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ABSTRACT 

Low Impact Improvement (LID) had received great interest in the past decades to achieve 

sustainable urban stormwater management and improve urban ecological systems. Numerical 

studies were conducted in this thesis to improve the understanding of LID benefits in cold regions 

and explore the potentials of further improvements. This paper-based thesis mainly includes two 

parts: Part I “Hydrologic and Water Quality Modeling of Bioretention Columns in Cold Regions”; 

and Part II “LID Spatial Allocation Optimization System: Integrated SWMM with PICEA-g using 

MATLAB as the Platform”. Part I and II explored LID at single-unit (micro) scale and 

neighborhood (macro) scale, respectively.   

Bioretention is widely-used in sustainable urban stormwater management. However, limited 

research has been conducted on its performance in cold regions, particularly for winter snowmelt, 

spring runoff, and large summer storm events (> 50 mm). In Part I of the thesis, HYDRUS 1D was 

selected and used to simulate and evaluate the hydrologic and water quality performance of four 

laboratory bioretention columns with different designs for cold regions. The results of the validated 

model reveals that the columns can remarkably reduce peak flow, ponding depth and duration for 

large summer storm events (even for 1:100 years). In winter snowmelt and spring runoff modeling, 

the saturated hydraulic conductivity (KS) was found to be similar (approximately 0.1 cm/min) 

when the soil temperature was around -0.5 °C. The finer soil media would experience an increase 

of KS after freeze-thaw cycles, while the opposite occurs for coarser soil media. The water quality 

simulation confirmed the experimental results and showed that the bioretention columns can 

effectively remove phosphate and ammonium, but have leaching issue for chloride and nitrate. 

Finally, optimization of bioretention columns was provided for summer large storm events. 
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Despite the growing interest in LID planning, no research, to the best of the author’s knowledge, 

has proposed a spatial allocation optimization (SAO) system that integrates a hydrological 

computing engine with targeted modifications to an optimization algorithm using a programming 

language as the platform. In Part II of the thesis, an LID SAO system that combines SWMM and 

MATLAB was introduced. A preference-inspired co-evolutionary algorithm (PICEA-g) was 

adopted to obtain the optimal solutions for LID implementation (bioretention, rain garden, 

permeable pavement, and green roof) to maximize the hydrologic benefits and minimize the cost 

simultaneously. A typical urban residential neighborhood in western Canada was used as an 

example. Modifications were applied to the SAO algorithm to improve its performance, which 

include new methodologies for initializing candidate solutions, defining goal vector boundaries, 

and enhanced genetic operators. The obtained optimal solutions indicated that promising 

hydrologic benefits of peak flow and total inflow volume reduction, as well as peak flow delay 

from the catchment could be achieved with relatively low-cost LID implementations. The LID 

SAO system provides users with the flexibility and feasibility to apply it to a variety of drainage 

locations, scales, and objectives (e.g., water quality). 

Finally, general conclusions were provided at the end of the thesis based on the above two (Part I 

and II) studies. Future research directions were also suggested.  
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PREFACE 

The laboratory experimental data in Chapter 2 were obtained from Zhan Li and Hannah Kratky, 

who were MSc students supervised by Dr. Tong Yu at the University of Alberta. Their data were 

used for calibrating and validating the model proposed in Chapter 2.   

The SWMM model in Chapter 3 was obtained from Arlette Fernandez who was a MSc. student 

supervised by Dr. David Zhu at the University of Alberta. The SWMM model was originally from 

the City of Calgary and used to simulate the proposed LID spatial allocation optimization system 

in Chapter 3. 

All of the other parts of the thesis, including the numerical work in Chapters 2 and 3, the literature 

reviews in Chapters 2 and 3, the introduction in Chapter 1, and the conclusion in Chapter 4, are 

my own work.  Partial content of Chapter 2 has been published in the following conferences:  

• Yu, Y., Zhang, W., and Yu, T. (Oct, 2019). “Performance Evaluation of Bioretention Cells 

in Large Storm Events and Cold Climate using Numerical Modeling”. Conference paper presented 

at International Symposium on Sustainable Urban Drainage 2019, Ningbo, Canada. 

• Yu, Y., Zhang, W., and Yu, T. (Feb, 2020). “Modeling Rain Gardens in Cold Regions 

using HYDRUS 1D”. Conference paper presented at 6th IAHR Europe Congress, Warsaw, Poland. 

There has been no previous publication of Chapter 3. 
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Chapter 1 Introduction 

1.1 Background 

Urbanization is inevitable due to fast industrialization, commercialization, and economic and 

population growth worldwide (Martine and Marshall, 2007). In 2018, urban population reached 

4.2 billion, i.e., approximately 55% of the global population lived in urban areas (United Nations, 

2019). In Canada, about 72% of the population (27 million) lived in a census metropolitan area in 

2020  and the total population is expected to reach 46.5 million by 2043 under the medium-growth 

scenario (Dimmell, 2021; Statistics Canada, 2021). When urbanization, impervious areas increase 

and result in considerable increases of peak flow and volume of urban surface runoff (Paul and 

Meyer, 2001). In addition to urbanization, climate change and global warming, have been 

increasing the frequency and severity of extreme weathers including heavy storm events, as well 

as the risk of urban flooding (Willems et al., 2012; Tabari, 2020). Furthermore, metropolitan areas 

experience urban heat island effect, which changes local weathers and increases urban flooding 

risks (Zhou, 2014; Kaspersen and Halsnaes, 2017; Miller and Hutchins, 2017). All of these factors 

have caused significant challenges for urban stormwater management system.  

The conventional urban stormwater drainage system is mainly composed of underground pipes 

(minor system) and road surfaces (major system), which is designed to control water quantity and 

can be unreliable when storms exceed their design limits (Willems et al., 2012). Meanwhile, the 

conventional system has no control over the water quality of surface runoff, increasing the variety 

and quantity of contaminants and nutrients in downstream receiving water bodies such as rivers, 

lakes and oceans (Hatt et al., 2004; Zhou, 2014). Moreover, the grey infrastructure (underground 

sewers) is also costly in construction, monitoring, maintenance, rehabilitation and upgrades (Duffy 



 2 

et al., 2008). These inherent drawbacks of the traditional urban stormwater drainage system, 

together with the challenges the traditional system has been facing, stimulated the concept of 

sustainable urban stormwater management.         

As the key component of sustainable urban stormwater management, low impact development 

(LID) is a term used in North America to represent a green engineering approach that controls 

urban runoff at or close to the sources and uses natural-based solutions (Coffman, 2002a; HUD, 

2003; Eckart et al., 2017). Typical LID-BMPs (best management practices) include bioretention, 

rain garden, permeable pavement, green roof, and etc. (US EPA, 2000). Review studies 

demonstrate the promising hydrological performance of LID-BMPs and their efficiency in 

pollutant removal (Dietz, 2007; Ahiablame and Engel, 2012; Eckart et al., 2017). 

The benefit of LID is that it improves hydrological performance of an urban catchment by 

increasing the time of concentration, reducing the peak flow, and decreasing the volume of surface 

runoff (Hood et al., 2007; Dietz, 2007). For instance, in Guangzhou, China, a bioretention system 

with an area of 5% of the catchment reduced the peak flow and runoff volume by over 75% during 

small rainfall events (<10 mm rainfall depth) (Wang et al., 2021). Rain gardens have been shown 

to be quite effective at reducing rainfall runoff in residential areas, with a garden area covering 5% 

of the catchment reducing surface runoff from 80% to 94% (< 45 mm rainfall depth) (Tang et al., 

2016). When rain depth ranges from 10 to 50 mm, a green roof system could reduce the peak flow 

by up to 80% (Pęczkowski et al., 2018).  According to Alsubih et al. (2017)'s experiments in 

Edinburgh, permeable pavement could reduce total runoff volume by 40% to 92% (< 10.85 mm 

rainfall depth). 
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Meanwhile, bioretention and rain garden were reported to have the capacity of removing the 

loadings of TSS (total suspended solid) and heavy metals (Cu, Pb, and Zn) by over 80% (most 

sites > 90%), and removing total nitrogen by over 50% (Dietz, 2007; Ahiablame and Engel, 2012). 

Permeable pavement was reported to remove the loadings of TSS, heavy metal, and total nitrogen 

over 75%, 80%, and 75%, respectively (Dietz, 2007; Ahiablame and Engel, 2012). Green roof, on 

the other hand, demonstrated a wide range of performance in terms of nutrient and heavy metal 

removal, ranging from no significant retention to highly effective reduction (Ahiablame and Engel, 

2012). In addition to the hydrologic and water quality benefits, LID reduces capital costs by 15 to 

80% and mitigates urban heat island effect (Weitman et al., 2009; He et al., 2019). Mun-soo et al. 

(2021) found that LID-based pavement materials could reduce surface temperatures by 8.2 to 

22.6°C when compared to dense-graded asphalt and performed significantly better at mitigating 

the urban heat island effect because of higher albedo, increased evaporation, and lower heat 

capacity. 

During the last decade, LID studies have grown substantially, both in terms of experiments and 

numerical simulations, and in numerous areas including hydrological aspects, water quality, design 

optimization, and spatial allocation (Dietz, 2007; Elliott and Trowsdale, 2007; Ahiablame et al., 

2012; Eckart et al., 2017; Spraakman et al., 2020). In the area of modeling single unit of LID, 

HYDRUS 1D, RECARGA, and GIF-MOD are considered as suitable tools for the design and 

optimization because of their abilities to model multiple layers of subsurface soil or porous media, 

surface ponding, water movement, vapor flow, root water uptake, and snow hydrology 

(Kaykhosravi et al., 2018). RECARGA is recommended only for estimation because of restricted 

options of soil types, numbers of soil layers, and boundary conditions (Kaykhosravi et al., 2018). 

For more accurate model calibration and flexibility in settings, GIF-MOD and HYDRUS 1D both 
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provide inverse modeling (auto parameter calibration) and customised soil media layers (can be > 

3 layers) (Massoudieh et al., 2016; Kaykhosravi et al., 2018). Recent modeling studies established 

that HYDRUS 1D provides more flexibility in terms of soil structure, surface boundary conditions, 

underdrain options, and hydraulic flow model rather than SWMM in bioretention modeling, 

resulting in more accurate simulations (Liu and Fassman-Beck, 2017a, 2017b). 

In the area of modeling LID spatial allocation, four modeling tools are available in the current 

market (HEC-HMS, MIKE Urban/MIKE+, SWMM, SWAT) that can provide stormwater 

management calculation and built-in LID control modules (Kaykhosravi et al., 2018). LID spatial 

allocation optimization (SAO) has been a huge challenge mainly due to its complex nature of the 

problem, which is the tradeoff between maximizing the benefits (e.g., water quantity and quality 

management) and minimizing the costs (Zhang et al., 2018), as well as due to the restrictions from 

space availability and public support. Generally, there are two types of spatial allocation 

optimization tools (SAOT) for LID (Zhang et al., 2018). The first one is compact optimization 

software (e.g., SUSTAIN) and the other one is model-algorithm integrated tools. As an example 

of a compact software package available on the market, SUSTAIN (the system for urban 

stormwater treatment and analysis integration), aggregates GIS, SWMM module, non-dominated 

sorting genetic algorithm (NSGA-II), Hydrological Simulation Program - FORTRAN (HSPF), and 

Microsoft Access database with graphical user interface (Lai et al., 2007; Shoemaker et al., 2009). 

The model-algorithm integrated tools are the ones that integrate a stormwater management model 

(e.g., SWMM) with a multi-objective evolutionary algorithm (MOEA) using a programming 

language as platform (e.g., MATLAB, Python) (Liu et al., 2017b; Xu et al., 2017; Zhang and Chui, 

2018; Tao et al., 2019; Men et al., 2020; Dong et al., 2021). Rather than the traditional method of 

selecting the best scenario from some subjectively predefined scenarios of LID spatial allocation 
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plan, the model-algorithm integrated tools are capable of achieving near-optimal solutions (Zhang 

and Chui, 2018) 

1.2 Knowledge gaps 

In recent years, there has been significant knowledge advancement in terms of both experimental 

and numerical modeling and optimization of LID (Ahiablame et al., 2012; Eckart et al. 2017; 

Spraakman et al. 2020). Despite that, challenges and knowledge gaps still exist, which need to be 

studied to further understand, improve and optimize LID applications. This research focuses on 

the aspect of numerical modeling and optimization.  

For bioretention, which is one of most commonly-used LID types and the focus of the first part of 

the thesis (Chapter 2), the knowledge gaps are as follows: 

 There have been no studies on modeling the hydrologic performance of bioretention cells in 

cold climates, with consideration of preferential flow in soil media caused by freeze/thaw 

cycles. 

 There is a paucity of literature on the modeling hydrologic performance of bioretention cells 

during large storm events (accumulative depth of a single event is greater than 50 mm). 

 Most existing studies modeled either the hydrologic performance or the water quality 

improvement of bioretention cells. Limited studies integrated the modeling of both the two 

crucial aspects within one study mainly because of large amounts of time and effort required. 

For LID spatial allocation optimization, which is the focus of the second part of the thesis (Chapter 

3), the knowledge gaps are as follows:  

 Relevant studies are limited, with only a small number of studies have been reported so far.  
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 There has been a lack of research on model-algorithm integrated tools that integrate a hydrology 

computing engine (e.g., SWMM, SWAT) with a classical multi-objective evolutionary 

algorithm (MOEA) using a programming language as platform (e.g., MATLAB, PYTHON). 

 In previous studies, the original and non-modified code of MOEA (e.g., NAGA-II) was directly 

applied into LID spatial allocation problem, resulting in poor performance of the algorithm and 

lack of diversity in optimal solutions. No previous research, as far as the author know, has 

modified and adjusted MOEA to achieve a better performance in LID spatial allocation. 

1.3 Objectives 

This thesis uses numerical simulation as a tool to investigate and understand LID at different scales 

(single-unit scale and neighborhood scale) for urban stormwater management in cold regions such 

as Canada, and explore the potentials to improve the efficiency and performance of LID.  

In the first part of the thesis (Chapter 2), the objectives of modeling single units of bioretention 

column are as follows. 

 Select and use a model to examine single-unit bioretention columns of different 

configurations in terms of hydrologic performance for both small and large storm events. 

With calibration and validation of small storm events (1:2, 1:5 and 1:10 year), examine 

their hydrologic performance under larger storm events (1:25, 1:50 and 1:100 year). 

 Simulate and examine the performance of the bioretention columns in winter snowmelt 

and spring runoff events, especially the effects caused by freeze/thaw cycles. 

 Simulate pollutant removal of the bioretention columns, with a focus on nutrients. 

 Explore potential measures to further improve the hydrologic performance of bioretention 

columns during large storm events in the context of climate change. 
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In the second part of the thesis (Chapter 3), the goals of building a new LID spatial allocation 

optimization (SAO) system are as follows. 

 Build a new system that optimize the spatial allocation of LID implementations at 

neighbourhood scale, with the potentials to be adjusted depending on different project’s 

particular situations and needs and to be further improved in the future. 

 Examine the performance of the system with the new improvements of the optimization 

algorithm. 

 Apply the new system to an urban neighborhood, and examine its performance. Select six 

optimal solutions for LID implementation during different storm events and evaluate their 

hydrologic benefits and costs under storm events of different return periods. 

 Provide directions for the future improvements on the LID SAO system. 

 

1.4 Thesis structure 

This thesis is focusing on numerical modeling and optimizing of LID for cold regions. This thesis 

was written as paper-based, and it mainly includes two parts: Part I “Hydrologic and Water Quality 

Modeling of Bioretention Columns in Cold Regions” (Chapter 2 of the thesis); and Part II “LID 

Spatial Allocation Optimization System: Integrated SWMM with PICEA-g using MATLAB as 

the Platform” (Chapter 3).  

Chapter 2 and 3 explores LID performances and optimizations at single-unit (micro) scale and 

neighborhood (macro) scale, respectively. The linkage between the two chapters is that Chapter 2 

is the foundation for Chapter 3. This is because single-unit LID facilities constitute the 
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neighborhood LID system, and using reliable and optimized single-unit LID design, LID spatial 

allocation optimization can achieve further or greater hydrologic and water quality benefits. 

Chapter 1 above provides an overall introduction of this thesis and Chapter 4 summarizes this 

research work and provides suggestions on future research directions. 

 

 

 

 

 

 

 

 

 

 



 9 

Chapter 2 Hydrologic and Water Quality Modeling of Bioretention Columns 

in Cold Regions 

2.1 Introduction 

Over the last few decades, increasing disturbance in land use due to urbanization has substantially 

changed urban hydrologic cycle and pollutant loading, causing significant impacts to aquatic 

environments (Rashid et al., 2018; Salerno et al., 2018; Freeman et al., 2019). Low impact 

development (LID) is a general term used in North America that describes a green engineering 

approach to achieve sustainable stormwater management in terms of both water quantity (peak and 

volume) and water quality (Coffman, 2002a; HUD, 2003; Eckart et al., 2017). LID facilities 

replace or complement the conventional storm sewer system and create a hydrologically functional 

landscape where runoff can be micromanaged and controlled within each LID system (Coffman, 

2002b; Pour et al., 2020).  

The bioretention system is one of the most recognized LID-BMPs (best management practices) 

for urban stormwater management (Davis et al., 2009). Bioretention captures stormwater runoff in 

a shallow depression treatment area, which typically consists of several layers, including ponding 

layer, organic or mulch layer, plants and planting soil layer, soil filtration media layer, and optional 

underdrain or drainage layer (US EPA, 2000; COE, 2014a; Liu et al., 2014). In recent years, 

bioretention has been used in more and more worldwide applications (Shrestha et al., 2018). 

Meanwhile, there is explosive growth in studies and research that tested bioretention’s hydrologic 

performance and water quality treatment ability through laboratory and/or field experiments (e.g., 

Spraakman et al., 2020).  
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Bioretention has been demonstrated to significantly reduce runoff volume and peak and delay flow 

peak, for relatively small storm events (Davis, 2008; Hunt et al., 2008; Meng et al., 2014; Liu and 

Fassman-Beck, 2017a, 2017b; Shafique and Kim, 2017; Xia et al., 2018). However, limited tests 

and experiments have examined its hydrologic performance during large storm events, which is 

expected to decline when rainfall intensity increases and duration extends (Jackisch and Weiler, 

2017; Sohn et al., 2019). Therefore, more efforts are required to evaluate and improve its 

performance for large storm events, particularly in the context of climate change that will induce 

more extreme rainfalls (with larger intensity and higher frequency) in the future (Sun et al., 2018; 

IPCC, 2021).  

Bioretention has also been reported to be promising in reducing pollutants or improving water 

quality in recent studies (Davis, 2007; Passeport et al, 2009; Chapman and Horner, 2010; DeBusk 

and Wynn, 2011; Mangangka et al., 2015; Shrestha et al., 2018). Field and laboratory results 

illustrated that reduction rates of total suspended solids (TSS), total phosphorus (TP), total nitrogen 

(TN), heavy metals, and oil and grease were 54-99%, 28-85%, 32-97%, 74-99%, and greater than 

90%, respectively (Hsieh and Davis, 2005a, 2005b; Davis et al., 2009). However, removal of 

dissolved nutrients can be highly variable, depending on the design configuration including 

vegetation, soil media amendments and the existence of internal water storage zone (IWS) (Hatt 

et al., 2009; Shrestha et al., 2018). More water quality studies are needed to examine the 

effectiveness of different configurations of bioretention.  

In cold regions, bioretention has been insufficiently studied in terms of both hydrologic 

performance and pollutant removal, particularly the effects of freeze-thaw cycles (Kratky et al., 

2017; Ding et al., 2019). In cold climates, soil infiltration rate is the key parameter that affects 

bioretention performances (Muthanna et al., 2008). When the soil temperature is below -0.5°C, 
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sandy loam soil becomes frozen and impermeable (Watanabe and Osada, 2017), and pore ice (frost) 

formed by frozen moisture blocks the soil pores and therefore reduces soil hydraulic conductivity 

(Flerchinger et al., 2005). Watanabe and Osada (2017) found that hydraulic conductivity of soil 

increased exponentially with higher unfrozen water content when the soil temperature rose from -

0.5°C to -0.2°C; and it reached a constant value when the temperature was higher than -0.2°C until 

0°C, which is greater than the estimated hydraulic conductivity of unfrozen soils. In the field 

experiments conducted by Roseen et al. (2009) in New Hampshire, US, and by Khan et al. (2012) 

in Calgary, Canada, bioretention maintained similar hydrologic performance during winter season 

when soil was partially frozen compared to that during summer season. However, some other filed 

studies indicated that the hydrologic performance declined with average peak flow reduction from 

42% in summer to 27% in winter (partially frozen) (Muthanna et al., 2008) and approximately 80% 

soil infiltrability reduction after freezing (frost depth of 45 cm) (Al-Houri et al., 2009). Different 

factors of soil media, vegetation, snow accumulation, inflow pattern, freeze-thaw cycle frequency, 

preferential flow and others could contribute to the varieties of bioretention performance in cold 

climates, which lacks mechanism-oriented explanation (Ding et al., 2019).  

Freeze-thaw cycles are frequently encountered when days are warm and nights are cold in cold 

regions. For example, in the City of Edmonton, Canada, the average freeze-thaw cycles are 12-18 

per month in March, April, October, and November (Edmonton weather nerdery, 2019). Frequent 

freeze-thaw cycles can bring challenges and changes to the stability and performance of 

bioretention (Ding et al., 2019). For example, Wang et al. (2015) discovered that silty soil with 

different degrees of compactness experienced different levels of deformation and changes of 

strength property after repeated freeze-thaw cycles.  
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Another common challenge that bioretention is facing in cold regions is water quality concerns 

due to high concentrations of sodium chloride in runoff resulted from the use large amounts of 

road de-icing salts (Fay et al., 2019), which brings issues such as plant health and media clogging 

(Denich et al., 2013). Such inflow of high salts into bioretention during snowmelt and spring runoff 

events can increase effluent phosphorus concentration and consistent release of high 

concentrations of sodium and chloride in the spring season (Denich et al., 2013; McManus and 

Davis, 2020; Goor et al., 2021). One of the most significant concerns on bioretention is its long-

term performance (Liu et al., 2014; Kratky et al., 2017) and it has been inadequately studied 

(Spraakman et al., 2020). Clogging can also be a common issue that reduces bioretention’s 

hydraulic capacity, which had been observed with a decreasing factor of 3.6 over 72 weeks in a 

laboratory study conducted by Le Coustumer et al. (2012). 

There are numerous models for bioretention such as MOUSE, SWMM, MUSIC, HEC-HMS, 

SWAT, and L-THIA-LID. These models are used typically for large-scale stormwater 

management and therefore more suitable for preliminary and conceptual designs of LID (Elliott 

and Trowsdale, 2007; Kaykhosravi et al., 2018). RECARGA, HYDRUS 1D and GIF-MOD are 

considered as suitable tools in Kaykhosravi et al.’s review (2018) for the design and optimization 

of single-unit bioretention because of their abilities to model multiple layers of subsurface soil or 

porous media, surface ponding, water movement, vapor flow, root water uptake, and snow 

hydrology. RECARGA is recommended only for estimation because of its restrictions, including 

pre-specified soil types, the maximum number of three soil layers, non-definable boundary 

conditions, and fixed underdrain location (Kaykhosravi et al., 2018). HYDRUS 1D and GIF-MOD 

are both capable of modeling customized soil media layers (can be > 3 layers), solute transport 

through soil columns, and features with inverse modeling (auto parameter calibration) for more 



 13 

convenient and accurate model calibration. DRAINMOD is also used to model bioretention 

hydrologic performance (Brown et al., 2013; Winston et al., 2016), but its minimum temporal 

resolution is hours and therefore modeling a single storm event is restricted (Skaggs et al., 2012). 

Lisenbee et al. (2020) introduced DRAINMOD-Urban to allow high temporal resolution.  

Recent modeling studies from 2011 to 2021 on bioretention columns are summarized in Table 2.1, 

which shows that 50% (5/10) of them used HYDRUS 1D, 20% used SWMM, 20% used 

DRAINMOD, and 10% used 2D variable saturated flow model. Liu and Fassman-Beck (2017a, 

2017b) conducted numerical simulations using HYDRUS 1D and SWMM, and illustrated that 

HYDRUS 1D has better accuracy for modeling single unit of bioretention. In fact, HYDRUS 1D 

provides more flexibility of soil structure, surface boundary conditions, underdrain options, and 

different hydraulic models for flow routine rather than built-in LID module in SWMM. Meng et 

al. (2014) and Jiang et al. (2019) employed HYDRUS 1D to simulate the hydrologic performance 

of bioretention and obtained an R2 value of over 0.70 for the outflow hydrograph. HYDRUS 1D 

was also used in Li et al. (2018, 2021) to simulate removal of nutrients and heavy metals in 

bioretention by comparing the water quality benefits with different types of soil amendments. In 

other publications (e.g., Brown et al., 2013; Lisenbee et al., 2020), DRAINMOD and other tools 

have shown their limitations in modeling single unit bioretention (e.g., limitations of time scales, 

boundary conditions, auto-calibration capacities, soil structure, etc.). With the overall good 

performance in hydrologic processes and pollutants removal, as well as its capacity to model heat 

transport (Xiang et al., 2012), HYDRUS 1D appears to be promising for modeling bioretention in 

cold regions.  

Among these recent studies, no modeling studies have been reported on hydrologic performance 

of bioretention in cold regions when the soil temperature is near to or lower than 0 °C, nor has 
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there been any discussions on the existence of preferential flow due to freeze-thaw cycles. 

Moreover, of these studies, only Lisenbee et al. (2020) simulated rainfall events with depth larger 

than 50 mm using DRAINMOD-Urban, but their rainfall event lasted for days to accumulate such 

depth. There have been no modeling studies reported on a single large storm event within a short 

period (e.g., > 50 mm in a few hours) to assess the hydrologic performance of bioretention columns 

and to investigate the ponding situation. In addition, of these studies, only Li et al. (2018, 2021) 

carried out simultaneous modeling of hydrologic performance and water quality for bioretention, 

however, no outflow and surface ponding hydrographs were simulated. 

To address the knowledge gaps mentioned above for cold region bioretention columns, this study 

selected HYDRUS 1D as the modeling tool to: 1) calibrate and validate the hydrologic 

performance during small storm events using laboratory data; 2) evaluate the hydrologic 

performance during large summer storm events (with rainfall depth > 50mm) and explore the 

design optimization of bioretention to further improve its performance; 3) reveal the hydrologic 

performance in cold climates including snowmelt and spring runoff events, as well as examine the 

influence of freeze-thaw cycles; and 4) simultaneously simulate the nutrients removal and the 

hydrologic performance. The findings from the simulation results will help better understand 

bioretention in cold regions in the context of climate change for urban flood mitigation and water 

quality improvement.
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 Table 2.1 Summary of recent numerical studies on bioretention columns 

Study Model 
Modeling  

Layer  
Rain Events/Inflows Hydraulics Outflows 

Water  

Quality 

Modeled 

Ponding  

Expt.  

for Model 

Calibration 

Comments 

This study HYDRUS 1D 

Ponding, 

 Plant soil,  

Soil layer, 

Gravel 

Design storms:  

1:2, 1:5, 1:10, 1:25, 1:50, 1:100 yr 

Rainfall depth:  

24, 35, 43, 56, 69, 84 mm 

Duration: 4 hrs, Chicago 

Also snow melt &spring runoff events 

CA/SA: 10 

Expt.: Free drainage & 

IWS (Internal water 

storage) 

Model: Free drainage 

& IWS 

NO2-N,  

NO3-N,  

NH3-N,  

TP, Cl 

Ponding 

observed. 

Simulated 

results close 

Lab 

1. Accurate calibration & validation 

for summer rainfall  

2. Also modeling for snowmelt & 

spring runoff events 

3. HP1 was used for nutrient 

removal simulation 

         

Li et al.,  

2021 
HYDRUS 1D 

Ponding,  

Plant soil,  

Soil layer, 

Gravel 

Design storms: 1:2 & 1:5 yr 

 Rainfall depth: 25 & 34 mm 

Duration: 120 min  

CA/SA: 17 

Expt.: Free drainage & 

IWS 

Model: Free drainage 

& IWS 

COD,  

NO3-N,  

NH3-N,  

TN, TP,  

Cu, Zn, Cd 

None Lab 
Able to simulate pollutants removal 

with adding amendments  

         

Lisenbee et al., 

2020 

DRAINMOD-

Urban 

Ponding,  

Soil layer, 

Gravel 

Local storms 

Rainfall depth: 5 -97mm 

Duration: N/A  

CA/SA: 19.8 

Expt.: IWS  

Model: Free drainage 
None None Field 

1. Accurate calibration and 

validation for single event 

2. Time scale: 1 min 

3. Need manual calibration 

         

Jiang et al.,  

2019 
HYDRUS 1D 

Ponding, 

 Plant soil,  

Soil layer, 

Gravel 

Design storms: 1:2 & 1:5 yr 

 Rainfall depth: 25 & 34 mm 

Duration: 120 min  

CA/SA: 17 

Expt.: Free drainage & 

IWS  

Model: Free drainage 

None None Field 
No comprehensive calibration and 

validation 

         

Li et al.,  

2018 
HYDRUS 1D 

Ponding,  

Plant soil,  

Soil layer, 

Gravel 

Design storms: 1:2 & 1:5 yr 

 Rainfall depth: 25 & 34 mm 

Duration: 120 min  

CA/SA: 17 

Expt.: Free drainage & 

IWS 

Model: Free drainage 

COD,  

NO3-N,  

NH3-N,  

TN, TP 

None Field 

1. Conduct nutrients removal 

simulation 

2. No comprehensive calibration & 

validation  

         

Gülbaz and 

Kazezyilmaz-

Alhan, 2017 

RWB (Improved 

Green-Ampt 

method) & 

SWMM 

Ponding,  

Plant soil, 

 Soil layer, 

Gravel 

Design storms 

Rainfall depth: 4,8,11,17 mm 

Duration: 15,20,25,30 min  

CA/SA: 20 

Expt.: Free drainage  

Model: Free drainage 
None 

Ponding 

observed. 

Simulated 

results close 

Field 

1. RWB had better simulation results 

than SWMM 

2. SWMM did not match peak flow 

3. Both RWB and SWMM 

simulation did not match measured 

outflow after peak 
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Liu and Fassman-

Beck, 2017a 
SWMM 

Ponding,  

Soil layer, 

Gravel 

Design storms: 1:2 yr 

 Rainfall depth: 13 mm 

Duration: 1 hr  

CA/SA: 43 

Expt.: Free drainage & 

IWS 

Model: Free drainage 

None N/A Lab The simulation was not accurate 

         

Liu and Fassman-

Beck, 2017b 
HYDRUS 1D 

Ponding,  

Soil layer, 

Gravel 

Design storms: 1:2 yr 

 Rainfall depth: 13 mm 

Duration: 1 hr  

CA/SA: 20 

Expt.: Free drainage  

Model: Free drainage 
None N/A Lab Accurate calibration & validation 

         

Meng et al.,  

2014 
HYDRUS 1D 

Ponding, 

 Soil layer, 

Gravel 

Local storms & Design storms 

Rainfall depth: N/A 

Duration: N/A 

 CA/SA: 10 

 Expt.: Free drainage  

Model: Free drainage 
None 

Ponding 

observed and 

simulated only 

for design 

storms 

Duration: 180 

mins  

Max.: 12 cm 

Field Accurate calibration & validation 

         

Brown et al.,  

2013 
DRAINMOD 

Ponding,  

Soil layer, 

Gravel 

Local storms 

Rainfall depth: 2.5 ~ >38 mm 

Duration: N/A 

 CA/SA: 14 & 16  

Expt.: Free drainage & 

IWS 

Model: Free drainage 

& IWS 

None 

Ponding and 

overflow 

observed 

Field 

1. Modelled long term hydrological 

performance  

2. Not suitable for single rainfall 

event due to time scale limitation 

         

He and Davis, 

2011 

2D variable 

saturated flow 

model (Richards 

equation) 

Ponding,  

Soil layer, 

surrounding 

gravel soil 

Local storms 

Rainfall depth: 2.5 - >25 mm 

 Duration: 2-24 hr 

 CA/SA: 20 

Expt.: Free drainage  

Model: Free drainage  
None N/A  Field 

1. Discussed the influence of types 

of soil media & surrounding soil. 

2. No validation. 
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2.2 Numerical Modeling for Bioretention in Cold Regions 

2.2.1 Model introduction 

HYDRUS 1D simulates one-dimensional movement of water, heat, and solute transport in 

variably-saturated porous media (Simunek et al., 2005). The governing equation is a modified form 

of the Richards equation with assumptions of negligible influence of air phase and thermal gradient 

in water flow (Simunek et al., 2005): 

 
𝜕𝜃(ℎ)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾(ℎ) (

𝜕ℎ

𝜕𝑧
+ 𝑐𝑜𝑠𝛼)] − 𝑆 (2.1) 

where 𝜃  is the soil moisture content [L3/ L3], t is time [T], z is the vertical direction spatial 

coordinate [L], h is the water pressure head [L], and α is the angle between the vertical direction 

and the flow direction. K is the unsaturated hydraulic conductivity of soil media [L/T] and is a 

function of h and z: 

 𝐾(ℎ, 𝑧) = 𝐾𝑠(𝑧)𝐾𝑟(ℎ, 𝑧)  (2.2) 

where 𝐾𝑟  is the relative hydraulic conductivity [NA], and 𝐾𝑠  is the saturated hydraulic 

conductivity of soil media [L/T]. 

2.2.1.1 Soil properties 

Soil moisture content and hydraulic conductivity of unsaturated soil are highly dependent on water 

pressure head as shown in Eq.2.1. Van Genuchten (1980) functions were commonly used to 

describe unsaturated soil hydraulic properties of soil media: 



 18 

 

(ℎ) = {
𝜃𝑟 +

𝜃𝑠 − 𝜃𝑟

[1 + |𝛼ℎ|𝑛]𝑚
     ℎ < 0

𝜃𝑠                                    ℎ ≥ 0

 (2.3) 

 
𝐾(ℎ) = 𝐾𝑠𝑆𝑒

𝑙 [1 − (1 − 𝑆𝑒

1
𝑚)𝑚]2     𝑤ℎ𝑒𝑟𝑒, 𝑚 = 1 −

1

𝑛
, 𝑛 > 1 (2.4) 

 
𝑆𝑒 =  

𝜃 − 𝜃𝑟

𝜃𝑠 − 𝜃𝑟
 (2.5) 

where 𝜃𝑟 and 𝜃𝑠 are residual and saturated water contents, respectively [L3/ L3], α is the inverse of 

the air-entry value (also called bubbling pressure) [1/L], n is a pore-size distribution index, l is a 

pore-connectivity parameter. 𝜃𝑟, 𝜃𝑠, α, n, and KS are the five hydraulic parameters that need to be 

calibrated and validated. 

A dual-permeability type flow is used to describe and simulate preferential flow, which involves 

two mobile regions of matrix and macropores (fracture) (Simunek et al., 2005). The importance of 

preferential flow must be recognized when the soil column is subjected to prolonged operation, 

particularly after freeze-thaw cycles. HYDRUS-1D implemented the approach of Gerke and van 

Genuchten (1993, 1996) and flow equations for the two pore regions: 

where w is the ratio of macropore (fracture) volume and total soil system, 𝛤𝑤 is the transfer rate 

for water from one region to the other, and subscript f represents fracture region and subscript m 

represents matrix. 

 𝜕𝜃𝑓(ℎ𝑓)

𝜕𝑡
=

𝜕

𝜕𝑥
[𝐾𝑓(ℎ𝑓) (

𝜕ℎ𝑓

𝜕𝑥
+ 𝑐𝑜𝑠𝛼)] − 𝑆𝑓(ℎ𝑓) −

𝛤𝑤

𝑤
 (2.6) 

 𝜕𝜃𝑚(ℎ𝑚)

𝜕𝑡
=

𝜕

𝜕𝑥
[𝐾𝑚(ℎ𝑚) (

𝜕ℎ𝑚

𝜕𝑥
+ 𝑐𝑜𝑠𝛼)] − 𝑆𝑚(ℎ𝑚) −

𝛤𝑤

1 − 𝑤
 (2.7) 
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2.2.1.2 Heat transport 

To model bioretention in cold climate, heat transport needs to be considered, which is expressed 

as a convection-dispersion equation when vapor transport is negligible: 

where λ(𝜃) is the coefficient of apparent thermal conductivity of soil media [ML/T3K], Cp(𝜃) is 

the volumetric heat capacity of the porous medium [M/LT2K], and Cw is the volumetric heat 

capacity of the liquid phase [M/LT2K]. The three terms on the right-hand side represent heat flow 

due to conduction, heat transported by flowing water, and energy uptake by root water uptake, 

respectively. 

The apparent thermal conductivity λ(𝜃) can be expressed as: 

where λ0(𝜃) is the thermal conductivity of the porous medium without flow and macrodispersivity 

[ML/T3K], βt is the thermal dispersity [L]. The Chung and Horton (1987) equation (Eq. 2.10) was 

used to describe the thermal conductivity and b1, b2, and b3 are empirical parameters [ML/T3K]. 

 ∂𝐶𝑝(𝜃)𝑇

∂t
=

𝜕

𝜕𝑧
[𝜆(𝜃)

𝜕𝑇

𝜕𝑧
] − 𝐶𝑤𝑞

𝜕𝑇

𝜕𝑧
− 𝐶𝑤𝑆𝑇 (2.8) 

 𝜆(𝜃) = 𝜆0(𝜃) + 𝛽𝑡𝐶𝑤|𝑞| (2.9) 

 𝜆0(𝜃) = 𝑏1 + 𝑏2 + 𝑏3𝜃1/2 (2.10) 
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2.2.1.3 Solute transport 

In this paper, HP1 (coupled HYDRUS 1D and PHREEQC) (Parkhurst and Appelo, 1999) was used 

for solute transport modeling. Chemical reactions between different pollutants used in the model 

can be found in PHREEQC database. PHREEQC biogeochemical code simulates chemical 

reactions and transport which is based on a finite equation of 1D flow path of solution transport:  

where C is the solute concentration in water, t is time, v is the pore water flow velocity, DL is the 

hydrodynamic dispersion coefficient, and q is the concentration in the solid phase. The three terms 

on the right side represent solute advection, dispersion and chemical reactions respectively. 

2.2.2 Experiments for model calibration and validation 

Li (2019) and Kratky (2019) at the University of Alberta, Canada, conducted laboratory 

experiments of four bioretention columns. The columns were typical bioretention cells, which 

consisted of vegetation and mulch layer at the top, topsoil with organic matters as plant soil, middle 

soil media layer, gravel layer, and underdrain, as shown in Figure 2.1. Outflow pipes of all the four 

bioretention columns were located at the bottom of the columns. Columns 1-2 used free drainage 

as the underdrain method all the time. Columns 3-4 had IWS (Internal water storage) zone to create 

an anoxic zone to promote denitrification in summer, and used free drainage (no IWS) in winter 

or spring. Two types of classical soil media were used in their experiments. Soil media A was a 

less porous soil matrix, a loam typically used in local (Edmonton, Canada) landscaping. Soil B is 

a more porous soil matrix which is a sandy loam.  

 𝜕𝐶

𝜕𝑡
= −𝑣 

𝜕𝐶

𝜕𝑧
+ 𝐷𝐿  

𝜕2𝐶

𝜕𝑧2
−   

𝜕𝑞

𝜕𝑡
 (2.11) 
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Figure 2.1 Experiment setup of bioretention columns (Li, 2019). Free drainage criteria applied for columns 

1 and 2 all the time, and columns 3 and 4 during winter operations. Elevated outflow criterion with 45 cm 

IWS applied for column 3 and 4 during summer. 

Preliminary tests (falling head tests) were first conducted in Columns 1 and 2, which was 

equivalent to approximately one year of precipitation in the local municipality (Edmonton, 

Canada). The formal experiments consisted of five stages of operation, which was equivalent to 

1.6 years of typical precipitation in Edmonton: 1) Year 1 summer small storm events; 2) Year 1 

winter snowmelt events; 3) Year 1 spring runoff events; 4) Year 2 summer small storm events; 

and 5) Year 2 summer larger storm events (Kratky, 2019). All storm events were conducted weekly 

to bring bioretention columns back to air dry state, and target contaminants were added (as shown 

in Appendix Table A2.1) into the stormwater to imitate pollutants in actual runoff. The four 

bioretention columns experienced a “mature” period in Year 1, which became stable in Year 2 (Li, 

2019).  
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During the first stage (Year 1 summer), nineteen 1:2 year storm events (22.6 mm precipitation per 

event) were applied to the columns, followed by four snowmelt events in the second stage (Year 

1 winter). Two snowmelt tests were conducted on frozen columns where the soil was fully frozen 

and the room temperature was -20 ℃, and two snowmelt tests were on thaw columns where the 

soil temperature was around -0.3 °C and the room temperature was 1 °C. After the snowmelt events, 

two spring runoff events in the third stage (Year 1 spring) were conducted. The first spring event 

was a first flush event with high concentration of salts (see Table A2.1), inflow rate of 5.8mL/min, 

and low volume of water (9.8 mm) in 29 hours, but the outflow hydrograph was not recorded. The 

second spring runoff event was a major melt of packed snow with lower concentration of salts (see 

Table A2.1), inflow rate of 14 mL/min, and a high volume of water (39.3mm) in 40 hours. During 

the fourth and fifth stages (Year 2 summer), five 1:2 year storm events were conducted, followed 

by one 1:5 storm event (37.3 mm precipitation) and one 1:10 year storm event (45.2 mm 

precipitation) (Li, 2019). In all the experiments, rainfall events were designed using the 4-hr 

Chicago distribution according to IDF curves in the City of Edmonton Drainage Design and 

Construction Standards (COE, 2014b). Detailed rainfall intensity with time for the rainfall events 

is provided in Appendix Table A2.2. The catchment area to surface area (CA/SA) ratio in the 

experiments was assumed to be 10, and the catchment area was assumed to be 100% impervious.  

The experimental data of Li (2019) and Kratky (2019) were used for the HYDRUS 1D modeling 

in this study. Specifically, the observed outflow rate and ponding depth of all the four columns 

during Year 1 winter and Year 2 summer were used for model calibration and validation of 

hydrologic performance in this study. The inflow pollutant concentrations, leaching test results of 

soil media, and outflow pollutant loading of Columns 1 -2 during Year 2 summer were used for 

the water quality modeling in this study. 
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2.2.3 Model setup 

2.2.3.1 Hydrologic modeling for summer storm events 

One of five 1:2 year storm events tested in Year 2 was selected for model calibration on hydraulic 

parameters, because the hydrologic performance of the bioretention columns was more stable and 

mature in Year 2 (Li, 2019). A schematic diagram of calibration process using HYDRUS 1D is 

shown in Figure A2.1 in the Appendix. The calibrated parameters in 1:2 year storm event were 

then applied to 1:5 and 1:10 year storm events for model validation, assuming these parameters 

are transferable to larger storm events. After validations, the calibrated soil hydraulic parameters 

were applied for large storm events, including 1:25, 1:50, and 1:100 storm events, to test 

bioretention columns’ hydrologic performance under extreme conditions. Note that, in this 

modeling study, no overflow was considered for all the four columns during large storm events to 

better quantify the resultant flooding (surface ponding) of the columns. 

HYDRUS 1D uses a Marquardt-Levenberg type of parameter optimization algorithm for inverse 

estimation of soil hydraulic, heat or solute transport parameters, and a maximum of fifteen 

parameters can be calibrated at one time. In this study, the initial values of 𝜃𝑟, 𝜃𝑠, α, and n were 

referred to Carsel and Parrish (1988) who summarized unsaturated hydraulic parameters for 

different soil classifications using van Genuchten (1980) model. The initial guess of Ks was taken 

from Clapp and Hornberger (1978) whose average values of saturated conductivity were higher 

than Carsel and Parrish (1988)’s estimations, and the selection was based on the falling head test 

conducted in Li (2019) and Kratky (2019)’s experiments. Specifically, for the topsoil layer, the 

initial guesses of 𝜃𝑟, 𝜃𝑠, α, n, and Ks of topsoil were all larger than those for the middle soil media 

layer because the compost added in topsoil increases effective friction angle, saturated hydraulic 
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conductivity and water content (Duzgun et al., 2021). Due to the high deviation of each parameter 

(Carsel and Parrish, 1988) and uncertainties in the changes of soil properties caused by winter 

freeze-thaw cycles, this study tested a wide range of the five parameters. The initial values of soil’s 

Ks and their testing ranges of topsoil and middle soil media are written as Table A2.3. 

Gravel layer has very high hydraulic conductivity and sharp infiltration front, so it can turn into a 

dry state instantaneously making simulation unstable (Steffen, 2012). To stably simulate the gravel 

layer, this study adopted the method of Filipović et al. (2014), which employed hydraulic 

parameters of sand with higher Ks to replicate gravel layer behaviour in the model. In Columns 3 

and 4, the gravel layer does not affect the outflow hydrograph because the entire gravel layer was 

submerged and saturated during a rainfall event as a result of the 45-cm anoxic zone (IWS zone) 

at the bottom. For Columns 3 and 4, the hydraulic conductivity of the gravel layer was set as a 

large value (1 cm/min) to achieve stable outflow hydrographs, because a small value would 

develop instability in model output (see Figure A2.2 in the Appendix).  

Sensitivity analysis was conducted for the calibrated hydraulic parameters with one unit increment 

(depending on its highest order of decimal) and 10% increment of original value for one parameter 

while keeping the other four parameters unchanged. Percentage change of the peak outflow was 

used as the index to sort parameters’ sensitivities. Using Column 1 as an example, the results 

indicate that Ks of the middle soil layer is the most sensitive parameter, followed by α and n of the 

middle layer (Table 2.2). The rest of parameters of both layers are not sensitive. The 70-cm middle 

soil layer’s hydraulic parameters are dominant comparing to those of the 16 cm top planting soil 

layer for all four columns, which demonstrates the important role of the middle soil layer in 

bioretention.  
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Table 2.2 Sensitivity test of hydraulic parameters, using Column 1 as an example. The objective was to 

evaluate the change in peak outflow due to the change of one parameter while maintaining all other four 

parameters the same.  

Soil Index Qr Qs 
α   

(1/cm) 
n 

Ks 

(cm/min) 

 Increments +0.01 +0.1 +0.01 +0.1 +0.01 

Topsoil Change in peak 

outflow 

0.11% -1.14% -0.07% -0.17% 0.16% 

Middle Layer 0.03% -0.34% 3.71% 2.34% 20.03% 

       

 Increments -10% -10% -10% -10% -10% 

Topsoil Change in peak 

outflow 

-0.07% 0.59% 0.04% 0.44% -0.46% 

Middle Layer -0.01% 0.13% 0.80% -5.10% -9.13% 

2.2.3.2 Hydrologic modeling for winter snowmelt and spring runoff events 

Soil experience compaction and expansion in cold climates, and soil hydraulic parameters would 

significantly change after few freeze-thaw cycles. Therefore, calibration of soil hydraulic 

parameters was required for snowmelt events, and then calibrated parameters were validated in 

spring runoff event. The soil hydraulic parameters were calibrated for cold condition using one 

thaw test because only this test recorded the soil temperature (-0.3℃) and room temperature (2-

3℃), which are needed for the model. The parameters were validated using the second spring 

runoff event for the same reason. Due to the similarity between Columns 1-2 and Columns 3-4 

under cold climate, only the modeling results of Columns 1-2 are presented in this study.  

To examine the possibilities on the existence of preferential flow due to freeze-thaw cycles, the 

dual-permeability model was applied to the winter snowmelt and spring runoff events. Soil 

hydraulic parameters for dual-permeability model were referenced from Simunek et al. (2003) for 
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the fracture region (𝜃𝑟𝑓 = 0.0, 𝜃𝑠𝑓 = 0.5, ∝𝑓 =0.1 cm-1, 𝑛𝑓 =2.0, 𝑙=0.5, 𝑘𝑠𝑓 =1.5cm/min) and the 

matrix-fracture interface (𝛽= 3, 𝛾=0.4, 𝑎=1.0 , 𝑙=0.5, 𝑘𝑎𝑠=7x10-6 cm/min). 𝑤, the ratio between 

the volumes of the macropores or fracture domain and the total soil system, was calibrated 

manually for these events.  

2.2.3.3 Water quality modeling 

The water quality modeling focused on free drainage scenario (Columns 1-2) and nutrients 

(chloride, phosphate, nitrate, nitrite, and ammonium). The modeling was conducted for 1:2 year 

storm events in the second summer, because soil became more mature than Year 1 and hydraulic 

properties had been calibrated and validated. Results from the soil leaching experiment was used 

to describe pollutants contained inside the columns. Pollutant concentration of runoff and that 

contained in the bioretention column were inputs for the model (Table 2.3). The equilibrium phase 

of halite (NaCl) was added to the model to simulate the saturation state of chloride that existed in 

soil columns after winter operation with high salt concentration inflow.  

Table 2.3 Pollutant concentrations in the soils (based on the leaching test) and in the rainfall/inflow (The 

unit is mmol/kgw, except for CEC (Cation Exchange Capacity) that uses meq/100g) (Kratky, 2019). 

 

Pollutants Inflow Compost Soil A 
Soil A with 

20% compost 
Soil B 

Soil B with 

20% compost 

NH4
+ 0.111 0.013 0.019 0.042 0.007 0.014 

NO3
- 0.024 0.045 0.740 3.518 0.034 0.731 

NO2
- 0.011 0.231 2.233 10.242 0.176 2.189 

PO4
- 0.021 0.001 0.070 0.348 0.001 0.070 

Cl- 0.534 0.094 0.279 1.020 0.044 0.239 

K+ 0.045 0.046 0.810 3.866 0.035 0.801 

Na+ 0.434 0.311 2.493 11.220 0.213 2.415 

CEC N/A 16.0 12.0 25.0 17.8 14.6 
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2.2.3.4 Initial and boundary conditions 

In HYDRUS 1D, initial conditions can be either water content or pressure head. In our model, the 

initial pressure head was assigned to describe bioretention columns as air dry at the starting point. 

Bioretention columns were designed to be able to handle ponding at top to retain surface runoff. 

The upper boundary condition was set to be “atmospheric boundary condition with surface layer”, 

which allows water to build up on the surface. Columns 1-2 have outflow pipes under the gravel 

layer while Columns 3-4 have elevated outflow pipes (see Figure 2.1). Because gravel has 

nonlinear hydraulic properties and sharp infiltration front, I assigned “free drainage” for Columns 

1-2 and “seepage face h = 45 cm” for Columns 3- 4 as lower boundary conditions. “Free drainage” 

is a zero-gradient boundary condition that describes a freely draining soil profile, and “seepage 

face” indicates boundary flux that will be triggered when the pressure head reaches a given value. 

2.2.3.5 Model evaluation 

Two statistical measures, R-Squared for regression (R2) and Root Mean Square Weighted Error 

(RMSE) were used in HYRUDS 1D to evaluate the fitness of the simulated results compared to 

the experimental data.  

 

R2 =
[∑ 𝑤𝑖 𝑓𝑖𝑦𝑖 −

∑ 𝑓𝑖 ∑ 𝑦𝑖

∑ 𝑤𝑖
]

2

[∑ 𝑤𝑖 𝑓𝑖
2 −

(∑ 𝑓𝑖)
2

∑ 𝑤𝑖
] [∑ 𝑤𝑖 𝑦𝑖

2 −
(∑ 𝑦𝑖)

2

∑ 𝑤𝑖
]

 (2.10) 

 

RMSE = √
∑ 𝑤𝑖(𝑓𝑖 − 𝑦𝑖)

𝑗
𝑖=1

𝑗
 (2.11) 
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where 𝑤𝑖 is the weight factor, f is the predicted value and y is the observed data, j is the total 

number of observed data. Weight factors were assumed to be 1 for all observed data. 

2.3. Modeling results and discussion 

2.3.1 Hydrologic model calibration and validation 

Calibration results for 1:2 year storm event are shown in Figure 2.2 and Calibrated soil hydraulic 

parameters of four bioretention columns are provided in Table 2.4. R-squared (R2) between the 

simulated outflow hydrograph and experimental data were 0.92, 0.96, 0.97, and 0.84 for Column 

1, 2, 3 and 4, respectively, and RMSE were 0.06, 0.04, 0.07, and 0.13 mL/min, respectively. Meng 

et al. (2014) calibrated two bioretention cells’ hydrologic performance using field results during 

natural rainfall, and R2 were 0.76 and 0.61 for the two cells. Despite the overall good performance 

of the model, there were also some discrepancies. Simulated outflow hydrograph did not catch a 

few observed peak points for Columns 1-2. The peak outflow observed in Columns 1-2 were 94 

and 210 ml/min, while the simulated peaks were 71.3 and 189.4 ml/min. The possible reason for 

such discrepancy is that: after one year of operation particularly the freeze-thaw cycles in winter 

and the use of high concentration of contaminants in spring runoff events, the soil media could 

have experienced the expansion, compaction, and clogging, potentially forming fractures and 

preferential flow paths inside the soil column. In Column 4, a sudden drop of simulated outflow 

occurred at around 210 min while the observed outflow showed a smooth decrease. The sudden 

drop of outflow occurred when the simulated ponding diminished which resulted in negative 

surface water pressure. The smooth decrease observed in experiments indicated that water was 

contained in the soil column after ponding ended. In addition to accelerating outflow, preferential 
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flow can also constrain outflow by retaining water in macropores and blocking flow paths in 

fractures (Allaire et al., 2009).   

 

Figure 2.2 Model calibration on outflow hydrograph and ponding depth for the four bioretention columns 

in 1:2 year storm event in summer: a) Column 1, b) Column 2, c) Column 3, and d) Column 4. Note that 

no ponding was observed in both the experiment and simulation of Column 2. 
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Table 2.4 Calibrated hydraulic parameters of the four bioretention columns in summer  

Column Soil Layer Qr Qs 
α   

(1/cm) 
n 

Ks 

(cm/min) 

1 

Top Layer 0.067 0.519 0.051 1.902 0.247 

Middle Layer 0.041 0.398 0.003 1.737 0.044 

Gravel 0.005 0.42 0.12 2.5 750 
       

2 

Top Layer 0.09 0.52 0.029 1.726 0.282 

Middle Layer 0.066 0.42 0.005 1.511 0.154 

Gravel 0.005 0.42 0.12 2.5 400 
       

3 

Top Layer 0.033 0.526 0.06 1.917 0.224 

Middle Layer 0.021 0.41 0.01 1.867 0.089 

Gravel 0.005 0.42 0.12 2.5 1 
       

4 

Top Layer 0.045 0.5 0.028 1.844 0.219 

Middle Layer 0.033 0.46 0.007 1.656 0.144 

Gravel 0.005 0.42 0.12 2.5 1 

 

Surface ponding was observed in Columns 1, 3 and 4. R-squared (R2) between the simulated 

ponding and experimental data were 0.83, 0.89, and 0.90 for these columns, respectively, and 

RMSE was 0.300, 0.115, and 0.180 cm. The simulated ponding depth of Columns 3 and 4 fitted 

well with observed values. For Column 1, the maximum simulated ponding depth was 6.1 cm, 

slightly lower than the maximum observed ponding of 8.4 cm; and the simulated ponding duration 

was approximate 3 hours, which was 30 min longer than the observed data. Overall, based on both 

outflow hydrograph and ponding depth, the simulated results are reliable and satisfactory. 

2.3.2 Hydrologic Performance Validation 

Model validation for 1:5 and 1:10 year storm events are shown in Figure 2.3 and Figure 2.4. R2 

between the observed and simulated outflows were 0.82, 0.92, 0.83, and 0.62, and RMSE were 

0.11, 0.05, 0.10, and 0.17 mL/min for the four columns, respectively, during 1:5 year storm event. 

Similarly, R2 between the observed and simulated outflows were 0.86, 0.80, 0.83, and 0.69, and 
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RMSE were 0.14, 0.09, 0.15, and 0.15 mL/min for during 1:10 year storm event. The simulated 

outflow hydrograph fitted well with the observed outflow in Columns 1, 2, and 3 (with R2 > 0.8) 

during both 1:5 and 1:10 storm events, while it was satisfactory for Column 4 (with R2 > 0.6). 

Despite the overall good performance of the model, discrepancy was also noticed. Sudden 

reductions were observed in the stimulated outflow for Columns 2, 3, and 4, while the experimental 

outflow decreased gradually. Moreover, in all the simulations, the timing of peak flow was close 

to observed data. The simulated peak outflows were 8.8, -0.8, 6.8, and 7.7 mL/min higher than the 

observed peaks for four columns during a 1:10 storm event, respectively. 

In term of surface ponding, R2 between the observed and simulated were 0.97, 0.47, 0.81, and 0.79, 

and RMSE were 0.04, 0.76, 0.15, and 0.15 mL/min for the four columns, respectively, during 1:5 

year storm event. During 1:10 year storm event, the corresponding R2 values were 0.82, 0.81, 0.88, 

and 0.86, and RMSE were 0.15, 0.14, 0.14, and 0.14 cm, respectively. The simulated ponding 

depth of Column 1 closely fitted with observed data from a 1:5 storm event with the same ponding 

duration (error < 5min). During a 1:10 storm, the simulated ponding depth was approximate 8 

hours, which was 2 hours shorter than observed. The simulated peak ponding depth was 23.1 cm, 

which was 2.4 cm less than the observed. Column 2 had a simulated peak ponding depth of 9.9 

cm, which is larger than the observed peak ponding depth of 5.4 cm, and the ponding duration is 

2.5 hours (experimental ponding duration is 1.5 hours) during a 1:5 storm. Column 2’s simulated 

ponding hydrograph fitted well with observed ponding during a 1:10 storm (the difference of 

duration is 14 min and that of the peak is 1.4 cm). Columns 3 and 4’s simulated pond hydrograph 

matched well with observed data. The difference of peak ponding depth was 1.0 cm and 0.2 cm 

for Column 3, and 0.7 cm (did not include one “outlier peak point”) and 1.1 cm for Column 4 

during 1:5 and 1:10 storms, respectively. The simulated ponding durations of Colum 3 were 
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approximately 5.5 hours and 6.8 hours, which were about 30 min and 60 min less than the observed 

results, and the difference of ponding duration was 1 min and 15 min for Column 4 during 1:5 and 

1:10 storms, respectively. 

Even though R2 generally decreased with the increase of rainfall intensity, the overall fitness is 

still promising for outflow and ponding hydrographs. The simulated peak outflow was slightly 

lower than the observed peak during 1:2 and 1:5 storm events, whereas it was slightly greater than 

the experimental data during 1:10 storm events for all four columns, which might indicate that the 

actual Ks of the bioretention columns declines as the intensity of storm events increases. The 

validation results suggest that the five hydraulic parameters including Ks do not change 

significantly from 1:2 to 1:10 year storm events for all four bioretention columns.  
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Figure 2.3 Model validation on outflow hydrograph and ponding depth for the four bioretention columns 

in a 1:5 year storm event in summer: a) column 1, b) column 2, c) column 3, and d) column 4. 
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Figure 2.4 Model validation on outflow hydrograph and ponding depth for four bioretention columns in 

1:10 year storm event in summer: a) column 1, b) column 2, c) column 3, and d) column 4. 
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2.3.3 Hydrologic performance for summer large storm events 

 

Figure 2.5 Simulated outflow hydrograph and ponding depth for four bioretention columns in large (1:25, 

1:50 and 1:100) storm events in summer: a) Column 1, b) Column 2, c) Column 3, and d) Column 4. 

The validated hydraulic parameters were applied in predicting bioretention performance during 

large storm events, including 1:25, 1:50, and 1:100 year storm events in the City of Edmonton, 

Canada. Detailed rainfall intensity with time for these design storms is shown in Appendix Table 

A2.2. The cumulative depths of 1:25, 1:50 and 1:100 year rainfall events are 56.2 mm, 68.8 mm 

and 83.4 mm, respectively. Simulated outflow hydrograph illustrated that four columns reduced 

0

10

20

30

40

50

60

70

80

90

1000

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1,000 1,200
P

o
n

d
in

g
 (

cm
)

Q
 (

m
L

/m
in

)

Time (min)

a)

Q out 1 in 25

Q out 1 in 50

Q out 1 in 100

Ponding 1 in 25

Ponding 1 in 50

Ponding 1 in 100

0

10

20

30

40

50

60

70

80

90

1000

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1,000 1,200

P
o

n
d

in
g

 (
cm

)

Q
 (

m
L

/m
in

)

Time (min)

b)

Q out 1 in 25

Q out 1 in 50

Q out 1 in 100

Ponding 1 in 25

Ponding 1 in 50

Ponding 1 in 100

0

10

20

30

40

50

60

70

80

90

1000

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1,000 1,200

P
o

n
d

in
g

 (
cm

)

Q
 (

m
L

/m
in

)

Time (min)

c)

Q out 1 in 25

Q out 1 in 50

Q out 1 in 100

Ponding 1 in 25

Ponding 1 in 50

Ponding 1 in 100

0

10

20

30

40

50

60

70

80

90

1000

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1,000 1,200

P
o

n
d

in
g

 (
cm

)

Q
 (

m
L

/m
in

)

Time (min)

d)

Q out 1 in 25

Q out 1 in 50

Q out 1 in 100

Ponding 1 in 25

Ponding 1 in 50

Ponding 1 in 100



 36 

the peak flow by 95.7%, 88.7%, 94.3%, and 91.5% during a 1:100 storm respectively (Figure 2.5), 

which is promising for urban flood mitigation since LID is usually designed for small storm events, 

e.g., the design storm of LID is 1:5 year storm in Edmonton (COE, 2014a). The peak flow of all 

four columns did not increase significantly when the intensity of storm events was getting larger, 

because the outflow rate is mainly constrained by the saturated conductivity of the middle layer 

soil media of the bioretention column. 

In the meantime, both ponding depth and duration significantly increased when the return period 

of storm events increased. Column 2 has the peak ponding depth of 24.3 cm and ponding duration 

of near 4 hours during a 1:25 storm, and they are 31.6 cm and near 5 hours during a 1:50 storm. 

The rest three columns experienced a higher peak ponding depth of around 30 cm and a longer 

ponding duration (approximate 10 hours, 8.3 hours, and 5.5 hours for Columns 1, 3, and 4) during 

1:25 year storm. During 1:50 year storm, the maximum ponding depth of Columns 1, 3, and 4 

exceeded 35 cm (approximate 44.9 cm, 40.7 cm, and 37.1 cm for Column 1, 3, and 4), which is 

the maximum design ponding depth as per Edmonton LID design guideline (COE, 2014a). During 

a 1:100 year storm, the maximum ponding depths of four columns are 58cm, 41cm, 53cmm, and 

48cm respectively, and the ponding duration are approximate 15 hours, 5.5 hours, 11.5 hours, and 

7.5 hours, respectively. Hydrologic performance of bioretention columns during large storm events 

demonstrated that coarser soil media could significantly reduce the ponding duration than finer 

soil media with a tradeoff of increasing peak outflow.  

Sun et al. (2019) used SWMM to investigate how rainfall intensity and pattern affected 

bioretention hydrologic performance, and found the storms with less duration and larger intensity 

resulted in greater overflow and outflow and thus  more severe ponding and flooding. With our 

test results on large storm events (rainfall depth > 50 mm in a 4-hr duration), a bioretention column 



 37 

with coarser soil media and a free underdrain can effectively reduce peak flow approximately 90% 

while maintaining ponding depth below design standards, mitigating the pressing urban flooding 

issues due to extreme weathers caused by climate change. 

2.3.4 Hydrologic performance for winter snowmelt and spring runoff events 

Hydrologic performance of bioretention Columns 1-2 was calibrated for snowmelt events and 

validated for spring runoff events with the consideration of the presence of preferential flow, as 

shown in Figure 2.6. The calibrated soil hydraulic and thermal properties are presented in Table 

2.5. For snowmelt events using the single-porosity model, R2 of outflow for Columns 1-2 were 

0.77 and 0.86, and RMSE were 0.12 and 0.09 mL/min. After using the dual-permeability model 

with preferential flow taken into account, R2 of outflow increased to 0.94 and 0.96, and RMSE 

reduced to 0.01 and 0.005 mL/min, assuming the ratio 𝑤 was 0.07 and 0.05 for Columns 1-2, 

respectively. The comparison between the two models indicated that preferential flow had high 

possibilities of existence, which created fractures and macropore flow inside soil columns and 

altered the flow path. 

According to simulation results on spring runoff events for model validation, R2 of outflow for 

Columns 1-2 were 0.72 and 0.84, and RMSE were 0.14 and 0.10 mL/min, using the single-porosity 

model. The R2 values increased to 0.80 and 0.86, and RMSE reduced to 0.12 and 0.09 mL/min, 

using dual-permeability model with preferential flow taken into account and assuming the ratio 𝑤 

was 0.17 and 0.15 for Columns 1-2, respectively. Higher values of 𝑤, compared to those for the 

snowmelt events, suggested that more fractures could potentially occur after the first flush 

experiment and more severe preferential flow existed inside the soil column. The first flush event 

contained a high concentration of salt and high intensity of inflow, which was likely to create more 
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macropores inside the soil column. The observed outflow hydrograph had several fluctuations, 

which can potentially be caused by the instability of experimental apparatus for a long-period 

operation (> 60 hours).  

It is interesting to notice the change of Ks from summer to winter/spring condition in both soil A 

and B. The Ks of Soil A in Column 1 increased from 0.044 cm/min (in summer condition when the 

temperature is around 21℃) to 0.10 cm/min (in winter/spring condition when the temperature is 

around 2-3℃ and soil temperature is around -0.5℃). However, Ks of soil B (Column 2) decreased 

from 0.15 cm/min in summer to 0.11 cm/min to winter/spring. The modeling results of increasing 

hydraulic conductivity for Soil A (loam texture) and decreasing hydraulic conductivity of Soil B 

(sandy loam) agreed with the laboratory experiments (Li, 2019). Weigert and Schmidt (2005) 

conducted lab experiments on two soil columns of sandy and loamy soil under partially frozen 

condition and simulated with a physical infiltration model. The calculated hydraulic conductivities 

of two soil types were close, indicating that hydraulic conductivities can theoretically be similar 

(Weigert and Schmidt, 2005). Meanwhile, due to recognized fracturing during the freezing process, 

the experimental hydraulic conductivity of loamy sand was underestimated by physical infiltration 

mode, indicating that hydraulic conductivity of soil was dominated by preferred flow when soil 

fractures were present (Weigert and Schmidt, 2005). Other studies have also supported that the 

formation of macropores in frozen soil can significantly affect the soil infiltration rate depending 

on the frozen water content and the formation of frost layer, both of which are, however, variable 

and difficult to predict (Watanabe et al., 2013; Watanabe and Kugisaki, 2017; Mohammed et al., 

2018; Demand et al., 2019). The different changes of hydraulic conductivities of two types of soil 

were likely because finer soil media (Soil A) was expanding pore space due to freezing water 
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expansion and formation of macropores, while coarser soil media (Soil B) had a reduction in pore 

space due to compaction and pore ice blocking (Denich et al., 2013; Li, 2019). 

 

Figure 2.6 Calibrated outflow hydrograph of bioretention columns in cold region during winter snowmelt 

event: a) Column 1, and b) Column 2; and validated outflow hydrograph during spring runoff event: c) 

Column 1, and d) Column 2. PF in the figure legends stands for preferential flow.
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Table 2.5 Calibrated hydraulic and heat transport parameters for bioretention Columns 1-2 in winter and spring cold climates  

Column Soil Layer Qr Qs 
α 

(1/cm) 
n 

Ks 

(cm/min) 
F  

b1   

(W/m/℃） 

b2 

(W/m/℃） 

b3 

(W/m/℃） 

1 

Top Layer 0.067 0.519 0.051 1.9 0.121 0.112 0.243 0.39 1.53 

Middle Layer 0.041 0.398 0.003 1.74 0.115 0.013 0.243 0.39 1.53 

Gravel  0.005 0.42 0.120 2.5 500 0.005 0.228 -2.40 4.92 
           

2 

Top Layer 0.09 0.55 0.029 1.73 0.120 0.216 0.228 -2.40 4.92 

Middle Layer 0.066 0.42 0.005 1.51 0.114 0.003 0.228 -2.40 4.92 

Gravel 0.005 0.42 0.113 2.5 500 0.005 0.228 -2.40 4.92 
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2.3.5 Water quality modeling 

Figure 2.7 Comparison of the simulated pollutant loading reduction rates (%) with the measurements for 

bioretention Columns 1-2 during a 1:2 year storm event: a) Column 1; and b) Column 2. The initial pollutant 

concentrations are listed in Table A2.1. 

In comparison with the observed results, the simulation results on water quality performance of 

bioretention during a 1:2 year storm event were generally reasonable, as shown in Figure 2.7. Both 

bioretention columns demonstrated a high loading reduction capability in phosphate, nitrite, and 

ammonium, but chloride and nitrate loading increased after the bioretention due to leaching effect. 

During the winter experiments, influent with a high concentration of sodium chloride flowed into 

the soil columns (Li, 2019), which made soil reach the saturation state of solute NaCl and salt 

precipitated. Chloride concentration was significantly larger in the outflow with 142% and 22% 

increase than that of inflow in the first summer week in Year 2 right after the winter season. After 

the first week of summer, chloride concentration reduction of both columns was around 0% with 

an error of approximately 7% during the next four weeks. The simulated reduction of chloride was 

-9.6% and -8.0% for Columns 1 and 2, which are very close to observed chloride concentration 
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reduction following summer weeks. Mile High Flood District, Colorado (2020) summarized that 

bioretention and other types of LID were ineffective at treating road salts in several studies, 

suggesting that bioretention temporarily stored the salts and chloride leaching occurred during the 

first flush in spring, and that bioretention was not effective in chloride removal (MHFD, 2020). 

The increase of nitrate in the outflow was because of nitrogen rich soil used in the columns and 

nitrification process that converted ammonium to nitrite and further to nitrate (US EPA, 2002). 

Organic nitrogen and ammonia nitrogen can be effectively contained by the medium of 

bioretention systems and transformed into nitrate (Wan et al., 2017). The simulated nitrate 

reduction of -276% and -81% for Columns 1-2 was different from the observed results of -132% 

and -223% that were the average value for five 1:2 year storm events in the summer of Year 2. In 

the experiments, nitrate reduction for both columns differed significantly 

in the second summer from weeks to weeks (Kratky, 2019). In the first week, the reductions of 

Columns 1-2 were -200% and -515%, but it decreased to -10% and -94% in the fifth week. Nitrite 

is unstable in solution, which is why it is barely seen in the outflow of bioretention columns 

(Moeller, 2012). Meanwhile, no evident nitrite inhibition was observed in experiments, and 

therefore no nitrite accumulation occurred. Li et al. (2018) tested three bioretention columns 

through lab experiments and numerical simulations using HYDRUS 1D, and demonstrated that 

average reduction rates of nitrate, ammonium, and total phosphate were approximately 65%, 75% 

and 80%, respectively, in all design scenarios of different fillers. Because IWS was used in their 

bioretention, they were able to achieve positive nitrate removal, which is in opposite to our findings. 

IWS creates an anoxic zone that stimulates the denitrification process and has been demonstrated 

with successive nitrogen removal in a few studies (Palmer et al., 2013; Li et al., 2014; Qiu et al., 

2019). Mulch or wood chips can also be considered as one possible denitrification measure since 
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they convert to a carbon source for denitrifying bacteria (Liu et al., 2021) and promote anaerobic 

condition at top layer (Wan et al., 2017). Mulch was used in Li (2019) and Kratky (2019)'s 

experiments, however owing to its thin thickness of 4 cm, the denitrification benefits of mulch 

were deemed insignificant. The simulated results and observed results illustrated significant 

removal capacity of bioretention columns for ammonium and phosphate in the outflow, but 

negative removal for nitrate and chloride without appropriate denitrification measures.  

In the present model, one error source is that the initial concentration of pollutants in the soils was 

assumed to be the same as the leaching test results, which could be different from actual conditions. 

To achieve more convincing modeling results, it is recommended that the initial concentrations of 

different contaminants inside the soil column be tested at different positions.  

2.3.6 Optimization of bioretention columns  

Three measures can be used to improve the design of bioretention columns. The first measure is 

to replace soil media B in the bioretention column with a coarser soil media. In bioretention’s 

practice, the fundamental design component is its soil media, and many studies and design 

guidelines have suggested coarse soil media as engineering soil media because of its higher 

permeability (Hunt and Lord, 2006; Davis et al., 2009; Dhalla and Zimmer, 2010; Liu et al., 2014; 

Dell and Brim, 2017). The second measure is to increase the soil layer depth inside the bioretention 

column because a larger layer thickness of soil indicates additional storage space for stormwater. 

Decreasing the CA/SA is the last measure. Using coarser soil media for surrounding soil was one 

measure reported by He and Davis (2011) because higher hydraulic conductivity of surrounding 

soil reduces outflow. HYDRUS 1D neglects side wall effects in simulation, so this measure is not 

considered in this paper. 
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Figure 2.8 Hydrologic performance of bioretention Column 2 modified by replacing Soil B with Soil C for 

1:100 year storm event. Two different values of Ks of Soil C were tested. 

Loamy sand is considered a replacement of sandy loam (soil B) to avoid overflow (flooding) 

caused by exceeding maximum ponding depth during large storm events. Sandy soil has higher 

permeability and lower water content, which reduce clogging potential (Tirpak et al., 2021), has 

better performance in cold weather and increases permeability following the thawing process 

(Moghadas et al., 2016). Coarser media with larger pores is helpful to prevent concrete frost (one 

type of frost in soil) and form granular or porous frost instead in cold conditions (Kratky et al., 

2017).  Soil media has a premature period and hydraulic parameters of soil change significantly 

during that period and after freeze-thaw cycles in winter. Accurate determination of hydraulic 

parameters of a new soil media at a mature state requires experiments, testing, and model 
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calibration. A soil C classified as the loamy sand texture is proposed by increasing sand percentage 

in soil B. The ratio of Ks between loamy sand and sandy loam is approximate 3 to 5 according to 

Clapp and Hornberger (1978) and Carsel and Parrish (1988). To simulate the hydrologic 

performance of bioretention column replaced with soil C, saturated hydraulic conductivity of soil 

C is assumed to be 0.23 and 0.31 cm/min (Ks ratio = 1.5 and 2). 

Figure 2.9 Hydrologic performance of bioretention Column 2 modified by changing the thickness of middle 

soil layer. Storm event modeled: 1:100 year. 

The hydrologic performance of replacing Soil B in the middle layer of Column 2 with Soil C 

(loamy sand texture) during 1:100 year storm is illustrated in Figure 2.8. The ponding depth 

reduced from 41.5 cm to 35.6 cm and 31.6 cm when the saturated hydraulic conductivities of two 

types of Soil C were 0.23 and 0.31 cm/min, respectively, but the peak outflow increased from 276 

mL/min to 370 and 458 mL/min. The peak inflow of 1:100 year storm was 2436 mL/min, and 

therefore the bioretention columns replaced by two types of Soil C could still reduce the peak flow 

by 85% and 81%. To achieve more accurate hydraulic performance, experiments are necessary to 
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test the values of all the five hydraulic parameters of the loamy sand. Loamy sand with a higher 

ratio of sand is likely to manage a local 1:100 storm event without flooding. 

 With ±10 cm, ±30 cm, and ±50 cm increments added to the original 70 cm middle layer of Soil B 

in Column 2, the hydrologic performance (peak flow and pond depth) during 1:100 year storm 

event is shown in Figure 2.9. As the thickness of the middle soil layer decreased, ponding depth 

became smaller and peak outflow increased due to the shorter duration of water flow through this 

layer. Increasing the thickness resulted in opposite outcome. An exponential trend was shown in 

the correlation between ponding depth and soil thickness, as well as between peak outflow and 

soil thickness. When the soil thickness increased from 20 cm to 40 cm, 4.6 cm increase in peak 

ponding depth and 102.3 mL/min decline in peak outflow were observed. When the soil thickness 

was in the higher range and increased from 100 cm to 120 cm, there was only 0.6 cm increase in 

ponding depth and 12.7 mL/min decline in peak flow. 

For bioretention column filled with sandy loam such as Column 2, the middle soil layer thickness 

is recommended to be smaller to reduce ponding depth. Meanwhile, higher soil layer thickness 

provided extra pollutant reduction capacity (Li et al., 2020). Therefore, 60-80 cm of middle layer 

thickness is suggested to achieve promising peak flow reduction, contaminants removal with minor 

overflow.  

The third option of modifications was decreasing the catchment area to surface area (CA/SA) ratio. 

Figure A2.3 illustrated that ponding depth, ponding duration and outflow decreased when the ratio 

became larger. The ponding depth decreased from 41.5 to 14.8 cm, and the peak outflow decreased 

from 276 to 218 mL/min when CA/SA ratio reduced from 10 to 5. Ponding depth was 

approximately 30 cm when the CA/SA was 8, which meets the requirements of COE design 
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guidelines, in which the maximum permitted ponding depth is 35 cm. The maximum outflow was 

252 mL/min, which means 90% reduction of peak flow with CA/SA = 8. 

2.4 Conclusions and future research directions 

Bioretention is one of the most cost-effective LID facilities that has been widely studied and 

practiced. However, limited studies have been conducted on its hydrologic performance during 

large storm events (rainfall depth > 50 mm) and in cold climates, and on simultaneous modeling 

of hydrologic processes and water quality improvement. In this paper, HYDRUS 1D was selected 

and proved to be an appropriate software to model four single unit bioretention columns (with 

CA/SA = 10) to explore these knowledge gaps.  

The model was calibrated and validated for 1:2, 1:5, 1:10 year storm events, with rainfall depth of 

22.6, 37.3 and 45.2 mm, respectively. The R2 of simulated outflow and ponding hydrographs were 

typically greater than 0.8. The soil hydraulic parameters appeared to not change significantly from 

a 1:2 to a 1:10 storm event. The four bioretention columns reduced the peak flow by 95.7%, 88.7%, 

94.3%, and 91.5% respectively during 1:100 storm, although the maximum ponding depth of all 

exceeded the design limits of 35 cm for approximately 6.8, 1.8, 4.8, and 2.2 hours, respectively. 

To address the ponding depth issue, (1) loamy sand can be used as a replacement soil media, e.g., 

it decreases the ponding depth of Column 2 to 31.6 cm with 81% peak flow reduction during 1:100 

storm. (2) The soil thickness of 60-80 cm is recommended to achieve the tradeoff balance of 

ponding depth, peak flow reduction, and contaminants removal. (3) Smaller CA/SA ratio can be 

also used, e.g., the CA/SA = 8 decreases the ponding depth of Column 2 to 30 cm with 90% peak 

flow reduction during 1:100 storm.  
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Due to the limited data from the experiments as a result of complexity of experiments under cold 

conditions, only one winter snowmelt event and one spring runoff event were calibrated and 

validated using both single-porosity and dual-permeability models. Therefore, the findings below 

are still preliminary. Higher fitness of dual-permeability model indicated a high potential of 

preferential flow in bioretention in cold climates, which was likely caused by freeze-thaw cycles 

and high concentrations of contaminants in the inflow. The simulation results also demonstrated 

that the finer texture soil experienced increasing hydraulic conductivity in cold climates, while it 

was opposite for the coarser soil texture.  

Based on limited experimental data and this modeling work, bioretention columns had high 

contaminant removal rates for phosphate, nitrite, and ammonium. At the meantime, leaching of 

chloride and nitrate occurred. High concentration of chloride in outflow was caused by a large 

amount of de-icing salts in winter flowed into bioretention columns which saturated NaCl in soil 

and precipitated salts. The nitrification process causes an increasing concentration of nitrate 

observed in outflow while the total nitrogen reduction rate was positive. Overall, bioretention 

demonstrated a promising capability for nutrients removal in this study.  

To improve efficiency and reliability of bioretention modeling, it is recommended to measure (1) 

the hydraulic and heat transport parameters of each soil media so that initial condition can be 

accurately set; (2) water content at different heights of bioretention to provide boundary condition 

and alternative validation for models; and (3) the change of hydraulic properties of soil with time 

and temperature to better simulate bioretention with time and climates.  Future research directions 

are suggested on (1) more research of bioretention in cold climates including field monitoring, lab 

experiments and numerical simulation; (2) long-term performance of bioretention; and (3) 
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clogging of bioretention due to sediments in stormwater. Detailed suggestions for future research 

directions are provided in Chapter 4. 
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Chapter 3 A New LID Spatial Allocation Optimization System: Integrated 

SWMM with PICEA-g using MATLAB as the Platform 

3.1 Introduction  

Conventional urban stormwater drainage systems, composed of underground pipes (grey 

infrastructure) and road surfaces, have the sole purpose of conveying the water quantity, and may 

be unreliable in rainfall extremes that exceed the design standards (Willems et al., 2012). In recent 

decades, low impact development (LID), also known as green infrastructure, has been widely and 

extensively studied and practiced worldwide as a new approach to achieve sustainable stormwater 

management in terms of both water quantity (peak and volume reductions) and water quality (US 

EPA, 2000; Coffman, 2002b; HUD, 2003). Typical LID-BMPs (best management practices) 

include bioretention, grass swale, green roof, and permeable pavement (US EPA, 2000). Numerous 

studies summarized the promising hydrological performance of LID-BMPs and their efficiency in 

pollutant loading removal (US EPA, 2000; Dietz, 2007; Ahiablame and Engel, 2012; Eckart et al., 

2017).  

As LID research grows, more municipalities adopt and apply LID-BMPs in their neighborhoods 

(Weitman et al., 2009; Chang et al., 2018). One of the most critical challenges of implementing 

LID is spatial allocation. Optimization of LID spatial allocation is complex due to different 

restrictions, including space availability, public support, and trade-offs among maximizing 

different benefits of LID such as flood mitigation, water quality improvement, other environmental 

effects and ecological influence (Zhang and Chui, 2018). Installation location, quantity, and type 

of LID generate infinite combinations of spatial allocation, making finding optimal solutions 

practically challenging.  
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A considerable number of studies have made great efforts to optimize LID spatial allocation using 

numerical models (Zhang and Chui, 2018; Huang et al., 2018; Men et al., 2020). There are several 

modeling tools in the market (e.g., MIKE Urban/MIKE+, SWMM), which provide both the 

capabilities of stormwater management designs and built-in LID control modules (Kaykhosravi et 

al., 2018). A straightforward methodology is to establish some representative scenarios based on 

geographical, landscape, and other existing information about the project area and designers’ 

judgment, which reduces computation complexity to an acceptable level (Zhang and Chui, 2018). 

Cano and Barkdoll (2017) designed their LID allocation scenarios with the assumption that only 

one LID-BMP type would be implemented in one sub-catchment. They used SWMM to compute 

all the scenarios, acquired cost-benefit-ratio and maintenance probability factor, and finally 

applied an entitled multi-objective algorithm called MOSEBEND to choose the best solutions. 

One disadvantage of this methodology is that only a small number of scenarios are selected based 

on designers’ subjective judgment (while the quantity of scenarios is infinite), which means a 

strong possibility of missing the optimal scenarios. 

Zhang and Chui (2018) proposed a term called “spatial allocation optimization tool (SAOT)” in 

their review paper, and introduced two types of SAOT structures. The first one is single compact 

(commercially available) software packages on the market (e.g., SUSTAIN, GreenPlan-IT, 

InfoSWMM, etc.). For example, SUSTAIN (the system for urban stormwater treatment and 

analysis integration), aggregates GIS, the SWMM module, a non-dominated sorting genetic 

algorithm (NSGA-II), Hydrological Simulation Program - FORTRAN (HSPF), and Microsoft 

Access database (Lai et al., 2007; Shoemaker et al., 2009). Mao et al. (2017) used SUSTAIN to 

optimize the cost and benefits of LID-BMPs at a regional scale. The second SAOT structure in 

Zhang and Chui (2018) is a new methodology that interacts with a stormwater management model 
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(e.g., HEC-HMS, MIKE Urban/MIKE+, SWMM, SWAT) and a programming language (e.g., 

MATLAB, Python). Using multi-objective evolutionary algorithms (MOEA), a numeric 

computing environment provides a route to evolve selected scenarios, provides feedback to the 

stormwater management model, and forms a loop to achieve near-optimal solutions instead of 

selecting the best scenarios from pre-defined scenarios (Liu et al., 2016; Xu et al., 2017; Tao et al., 

2019; Men et al., 2020; Dong et al., 2021).  

Table 3.1 summarizes the recent studies on LID SAO from 2016 to 2021 that used a programming 

language as a platform to link an optimization algorithm with a stormwater computing engine. For 

example, Xu et al. (2017) coupled NSGA-II with SWMM using platform Python in a LID-BMPs 

optimization case study in Tianjin, China, which considered runoff quantity, water quality, and 

cost. Men et al. (2020) combined PICEA-g with SWMM through MATLAB to find optimal LID 

layout solutions with objectives of minimizing cost, total runoff, peak flow at outfall, and TSS 

pollutants loading. The strength of interacting with a programming language is to provide: 1) the 

flexibility to use different optimization algorithms and stormwater management modules based on 

project characteristics; 2) the flexibility to set up objective functions and decision variables; and 

3) the potential to further improve optimization algorithms.  

As shown in Table 3.1, despite the recent progress, no research, to the author’s best knowledge, 

has modified a multi-objective evolutionary algorithm (MOEA) and applied it to the LID spatial 

allocation problem. Applying original and non-modified code of classical MOEA (e.g., NAGA-II, 

PICEA-g) directly into LID spatial allocation problem can result in unsatisfying performance of 

algorithm and lack of diversity in optimal solutions. In Men et al. (2020), the LID cost ranged from 

5 million to 27 million CNY (Currency CNY:CAD was about  5.1:1.0 in 2021) for a 2-year storm 

event and it didn't cover the entire cost range of LID (from zero to maximum cost of full installation 



 53 

(maximum constraints of decision variables)). Meanwhile, the Pareto front of optimal solutions 

didn't form a smooth curve, indicating that there is potential for improving the diversity of optimal 

solutions and algorithm effectiveness (Men et al., 2020). 

This study introduced a new LID SAO system that used MATLAB as a platform to integrate 

SWMM with a modified PICEA-g algorithm, with upgraded functions for candidate solution 

initialization, goal vector boundary definition, and genetic operators. These upgraded functions 

increase the diversity of solutions, enhance solution evolution, and improve the performance and 

effectiveness of PICEA-g in the LID SAO problem. 
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Table 3.1 Summary of SAO models for LID that used a programming language to combine optimization algorithm and a stormwater engine 

Study 
Stormwater 

model 

Programming 

 language 

Optimization 

Algorithm 
Objectives 

Decision 

Variables  
LID Facility 

Algorithm 

Modifications 
Limitations 

This 

Study 
SWMM MATLAB PICEA-g 

Peak inflow of 

retention pond;                

Total inflow 

volume of 

retention pond; 

Cost 

Area of each 

LID type 

installed in 

each 

subcatchment 

Bioretention;              

Rain Garden;           

Green Roof; 

Permeable 

Pavement 

Initializing 

candidate 

solutions; 

defining goal 

vector boundaries; 

Enhanced genetic 

operators 

No prescreening 

methodology 

Dong et 

al. 

(2021) 

SWMM Python NSGA-II 

Non-point 

source 

pollution; Cost 

Area of each 

LID type 

installed in 

each 

subcatchment 

and area of 

storage tanks 

Green Roof; 

Permeable 

Pavement; 

Vegetative Swale; 

Storage Tank 

(non-LID) 

None 

No algorithm 

modifications;           

Small area 

(number of 

decision variable 

is small) 

Men et 

al. 

(2020)  

SWMM MATLAB PICEA-g 

Surface runoff;                     

Outfall peak 

flow; SS 

pollutant; Cost 

Implementation 

area ratio of 

each LID type 

installed each 

subcatchment 

Vegetative Swale;           

Green Roof;           

Permeable 

Pavement 

None 

No algorithm 

modifications;           

Small area 

(number of 

decision variable 

is small) 

Xu et al. 

(2017) 
SWMM Python NASA-II 

Target control 

rate of total 

runoff volume; 

Water quality 

score; Cost 

Area ratio of 

each LID type 

in block scale 

Raised Flower 

Bed; Vegetative 

Swale; Permeable 

Pavement; Rain 

Garden 

None 

No algorithm 

modifications; 

Optimization in 

block scale 

Liu et al. 

(2016) 

L-THIA-

LID 2.1 
MMLSOPT AMALGAM 

cumulative 

runoff/pollutant 

fraction value; 

Cost 

Area ratio of 

chosen LID 

and BMPs in 

suitable 

locations 

Retention Pond; 

Detention Basin; 

Wetland Basin; 

Grassed Swale; 

Grass Strip; 

Wetland Channel; 

Bioretention; 

Permeable 

Pavement 

None 

No algorithm 

modifications; 

Optimization in 

block scale 
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3.2 Optimization System Algorithms 

3.2.1 Study area and SWMM model 

The study area is a residential neighborhood located in the northwest of the City of Calgary, 

Alberta, Canada (Figure 3.1). The total area of the catchment is 15.2 hectares, with 51% 

imperviousness and an average surface slope of 1%. The study area is mainly composed of single-

family and multi-family dwelling units without any commercial or industrial buildings. Surface 

runoff from the catchment is directed into a downstream retention pond, which has two inlets and 

one outlet. The pond has a surface area of 5,500 m2, a normal depth of 0.8 meters, and the side 

slope is 2:1 (H:V). It is designed to retain 9,570 m3 of water during a 1:100 year storm event.  

An existing SWMM model of the study area catchment was calibrated and validated based on a 2-

year field monitoring program as described in Fernandez et al. (2019). In this study, LID units 

were added to the existing model to test the new LID SAO system. The existing SWMM model 

contained a dual drainage system (road surfaces as major system and underground storm sewers 

as minor system) with 240 subcatchments (based on topography and distribution of manholes), 

126 junctions, and 119 conduits. The infiltration method used in this model was the Modified 

Green-Ampt model, and its parameters and other hydraulic parameters of the model can be found 

in Table A3.1. The “Dynamic Wave” option was chosen as the routing method for the SWMM 

model with a minimum variable time step of 0.5 sec, and the detailed parameters are shown in 

Table A3.2. Three types of land use were assigned to each subcatchment: greenspace, concrete 

(comprising the roadways, sidewalks, and driveways), and roof (see Table A3.3 for examples). 

Land use information was used in this study to determine the area limitation of LID units in each 

subcatchment. 
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Figure 3.1 Aerial photo and location of the study area (MapTrove, 2021; Google Map, 2021) 

Instead of using natural rainfall data, single design storm events were used in this study to better 

evaluate LID performance. According to the Stormwater Management and Design Manual of the 

City of Calgary (2011), a single event analysis with a storm duration of 1 hour is suitable for a 

small drainage area as in our case, because overflow and flooding issues tend to occur 

preferentially with LID implementations when the enduring storm events have shorter duration 
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and higher intensity (Sun et al., 2014). The 1 hour, Chicago rainfall distribution of 1:2, 1:5, 1:10, 

1:25, 1:50, and 1:100 year design storm events (rainfall depth are 13.7, 19.4, 23.1, 28.0, 31.6, and 

35.1 mm respectively) were applied in this study, and detailed storm information is provided in 

Table A3.4. 

3.2.2 Process structure of the LID SAO system 

3.2.2.1 Overview of PICEA-g algorithm 

PICEA-g is a multi-objective evolutionary algorithm (MOEA) that was first introduced by Wang 

(2013) as a more effective algorithm for the multi-objective problem (MOP). By proposing a 

family of goals (goal vectors) in PICEA-g, candidate solutions gain a new fitness assignment and 

are guided to move towards the Pareto optimal front (Pareto front is a set of optimal solutions, 

which leaves no space for improvements in multi-objective optimization problem) in two ways: 1) 

move closer to the Pareto optimal front (convergence); and 2) spread out towards the regions with 

fewer solutions (diversity). PICEA-g overcomes the challenges of poor performance when the 

objective number is large, which many state-of-the-art MOEAs (e.g., NSGA-II, MOGA (multi-

objective genetic algorithm)) face (Wang, 2013).  

An elitist framework of PICEA-g is shown in Figure A3.1 to represent how candidate solutions 

and goal vectors are co-evolved. S (fixed size of N) represents solutions, and G (fixed size of Ng) 

represents goal vectors. They will co-evolve for a preset number of generations. In each generation, 

parent solutions S goes through genetic variation operators (crossover and mutation) and generate 

offspring solutions Sc (fixed size of N). Meanwhile, new goal vectors Gc (fixed size of Ng) are 

generated randomly in a defined space. Fitness is then calculated for each population of S, Sc, G, 

and Gc. After sorting the fitness of individuals in the combined population of (S + Sc) and (G + 
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Gc), the best N solutions and Ng goal vectors will become the new population of S and G in the 

next generation (this selection process is called truncation selection). The pseudo code of PICEA-

g is in the Appendix Algorithm A3.1. 

3.2.2.2 Decision variables 

The decision variables in this optimization system were the installed area of each type of LID 

facility in each subcatchment. Four types of LID were used in this study, which are the widely-

used bio-retention cell (BR), rain garden (RG), green roof (GR), and permeable pavement (PP). 

For simplicity, the detailed design parameters of these four types were adopted from the City of 

Edmonton LID Design Guidelines (COE, 2014a) (Table 3.2). Other LID practices and parameters 

could have been adopted, however, it is beyond the current scope of work . The approach of placing 

LID within a subcatchment in this study was to replace the pervious and impervious area with a 

mix of LID practices (based on land use type) (Figure 3.2), and each LID unit catches runoff 

generated from a portion of the impervious area (Rossman, 2015). Bioretention, rain garden, and 

permeable pavement were set to treat runoff from a portion of the impervious area and send it to 

the outlet of the current subcatchment, while the green roof was set to only treat rainfall directly 

on the roof and send outflow to the pervious area of the current subcatchment. Seven scenarios 

regarding how much impervious areas (in percentage) were treated by BR, RG, and PP, 

respectively, are listed in Table 3.3. For example, in Scenario 1, BR, RG, and PP are implemented 

in one subcatchment and treat 30%, 30%, and 30% of the impervious area (totally 90% of the 

impervious area) of the subcatchment, respectively. 
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With 240 subcatchments in the SWMM model and 4 types of LID selected (i.e., 4 decision 

variables in each subcatchment), there were a total of 960 decision variables in this study. A single 

decision variable D can be expressed as  

 𝐷 = 𝐴𝑟𝑒𝑎(#𝑆, 𝑇)  (3.1) 

where #S is the subcatchment number, and T is the type of LID facility (BR, RG, GR, PP).   

The only geographic information available on the study area was the area percentage of green 

space, concrete, and roof in each subcatchment. Due to the limited geographic information, 

assumptions of spatial availability were made to determine the range of each decision variable. A 

maximum 20% of green space area was assumed to be available for bioretention and rain garden 

installations, separately. A maximum 20% of concrete and roof area was assumed to be available 

for permeable pavement and green roof installation, respectively. These assumptions can be easily 

changed based on the actual conditions and have no effects on the SAO system. For a project with 

sufficient geographic information, detailed spatial availabilities for different types of LID facilities 

can be specified or determined, for example, using SUSTAIN that has a LID siting tool to find 

suitable locations for different types of LID facilities based on suitability criteria and GIS data sets 

(Tetra Tech, 2013). With this information, the optimal solutions will have more practicability for 

LID implementation.  
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Table 3.2 LID control settings in this study (COE, 2014a) 

LID control Layer Layer Parameters Value 

Bioretention 

surface Berm height (mm) 150 

   

soil 

Thickness (mm) 500 

Porosity (Volume fraction) 0.44 

Field Capacity (volume fraction) 0.11 

Wilting Point (volume fraction) 0.05 

Conductivity (mm/hr) 30 

Conductivity Slope 10 

Suction Head (mm) 61 

   

storage 

Thickness (mm) 300 

Void Ratio (voids/solids) 0.66 

Seepage Rate (mm/hr) 1 

   

Drain 

Flow Coefficient 0.36 

Flow Exponent 0.5 

Offset (mm) 100 

 
 

 

 

  

Rain Garden 

surface Berm height (mm) 150 

   

soil 

Thickness (mm) 500 

Porosity (volume fraction) 0.44 

Field Capacity (volume fraction) 0.11 

Wilting Point (volume fraction) 0.05 

Conductivity (mm/hr) 30 

Conductivity Slope 10 

Suction Head (mm) 61 

   

storage 

Thickness (mm) 10 

Void Ratio (voids/Solids) 0.66 

Seepage Rate (mm/hr) 1 
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Permeable Pavement 

surface 

Berm Height (mm) 150 

Surface Roughness (Manning’s n) 0.03 

Surface Slope (%) 1 

   

Pavement 

Thickness (mm) 150 

Void Ratio (voids/Solids) 0.15 

Permeability (mm/hr) 500 

   

storage 

Thickness (mm) 10 

Void Ratio (voids/Solids) 0.66 

Seepage Rate (mm/hr) 1 
   

Drain 

Flow Coefficient 0.34 

Flow Exponent 0.5 

Offset (mm) 100 

 

 

 

 

   

Green roof 

Surface Berm height (mm) 25 
   

Soil 

Thickness (mm) 150 

Porosity (volume fraction) 0.58 

Field Capacity (volume fraction) 0.34 

Wilting Point (volume fraction) 0.04 

Conductivity (mm/hr) 64 

Conductivity Slope 5 

Suction Head (mm) 75 
   

Drain Mat 
Thickness (mm) 150 

Void Fraction 0.66 
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Figure 3.2 Schematic diagram of LID practice placement approach (example of one subcatchment) 

Table 3.3 Modeling scenarios on the percentage of impervious area treated by bioretention (BR), rain 

garden (RG) and permeable pavement (PP) 

  Percentage (%) of Impervious Area Treated by 

Scenario BR RG PP 

#1 30 30 30 

#2 60 0 30 

#3 0 60 30 

#4 60 30 0 

#5 90 0 0 

#6 0 90 0 

#7 0 0 60 

 

3.2.2.3 Objective functions 

The objective functions were the hydrologic performance of LID and cost in this study. Typically, 

the intent of a LID spatial optimization is to achieve the best hydrologic and/or water quality 

benefits of LID implementation with a fixed cost, or to achieve the minimum cost with required 

hydrologic and/or water quality benefits. SWMM currently only simulates pollutant removal of 
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LID practices resulting from the reduction in runoff flow volume, which would underestimate the 

water quality improvements (Rossman, 2015). Therefore, water quality benefits were not 

considered in this study, but can be added easily into the current LID SAO system. 

In this study, all the surface runoff from the study area was directed into a downstream retention 

pond (Fig. 1). Therefore, the three objective functions of this study selected to assess the LID were: 

1) peak inflow into the retention pond, 2) total inflow volume to the retention pond, and 3) total 

cost of LID implementations. The PICEA-g algorithm can optimize three or more goals (Wang, 

2013). However, the performance of any MOEA deteriorates considerably as the number of 

objectives grows (particularly when it exceeds three), because the difficulty of generating optimal 

solutions in multi-objective problem (MOP) grows exponentially (Ishibuchi et al., 2008; Wang, 

2013). In this study, only two objective functions, the peak inflow to the retention pond and the 

total cost of LID, were optimized (minimized) to have a better performance of the MOD-PICEA 

algorithm. The total inflow volume was achieved based on the optimal solutions from the peak 

inflow and cost optimization, and was automatically optimized with cost, as discussed later in 

results. 

The total cost (TC) of LID considered was as a life cycle (LC) accumulated cost, which includes 

capital cost (construction and material cost, CMC), annual operation and maintenance cost (OMC), 

and periodic maintenance cost (PMC). The detailed costs of each type of LID facility (BR, RG, 

GR, PP) are listed in Table 3.4 (COE, 2014a). The life cycle of all LID facilities in this study was 

assumed to be 25 years. The calculation formula of the total cost of LID implementation is: 
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𝑇𝐶 =  ∑ ∑(𝐷𝑖,𝑗 × 𝐶𝑀𝐶𝑗

𝑇=4

𝑗=1

𝑆=240

𝑖=1

+ 𝐷𝑖,𝑗 × 𝑂𝑀𝐶𝑗 × 𝐿𝐶 + 𝐷𝑖,𝑗 × 𝑃𝑀𝐶𝑗) (3.2) 

 

Table 3.4 LID costs used in this study (COE, 2014a) 

LID control 

Material and 

Construction Cost 

($/m2) 

Operations and 

Maintenance Cost 

($/m2/year) 

Periodic  

Maintenance Cost  

($/m2)  

Bioretention 140 21.5 87 

Rain Garden 190 21.5 12.5 

Permeable Pavement 390 0.23 430 

Green Roof 420 23.5 16 

 

3.2.2.4 Overview of the SAO process structure 

The three fundamental elements of this optimization system were: 1) hydrologic process 

computation module - SWMM, 2) optimization algorithm - PICEA-g, and 3) a platform and 

framework manager that interacts and integrates all the components of the system - MATLAB. As 

shown in Figure 3.3, the system started with setting up the objective functions (cost, peak inflow 

to the pond, total inflow volume to the pond) and decision variables (installation areas of LID 

units). User-determined amount of candidate solutions (one solution is one possible configuration 

of LID implementation in the study area, i.e., one possible combination of 960 decision variables) 

were then created based on the determined range of each decision variable. With the generated 

candidate solutions, the total cost of LID facilities was calculated with Eq. 3.2. The next step was 

to modify the SWMM input file according to the decision variables in each candidate solutions 

and run SWMM simulation by calling the dynamic link library files of SWMM (run one SWMM 
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simulation for one candidate solution). Running the SWMM engine function was adapted from 

MATSWMM, an open-source package developed by Riaño-Briceño et al. (2016).  

The objective function value (peak inflow) was extracted from the SWMM report file once the 

simulation was completed. Each candidate solution corresponded to one SWMM simulation and 

one set of objective function values (cost and peak inflow). The optimization algorithm, PICEA-

g, would next generate a new solution matrix based on objective function values, which were closer 

to the Pareto optimal solutions than the first candidate solutions. The follow-up steps were the 

same as the previous steps, and formed a loop of modifying SWMM inputs, running SWMM 

simulation, obtaining objective function values, and generating new solutions. The loop would 

stop when the generation of solutions met the maximum iteration number specified in the user’s 

set up (i.e., in this study, the maximum number of iterations was set to 20).  
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Figure 3.3 Overall process structure of LID layout optimization methodology 

3.2.3 Modification on PICEA-g 

3.2.3.1 Initialize candidate solutions 

In the original PICEA-g algorithm, the value of each decision variable from the first candidate 

solutions is randomly generated inside the range of decision variable bounds. When the number of 

decision variables is small, diversity and randomness of candidate solutions can be acquired; 

however, when the number is large, the sum of decision variables gets close to the mean of the 

sum of decision variables’ bounds (e.g., if there are 500 decision variables and each decision 

variable has a random value between 0 and 5, then the sum of these 500 decision variables would 

be close to 500 × 5/2 = 1250) and the diversity of candidate solutions diminishes. In this study, 



67 

 

there were 960 decision variables. With the original randomly-generated values of decision 

variables, the total area (sum of decision variables) and total cost (sum of objective functions) of 

LID implemented in the study area were mostly within ±5% range for the first candidate solution. 

This resulted in scenarios of low or high percentage of LID implementation not being considered. 

Therefore, the following modifications were made in initializing the first candidate solutions: (1) 

values of candidate solutions were linear uniformly distributed within constraints throughout the 

sets (reflecting diversity), and (2) the value was set to zero (i.e., no LID implementation) for 

randomly selected individual decision variables in half of the sets of candidate solutions (reflecting 

randomness). An example of 4 decision variables and 4 sets of solutions is represented in Figure 

A3.2 to better explain the modifications on initializing candidate solutions.  

3.2.3.2 Enhanced goal vectors generation methodology – cutting plane 

Because PICEA-g’s performance is affected by goal vectors, especially the bounded space of goal 

vectors, Wang (2013) proposed an enhanced strategy called cutting plane to help in the generation 

of goal vectors that are more effective in guiding candidate solutions towards the Pareto optimal 

front. The cutting plane is used in this study to redefine the bound space of goal vectors, 

guaranteeing that no single goal vector dominates or is dominated by all candidate solutions. As 

shown in Figure A3.3, an example of an optimization problem of minimizing two objectives is 

used to explain the strategy of cutting plane.  

3.2.3.3 Enhanced Fitness calculation 

The fitness value is a mark of how individual of candidate solution population performs in reaching 

the Pareto optimal front (Wang, 2013). In the PICEA-g algorithm, the fitness value (Fit) of 

candidate solutions (cs) and goal vectors (gv) are calculated as Eqs. 3.3-3.5 (Wang, 2013): 
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𝐹𝑖𝑡𝑐𝑠 = ∑

1

𝑛𝑔𝑣
𝑔∈𝐺⨄𝐺𝐶|𝑠≼𝑔

 (3.3) 

 
𝐹𝑖𝑡𝑔𝑣 =  

1

1 + 𝛾
 (3.4) 

 

𝛾 =  {

1             𝑛𝑔𝑣 = 0 

𝑛𝑔𝑣 − 1

2𝑁 − 1
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 

where g and G represents goal vectors; GC is the offspring goal vectors; s represents solutions; 𝑛𝑔𝑣 

is the number of solutions that dominate the goal vector gv; and N is the population size of 

candidate solutions. One point dominates another point means the value of one point’s position in 

all dimensions are smaller than those of another point when all objectives are minimized.  

As shown in Appendix Context A3.2, two candidate solutions could have the same fitness value 

while one of them dominates the other. Therefore, the current fitness calculation method cannot 

sort candidate solutions adequately without considering the domination relationships among the 

candidate solutions themselves. Paknejad et al. (2021) proposed a new method to improve fitness 

value calculation as shown in Eqs. 3.6 – 3.7. 

 
𝐹𝑖𝑡𝑐𝑠 = ∑

1

𝑛𝑔𝑣
𝑔∈𝐺⨄𝐺𝐶|𝑠≼𝑔

× 𝐹𝑖𝑡𝑔𝑣 +
1

𝑟𝑎𝑛𝑘𝑐𝑠
 (3.6) 

 𝑅𝑎𝑛𝑘𝑐𝑠 = 1 + 𝑃 (3.7) 

where P is how many individuals dominate CSi at the current population. Then, the new fitness 

values can sort the domination relationships between the candidate solutions. An example 

calculation is shown in Appendix Context A3.3. 
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3.2.3.4 Enhanced genetic operator – crossover and mutation 

PICEA-g uses three types of crossover (i.e., single-point crossover, uniform crossover, and 

simulated binary crossover (Deb and Agrawal, 1994), and polynomial mutation (Deb et al., 2002) 

as genetic operators. The genetic operators are essential for the production of offspring solutions 

and the evolution of solutions. Adjustments or the acquisition of various genetic operators are 

required for different problems and scenarios in order to improve the algorithm performance 

(Srinivas and Patnaik, 1994). Paknejad et al. (2021) proposed a strategy for applying a logistic 

map and a roulette wheel in crossover and mutation operators, which was used and adjusted in this 

study to improve the LID spatial allocation solutions.  

Logistic map 

The logistic map was introduced by May (1976) to produce chaotic sequences, and its 

mathematical equation is written as: 

 𝑋𝑛+1 = 𝑟𝑋𝑛(1 − 𝑋𝑛) (3.8) 

where Xn is a number bounded on [0, 1], and r is a parameter in the range of [0, 4]. The r value 

changes the behavior of the logistic sequence, e.g., when 3.57 < r ≤ 4, the logistic sequence 

develops chaotic behavior. The logistic map was applied in crossover and a mutation operator to 

increase the variation among the individual population and solution sets (Paknejad et al., 2021).  

Roulette Wheel 

The roulette wheel was applied in crossover operator for selecting one solution set from the entire 

solution population. The probability of selecting one CSi is: 
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𝑃(𝐶𝑆𝑖) = 𝐹𝑖𝑡𝐶𝑆𝑖
/ ∑ 𝐹𝑖𝑡𝐶𝑆𝑗

𝑁

𝑗=1

 (3.9) 

Higher fitness value of one solution set means higher chance of being selected. 

Crossover  

The pseudo code of the crossover operator for this study is in Appendix Algorithm A3.2. The 

crossover operator extracts one individual solution from one of the two selected sets (one pair) of 

parent solutions at each index and combines them into one set of offspring solutions. For each set 

of parent solutions, its paired set of parent solutions were selected using roulette wheel. When a 

random number was less than a pre-set crossover probability, the crossover would operate on this 

pair of parent solutions. For each individual index of the new offspring solution, if the generated 

chaotic sequence by the logistic map was ≤ 0.5, this individual offspring solution was extracted 

from the first parent solution at the same index. Otherwise, it was extracted from the second parent 

solution. 

Mutation  

Detailed calculations are illustrated in the pseudo code of the enhanced mutation operator in 

Appendix Algorithm A3.3. With the enhanced mutation operator, solutions were guided to 

implement more cost-effective types of LID facilities in this study. The mutation operator 

increased the area of one type of LID facility (randomly selected from the four types) while 

decreasing the area of another type of LID facility (randomly selected from the rest three types). 

The adding and reducing areas of LID facilities were randomly chosen based on the logistic map.  
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3.2.4 Numerical experiments for evaluating algorithm modifications 

Numerical experiments were conducted to evaluate the improvements of the LID SAO system 

after the modifications to the algorithm. Five scenarios were compared to demonstrate the 

improvements: 1) O-PICEA (the original PICEA-g algorithm without any modifications), 2) CS-

PICEA (the PICEA-g algorithm with modification of initializing CS), 3) GV-PICEA (the PICEA-

g algorithm with modification of new goal vectors methodology – cutting plane), 4) GV-CS-

PICEA (the PICEA-g algorithm with modification of initializing CS and cutting plane), and 5) 

MOD-PICEA (the PICEA-g algorithm with modification of initializing CS, cutting plane, genetic 

operator including fitness, crossover, and mutation).  

All the five scenarios were run with the identical parameters for the comparison: two objective 

functions (cost and peak inflow), 100 CS and GV population sizes, 20 maximum generations, and 

1:2 year design storm events. MOD-PICEA was used to examine the hydrologic performance of 

LID implementation for all storm events (1:2, 1:5, 1:10, 1:25, 1:50, and 1:100) in the end. There 

are two types of optimal solutions: solutions with the highest fitness value; and non-dominated 

solutions. In this study, the quality of solution sets in any given generation was fully represented 

by solutions with the highest fitness value (fixed population), which were utilized to analyze the 

comparison and improvements across different scenarios. Non-dominated solutions (unfixed 

population) are the “absolute” optimal solutions in any given generation, and they were utilized to 

illustrate the optimized performance of LID in the final step. 
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3.3 Results and discussion 

3.3.1 Improvement of optimization with the new CS initializing method 

 

Figure 3.4 Comparison of 100 solutions with highest fitness values between O-PICEA and CS-PICEA 

The optimal solutions (with highest fitness values) of O-PICEA and CS-PICEA were compared in 

Figure 3.4 to examine how initializing candidate solutions (CS) affects the algorithm’s 

performance. In the figure, each dot represents one optimal solution, which is the combination of 

optimal values of 960 decision variables (installation areas of the 4 types of LID facilities in 240 

subcatchment). The total cost of LID implementations from O-PICEA is between 13 million and 

17 million dollars after candidate solutions evolves for 20 generations; while, from CS-PICEA, 

the total cost can be as low as 0 dollars (no LID implemented) and as high as approximately 19 
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million dollars. A wider price range gives the LID implementation more flexibility to meet the 

needs of project owner and designers. If the project budget is less than $10 million, for example, 

answers could be identified from CS-PICEA rather than O-PICEA. Furthermore, within the cost 

range of O-PICEA, CS-PICEA solutions dominated O-PICEA solutions, as shown by the fact that 

CS-PICEA solutions have a smaller peak flow than O-PICEA solutions with the same cost in the 

figure. This demonstrates that the diversity of candidate solutions (reflected in the variation of 

objective function values of candidate solutions) not only assists the algorithm in obtaining a 

complete perspective of optimal solutions, but also improves genetic operator performance.  

When the quantity of decision variables is large (>100) in a MOP, it is essential to generate first 

candidate solutions diversely to cover all the possible extent of objective functions and avoid the 

precision of produced optimal solutions. Generating first candidate solutions by random values 

individually centralizes objective function values of solutions. Hence, initializing candidate 

solutions is critical to the algorithm’s performance, and it is necessary for a range of issues with a 

large number of decision variables, depending on the MOP circumstance. 
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3.3.2 Improvement of optimization with cutting plane for GV 

 

Figure 3.5 Comparison of the nondominated solutions between O-PICEA and GV-PICEA 

The difference between the nondominated solutions of O-PICEA and GV-PICEA represents how 

efficient the cutting plane guides candidate solutions toward Pareto optimal front (Figure 3.5). The 

cutting plane increases the number of nondominated solutions from 6 (O-PICEA) to 10 (GV-

PICEA). The total cost of the optimal solutions from O-PICEA is between 13.9 million and 15.2 

million dollars. The cutting plane extends the cost range to be 13.8 – 17.0 million dollars. 

Meanwhile, within the cost range of 14.0 – 15.0 million dollars, the GV-PICEA optimal solutions 

dominate O-PICEA optimal solutions. From the comparison between the nondominated solutions 

of O-PICEA and GV-PICEA, it reveals that the cutting plane can more effectively direct candidate 
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solutions towards the Pareto optimal front while simultaneously increasing the diversity of 

candidate solutions. 

3.3.3 Improvement of optimization with new genetic operators 

 

Figure 3.6 Evolving process of candidate solutions in GV-CS-PICEA and MOD-CS-PICEA  
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Figure 3.7 Comparison of optimal solutions between GV-CS-PICEA and MOD-CS-PICEA 

The evolving processes of GV-CS-PICEA and MOD-PICEA are shown in Figure 3.6 by plotting 

solutions after evolving for 1, 10 and 20 generations. In both GV-CS-PICEA and MOD-PICEA, 

candidate solutions improve significantly from the 1st to the 10th generation, and are close to the 

Pareto optimum front, with a slight improvement from the 10th to the 20th generation in both cases. 

Comparison of optimal solutions (with highest fitness value) between GV-CS-PICEA and MOD-

PICEA at the 1st generation and the 20th generation is illustrated in Figure 3.7. In the 1st generation, 

more candidate solutions from GV-CS-PICEA are dominated by the candidate solutions from 

MOD-PICEA rather than the opposite way. Optimal solutions form a smooth curve at the 20th 

generation from both GV-CS-PICEA and MOD-PICEA, although a few optimal solutions from 

GV-CS-PICEA lay outside the curve in the cost range of 5 – 15 million dollars. In brief, 
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modifications of initializing candidate solutions, the cutting plane, and the new approach of genetic 

operators, i.e., MOD-PICEA, improve the PICEA-g’s performance on LID spatial allocation. 

3.3.4 Performance of MOD-PICEA for the design storms 

Nondominated solutions of the LID SAO system under 1:2, 1:5, 1:10, 1:25, 1:50, and 1:100 year 

design storm events are displayed as peak inflow to the pond versus cost in Figure 3.8. The total 

inflow volume corresponding to the optimal solutions is presented in Figure 3.9. The solution 

points of peak inflow and total inflow volume have a similar trend due to the close correlation 

between them for the same catchment. As the intensity of design storms increases from 1:2 to 

1:100 year event, the trend of solution points transforms from a convex curve towards a straight 

line.  

The peak inflows into the retention pond are 0.47, 0.71, 0.86, 1.08, 1.26, and 1.44 m3/s with zero 

cost of LID (i.e., no LID implementation) during 1:2, 1:5, 1:10, 1:25, 1:50, and 1:100 year design 

storm events, respectively. The peak inflows reduce to 0.07, 0.14, 0.24, 0.41, 0.54, 0.67 m3/s, 

respectively, when LID is fully installed at available space with a capital cost of around 10 million 

and a total cost of 34 million dollars for 25 years. The reduction rates in peak inflow are 85%, 80%, 

73%, 62%, 57%, and 54% for 1:2, 1:5, 1:10, 1:25, 1:50, and 1:100 year storm events, respectively. 

Without any LID implementation, the total inflow volumes are 0.86, 1.35, 1.74, 2.35, 2.83, and 

3.31 thousands m3 for these storm events. With the maximum LID implementation at a cost of 

approximately $34 million, the total inflow volumes are 0.18, 0.32, 0.50, 0.82, 1.07, and 1.33 

thousands m3, respectively, which correspond to  79%, 76%, 71%, 65%, 62%, and 60% reductions, 

respectively. 
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Figure 3.8 Nondominated solutions of peak inflow to the retention pond versus cost during 1:2, 1:5, 1:10, 

1:25, 1:50, and 1:100 year design storm events. 
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Figure 3.9 Nondominated solutions of total inflow volume to the retention pond versus cost during 1:2, 1:5, 

1:10, 1:25, 1:50, and 1:100 design storm events. 
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Figure 3.10 Scatter plot of solutions with total inflow volume and peak inflow to the retention pond, as 

well as cost for 1:2, 1:5, 1:10, 1:25, 1:50 and 1:100 year design storms. 
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A 3D scatter plot with a color bar of the three variables (total inflow volume, peak inflow, and 

total cost) is shown in Figure 3.10 to further understand the correlation between the total inflow 

volume and the optimized peak inflow. In the case of a fixed total cost, the solution points of the 

total inflow volume versus peak inflow display approximately linear trends for all design storms, 

indicating that total inflow volume was auto-optimized simultaneously with the optimization of 

peak inflow and cost. The total inflow volume is the sum of the area under the inflow hydrograph, 

and the high relevance between the two hydrologic parameters could be the explanation for this 

approximately linear correlation.  

Table 3.5 Solutions A, B, C, D, E, and F as examples of optimal solutions during 1:2, 1:5, 1:10, 1:25, 1:50, 

and 1:100 year design storm events 

Design 

Storm 

Capital 

Cost 

($ million) 

Total Cost 

($ million) 

Peak 

flow 

(m3/s) 

Peak flow 

reduction 

(%) 

Total 

Inflow 

Volume 

(m3) 

 Total 

Inflow 

Volume 

Reduction 

(%) 

Total LID 

implementati

on area (m2) 

1:2 1.83 5.83 0.11 75.8% 350 59.3% 7257 

1:5 2.85 9.73 0.22 68.8% 550 58.5% 11322 

1:10 3.76 12.03 0.31 62.3% 740 57.5% 15015 

1:25 5.19 16.51 0.50 52.5% 1050 55.3% 20574 

1:50 6.64 21.10 0.62 49.8% 1270 55.1% 26288 

1:100 7.51 26.10 0.75 47.5% 1460 54.7% 29758 
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Figure 3.11 Time series of inflow rate to the retention pond during 1:2, 1:5, 1:10, 1:25, 1:50, and 1:100 

year storm events. The two lines in each sub-figure represent those before and after LID installations (for 

Solutions A, B, C, D, E, and F). 

Using the 1:2 year storm event as an example, the optimal solutions can be divided into three parts: 

an upper part (with total cost of 0- 5 million), a middle part (with total cost of 5-10 million), and a 

lower part (with total cost of 10 – 30 million), as shown in Figure 3.8. In the upper and lower parts, 

the solution points follow a linear trend, while they follow a convex curve in the middle part. The 
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density of the solution points is higher in the middle part than in the upper and lower parts, because 

the number of combinations of decision variables is much larger in the middle range. There is little 

opportunity to improve the LID spatial allocation when there is nearly little to no LID 

implementation in the study area (i.e., with close to zero cost) or when LID is implemented with 

coverage that is close to the maximum area constraints (i.e., the decision variables of one solution 

at each index are close to the upper bounds). Therefore, the candidate solutions in the upper and 

lower parts are closer to the Pareto optimal front, while the solutions in the middle part have more 

potential to evolve in the early generations. A small increase in the total cost of LID could yield a 

relatively significant peak inflow reduction in the upper part where the benefit-cost ratio (i.e., the 

slope of the solution points) is high, while the peak inflow would hardly decrease incrementally 

by adding a large cost of LID in the lower part where the benefit-cost ratio is low. 

A turning point occurs where the slope of solution points (Δy/Δx) starts to decrease, i.e., the 

endpoint of the upper part. This point is interpreted as the optimal solution that maximizes the 

benefit-cost ratio among all the solutions. Based on the trend of solution points, three points, A, B, 

C, D, E, and F were chosen from the 1:2, 1:5, 1:10, 1:25, 1:50 and 1:100 year storms events, 

respectively, as examples. These six solutions are listed in Table 3.5. The total LID implementation 

area of solutions A, B, C, D, E, and F is 7257, 11322, 15015, 20574, 26288, and 29758 m2, 

respectively. The capital costs are 1.83, 2.85, 3.76, 5.19, 6.64, and 7.51 million dollars, 

respectively, and their total costs for 25 years are 5.83, 9.73, 12.03, 16.51, 21.10, and 26.10 million 

dollars, respectively. The peak inflow reductions of solutions A, B, C, D, E, and F are 75.8%, 

68.8%, 62.3%, 52.5%, 49.8%, and 47.5%, respectively, and their total inflow volume reductions 

are 59.3%, 58.5%, 57.5%, 55.3%, 55.1%, and 54.7%. The results demonstrate that LID has 

promising benefits of peak inflow reduction (over 60% of peak inflow reduction) with relatively 
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low cost (under 5 million dollars of capital cost) for small storm events (1:2, 1:5, and 1:10 year). 

Figure 3.11 shows the time series of the inflow rate for solutions A, B, C, D, E, and F.  After LID 

implementation, a dual peak of the inflow can be detected for solutions A, B, and C. This 

observation reflecting the 5 minute delay in the flow arriving from the area where the LID is 

implemented relative to the area surrounding the detention pond which drains more quickly in the 

retention pond and creates the first peak. 

Men et al. (2020) studied LID spatial allocation optimization and three optimal solutions were also 

selected for 1:2, 1:10, and 1:50 year storm events (rainfall intensity information is not available in 

Men et al. (2020)’s paper; total runoff depth was 28.2, 47.9, and 69.2 mm, respectively) under 

peak flow-cost optimization scheme. With total construction cost of 9.8, 10.4, and 7.6 million CNY 

(The construction cost of permeable pavement, green roof, vegetable swale, and rain barrel is 193 

CNY/m2, 500 CNY/m2, 220 CNY/m2, and 350 CNY/each; Currency CNY:CAD = 5.1:1.0), LID 

implementation reduced runoff by 21.8, 17.3, and 17.0%, and reduced peak flow by 15.6%, 11.8%, 

and 8.0%, respectively. The total area of Men et al. (2020)’s study area was 94 hectares, which is 

approximately 6.2 times the total area of this paper’s study area. Because of the difference at 

construction cost and the lack of detail LID implementation area for each selected optimal solution 

in Men et al. (2020)’s study, a rough estimate of LID implementation area is calculated as 39,000, 

42,000, and 30,000 m2 for 1:2, 1:10, and 1:50 year storm events. For 1:2 and 1:10 storm events, 

the LID implementation area in Men et al. (2020)’s study is approximately 6 and 3 times the LID 

implementation area in our study. The optimal solutions with BR, RG, PP, and GR installation in 

this study appear to have better hydrologic performance with similar area ratios of LID 

implementation. The hydrologic performance of LID implementation, on the other hand, is 

affected by the type of LID facility, drainage region topography, and rainfall pattern. 
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3.3.5 Application of the LID SAO system in other neighborhoods and its limitations 

The LID SAO system introduced in this study provides the flexibility and feasibility for users to 

adapt it to other objectives or different drainage areas, with minor code adjustments. Optimization 

of LID implementation to achieve water quality benefits can be easily added into the SAO system 

by incorporating one or more additional objective functions reflecting water quality, setting up the 

water quality parameters in the SWMM model, and processing the relevant results from the output 

file, similarly as how the hydrologic objective functions were implemented in this study. Users 

can incorporate different water quality objectives or other objectives as project requirements into 

the SAO system by using the corresponding equations for computing the objectives, as 

demonstrated by Liu et al. (2016), Xu et al. (2017), Men et al. (2020), and Dong et al. (2021). 

Other objectives, such as maximum hydrologic benefits/cost ratio or maximum water quality 

benefits/cost ratio, can also be accomplished by changing objective functions of the SAO system. 

The SAO system can be applied at a variety of study scales. Users can identify lumped areas as 

subcatchments within a much larger study area, such as a city, as done by Liu et al. (2016) and Xu 

et al. (2017), distinguish land use information (e.g., with the help of GIS information) to 

find suitable locations for different LID facilities, and change decision variable 

bounds accordingly. For a large drainage area, an area ratio rather than a particular LID footprint 

can be considered for the decision variables. Different LID practices or LID design parameters can 

be changed to suit different design preferences and standards in different cities or countries by 

simply changing/adding LID controls to the SWMM model or changing the LID 

control parameters in the SWMM input file with a simple adjustment on the input file modification 

function. The SAO system provides users a conceptual appreciation of the approximated area sizes 
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and types of LID throughout the study area, yielding maximum hydrologic benefits and/or water 

quality benefits at minimized cost (Pareto front of optimized solutions). 

This SAO system also provides the flexibility to use any open source stormwater management 

software by calling the dynamic link library (DLL) file in the loop of MOEA. Instead of using 

SWMM as a hydrologic process computation engine, any other stormwater management software 

(e.g., MIKE) can also take the place of SWMM for different projects if the access of external use 

is acquired. Other optimization algorithms (e.g. NSGA-II) can replace PICEA-g in this system, 

and modifications can be made. 

When implementing an LID SAO system, a few ground rules apply. First, SWMM model itself 

should have been calibrated. Secondly, users should use representative LID control parameters in 

the SWMM model to ensure that they properly represent the hydrologic or water quality benefits 

of actual LID installations. Last, the representation of the configuration of the LID implementation 

and flow routine in SWMM model should be adjusted to reflect the intended configuration (e.g., 

when a LID facility is installed along the roadside and collects all runoff from the road, the LID 

facility’s treatment area must be configured to be equivalent to the road area).  

The application of the LID SAO system as presented in this study has a few limitations. First, no 

pre-screening was implemented to determine potentially suitable locations for each LID practice. 

Maximum allowable usage for each type of LID facility in each subcatchment was evaluated in 

this study as a constraint purely based on the area of different land use. SUSTAIN and similar 

software packages could have an adequate LID spatial availability analysis to set up more practical 

constraints for the system, reduce unnecessary decision variables, and improve the performance of 

the optimization algorithm with more detailed geographical information (comprehensive GIS data). 
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Second, the current LID SAO system may not be able to achieve good optimal solutions for a 

single subcatchment because the optimization is based on the entire sets of solutions (one set of 

solutions considers the entire drainage area). When the number of generations and the size of the 

solution population increase, the computing time will become a concern. After the 20th generation, 

the incremental improvements in the overall solutions have become minimal, as seen in Figure 

3.10. This problem can be solved using the divide and conquer technique and this method has been 

used to solve complicated multi-objective optimization problems in several studies that are not for 

LID (Cooper et al., 2014; Lü et al., 2016; Friese, 2016; Qian, 2019). Instead of optimizing the 

spatial allocation of LID practices for the entire drainage area, SAO system can be decomposed to 

optimize LID installation for each individual subcatchment, and then combine those optimal 

solutions into new sets of optimal solutions for the entire drainage area as a possible option to 

improve the SAO system. 

3.4 Conclusions and future research 

LID has been attracting more and more attention for sustainable urban stormwater management, 

and various LID spatial allocation optimization tools have been developed to seek cost-effective 

implementation plans. This study proposes an efficient optimization system that integrated 

SWMM and PICEA-g using MATLAB as a platform, which was then applied to optimize LID 

implementations in a neighborhood area located in Calgary, Canada. Through numerical 

experiments, modifications such as enhanced functions of initializing candidate solutions, cutting 

plane, and genetic operators adopting the logistic map and roulette wheel have been shown to 

increase the algorithm performance. The selected optimal solutions in this study area showed that 

LID implementation provides hydrologic benefits of reducing peak inflow, lowering total runoff 

volume, and delaying peak inflow with relatively low capital cost (compared to the capital cost of 
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maximum allowable LID implementations). Due to the high correlation between the objective 

functions of peak inflow and total inflow volume to the downstream retention pond, optimal 

solutions by optimizing peak inflow and cost automatically optimize the total inflow volume. 

Comparison of different stages of modifications to the optimization system demonstrated that it is 

essential to generate first candidate solutions diversely to cover all the possible extent of the 

objective function values, and avoid the precision of produced optimal solutions, to obtain the 

diversity and improve the convergence (closer to the Pareto optimal front) of non-dominated 

solutions. The cutting plane helps to sort candidate solutions and increase the diversity of candidate 

solutions by making every goal vectors useful. However, application of only the cutting plane 

approach does not improve the algorithm performance noticeably if genetic operators are not 

modified. The logistic map produces a chaotic sequence which improves the diversity and 

randomness of offspring solutions. The Roulette wheel gives the parent solution with a higher 

fitness value a higher chance to be selected, which accelerates the convergence of the offspring 

solutions. Applying the logistic map and roulette wheel with advanced fitness calculation proposed 

by Pajnejad (2021) demonstrated a significant improvement in the algorithm performance.  

The LID SAO system proposed in this paper gives users a lot of flexibility, allowing them to use 

it in different study areas in different scales, different objectives (water quality), and different 

optimization algorithms with customized modifications, as well as replace SWMM with other 

stormwater computing engines. The LID SAO system can be further improved in the future. A 

pre-screening that preliminarily screens suitable places for LID implementations can improve the 

performance of the optimization algorithm and provide a more practicable plan. In order to 

determine the spatial availability of LID, it is necessary to collect appropriate geographic 

information about the study area. In addition, using MOEA with divide and conquer (decompose 
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decision variables) techniques and parallel computing to improve optimization system 

performance can be a viable alternative. 
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Chapter 4 General conclusions and future research directions 

Numerical simulation is a powerful, cost-effective tool for LID design and implementation to 

achieve sustainable urban stormwater management. Lab and field experiments provide benchmark 

data for numerical simulation, while numerical simulation can further improve the understanding 

on LID performances and mechanisms under different conditions (e.g., cold climates) and at 

different scales (e.g., single-unit and neighborhood scale), based on which LID design, planning, 

operation and maintenance can be improved and optimized. Moreover, numerical simulation can 

provide insights on future experiments.  

Detailed conclusions on single-unit LID (bioretention) modeling and neighborhood scale modeling 

have been provided in Chapters 2 and 3 of the thesis, respectively. General conclusions from these 

two studies are summarized below.     

 Based on calibrated and validated soil hydraulic parameters using experimental data, 

bioretention shows the great potential to handle or mitigate large storm events (> 50 mm in 

cumulative depth) in terms of peak inflow, volume and ponding depth. 

 According to calibration and validation with limited experimental data in winter condition, 

bioretention has high potential of preferential flow in cold climates due to freeze/thaw cycles. 

The hydraulic conductivity is still high when the soil is partially frozen. The finer soil media 

experiences an increase of KS after freeze-thaw cycles, while the opposite for coarser soil media, 

based on the limited data so far.  

 Bioretention has high contaminant removal rates for phosphate and ammonium, but low 

removal rate for nitrate due to the soil itself (nitrogen rich) and denitrification based on the 

current data from the experiments. 
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 A new LID spatial allocation optimization (SAO) system was developed by integrating SWMM 

and PICEA-g and using MATLAB as the platform to optimize LID implementation at 

neighborhood scale.  

 By applying the new LID SAO system in Calgary, Canada, LID implementation at 

neighbourhood scale has significant hydrologic benefits in reducing peak inflow (> 60%), 

lowering total runoff volume (> 55%), and delaying peak inflow with relatively low capital cost 

(< 5 million dollars) for small storm events (< 25 mm rainfall depth). 

Future research directions on bioretention modeling are suggested below:   

 To improve the model calibration of bioretention, it is suggested to a) measure hydraulic 

properties of each soil layer, b) conduct simple storm event experiments for each soil layer 

(one soil column contains only one type of soil layer) to calibrate initial soil hydraulic 

parameters, c) record soil water content throughout the columns in the experiments, and d) 

record soil temperature throughout the columns in cold condition.   

 More numerical studies and laboratory and field experiments on LID (including bioretention) 

are needed to understand their performances of both hydrologic and water quality aspects in 

cold climates (for cold regions or winter seasons of warm regions).  Specifically, it is important 

to examine the changes in soil parameters caused by soil freezing, the presence of preferential 

flow, and the impact of freeze/thaw cycles. Current relevant studies are rather scarce.    

 More work is needed on 2-D or 3-D modeling of LID (including bioretention) to examine the 

spatial variability of LID performance. This need is particularly true in practical LID 

application, in which the inflow to LID is typically from one side and therefore spatial 
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variability of LID performance (both hydrologic and water quality aspects) is expected. 

Current software packages on the market are not able to conduct such simulations.  

 More modeling studies (and experiments) are needed on the temporal variability of LID 

(including bioretention), particularly examining the long-term operation on LID performance 

(both hydrologic and water quality aspects). For instance, the impact of compaction, weather 

impact, and pollutants (e.g., TSS) to soil media. Currently, long-term modeling and monitoring 

on LID are limited.  

 More studies are needed for modeling more parameters of water quality such as TSS. It is 

important to understand the LID’s ability to remove pollutants from all perspectives in order 

to evaluate its water quality performance comprehensively. Currently, limited studies have 

modelled various pollutants removal parameters simultaneously, and TSS removal is 

particularly challenging due to the complexity of the physical process of flow through soil 

pores. 

 More modeling (and experimental) studies are needed to examine the impact of extreme 

weather (e.g., droughts and severe storms) in the context of climate change to LID performance 

(both hydrologic and water quality aspects). 

Future research directions on LID spatial allocation optimization (SAO) system are suggested 

below: 

 More studies are needed to modify and enhance the optimization algorithm to improve its 

performance in LID spatial allocation problem. Current optimization algorithms are typically 

tested only on mathematical multi-objective optimization problems (e.g., functions that contain 

variables of x, y, z) and do not take into account practical problems with complicated objectives 
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and constraints on decision variables (e.g., LID spatial allocation problem with objectives 

related to hydrologic performance and water quality and a large amount of decision variables 

with different bound range for each decision variable). No previous studies have modified the 

optimization algorithm for the purpose of LID spatial allocation. 

 More work is needed to evaluate the performance of the optimization algorithm with more than 

two objectives. When considering both hydrology and water quality with cost, achieving 

optimal solutions with a good balance of all objectives are challenging. Meanwhile, the 

difficulty of modifying the algorithm increases as the number of solution dimension increases. 

To the best of the author’s knowledge, there are no studies that compare three-objective 

optimization to two-objective optimization. Optimization solutions form a plane in three-

objective optimization instead of a line in two-objective optimization and picking one adequate 

optimal solution from a plane is complicated. To solve this problem, adding weights to 

different objective functions can be a feasible way. 

 More studies are needed for decomposing the optimization process from total drainage area 

into some defined subarea (e.g., the total drainage area can be divided into headwater zone, 

middle zone, and outlet zone) or the individual subcatchments. This can be used to screen out 

potentially unsuitable locations where LID implementation has a negligible effect on overall 

hydrologic and water quality performance. This concept has been overlooked in previous 

studies. Applying MOEA with a divide and conquer strategy using parallel computing is a 

possible alternative for improving the performance of the optimization system.  

 More efforts are needed to develop a graphical user interface for the system to make it more 

user-friendly for the public. 
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 It is suggested to collect sufficient geographic information about the study area to help 

determine the spatial availability for LID implantation before conducting the spatial allocation 

optimization.  
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Appendix 

Chapter 2 

Tables: 

Table A2.1 The stormwater pollutant concentrations to the bioretention columns for the experiments of Li 

(2018) and Kratky (2019)  

Parameter Source 
Concentration 

(mg/L) 

Ammonium (NH4
+ - N) NH4Cl 2 

Nitrate (NO3
--N) KNO3 1.5 

Nitrite (NO2
--N) NaNO2 0.5 

Phosphate (PO43
--P) KH2PO4 2 

Chloride (Cl-) NaCl 

15a 

320b 

1280c 

Note: a During summer operation including the 1:5 and 1:10 year storm events;  

                b During Year 1 winter operation and the second spring runoff event (major snow melt);  

          c During Year 1 the first spring runoff event (first flush). 
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Table A2.2 The 4-hr design storm intensity in Chicago Distribution. The 1:2, 1:5, and 1:10 year storms 

were from COE (2014), and 1:25, 1:50, and 1:100 year storms were from EPCOR (2018).  

Time 

(min) 

Return Frequency (mm/hr) 

2-yr 5-yr 10-yr 25-yr 50-yr 100-yr 

0 0.00 0.00 0.00 0 0 0 

5 1.39 4.15 4.91 3.82 4.92 6.25 

10 1.39 4.15 4.91 4.04 5.19 6.58 

15 1.39 4.15 4.91 4.28 5.49 6.97 

20 1.39 4.15 4.91 4.56 5.84 7.41 

25 1.39 4.15 4.91 4.89 6.25 7.92 

30 1.39 4.15 4.91 5.27 6.73 8.52 

35 1.39 4.15 4.91 5.74 7.31 9.24 

40 2.60 6.20 7.44 6.31 8.01 10.12 

45 2.60 6.20 7.44 7.02 8.89 11.22 

50 2.60 6.20 7.44 7.95 10.03 12.63 

55 2.60 6.20 7.44 9.2 11.57 14.54 

60 2.60 6.20 7.44 11 13.76 17.26 

65 2.60 6.20 7.44 13.82 17.18 21.48 

70 2.60 6.20 7.44 18.89 23.26 28.94 

75 22.67 34.27 41.58 30.69 37.26 45.9 

80 22.67 34.27 41.58 103.56 122.26 143.62 

85 22.67 34.27 41.58 103.56 122.26 143.62 

90 22.67 34.27 41.58 55.17 66.01 80 

95 22.67 34.27 41.58 35.36 42.79 52.54 

100 22.67 34.27 41.58 26.01 31.74 39.26 

105 22.67 34.27 41.58 20.63 25.34 31.48 

110 22.67 11.39 13.75 17.15 21.18 26.4 

115 7.86 11.39 13.75 14.72 18.26 22.81 

120 7.86 11.39 13.75 12.93 16.1 20.14 

125 7.86 11.39 13.75 11.55 14.43 18.08 

130 7.86 11.39 13.75 10.46 13.1 16.44 

135 7.86 6.52 7.34 9.57 12.02 15.1 

140 7.86 6.52 7.34 8.83 11.12 13.98 

145 3.16 6.52 7.34 8.21 10.36 13.04 

150 3.16 6.52 7.34 7.68 9.71 12.23 

155 3.16 6.52 7.34 7.22 9.14 11.52 

160 3.16 6.52 5.86 6.82 8.65 10.91 

165 3.16 4.88 5.86 6.46 8.21 10.36 

170 3.16 4.88 5.86 6.15 7.82 9.87 

175 2.05 4.88 5.86 5.87 7.47 9.44 

180 2.05 4.88 5.86 5.61 7.15 9.04 
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185 2.05 4.88 4.80 5.38 6.86 8.68 

190 2.05 4.00 4.80 5.17 6.6 8.36 

195 2.05 4.00 4.80 4.98 6.36 8.06 

200 1.54 4.00 4.80 4.8 6.14 7.78 

205 1.54 4.00 4.80 4.64 5.94 7.53 

210 1.54 4.00 4.80 4.49 5.75 7.29 

215 1.24 3.17 3.80 4.35 5.57 7.07 

220 1.24 3.17 3.80 4.21 5.41 6.86 

225 1.24 3.17 3.80 4.09 5.26 6.67 

230 1.24 3.17 3.80 3.98 5.12 6.49 

235 1.24 3.17 3.80 3.87 4.98 6.33 

240 1.24 3.17 3.80 3.77 4.86 6.17 
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Table A2.3 The initial values and testing ranges of hydraulic parameters for model calibration  

Soil Setting Qr Qs 
α   

(1/cm) 
n 

Ks 

(cm/min) 

Soil Media A and 

Compost 

Initial value 0.08 0.5 0.05 2 0.25 

Range 0 ~ 0.1 0.1 ~ 0.6 0 ~ 0.01 1 ~ 2 0 ~ 1 
       

Soil Media A 

(Loam) 

Initial value 0.078 0.43 0.036 1.56 0.0417 

Range 0 ~ 0.1 0.1 ~ 0.6 0 ~ 0.01 1 ~ 2 0 ~ 1 
       

Soil Media B and 

Compost 

Initial value 0.08 0.5 0.08 2 0.25 

Range 0 ~ 0.1 0.1 ~ 0.6 0 ~ 0.01 1 ~ 2 0 ~ 1 
       

Soil Media B 

(Sandy Loam) 

Initial value 0.065 0.41 0.075 1.89 0.208 

Range 0 ~ 0.1 0.1 ~ 0.6 0 ~ 0.01 1 ~ 2 0 ~ 1 
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Figures: 

Figure A2.1 Schematic diagram of soil hydraulic parameters calibration process using HYDRUS 1D  
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Figure A2.2 Sensitivity of the outflow hydrograph with different Ks values of gravel layer for bioretention 

Column 3 with anoxic zone. Storm event modeled: 1:2 year. 
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Figure A2.3 Modification bioretention Column 2 by changing the CA/SA ratio. Storm event modeled: 

1:100 year. 
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Chapter 3 

Context A3.1  An example of Eq. 3.3-3.5 

An example of an optimization problem with 2 minimizing objectives, 4 candidate solutions, and 

4 goal vectors are used in Paknejad et al. (2021) to explain this fitness method as shown in Figure 

A3.4. Candidate solutions CS2 and CS4 are parent solutions while CS1 and CS3 are offspring 

solutions, so N = 2. In this example, the fitness values of the four candidate solutions are calculated 

as: 

𝐹𝑖𝑡𝑐𝑠1 =
1

𝑛𝑔𝑣1
+

1

𝑛𝑔𝑣2
+

1

𝑛𝑔𝑣3
+

1

𝑛𝑔𝑣4
=

1

2
+

1

2
+

1

3
+

1

4
=

19

12
 

𝐹𝑖𝑡𝑐𝑠2 =
1

𝑛𝑔𝑣1
+

1

𝑛𝑔𝑣2
+

1

𝑛𝑔𝑣3
+

1

𝑛𝑔𝑣4
=

1

2
+

1

2
+

1

3
+

1

4
=

19

12
 

𝐹𝑖𝑡𝑐𝑠3 =
1

𝑛𝑔𝑣3
+

1

𝑛𝑔𝑣4
=

1

3
+

1

4
=

7

12
 

𝐹𝑖𝑡𝑐𝑠4 =
1

𝑛𝑔𝑣4
=

1

4
 

In this case, the fitness values of CS1 and CS2 are the same while CS3 is dominated by CS4. Using 

the calculation of fitness value of CS3 as an example, gv3 and gv4 are the two goal vectors that are 

dominated by CS3. Therefore, the fitness value of CS3 is equal to the sum of 
1

𝑛𝑔𝑣3
 and 

1

𝑛𝑔𝑣4
. 

The fitness values of the four goal vectors are calculated as: 

𝐹𝑖𝑡𝑔𝑣1 =
1

1 + (
𝑛𝑔𝑣1 − 1
2𝑁 − 1 )

=
1

1 + (
2 − 1
4 − 1)

=
3

4
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𝐹𝑖𝑡𝑔𝑣2 =
1

1 + (
𝑛𝑔𝑣2 − 1
2𝑁 − 1 )

=
1

1 + (
2 − 1
4 − 1)

=
3

4
 

𝐹𝑖𝑡𝑔𝑣3 =
1

1 + (
𝑛𝑔𝑣3 − 1
2𝑁 − 1 )

=
1

1 + (
3 − 1
4 − 1)

=
3

5
 

𝐹𝑖𝑡𝑔𝑣4 =
1

1 + (
𝑛𝑔𝑣4 − 1
2𝑁 − 1

)

=
1

1 + (
4 − 1
4 − 1

)
=

1

2
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Context A3.2  An example of Eq. 3.6-3.7 

New fitness value of the four candidate solutions are calculated as: 

𝑟𝑎𝑛𝑘𝑐𝑠1 = 1 + 0 = 1    

𝑟𝑎𝑛𝑘𝑐𝑠2 = 1 + 1 = 2    

𝑟𝑎𝑛𝑘𝑐𝑠3 = 1 + 0 = 1    

𝑟𝑎𝑛𝑘𝑐𝑠4 = 1 + 1 = 2    

 𝐹𝑖𝑡𝑐𝑠1 =
1

𝑛𝑔𝑣1
× 𝐹𝑖𝑡𝑔𝑣1 +

1

𝑛𝑔𝑣2
× 𝐹𝑖𝑡𝑔𝑣2 +

1

𝑛𝑔𝑣3
× 𝐹𝑖𝑡𝑔𝑣3 +

1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠1

=
1

2
×

3

4
+

1

2
×

3

4
+

1

3
×

3

5
+

1

4
×

1

2
+

1

1
=

22

10
 

𝐹𝑖𝑡𝑐𝑠2 =
1

𝑛𝑔𝑣1
× 𝐹𝑖𝑡𝑔𝑣1 +

1

𝑛𝑔𝑣2
× 𝐹𝑖𝑡𝑔𝑣2 +

1

𝑛𝑔𝑣3
× 𝐹𝑖𝑡𝑔𝑣3 +

1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠2

=
1

2
×

3

4
+

1

2
×

3

4
+

1

3
×

3

5
+

1

4
×

1

2
+

1

2
=

17

10
 

𝐹𝑖𝑡𝑐𝑠3 =
1

𝑛𝑔𝑣3
× 𝐹𝑖𝑡𝑔𝑣3 +

1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠3
=

1

3
×

3

5
+

1

4
×

1

2
+

1

1
=

53

40
 

𝐹𝑖𝑡𝑐𝑠4 =
1

𝑛𝑔𝑣4
× 𝐹𝑖𝑡𝑔𝑣4 +

1

𝑟𝑎𝑛𝑘𝑐𝑠4
=

1

4
×

1

2
+

1

2
=

5

8
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Tables: 

Table A3.1 Basic parameters and setup of the SWMM model, with the modified Green-Ampt as the 

infiltration model 

Parameters Description Setup 

N-Imperv Manning’s N for impervious area 0.015 

N-Perv Manning’s N for pervious area 0.397 

Dstore-Imperv Depth of depression storage on impervious area (mm) 1.067 

Dstore-Perv Depth of depression storage on previous area (mm) 5.336 

%Zero-Imperv Percent of impervious area with no depression storage 43.563 

Suction Head Soil capillary suction head (mm) 343 

Conductivity Soil saturated hydraulic conductivity (mm/hr) 2 

Initial Deficit Difference between soil porosity and initial moisture content 0.447 
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Table A3.2 Basic parameters and setup of the dynamic wave in the SWMM model 

Parameters Setup 

Inertial Terms Dampen 

Normal Flow Criterion Slop & Froude 

Force Main Equation Hazen-Williams 

Minimum Variable Time Step (sec) 0.5 

Minimum Nodal Surface Area (sq. meters) 1.14 

Head Convergence Tolerance (meters) 0.0015 
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Table A3.3 Examples of subcatchment land use in the study area 

Subcatchment ID Greenspace (%) Concrete (%) Roof (%) 

1002 77.17 22.83 0 

1036 89.37 10.63 0 

1047 85.32 14.11 0.57 

1083 77.67 22.33 0 

1117 69.08 30.92 0 

1250 23.15 67.86 9 

1253 55.33 16.71 27.97 

1260 60.17 29.47 10.37 
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Table A3.4 The design storms used in the City of Calgary (COC, 2011) 

Time 

(min) 

Intensity (mm/hr) for Return Period 

2yr 5yr 10yr 25yr 50yr 100yr 

0 0.000 0.000 0.000 0.000 0.000 0.000 

5 5.589 7.622 8.972 10.716 12.024 13.283 

10 7.955 10.866 12.807 15.283 17.168 18.961 

15 16.695 23.029 27.274 32.555 36.673 40.516 

20 58.763 87.477 106.693 132.056 150.050 168.138 

25 22.201 30.772 36.520 43.630 49.196 54.372 

30 13.232 18.142 21.432 25.552 28.750 31.748 

35 9.731 13.306 15.694 18.719 21.040 23.236 

40 7.831 10.695 12.604 15.041 16.895 18.660 

45 6.624 9.040 10.647 12.711 14.271 15.763 

50 5.782 7.887 9.284 11.088 12.444 13.746 

55 5.158 7.032 8.275 9.885 11.090 12.251 

60 4.675 6.371 7.493 8.953 10.041 11.093 
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Figures: 

 

Figure A3.1 An elitist framework of PICEA-g (Wang, 2013) 
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Figure A3.2 An example of initializing first candidate solutions with 4 decision variables and 4 sets of 

solutions 
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Figure A3.3 An example of two objective problem using the cutting plane (Wang, 2013).  

Goal vectors are randomly generated inside the bound space. In the original PICEA-g algorithm, the 

bound space of goal vectors is OKHL. The cutting plane cuts the bound space from OKHL to 

DAGBCFM4-1E (grey area), where E and F are the extreme points and M1-4 are the non-dominated 

solutions. In the original bound space, any goal vectors that fall inside the area OKDEM1-4FL cannot be 

dominated by any solutions, while any goal vectors that fall inside the area AHNG could be dominated by 

all solutions, which means any goal vectors that fall outside the area DAGBCFM4-1E (gray area) are 

wasted and useless. In the meantime, objective f2 is far from the Pareto optimal front rather than object f1 

(pick any point along with EF). Because GBCF's area is larger than DAGE's, more goal vectors fall inside 

the area GBCF rather than DAGE with the cutting plane approach, distributing more efforts on steering 

solutions towards objective f2 in the next generation. 
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Figure A3.4 An example of how to calculate fitness value in a two-objective problem (Paknejad et al., 

2021) 
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Algorithms: 

Algorithm 3.1 Pseudo code of PICEA-g (Modified from Wang  (2013)) 

Input: N, Ng, MaxGen 

%% N = size of solution, Ng = size of goal vectors, MaxGen = maximum number of generations 

Output: BS, BF 

%% BS = best solutions, BF = best objective values 

1 CS = initialize solution (N)     % CS = candidate solutions 

2 GV = random goal vectors generator (Ng,Gbounds) 

% GV = goal vectors,  Gbounds = Defined space or range for goal vectors 

3 F = achieve object values (CS)    % F = objective values 

4 for gen = 1 to MaxGen 

5       CSc = genetic variation operator (CS) 

6       Fc = achieve object values (CSc) 

7       GVc = random goal vectors generator  (Ng,Gbounds)   

8       JointCS = CS + CSc 

9       JointGV = GV + GVc 

10     Calculate fitness of each individual of JointCS and JointGV 

11     Sorting JointCS and JointGC by their fitness 

12     CS = truncation (JointCS)    % select best N solutions from JointCS 

13     GV = truncation (JointGV)    % select best Ng goal vectors from JointGV 

14 end 

15 BS = CS 

16 BF = achieve object values (BS) 

17 return BS BF 
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Algorithm 3.2 Pseudo code of crossover 

Input: parents, bounds 

%% parents = parent population, bounds = decision variables boundaries  

Output: offspring 

%% offspring = offspring population 

1  generate two chaotic sequences x1 and x2 using the logistic map 

2  randomly select two types of LID, t1 and t2 (index of type1 LID) 

3 for  j = 1 to N     % N = size of parent population 

4             if x1(j) <= 0.5 

5                   offspring(j,t1) = parents(j,t1) + (uBound(t1) - parents(j,1t)) * x2(t1)*0.5; 

6                   offspring(j,t2) = parents(j,t2) - (parents(j,t2) - lBound(t2)) * x2(t2)*0.5; 

7             else 

5                   offspring(j,t1) = parents(j,t1) - ( parents(j,t1) - lBound(t1)) * x2(t1)*0.5; 

6                   offspring(j,t2) = parents(j,t2) + (uBound(t2) - parents(j,t2)) * x2(t2)*0.5; 

%%  lBound and uBound are the lower boundaries and upper boundaries of decision variables 

7            end 

8        end 

9  end 

10 return offspring 
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Algorithm 3.3  Pseudo code of mutation 

Input: parents, bounds, fitnessCS 

%% parents = parent population, bounds = decision variables boundaries  

%%  fitnessCS = fitness value of each solution set (rows of parent population) 

Output: offspring 

%% offspring = offspring population 

1 set xovProb = 0.7    % xvob = probability of crossover between a pair 

2 for  j = 1 to N     % size of parent population (rows) 

3       if rand  <=  xovProb      % rand is a random number in [0,1], crossover operates when rand <= xovProb 

4             parent1 = parents(j,:) 

5             parent2 = roulette wheel (parents, fitnessCS) 

6             generate a chaotic sequence x using the logistic map 

7             for var = 1 to noVar      % noVar is the total number of decision variables 

8                   if x(var) <= 0.5 

9                         offspring(j,var) = parent1(var) 

10                  else 

11                        offspring(j,var) = parent2(var) 

12                  end 

13                  check if offspring population inside the bounds, if not, replace with bounds 

14           end 

15       end 

16 end 

17 return offspring 
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