resolved in the early 1960s. When John Kendrew resolved the 

structure of myoglobin, an oxygen-binding protein found in muscle cells, he 

observed a globular compact structure consisting of 8 alpha helices, interconnected 

by loops and all tightly packed together in irregular ways (1). Although the presence 

of helices had been anticipated by Linus Pauling (2), the irregularity and overall 

lack of symmetry of the structure was unexpected. At roughly the same time, 

Anfinsen and colleges observed that proteins can reversibly fold in solution, 

unaided by outside forces (3). This observation led to the thermodynamic 

hypothesis of folding. The hypothesis states that, in its standard physiological 

environment, the native structure is the one in which the Gibbs free energy for the 

system is lowest; that is, that the native structure is determined by the totality of the 

interatomic interactions and hence, by the protein’s amino acid sequence (4). 
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Together, these two discoveries of protein structure and the folding process 

spawned what would be known as the folding ‘problem’. 

The problem is really a set of three very closely related questions: (a) for a 

given amino acid sequence, how are the interatomic forces balanced in order to 

reliably produce the specific structure of the protein?; (b) for a given amino acid 

sequence, how can we predict a protein’s native folded structure?; and (c) what 

mechanisms allow proteins to fold quickly and reliably? (5).  

Although postulated in the context of proteins, the folding problem applies 

equally to nucleic acids. Like proteins, nucleic acids fold into their functional 

conformations. The physical principles that govern the folding are the same for both 

proteins and nucleic acids, but the strength or importance, of any particular 

interaction or mechanism, depends on the physical makeup of the individual 

molecule. The major differences between the folding of proteins and nucleic acids 

arise in the early stages of folding (6). The initial events leading to chain 

compaction in nucleic acids are driven by counterion-mediated collapse, whereas 

lowering of the free energy of the polypeptide chain by burying the hydrophobic 

residues, is the main driving force in the collapse of proteins (6)  

The vast majority of nucleic acid folding studies have focused on ribonucleic 

acid (RNA) molecules, owing to the highly diverse set of functions and associated 

structures of RNA in the cell (7). Despite this, arguably the most famous structure 

in all of biology is the deoxyribonucleic acid (DNA) double helix. The discovery 

of the double-helix structure of DNA by Rosalind Franklin, James Watson, and 

Francis Crick in the 1950s, is viewed as a major milestone in biology and modern 
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science as a whole (8). This discovery brought with it not only the structural 

underpinnings of nucleic acids, base-pairing, and base stacking interactions, but 

also the mechanistic understanding of genetics. This knowledge has allowed for the 

manipulation and design of specific DNA structures. Despite these revelations, the 

physical process by which nucleic acid molecules adopt their native structure 

remains unclear. 

The classical physical picture of folding is that of a random walk through 

configurational phase space, where each possible combination of bond angles, 

comprises a single conformer and single point in the configurational phase space. 

This picture appears to be perfectly valid from a thermodynamic perspective but a 

simple calculation of the timescale for folding implied by such a picture 

immediately indicates that something is missing from the picture. A typical protein 

is a polypeptide chain of 300 amino acids connected by 299 peptide bonds, and 

each of these bonds has two dihedral angles, known as the phi and psi bond angles. 

If each of these bond angles can be in one of three stable conformations (typical of 

proteins), then there are 3598 possible conformations. Even if the molecule was 

sampling these conformations at a rate of inverse picoseconds, it would take vastly 

longer than the lifetime of the universe, for such a protein to find its unique folded 

state. This clearly does not match the timescale of living organisms or the observed 

timescale of protein folding (on the order of milliseconds). This calculation was 

first done by Levinthal in 1969 (9) and is now commonly referred to as Levinthal’s 

paradox. The way out of the paradox comes in the form of a funneled energy 

landscape, where the search is energetically biased toward the lowest energy folded 
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state (10). 

1.2 The structure of DNA 

In this thesis I investigate the physical process of folding, examining physical 

quantities, properties, and mechanisms that are equally applicable to proteins and 

nucleic acids. For simplicity, I use the DNA hairpin as a model structure for 

studying folding. It is therefore important to introduce DNA and provide context 

on both its structure and its intimately related biological functions.  

The primary roles of DNA are to store the genetic information (genes) used 

to code for the amino acid sequences of proteins and to replicate that code, allowing 

it to pass from mother to daughter cell during cell division. The structure of DNA 

makes it ideally suited to these tasks. The primary structure of DNA is a polymer 

chain composed of monomeric nucleotide units. The nucleotides consist of one of 

four nucleobases ([A] adenine, [T] thymine, [C] cytosine, or [G] guanine) forming 

a glycosidic bond to a deoxyribose sugar attached covalently to a phosphate group. 

The nucleotides are then tethered together by covalent phosphodiester bonds 

between the deoxyribose sugar of one nucleotide to the phosphate group of the next, 

forming a sugar-phosphate backbone (Fig 1.1).  

The principle secondary structure of DNA is the famous right-handed double 

helix consisting of two complementary strands of DNA paired together with strict 

base-pairing rules (A pairs with T and C pairs with G). Each base pair is held 

together with hydrogen bonding and forms a purine-pyrimidine set with the same 

shape and size as any other purine-pyrimidine set (Fig 1.1). The homogeneity of 

the purine-pyrimidine sets allows the bases to neatly stack on top of one another 
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forming Van der Waals stacking interactions and further stabilizing the helical 

structure(11).  

While the strictness of the base-pairing results in high fidelity of information 

transfer and the complementary nature of the double helix provides a simple 

mechanism for replication, the specifics of the structure are also highly important. 

The most common form of the DNA double helix, B-form DNA, has a diameter of 

2.0 nm with a 3.4 angstrom vertical distance between base pairs and completes one 

turn of the helix for every 10.5 base pairs. The sugar-phosphate backbones of the 

complementary strands are not directly adjacent to each other resulting in a large 

(major) groove and a smaller (minor) groove running along the sides of the double 

helix and forming specific binding sites. For example, during transcription, proteins 

known as transcription factors bind specifically to the major groove of the DNA 

double helix and serve to regulate gene expression within the cell. 

Many forms of the DNA double helix, A-form, B-form, and Z-form are 

known to occur in nature but there are also many other secondary DNA structures 

including the G-quadruplex, i-motif, and stem-loop. The DNA stem-loop or DNA 

hairpin is the structure focused on in this thesis. A DNA hairpin is formed by a 

single strand of DNA with regions of self-complementarity. The regions of 

complementary nucleotides base-pair to form a helical stem region that is connected 

by an unpaired loop. It is one of the simplest folded structures with sequences that 

can be easily manipulated in the lab, making it a model structure for studying the 

underlying mechanisms of folding reactions. 
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1.3 Thesis outline 

 This thesis has two primary goals: to demonstrate the ability to measure 

transition paths in folding reactions directly, using optical tweezers; and to show 

how said measurements can be used to elucidate the mechanisms underlying 

folding reactions.  

 The thesis begins with a breakdown of the key concepts behind the modern 

theory of folding, as well as the theoretical descriptions of transition paths. I then 

present and explain, the technique and instrument, that I have used to measure 

transition paths in the lab, explaining why these measurements are technically 

challenging to make, as well as how we have overcome these challenges. This is 

followed by an overview of the major advances that have been made with regard to 

experimental studies of transition paths, excluding my own work. I then present the 

 

Fig. 1.1: DNA structure. The secondary structure (right) and tertiary structure 

(left) of B-form DNA shows the Watson-Crick base pairing as well as the 

phosphodiester backbone. The alignment of the planar structure of the bases, 

shown in the tertiary structure, leads to base stacking interactions. Adapted from 

Ref 11 with permission. 
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original research that I have been a part of during my graduate studies. I begin by 

examining the local velocity of transition paths, using the measured velocities to 

test established theories of folding. I then examine transition paths in the limit of 

small activation barriers. This is followed by an examination of the transient pauses 

present in the transition-path trajectories, describing how the statistics of these 

pauses can be used to probe transition-state dynamics. Next, I present 

measurements of the average and most probable transition-path shapes, 

demonstrating that these measurements contain information about the temporal 

sequence of events within transition paths. Lastly, I discuss the directions of future 

work and the outlook for experimental studies of transition paths.   
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Chapter 2 

The theory of folding 

 This chapter provides an overview of the prevailing theoretical understanding 

of folding. We begin by discussing the concept of energy landscapes and how these 

landscapes provide a qualitative description of folding. We then show how the 

parameters of the energy landscape provide a quantitative description of folding 

rates through reaction rate theory. This is followed by an introduction to the main 

topic of this thesis, the transition paths taken over the energy landscape, 

establishing a mathematical framework for describing transition paths in folding 

reactions.   

2.1 Energy landscapes 

The modern picture of folding takes a statistical perspective on the process. 

In this picture, folding is viewed as a diffusive search through conformational phase 

space, for the minimum energy native state, over an energy landscape (Fig 2.1). 

This landscape is a hyper-dimensional manifold, with each point in the landscape 

representing the free energy of a corresponding structure of the molecule, in a 

configuration space that spans all possible conformations (12). The dimensionality 

of this landscape scales linearly with the number of bonds, as any conformation of 

a linear polymer, is minimally described by its bond angles (12).  

As the energy landscape represents the free energy in all possible 

conformations, it also represents the relative probability of the molecule adopting 

any of the myriad conformations. As was first pointed out by Anfinsen, the native 
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structure of the molecule is unique and generally corresponds to the structure with 

the lowest free energy. Conversely, when the molecule is unfolded, it exists in a 

state of high entropy and high energy, fluctuating rapidly through multiple 

conformations. Yet, folding can progress from any of these unfolded 

conformations, progressing energetically downhill toward the folded state. In this 

sense, the landscape is said to be funneled toward the native folded state. Although 

folding reactions result in an overall reduction in free energy, local barriers exist 

within the funneled landscape, owing to asynchronous decreases in enthalpy and 

entropy (12).  The heights and locations of these barriers can vary widely within 

the energy landscape of a single protein, with smaller barriers manifesting on top 

of larger barriers, creating a rough energy landscape. Rough energy landscapes 

arise because the competing individual interactions among different segments of 

the biopolymer, conflict with each other and frustrate the energy minimization 

process (10). The roughness slows the diffusion over the landscape, as the molecule 

becomes transiently trapped within local free energy minima (13). Biomolecular 

folding is therefore said to follow the principle of minimal frustration, meaning 

that, through evolutionary pressure, nature has selected for proteins with optimized 

energy landscapes that allow the molecule to fold quickly and reliably. 

Given their high dimensionality and overall complexity, it is impossible to 

visualize or measure, the full energy landscape of even a very simple biopolymer. 

But even a highly simplified description, such as a one-dimensional projection of 

the full landscape onto a practical reaction coordinate, can be sufficient to 

characterize folding quantitatively (14). Indeed, simulation and experimental 
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studies of folding, for a variety of small proteins, have shown that properties such 

as folding rates and transition path times can be accounted for quantitatively by a 

1D energy landscape, so long as the reaction coordinate is chosen properly for the 

projection (15). 

 

2.2 Kramers reaction rate theory 

The connection between the thermodynamics of energy landscape theory – 

whereby folding is described as a diffusive search for the lowest energy native state, 

over an energy landscape – and the folding kinetics is made via reaction rate theory 

in the high friction limit. Following the phenomenological observations of 

Arrhenius, which showed reaction rates follow an exponential temperature 

dependence, with a rate-limiting step determined by the activation energy or barrier 

height, Kramers describes the barrier crossing or escape process, as being governed 

by Brownian dynamics, driven by thermal fluctuations. The thermal fluctuations 

 

Fig 2.1: Energy landscape representation of protein folding. The high-

energy unfolded molecule (top) is funneled toward the lowest energy folded 

state (bottom). Multiple pathways (arrows) lead from the unfolded states to the 

unique folded state. Adapted from Dill and MacCallum 2012 with permission. 
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are in turn connected to the temperature and friction coefficient, via the fluctuation-

dissipation theorem.  

Kramers’ theory shows that, in the case of a 1D landscape, the reaction or 

folding rate, can be determined from the parameters of the energy landscape (Fig. 

2.2)  

  ‡exp
2

GDk
bw

 



  (2.1) 

where k is the rate,  κw and κb are the stiffness’s of the well and barrier respectively, 

β is the inverse thermal energy, D is the diffusion constant and ΔG‡ is the height of 

the barrier separating the reactants from the products. The pre-exponential term is 

commonly referred to as the Kramers pre-factor and describes the attempt 

frequency for barrier crossing due to thermal fluctuations. The theory makes the 

assumptions that the wells and barrier are parabolic and that D is constant 

throughout the barrier region.  

In the case of an asymmetric energy landscape, the folding and unfolding 

rates will differ due to the differences in relative barrier heights and well curvatures, 

as depicted in Fig.2.2. For such an asymmetric landscape, the folding and unfolding 

rates will be given by  

 ‡
exp

2
u

bu

fold GDk  



  

and  

 ‡
exp

2
f

bf

unfold GDk  



       (2.2) 

Kramers’ theory is a powerful tool for interpreting the time scales of 
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conformational dynamics, within the thermodynamic perspective of energy 

landscape theory. Moreover, equations (2.1) and (2.2) allow for the determination 

of D, from reconstructions of the energy landscape (16) and measurements of the 

folding and unfolding rates. The diffusion coefficient is an important parameter that 

reports on the effective roughness of the energy landscape and sets the “speed limit” 

for folding (13). 

 

2.3 Transition paths 

Energy landscape theory has provided a conceptual framework for folding 

that, for the proper choice of reaction coordinate, may allow the problem to be 

reduced to Brownian diffusion over a one-dimensional potential (17). When 

 

Fig 2.2: Kramers’ reaction rate theory. The parameters of the free energy 

landscape (curvatures κf/u, κb and barrier heights ΔGf/u
‡), along with the 

conformational diffusion coefficient D, determine the rates for both folding and 

unfolding.  
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reduced to this one-dimensional form, the folding rate is given by Kramers’ reaction 

rate theory (18), and the inverse of the folding rate yields the folding time. This 

folding time however is not the time that a molecule spends actively folding, rather 

it is dominated by the time the molecule spends fluctuating within the stable states, 

as is evident by the exponential dependence on the free energy barrier height. The 

actual time that the molecule spends actively folding, known as the transition-path 

time, is much shorter (often orders of magnitude shorter) and relatively insensitive 

to the barrier height (19).  

Transition paths (TPs) are portions of the diffusive trajectories, over the 

energy landscape, where the molecule passes through the high-energy transition 

states within the free energy barriers, separating the folded and unfolded 

conformations (Fig 2.3). It is along transition paths, that all of the actual folding 

takes place. Consequently, transition paths are the most important part of folding 

reactions, containing all of the critical mechanistic information about folding (17).  
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2.3.1 Langevin dynamics 

In this section, we build on the concept of transition paths as diffusive 

trajectories over the free energy landscape, by establishing a mathematical 

framework that describes the process. We can begin by assuming that the molecule 

obeys the laws of classical mechanics. This implies that the molecule’s trajectory 

over the landscape is given by Newton’s second law, rrVrm
  /)( , where m 

is the mass of the molecule, )(rV


 is the landscape, and 
i

ii xxr ˆ


 defines the 

position of the molecule on the multidimensional landscape. The molecule's total 

 

Fig. 2.3: Transition paths. Transition paths represent productive fluctuations 

(red) that cross the barrier between unfolded (U) and folded (F) states, and ignore 

non-productive fluctuations (grey). Motions over the multi-dimensional 

landscape are usually projected onto a 1D reaction coordinate.  
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energy is then conserved and given by )(
2

2

rV
m

p
E


 . The model can be simplified 

by projecting the multidimensional landscape down to a single dimension or 

reaction coordinate, as is done in force spectroscopy experiments. This projection 

comes with its own set of consequences that will be discussed later. The equation 

of motion on the 1D landscape is given by xxVtxm  /)()( , where x describes 

the molecule's position along the reaction coordinate.  

An important aspect of folding that has been ignored thus far is the presence 

of a solvent. Biomolecules do not fold in a vacuum, rather folding reactions take 

place in the aqueous environment of cells. The presence of the solvent will alter the 

landscape by mediating intermolecular interactions and introduce frictional forces 

that dissipate the kinetic energy of the molecule (20). The frictional forces can be 

described by Stokes law and added into the model, giving )(
)(

~

)( tx
x

xV
txm  






, where )(
~

xV is the effective potential after adding the solvent and γ is the friction 

coefficient. The equation of motion still lacks one important aspect of folding, 

which is that the size of the molecule is very small, small enough that the motions 

of the individual solvent molecules will have a noticeable effect on the molecule’s 

motion. Put more succinctly, we have neglected the diffusive part of the model. The 

solvent molecule motions are driven by thermal fluctuations and are therefore 

random in both their direction and magnitude. These solvent molecules will be 

constantly colliding with the folding molecule, and their effects can be modeled as 

a random, Gaussian distributed, time-dependent force R(t), with mean zero (i.e. 
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0)( tR ). Adding this random force to the model yields

)()(
)(

~

)( tRtx
x

xV
txm 




   .         (2.3) 

This equation is the well-known Langevin equation, a stochastic differential 

equation central to the theories of transition path dynamics. As such, this equation 

should be explored more deeply.  

First, the temporal behavior of the random force R(t), must be considered. 

Due to its random nature and lack of any reason to believe that the value of R(t+δt) 

is somehow determined from the earlier value R(t), it can be modeled as a 

Markovian process. That is to say, that it is memoryless, with autocorrelation 

function )()()( ttAtRtR   , where A characterizes the strength of the random 

force. The value of A can be determined by demanding that the model be consistent 

with equilibrium statistical mechanics. Specifically, demanding that the kinetic 

energy of the molecule be Maxwell-Boltzmann distributed (20). This requirement 

means that 2/2/2 Tkxm B and is true even in the case where there is no potential 

(i.e. 0)(
~

xV ). The Langevin equation can then be recast in terms of the velocity. 

In the case of no potential, this gives )()( tRtx
dt

xd
m  


 . Solving this equation 

for the velocity yields,  


t

mttmt tdtRe
m

extx
0

/)(/ )(
1

)0()(  . In the limit of large 

t, the first term decays to zero. Squaring the velocity expression in this long-time 

limit and taking the average of 2x , gives mAx 2/2  , and comparing this to the 

Maxwell-Boltzmann requirement, it becomes evident that TkA B2 (20).  
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The Langevin description can be further simplified by returning to the earlier 

point made about the system being aqueous and the effects of the solvent on the 

molecule’s dynamics. Folding reactions occur in the low Reynolds number limit, 

meaning that the dissipative frictional forces are so much larger than the inertial 

forces, that molecule effectively stops immediately after a force ceases to act on it. 

This then implies that the system is overdamped. Including this over-dampening in 

the Langevin model requires setting the inertial term to zero, yielding 

)(
)(

~

)( tR
x

xV
tx 




  The Langevin equation is now expressed in terms of the 

physical parameters of the molecule + solvent system, yielding an equation, albeit 

a stochastic one, that describes transition path trajectories during folding reactions. 

The caveat of this Langevin description is the fact that it is non-deterministic and 

therefore of little use in describing any particular transition path.  

What is needed, is an expression that allows for the calculation of the 

probability that the molecule be at a specific position, at a specific time, given that 

the molecule’s trajectory is generated by the Langevin equation. Such an equation 

exists and is the well-known Fokker-Planck equation: 












































),(),(

)(
~

1
),( txP

x

Tk

x
txP

x

xV

x
txP

t

B


.     (2.4) 

This equation also conforms to the demand that the model be consistent with 

equilibrium statistical mechanics as its stationary solution is given by the 

Boltzmann distribution )/)(
~

exp()( TkxVxP B  (20). Making use of the Einstein-

Smoluchowski relationship, the friction coefficient can be replaced with the more 

intuitive diffusion coefficient /TkD B , in both the Langevin and Fokker-Planck 
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equations.  

The diffusion coefficient is a highly important parameter in the context of 

folding. It determines the speed at which the molecule samples the energy 

landscape and therefore the speed at which dynamical processes occur. It is through 

D that Kramers’ theory connects the thermodynamics of landscapes to the kinetics 

of folding. Thus far, no assumptions have been made about the position-dependence 

of the diffusion (or friction) coefficient, but it is here where the first consequence 

of projecting the full multidimensional landscape down to a single reaction 

coordinate, becomes important.  

On the full multidimensional landscape, the molecule samples the landscape 

at a constant rate, that is to say, that D is a constant everywhere, but when the 

landscape is projected down to a single dimension, any component of the 

molecule’s velocity orthogonal to the projection is lost. These lost components of 

the velocity cause the molecule to appear to be progressing slower along the 

projected coordinate, at any position where the off-axis motions dominate, resulting 

in an apparent position dependence of the diffusion coefficient. This requires the 

introduction of a position-dependent diffusion coefficient, with an unknown 

functional form, D(x). It should be noted, however, that for some molecules, with 

a well-chosen projection of the landscape, D may remain approximately constant 

(14, 15). This approximation is widely used in folding studies. 

Finally, recognizing that the effective potential is actually the free energy, 

allows for the replacement of )(
~

xV , with the free energy landscape G(x). The two 

equations underlying the statistical dynamics of the transition path trajectories  are 
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thus given by (20): 

)(
)()()(

)( tR
Tk

xD

x

xG

Tk
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tx

BB





        (2.5) 
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txP
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  (2.6) 

These two equations are the basis of the major theories presented thus far and 

indeed, are the basis of nearly every theory (not including the optics) discussed and 

tested as part of this thesis. Kramers’ reaction rate theory can be derived starting 

from the Langevin equation and the energy landscape theory of folding begins with 

the assumption that the flow between states in the landscape are described by the 

Fokker-Planck equation (21). 

2.3.2 Most probable paths 

Following the works of Faccioli et al, Makarov, and Cossio et al (22–24), we 

now investigate the most probable paths over an energy landscape. The solution to 

Eq. 2.6, subject to the boundary conditions x(ti) = −L and x(tf) = L, with a constant 

D, can be expressed as a path integral (22) 







L

L

DxSTkxGxG

if
effBif exetLtLP

2/][2/)()(
)(),|,(  ,    (2.7) 

where )(x denotes integration over all paths, 

     

t

t

effeff

i

xVDxdxS )(4/)(][ 2   ,       (2.8) 

is the effective action, and  

2
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 ,      (2.9) 
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is an effective potential. The most probable path of duration τ, from xi to xf is then 

the path that minimizes the effective action Seff. This most probable path, known as 

the dominant transition path (DTP), must satisfy the energy conservation equation 

(23) 

dx

dV
tx

eff
)( .          (2.10) 

For the case of a harmonic barrier, 2/)( 2‡ kxGxG   , the solution to Eq.2.10 is 

given by (24)  

)2/sinh(

))2/(sinh(
)|(






kD

tkDL
txDTP


        (2.11) 

differentiating yields the velocity of the DTP  

)2/sinh(

))2/(cosh(
)|(






kD

tkDkDL
txDTP


               (2.12) 

2.3.3 Folding committors 

 The concept of folding committors is an important aspect of transition path 

theory and can be thought of as a measure of the kinetic distance between a given 

conformation and the reactant/product state (25). In the context of folding reactions, 

the reactants and products are the unfolded and folded states of the molecule. For 

this reason, the committor function is often referred to as pfold, when applied to 

folding reactions. The value of pfold at any conformation is the probability that the 

molecule will reach the folded state before the unfolded state. This same concept 

of the committor function has applications beyond folding reactions and is 

applicable to reactions involving two stable states A and B. The committor function 

for reaching state B before A is given by 
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and for reaching state A before state B is ))(1()( B xxA   , or  









B

A

B

)(1
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x

x

x'βG
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dx'ex'D

dx'ex'D
x .        (2.14) 

Evidently then, for a two-state system separated by a barrier at position x‡ the 

committors will be 1)( AA x , 0)( BA x , and )(2/1)( ‡‡ xx BA   . It follows 

that the probability for a trajectory to be a transition path, given that the trajectory 

is at a position x, should be related to the committors. This is indeed the case and it 

can be shown that )()(2))(1)((2)|( xxxxxTPp ABBB    for ideal diffusion in 

1D (19). We can then use Bayes’ theorem to relate p(TP|x) to the transition path 

occupancy, P(x|TP) = P(x)p(TP|x)/p(TP), where p(TP) is the fraction of time spent 

in transition paths and P(x) is the equilibrium position probability(19).  

 The Fokker-Planck equation can be also be written in terms of the committors 
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Starting from this expression of the Fokker-Planck equation, the average duration 

of a transition path can be calculated as (26) 

  
 Bx
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xG xdexxdxexDxxt
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)(1

BATP )(1)()()|(     (2.16) 

In the case of a harmonic barrier, 2/)( 2‡ kxGxG  , a constant diffusion 

coefficient, and large Δx=xB− xA, Eq.2.16 can be approximated as (24, 27) 
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where γ≈ 0.577 is the Euler-Mascheroni constant. Eq.2.17 was first derived by 

Attila Szabo and has been utilized in several transition path studies, as such it 

appears several times throughout this thesis.  

An interesting result can be found by evaluating Eq.2.12 for paths of duration 

τ= )|(TP LLt , at t= 2/)|(TP LLt   corresponding to the time when the barrier is 

crossed. This then yields an expression for the diffusion coefficient in terms of the 

barrier crossing velocity, the distance to the barrier, and the barrier height. 
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       (2.18) 

A more elegant version of Eq.2.18 was provided by Makarov, by applying the 

approximation 2)cosh()sinh( aeaa   to Eq. 2.12. This yields (23)  

 
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
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2

2/‡

          (2.20) 

2.3.4 The Bryngelson and Wolynes energy landscape picture 

The landscape view of folding describes folding as occurring through a 

multiplicity of routes down a funneled energy landscape. This is in contrast to the 

“pathway” model of folding in which folding proceeds through an obligate series 

of discrete intermediate steps (21, 28). A simplified view of this funneled landscape 

description is illustrated in Fig 2.4. The figure depicts a lattice structure where each 

stratum of the lattice represents an ensemble of partially folded structures and the 

flow between strata is impeded by kinetic trapping in local minima states on the 
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landscape. As the folding reaction progresses, the number of states, and hence the 

number of routes, within each stratum decreases until the single folded state is 

reached. Both the energy and entropy of the molecule are decreasing as the reaction 

progresses, resulting in a frustrated process. The average speed at which folding 

progresses down the funnel is determined by the gradient of the funnel itself (21). 

However, locally the stochastic motions of the molecule as it hops between local 

minima states, are superimposed onto the average speed. This stochastic hopping 

between local minima results in diffusive motion along the reaction coordinate. The 

depths and density of the local minima determine the local ruggedness of the 

landscape and are reflected in the diffusive motions through the diffusion 

coefficient (21). This description of folding, using diffusive coordinates along the 

energy landscape to account for the transient trapping within local minima, was 

introduced by Bryngelson and Wolynes in two landmark papers (29, 30).  

The Bryngelson and Wolynes model divides the energies involved in folding 

into three groups: the energy associated with the state in which a residue resides, 

the energy associated with interactions between two residues that are close together 

in the polymer chain, and the energy associated with interactions between two 

residues that are close together in space but far apart in the polymer chain. Each of 

these energies is characterized by a value when the residue is in the optimal (native) 

configuration, and normally distributed with mean zero otherwise. This leads to a 

set of states whose total energy is normally distributed at any point along the 

reaction coordinate (29):  
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where ρ is the reaction coordinate, )(E is the average energy, and )(E is the 

standard deviation of the energies. From its initial state, the molecule follows a 

metropolis dynamics scheme, meaning it can only change its state by moving to a 

connected state in the landscape. When the molecule reaches a local minimum 

energy state, this state will act as a micro-well transiently trapping the molecule. 

These local minima energy states are a subpopulation of the full distribution and 

therefore themselves have a normal distribution (29)  
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where E0 is the energy of a local minimum state. Each local minimum will be 

connected to a population of states with E>E0 and the distribution of these 

connected states is given by  
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The rate of the molecule leaving the local minimum state is the sum of the 

rates for the molecule going from the local minimum to the states connected to the 

local minimum state (29) and given by 

 
i

i EERR ))(exp( 00          (2.23) 

where Ei is the energy of each connected state. The average value of R can be 

calculated from Eq.2.21 and using the asymptotic expression of the error function 

yields the average rate of escape from a local minimum 

 2/)(exp),( 22

000 EEENRERLM       (2.24) 
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where Nν is the number of states connected to the local minimum The distribution 

of average escape rates from a local minimum state is  
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Computing Eq.2.25 yields  
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 (2.26)  

The probability density for the molecule to remain in a local minimum for a time t 

is given by  
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The associated diffusion coefficient is given by (29) 
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where   is the minimal increment along the reaction coordinate, )( is the 

probability for leaving the group of states at ρ, and )(1 R is given by  
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Evaluating Eq.2.29 and using the asymptotic expression for the error function at 

large argument yields 
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where D0 is the intrinsic diffusion coefficient on a smooth landscape.  

 The folding times and rates predicted by the theory are consistent with 

Kramers’ theory, and hence, the theory provides a quantitative description of 

folding at all observable timescales, from macroscopic folding rates to microscopic 

rates of bond angle rotations (21). While measurements of the longer folding times 

have been shown to be consistent with the theory, validation of the theory at the 

shortest timescales remains elusive, requiring high precision measurements of the 

rates or waiting times, associated with crossing the microscopic barriers. 

 

  

 

Fig. 2.4: Lattice representation of funneled energy landscapes. The points on 

the lattice represent the conformational states of the molecule as it folds. As the 

folding reaction progresses, the number of states, and hence the number of paths, 

decreases until the single folded state is reached. Figure adapted from Socci et 

al 1996 with permission. 
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Chapter 3 

Optical tweezers 

 The original experiments performed as part of this thesis were all done using 

optical tweezers. This chapter provides an overview of the theory of optical 

trapping, the design specifics of the optical tweezers used in our lab, and how the 

optical tweezers are calibrated for reliable force detection.  

3.1 Theory of optical trapping 

An optical trap (OT) is an apparatus that makes use of the interactions 

between light and matter to harness the photon momentum of a laser beam, in order 

to hold and manipulate, microscopic dielectric particles in three dimensions. The 

first optical traps were pioneered by Arthur Ashkin at Bell Labs in the early 1970s 

and earned Ashkin the Nobel Prize in Physics in 2018. Ashkin’s initial works 

demonstrated that optical forces could be used to push and levitate dielectric 

particles in both liquid and gaseous media (31, 32), eventually leading to the 

development of gradient force optical traps, commonly referred to as optical 

tweezers (OTs), capable of stably trapping and moving micron-sized dielectric 

particles in three dimensions (33, 34). 

The basic requirement of an OT is a collimated laser beam, focused by a high-

numerical-aperture (NA) lens. The focusing lens causes the collimated beam to 

form a double cone of light. The focal point, where the two cones meet, is a 

diffraction-limited spot and the gradient of the light intensity will generate a 

potential well at the focal point. Small dielectric particles (usually polystyrene 
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beads) which happen to pass close enough to the potential well will experience a 

net restoring force in the direction of the focal point. For small displacements from 

the focal point, this restoring force scales linearly with displacement and can be 

approximated as a Hookean-spring. Because the particle experiences this restoring 

force for displacements in all directions, the particle is confined or trapped, near the 

focal point of the laser (34). There are two regimes generally considered when 

calculating the force imparted by an optical trap: the Rayleigh regime, valid when 

the diameter of the dielectric object is much smaller than the wavelength of the 

laser, and the Mie regime, valid when the diameter of the dielectric object is much 

larger than the wavelength of the laser. Optical trapping of biological molecules 

places certain practical constraints on the system in order to avoid damaging the 

sample being studied. Near-infrared wavelengths near 1 micron are typically used 

for trapping biological molecules as they generally inflict minimal damage to the 

biological sample (35). Furthermore, the nature of the trapping force imposes 

constraints on the size of beads that can be trapped, effectively limiting the bead 

diameter to a range from a few hundred to a few thousand nanometers (34). 

Together these constraints imply that the criteria for neither the Rayleigh nor Mie 

regime are fully met. However, these two regimes can be applied approximately 

and provide important physical insights into the physics of optical trapping.  

Let us first examine the small bead Rayleigh regime. Because the bead is very 

small, the electric field that it experiences due to the laser is nearly uniform over 

the extent of the bead. The bead then acts as a point dipole within the nearly uniform 

electric field of the laser. The forces acting on the dipole can be separated into two 
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components. The first of these is the so-called scattering force Fscatt, which results 

from the absorption and re-radiation of the electromagnetic waves of the laser. For 

a sphere of radius a, Fscatt  is given by: ,0 cnIF mscatt   where I0 is the laser 

intensity, nm is the index of refraction of the medium, c is the speed of light in 

vacuum, and σ is the scattering cross-section given by:
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where λ is the wavelength of the light and m = np/nm is the ratio of the index of 

refraction of the particle to that of the medium (34, 36). The scattering force is in 

the direction of the propagation of the laser light and is proportional to the laser 

intensity, as well as to the radius of the bead to the sixth power. Because Fscatt acts 

only in one direction it is unable to trap an object. Stable trapping, therefore, 

requires a second component, the so-called gradient force Fgrad. Fgrad arises from 

the Lorentz force acting on the induced dipole within the inhomogeneous EM field 

of the focused laser beam and is given by:  EpFgrad


 , where Ep


  is the 

dipole moment of the bead, with polarizability α, in electric field E. The gradient 

force experienced by the bead in a steady state is the time-averaged value of this 

force given by (34):  
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     (3.1)

 

The gradient force is proportional to the gradient of the laser intensity and the radius 

of the bead to the third power and acts as a restoring force directed toward the focal 

point, (Fig 3.1) for the case of m > 1. Thus, when the bead is displaced from the 

focal point, the gradient force pushes it back toward the focal point, causing the 
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bead to be trapped. It is apparent from these equations that Fscatt  and Fgrad oppose 

each other along the direction of the laser propagation and hence the true location 

of the trap center lies slightly offset from the focal point of the laser, where the 

magnitude of the two forces are equal.  

In the Mie regime, the particle is much larger than the laser wavelength and 

a treatment based on geometric optics is valid (37). Calculating the force exerted 

on the bead in this regime requires first calculating the force of a single ray acting 

on the bead and then summing over the entire laser beam (37). The result, first 

derived by Roosen and colleagues gives:   
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   (3.2)

 

where θ and   are the angles of incidence and refraction,  R and T are the Fresnel 

reflection and transmission coefficients at the bead surface, P is the power of the 

beam, and kscatt and igrad denote the scattering and gradient components of the force 

(38–40). In contrast to the Rayleigh regime, this result shows no dependence on the 

size of the bead, but shows a strong dependence on the high numerical aperture of 

the focusing lens, with highly converging rays contributing disproportionately to 

the force (40). 
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3.2 Optical tweezers design 

3.2.1 Trapping laser 

The central component of any optical tweezers device is the trapping laser. 

The laser must have excellent stability in both pointing and power, enough power 

to provide sufficient trapping force and lase at a wavelength that will not damage 

the sample being studied. In optical tweezers experiments, the sample typically 

consists of beads and molecules in an aqueous solution, contained within a glass 

flow cell. The wavelength of the laser should therefore be chosen such that it has a 

low absorbance when passing through water, in order to avoid heating the water 

 

Fig. 3.1: Ray optics view of optical trapping. (left) When the light intensity 

is unbalanced (indicated by larger black arrow) the transfer of momentum 

results in a net force (indicated by larger grey arrow) pushing the bead toward 

the higher intensity region. (right) When the bead is displaced axially from 

the focal point, the transfer of momentum results in a net force toward the 

focal point. Adapted from Neuman and Block 2004 with permission. 
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and driving thermal motions within the sample. As it turns out, water has a 

minimum in its absorbance spectrum near one micron (Fig 3.2) (40). For this 

reason, as well as cost and availability, optical tweezers commonly use 

neodymium-doped yttrium aluminum garnet (Nd:YAG) or neodymium-doped 

yttrium orthovanadate (Nd:YVO4) lasers that emit light at 1064 nm. The trapping 

laser used in our lab is a 5 Watt Nd:YVO4 diode-pumped solid-state laser emitting 

a polarised beam in the fundamental (Gaussian TEM00) mode. Measurements of the 

pointing stability of this laser indicate that pointing fluctuations occur on the order 

of 5 μrad over the course of an hour. This stability is a highly important 

characteristic for optical tweezers, as fluctuations in the beams propagation 

direction can lead to undesired motions of the bead, resulting in artificial signals 

that are indistinguishable from the motions of the molecule being studied.  
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3.2.2 Optics 

Upon exiting the lasing cavity the trapping beam enters the free space of the 

optics box which houses most of the optical elements used to shape, direct, and 

steer the beam. The optics box is designed to minimize air currents and dust which 

may adversely affect the beam quality, as well as provide a convenient platform for 

attaching optical elements. The first of these optics that the beam encounters is a 

Faraday isolator. The isolator prevents any reflections of the beam from re-entering 

the lasing cavity and potentially causing mode hopping of the laser. The beam then 

passes through a set of telescoping lenses used both to expand the beam (2:1 

expansion) and relay the position of the back focal plane. Next is a combination of 

 

Fig. 3.2: Absorption spectrum of water. The measured absorption spectrum of 

water shows a local minimum in absorption in the near infrared at wavelengths 

close to the 1064 nm produced by an Nd:YVO4 laser, indicating that the laser 

will have little effect on biological samples. Adapted from Svoboda and Block 

1994 with permission. 
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a half (λ/2) waveplate and polarizing beam splitters (pol cubes). The first waveplate 

rotates the polarization of the beam such that upon encountering the first pol cube 

the beam is split into two beams of equal power with orthogonal polarizations. The 

beams then briefly follow separate optical paths allowing for independent steering. 

Having two independent traps allows for differential measurements and 

greatly reduces the effects of instrument noise. Because both traps originate from 

the same source and follow much of the same optical path, much of the noise 

introduced to the beam will affect both traps equally and hence cancel out during a 

differential measurement. After splitting, the beams are then steered using an 

electro-optic deflector (EOD) for the x-axis and an acousto-optic deflector (AOD) 

for the y-axis. Both deflectors act as crystals with tunable indices of refraction, 

allowing the beam to be deflected by prescribed angles. This angular deflection is 

turned into a translation of the beam by making use of two conjugate planes: the 

image plane located at the focus of the objective lens (i.e. the trap position) and the 

back focal plane located at the focus of the condenser lens. Because the two planes 

are conjugate, a rotation in one plane results in a translation in the other. The 

steering elements are therefore placed in the back focal plane, allowing for 

translation within the x-y image plane at the trap location. A series of Keplerian 

telescopes are used to relay the back focal plane throughout the instrument. The use 

of both EODs and AODs is done for practical reasons, EODs have much higher 

bandwidth and transmittance than AODs but they also have a significantly lower 

range of deflection angles. Furthermore, AODs suffer from non-linearity in their 

frequency response, known as AOD wiggles (41). These wiggles result in small 
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deflections during trap movements that may be interpreted as experimental signals. 

Although it may sound practical to build a system using EODs to steer both x and 

y-axis, the alignment EODs is notoriously difficult, and aligning such a system 

poses a technical hurdle best avoided if possible. Another advantage of having 

AODs is that they allow for control of the amount of light passing through them. 

This ability to tune the amount of light reaching the sample, and hence the stiffness 

of the trap, is important as different types of measurements require different trap 

stiffness’s. For these reasons the EODs are used in the pulling axis – the axis along 

which force is applied to the molecule – while the AODs are used only to initialize 

the trap positions and control the trap stiffness, but remain stationary during 

measurements.  

After passing through the steering elements the two beams pass through 

another pol cube that recombines the beams before reflecting off of a dichroic 

mirror and exiting the optics box. Next, the beams pass through a Keplerian 

telescope, used to relay the image plane through the objective lens of the 

microscope. After the objective lens, the beams enter the sample, where they 

perform their intended function of trapping. The light scattered off of the sample 

then passes through the condenser lens of the microscope, before finally ending at 

an IR filter. 
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Fig 3.3: Optics layout. A schematic diagram of the optical layout of the optical 

tweezers instrument used for measuring transition paths.  

 

Fig 3.4: Back focal plane geometry. Rotations in the back focal plane result in 

translations in the conjugate image plane. A simple Keplerian telescope can be 

used to relay the locations of the two conjugate planes throughout the 

instrument. Adapted from Shaevitz 2006 (unpublished) 
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3.2.3 Position detection 

To detect the positions of the beads within the trap, we use a separate laser. 

The detection laser is a 7 mW HeNe laser with a wavelength of 633 nm. The 

detection laser is located outside of the optics box and is fiber-coupled into a single-

mode fiber using a 3-axis fiber coupler. The coupling of the laser into the fiber 

converts any pointing instabilities of the laser into power fluctuations which can be 

corrected by normalization of the detection signal. The detection beam then exits 

the fiber inside of the optics box where, like the trapping laser, it is split into 

orthogonal polarizations to allow for independent steering. Because the detection 

beams remain stationary during measurement, there is no need to actively steer 

them. Steering only needs to be done to align the detection beams, with the 

equilibrium positions of the trapping beams. This is done using lenses, mounted on 

motorized 3-axis stages, located at the back focal plane. After steering, the detection 

beams are recombined and pass through the dichroic mirror that reflects the 

trapping beams out of the optics box. At this point the detection beams follow the 

same optical path as the trapping beams, passing through the objective lens and 

scattering off of the beads in the sample chamber, before being collimated by the 

condenser lens.  The beams then pass through the IR filter and into a pol cube that 

again, splits them by polarization and directs each beam toward its own detector.  

The light scattered off of the beads is collected by a quadrant photodiode 

(QPD) in order to determine the position of the bead in the trap. These detectors are 

PIN diodes split into quadrants. When the incoming light strikes the active area, the 

PIN junction generates a photocurrent by means of the photovoltaic effect, that is 
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proportional to the light intensity at the incident position. This photocurrent is then 

converted into a voltage via Ohms law, with a known resistance value. Because the 

detector is split into quadrants, it will generate a separate voltage for each quadrant. 

The x and y positions are then determined by calculating the difference in voltage 

between the left and right sides of the detector as well as the top and bottom halves 

of the detector.  

The installation of QPDs was part of a recent upgrade that I performed on the 

optical tweezers system, in an effort to increase the sampling rate and decrease the 

level of electronic noise, present in the position detection system. As mentioned in 

section 1.3, transition paths take place on a timescale of only a few microseconds. 

This brevity necessitates a fast sampling rate for measuring the positions of the 

beads in the trap. Previously, the system used position-sensitive diodes (PSD), 

rather than QPDs for position detection. A PSD basically consists of a uniform 

resistive layer formed on the surface of a semiconductor substrate and a pair of 

electrodes on both ends of the resistive layer for extracting position signals. The 

active area has a PN junction that generates photocurrent when light strikes the 

PSD. The photocurrents are inversely proportional to the distance between the 

incident position and each electrode, allowing for the determination of the incident 

position on the detector. By using two layers of PSDs, that are orthogonal to each 

other, both the x and y positions can be determined simultaneously. Dual-layered 

PSDs have one serious drawback, the orientation of two charged surfaces, with a 

very short distance between them, introduces a capacitance into the system which 

severely affects the response time of the detector. As a result, PSDs tend to have 
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lower bandwidths than QPDs. The PSDs previously installed in our optical 

tweezers had a bandwidth of 400 kHz and were replaced with QPDs with a 

maximum bandwidth of 2.5 MHz, allowing a sufficient number of data points to be 

collected, during the TPs brief duration, to properly determine the TP trajectory. 

The criteria used when deciding on the detector specifications come from 

knowledge of the timescale of transition paths and the measurements of the 

instrument response time. Previous studies of the average transition-path time for 

several different molecules (discussed in detail in chapter 5), revealed that for the 

molecules studied, the average transition-path times ranged from a few to tens of 

microseconds (17, 27, 42–44). Furthermore, measurements of the time required for 

the instrument to respond to large-scale perturbations in the trap position (discussed 

in chapter 4), yielded an average response time of 6 µs (44). Because this average 

response time was measured for large-scale perturbations, it represents an upper 

bound for the time required for the instrument to respond to much smaller length 

changes, associated with molecular fluctuations. It was therefore decided that the 

new detectors should be capable of accurately oversampling this 6 µs timescale.  

 Oversampling has several benefits in signal processing. It can improve the 

signal-to-noise ratio of the measurements and help to avoid aliasing (45). In order 

to avoid aliasing, the signal should be sampled at or above, the Nyquist frequency, 

corresponding to twice the value of the highest frequency in the signal (45). The 

upper bound on the instrument time response corresponds to a lower bound on the 

Nyquist frequency of 333 kHz. As this frequency represents a lower bound on the 

required detection bandwidth, it was decided that detectors with much higher 
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bandwidth capabilities should be installed.  

3.3 Stiffness calibration of the optical trap 

As discussed in section 3.1, the force applied by an optical trap is proportional 

to the gradient of the light intensity as a function of the displacement from the trap 

center. For a Gaussian beam, the intensity gradient is approximately linear within 

a narrow range around the trap center, resulting in a harmonic force akin to a 

Hookean spring. In order to determine the force being applied by the trap one only 

needs to know two parameters: the position of the bead relative to the trap center 

and the stiffness of the harmonic force. The trap stiffness is therefore a critical 

parameter requiring frequent and reliable calibration. There are three commonly 

used methods of calibration: the power spectral density of bead fluctuations, the 

variance of bead fluctuations within the trap, and the displacement of the bead from 

the trap center due to Stokes’ drag (34). Because each method is susceptible to 

different systematic errors, it is good practice to perform all three methods and 

average the results (46).  

3.3.1 Power spectral density calibration 

The trap stiffness can be determined from the power spectral density, 

otherwise known as the power spectrum, of the thermal motions of a trapped bead. 

The power spectrum is Lorentzian (Fig. 3.4), characterized by constant power at 

low frequency and inverse-square behavior above a roll-off frequency f0:  

 
 

   fPfP
ff

Tk
fP v

B 2

22

0

2
, 





       (3.3) 

where β is the drag coefficient for the particle (34, 46, 47). By fitting the measured 

power spectrum to Eq.3.3 (Fig. 3.4) and determining the value of f0, the trap 
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stiffness can be determined from the relation κ = 2f0πβ. This method requires 

accurate knowledge of β, which depends on the bead size and geometry, the 

viscosity of the fluid, and the proximity to the microscope slide or coverslip. To 

account for variations in bead size and geometry, this calibration should be carried 

out for several different beads and the measured values of the stiffness averaged. 

The dependence of the drag coefficient on the proximity of microscope slide 

and coverslip is a particular concern for optical trapping experiments as they are 

typically conducted within a micron of either of these surfaces. This surface effect 

acts to perturb the effective viscosity of the fluid, resulting in a drag coefficient that 

deviates from the familiar Stokes expression for a sphere. The effective drag 

coefficient for the spherical bead can be approximated by Faxen’s Law (34, 47): 
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where η is the fluid viscosity, a is the bead radius, and h is the height of the bead 

above the surface. It is easy to see that in the limit that the height above the surface 

goes to infinity, the Stokes expression, β = 6πηa, is recovered.  

In addition to measuring the stiffness, the power spectrum is also highly 

sensitive to issues that can affect the quality of the trap including mechanical 

vibrations, optical misalignment, and electronic noise. All of these issues produce 

non-Lorentzian spectra, making the power spectrum a useful diagnostic measure 

(48).  
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3.3.2 Variance calibration method 

The variance of the beads fluctuations within the trap is simply the integral 

over frequency of the power spectrum and can be used to obtain the trap stiffness 

through the equipartition theorem. By the equipartition theorem, the thermal 

fluctuations of the bead in the harmonic potential of the trap are related to the 

thermal energy by: 2

2
1 x  = TkB2

1  (34, 40, 46, 47). This is the simplest of the 

three methods described as it depends only on the stiffness of the trap and the 

temperature, and is insensitive to the size or geometry of the bead. However, the 

variance is a biased estimator as the variance is always a positive value, and the 

presence of any extra noise (electrical, mechanical, etc.) will result in an 

underestimate of the trap stiffness.   

 

Fig 3.4: Power spectral density of a trapped bead The power spectrum for 

the X axis (teal) and Y axis (blue) of an optical trap are well fit by a Lorentzian 

(Eq. 3.3) (solid lines). The parameters of the fit determine the stiffness in each 

axis.  
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3.3.3 Stokes drag calibration method 

The most direct and most time-consuming method for determining the trap 

stiffness is the Stokes drag method (46). In this method, a trapped bead is subject 

to a viscous drag force produced by moving the bead through the fluid. Assuming 

that the bead remains in the harmonic portion of the trap potential, the drag force is 

given as:  vxvF   , where v is the fluid velocity and x(v) is the 

displacement of the bead out of the trap center. The fluid motion is generated by 

periodically driving the piezo sample stage laterally. For a bead subject to a 

triangular driving force of amplitude A0 and frequency f, the motion is 
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Due to the finite response time of the piezo stage, the exponential damping term is 

convolved with the response time of the stage. Therefore, a reliable estimate of the 

trap stiffness should use only the asymptotic value of Eq.3.5 (34).  

Although this method can be difficult in practice, as beads can be pulled out 

of the trap or unwanted beads may fall into the trap mid-measurement, it also comes 

with certain advantages. The drag-force measurements are quite slow when 

compared to measurements of thermal motions and therefore require a much lower 

bandwidth for accurate detection. Furthermore, by increasing the amplitude or 

frequency of the stage motion the beads can be pushed to larger values of 

displacement. Measuring the trap stiffness as a function of the bead displacement 

provides a measure of the region over which the trap is harmonic (34, 48, 49).  

3.4 Summary 

This chapter describes the basic theory of optical trapping, the basic design, 
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and layout of the optical tweezers used in our lab, the methods used for calibrating 

the optical tweezers, as well as some of the upgrades that I made to the instrument 

in order to improve the quality of my data. It should be noted that optical tweezers 

can be very delicate and persnickety instruments, particularly when making 

measurements on the angstrom and microsecond scales, requiring near-constant 

adjustments to optical elements. 
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Chapter 4 

Optical tweezers measurements 

 Having established a basic understanding of the physical principles governing 

optical tweezers, we now discuss some of the measurements typically used to study 

folding reactions with them, focusing on the types of measurements used in this 

thesis. 

Optical tweezers can be used to measure systems both in and out of 

equilibrium. While measurements taken at equilibrium allow for interpretation with 

the well-known tools of equilibrium statistical mechanics, non-equilibrium 

measurements can be used to probe portions of the energy landscape rarely visited 

under equilibrium conditions. 

There are two equilibrium measurement paradigms commonly employed 

with dual-beam optical tweezers: constant force measurements, in which the force 

applied to the molecule remains constant, and constant separation measurements, 

where the distance separating the two traps remains constant. A typical non-

equilibrium measurement involves pulling on the molecule while linearly 

increasing the force applied. For all of these measurements, the locations of the 

beads are the observable that is recorded. Independent measurements of the bead 

locations allow for a straightforward calculation of the distance between the beads. 

When tension is applied to the system, changes in this distance correspond to 

changes in the end-to-end extension of the molecule + handle system. This end-to-

end extension is the natural reaction coordinate for folding in optical tweezers 

measurements because it can be directly related to structural changes of the 
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molecule.  

4.1. Equilibrium measurements 

4.1.1 Constant force measurements 

In constant force measurements, the molecular extension is measured while 

the force applied to the molecule is held at a constant value (Fig. 4.1). This can be 

done through either a feedback loop or by exploiting the anharmonic region of the 

optical trapping potential where the differential stiffness vanishes.  

Feedback loops are typically implemented by measuring the instantaneous 

position of the trapped bead and then moving the trap to maintain a set displacement 

between the bead and the trap center. However, this type of force clamp is 

susceptible to two significant complications. First, the beam steering mechanism 

can exhibit nonlinear responses, leading to variable loads, which is an undesirable 

quality of a constant force measurement. Second, the finite response time of the 

feedback loop places significant restrictions on the bandwidth of measurements, 

greatly reducing the temporal resolution. Furthermore, the limited time response of 

the feedback system means that the force does not actually remain constant on short 

timescales. Instead, the force changes slightly in response to the very molecular 

motions that the experiment is attempting to measure. This ambiguity in the force 

makes interpretations of the statistics of the molecular motions difficult. These 

restrictions render the feedback loop inadequate for measuring systems requiring 

high bandwidth and spatial resolution, such as DNA hairpin unfolding events (49). 

A better method developed by Greenleaf et al acts to passively maintain a 

constant force by exploiting the anharmonic region of the optical trapping potential 
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(Fig. 4.2). As discussed in the previous chapter, the force profile for a Gaussian 

beam optical trap is in the form of the derivative of a Gaussian curve. As the 

displacement of the bead from the trap center increases the force initially increases 

linearly (this is the harmonic region), before reaching a peak and rolling over. Near 

the peak of the force-displacement curve, there is a region where the force is 

approximately constant for small displacements. Therefore, by pulling a bead out 

to this zero stiffness regime, the force applied to the molecule will be effectively 

clamped and the value of the applied force can be tuned by adjusting the intensity 

of the laser light (49). In a dual optical trap setup, one bead is held in the zero 

stiffness regime of one trap, position measurements are made on this bead while 

force measurements are made on the other bead which is held in the harmonic 

region of the other trap. 

Although constant force measurements were not performed as part of this 

research, the energy landscape reconstructions for DNA hairpins, obtained from 

passive constant force measurements, were used, prompting this brief discussion. 
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4.1.2 Constant trap separation measurements 

Constant trap separation measurements are conducted by maintaining a fixed 

distance between the centers of the two optical traps and measuring the distance 

 

Fig 4.1 Constant force measurements. The force (blue) applied to the 

molecule is held constant. If the force is near F1/2, the molecule will hop 

between the folded and unfolded states as evidenced by the abrupt changes in 

molecular extension (red). Adapted from Woodside and Block 2014 with 

permission 

 

Fig 4.2 Active and passive force clamps. The force can be held at a constant 

value either actively via a feedback system (left) where the trap moves in 

response to changes in extension, or passively by keeping one bead in the zero 

stiffness regime of the trap (right). 
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between the two trapped beads as a function of time. In this type of measurement, 

the applied force varies in response to changes in the molecular extension (Fig. 4.3). 

Constant trap measurements are better suited than constant force measurements, for 

measuring extremely fast events such as transition paths. While the low system 

stiffness of constant force measurements (owing to the requirement of operating 

one trap in the zero stiffness regime) leads to a large instrument response time, 

constant trap measurements can be done at much higher stiffness values and hence 

have much lower response times. The link between trap stiffness and response time 

is perhaps best illustrated through an analogy to a mechanical spring, where the 

time required for a signal to propagate from one end of the spring to the other, is 

proportional to the spring stiffness. The low response time of constant trap 

measurements makes them ideal for measuring rare and brief events such as 

transition paths. Hence this type of measurement makes up the bulk of the original 

data presented in this thesis.  
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4.2 Non-equilibrium measurements 

4.2.1 Force vs extension measurements 

One of the most common types of measurements performed with optical 

tweezers is a force ramp measurement. This measurement typically involves 

pulling on a molecule with a linearly increasing force load while simultaneously 

recording both the end-to-end extension of the molecule and the instantaneous force 

being applied (Fig. 4.4). Plotting the applied force as a function of the molecular 

extension results in what is commonly known as a force-extension curve (FEC). 

When an FEC is performed on a folded polymer the force will increase 

monotonically with increasing molecular extension until structural components 

 

Fig 4.3 Constant position measurements. In constant position measurements 

the locations of the traps are held at constant positions while the force applied 

to the molecule is allowed to fluctuate (blue). If the average value of the force 

is near F1/2, the molecule will hop between the folded and unfolded states as 

evidenced by the abrupt changes in molecular extension (red). Adapted from 

Woodside and Block 2014 with permission. 
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begin to unfold. The structural components unfold in order from the least to most 

stable structures. Each time a structure unfolds it is accompanied by an abrupt 

increase in molecular extension, this, in turn, allows the beads to be pulled closer 

to the trap centers resulting in a rapid decrease in force. These unfolding events 

appear as distinct “rips” in the FEC. The FEC can also be run in reverse. By starting 

at a high force and decreasing the applied load, the refolding process is observed. 

When applied consecutively to the same molecule, hysteresis in the FECs may be 

observed as the molecule unfolds and refolds under the applied load. The presence 

of this hysteresis is indicative of the non-equilibrium nature of these measurements. 

FEC measurements reflect all elastic components of the experimental assay. This 

means that analysis of FEC measurements must take into account not only the 

stretching of the molecule under study but the dsDNA linkers and trap stiffness as 

well.  

The choice of dsDNA for linkers was made in part because its elastic response 

to force is well understood in polymer physics. Indeed worm-like chain (WLC) 

models can account for both the elastic energy and entropy of polymer chains such 

as dsDNA. In the WLC model one evaluates the partition function associated with 

different polymer configurations, weighting each configuration by its 

corresponding elastic energy cost. Evaluating the partition function is highly non-

trivial as it requires summing over all possible polymer configurations. Fortunately, 

the problem is highly simplified in both the low and high force limits, permitting a 

determination of the FEC properties in these limits. Furthermore, an interpolation 

formula connecting these limits can be derived, allowing for an evaluation of the 
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extension of the worm-like chain over the entire range of applied forces (50, 51). 

This interpolation formula of the WLC model is given by: 
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     (4.1) 

where F is the applied force, x is the observed extension, Lp is the persistence length, 

Lc the contour length, and K the elastic modulus of the polymer.  In the case of 

DNA hairpin unfolding the FEC is well described by Eq. 4.1 with parameters 

corresponding to that of dsDNA, at low force. However, when the hairpin unfolds 

the FEC will reflect the presence of the ssDNA of the unfolded hairpin. The 

persistence length, contour length, and elastic modulus of dsDNA have been 

measured extensively with values of, Lp = 40-50 nm, Lc = 0.34 nm/bp, and K ~ 

1000-1200 pN (52–55). Given that these values are well known, fitting of FEC 

measurements to Eq. 4.1 can be used diagnostically to confirm the presence of a 

single molecule of interest and discriminate against the presence of multiple handle 

attachments or otherwise ill-formed constructs.   

In the context of transition path measurements, FECs are used only for their 

diagnostic functionality. FECs are performed to confirm the quality of the trapped 

molecule before performing constant trap separation measurements to measure 

transition paths. 
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4.3 Measuring transition paths 

4.3.1 Requirements for measuring transition paths 

Owing to their extreme brevity, transition paths have proven challenging to 

study experimentally. As a result, the study of TPs was until recently restricted to 

theory and simulation. In recent years, however, advances in single-molecule 

instrumentation and analysis have allowed direct measurement of TPs, opening up 

a new window on the microscopic conformational dynamics during folding. So 

what exactly are the requirements needed to measure TPs and what advances have 

allowed for their direct measurement? These questions are the focus of this section.  

First and foremost is the fact that TPs are inherently stochastic. This poses a 

gigantic problem for traditional ensemble studies of folding because for one; the 

 

Fig 4.4 Force extension curves. In a force extension curve the force applied to 

the molecule is increased linearly (blue). Unfolding events result in rips in the 

curve. Running the process in reverse causes the molecule to refold (red) and 

hysteresis between the two curves indicates that the measurement is performed 

out of equilibrium .Adapted from Woodside and Block 2014 with permission. 
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folding of ensembles of molecules cannot be synchronized, and second; even if the 

entire ensemble could be forced to all fold/unfold at the exact same time, the 

stochastic nature of TPs dictates that each molecule in the ensemble would take a 

slightly different TP over the barrier. The result of such a synchronized ensemble 

experiment would be an ensemble average over all of the TPs. While such a study 

could still yield interesting and useful results, such as average transition-path times, 

it would be incapable of measuring individual transitions or yielding distributions. 

For these reasons, our first requirement for measuring TPs directly is the use of 

single-molecule approaches. This requirement is obviously satisfied by optical 

tweezers, but single-molecule studies of folding with optical tweezers have existed 

for decades, so clearly other requirements must exist.  

With the use of single-molecule methods, the next requirement is very high 

spatiotemporal resolution (nanometer and microsecond). The spatial resolution is 

again satisfied by the use of optical tweezers, with sub-nanometer resolution being 

common for optical tweezers setups. It is the temporal resolution that poses a 

formidable challenge to measuring TPs with optical tweezers. TPs are extremely 

brief events, often only a few microseconds in duration. Measuring TPs, therefore, 

requires a system that has both a high sampling rate and a low time response. The 

upgrades to the detection system discussed in chapter 3 deal with the high sampling 

rate requirement. The requirement of a low time response is somewhat more 

difficult to achieve and subtle in its manifestation.  

A time response sufficient for measuring TPs with optical tweezers requires 

highly stiff optical traps. This can be achieved through high-power, highly focused 
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lasers in conjunction with properly sized beads. Here is where things start to get 

slightly more complicated, recall from chapter 3 that the gradient force of an OT 

scales with the radius of the bead cubed. From this one might be tempted to think 

that larger beads should be used for measuring TPs as they lead to a higher trap 

stiffness, but a more massive bead will be less sensitive to the minuet molecular 

fluctuations, leading to measurements that are dominated by the dynamics of the 

bead, rather than molecule (24, 56, 57). Furthermore, the frictional drag acting on 

the bead is proportional to the bead radius. Thus increasing the size of the bead 

tends to slow both the bead movement and instrument response time. This means 

that we need beads that are large enough to be trapped stiffly but small enough that 

they will not dominate the kinetics of the system. In our system we currently use 

an 820 nm diameter bead in one trap and a 600 nm diameter bead in the other trap, 

forming our dumbbell assay. 

The instrument response time can be measured by inducing “transitions” in a 

reference construct and measuring the transit time. The reference construct consists 

of two beads tethered by dsDNA and is essentially the normal assay with the 

molecule removed. The “transitions” can be induced by abruptly jumping the 

position of one of the traps at a distance equivalent to the extension change in the 

folding of the molecule of interest. By doing this several times and measuring the 

time required for the molecule to transit between “states” we can build a distribution 

of response times. Taking the average of this distribution provides a reasonable 

estimate of the instrument response time. When this procedure was done on our OT 

the average response time was found to be 6 µs (Fig. 4.5)(44).  
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Another aspect contributing to the temporal resolution of the measurements 

is the molecule itself. The molecule must unfold at a sufficiently high force such 

that a relatively high amount of tension can be maintained in the molecule + linkers 

construct, as higher tension results in faster propagation of the signal from the 

molecule, through the linkers, to the beads. For reference, the unfolding force for 

our poster child molecule, the DNA hairpin 30R50/T4, is approximately 14 pN 

(58).  

As mentioned in the above sections, the transition-path measurements taken 

as part of this thesis were performed via the constant position method. The reason 

for this is twofold: first, constant position measurements allow for transition paths 

to be measured in equilibrium. This is an important point, as theoretical 

expectations for transition paths have been formulated in the context of equilibrium. 

Therefore, transition-path measurements must be made under equilibrium 

conditions if the aim is to test or draw comparisons to the established theories. 

Second, a relatively high trap stiffness can be maintained during constant position 

measurements. As we now know, this high stiffness allows for higher temporal 

resolution, a critical requirement for measuring TPs. 

Even if all of the above considerations are accounted for, there are still 

potential issues that can prove disastrous when attempting to measure TPs. These 

issues come in the form of experimental artifacts, the effects of which must be 

thoroughly investigated before TP measurements can be considered as true 

representations of the molecular dynamics. 
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4.3.2 Instrumental artifacts in kinetic rates and transition-path properties 

Studies of folding using SMFS generally require coupling of the molecule of 

interest to a force probe. For the optical tweezers measurements presented in this 

thesis, the force probe is the bead that is coupled to the molecule via dsDNA linkers. 

Due to the fact that the measurements report on the motion of the bead, rather than 

the motions of the molecule itself, the properties of the molecule must be inferred 

from the bead motion. This then implies that the observed dynamics are those of 

the entire bead+linker+molecule system, and may therefore be altered from the 

intrinsic dynamics of the molecule. Recent theoretical studies (24, 57, 59) have 

provided a framework that can be used to gauge the extent to which properties such 

as transition rates and transition-path times are altered during SMFS experiments. 

This framework has been applied by Neupane and Woodside (60), to two of the 

DNA hairpins studied as part of this thesis (30R50/T4 and 20TS06/T4) using the 

 

Fig 4.5 Instrument response time measurement (A) The response time of the 

optical tweezers can be measured using a reference construct consisting of 

DNA handles only. The construct is held in the traps and one trap is jumped 

abruptly back and forth to cause the extension of the molecule to change by an 

amount equivalent to the extension change in the folding of the molecule of 

interest(B) The time required for each “transitions” to cross the barrier region 

(x1 to x2), can be measured and averaged to determine the response time of the 

instrument. Adapted from Neupane et al Science 2016 with permission.  
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same beads and linkers. The results of this study show that errors in the folding 

rates were only ~20%, similar to the experimental uncertainty in the rates. They 

also found that measurements of transition paths using constant trap position 

measurements at high trap stiffness are in the low-artifact limit (60).  

To quantify the errors in the observed transition rates Neupane and Woodside 

first performed constant force measurements of the DNA hairpins with the force 

set to F1/2 and determined the observed transition rates, denoted kMA. They then 

determined the rate kA expected if the molecule were diffusing over the potential of 

mean force (PMF), via the application of Kramers’ theory to the PMF. The PMF 

can be obtained directly from the extension trajectories via Boltzmann statistics and 

the implied diffusion coefficient was defined as Dq=δq2/τA, where δq is the 

deviation of measured extension from its average value within the stable folded or 

unfolded states and τA is the relaxation time obtained via single-exponential fits of 

the extension autocorrelation function within the same state. In order for the 

observed rate kMA, to be a good estimate of the intrinsic molecular rate kM, the 

expected rate kA must be fast in comparison to kM. This was indeed the case, with 

kA>> kMA, indicating that kMA≈ kM, for both hairpins. The error in the observed rates 

caused by instrumental effects was then quantified using an expression derived by 

Cossio et al. (57)  
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where κb is the barrier curvature of the intrinsic energy landscape. This procedure 

showed that the instrumental effects on the rates were low with kMA ~ 20% lower 

than kA (60).  
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Instrumental artifacts can have large effects on the dynamics of transition 

paths, even when measurements are made in the regime where the effects on the 

rates are low (24). A thorough examination of these effects is therefore crucial when 

interpreting transition-path measurements, and failure to do so can lead to 

nonsensical interpretations of transition-path properties (61). Examining the extent 

to which instrumental effects alter the dynamics of transition-path measurements 

involves comparing Dq to Dx (24, 57), the diffusion coefficient along the intrinsic 

molecular free-energy landscape. In order for the effects to be small, the observed 

diffusion coefficient Dq should be fast in comparison to Dx. In order to examine the 

instrumental effects on the transition path measurements, Neupane and Woodside 

performed constant trap position measurements on the DNA hairpins and 

recalculated Dq from the extension fluctuations and autocorrelation function. It 

should come as no surprise that Dq was found to be much higher than in the constant 

force case, owing to the significant increase in the trap stiffness of the constant 

position measurements. Dx was then calculated through two independent methods: 

from the application of Kramers’ theory to the energy landscape obtained after 

removal of instrument compliance through deconvolution; and the average 

transition-path time. Both methods returned the same values for Dx, which was 

found to indeed be lower than Dq for both hairpins, suggesting that the observed 

transition paths should be minimally distorted (60).  
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4.3.3 Reaction coordinate quality 

Last but not least, is the requirement that molecular extension accurately 

reflects the dynamics of the molecule being studied. In the context of energy 

landscape theory, folding reactions are described as a diffusive search over a highly 

multidimensional energy landscape for the lowest energy folded state. When 

folding is monitored in experiments, only a single reaction coordinate is observed. 

In optical tweezers measurements, this single reaction coordinate is the end-to-end 

extension of the molecule. Thus, the observed reaction coordinate is a one-

dimensional projection of the full multidimensional landscape. Although only a 

representative approximation of the full complexity, these 1D descriptions are 

widely used (as they are generally all that is accessible to experiments) and often 

give an adequate representation of the full dynamics of the reaction (14). Despite 

the success of these approximations, their suitability to any particular system is 

difficult to know without performing tests of the reaction coordinate quality. 

 

Table 4.1: Kinetic parameters of DNA hairpins. Values represent the average 

of folded and unfolded values and errors represent the s.e.m. Adapted from Yu 

et al. 2012 with permission.  



61 

 

Moreover, the use of a poor reaction coordinate can have critical implications for 

interpreting experimental results and may lead to incorrect conclusions (15). 

Testing of the reaction coordinate quality can only be done after TP measurements 

have already been taken and are one of the more difficult tests to perform, as it 

requires accurately reconstructing the molecular free-energy landscape and 

deconvolution of the effects of the beads and linkers from the landscape.  

One such test of reaction coordinate quality was developed specifically for 

folding reactions. This test involves calculating the committor, pfold(x) – the 

probability that when the molecule is at a given position along the reaction 

coordinate x, it will reach the folded state before the unfolded state. In the case of 

a two-state system, a good reaction coordinate requires that pfold(x) = 1/2 at the top 

of the barrier. Hence, if this requirement is not met, then the reaction coordinate is 

considered poor. However, the inverse of this statement is not true. In other words, 

all good reaction coordinates have pfold(x) = 1/2  at the barrier, but so do some bad 

reaction coordinates.  

A more definitive test of reaction coordinate quality is based on transition 

path statistics. This states that a reaction coordinate is good if the conditional 

probability that the molecule is on a transition path when it has extension x, p(TP|x), 

should be highly peaked around the location of the free energy barrier, x‡, ideally 

reaching a value of 1/2  at x‡ (15, 19). The conditional probability p(TP|x), can be 

calculated from the equilibrium trajectory by the Bayesian relation 

p(TP|x)=P(x|TP)p(TP)/P(x), where P(x) is the equilibrium distribution of extension 

values in the complete trajectory, P(x|TP) is the distribution of extension values 
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along only transition paths, and p(TP) is the fraction of time in the trajectory spent 

on transition paths. For a purely 1D diffusive process, this conditional probability 

can also be related to pfold(x), as p(TP|x)=2 pfold(x)[1 − pfold(x)]. 

This test was applied to transition path measurements of the DNA hairpin 

30R50/T4 by Neupane et al (15). In their first attempt, they found that while p(TP|x) 

was indeed peaked near the location of the barrier, its peak value was only 0.04, far 

lower than the expected value of 0.5. While this result may suggest that extension 

is a poor reaction coordinate for the hairpin, Neupane et al. explain that the test fails 

to take into account the effects of experimental noise, such as bead and linker 

fluctuations, potentially altering the result of the test.  

In an effort to explore how the bead and linker fluctuations alter p(TP|x), they 

then performed simulations of a molecule compliantly linked to a bead on a purely 

1D landscape. Because the landscape is 1D, the reaction coordinate is by definition 

good and any deviations in p(TP|x), from the expected result, can be attributed to 

the bead and linker effects. Performing the simulation with a range of different 

linker stiffness’s, they found that the amplitude of the peak in p(TP|x) was 

suppressed as the stiffness decreased. Noting that p(TP|x) is primarily affected by 

the addition of statistical weight to P(x) through the addition fluctuations of the 

bead and compliant linker, they then sought to correct for the compliance effects 

by using the intrinsic molecular extension distribution, Pi(x) – which can be 

calculated by empirical deconvolution of the equilibrium extension distribution. 

After applying the corrective procedure and recalculating p(TP|x) for the 

hairpin data, they found that p(TP|x) reached a maximum of ~0.45 at an extension 
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close to the barrier peak, x‡, thus validating the molecular extension as a good 

reaction coordinate for the DNA hairpin data. Applying the same test to the DNA 

hairpin 20TS06/T4, Neupane et al. found similar results.  

 

4.3.4 Specifics of transition-path measurements 

The specifics of the transition-path measurements performed in this thesis are 

as follows: transition-path measurements were made at equilibrium at a force near 

F½, the force at which the occupancies of the folded and unfolded states were 

similar, under conditions of constant trap separation with high trap stiffness (0.75–

1.1 pN/nm in one trap, and 0.56–0.63 pN/nm in the other) (Fig 4.7). The data were 

sampled at 125–1,000 kHz and filtered online at the Nyquist frequency (one-half 

of the sampling rate) in order to avoid aliasing. The variation in sampling rates 

 

Figure 4.6: Reaction coordinate quality tests for DNA hairpin 30R50/T4.(A) 

The deconvolved extension probability (black) is peaked more sharply than the 

raw extension probability (grey). (B) The conditional probability distribution 

(black) and pfold (yellow) are sharply peaked at x‡, the location of the barrier in 

the free energy landscape (red) indicating that the extension is a good reaction 

coordinate. Adapted from Neupane et al. 2015 with permission.  
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corresponds to the time at which measurements were taken and the capability of the 

instrument at the time of measurement. The majority of the transition paths 

measured were sampled at 1 MHz and took place after upgrades to the detection 

system were put in place. 

 

 

4.4 Summary 

This chapter describes the types of optical tweezers measurements used in 

this thesis as well as what each type of measurement was specifically used for. 

Constant force measurements were not performed as part of this thesis, however, 

 

Fig 4.7 Transition-path measurements. (A) Transition paths were measured 

with duel beam optical tweezers (inset) in the constant trap separation 

paradigm, near F1/2, the force at which the molecule is equally likely to occupy 

the folded (F) or unfolded (U) states. (B) High spatiotemporal resolution allows 

for observations of individual transition paths where the molecule transits the 

barrier region (xf to xu). 
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the energy landscape reconstructions obtained from constant force measurements 

provided landscape parameters that were used in several aspects of the analysis 

presented in future chapters. FEC measurements were used to determine the quality 

of trapped molecules prior to measuring transition paths using constant trap 

separation measurements.  

The requirements for accurately measuring TPs with OT are: high 

spatiotemporal resolution, low artifacts, and a proper reaction coordinate, are 

discussed and all shown to be satisfied in the case of the TP measurements 

presented in this thesis. Having discussed how TP measurements are performed, 

the remaining chapters focus on what can be learned from these measurements, 

looking at different TP properties and what these properties tell us about folding 

reactions. 
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Chapter 5 

Transition-path studies 

 

5.1 smFRET measurements of average transition-path times in folding 

The first direct measurements of TPs were done in pioneering work by Eaton 

and colleagues using single-molecule Förster resonance energy transfer (smFRET)  

(Fig. 5.1), to determine the average transition-path time, τTP. In smFRET studies of 

folding, the transitions between the folded and unfolded states are generally 

induced through changes in the concentration of chemical denaturants. The 

progress of the reaction is then monitored via two (or sometimes 3) differently 

colored fluorophores, attached at different positions on the molecule (Fig. 5.1, 

5.2A). When the donor fluorophore is excited by a photon, it will either emit a 

photon or transfer energy to the acceptor fluorophore through nonradioactive 

dipole-dipole coupling. When energy is transferred to the acceptor, the acceptor 

will emit a photon at a lower wavelength than those emitted by the donor. The 

efficiency of this energy transfer is strongly dependent on the distance between the 

donor and acceptor, allowing the distance between the two fluorophores to be 

determined by analysis of the emitted light (62) (Fig. 5.1). The collection of many 

photons is needed in order to accurately determine this efficiency, making high 

temporal resolution a challenge for FRET. Because of this, traditional FRET 

analysis has insufficient time resolution to detect individual TPs, but by applying a 

maximum-likelihood analysis of photon-by-photon trajectories(63), τTP could be 

deduced as the lifetime of a virtual intermediate state (Fig. 5.2B). It was measured 



67 

 

for two small proteins, a fast-folding β-structured WW domain (64) and the 

engineered helical protein α3D (65), and an upper bound was placed on τTP for the 

αβ-structured protein GB1 (64) and a DNA hairpin (66). For the WW domain, τTP 

was estimated as ~2 μs in a standard aqueous solvent, very close to the result 

obtained in atomistic simulations (67) and not far from the putative protein folding 

‘speed limit’ of ~0.1–1 μs for small proteins (68), whereas, for α3D, τTP ~13 μs (Fig. 

5.2C); the upper bound for GB1 was 10 μs, and that for the hairpin was 2.5 μs. 

Crucially, these results clustered closely in the range ~1–10 μs. In contrast, 

the folding rates of these molecules varied by as much as four orders of magnitude. 

The fact that τTP varies much less than the folding time, τf, reflects a key property 

of TPs: since by definition a molecule on a TP always receives sufficient thermal 

energy to cross the barrier, τTP is relatively insensitive to barrier height, as opposed 

to τf, which is dominated by the time a molecule must wait for an energy fluctuation 

large enough to allow barrier crossing. These concepts are captured theoretically 

by Kramers’ expression for τf (69) and Szabo’s expression for τTP (27) in the 

harmonic-barrier approximation: 
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where kBT is the thermal energy, ΔG‡ the barrier height, κb/w the stiffness of the 

energy barrier/well, and D the diffusion coefficient. These expressions show that τf 

is exponentially sensitive to ΔG‡, while τTP varies little with ΔG‡. Moreover, the 

weaker dependence of τTP on ΔG‡, makes it much more sensitive to D. 
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This sensitivity of τTP to D was exploited by Chung & Eaton to show that the 

large τTP of α3D arises from substantial internal friction, reflecting roughness in the 

energy landscape (65). By comparing τTP measurements directly to all-atom 

molecular dynamics simulations of the TPs, the mechanism underlying the internal 

friction was deduced and found to involve the formation of non-native salt bridges 

(70) (Fig. 5.2D). This mechanism was confirmed by showing that at low pH, where 

the salt bridges were disrupted by protonation, τf and τTP both decreased in roughly 

the same proportion, reflecting an increase in D from the removal of the salt bridges 

(Fig. 5.2E). Intriguingly, α3D is thus a counterexample to previous findings, that 

non-native interactions do not play key roles in folding mechanisms for small 

proteins (71). This result suggests that the folding of engineered proteins may differ 

from that of naturally evolved molecules by having rougher landscapes (72) leading 

to slower diffusion. Combining measurements and atomistic simulations of TPs as 

done here, where the timescales of both experiment and simulation overlap directly, 

provides an exciting and uniquely powerful approach for gaining mechanistic 

insight into the microscopic dynamics of folding. 
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Figure 5.1: smFRET measurements. Top: Conformational changes in single 

molecules are detected with smFRET. When the donor and acceptor are in close 

proximity (left) energy is transferred to the acceptor, resulting in excitation and 

photon emission from the acceptor and weak emission from the donor. When 

the donor and acceptor are far from each other, little energy is transferred, 

resulting in primarily donor emission. Bottom: The energy transfer efficiency is 

a function of the distance R, between the two dyes. Figure from Ha METHODS 

2001with permission. 
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5.2 Force spectroscopy measurements of transition-path times 

Two alternative approaches for determining transition-path times were 

developed by Woodside and colleagues for use with SMFS measurements. The first 

method relies only on the parameters of the free-energy landscape and hence 

involves no actual measurements of transition paths, while the second uses 

transition path measurements to calculate transition path times directly.  

 

Figure 5.2: smFRET measurements of transition-path times. (A) Schematic 

of measurement showing FRET dye pair attached to the protein α3D. (B) To 

measure the average time to cross the barrier region (top, cyan), FRET trajectories 

(middle, blue) typically have insufficient resolution because the minimum 

averaging window is too large, but analyzing photon arrival statistics (bottom) 

can identify the most likely τTP. (C) Maximum-likelihood analysis of photon 

statistics for α3D yields τTP ~13 μs. (D) All-atom simulations of α3D folding show 

non-native salt bridges play a key role in generating internal friction slowing τTP; 

the total number of salt bridges remains close to constant as native bridges (blue) 

replace non-native ones (red) along the transition paths. (E) The transition path 

time decreases when salt bridges are disfavored by lowering pH, in roughly the 

same proportion as the folding rate increases, indicating the changes arise from 

reducing the internal friction.  
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The first method uses the Szabo expression in order to determine the average 

transition path time and like the smFRET measurements, it is indirect and incapable 

of determining individual transition path times and is therefore only capable of 

measuring average transition-path times. This method requires the parameters of 

the free energy landscape, the kinetic rates, and the diffusion coefficient. These 

values can be found either by using constant force trajectories to reconstruct the full 

landscape via inverse Boltzmann transforms, then using Kramers’ theory to find 

the kinetic rates and diffusion coefficient, or by measuring FECs and using the 

theory of Dudko et al.(73) to obtain the landscape parameters and rates, then using 

Kramers’ theory to find the diffusion coefficient. Woodside and colleagues applied 

this landscape-based method to determine the average transition path time for DNA 

hairpins of varied size and sequence (42), the prion protein PRP (16), and various 

RNA pseudoknots (42). The measured average transition path times varied between 

the different molecules, ranging from a few microseconds to tens of microseconds.  

The second method exploits SMFS ability to measure and visualize 

individual transition-path trajectories. Measuring transition paths as described in 

chapter 4, individual transition path times were taken directly from the trajectories 

by measuring the time required for each individual TP to completely transit from 

the unfolded to folded state or vice versa. This approach was used to observe TPs 

in both DNA hairpin folding (43, 44) and prion protein misfolding (44, 74). These 

measurements revealed a very broad distribution of TP times, p(tTP), reflecting 

statistically independent and highly variable but time-reversal symmetric behavior 

in each transition as the barrier was crossed diffusively (Fig. 5.3). Values for τTP, 



72 

 

calculated from p(tTP), matched those predicted from the energy landscape 

reconstruction method (12, 75). Interestingly, τTP was orders of magnitude larger 

for prion protein misfolding—500 μs—than for native folding—2 μs, as estimated 

from Eq. 5.1 (16)—implying that misfolding landscapes are much rougher, 

possibly because evolution selects for efficient native folding but not misfolding.  

Having p(tTP) allowed for the comparison of the observed distribution to that 

expected for transit over harmonic barriers in the high-barrier limit in the Kramers 

regime, where p(tTP) is expected to take the form(76): 

 
)sinh(2)2/sinh(

)2/coth(exp

1
)(

‡

‡

‡

TP

TPKTPK

TPKK

tt

tG

Gerf

G
tp







 




    (5.2) 

where ωK = βDκb is the decay constant of the exponential tail. This long-time 

exponential tail can itself be approximated by  

)exp(2)( ‡

TP TPKK tGtp          (5.3) 

The observed distribution was found to follow the same functional form of 

the equations above and fitting the observed distribution (Fig.5.3) to the above two 

equations yielded a value of ωK = 6 ± 3 × 104 s-1, corresponding to a diffusion 

coefficient D = 2 ± 1 × 105 nm2/s, close to the values calculated from Kramers’ 

theory and the Szabo expression. The value of the barrier height taken from the fits 

was perplexing as it was found to be ΔG‡ ~ 0.4 kBT, much lower than the value 

measured from landscape reconstructions of the same hairpin.  

In the same study, Woodside and colleagues also measured p(tTP) for the 

prion protein PRP (Fig. 5.3C). After fitting the distribution they again found that 

while the diffusion coefficient matched what was found via Kramers’ theory, the 
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barrier height implied by the fits was much too low. This discrepancy has been 

attributed to various effects, including the role of entropy in the barrier (77), the 

dependence of TPs on a different type of barrier than rates (78), anomalous 

diffusion at short time scales (79), and memory effects in the dynamics (80) and/or 

non-thermal noise (81). Regardless of the true underlying cause for the discrepancy, 

this study demonstrated the ability of SMFS transition path measurements to probe 

folding reactions with unprecedented detail. 
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5.3 Transition paths in protein-protein complexes 

Although most TP measurements have focused on unimolecular folding 

reactions, recent work has extended the methods described above to study coupled 

binding and folding—where two molecules bind and then reconfigure to form the 

final folded structure—and characterize the resulting encounter complex. 

 

Figure 5.3: SMFS measurements of transition-path times. (A) Distribution 

of transition-path times measured for the DNA hairpin 30R50/T4. The 

distribution is the same for folding (green) and unfolding (black) The full 

distribution is well fit by Eq. 5.2 and the exponential tail is well fit by Eq.5.3 (B) 

An unfolding transition (left) and a refolding transition (right) measured for the 

prion protein PRP. The transition path time is measured as the time required to 

cross from x1 to x2 (cyan) (C) Distribution of transition-path times measured for 

the prion protein PRP. The full distribution and the exponential tail are well fit 

by equations _ and _ respectively. Adapted from Neupane et al Science 2016 

with permission. 

A

B C
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Sturzenegger et al. (82) used smFRET (Fig. 5.4A) to examine the association of 

two intrinsically disordered proteins (IDPs) that form stable folded dimers upon 

binding, applying maximum-likelihood analysis to discern a transition intermediate 

wherein the proteins were bound but not yet folded. They found that this complex 

was much longer-lived than the transition paths observed in unimolecular folding, 

with τTP ~ 80 μs, allowing the most likely duration of individual TPs to be estimated 

from the FRET signal (Fig 5.4B). Ruling out internal friction effects as the origin 

of the large τTP, p(tTP) was found to be most consistent with local barriers around a 

high-energy intermediate (Fig. 5.4C), where encounter-complex formation was 

driven electrostatically but subsequent folding dominated by hydrophobic effects. 

In a similar study, Kim et al. (83) also used photon-by-photon analysis to compare 

the lifetime of encounter complexes for two sets of IDPs. The first set, TAD, and 

NCBD require binding in order to fold while the second set, barnase, and barstar, 

are folded independent of binding. The measured lifetime of the encounter complex 

for TAD/NCBD was found to be at least two orders of magnitude longer than that 

of barnase/barstar. The results suggest that the encounter complex is stabilized by 

non-native interactions which are far less prevalent in the already folded 

barnase/barstar complex. These works highlight the potential to extend TP 

measurements to illuminate the microscopic dynamics of the many multi-protein 

complexes that play essential roles in biological processes. 
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Figure 5.4: Measuring TPs in an encounter complex. (A) Measurement 

schematic showing FRET dye labels attached to two disordered proteins that 

bind and then fold. (B) Analysis of photon arrival statistics treating TP as a 

virtual intermediate (top, inset) reveals most likely TP times for each transition 

(top, orange), overall average τTP = 80 μs (top, black), and distribution of TP 

time and FRET value likelihoods (bottom). (C) The long TP times arises from a 

high-energy intermediate with salt-dependent barriers rather than high internal 

friction. 
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Chapter 6 

Transition-path velocities 

In this chapter, we move beyond measurements of the transition-path time 

and begin to probe the local properties of transition paths. Specifically, we measure 

the local velocity along transition paths in DNA hairpin folding, finding that the 

distribution of velocities agrees well with diffusive theories, yielding the diffusion 

coefficient. We use the average velocity to calculate the transmission factor in 

transition-state theory (TST), finding observed rates that are ~105-fold slower than 

predicted by TST. This work quantifies the importance of barrier recrossing events 

and highlights the effectiveness of the diffusive model of folding 

The material in this chapter was originally published as two separate 

manuscripts. Sections 6.1- 6.4 were published as K. Neupane, N.Q. Hoffer, M.T. 

Woodside “Measuring the velocity along transition paths during the folding of 

single biological molecules.” Phys. Rev. Lett., 121:018102 (2018). This paper was 

chosen as an “editor’s suggestion” by the editors of Phys. Rev. Lett. For this paper 

KN and NQH took the data, NQH performed the analysis, and KN, NQH, and 

MTW wrote the paper. Sections 6.5- 6.7 were published as K. Neupane, N.Q. 

Hoffer, M.T. Woodside “Testing Kinetic Identities Involving Transition-Path 

Properties using Single-Molecule Folding Trajectories.” J. Phys. Chem. B, 

122:11095-11099 (2018). For this paper KN and NQH took the data, NQH and KN 

performed the analysis, and KN, NQH, and MTW wrote the paper. 

6.1 Transition-path velocity measurements  

The transition path studies discussed so far have focused primarily on the 
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time required for the transition to take place: the average transition-path time was 

measured for both proteins (16, 64, 65, 70, 74) and nucleic acids (42, 84) using 

advanced single-molecule fluorescence and force spectroscopy methods, and the 

variations in time for individual transition-path crossings was measured in proteins 

and nucleic acids with force spectroscopy (43, 44). In many ways, however, the 

local velocity along the transition paths is more interesting than global properties 

like the transit time. The velocity reflects the dynamics within the crucial transition 

states, a feature of folding reactions that had not been possible to observe 

previously. This chapter focuses on the first measurements of transition-path 

velocities, studying the folding of DNA hairpins as a model system for ‘two-state’ 

folding. Properties of the local velocity along the transition paths are characterized 

and related to the physical picture of folding as a diffusive search over an energy 

landscape (5, 29).  

Single DNA hairpins having different sequences and energy landscapes 

(specifically, hairpins 20R0/T4, 20R25/T4, 20R55/T4, 20R100/T4, 30R50/T4, and 

20TS06/T4 from Appendix A) were attached to beads held in high-resolution 

optical traps via kilobase-long linkers of double-stranded DNA (Fig. 6.1(a), upper 

inset) as described previously. Hairpins were held under tension near F½, the force 

at which the folded and unfolded states were equally occupied, at constant trap 

separation. The end-to-end extension of the molecule was measured as the hairpin 

fluctuated in equilibrium between folded and unfolded (Fig. 6.1(a)), yielding a total 

of ~8,500–46,000 transitions for each hairpin. High trap stiffness (0.75–1.1 pN/nm 

in one trap, 0.56–0.63 pN/nm in the other) was maintained to maximize the time 
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resolution of the measurement; under these conditions, the time resolution of the 

measurement was 6–9 μs, and the kinetic artifacts from beads and handles were 

small (57, 60). Transition paths were identified from the extension trajectories (Fig. 

6.1(b)) as those parts of the trajectory passing between two boundaries (x1 and x2) 

demarking the barrier region. In order to capture as much of the dynamics between 

the folded (F) and unfolded (U) states as possible, the barrier region was defined as 

the middle 2/3 of the distance traversed between F and U. We found the velocity of 

the transition paths, v(t), from the local slope of the trajectory, x(t). To reduce the 

effects of random measurement noise, the trajectories (Fig 6.1(b), black) were first 

smoothed with a smoothing spline interpolation (Fig. 6.1(b), red) before numerical 

differentiation (Fig. 6.1(b), upper inset). The velocity at each position along the 

reaction coordinate, v(x), was then found directly by combining v(t) and x(t), taking 

the average value at any extension where re-crossing events occurred. 

The velocity showed distinct local variations as the molecule crossed the 

barrier region, reflecting complex dynamics within the transition states. In some 

transitions, the motion was fast across the whole barrier (Fig 6.1(c), left), but in 

others, the fast motions were interrupted by periods of slower motion (Fig 6.1(b)) 

and even transient reversals in the direction of motion (Fig 6.1(c), center and right). 

Episodes of fast, slow, and reversed motion were distributed roughly randomly 

along the transition path from one transition to the next. Indeed, the distribution of 

velocity as a function of position within the barrier region measured from all 

transitions for each hairpin (Figs. 6.2(a) and 6.3(a)) showed velocities ranging from 

roughly –0.5 to 1.5 mm/s at all positions. The overall distribution of velocities 
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(Figs. 6.2(b) and 6.3(b)) was close to Gaussian in all cases but slightly skewed; for 

each hairpin, negative velocities indicating reversed motion were observed at every 

position within the barrier region, providing direct evidence of barrier re-crossing 

events as expected for a diffusive process. Finding the average velocity profile 

along the transition paths from the mean of the distribution at each position in the 

barrier region, the result was the same for both folding (Figs. 6.2(c), black) and 

unfolding (Figs. 6.2(c), red) transitions, as expected from the time-reversal 

symmetry of the process. The velocity profiles varied by ~10–40% across the 

barrier region and were noticeably different for different hairpin sequences. 
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Fig 6.1: Measuring transition path velocity with optical tweezers. (a) The 

end-to-end extension of the hairpin held under tension fluctuates between the 

folded and unfolded states (dashed lines). Upper inset: Cartoon of measurement. 

A hairpin attached to DNA handles is held between two beads trapped by laser 

beams. Right inset: Probability distribution of hairpin extension. (b) Zooming in 

on a single unfolding transition, the transition path is seen as that part of the 

trajectory crossing between the boundaries defining the barrier region (dotted 

lines). Inset: The velocity along the transition path is found by differentiating the 

smoothed transition path. (c) Selected unfolding transitions and corresponding 

velocity profiles showing a wide range of velocities. The trajectory sometimes 

reverses course along the transition path, reflecting barrier re-crossing. 
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Fig 6.2: (color online): Transition-path velocity distributions. (a) The 

probability density for the velocity as a function of position within the barrier 

region for the hairpin 30R50T4. Inset: sequence of the hairpin 30R50T. (b) The 

distribution of velocities measured at all positions in the barrier region for the 

hairpin 30R50T4 is close to Gaussian. Inset: Fitting the distribution of velocities 

observed at the barrier peak to a Gaussian yields D. (c) The average velocity 

profile within the barrier region is the same for folding (black) as for unfolding 

(red) but generally non-uniform. Cyan: barrier region boundaries (x1, x2). Blue: 

position of barrier peak (‡). Insets: hairpin sequences. Error bars represent 

standard error of the mean. 
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Figure 6.3: Transition-path velocity distributions. (a) Probability density 

for the velocity as a function of position within the barrier region for different 

hairpins. Inset: hairpin sequences. (b) The distribution of velocities observed 

at all positions in the barrier region is close to Gaussian for each hairpin. (c) 

Fitting the distribution of velocities observed at the barrier peak to a Gaussian 

yields D. 
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6.2 Diffusion coefficients from transition path velocities  

The diffusion coefficient D, is the crucial parameter that relates the kinetics 

of the folding to the thermodynamics of the energy landscape, reflecting the 

microscopic motions made by the molecule in its conformational search (29) and 

the ‘internal friction’ that gives rise to speed limits in folding (68). It is difficult to 

measure D using traditional approaches based on analysis of rates via Kramers’ 

theory because of its exponential sensitivity to errors in barrier energies (16, 42, 

85), but transition-path measurements provide a more sensitive and robust way to 

probe it (43, 56, 65). Theoretical work has shown that a 1D harmonic barrier will 

produce a Gaussian distribution of velocities at the barrier peak with average 

velocity 

v(x‡)  1.5D(βκb)
½,  (6.1) 

where β is the inverse thermal energy and κb the barrier stiffness (23). The barrier-

peak location for each hairpin (Figs. 6.2(c), ‡ symbol) was taken as the average of 

the results found previously from the force-dependence of the rates (58, 75) and 

from energy-landscape reconstructions using committor analysis of the extension 

trajectories (43, 86). 

The velocity distribution at the barrier peak was indeed reasonably well fit by 

a Gaussian for each hairpin (Figs. 6.2(b), inset, and 6.3(c)). Calculating D from 

v(x‡) via Eq. 6.1, we found good agreement with values for D obtained previously 

in independent ways: from the average transition path time (τTP), from the 

exponential decay of the individual transit-time distribution (43, 44), and from the 

folding rates via Kramers’ theory (42) (Table 6.1). The trend of increasing D with 
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increasing G:C content found in previous studies (43) was also recapitulated in the 

results from v(x‡), enhancing confidence that the velocity measurements are 

reliable.  

 

6.3 Deviations from 1D harmonic theories  

The quantitative consistency of the obtained values of D from four 

independent physical properties of the folding, each of which assumes a single 

dominant harmonic barrier and constant diffusivity, shows that these assumptions 

are reasonable, at least for DNA hairpins. They are not ideal, however, as suggested 

by the slight skew in the velocity distributions at x‡ (skew ~0.6–1.6). Indeed, 

Brownian-dynamics simulations of transition path trajectories (Fig 6.4) show that 

anharmonicity, position-dependence of D, and the presence of multiple types of 

transition paths can all generate skew in the velocity distribution (Fig 6.4). The 

DNA Hairpin 

v(‡)

(×102 

μm/s) 

D from 

v(‡) (× 

105 nm2/s) 

D from τtp     

(× 105 

nm2/s) 

D from 

PTP(t) (× 

105 nm2/s) 

D from 

rates (× 

105 nm2/s) 

30R50/T4 2.0 ± 0.3 2.5 ± 0.4 3.5 ± 0.3 1.8 ± 0.2 4.6 ± 0.5 

20R100/T4 2.4 ± 0.2 3.1 ± 0.4 4.1 ± 0.3 2.2 ± 0.2 - 

20R55/T4 2.0 ± 0.2 2.6 ± 0.5 3.6 ± 0.3 1.5 ± 0.2 - 

20TS06/T4 2.5 ± 0.2 2.6 ± 0.7 3.1 ± 0.3 1.6 ± 0.2 5 ± 3 

20R25/T4 2.0 ± 0.2 2.6 ± 0.5 2.6 ± 0.3 1.3 ± 0.2 - 

20R0/T4 1.7 ± 0.3 2.2 ± 0.3 2.5 ± 0.2 1.0 ± 0.2 - 

 

Table 6.1: Comparison of D from v(x‡), transition times, τTP, and rates. 

Results based on average transition time (τtp) and distribution of transition times 

(PTP(t)) are from Ref. 54 and Ref. 71 . Results based on rates are from Ref. 70. 

Errors represent standard error on the mean. 
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observed skew likely reflects contributions from each of these effects, since the 

barriers are not strictly harmonic, D should vary at least somewhat with position 

(89, 90), and 1D descriptions of hairpin folding are incomplete (91) even if they 

work reasonably well (15). 

The average velocity profile, v(x), shows even more substantial deviations 

from the theoretical expectations. For transition paths with a 1D harmonic barrier, 

v(x) is expected to have a minimum at the top of the barrier (92). In most cases, 

however, the velocity is not near a minimum at the barrier top (Fig. 6.2(c)). This 

disagreement could arise from anharmonicity in the barrier, reflecting the 

sensitivity of v(x) to the barrier shape as found previously in simulations (23), 

since energy-landscape reconstructions show that the barriers are not completely 

harmonic (43, 75). Another possibility is that D is not constant (as assumed in the 

theory) but rather depends on the position, as may arise from the projection of the 

full multi-dimensional landscape onto a 1D reaction coordinate (89); a modest 

position dependence is also expected from the sequence-dependence of diffusion 

in DNA duplexes (88). The likely influence on v(x) of the position-dependence of 

D can be deduced by comparing the experimental velocity profiles to those obtained 

from Brownian dynamics simulations of transitions over the energy landscapes 

measured for each of the hairpins made under the assumption of a constant D. 

Although v(x) from the simulations (Fig 6.5) recapitulates some of the qualitative 

features observed experimentally (Fig 6.2c), the details of the spatial variations 

differ, suggesting that at least some of the variations come from position-

dependence of D. 
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Fig 6.4: Simulated transition-path velocity distributions. The factors 

contributing to skew in the transition-path velocity distribution were explored using 

Brownian dynamics simulations. (a) Simulations of transitions over a harmonic 

barrier (inset) with constant D yield a Gaussian distribution with skew ~0, as 

expected. (b) Simulations using an anharmonic Eckart barrier (inset) with constant 

D yield a skewed distribution (here, skew ~0.4). (c) Simulations using the barrier 

measured for hairpin 30R50/T4 (inset) with constant D yield a slight skew (~0.2). 

(d) Simulations using a harmonic barrier as in (a) but with a sigmoidal D(x) (inset) 

yield skew (here, ~0.3). (e) Simulations including two types of transition paths 

having harmonic barriers of the same height (inset) but D differing by a factor of 5 

yield skew (here, ~1); the faster transition path was occupied 1/6th of the time. 

 

Fig 6.5: Effects of smoothing on transition-path velocity distributions. 

Velocity distributions resulting from data smoothed by different amounts (a) 

The data is smoothed at half of the optimal amount. (b) The data is optimally 

smoothed. (c) The data is smoothed at double the optimal amount. The 

distribution of velocities is Gaussian in all cases. The width of the distribution 

decreases as the smoothing factor increases.  
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6.4 Comparing transition-state theory to Kramers’ reaction rate theory  

An intriguing aspect of transition-path velocities is that they illuminate the 

role of barrier re-crossing events in folding reactions, by showing how re-crossing 

alters the observed rates and velocities from what would be expected if instead 

classical transition-state theory (TST), which neglects re-crossing, held true. In 

TST, the microscopic velocity is the thermal velocity of the molecule, vth = 

(2kBT/πm)½, where m is the mass. If barrier re-crossing does not occur, then the rate 

should be related to the velocity across the barrier by 

 

Fig 6.6: Simulated velocity profiles. The average transition-path velocity 

profiles expected from the experimentally measured energy landscapes under the 

assumption of constant D were determined from Brownian dynamics simulations 

for hairpins (a) 30R50/T4, (b) 20R100/T4, (c) 20R55T/4, (d) 20TS06/T4, (e) 

20R25/T4, and (f) 20R0/T4. The simulated profiles share some qualitatively 

similar features with the observed velocity profiles (Fig 6.2) while differing in 

detail, suggesting that the observed profiles reflect position-dependence in D. 

Error bars represent standard error of the mean. 
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kU/F
TST = P(x‡)vth/2PF/U,  (6.2) 

where kU/F
TST is the transition-state theory rate for unfolding/refolding, P(x‡) the 

Boltzmann-weighted equilibrium occupancy at the barrier peak, and PF/U is the 

fractional occupancy of the folded/unfolded state(19, 93). If barrier re-crossing 

does not occur frequently, then the observed rates (kU/F) should be similar to kU/F
TST. 

However, if re-crossing events are significant then one would expect k ≪ kTST; the 

transmission factor κ = k/kTST quantifies the importance of re-crossing as the factor 

by which the rates are depressed compared to TST. The transmission factor can 

also be determined from the velocity, using relations between the observed velocity, 

the probability distribution along the transition paths, and the committor probability 

(94): 

κ = v(x‡)/2vth.  (6.3) 

We evaluated κ from both the rates and the velocities. First, the rates kF/U were 

determined from single-exponential fits (Fig 6.6) to the distributions of 

unfolded/folded-state lifetimes, as measured directly from the extension trajectories 

by partitioning the trajectories into the two states via thresholding (58), PF/U was 

found from the fraction of time spent in each state, and P(x‡) was evaluated from 

the free-energy landscape via P(x‡) = Aexp(−∆G‡/kBT), where A is the 

normalization constant ensuring P(x)dx = 1. The thermal velocity was calculated 

by estimating m as the mass of the part of the hairpin remaining unfolded when the 

barrier was crossed at x‡. The TST rates implied by Eq. 6.2 were found to be much 

higher than the rate observed directly in the extension trajectories for every hairpin, 

by a factor of roughly 100,000-fold, yielding κ ~ 10−5 (Table 6.2). The values for κ 
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obtained independently from the velocities via Eq. 6.3 were in excellent agreement 

with those found from the rates (Table 6.2). 

These results indicate that barrier re-crossing plays a central role in folding 

transitions, reducing rates by ~5 orders of magnitude. Classical transition-state 

theory thus does not provide a good description of folding, and using it to estimate 

kinetic pre-factors or activation energies as sometimes done (95) will lead to 

substantial overvaluation. Instead, diffusive theories like Kramers’ approach are 

more appropriate. In fact, κ can be evaluated directly from Kramers’ theory as κ = 

(mκb)
½D/kBT (85). Using the average values of D from Table 6.1, we obtained very 

similar values for κ as found from the rates and velocities (Table 6.2). Although it 

has previously been shown that Kramers’ theory accounts well for the observed 

kinetics in both simulations (21, 89, 96) and experiments (16, 97, 98), the 

transmission factor reflecting the influence of barrier re-crossing had not previously 

been measured.  

DNA Hairpin 
κ from rates 

(×10−6) 

κ from velocities 

(×10−6) 

κ from Kramers’ 

theory (×10−6) 

30R50/T4 10 ± 4 10 ± 2 11 ± 2 

20R100/T4 10 ± 1 9 ± 2 9 ± 1 

20R55/T4 7 ± 1 7 ± 2 7 ± 2 

20TS06/T4 4.4 ± 0.4 7 ± 3 7 ± 2 

20R25/T4 5.4 ± 0.5 7 ± 2 7 ± 2 

20R0/T4 0.9 ± 0.2 6 ± 2 5 ± 1 

 

Table 6.2: Comparison of κ from rates, velocities, and Kramers’ theory. 

Errors represent standard deviation. 
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6.5 Transition path velocity and position probability distribution 

The difficulty in measuring transition paths has led to a situation where many 

theories of transition paths have remained untested experimentally. One such 

relationship that has been proposed is that the average velocity profile along the 

transition paths should be inversely proportional to the position probability 

distribution within them: 

P(x|TP) = [v(x)τtp]
−1,  (6.4) 

where P(x|TP) is the probability density for being at a value x of the reaction 

 

Fig 6.7: Rate measurements. Folding rates were determined from single-

exponential fits (red) to the distribution of unfolded-state lifetimes (black) 

measured directly from extension trajectories. Representative examples are 

shown for hairpins (a) 30R50/T4, (b) 20R100/T4, (c) 20R55T/4, (d) 

20TS06/T4, (e) 20R25/T4, and (f) 20R0/T4. The same analysis applied to 

folded-state lifetimes yielded the unfolding rates. 
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coordinate when on a transition path, v(x) is the average velocity at x along the 

transition path and τtp is the average transition-path time (23). This relation arises 

from a simple physical intuition: considering a single transition, the time needed to 

move from x to x + dx is just dx/v(x), hence the fraction of the transition-path time 

spent in this reaction-coordinate interval is just dt/ttp = dx/[v(x)ttp], where ttp is the 

time to complete that particular transition path. Since this relation is true for each 

transition, the analogous expression holds for the average over all transition paths, 

and hence the probability for being between x and x + dx is P(x|TP)dx = 

dx/[v(x)τtp]. 

Already having found v(x) for several DNA hairpins, testing this 

relationship only required us to calculate the position probability distributions. The 

distributions were obtained by isolating the transition paths from the rest of the 

trajectory and calculating the extension probability distribution at each point of the 

reaction coordinate within the barrier region. We then calculated P(x|TP) (Fig 6.7, 

grey), finding that the different hairpins had somewhat different transition-path 

occupancies: for hairpin 20R0/T4 it was effectively flat across the barrier region, 

whereas for the other hairpins it was lowest near the top of the barrier (indicated by 

the ‡ symbol). Despite these differences, when comparing P(x|TP) to [v(x)τtp]
−1 

(Fig 6.7, black), we found good agreement for all hairpins, validating Eq. 6.4. 

Although this relationship is seemingly quite simple, it should be noted that 

the agreement between the velocity calculated from the smoothed trajectories and 

the probability distribution measured directly from the original data indicates that 

the smoothing procedure is not introducing artifacts into the transition-path shape: 
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the average velocity profile is the same as what would be expected based on the 

local occupancy statistics. More interestingly, however, this work shows that 

measurements of the transition-path occupancy are sufficient to determine the 

average velocity profile across the transition paths, since these two quantities are 

inversely proportional. P(x|TP) thus offers an alternative route to measuring v(x) 

directly, one that is less stringent technically: it could in principle be used if the 

trajectories are too noisy to obtain v(x) via differentiation, or even if it is not 

possible to sample the transition paths sufficiently finely to define their shapes 

adequately (e.g., owing to sampling-rate limitations). Of course, P(x|TP) is more 

limited than direct measurement of velocities, as it yields only the average velocity 

profile. If the folding is dominated by a single type of transition path, this approach 

may be sufficient to characterize the transition behavior, but if multiple, distinct 

types of transition paths are present, then it may provide a misleading picture 

because it reflects the average behavior. 
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6.6 Calculating the committor from transition-path velocities 

An intriguing consequence of Eq. 6.4 is that v(x) can be used to evaluate the 

committor probability, pfold(x), given by  









2

1

a

1

1

fold x

x

βG(x')

x

x

βG(x')

dx'eD(x')

dx'eD(x')
(x)p ,        

 (6.5) 

through the relationship of the latter to P(x|TP). By Bayes’ theorem, 

P(x|TP) = P(x)p(TP|x)/p(TP), where p(TP|x) is the conditional probability of being 

on a transition path at extension x and P(x) is the equilibrium extension probability. 

Given that we also have p(TP|x) = 2pfold(x)[1 − pfold(x)] for ideal diffusion (99), we 

 

Fig 6.8: Test of relation between transition-path velocity and occupancy. 

The average transition path occupancy (grey) agreed well with the expectation 

from the transition-path velocity (black) via Eq 7.4 for all hairpins. The location 

of the barrier top is indicated for each hairpin by the double dagger. Insets: 

hairpin sequences. Error bars represent s.e.m. 
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obtain: 

pfold(x)[1 − pfold(x)] = N/[2Tv(x)P(x)],  (6.6) 

where N is the number of transitions observed in the trajectory and T is the total 

trajectory duration. We verified this relation using transition-path measurements of 

hairpin 30R50/T4. Calculating pfold from the average transition-path velocity via 

Eq. 6.6 (Fig 6.8, red), we compared the result to the pfold calculated directly from 

the extension trajectories using the definition of pfold as done in previous studies 

(86) (Fig 6.8, black). The agreement was very good within error. We note that the 

relation between the committor and p(TP|x) underlying Eq. 6.6 assumes folding is 

a diffusive process but Eq.6.4 does not, hence this validation of Eq. 6.6 underlines 

the consistency of the diffusive model of folding with the identities being tested. 

 

6.7 Discussion of transition-path velocity results 

 

Fig 6.9: Comparison of empirical pfold and pfold calculated from transition-

path velocity. The committor determined empirically from the full extension 

trajectories (black, error bars represent s.e.m.) matches the result for pfold 

obtained from transition-path velocities via Eq. 6.6 (red, error bars represent 

standard error from bootstrapping analysis). 
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This study of the velocity in transition paths highlights how well the diffusive 

model of folding reactions works to describe and predict folding phenomena. 

Remarkable quantitative consistency is seen across a wide range of experimental 

observables at various scales. Analyzing different kinetic properties of folding, for 

example, leads to consistent values for the diffusion coefficient whether looking at 

rates, the much-smaller transition times(43, 44), or the speed of motion along the 

transition paths. The statistics of transition-path occupancy also quantitatively 

match what is expected for diffusive motions over the energy landscape (14, 15), 

whether reconstructed under equilibrium or non-equilibrium conditions (75, 86, 

100). This consistency across numerous observables and many different types of 

measurement gives strong confidence in the quantitative validity of the diffusive 

picture of folding.  
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Chapter 7 

Transition path properties in the limit of small barriers 

A great deal of theory has been developed for transition paths in the limit of 

large harmonic barriers. While these approximations have been relatively 

successful at predicting transition path behavior, they are only applicable to 

molecules that have large harmonic barriers and are of little use to the many 

molecules with small or nonexistent barriers. This chapter addresses the need for 

establishing theory in the limit of small and or anharmonic barriers and establishes 

criteria for when to apply either the large or small barrier approximations. 

 The material presented in this chapter was originally published as A.G.T. 

Pyo, N.Q. Hoffer, K. Neupane, M.T. Woodside, Transition-path properties for 

folding reactions in the limit of small barriers. For this paper AGTP developed the 

theory, NH and KN took the data, AGTP performed the analysis, AGTP and MTW 

wrote the paper. 

7.1 Large barrier approximations 

Experimental studies of transition paths have made use of a few central results 

from theoretical work on transition paths obtained under the assumption of a large, 

harmonic barrier. Initial work(42, 64) measuring the average transition-path time, 

τTP, for example, made use of an expression for τTP valid for harmonic barriers in 

the large-barrier limit:(27, 76) 

 

 
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,        (7.1) 

where 𝛾 is the Euler-Mascheroni constant, β = 1/kBT is the reciprocal of the thermal 
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energy, ΔG‡ is the barrier height, D is the diffusion coefficient, and κb is the 

curvature of the barrier. An expression for the distribution of transition times, 

PTP(t), was also derived in the same limit(76, 101) and used to fit the distribution 

of times observed experimentally for individual transition paths in proteins and 

nucleic acids:(43, 44) 
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where ωK = βDκb is the inverse of the relaxation time. More recently, theoretical 

investigations into the shape of transition paths(23, 24, 26) led to an expression for 

the average velocity along a transition path in the limit of a large harmonic 

barrier:(23) 

 vTP(x) ≈ v(x‡)[1 + (xωK/v(x‡))2]½, with v(x‡) = 2(e−γDωK)−1/2, (7.3) 

where x‡ is the location of the top of the barrier. Eq. 7.3 was used to analyze recent 

measurements of the average velocity on transition paths in DNA hairpins. (102) 

7.2 The need for small barrier approximations 

These theoretical descriptions of transition-path properties in the limit of 

large harmonic barriers have generally described the experimental data quite well. 

Using them to deduce the value of D for various molecules, for example, returned 

results that were broadly self-consistent and similar to the values obtained from 

analysis of kinetic rates using Kramers’ theory(42–44, 74, 102), which also 

assumes a harmonic barrier. (18) However, high-resolution measurements of the 

shape of the energy barrier(43, 75, 86) reveal that although approximating the 

barriers as harmonic is reasonable, anharmonicity is usually present to some degree. 
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Indeed, small but systematic differences between the estimate of D obtained from 

equations (6.1), (6.2), and (6.3) were attributed in part to barrier anharmonicity. 

(43, 102) Furthermore, many molecules have barriers that are small or even non-

existent,(103) for which equations (6.1)–(6.3) would not be applicable. These 

considerations motivated work to find expressions for the transition-path times and 

velocities that are both simple enough to use for analyzing experimental data and 

valid under more general barrier conditions. 

Berezhkovskii and Makarov(94) derived expressions for the average time and 

velocity as a function of position along the transition path without assuming large 

harmonic barriers. Here we extend this previous work, obtaining expressions that 

can be used in the limit of small harmonic barriers. We compare the effectiveness 

of the approximations (high- and low-barrier limits) and exact theory when applied 

to simulated folding trajectories over harmonic and anharmonic barriers with a 

range of heights, finding that the cross-over to the low-barrier regime occurs at 

barrier heights of ~ 4 kBT. Finally, we apply the theory to experimental data that 

was previously analyzed with Eqs. (7.1) and (7.3), re-evaluating the diffusion 

coefficient extracted from the data to quantify the error in the estimate of D 

introduced by approximating the barriers as large and harmonic. 

7.3 Derivation of the small barrier limit equations 

We first re-derive the general expressions for vTP(x) and tTP(x) presented 

in Ref. (94) in terms of the committor function, using a slightly different approach 

that starts by assuming that folding is described by a 1D Smoluchowski equation: 
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Here x(t) is the trajectory of the reaction coordinate, ρ(x,t) is the probability density 

function, and G(x) is the free-energy landscape governing the folding. An 

advantage of this approach is that it describes the time evolution of the probability 

density, which is in principle an experimental observable. We re-express the 

reaction dynamics in terms of the committor function (also known as the splitting 

probability), ϕB(x), the probability that the molecule will reach state B as a function 

of the reaction coordinate, which is given by(104) 
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Here xA and xB define the boundaries between the barrier region and respectively 

the folded and unfolded states. Following previous work,(105) the Smoluchowski 

equation conditioned for a transition event expressed in terms of ϕB becomes 
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where ρTP(x,t) ≡ ρ(x,t|xA → xB), with an absorbing boundary at x = xB and subject 

to the initial condition    εxxδx|xx,tρ
ε




A
0

BA0 lim . Eq. 7.6 yields the time 

evolution of the probability density of the transition paths, which can be readily 

solved numerically. (106) 

The average velocity as a function of position along the transition path, 

vTP(x), is then given by 
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where J(x,t) ≡ J(x,t|xA → xB) is the probability current. Since the probability 

distribution for transition paths is given by(19) 
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we can combine Eqs. 7.6 and 7.8 with the continuity equation for particle 

conservation to solve explicitly for the time integral of J, which is just the reciprocal 

of τTP: 
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as found previously. (94) From here, we recapitulate the results from Ref. (94). In 

terms of the committor function, the velocity is given by 
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which for constant diffusivity yields D in terms of the velocity at the barrier 

top: 
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Lastly, as shown previously,(94) by integrating the reciprocal of the transition 

velocity, the average time to reach the position x along the transition path can be 

expressed as 
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In the case of constant D, the diffusion coefficient and the mean transit time are 

related by(106) 
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Given that v(x‡) and τTP are experimental observables in transition-path 

measurements(44, 102) and the energy-barrier profile can sometimes be measured 

directly, as with the single-molecule force spectroscopy methods,(12) Eqs. 7.11 and 

7.13 provide a more precise way to determine D, the fundamental parameter that 

connects the thermodynamics of the energy landscape to the dynamics of the 

folding. 

Because energy barriers in folding reactions are often approximated as 

harmonic and D is typically assumed to be constant, it is useful to re-express the 

equations above for this special case. For a parabolic potential G(x) = −½κx2, where 

κ is the curvature of the barrier and the transition region spans the range x = −L to 

L, the transition-path velocity for constant D is(94) 

 

    xL

eLD
LLxv

x



 

22TP
erferf

erf4
)|(

22






,  (7.14) 
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the barrier height). D is then given by 
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These results are valid for harmonic barriers regardless of the barrier height. 

Approximations have already been computed in the high-barrier limit,(23, 24, 26, 

76) but not yet in the low-barrier limit. For small barriers, we use the approximation 

erf2(x) ≈ 1 – exp(−π2x2/8) for small x, leading to 
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Finally, by evaluating Eq. 7.17 at x = L, the average transition-path time can be 

found: 
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We note that these results are still valid as the barrier height goes to zero. 

Taking the limit κ → 0, Eq. 7.16 for the average transition-path velocity simplifies 

to vTP(x) ≈ 2DL/(L2 – x2), consistent with the exact solution; similarly, Eq. 7.18 
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for the average transition-path time simplifies to τTP ≈ 2L2/3D, consistent with the 

expression found previously by Kim and Netz. (26) 

7.4 Application to Brownian dynamics simulations 

To test these equations and discern the practical effects of using them to 

analyze data from molecules with different barriers, we first applied them to 

analyze transition paths in Brownian dynamics simulations of motion with constant 

diffusion over parabolic barriers of varying barrier heights. We started by 

examining the average velocity profile, vTP(x), for two barrier heights: 15 kBT 

(high-barrier limit) and 3 kBT (low-barrier limit). We found that the average 

velocity calculated directly from the simulated trajectories (Fig 7.1, black) matched 

the analytical predictions from Eq. 7.14 (Fig 7.1, red) very well for both barriers. 

In contrast, although the high-barrier approximation, Eq. 7.3, matched the empirical 

result for the high-barrier case (Fig 7.1A, cyan), as expected, it systematically 

underestimated the velocity in the low-barrier case (Fig 7.1B, cyan). Likewise, the 

low-barrier approximation, Eq. 7.16, matched the empirical result well for the low-

barrier case (Fig 7.1B, blue), but systematically overestimated the velocity in the 

high-barrier case (Fig 7.1A, blue). 

We next considered the average transition-path time, τTP. Transitions were 

simulated over harmonic barriers with heights ranging from 1 to 6 kBT. The values 

for τTP obtained empirically for each barrier height from the simulated transitions 

(Fig 7.2, black) were compared to the values predicted by Eq. 6.1 in the high-barrier 

limit (Fig 7.2, cyan), to the values predicted by Eq. 7.18 in the low-barrier limit 

(Fig 7.2, blue), and to the values predicted by the exact solution, Eq. 7.12 (Fig 7.2, 
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red). Whereas the exact solution matched the empirical results very well over the 

whole range of barrier heights, the high-barrier approximation overestimated τTP 

for barriers lower than ~ 4 kBT, and the low-barrier approximation underestimated 

τTP for barriers higher than ~ 4 kBT. The cross-over between high-barrier and low-

barrier approximations was thus around 4 kBT. The under- and over-estimations 

resulting respectively from the low- and high-barrier approximations were not very 

large in the range of barrier heights studied, however, being less than 10–15%. 

Many of the experimental studies of transition paths to date have used the 

properties of transition paths to investigate the diffusion coefficient D,(43, 44, 65, 

70, 102) because transition-path properties are far less sensitive to the height of the 

energy barrier (which is difficult to measure precisely) than are other kinetic 

properties like rates.(17, 56, 65) We therefore, examined the reliability of the 

various estimates of D that can be obtained from transition paths using the formulae 

above, in the different limits. Looking first at the value of D obtained from v(x‡), 

we used simulations over harmonic barriers with heights varying from 1 to 6 kBT 

to compare the actual value of D imposed in the simulations (Fig 7.3A, black) to 

the value calculated from the exact solution via Eq. 7.15 (Fig 7.3A, red). We found 

that Eq. 7.15 returned the expected value of D over the whole range of barrier 

heights. Repeating the analysis using the low-barrier approximation (Eq. 7.16) 

yielded very similar results (Fig 7.3A, blue), indicating that this approximation is 

reasonable for barrier heights up to at least 6 kBT. However, the large-barrier 

approximation (Eq. 7.3) tended to overestimate D (Fig 6.3A, cyan), with the 

estimate worsening noticeably (albeit not dramatically) for barrier heights below 



106 

 

~3 kBT. We note that the ~6% overestimate of D from the high-barrier 

approximation persists even in the high-barrier limit. Applying the same kind of 

analysis to τTP, we found that the values of D returned by the exact solution, Eq. 

7.13 (Fig 7.3B, red), again agreed very well with the value imposed in the 

simulations over the range of barrier heights used (Fig 7.3B, black), whereas the 

high-barrier approximation (Eq. 7.1) tended to overestimate D, with the 

overestimation increasing noticeably but not dramatically for barrier heights ~4 kBT 

and below (Fig 7.3B, blue). In contrast, the low-barrier approximation (Eq. 7.18) 

tended to underestimate D somewhat for barrier heights ~5 kBT and above (Fig 

7.3B, blue). 
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Fig. 7.1: Average transition-path velocity from simulated transitions over 

harmonic barriers. (A) The average transition-path velocity vTP(x) found 

directly from simulations of transitions over a large, 15-kBT harmonic barrier 

(black) matches very well with the result predicted by the exact solution in Eq. 

7.14 (red) and the high-barrier approximation in Eq. 7.3 (cyan), but is poorly 

described by the low-barrier approximation in Eq. 7.16 (blue). (B) The average 

velocity found directly from simulations of transitions over a small, 3-kBT 

harmonic barrier (black) agrees well with the predictions of both the exact result 

(red) and the low-barrier approximation (blue), but is poorly described by the 

high-barrier approximation (cyan). 
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Fig. 7.2: Average transition-path time from simulated transitions over 

harmonic barriers. The average transition-path time determined directly 

from simulations over a harmonic barrier with height ranging from 1 to 6 kBT 

(black) agrees well with the exact solution from Eq. 7.13 (red) over the whole 

range of barrier heights. The high-barrier approximation from Eq. 7.1 (cyan) 

agrees well at barrier heights of ~5 kBT and higher, whereas the low-barrier 

approximation from Eq. 7.18 (blue) agrees well at barrier heights of ~4 kBT 

and lower. 
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7.5 Application to anharmonic barriers 

Next, we looked at the effects of relaxing the assumption that the barrier is 

harmonic by simulating transitions over two types of anharmonic barriers: one with 

a barrier that is sharper than in the harmonic case, described by G(x) = 

−ΔG‡[tanh(x/2)/tanh(L/2)]2 (Fig 7.4A, inset), where ΔG‡ is the barrier height; and 

the other with a barrier that is broader than in the harmonic case, described by G(x) 

= −ΔG‡[sinh(x/2)/sinh(L/2)]2 (Fig 7.4C, inset). In each case, ΔG‡ was varied from 

1 to 6 kBT, as for the harmonic barriers above. Considering first the sharper barrier, 

we found excellent agreement between the D values predicted from v(x‡) by Eq. 

 

Fig. 7.3: Estimates of the diffusion coefficient for simulations over 

harmonic barriers. (A) The estimate for D from the exact solution for v(x‡) 

via Eq. 7.15 (red) agrees with the value imposed in the simulation (black) 

across the whole range of barrier heights, whereas the high-barrier solution 

(cyan) systematically overestimates D, especially for barriers below ~ 4 kBT. 

(B) The estimate for D from the exact solution for τTP (red), determined from 

the simulation results by solving Eq. 7.13 for D, agrees with the value imposed 

in the simulation (black) across the whole range of barrier heights, whereas the 

high-barrier solution (cyan) overestimates D for barriers below ~5 kBT and the 

low-barrier solution (blue) underestimates D for barriers above ~4 kBT. 
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7.11 (Fig 7.4A, red) and the imposed value (Fig 7.4A, black). However, 

approximating the barrier as harmonic and using Eq. 7.3 for the high-barrier limit 

yielded values that were systematically too low (Fig 7.4A, cyan), diverging from 

the imposed value for barrier heights lower than ~5 kBT. The same held true when 

using Eq. 7.16 for the low-barrier limit—it was no better even at low barrier heights. 

The value of D recovered from τTP from the exact solution, Eq. 7.13 (Fig. 7.4B, red) 

agreed well with the imposed value (Fig 7.4B, black), but the harmonic 

approximations in the high-barrier (Fig 7.4B, cyan) and low-barrier (Fig 7.4B, blue) 

limits both yielded values that were several-fold lower for all barrier heights 

examined. Turning next to the barrier that was broader than harmonic, the value of 

D recovered from v(x‡) by Eq. 7.11 (Fig 7.4C, red) agreed well with the imposed 

value, as above, but now the approximation as a large harmonic barrier 

overestimated D by 2–3-fold (Fig 7.4C, cyan), whereas the small harmonic barrier 

approximation overestimated D by only 10–40% (Fig 7.4C, blue). Looking instead 

at D from τTP, the exact solution (Fig. 7.4D, red) recovered the imposed value (Fig 

7.4D, black), and the two harmonic barrier approximations again tended to 

overestimate D, except in the case of the large-barrier approximation at the smallest 

barrier heights, where the solution yielded an unphysical negative value (Fig 7.4D, 

cyan). 
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7.6 Application to experimental data 

The results from analysis of the simulated transitions show the kind of errors 

that can arise from approximating the barrier shape. Indeed, it was previously noted 

 

Fig 7.4: Estimates of the diffusion coefficient for anharmonic barriers. (A) 

The estimate for D from the exact solution for v(x‡) via Eq. 7.11 (red) agrees 

with the value imposed (black) in simulations of transitions over a barrier with 

higher curvature at the top than a harmonic barrier of the same width and height 

(inset) across the whole range of barrier heights, whereas the high-barrier (cyan) 

and low-barrier (blue) harmonic approximations both underestimate D for 

barriers below ~ 5–6 kBT. (B) The estimate for D from the exact solution for τTP 

via Eq. 7.13 (red) agrees with the value imposed in the simulations (black) across 

the whole range of barrier heights, whereas the high-barrier (cyan) and low-

barrier (blue) harmonic approximations both significantly underestimate D for all 

barrier heights. (C) For simulations over a barrier with lower curvature at the top 

than harmonic (inset), estimates of D from the exact solution for v(x‡) (red) 

agree with the imposed value (black), whereas the high-barrier (cyan) and low-

barrier (blue) harmonic approximations both overestimate D; the low-barrier 

approximation performs markedly better, especially for small barriers. (D) The 

estimate for D from the exact solution for τTP (red) agrees with the value imposed 

in the simulations (black) for all barrier heights, whereas the high-barrier (cyan) 

and low-barrier (blue) harmonic approximations overestimate D; at the smallest 

barriers, where the high-barrier approximation yields unphysical negative values. 
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that applying Eqs. 7.1–7.3, which assume large harmonic barriers, to transition 

paths measured for DNA hairpins using optical tweezers(43, 102) led to small but 

systematic differences between the values of D recovered from different physical 

quantities (average transition-path times, decay of the transition-time distributions, 

and barrier-top velocities). A breakdown in the assumptions underlying Eqs. 7.1–

7.3 was proposed to explain the discrepancies in the results. We therefore applied 

the formulae above to test the extent to which the assumption of a large harmonic 

barrier distorted the results of the analysis. 

We used the constant-D expressions for v(x‡) and τtp in Eqs. 7.11, 7.13, 7.15, 

and 7.18 to re-evaluate the value of D implied by the measurements of two hairpins, 

based on the shape of the energy barrier that had previously been measured for each 

hairpin.(43, 75) For hairpin 20R25/T4, which has a barrier that is close to harmonic 

but relatively small (height measured with respect to the boundaries of the barrier 

region of 2.3 kBT),(43) we found that applying Eq. 7.15 to estimate D from τTP 

yielded a new value of D = 1.9 ± 0.5 × 105 nm2/s, down from the previous 

estimate(43) using Eq. 7.1 of D = 2.6 ± 0.3 × 105 nm2/s. Applying instead Eq. 7.18 

to estimate D from v(x‡) yielded a new value of D = 2.1 ± 0.3 × 105 nm2/s, again 

reduced from the previous estimate(102) using Eq. 7.3 of D = 2.6 ± 0.5 × 105 nm2/s. 

These new estimates were both closer to the value obtained from Eq. 7.2 (D = 1.3 

± 0.2 × 105 nm2/s) than the previous estimates, reducing the variance between the 

three estimates over 3-fold compared to the previous work.(102) Note that these 

values on the order of 105 nm2/s are consistent with previous measurements and 

modeling of nucleic acid folding (42). 
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We repeated this analysis for hairpin 30R50/T4, which has a barrier that is 

roughly twice as large as the barrier for hairpin 20R25/T4 but more anharmonic. 

Applying Eq. 7.13 to estimate D from τTP led to a new value of D = 2.4 ± 0.3 × 105 

nm2/s, instead of 3.5 ± 0.3 × 105 nm2/s using Eq. 7.1,(43) whereas applying Eq. 

7.11 led to a new estimate from v(x‡) of D = 2.0 ± 0.4 × 105 nm2/s, instead of 2.5 

± 0.4 × 105 nm2/s using Eq. 7.3.(102) Again, both of these new estimates are more 

consistent with the value found from Eq. 7.2, D = 1.8 ± 0.2 × 105 nm2/s, in this case 

reducing the variance between the different estimates roughly 8-fold compared to 

what was found previously (43). For both hairpins, then, going beyond the large 

harmonic barrier approximation helped deliver improved, more consistent 

estimates of D. 

7.7 Discussion of results 

The harmonic approximation for energy barriers is almost always used to 

interpret folding data, not only in the context of transition paths as discussed here 

but also in terms of rates, such as in the celebrated expression of Kramers for 

diffusive barrier crossing.(18) The large harmonic barrier approximation has 

worked reasonably well in initial studies of transition paths in proteins and nucleic 

acids, for example yielding values of D that are consistent within factors of order 

unity with values obtained via other means like Kramers’ theory.(44, 74) However, 

as future experiments aim to increase the precision with which fundamental 

quantities like D are determined from transition-path measurements, expressions 

for key observables like vTP(x) and τTP that enable analysis to go beyond the limit 

of large harmonic barriers and incorporate the effects of small barrier heights or 
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anharmonicity must be applied. Our work shows that the general expressions for 

vTP(x) and τTP derived in Ref. (94) and the low-barrier limits derived herein can 

indeed help improve the precision of the data analysis. 

The results from analyzing the simulations indicate some of the trends that 

can be expected from using specific approximations when analyzing experimental 

data. For harmonic barriers, the large-barrier assumption generated only modest 

errors, even down to barriers as small as 1 kBT, where the actual D, for example, 

was ~20–25% smaller than estimated. Nevertheless, the small-barrier 

approximation provided distinct improvements at the lowest barrier heights. The 

presence of anharmonicity, on the other hand, led to much larger errors when 

applying the large and small harmonic barrier approximations. For barriers that 

have higher curvature at the top than harmonic barriers of the same height and width 

would have, the estimates of D are systematically lower than they should be, 

because the high curvature of the harmonic approximation implies a much higher 

barrier than is actually the case with the anharmonic barrier, and hence a faster 

velocity and shorter transit time than actually occurs. This explanation also 

accounts for the poor performance of the low-barrier approximation: even for 

nominally small barriers, the implied harmonic barrier height is still large. For 

barriers that are flatter than harmonic, on the other hand, D is overestimated by 

applying the harmonic approximation, because the actual barrier is higher than 

implied by the harmonic approximation and hence the velocity and transit time are 

faster than would be expected in the approximation. Again, this explanation also 

accounts for the improved performance of estimates using the small-barrier 
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approximation. Taken together, these results imply that estimates of D using the 

harmonic approximation are considerably more sensitive to the presence of 

anharmonicity than they are to the height of the barrier. Note that the fact that 

barrier anharmonicity has a greater effect on D than barrier height could be 

expected based on Eq. 7.1, where the transition path time has a linear dependence 

on the barrier’s curvature but a much weaker, logarithmic dependence on its height. 

From the simulation results, we can also determine the cross-over point at 

which the high-barrier approximations start to generate noticeable errors. In almost 

every case, the high-barrier approximations began to diverge from the low-barrier 

or exact results at a barrier height of 3–5 kBT, allowing the high-barrier limit to be 

defined fairly confidently as anything above this level. Previous measurements of 

transition paths have examined molecules with barrier heights close to but 

sometimes slightly below this boundary, explaining why the high-barrier 

approximation worked reasonably well but generated minor discrepancies between 

estimates of quantities like the diffusion coefficient that were obtained from 

different methods. As seen above, applying more appropriate approximations or 

exact formulas helped to resolve these discrepancies. 

The main challenge with applying the equations for τTP and vTP(x) is that 

they require detailed knowledge of the shape of the energy barrier. Energy-barrier 

shapes can in some cases be measured directly, as with the single-molecule force 

spectroscopy methods used here,(12) or else they may be estimated from 

simulations and/or modeling.(21, 107–109) Ideally, the position-dependence of the 

diffusion coefficient should also be known, since the common approximation that 
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D is constant is not generally correct.(89, 110) This position dependence can in 

some cases be deduced by combining experiments and modeling,(98) but reliable 

methods for direct measurement are exceedingly difficult to implement(111). 

Indeed, the first successful measurement of the position dependence of D is 

presented in chapter 8 of this thesis. Hence the constant-D approximation may often 

be unavoidable in practical applications. 

Although we have used nucleic acid folding to demonstrate the application of 

Eqs. 7.10–7.18, these results are, of course, equally applicable to protein folding. 

Theoretical considerations and experimental measurements(16, 28, 108, 112–114) 

both suggest that energy barriers for protein folding are generally small compared 

to the total free-energy change. In many cases, they may be close to the 3–5 kBT 

limit for assuming a large barrier, making the results presented here useful for 

obtaining better estimates of the transition-path properties. The small-barrier limit 

will be particularly relevant for studies of molecules with very small or even non-

existent barriers, such as fast-folding or downhill-folding proteins, which continue 

to be the target of considerable interest because their small barriers allow transition 

states to be populated more easily.(115)  
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Chapter 8 

Transition state dynamics 

This chapter builds on an interesting observation from the velocity 

measurements presented in chapter 6, that being the distinct pauses present in the 

velocity profiles. These pauses are predicted in the Bryngelson and Wolynes 

landscape picture and are thought to arise as the molecule encounters micro-barriers 

or micro-wells in the energy landscape. When such a barrier is encountered the 

molecule momentarily pauses until it receives sufficient thermal energy to cross the 

barrier. In this chapter we use the statistics of the pauses in order to characterize the 

micro-barriers and validate the Bryngelson and Wolynes landscape model on the 

scale of individual nucleobases.  

The material in this chapter was originally written in the manuscript “Direct 

observation of the residue-by-residue search for native structure during folding of 

a single molecule”, Noel Q. Hoffer, Krishna Neupane, and M.T. Woodside. At the 

time of writing this thesis, the manuscript remains unpublished. For this paper NQH 

and KN took the data, NQH performed the analysis, NQH and MTW wrote the 

paper. 

8.1 Pausing along transition paths  

In this study we build on the success of transition path velocity 

measurements, identifying periods of extremely slow transition path velocity, 

where the molecules are briefly paused. In these pauses, the molecule was captured 

fleetingly in a transition state, allowing individual high-energy states within the 
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barrier to be observed and studied directly. We used velocity thresholding(116) to 

identify the location and duration of pauses in over 326,000 transition paths for 

hairpin 30R50/T4. As discussed in chapter 6, the velocity profile of each path (Fig. 

8.1, upper panel, blue) was calculated from the local slope of the trajectory, after 

first applying a smoothing spline interpolation to reduce the effects of measurement 

noise (Fig. 8.1, lower panel, red), and then pauses were defined as those parts of 

the trajectory where the speed dropped below a threshold equal to 10% of the 

average transition-path velocity (Fig. 8.1, magenta). We verified that these pauses 

arose from the motions of the hairpin itself, not as artifacts from the dynamics of 

the handles and beads attached to the hairpin, by measuring reference constructs 

lacking the hairpin, which we abruptly stretched and relaxed (Fig. 8.3A) to generate 

extension changes similar to those seen during hairpin folding transitions (Fig. 

8.3B). Analyzing the ‘transitions’ in these measurements exactly as for the hairpin 

constructs, we found that ‘pauses’ were shorter and detected much more rarely (Fig. 

8.4). 

From the probability density for finding pauses of a given duration as a 

function of position within the barrier region (Fig. 8.2A), we found that although 

pauses were not detected in all transitions (an average of ~0.4 pauses per transition), 

they occurred ubiquitously across the entire barrier. The distribution of pause 

locations was the same for both folding (Fig. 8.2B, black) and unfolding (Fig. 8.2B, 

red), reflecting the microscopic reversibility of the transition paths; it showed a 

noticeable dip in the number of pauses detected in the highest-energy states near 

the top of the energy barrier (Fig. 8.2B, purple). 
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These pauses in the transition paths are especially interesting because by 

capturing the molecule briefly in small kinetic traps in the barrier region, we can 

study how the molecule moves into and out of the transition states. Pauses could 

reflect the activation energy needed to form or break base-pairs, which presumably 

generates local corrugations in the energy landscape. They might also reflect 

periods where the molecule is re-configuring in ways that leave the molecular 

extension effectively unchanged, such as through rotations of the bases or changes 

in the sugar pucker (Fig 8.5): projecting the full, multi-dimensional dynamics onto 

a one-dimensional (1D) reaction coordinate gives rise to local diffusivity changes 

and effective landscape roughness(89). To probe the motions into and out of the 

microstates captured during the pauses in greater detail, we analyzed the 

distribution of pause durations. 
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Fig 8.1: Observing pausing along transition paths. Transition-path 

trajectories (lower panel, black) showed a wide range of behavior. The velocity 

profiles of individual trajectories (upper panel, blue) were obtained by 

numerical differentiation of the spline-smoothed trajectories (lower panel, 

grey) of the extension. Pause locations and durations were identified from the 

portions of the trajectories in which the speed remained under a threshold 

(upper panel, grey) equal to 10% of the average transition speed (magenta 

bands). 
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Fig 8.2: Pausing within the transition states. (A) Probability density for 

finding pauses of a given duration at a given location within the barrier region 

for hairpin 30R50/T4. (B) The distribution of pause locations is the same for 

folding (black) and unfolding (red). Pauses occurred ubiquitously across the 

entire transition region but were least likely to occur near the barrier top (‡). 

(C) The distribution of pause durations is the same for folding (black) and 

unfolding (red), dropping sub-exponentially in each case. 

 

Fig 8.3: Measurements of reference construct. (A) Schematic of reference 

construct measurements. A construct consisting of two DNA handles without any 

hairpin was attached two beads held under tension between two traps, at the same 

force as the hairpin measurements. The traps were abruptly moved away and back 

together, causing the beads to be displaced by the same distance as observed in 

folding trajectories. (B) Extension trajectory resulting from bead motions (black) 

showing ‘transitions’ (red boxes). (C) Samples of trajectories from the reference 

construct (black) showing ‘transition paths’ (red) within the boundaries x1 and x2 

(cyan), identifying ‘pauses’ (magenta) exactly as for the hairpin folding trajectories. 
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Fig 8.4: Distribution of ‘pauses’ in reference construct trajectories. 

Comparing the absolute probability of finding ‘pauses’ of a given duration in 

the ‘transitions’ for the reference construct (blue) to the probability in samples 

with the hairpin present (black) shows that the dynamics of the handles and 

beads did not contribute significantly to the pause distribution: the ‘pauses’ in 

the absence of the hairpin were much shorter and much rarer. 

 

Fig 8.5: Microscopic motions during hairpin folding. To extend a partially 

folded helix (A), the next set of nucleotides (red box) must make several bond-

angle rotations in order to be positioned for successful pairing. Even when the 

two bases fluctuate into close proximity (B), the glycosidic bond angles may 

still be unfavorable, requiring additional bond rotations before (C) the base-pair 

is formed and the attempt to form the next base-pair begins. 
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8.3 Pause durations  

The distribution of pause durations, p(tpause), was also the same for folding 

(Fig. 8.2C, black) and unfolding (Fig. 8.2C, red), dropping sub-exponentially in 

each case. The decay of p(tpause) is clearly not single-exponential (Fig. 8.6A, cyan), 

hence the local energy fluctuations trapping the molecule cannot all have the same 

size. Indeed, at least two different micro-barrier heights should be expected, since 

each type of base-pair in the hairpin (A:T and G:C) has its own activation barrier, 

leading to at least two distinct rates for escaping the micro-wells generated by 

native base-pairing. A double-exponential decay fits p(tpause) quite well (Fig. 8.6A, 

blue), consistent with a purely 1D zippering model in which activation energies for 

base-pair formation create local kinetic traps (Fig. 8.7A). To test if this model is 

correct, we repeated the pausing analysis for measurements of hairpins containing 

only A:T base-pairs (hairpin 20R0/T4, ~146,000 transition paths) or G:C base-pairs 

(hairpin 20R100/T4, ~64,000 transition paths). For both hairpins, pausing was 

again seen throughout the barrier region (Figs. 8.6B & C, inset). However, because 

only one type of base-pair is present in these hairpins, the 1D zippering model 

would predict a single-exponential decay for p(tpause) (Fig. 8.7B). The fact that 

single-exponential fits are poor for both hairpins (Figs. 8.6B & C, blue) indicates 

that the micro-barriers inducing pauses must arise from more than just simple 1D 

zippering. 

To account for these observations, we turned to a classic microscopic theory 

of folding that models it in terms of a residue-by-residue search through both native 

and non-native conformations(29). This theory assumes a continuous range of 
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micro-well depths (ΔE) owing to energy fluctuations from both native and non-

native interactions, multiple possible conformations per residue (ν), and a constant 

transition rate between micro-conformations (R0). It predicts a log-normal 

distribution of rates for escaping micro-wells within the energy landscape: 

P(k)  exp[−(lnk – μ)2/2(βΔE)2],        (8.1) 

where k is the rate, β is the inverse thermal energy, and μ is a function of ν, R0, ΔE, 

and the number of residues. Fitting p(tpause) to Eq. 8.1, we found excellent 

agreement for all three hairpins (Fig. 8.6, red), indicating that the microscopic 

theory is consistent with all of the measurements. 

 

 

Fig 8.6: Pause durations. (A)The distribution of pause durations for hairpin 

30R50/T4 (black) was poorly fit by a single-exponential decay reflecting a single 

rate constant (cyan) but was well fit by both the double-exponential decay 

expected if pauses arise from micro-barriers associated with A:T and G:C base-

pair formation (blue) and by the log-normal distribution of rate constants 

expected from a microscopic theory of folding as a search through non-native 

states (red). (B) The pause duration distribution for hairpin 20R0/T4, containing 

only A:T base-pairs, was fit well by a log-normal distribution of rate constants 

(red) but not by a single-exponential decay (cyan). Inset: pauses occurred at the 

same locations for both folding (black) and unfolding (red). (C) Similar results 

were found for hairpin 20R100/T4, containing only G:C base-pairs. 
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8.4 Diffusion coefficients from pausing statistics 

As an additional test that this model describes the pauses well, we used the 

results of the fitting (Table 8.1) to estimate the diffusion coefficient, D. D is one of 

the key physical parameters in the energy landscape description of folding, because 

it encapsulates the speed at which the landscape is explored on the microscopic 

scale, relating the kinetics of structure formation to the thermodynamics of the 

landscape and reporting on the internal friction in the molecule(117). In terms of 

the fits to Eq. 8.1, we have(29): 

  2exp
4

2
2

E
x

D  


,        (8.2) 

where δx is the extension change associated with forming/breaking a single base-

pair (~0.9 nm at the forces used here), the minimal increment for changing the 

 

Fig 8.7: Models of microwells in the barrier region. (A) If the activation 

energy for forming and breaking base-pairs dominates the energy fluctuations in 

the barrier region, the presence of both G:C and A:T base-pairs will lead to at 

least two distinct sizes of micro-barriers (respectively red and blue) on top of the 

underlying free energy barrier (black). (B) If only a single type of base-pair is 

present, the micro-barriers from the base-pairing activation energy (red) will all 

have a similar height. (C) The microscopic model for searching through many 

non-native conformations predicts a random, Gaussian-distributed set of micro-

barriers. 
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number of native contacts. For hairpin 30R50/T4, we found D = 1×105±0.4 nm2/s, in 

good agreement with the values D ~ 2–4×105 nm2/s estimated previously from 

multiple approaches (rates(118), average transition time(44), transit-time 

distribution(44), and transition-path velocity(102)). This result also agreed well 

with the value estimated crudely from the average pause duration, tpause, via(29) 

D ~ δx2/2tpause: D = 1×105±0.3 nm2/s. Similarly reasonable agreement was found 

estimating D for hairpins 20R0/T4 and 20R100/T4 from p(tpause) by fitting to Eq. 

8.1, respectively D = 1×105±0.5 and 5×104±0.6 nm2/s, and from tpause, respectively 

D = 8×104±0.3 and 7×104±0.4 nm2/s. An intriguing aspect of this analysis is that it 

does not require any information about the shape of the free energy landscape, 

allowing us to obtain what is, to our knowledge, the first estimate of D for barrier 

crossing in a folding reaction without the need to reconstruct the energy landscape. 

 

Finally, we examined how D varies within the barrier region based on the 

position-dependence of the pausing. Despite the fact that D is known to vary with 

position along the reaction coordinate(89), it is almost universally assumed to be 

Hairpin eµ (s-1) σ (kBT) 

20R0/T4  1.3±0.4 1.1±0.2 

20R100/T4  0.5±0.4 1.1±0.2 

30R50/T4 0.7±0.3 1.0±0.1 

 

Table 8.1: Results from fitting pause-duration distributions to Eq. 8.1. The 

fitting parameters σ and µ are used in Eq. 8.2. Errors represent the standard error 

from bootstrap analysis. 
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constant when analyzing experiments, because its position dependence is difficult 

to measure. Several methods to measure D(x) from single-molecule experiments 

have been proposed, but experimental artifacts make them unreliable(111), leaving 

D(x) experimentally inaccessible. By fitting p(tpause) to Eq. 8.1 for the pauses in 

each 1-nm segment of the barrier region, we found that D(x) for hairpin 30R50/T4 

was not constant, but rather had a distinct peak near the top of the barrier, where 

the pauses were least frequent (Fig. 8.8A, black). The same pattern was seen when 

determining D(x) from tpause (Fig. 8.8A, red). Intriguingly, the diffusivity profile 

was somewhat different for each hairpin (Fig. 8.8B), being close to constant for 

20R0/T4, sharply peaked for 20R100/T4, and in between for 30R50/T4, again 

mirroring the frequency of pausing. 

 

 

Fig. 8.8: Position dependence of D. (A) Calculating D as a function of position 

along the reaction coordinate from the average pause duration at different 

positions (red) reveals that D is not constant, but rises to a peak near the middle 

of the barrier region. A similar pattern is seen from Eq. 8.2 using fits of the 

position-dependent pause durations (black). (B) D showed a different position 

dependence for the 3 hairpins studied: flat for hairpin 20R0/T4 (black), 

moderately peaked for hairpin 30R50/T4 (red), and strongly peaked for hairpin 

20R100/T4 (blue). Error bars represent standard error of the mean. 
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8.5 Discussion of transition path pausing results 

The results presented here provide powerful insight into the microscopic 

processes occurring during folding. The fact that the distributions of transition-path 

pauses are best fit by the microscopic kinetic model implies that these pauses reflect 

the requirement for each residue to search through multiple non-native 

conformations in order to find the correct structure for base-pairing. Indeed, it is 

the energy fluctuations involved in exploring these non-native conformations—

rather than the activation barriers for native base-pair formation—that appear to 

dominate the microscopic molecular motions. Crucially, such a residue-by-residue 

search for the correct conformation reveals the previously undetectable elementary 

steps underlying folding reactions. By showing that folding can be described 

consistently across all timescales, from the rapid rates for the fleeting motions 

between transition states to the vastly slower rates for the macroscopic 

folding/unfolding transitions, these results quantitatively validate the microscopic 

theory of folding. 

The symmetry in the pausing behavior for unfolding and refolding might at 

first glance be puzzling, since conceptually unfolding and refolding appear to be 

different. In folding reactions, it is intuitive to imagine how a pause might manifest, 

for example with the molecule transiently arrested in a conformation with bond 

angles that prevent base-pairing: before the next base-pair could be formed, the 

energy barrier for bond rotation would need to be crossed, involving motions 

orthogonal to the observed reaction coordinate that produce a brief pause. In 

contrast, native base-pairs are being broken during unfolding, hence naively one 
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might expect different behavior. However, even in a transition path that ultimately 

leads from folded to unfolded state, the microscopic behavior involves ubiquitous 

reversals of motion leading to re-pairing of bases(102), resulting in the microscopic 

reversibility that is both observed and expected. 

Our focus in this study on DNA hairpins was driven by the fact that their 

zippering mechanism of folding is particularly simple and straightforward to 

interpret: under applied tension, base-pairs are constrained to zip/unzip sequentially 

and produce uniform length changes. Such hairpins likely come as close as possible 

to realizing an ideal 1D system in folding, and indeed the transition-path properties 

of hairpins studied to date have all reflected close to ideal 1D behavior(14, 15, 84, 

102, 118–121). Examining the transient pauses in the transition paths, however, 

reveals the influence of motions in axes orthogonal to the zippering, reflecting the 

fundamental multidimensionality of the folding reaction. 

The sensitivity of pausing to the multidimensionality of folding likely 

accounts for its ability to reveal the position-dependence of the diffusivity, which 

is otherwise difficult to detect reliably(111). The diffusivity profiles observed here 

involve relatively modest variations in D, generally within the range ±50%, 

consistent with previous work suggesting that the variations are not large(111). The 

diffusivity profiles are also all peaked near the middle of the reaction coordinate, 

consistent with the results of simulations of more complex molecules like proteins 

when using the fraction of native contacts (equivalent to end-to-end extension here) 

as the reaction coordinate(89). Curiously, however, the amplitude of the variation 

differs for the 3 hairpins studied. These differences may reflect the effects of force, 
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since higher force is expected to make extension a better reaction coordinate(99) 

and 20R100/T4 unfolds at twice the force of 20R0/T4(122). We speculate that at 

higher forces there are fewer excursions into hidden coordinates not captured by 

the extension, leading to reduced pausing, especially near the barrier top that 

dominates the folding mechanism (and hence reaction coordinate quality), thereby 

accounting for a more dramatic increase D near the barrier for transitions occurring 

at higher force. 

To conclude, this work illustrates how measurements of the motions within 

transition paths provide a powerful tool for probing the elementary, microscopic 

events underlying folding—including the brief pauses associated with finding the 

correct conformation for stacking and pairing of bases—elucidating previously 

inaccessible properties and opening a new frontier in folding studies.   
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Chapter 9 

The average shapes of transition paths 

While the previous chapters have focused on the average values and 

distributions of quantities such as the transition-path times and velocities, this 

chapter examines the shapes of transition paths. Transition-path shapes encode key 

information about folding mechanisms because they represent the sequence of 

microscopic motions followed while traversing the critical transition states within 

the energy barrier. This chapter presents the first measurements of transition-path 

shapes, determining the average shapes for the folding of DNA hairpins. We find 

that time-domain averages are sensitive to instrumental artifacts, but extension-

domain averages match the dominant path shape predicted theoretically for 

diffusion over a 1D landscape. Path-shape variances reveal sequence-dependent 

changes in the diversity of transition paths, suggesting that multiple parallel 

pathways through the transition states can be detected simultaneously in a single 

molecule. 

The material in this chapter was originally published in the manuscript N.Q. 

Hoffer, K. Neupane, A.G.T. Pyo and M.T. Woodside, “Measuring the average 

shape of transition paths during the folding of a single biological molecule” Proc. 

Natl. Acad. Sci. 2019. For this paper NQH and KN took the data, NQH and AGTP 

performed the simulations, NQH performed the analysis and NQH and MTW wrote 

the paper. 

9.1 Motivation for studying transition- path shapes 

The studies discussed thus far have yielded important insight into the 
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microscopic motions involved in folding, but they have been limited to 

characterizing the average values and distributions of properties like transition-path 

times and velocities. Such averages and distributions, while reflecting key aspects 

of the folding, nevertheless do not retain any information about the sequence of 

events taking place during the transitions. The ability to study sequential 

relationships between the local motions that constitute the folding reaction 

promises to unlock a wealth of new information for characterizing folding 

mechanisms by directly observing the statistical ensemble of pathways populated 

during a folding reaction. Such direct observation has not yet been possible in 

experiments, restricting the study of pathway ensembles to simulations (123–130). 

However, the desired sequential information can in principle be accessed through 

the shapes of the transition paths, which capture the time spent within each part of 

the reaction coordinate and how it varies as the energy barrier is crossed. 

Recent theoretical work has begun to explore the properties of transition-path 

shapes, focusing on characterizing the average shape. Kim and Netz (26) 

considered the shape defined by t(x), the average of the transition paths in the time 

domain as a function of position along the reaction coordinate (which effectively 

reflects the distribution of times required to reach each point x along the transition), 

deriving expressions for the average path shapes expected for different types of 

barrier potential. Makarov (23) and Cossio et al. (24) took a somewhat different 

approach, focusing instead on the average shape of the dominant or most probable 

path, predicting the path shape expected for transitions crossing a harmonic barrier. 

This work showed that the transition-path shapes are more sensitive to the shape of 
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the underlying energy barrier than are properties like the transition time, suggesting 

that path shapes should indeed be a powerful tool for probing the microscopic 

details of folding. 

These theoretical predictions had not been compared to experimental 

observations, however, because measurements of transition-path shapes had not yet 

been reported. As a first step towards experimental characterization of transition-

path shapes, here we have used single-molecule force spectroscopy measurements 

of DNA hairpins held under tension in high-resolution optical tweezers as a model 

system to determine the average shapes of the transition paths computed by 

averaging in the time domain and in the extension domain. The transition-path 

shapes were obscured in time-domain averages by the effects of the experimental 

force probes, but for each hairpin the extension-domain average matched the shape 

of the dominant transition path predicted for diffusion over a harmonic barrier, 

yielding diffusion coefficients similar to previous results. We also explored the 

fluctuations in the path shapes, finding evidence that more than one type of 

transition path may be present for some hairpins. 

9.2 Time domain averaged transition path shapes 

Isolating a representative set of individual transitions from within the full 

folding trajectory for a single hairpin and aligning the transitions to start at the same 

time so as to characterize the transition-path shapes (Fig. 9.1), a large variety of 

path shapes was seen for both unfolding (Fig. 9.1A, grey) and refolding (Fig. 9.1B, 

grey). This wide range of shapes represents many different patterns of motion for 

the hairpin as it crosses the energy barrier. We first found the average shape of the 
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transitions for each hairpin by expressing the transition-path trajectories as t(x), 

aligning them all on the boundaries of the barrier region (x1 and x2), and then 

averaging in the time domain to obtain t(x). Because many trajectories involved 

re-crossing events where the hairpin extension turned back on itself before 

completing the transition (102), we took the average of all the times at which a 

given x value was crossed in a particular transition path before averaging the values 

across all different paths, a procedure shown to avoid artefactual over-weighting of 

transitions that include re-crossing events (24). The averages for the unfolding (Fig. 

9.1A, black) and refolding (Fig. 9.1B, red) transition paths for hairpin 30R50/T4, 

shown overlaid on 30 individual path trajectories (Fig. 9.1A–B, grey), were found 

to be time-reversal symmetric (Fig. 9.1C), as expected from the microscopic 

reversibility of transition paths (23). Similar results were found for the other 

hairpins (Fig. 9.2). Despite the wide variation in the individual path shapes, the 

average shapes computed from t(x) were all very similar and quite simple: almost 

straight lines, but with a very slight sigmoidal curvature where the path-shape 

curved up on the side of the barrier region nearest the folded state and down on the 

side nearest the unfolded state. 
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9.3 Extension domain averaged transition path shapes 

The conceptual motivation for calculating path shapes by averaging in the time 

domain at each extension value, as above, is that every transition passes through 

the same range of extension values, from x1 to x2, making the simple average t(x) 

well-defined. In contrast, a simple average in the extension domain at each time 

 

Fig 9.1: Time-domain average transition-path shape t(x) for hairpin 

30R50/T4. (A) The path shape for unfolding averaged in the time domain 

(black), shown along with 30 individual unfolding transitions (grey), is almost 

straight but with a slight sigmoidal curvature. (B) The average path shape t(x) 

for refolding transitions (red), shown with 30 individual refolding transitions 

(grey), is the same but time-reversed. (C) The time-reversed path shape for 

refolding transitions (red) matches the shape for unfolding transitions (black). 

Error bars represent s.e.m. 

 

Fig 9.2: Time-domain average transition-path shapes t(x) for different 

hairpins. The path shape averaged in the time domain, t(x), is shown for 

unfolding (black) and refolding (red, time-reversed) of hairpins (A) 20R100/T4, 

(B) 20R55/T4, (C) 20TS06/T4, and (D) 20R25/T4. 
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value—i.e., x(t)—is ill-defined, because the range of t values varies widely 

between transitions (44, 76, 101) Experimentally, however, averaging in the 

extension domain is more natural, since x is the observed variable containing 

experimental noise that should be averaged, not t. In order to compute an extension-

domain average while accounting for the differences in the transition-path times, 

we averaged all the transitions having a given transition-path time τi to obtain 

x(t)|τi, illustrated in Fig 9.3A for hairpin 30R50/T4, and then averaged the 

resulting curves from all τi (Fig 9.3B, grey) in the time domain, weighting by the 

relative probability for each τi value. The average shapes computed in this way (Fig. 

9.3B, red), denoted x(t|τ)τ, were the same for unfolding (Fig. 9.3C, black) and 

refolding (Fig. 9.3C, red), again reflecting the expected time-reversal symmetry. 

They showed a pronounced curvature that differed from the shape of t(x): whereas 

both were sigmoidal, the curvature was opposite in sign and noticeably higher for 

the extension-domain average (Fig. 9.3D, black) than the time-domain average 

(Fig. 9.3D, red). Similar results were observed for the other hairpins (Fig. 9.4). 
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Fig 9.4: Extension-domain average transition-path shapes x(t|τ)τ for 

different hairpins. The path shape averaged in the extension domain, x(t|τ)τ, 

is shown for unfolding (black) and refolding (red, time-reversed) of hairpins (A) 

20R100/T4, (B) 20R55/T4, (C) 20TS06/T4, and (D) 20R25/T4. The fits to Eq. 

9.1 for unfolding (yellow) and refolding curves (not shown) are visually 

indistinguishable. 

 

Fig 9.3: Extension-domain average transition-path shape x(t|τ)τ for hairpin 

30R50/T4. (A) The path shape averaged in the extension domain for unfolding 

transitions with duration τTP (black), shown along with 30 individual unfolding 

transitions (grey). (B) The average path shape x(t|τ)τ for unfolding (red) was 

computed by averaging the curves x(t|τi) (grey) obtained from transition paths 

with duration τi, for all τi, values. Grey-scale coloring indicates the proportion of 

transitions with duration τi .(C) The path shapes x(t|τ)τ for unfolding (black) and 

refolding (red, time-reversed) are time reversal symmetric and well fit by Eq.9.1 

(yellow). The fits for unfolding and refolding are visually indistinguishable. (D) 

The time-domain average shape t(x) (red) differs noticeably from the extension-

domain average shape x(t|τ)τ (black), with the latter having much more 

pronounced curvature. Error bars represent s.e.m. 
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9.4 Exploring the discrepancy between the time and extension domain 

averages 

To understand why these two methods of computing the average shapes 

yielded different results, we explored Brownian-dynamics simulations of 

transitions paths. Simulating diffusive crossing of a one-dimensional (1D) 

harmonic barrier as described previously (102), we found that both t(x) and 

x(t|τ)τ had similar shapes (Fig. 9.5A red and black, respectively), in contrast to the 

experimental results. Furthermore, both averages closely matched the shape of the 

dominant transition path (Fig 9.5A, blue) calculated analytically from the potential 

(22–24). However, previous work has shown that attaching a molecule to a large 

probe like a bead or cantilever via a compliant linker and monitoring the motions 

of the probe rather than those of the molecule, as is done in force spectroscopy 

measurements, adds noise to the measured extension and can alter the properties of 

the transition paths (24, 56, 57, 59, 111) We therefore extended the simulations to 

include the effects of linking the molecule to a bead, and recomputed t(x) and 

x(t|τ)τ. In contrast to x(t|τ)τ (Fig. 9.5B, black), which was little changed from the 

1D simulation, t(x) was distorted to become close to linear (Fig. 9.5B, red), 

analogous to what was observed experimentally. The simulations thus suggest that 

time-domain averaging can lead to an unreliable picture of the average path shape 

owing to the effects of the experimental geometry, whereas averaging in the 

extension domain is more robust. 

9.5 Comparison of results to theory 

We next compared the average path shapes obtained from the experimental 

data to theory. Since simulations showed that x(t|τ)τ provides a reasonable 
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approximation of the analytical shape of the dominant transition path for harmonic 

barriers (Fig 9.5A), and since the transition paths in hairpin folding are generally 

well-described by harmonic-barrier models (14, 43, 119), we fit the average shapes 

to the functional form of the dominant path shape for a harmonic barrier. In 1D 

with constant diffusion, this path shape is given by 

 
)2/sinh(

))2/(sinh(

TP

TP

DTP 



D

tDL
tx


 , (9.1) 

where 2L is the length of the transition path, κ is the curvature of the barrier, τTP is 

the average transition-path time, and D is the diffusion coefficient for motion along 

the reaction coordinate (24). Fitting x(t|τ)τ for hairpin 30R50/T4 to Eq. 1, while 

fixing 2L = x2 − x1, using the values of κ found from energy-landscape 

reconstructions (43), and treating D as a free parameter, we found good agreement 

with the observed shape (Fig. 9.3C, yellow). The values of D returned by the fits, 

6 ± 4 × 105 nm2/s for both unfolding and refolding, agreed within error with the 

values in the range 2–5 × 105 nm2/s found previously for this hairpin by analyzing 

rates (42), transition-path times (43), and transition-path velocities (102). Repeating 

this analysis for each hairpin by fitting x(t|τ)τ to Eq. 9.1 (Fig. 9.4), we found 

similar results in each case (Table 9.1), with values of D that were consistent within 

error with previous results, although as for hairpin 30R50/T4 they were all 

systematically somewhat higher.  
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9.6 Variability in transition path shapes 

To obtain a measure of the variability in the transition-path shapes, we 

calculated the variance in t(x), σ2
t(x), for each of the hairpins as a function of the 

progression along the transition path (Fig. 9.6). The variance was very similar in 

the unfolding and refolding path shapes, hence the two were averaged for each 

 

Fig 9.5: Transition-path shapes from Brownian-dynamics simulations. (A) 

Brownian-dynamics simulations of transitions over a 1D harmonic barrier show 

that both t(x) (red) and x(t|τ)τ
 (black) match the dominant transition path shape 

computed analytically (blue). (B) Brownian-dynamics simulations of a bead 

coupled via a compliant linker to a molecule crossing the same barrier as in (A) 

show that the bead/linker effects cause t(x) to become more linear while leaving 

x(t|τ)τ similar to the dominant transition path shape. 

Hairpin  
D (× 105 nm2/s) 

unfolding  refolding average 

30R50/T4 6 ± 4  6 ± 4  6 ± 4  

20R100/T4 7 ± 4  7 ± 4  7 ± 4  

20R55/T4 8 ± 4  8 ± 4 8 ± 4  

20TS06/T4 4 ± 3  5 ± 3  4 ± 3  

20R25/T4 7 ± 3  7 ± 3 7 ± 3  

 

Table 9.1: Diffusion coefficients from fitting dominant path shapes. Errors 

represent standard deviation. 
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hairpin. Not surprisingly, given the broad distribution of transit times (43), the 

variance in t(x) increased super-linearly with increasing x. To our knowledge, there 

is not yet any theoretical analysis of path-shape variance to which these results can 

be compared. However, comparison of σ2
t(x) between different hairpins revealed 

some noticeable differences: after travelling a given distance x along a transition 

path, the variance in t(x) was systematically lowest for hairpin 20R100/T4 and 

highest for hairpin 30R50/T4, whereas the remaining hairpins had variance 

between these two limits. We note that the absolute magnitudes of the observed 

variances are not intrinsically meaningful, because they depend systematically on 

the time resolution of the measurement, with many of the microscopic fluctuations 

being smoothed out by the instrument (102, 131). However, when comparing the 

variances for different measurements using the same instrument and conditions, as 

here, the instrumental effects are constant and hence differences in the variance 

reflect meaningful differences in the variability of the transition paths sampled by 

different molecules. 
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9.7 Discussion of average transition path shape results 

This work reveals some interesting features of transition-path shapes and how 

to compute them. An important practical result is that the appealingly simple 

definition of the average path shape in terms of t(x), as proposed previously (23, 

24, 26), is not reliable when applied to experimental data. Although it works well 

for pure 1D simulations, it is quite sensitive to experimental effects like the 

attachment of the molecule to force probes, which induce distortions that obscure 

the true transition-path shape resulting from the underlying energy landscape by 

causing it to become more linear. This problem will likely apply to all measurement 

methods, not just force spectroscopy, because much of the distortion in t(x) 

appears to arise from averaging in the independent variable, t, instead of the 

 

Fig 9.6: Comparison of path-shape variance for different hairpins. The 

variance in the average transition path shape, σ2
t(x), at each position along the 

reaction coordinate is similar for hairpins 20R25/T4, 20R55/T4, and 20TS06/T4, 

smallest for hairpin 20R100/T4, and largest for hairpin 30R50/T4. Larger 

variance suggests the presence of additional types of transition paths, providing 

evidence for multiple pathways. 
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dependent variable x that contains the measurement noise: when we generated an 

ensemble of simulated transition paths simply by adding Gaussian noise to the 

analytical path shape defined by Eq. 9.1, we found that t(x) became more linear 

(Fig. 9.7, red), similar to the effect seen in the force spectroscopy data and 

simulations. In contrast, the extension-domain average x(t|τ) was not affected 

(Fig. 9.7, black), because the noise was correctly averaged in the measured variable 

x and the computed shape thus remained close to the original analytical path shape 

(Fig. 9.7, blue). 

Because t(x) is distorted by experimental noise, it is unreliable for reporting 

on the properties of the barrier, even though simulations indicate that it should be 

quite sensitive to the barrier shape (23). However, there is an intriguing connection 

between the anomalously low barrier height implied by the flatter-than-expected 

shape of t(x) and previous work finding that transition-path time distributions also 

implied barrier heights significantly lower than measured directly (44). Recent 

theoretical work has shown that distortions in the transition-path time distribution 

implying anomalously low barriers can be induced by memory effects in the folding 

dynamics (80). Such memory effects would be expected to arise naturally in force 

spectroscopy measurements from the compliant linker coupling the molecule to the 

force probe, because of the finite response time for propagation of molecular 

motions through the linker to the probe. Hence the distortions of t(x) could also 

be viewed, at least in part, as a consequence of linker/probe-induced memory 

effects. 

Turning to the extension-domain average, the fact that x(t|τ)τ matches the 
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functional form of the dominant transition path shape suggests that this average 

provides a reasonable, heuristic approximation to the dominant path. Even though 

there is no formal equivalence between these two quantities, it is intuitively 

appealing that an appropriately constructed average of the path shapes should be 

able to approximate the dominant path shape. Indeed, such reasoning suggests an 

even simpler heuristic: approximating the dominant path not as the average of all 

paths but only of those close to the average transition path time, which are taken in 

this case as representative of the average behavior of the ensemble of curves. 

Calculating this restricted average, x(t|τTP) (Fig. 9.8, black), we found that it was 

indeed very similar to the more general average x(t|τ)τ computed previously (Fig. 

9.8, grey), and it, too, fit very well to Eq. 9.1 for the shape of the dominant transition 

path (Fig. 9.8, red). The values for D obtained from the fits were very similar to 

those in Tables 9.1 & 9.2), again being close to the results obtained by other 

methods but with a systematic tendency to be a bit higher. Hence x(t|τTP) can be 

used as an approximation to the dominant path shape that is simpler to compute 

than x(t|τ)τ. 

The reasonable agreement between the extension-domain averages and 

expectations for a 1D harmonic barrier with constant D is perhaps not surprising, 

given that this same approximation has worked well for describing other transition-

path properties such as the average transition time, the distribution of transit times, 

and the average velocity at the barrier peak (14, 43, 102). However, even though 

the values of D implied by the fits to Eq. 9.1 are consistent within error with the 

values found from previous analyses of transition-path properties in the same limit, 
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they are systematically somewhat higher: in the range ~4–8 × 105 nm2/s, compared 

to ~2–5 × 105 nm2/s (14, 43, 102). Analysis of the simulations indicates that most 

of this discrepancy likely arises from the use of x(t|τ)τ as an imperfect 

approximation for the dominant path shape, since the value of D from fitting x(t|τ)τ 

to Eq. 9.1 was ~50% higher than the actual value imposed in the simulations. Other 

factors involving deviations from the assumptions underlying Eq. 9.1 may also 

contribute to the overestimate, however, including the presence of anharmonicity 

in the measured barrier profiles (43, 75), the possibility of position-dependence in 

the diffusivity (89, 111), the presence of memory effects (80, 131), and the finite 

barrier size (132). 

Lastly, we consider the variability in path shapes. Naively, the fact that the 

average x(t|τ)τ matches the shape predicted by Eq. 9.1 for the dominant transition 

path suggests that the observed paths primarily involve transitions over a single, 

1D barrier that is largely harmonic, i.e. the path variability reflects the diversity of 

shapes expected inherently from diffusive motion over this barrier. However, 

comparing the variance in average path shapes for the different hairpin sequences 

reveals that the situation must be more complex. Indeed, the differences in σ2
t(x) 

seen between the hairpins in Fig. 9.6 indicate that the diversity of transition paths 

occupied during the hairpin folding is sequence-dependent: the transitions in some 

hairpins (e.g. 30R50/T4) display a broader range of path shapes, whereas those in 

others (e.g. 20R100/T4) occupy a more restricted range. These differences must 

reflect changes in the character of the energy barrier separating the folded and 

unfolded states. As one possibility, if the transition paths pass through only a single 
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saddle-point in the landscape, then a broader saddle-point (reflecting, say, a larger 

transition-state ensemble) would increase the variance in path shapes. Another 

possibility is that increased variance could reflect the presence of multiple, parallel 

paths through the transition states such that there are transition paths crossing 

through different saddle-points in the landscape. These possibilities are depicted in 

Fig. 9.9. A multiplicity of microscopically distinct paths across the energy barrier 

is certainly expected from the statistical nature of the energy landscape picture of 

folding (10, 133, 134), and parallel pathways have been both observed directly in 

multi-state folders (135–138) and inferred from the kinetics of two-state and 

downhill folders (139–142), but it has not previously been possible to quantify the 

extent of the diversity of transition paths in a folding reaction. Regardless of the 

precise origins of the differences in diversity of transition-path shapes observed 

here, however, we note that simple 1D models of folding are not sufficient to 

account for such differences—despite the quantitative success of these models in 

explaining other properties like transition-path times (43, 44), velocities (102), and 

occupancies (14, 15)—underlining the notion that transition-path shapes are more 

sensitive to the microscopic details of the energy landscape than other such 

properties.  
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Fig 9.7: Effects of noise on time-domain and extension-domain averages. 

Computing the average path shapes t(x) (red) and x(t|τ)τ (black) from an 

ensemble of simulated transition paths generated by adding noise sampled from 

a Gaussian distribution to each point on the dominant transition path defined by 

Eq.9.1 (blue), t(x) became more linear, as in experimental data, whereas 

x(t|τ)τ remained unaffected and matched the original analytical path shape. 

 

Fig 9.8: Extension-domain average path shape at τTP. The path shape 

averaged in the extension domain for transitions of the hairpin 30R50/T4 with 

duration equal to the average transition path time, x(t|τTP) (black), is very close 

to the shape obtained from averaging over all transition times, x(t|τ)τ (grey), 

and is well fit by Eq. 9.1 for the dominant path shape (red), returning a diffusion 

coefficient close to the result obtained from fitting x(t|τ)τ. Similar results were 

found for the other hairpin sequences. 
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Fig 9.9:Diversity in transition-path ensembles. (Left) A single, narrow, 

saddle-point separates the two state basins. In such a case, the variance about 

the average path shape is expected to be low. (Center) The presence of more 

than one saddle-point can lead to a higher variance about the average path shape, 

reflecting the presence of multiple, parallel paths through the transition state. 

(Right) A single, broad, saddle-point separating the two state basins can result 

in a higher variance about the average path shape, reflecting a larger transition-

state ensemble.  

Hairpin  
D (× 105 nm2/s) 

unfolding  refolding average 

30R50/T4 6 ± 1  6 ± 1  6 ± 1  

20R100/T4 7 ± 2  6 ± 2  6 ± 2  

20R55/T4 8 ± 2  8 ± 2 8 ± 2  

20TS06/T4 4 ± 1  4 ± 1  4 ± 1  

20R25/T4 7 ± 1  6 ± 1 6 ± 1  

 

Table 9.2: Diffusion coefficients from fitting extenstion-domian averages at 

τTP. Fitting the extension-domain average path shapes with transition time τTP, 

results in values for the diffusion coefficient which are very close to the values 

obtained from fitting the average over all transition times. Errors represent 

standard deviation. 
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Chapter 10 

 Future work and outlook 

The transition-path studies discussed in this thesis have focused on simple 

DNA hairpins. This choice was deliberate and there are several reasons for it. First, 

the physical properties of the free energy landscape for the specific hairpin 

sequences studied have been well characterized through various methods (58, 87). 

Knowledge of the underlying energy landscape allows for important consistency 

checks when implementing newly developed analysis methods. Second, the simple 

zippering mechanism of DNA hairpin folding allows for relatively straightforward 

interpretation of results. Under applied tension, base-pairs are expected to zip/unzip 

sequentially and produce uniform length changes. Such hairpins likely come as 

close as possible to realizing an ideal 1D system in folding, and indeed the 

transition-path properties of hairpins studied to date have all reflected close to ideal 

1D behavior. Lastly, the changes in extension when folding and the timescale over 

which these hairpins fold, are sufficiently long, allowing the TPs to be observed 

directly. 

These TP studies of DNA hairpins have certainly yielded important results. 

They have allowed for the testing of several established theories and demonstrated 

the potential for TP studies to probe folding reactions at the most elementary levels. 

However, there remains a lot to be learned by applying these same methods to 

molecules with more complex structures and presumably more complex folding 

mechanisms. Investigations into more complicated folding processes, where TP 

dynamics may inform on biological function, will therefore require TP 
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measurements of more complex systems such as globular proteins.  

However, from a more physics-based perspective, there is much that can still 

be learned from TP measurements of DNA hairpins. The simplicity with which 

DNA sequences can be designed and the accuracy of model predictions of DNA 

hairpin landscapes make them ideal for investigations of sequence-dependent 

features of TPs. The nearly ideal 1D behavior of these hairpins and the 

thoroughness with which their TP properties have been characterized under 

equilibrium conditions make them an excellent testing ground for measuring TPs 

out of equilibrium, where very few theoretical expectations exist.  

Experimental studies of TPs are relatively young, with much of the vast 

information they contain about folding mechanisms still to be explored, technical 

capabilities still developing, and most studies prompting new questions to be 

answered. Theories that will complement future experiments continue to be 

developed, for example providing frameworks for describing different shapes of 

barriers (143), exploring inertial effects in TPs (144, 145), improving methods for 

simulating TPs (146), and developing methods for predicting TPs and their 

statistics (147, 148). The effects of experimental design on TP measurements are 

being explored to identify conditions for reliable measurements (24, 56, 57, 60). 

Advances in instrumentation continue to push forward experimental frontiers, such 

as improved AFM cantilevers enabling μs-resolution measurements of both 

globular (149) and membrane proteins (150). There is also much room for further 

integration of atomistic simulations with TP measurements, as well as comparisons 

of TP measurements to ultrafast kinetic measurements of downhill folding (151). 
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These advances provide exciting opportunities for increasingly detailed 

characterization of the microscopic dynamics in folding reactions.  
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Appendices 

Appendix A DNA hairpin sequence 

 

Appendix B Sample preparation 

DNA hairpins connected to double-stranded (ds) DNA handles were prepared 

Name Sequence 

30R50/4T gagtcaacgtactgatcacgctggatccta(t)4taggatccagcgtgatcagt
acgttgactc 

20R0/4T tattatatattaatatataa(t)4ttatatattaatatataata 

20R25/4T aagttaacatctagattcta(t)4tagaatctagatgttaactt 

20R55/4T gagtcaacgtctggatcctg(t)4caggatccagacgttgactc 

20R100/4T cgccgcgggccggcgcgcgg(t)4ccgcgcgccggcccgcggcg 

20TS06/T4 gccggctattatttatattc(t)4gaatataaataatagccggc 

 

Table A.1: DNA hairpin sequences used in this thesis 

 

Fig A.1: DNA hairpin legend.  
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as follows, an oligomer containing the hairpin sequence separated by abasic sites 

from a 5′ ligation overhang and a 3′ priming sequence was used to create a kilobase-

long dsDNA handle with the hairpin on one end via autosticky PCR. The ligation 

overhang was used to ligate the PCR product to another kilobase dsDNA handle 

with a complementary overhang. The resultant construct was attached to 600- and 

820-nm polystyrene beads via biotin/avidin and dioxigenin/anti-digoxigenin pairs 

to generate “dumbbells” for trapping. Hairpin constructs samples were incubated 

at ~100 pM with 250 pM polystyrene beads to form dumbbells. Dumbbells were 

diluted to ~500 fM in 50 mM MOPS, pH 7.0, with 200 mM KCl and oxygen 

scavenging system (8 mU/μL glucose oxidase, 20 mU/μL catalase, 0.01% w/v D-

glucose), before insertion into a sample cell for the optical trap. 

Appendix C Smoothing of transition-path trajectories 

TP velocities can be calculated by differentiating the measured TP trajectory. 

However, numerical differentiation tends to amplify the effects of noise present in 

the TP trajectory and therefore straightforward differentiation of raw data is ill-

advised. SMFS measurements of TPs are inherently noisy due to the coupling of 

the molecule to force probes (beads) that themselves experience Brownian motion 

during the measurement. Luckily, this noise will be normally distributed and can, 

therefore, in principle, be reduced by applying smoothing algorithms to the data.  

Smoothing is a delicate procedure, often being described as more of an art 

than a science and requires the use of internal consistency checks as well as visual 

inspection in order to avoid distortion of the data. Most commercial data analysis 

software packages support the use of several smoothing algorithms, including 
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smoothing splines, boxcar filtering, and Savitsky-Golay filtering, each having its 

own set of smoothing parameters. This inconsistency in smoothing parameters can 

make comparing the effects of one algorithm to another difficult and necessitates 

the need for careful visual inspection of the smoothed data.  

The degree to which the data should be smoothed is another point that 

warrants careful consideration. The use of internal consistency checks should be 

used whenever possible. For example, in the case of calculating the velocity along 

TPs, one can make use of the knowledge of the distance between states and the 

average transition-path time, to calculate the expected average velocity 
tp

xv


  

. Comparing this value to that obtained by calculating the average velocity from the 

smoothed, differentiated trajectories, can aid in avoiding over smoothing the data. 

Furthermore, because a set of TPs from any particular molecule will display a wide 

range of transition-path times, but all travel the same distance, the TPs will display 

varying amounts of curvature. For this reason, it is often best practice to implement 

a smoothing procedure that varies the amount of smoothing from one TP to another, 

based on the induvial transition-path time.  

For the velocity measurements presented in this thesis, we chose to smooth 

the extension trajectories using a smoothing spline interpolation (152). This 

approach finds the spline g(t) that minimizes  dtg  along the transition path, 

subject to the condition 
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, where xi is the extension at a given 

point i, g(ti) is the value of the spline at that point, σ is the average standard 

deviation of the extension arising from the thermal fluctuations, and S is the 
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smoothing factor. The standard deviation was found by calculating the standard 

deviation in extension values while the molecule was fluctuating in the folded and 

unfolded states and then taking the average of the two values. When the standard 

deviation is properly characterized, optimal smoothing (152) is said to occur with 

a smoothing factor S =1. However, upon visual inspection and comparison of the 

obtained average velocity to the expected value, it was decided that the smoothing 

factor should be reduced and that an adaptive smoothing procedure should be 

implemented. The final smoothing procedure used worked as follows: First, the 

unsmoothed transition-path time for each TP was calculated, then the smoothing 

factor for each TP was chosen based on the transition-path time and varied linearly 

from S=0.3 to S=0.7, where all TPs with transition-path times lower than 10 µs 

were smoothed with S=0.3 and all those with transition-path times higher than 60 

µs were smoothed with S=0.7.  

 In short, there is no straightforward way to determine the correct method or 

degree of smoothing. Therefore, comparisons of the velocity distributions and 

velocity profiles calculated via several different smoothing procedures should be 

done in order to assess the robustness of the results (Fig C1), and ultimately choices 

on smoothing should be based on an intimate knowledge of the data and the nature 

of the measurements. 
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Appendix D Boundary effects in transition path measurements 

When measuring TPs the finite sampling rate of the measurements can make 

defining boundary regions difficult, as it is highly unlikely that data points will exist 

at the exact boundary locations. Due to the nature of TP measurements as 

continuous-time trajectories, with most of the data points corresponding to 

fluctuations within the stable states rather than TPs, hard boundary locations must 

be implemented in order to separate the TPs from the non-productive fluctuations. 

Moreover, the stochastic nature of TPs and the coupling of the molecule to a force 

probe (bead), that itself undoes Brownian motion, leads to an appreciable 

uncertainty with respect to when the molecule truly crosses the boundaries. 

Additionally, certain analysis procedures such as smoothing or numerical 

differentiation carry their own boundary effects that need to be carefully 

considered.  

 

Figure C1: Effects of smoothing on velocity profiles. The velocity 

profiles (upper panels) were similar for different smoothing protocols: (a, 

b) smoothing spline with respectively S = 0.7 and S = 1, (c) Savitsky-Golay 

filter, (d) boxcar filter. Velocity distributions (lower panels) were 

qualitatively similar for similar amounts of smoothing (a, c, d). 
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There is no universal method for dealing with boundary conditions that works 

in every situation. Prior to performing any analysis on the TPs the possible ways 

that the boundary effects may manifest themselves should be carefully considered. 

Some examples include smoothing, numerical differentiation, occupancy statistics, 

transition-path times, and average path shapes.  

The sigmoidal nature of TPs means that any smoothing procedure should 

include several points on either side of the transition region. This is because 

smoothing procedures generally attempt to minimize the curvature over some 

window of time in the trajectory. TPs typically reside in one of the stable states for 

relatively long periods of time before suddenly undergoing a transition event. 

Therefore, if data points within the stable states are not included in the smoothing, 

the initial departure into the transition region will appear almost instantaneous 

while any fast movements within the transition region will be disproportionately 

slowed by the smoothing. Including several points on either side of the transition 

region can help to reduce the effects of these sudden departures from the stable 

states. 

Calculating transition-path times explicitly involves measuring the times 

where the boundary locations are crossed. This makes them highly susceptible to 

the boundary effects and tends to lead to underestimates of the transition-path time. 

In this case, the effects can be dealt with by applying a light median filtering 

procedure to the data. This effectively finds the average value for the points nearest 

to the boundary-crossing and provides a more accurate estimate of the actual 

crossing time then would be found with a simple interpolation.  
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The occupancy statistics for TPs can also be distorted near the boundary 

locations. This is because the boundaries are acting as absorbing boundaries and 

any forward bead fluctuation that might produce a data point beyond the boundary 

will immediately halt the TP. Meanwhile, bead fluctuations in the reverse direction 

will not halt the TP, leading to artificially low occupancy of the regions closest to 

the boundaries. This can be dealt with by including several additional data points, 

on both sides of the trajectory, beyond the transition region. This allows rapid 

fluctuations near the boundaries to be accounted for in the occupancy statistics.  

Appendix E Detection system upgrades 

After installing the new QPD detectors it became apparent that further 

upgrades to the system would be required. Power spectrum measurements revealed 

that the QPDs were much more sensitive to electronic noise present in the detection 

system, so much so that the experimental signal had been swamped out. There are 

two ways to deal with such an issue: increase the experimental signal by increasing 

the amount of laser light incident on the detector, and decrease the amount of 

electronic background noise present in the system. The amount of laser light 

reaching the detectors is primarily limited by two factors: the power of the laser 

itself and the efficiency of the fiber coupling.  

In my first attempt to increase the signal-to-noise ratio, I replaced the 7 mW 

HeNe laser with a 45 mW HeNe laser made by the same company. After aligning 

and coupling the new laser to the fiber, it was immediately clear that the new laser 

was not suitable for the instrument. The laser’s pointing stability was so poor that 

when coupled to a fiber it produced fluctuations in the power so large that they 
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could not be dealt with by normalizing the signal. The signal power fluctuated 

between values that were too high, creating a second optical trap, and values that 

were too low, allowing noise to overcome the signal. The new laser was then 

removed and the original 7 mW laser was reinstalled and the decision was made to 

purchase a high-quality fiber coupler in order to improve the coupling efficiency.  

One critical component of a fiber coupling system is the objective lens that 

focuses the incoming laser light onto the end of the optical fiber. Choosing the 

correct focal length for this objective lens is crucial when attempting to achieve a 

high-efficiency coupling. The correct focal length can be determined by 

f=πD(MFD)/4λ, where D is the 1/e2 diameter of the collimated beam incident on 

the lens, λ is the wavelength of input light, MFD is the mode field diameter of the 

optical fiber and, f is the focal length of the objective lens. Applying this equation 

to our system yields a focal length of 7.2 mm. For optimum coupling, the spot size 

of the focused beam must be less than the MFD of the single-mode fiber. As a 

result, if a lens or objective is not available that provides an exact match, then an 

optic with a focal length that is shorter than what the calculation yields, should be 

used. With this in mind, a Newport M-40X microscope objective lens with a focal 

length of 4.5 mm was chosen for the coupling. This lens, combined with a ThorLabs 

MBT616D three-axis stage, allowed for a coupling efficiency of >60%, with 

minimal power fluctuations, sufficient to overcome the noise floor of the QPD 

detectors. 


